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1 Introduction

1.1 The gluing problem

Let X be a smooth variety over an algebraically closed field k of characteristic 0, and let
f: X — k be a regular function. Assume that f is smooth away from the locus Y = f~1(0).
We have varieties and embeddings as depicted in the diagram

viaxlu=x-v

For any space Z we let Hol(Dy) denote the category of holonomic Dz-modules. The main
focus of this (purely expository) thesis will be answering the following slightly vague question.

Question 1.1. Can one “glue together” the categories Hol(Dy ) and Hol(Dy) to recover the
category Hol(Dx)?

Our approach to this problem will be to define functors of (unipotent) nearby and van-
ishing cycles along Y, ¥ : Hol(Dy) — Hol(Dy) and ®; : Hol(Dy) — Hol(Dy ) respectively.
Using these functors and some linear algebra, we will build from Hol(Dy) and Hol(Dy) a
gluing category equivalent to Hol(Dx). This strategy is due to Beilinson, who gives this
construction (and in fact does so in greater generality) in the extraordinarily concise article
[B]. Since that paper omits many essential details, there seems to be a place for a more
leisurely exegesis (one might say “baby version”) of the article, specialized to the setting of
holonomic D-modules.

A word of motivation: beyond the intrinsic interest of Question 1.1, the vanishing cycles
and related functors for D-modules which we shall construct (and corresponding construc-
tions for perverse sheaves) have a wealth of applications. However, such applications — for
instance to representation theory [BB| and algebraic geometry — are far beyond our scope.

1.2 A simple case

To fix ideas and make Question 1.1 more well-defined, let us consider the simplest relevant
example. For definiteness, set k = C. Let X = A!, and let f be the coordinate ¢ on X, so
that Y = {0}. Write Ox = C[t], Oy = C[t,t7'], Oxy = C[t]«), and Oy = C. Differential
operators on X and U are generated by the vector field 0 = %.

Before considering D-modules at all, we remark that one can formulate a much easier
commutative analogue of Question 1.1, asking about categories of O-modules rather than D-
modules. To obtain an Artinian category Mod(Ox)™ of Ox-modules analogous to Hol(Dx),
we restrict our attention to those which are finite-dimensional as C-vector spaces. In analogy
with holonomic D-modules, these are the Ox-modules whose support is as small as possible
in dimension: any finite-dimensional Ox-module M is supported on the O-dimensional set
of roots of the characteristic polynomial of ¢ € Ox acting on M. This perspective makes it
clear that there is an equivalence of categories

Mod(Ox)™ < Mod(Oy) x Mod(Ox)™

given (from left to right) by localization and (from right to left) by taking direct sum.
Furthermore, an object in Mod(Ox )™ is precisely a finite-dimensional vector space — i.e.,
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an object of Mod(Oy)® — equipped with a nilpotent endomorphism, multiplication by .
Thus the righthand side can be regarded as “glued” from Mod(Oy )™ and Mod(Oy )™ using
linear algebra.

In the case of D-modules, keeping X, Y, U as we have defined them, it would be naive to
expect quite so simple an answer as was found in the commutative case. Nonetheless, since in
this example Y is a point, holonomic Dy-modules are nothing more than finite-dimensional
vector spaces, so it is still reasonable to expect a fairly simple answer. To obtain a really
nice answer we shall be slightly more restrictive about the Dx-modules we are considering.
In particular, let us consider the subcategory Hol?eg(DX) of regular holonomic D-modules
with no singularities away from the origin. These are precisely those holonomic Dx-modules
whose restrictions to U are not only Op-coherent, but reqular integrable connections.! For
example, let P(t,0)u = 0 be an algebraic differential equation on X = C of order n, where

P(t,0) = Zn: a;(t)o"

and the a; are polynomials. The corresponding holonomic Dx-module Dx/DxP is in
Hol?eg(DX) if and only if ord;—ga; > ord;—ga, + n — i for each 7, and a similar condition
holds at ¢t = co € P! D X (in terms of a suitable local coordinate). By a classical theorem
of Fuchs, such a condition at a point p where the differential equation has a singularity, is
equivalent to a “moderate growth” condition on the solutions u to the equation near p (cf.
e.g. [HTT, Thm. 5.1.4]).

Let Locy C Hol(Dy) denote the full subcategory of regular integrable connections as
above. Justifying the notation, the famous Riemann-Hilbert Correspondence entails that
the category Locy is equivalent to the category of local systems £ on the punctured affine
line C*, by taking sheaf of local solutions to the differential equation corresponding to the
D-module . Let Holgeg(DX) C Hol(Dx) denote the subcategory of those modules whose

restriction to U is in Locy. A more refined version of Question 1.1 in our simple setup is the
following.

Question 1.2. Is there a linear algebraic construction of a “gluing category” Glue(U, YY) from
Locy and Hol(Dy) = finite dimensional vector spaces, such that Hol},,(Dx) is equivalent to
Glue(U,Y)?

The category of local systems on C* is equivalent to the category of representations of
m1(C*,1) = Z, an object of which is simply a finite dimensional vector space V' (obtained as
the stalk £; of £ at 1 € C*) equipped with an invertible linear operator u (obtained as the
monodromy action around the puncture). Consequently Locy is not much more complicated
than Hol(Dy): it is itself constructed entirely in terms of linear algebra. So an equivalent

version of the gluing problem in this setup is
Question 1.3. Is the category Hol?eg(DX) equivalent to a category of collections of vector

spaces and specified linear maps among them?

We will answer Question 1.3 affirmatively in §4.2

!See [Bor, II1] or [HTT, Chs. 4&5] for the definition of this notion.



1.3 Outline of the rest of this thesis

A crucial tool for us will be the notion of the b-function of a holonomic Dy-module. This is
discussed in §2. In §3 the main results are proved: we construct nearby and vanishing cycle
functors for D-modules, and demonstrate their main properties. In §4 we use these functors
to construct the required gluing category to answer Question 1.1.

1.4 Background and notation

I have tried to make this thesis more or less self-contained, modulo some category theoretic
constructions recalled in Appendix A. An elementary overview of algebraic D-modules,
including (mostly without proof) all the facts about them we need below can be found in
Appendix B.

There are competing notations for the various functors and categories used when working
with D-modules; we largely, but not entirely, follow [Ber] and [G]. Since this thesis is
somewhat notationally heavy, a summary of our notation can be found in Appendix C,
which also serves as a “Quick Reference” for the basic definitions and properties of the
categories and functors we discuss.

A few loose notational conventions: capital letters usually denote varieties (X, Y, Z,U);
capital script letters (F,G, M, N, ---) denotes sheaves (all our sheaves are quasicoherent);
capital Greek letters are mostly reserved for functorial operations on sheaves (II, ¥, ®, =);
lowercase Greek letters generally denote either morphisms (o, 3,7) of sheaves or sections

(/*Lv 2 2/}7 f) of sheaves.
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2 The lemma on b-functions

2.1 Statement
Consider the “XYU” setup of §1.1:

lo=ysxLluv=x-v
The ring Oy differs from Ox in that we can divide by f in the former, but not in the latter.

In Dy, however, a quasi-inverse to multiplication by f may already exist. In fact such a
quasi-inverse does exist, in the following sense.



Theorem 2.1 (Lemma on b-functions). Let M be a holonomic Dy-module and m € M a
section. Then there exist d;;[s| € Dx|s] and 0 # b(s) € k[s] such that for all n € Z we have

the identities
dln](f"m) = b(n) - f*~'m.

Theorem 2.1 is due independently to Bernstein [Ber2] and Sato.? The monic generator
of the ideal in k[s] of polynomials b satisfying the theorem is known as the b-function
or Bernstein-Sato polynomial of m. The point of the theorem is that away from the
finitely many integer roots of the b-function, one can in fact “divide by f” in Dx. By taking
M = Oy, m =1 we obtain the “classical” b-function lemma, which provides for just the sort
of quasi-inverse described above. A well-known, but hardly representative, example of the
classical b-function of a polynomial f is the following.

Example 2.2. Let X = A" with coordinates t,...,t., and 0; = 6%,...,& = aitr the
generators for vector fields on X, so that Dy = k(ty,...,t.,01,...,0,) with the relations
0i,t;] = 6;; and [0;,0;] = [ti,t;] = 0. Let f = > ¢ and A = > 9? (the Laplacian). It is
easy to compute explicitly
A(fY) =4+ Dn+ )"

Sod =2 € Dy C Dxls] and b(s) = (s + 1)(s + %) satisfy the conditions of the theorem;
the latter is the b-function of f. It is worth pointing out that in general there need not be
any resemblance between a polynomial and its b-function; the fact that in this case f and b
are both quadratic is a coincidence. The fact that b has negative rational numbers as roots,
however, is a general phenomenon, a deep theorem of Kashiwara [K].

Theorem 2.1 has a number of applications. A standard consequence is that it can be used
to show [Ber, 3.8] that direct image along an open embedding preserves holonomicity.For
another application we recall the fundamental classification result concerning irreducible
holonomic D-modules.

Theorem 2.3. [Ber, 8.1}] Let o : Z — W be a locally closed embedding with Z irreducible,
and let £ be an irreducible holonomic Dz-module. Let

€ = im(H'am& — H'a,&)

denote the Goresky-MacPherson extension of €. Then & is a holonomic Dy -module, and is
the unique irreducible subquotient of c.& (or aw&) with nonzero restriction to Z. Moreover,
any irreducible holonomic Dy -module F is of the form & for some affine embedding
a: Z — W and some irreducible O-coherent Dy-module £. ]

For a general holonomic Dy-module M the Goresky-MacPherson extension 7, M defined as
in the theorem gives the smallest submodule of j,M whose restriction to U is M. We shall
see below (Corollary 2.8) that the b-function lemma gives an algorithm for computing this
module. Somewhat similarly, Gaitsgory and Beilinson [BG] use the b-function lemma to give
an algorithm for computing 7M. The most important use of the b-function lemma in this
thesis, Theorem 3.31, also involves the relationship between M and j,M, in a special case.

2But I am not aware of a reference for Sato’s work.



2.2 Proof

To prove the b-function lemma we first give a reformulation. For this we need a special

module, which (following [BG]) we denote by “f*”. We begin by considering the sheaves

Ovuls| = Oy ®k[s] and Dyls] = Dy @k|[s] (where k and k[s] denote constant sheaves and s is
k k

a formal variable) of polynomials in s whose coefficients are regular functions and differential
operators, respectively. The module “f*” is defined as the free Oy[s]-module of rank 1,
generated by a formal symbol f*. The Dy-action is induced by the formula

E(f°) =sE(NHf - f
for any vector field £ on U.

Theorem 2.4. Let M be a holonomic Dy-module and m € M a section. There exists a
polynomial b(s) € k[s] and a differential operator d(s) € Dyl[s| such that the identity

d(s) - (fm® f*) = b(s)(m® f*)
holds in the Dy|s]-module M @ “f7 = M g{) “pon 3
U

From this theorem we may readily deduce the b-function lemma in its standard form. By
the theorem, we have an identity

bm @ f*) =dm® f- f°)

in M® “f*” for some b € k[s] and d € Dy[s]. There is a homomorphism of Dy-modules
eViep 1 M® “f" — M for any n € Z, which sends m ® g(s) - f* — g(n)f"m. Indeed, it
suffices to check that this respects the action of “vector field coefficient polynomials in s”, i.e.
of £(s) =Y s'¢; € Oyls]. This is true because the Dy [s]-module M @ “f*” was constructed
in a manner respecting the Leibnitz and chain rules: we have

Voo (€(5) - (M ® ) = even S (6(m) © 8+ m @ s (F) )
= S i m) + 0t () m) = S m) = 6n) - eve(m @ f7).

So the identity b(m ® f*) = d(m @ ff*) entails b(n)f"m = d(n) - (f"™'m) in M as desired.
Our proof of Theorem 2.4 follows [Ber|. We begin by extendings scalars to the field
of rational functions K = k(s). For a variety Z over k we denote the extended variety

Z x SpecK by Z. Note that for a k-algebra A we have Derg (A @, K) = Dery(A) @y K,
Speck

which entails Dy = Dz ®x K = Dy(s). Similarly, for a Dz-module F we denote the extended
Dz-module K ®, F by F. With this notation, we have the following lemma.

Lemma 2.5. Ny = M ® “f*” is a holonomic Dg-module.
Og

3For the definition of the internal tensor product D-module structure, see Appendix B.3.3.



Proof. Since S.S.(F) = g(?—") C T*Z = T*Z for any D-coherent module F, the extension
of a holonomic module is holonomic. In particular, M is holonomic. Moreover the module

—_— L
“f¢” is Op-coherent, hence holonomic. Internal tensor product @ @ e preserves holonomicity
o

(cf. Appendix B.5.4). Since ‘6@’ is Op-flat, the claim follows. ]

Proof of Theorem 2.4. Note that Ny from the lemma is the restriction to U of the D-
module - -
N:j*M ® j*“fs”.
Ox

By the “extension lemma” (Appendix B.5.2) there exists a holonomic D g-submodule N7 C
N such that M|z = My. Then the quotient N'/A" is supported on the hypersurface ¥ =

X — U cut out by f. So if we regard m ® f* as a section of A/, then by the Nullstellensatz
there exists ko such that m ® f*o s € M.

Since A is holonomic so is the submodule Dg(m @ f* f*), and in particular the latter
has finite length. So the descending chain of Dg-submodules of N

Dg(m® f*f*) D Dg(me forf) o
must eventually stabilize. In particular, for some k > ko, we have
Di(m® f*f*) = Dg(me f*f°).

But note that there are compatible isomorphisms

Dg(m® f*) ——=Dg(m@ f*f*)
D(m® [+ [*) —=Dg(m® f*f)
given on the Dg-generators by multiplication by f*. It follows that
Dg(m® f*) =Dg(me f- f°)

just as well. So there is some d(s) € Dy = Dx(s) such that

me f*=d(s)mef-[°).
If we clear the denominators of d, we find b € k[s] and d € Dx[s] satisfying

bo(s)(m @ f¥£7) = do(s)(m @ f* 7).

This concludes the proof of the b-function lemma. n



Remark 2.6. In the special case M = Opy,m = 1, X = A" the holonomicity Lemma 2.5
can be bypassed, removing the dependence upon any significant facts about D-modules.
(This was the original setting in which Bernstein proved the existence of b-functions.) In
this case we can show directly that D¢ f* is holonomic. Indeed, it suffices to consider the
global problem of showing that the module A, (K) - f* is holonomic over the Weyl algebra
A (K) =T(X, Dy) (Appendix B.1). By definition of the D-action there is an inclusion of
A, (K)-modules A, (K) - f* < Op - f* = K[t1,...,4,][f"] - f*. Since a submodule of a
holonomic D-module is holonomic, it is therefore enough to check that Op - f* is A, (K)-
holonomic.

Now we use the fact that we are on affine space, for A, (K) admits in addition to the
usual filtration by the order of differential operators another filtration known as the Bernstein
filtration, defined by giving degree 1 to all the ¢; and 0;. Bernstein showed [Ber2| that an
A,-module M if holonomic if it admits a good filtration M* with respect to the Bernstein
filtration on A,, such that dim M* < £&™ + o(k?) for some positive integer e (which is the
multiplicity of the holonomic module M). It is straightforward to check that the module
Op - f° admits such a filtration Fil* with e = n(deg(f) + 1), where Fil* is generated by
expressions g(s) ™" - f* for g € k(s)[t1, ..., t,] satisfying deg,, , g < k(1 + degf).

Remark 2.7. The proof of the b-function lemma we have given is, of course, entirely non-
constructive. However, algorithms for computing the b-function of a holonomic D-module
along a hypersurface Y have recently been devised by T. Oaku [O].

2.3 A consequence

In the sequel we will need the following corollary of the b-function lemma. We remain in the
XYU situation above.

Corollary 2.8. Let My be a holonomic Dy-module generated by sections my, ..., m,. Then
for k> 0 one can compute the Goresky-MacPherson extension as ju.My = >, Dx f*m,.

Proof. Let My = >, Dxf*my. Consider the quotient j,My/j.My. Since j.My and
J1.My both restrict to My, the quotient is supported on Y. In particular, it follows that
the sections f¥my are all in j, My for sufficiently large k. So for k > 0 we have M, C ji, M.
Now it is clear that j* M, = My for any k (since f*¥ becomes invertible upon restriction). If
M. € jiMy, choose a nonzero section of the quotient 7. My /M. It is again supported on
Y, so it is annihilated by some power of f. Therefore the M, (for sufficiently large k) form
an increasing sequence of submodules of ji,. My, which can only stabilize once My, = ji,.My.

So it suffices to show that the sequence does stabilize, which will follow from the b-
function lemma. Let b, be the b-function of m,. In particular, for k£ greater than all the
integer roots of by, one has f*m, € Dx f*"1m,. Hence for sufficiently large k (bigger than all
the integer roots of all the b-functions b,) we obtain My C M1, which means the sequence
stabilizes as claimed. O]



3 Nearby cycles, maximal extension, and vanishing cy-
cles functors

This section is the heart of the thesis. The goal is to define functors ¥ : Hol(Dy) — Hol(Dy)
and @ : Hol(Dx) — Hol(Dy) which will be used in §4 for the construction of the gluing
category. The results of §2 play a small but crucial role in the definition of these functors
(see the proof of Theorem 3.31).

3.1 Monodromy Jordan blocks
We return (temporarily) to the XYU setup

M=vyLx=aAllUu=C*=Xx_-V

of Section 1.2. A natural class of indecomposable objects in Locy are those local systems
with unipotent monodromy of a single Jordan block. The Fuchs conditions mentioned in
Section 1.2 correspond, it can be shown, to the condition on a differential equation that it
be equivalent (in the sense of giving rise to isomorphic D-modules) to one of the form

v1(t) v (t)

va(t) va(t)

to| =T
k() or(t)

for a constant matrix I'. The monodromy around the origin of the corresponding local system
of solutions is exp(2mil'). So we may concern ourselves with those Dy-modules on which the
logarithm of monodromy operator t0 acts nilpotently.

Specifically, the Dy-module corresponding to a nilpotent Jordan block of size n will
be essential in what follows, so let us describe it. Since we are in an affine setting, we
may freely pass between sheaves and ordinary modules by taking global sections (or in the
other direction, localizing). Note that Dy = I'(U, Dy) is C[t, ™", ] where 0 = 2 satisfies
[0, f] = O(f). Consider the Dy-module

J® = Dyleq, ... e,)/Dy(fer,fey — ey, ... 0, —en_1), 0 =to. (1)

Write J™ for the associated Dy-module. The corresponding analytic D-module ja(f ) has
solutions Hom’l)%“(ja(r? ), O?) given by the local system of solutions to the corresponding
system of differential equations

01

d
t—u(t) = . u(t) = Tu(t).
) | =)
0
Taking the local system of solutions to this equation, we see that J ™ corresponds to the
powers of the logarithm. An alternate presentation of J™ is is



where log® is a formal symbol corresponding to k! - e, in the presentation above, which 9
acts upon by tdlog® = klog"™! (and of course dlog® = 0).
Now return to the general XY U setup

FUO=YSXLU=X-Y

for a regular function f : X — k on a smooth variety X over an arbitrary algebraically closed
field k of characteristic zero, such that f|y is smooth. We generalize the notion above.

Definition 3.1. The monodromy Jordan block of size n refers to the Dyx-module
J™ defined by equation (1), or the corresponding Dy-module (f|y)'T™[dim X — 1] =
(flo)*T™[1 — dim X], which we denote by ._7f(").

Note that since f|y is smooth, the inverse image (f|y)'[dim X — 1] coincides with the

ordinary sheaf-theoretic inverse image (f|;)® and is exact. So we may reduce many prop-
erties of the J. JSn) to the corresponding properties of the J™. The Dygx-modules J™ are
Oy x-coherent, hence holonomic; the same is true of the J f(n)s, which are actual modules

rather than simply complexes.
Plainly there exists a filtration

0cTgVcgPc...cgm, (2)

with J®) spanned by e1,...,e; € J™. The subquotients 7Y /7@ are each isomorphic
to JW. Note that Djx /Dyxtd = Dyx /Dyx0 and the commutation relations in Dyx can be
used to bring any 0’s to the righthand side, so this quotient is isomorphic to Oyx. In other
words, JM 22 Opx. So we obtain a corresponding filtration of the J fn)s with subquotients
isomorphic to Jf(l). The pullback jf(l) is Op.

The filtrations above induce natural maps

j(l)%) oo j(n_1)< j(n)<

(since all the subquotients are the same), and similarly for the J. fn). Let us describe the
modules
g wd g
more explicitly.
Let s be a formal variable and recall the Dy [s]-module “f*” defined as in Section 2; it is
Ouls] - f*, where f* is regarded as a formal symbol, and the action of vector fields given by

E-fr=sfl) f

defines the Dy|s]-module structure. Write “¢*” for the corresponding Dyx [s]-module. The
sheaf-theoretic inverse image f~'Oyx is the subsheaf of Oy obtained by taking a section
g(t,t71) of Opx and making the formal substitution ¢ — f, regarding the result as a function
on U. Observe that there is an obvious identification of

(Flo) 4 [dim X —1] = f7(Ols] ) ® Ov



with Opls] - t5. After making the additional formal substitution ¢* — f* one sees that the
inverse image Dy-module structure on (f|y)'“t*” (defined by & - (g(s) -t*®@ h) = g(s) - * ®
E(h)+ 0(g(s) - t°) @ h&(f)) coincides with that of the Dy [s]-module “f*”.

(TL) ~ ufsw - O [S]'fs
Lemma 3.2. J;" = G5 = sngU[s},fs.

Proof. There is a morphism of Dyx-modules “t*” — J™ where the map Oyl[s] - t* — J™
is defined by
"t s e, (0< k< n), s =0 (k>n),

and extended Op-linearly. (Recall that the e, are the generators of J (").) This is Dy-linear
because

afskts = Ska(f)ts + Sk+1ft_1ts = a(f)en—k: + ft_len—k—l = 8(f)en—k: + fa(en—k) = 8(fen—k)

by the relations in J™. The map induces an isomorphism J™ = “57 /s"“ts” = So there is
an exact sequence 0 — s"“t*” — “t*” — J(M — 0. Applying (f|y)' and using the remark
immediately preceding the lemma, the claim follows immediately. O]

Remark 3.3. Another (somewhat cute) way of proving the lemma is to formally expand
o0 k O
£ — exp(slogt) = Y00 80 57 ke, € Uiy J®][s]). Then map

s=0

1
“t°7 5 g(s) - t°* — Res (—g(s)ts) AR
S’n

computing the residue formally with respect to this expansion. One can check that this
amounts to the same map used above.

Definition 3.4. For integers a < b write J%° = s4“t*” /s*“t*” (resp. j]?’b = gAfST [ghe e,
This is an Oyx (resp. Op) -coherent, hence holonomic, Dyx[s] (resp. Dyls|) -module.

By the lemma, we can identify j ) = .,7( Ao and

I = lim 77° Ovls] - f*

<—b— T <— SbOU[ ] fs

= Oullsl] - f*,

with the same Dy-action as before. With respect to the identification in the lemma, the
inclusion J; om e, T 01tk is given by the map o, = multiplication by s*. In fact, for any a, b, k

the map o}, gives an isomorphism \7( fb = j{gk % Now note that there is an isomorphism
of injective systems of Dy [s]-modules

jO 1( o1 jOQ( o1 j03( o1 L.

Nlal Nlcrz N\LUS

~1,0 —2 0c —3,0¢

From this we see that

00 o a0y S “Ouls] - f* Ou((s) - f°
M eTEy ERNCYI 5 RV

10



Definition 3.5. Denote Oy ((s)) - f* by J; 7% (with the same formula for the Dy-action
as before).

Observe that jf_oo’oo is nmot a coherent D-module. Nonetheless, it has a number of
extremely nice properties. For instance:

e The monodromy s acts invertibly upon it.

e In a certain ill-defined sense we will come to grips with below, the Goresky-MacPherson
map for Laurent series j;J. ffoo’oo — juJ ffoo’oo is an isomorphism. This despite the fact

that this map fails to be an isomorphism on the level of the coherent modules J J? b,
Passing to the limit and colimit effectively pushes both the kernel and cokernel “off
the page” out to infinity. (See Example 3.38 for an elaboration of this point.)

e Consequently the Goresky-MacPherson map is injective for power series [J ]9 . So it is

reasonable to study quotients such as 7,7, ]9 2 InT ]9 >, We will find that this quotient
is a Dx-module supported on Y which captures some of the structure of Dy-modules.

We shall use the modules 7;” to define the nearby and vanishing functors we desire, in terms
of the tensor products M ®o, J;" for a Dy-module M. Ultimately we would like to use
notions such as

M @ Tr=7) = n(M((s) - [,

However, this expression is utter nonsense because, since J f_oo’oo is not coherent, the tensor
product here is neither a holonomic Dy-module nor a complex of such modules. So we
cannot apply the direct image functor j, at all, and even the functor j, would be intractable
to compute.

Therefore our first task must be to produce an appropriate analogue of this object, for
which we have sensible versions of these functors.

3.2 The category of pro-ind holonomic D-modules

00,00

Before defining the correct analogue of M ® J, in §3.3.1, we must define the proper
category in which to regard “limits” of holonomic Dz-modules. Here we introduce this
category and study some important technical properties.

Remark 3.6. Recall that holonomic Dz-modules form an abelian subcategory of Mod(Dy)
closed under subquotients and extensions. All the constructions of this subsection will work
for an arbitrary abelian category <7 in place of Hol(Dy). However, we have no need for any
more generality than this.

3.2.1 The category lim Hol(Dy)

Consider the poset

Il = {(a,b) € Z* | a < b} with the partial order (a,b) < (a’,b') & a>d',b> V.

11



We can regard II as a category and consider the functor category Hol(Dyz)M of II-shaped
diagrams in Hol(Dz). Explicitly, these are collections {F** | a < b} of holonomic D-
modules and morphisms {jigpeq @ F*° — Fa | a > d',b > b} of Dz-modules, such that
fora>d >a",b>0b >1b" the diagram

Ha,b,al b’ Hal o all b

_,/ta’b %f‘llvb/ 4>‘7:'a",b”
w

Ha bl b

commutes. Morphisms a between such diagrams are defined in the obvious way as collections
of morphisms a®® compatible with the transition maps p for the source and the target. It
is clear that Hol(Dz)™ is an abelian category, with kernels and cokernels constructed on the
level of individual objects F** in Hol(Dy).

Example 3.7. The J. ; b give an object of Hol(Dy)Y. This is precisely why we want to work
with this category: we would like to generalize this example to the objects

ab B Saccfsn B SaMHSH . fs
M%jf —ng b fsr = s M([s]] - f*

for M € Hol(Dy). Ultimately this will allow us to study the limits M{[s]]- f* and M((s))- f*
(analogous to J. J? T f_oo’oo) and, more importantly, the Dy-modules obtained therefrom via
7 and 7,.

Next we distinguish a full subcategory Hol(Dz)™ < Hol(Dz)™: those diagrams {F*°}
such that for any a < b < ¢ the sequence of Dz-modules

0 — Jq:'b,c — Foc fa,b =0
is exact. We call such diagrams admissible.

Lemma 3.8. Hol(Dz)! is an exact category? with respect to the class £ of short exact
sequences of admissible diagrams.

Proof. We appeal to a general criterion for the exactness of a subcategory an abelian category,
Proposition A.3. It suffices to check that admissible diagrams are closed under extensions.
Let

0—-F" =G —H" —0

be a short exact sequence of diagrams in Hol(Dyz)" such that the first and third terms are
admissible. Let a < b < ¢, and consider the diagram below. By hypothesis all the columns
and the first and third rows are exact. So by the 9 Lemma, the middle row is exact as
well. O

4See Appendix A.2.

12



0 :,t'b,c Fac f‘a,b 0

0 gb,c ga,c ga,b 0

0 Hb,c Hee Ha,b 0

0 0 0

Diagram for proof of Lemma 3.8.

We next distinguish a special class ¥ of morphisms in Hol(Dz)!.

Definition 3.9. We call a function ¢ : Z — Z well-behaved if (i) ¢ is order preserving:
w(a) > (b) for a > b; and (ii) ¢ is of bounded distance from the identity: there exists N
such that |p(i) —i| < N for all 4.

Given a well-behaved map ¢ there is an additive functor @ from Hol(Dz)2 to itself
defined on a diagram F* by @(F)** = F#@)#®) The arrows in the diagram $(F) are given
by the morphisms

Hola) ) pla) o) * PF)™ — B(F)™.
On morphisms a : F — G, this functor acts by $(a)®* = a?@¥® If F is an admissible
diagram then so is @(F): if a < b < ¢ then ¢(a) < p(b) < ¢(c) so

Fel)ele)  pela)ele) _ pela)ed)

is short exact, which is precisely the admissibility criterion for @(F). Note that 1z is the
identity functor.

Now suppose we are given two well-behaved functions ¢, such that ¢(i) < (i) for
all © € Z. (We abbreviate this by 1 > ¢.) Then one can check that fi(a).u)w()e®) :
O(F)* — F(F)*b gives a natural transformation 1 — 3. Let ¥ be the collection of all
morphisms ¢(F) — @(F) produced in this way for various F and ¢, ).

Example 3.10. Let ¢ be a well-behaved map. For Z = U, one can consider in addition to
the diagram j]?’b the diagram @jﬁ’b = sPl@)«fs [se®) e fs7 - GQince ¢ is order-preserving, we
have

lim ¢(b) = oo, lim ¢(a) = —c0.

b—oo a——0o0

°Beilinson [B] omits the constraint that the distance of ¢ from 17 be bounded, but I was unable to prove
that the construction works without this extra hypothesis. Specifically, we use property (ii) below to prove
that a particular class of morphisms is well-suited for localizing the category of admissible diagrams, in the
sense that the resulting localization is still an exact category. It may be possible to make this conclusion
without property (ii).

13



So when we pass to the limit lim @Jﬁ’b we obtain s¥(“Oy|[s]] - £, and passing to the limit
lim lim 9J7 ¥ we still obtain Oy ((s))- f*, the same Dy-module obtained by taking the limits

of the J ; s, Tt follows from the hypothesis that ¢ is of bounded distance from the identity,
that the canonical maps

Scp(a) cafsn /Scp(b) ccf57> —g® ccfsn /Sb ufsw

induce the identity map on Oy((s)) - f* after passing to the lim lim . Therefore, if our goal
is to approximate the properties of non-coherent D-modules obtained as “Laurent series” by
working in the category of admissible diagrams, we would like to insist that 0.7 i — Jy be
invertible. Unfortunately, it is not invertible in Hol(Dy)™ !

As this example illustrates, this is a situation which calls for localizing the category
Hol(Dz)! with respect to the collection of morphisms ¥. (See Appendix A.2 for basic facts
about localization of categories.) For technical reasons we first must add all isomorphisms to
3], and then take the closures of the resulting collection of morphisms under composition. The
next lemma guarantees, by abstract nonsense, that the localization will have nice properties.

Lemma 3.11. ¥ is multiplicative in the sense of Definition A.1.

Proof. Properties (1) and (2) of Definition A.1 were ensured by construction.

To establish property (3), let F <& &G > ¥G be a diagram in Hol(Dz)! with the
righthand morphism in X and ¢ > 1. Since ¢ and ¢ are both of bounded distance from
1z, they are of bounded distance from one another. Suppose |¢(i) — ¥(i)|] < N. Define
p(i) =i — N. Then p is a constrained strictly monotonic function and is < 1. One has
(i) — pp(i) = K — (p(i) — (i) > 0. So 1) > pp. Hence there is a morphism 3 : G — pF
defined as the composition

VG — ppG = ppG 5 pF.
There is also a morphism ¢t : F = 1,F — pF in X. It is straightforward to check that
Bs = ta. The dual assertion is proved analogously.
For property (4), let ¢ > ¢ and suppose

GF S GF T 3¢
I}

is a diagram in Hol(Dz)™, and (o — 3)s = 0. By the reasoning above there exists p < 17

such that ¢ > p1. Then setting t : G — pG, the composition t(a — ) factors as
Since (a — 3)s = 0, this composition is zero. So ta = t3 as desired. Again, the dual case is
proved similarly. O]

Definition 3.12. The category of pro-ind holonomic Dz-modules is the localization
Y~ Hol(Dz)™, which we denote by lim Hol(Dy). The localization functor will be denoted

)

by lim : Hol(Dz)™ — lim Hol(Dy).
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By Proposition A.2 we have the following corollary of Lemma 3.11.

Corollary 3.13. The category lim Hol(Dy) is exact with respect to the class £ of localiza-

tions of exact sequences in Hol(Dyz)™. O

Clearly the localization functor lim is exact.

—

Corollary 3.14. (lim Hol(Dy))” = limHol(Dz)®. Moreover, an exact (covariant resp.

contravariant) functor F' : Hol(Dyz ) — Hol(Dy,) induces an exact (covariant resp. con-
travariant) functor F : lim Hol(Dyz,) — lim Hol(Dy,) defined by FlimF** = limFF**. O

Using the standard description of morphisms in localized categories (see Appendix A.2)
the reader can check that a morphism between the objects limF " and limG" in lim Hol(Dy)

is represented by a pair (¢, a) where ¢ is any constrained strictly monotonic function on the
integers and « : F' — G is a morphism in the diagram category. Two such pairs (¢, «)
and (1, ) represent the same morphism if and only if the maps

a,b a,b
Hip(a) co(b).min(ip(a) (a)) min(p(a) (@) © O AN Ly (a) (b) min(p(a) (a)) min(p(a) (a)) © O
agree. More significantly for us, the criterion for a morphism F» — G of admissible
diagrams in the diagram category to induce an isomorphism on the level of their lims, is

that this morphism becomes invertible after applying one of the natural transformations @,
for some well-behaved ¢ > 1.

3.2.2 The embedding Hol(Dy) — lim Hol(Dy)

Any M € Hol(Dy) has a natural trivial decreasing filtation M* = M for i < 0, M* =0 for
1 > 0. Correspondingly we may define for any a < b a II-diagram

M, a<0,b>0,

0, otherwise.

Ma,b:Ma/Mb:{

Let us call this the trivial diagram corresponding to M. The maps in this diagram are the ob-
vious ones, and it is clear that { M®%} is admissible. It is not difficult to check that M ~» M
embeds Hol(Dy) as a full subcategory of Hol(Dz)!. Moreover, this embedding is exact with
respect to the exact structure £ on the category of admissible diagrams. The composition of
the localization functor with this embedding gives an exact functor Hol(Dy) — lim Hol(Dy).

Lemma 3.15. This functor is an exact embedding (but is not necessarily full).

Proof. 1t is injective on objects because lim is. It is faithful because no morphism between

trivial diagrams corresponding to a morphism of objects of Hol(Dy) is in the class X. ]
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3.2.3 K[[s]] objects and k((s)) objects

We have yet to capture all the structure of the Dy-module J. f_oo’oo of Laurent series. We are
missing two components, the action of the logarithm of monodromy 0t = s on this module,
and a filtration structure. Here we concern ourselves with the first of there.

The s-action on Laurent series makes J, ™™ a “k[[s]]-object” in Hol(Dy). This means
that it is equipped with an action of k|[s]] by Dy-endomorphisms, or in other words, that it
is a Dy|[s]]-module.

Futhermore, each J} ¥ is a (s"-torsion) k[[s]]-module. Multiplication by s is a Dy-linear

endomorphism of 7 ]? b, Moreover, this map is compatible with the natural maps among the

J Jf” * S0 it induces an endomorphism lims of lim7 J? * which we abusively denote by s. This

gives limJ} ¥ the structure of a k[[s]]-object in the pro-ind category.

There is a commutative diagram

b 1,b+1
j}l jll-‘r +

a,b
jf

where ¢ is also given by multiplication by s. The maps ¢ induce an isomorphism lil)nj]?’b —
hm,_’] o+LbHL " The vertical maps induce a morphism of diagrams in the localizing class X2,
and hence an isomorphism liinj ; LA, l‘gnj J? *Therefore s acts as an automorphism of
lznj;’b. We might say that this makes this particular pro-ind module a k((s))-object.

By the same construction, each limj % is a k[[s]]-object. One can easily check that the
action of s shifts by 1 the indexing on the filtration of liinj f“ * by the l'g}nj J? ,f

Generalizing these properties, we make the following definition.
Definition 3.16. We say l%in]:a’b is a k|[[s]]-object if the F** are s’-torsion Dy[s]-modules,

equipped with shift isomorphisms oy, : F@* — Fotkb+F g0 that the pro-ind limit obtains a
k[[s]]-module structure by the same construction above. We call imF*® a k((s))-object if

it is a k[[s]]-object on which s acts invertibly.

We will need the following criterion for the invertibility of a morphism of k((s))-objects
in lim Hol(Dy).

Proposition 3.17. Let a = hma lim}"a b limga * be a morphism of of k((s))-objects.’

Suppose there exists a fixed mteger N > 0 such that for all a < b both the kernel and cokernel
of a®® : Fob — G%’ are annihilated by s". Then « is an isomorphism.

6Meaning o commutes with s.
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Proof. The hypothesis entails that s : G&* — G*® factors through im a®®, and that sV
Fob — Fab factors through Fo¥/ker a®® = im a®® as well. In other words, there exist maps
Brt: Gob — ima®? and B ima®? — FoP such that the diagram

f‘ab
T =
lmOé
127\
‘}tab gab

commutes. Define 3% = ﬁ ab. These are compatible: 3 is simply multiplication by
N and (3, is multiplying by s and taking the (now unique) lift to F%°; both proce-
dures are compatible with the maps in the diagrams F and G. So the 3%* induce a mor-
phism 8 = l'}inﬁ“’b : liing“’b — lgnf“’b in lim Hol(Dz). Note that we have B4t (m) =

(a®®) 1o (2N m) = s*Nm and similarly a*®3%" = . So both compositions a3 and

Ba are multiplication by s?V. Since « is a map of k((s)) objects, multiplication by s?/ is
invertible on either one. Consequently s~2V 3 inverts . n
3.2.4 Admissible filtrations

Another structure on J, °% is that it is exhaustively filtered by Dy|[s]]-submodules J;"*.
We can define truncated versions of the diagram {J} 1 by

j Smax(a,k) ccfsn /Smax(b,k) acfsw
k= .

Observe that lim lim jfk = s*Oy[[s]] - f* = Jﬁ >°. Tt is a simple exercise to verify that
there are natural embeddmgs Jix — Jgp for k > £, and that the J; are all admissible. So
J; is admissibly Z-filtered by the J /x In the diagram category:

Ty D DIy DT D

Consequently there is a filtration by admissible monomorphisms in the exact category
lim Hol(Dy)

i7" S - D limJfY, O limJf?, O limJfy o -
which is analogous to the filtration of Jf_oo’oo by the jﬁ’oo.

Definition 3.18. We say limF*® is admissibly filtered if it has a Z-indexed decreasing
filtration by monomorphisms --- D hm}"ab D hm]: +1 D --- which are admissible in the

exact category lim Hol(Dy), such that ]—",? b — ]—"max a,k),max(b,k)

17



Lemma 3.19. Let k < ¢, and assume limF*’ is admissibly filtered. Then we may form the

cokernel

Hm 7 /imF’ = coker(imF,”* — limF;’) = img**,  G** = F*/FP.
This cokernel canonically isomorphic to F*¢ € Hol(Dz) C lim Hol(Dy).

Proof. By admissibility, one can prove that for a < b one has

Fht >k>a
Fat >l>a>k
G =S F (>b>a>k
Fhb >b>k>a
0 b>a>0>korl>k>b>a

\ i i i

Now consider the map ¢ : Z — 7Z defined by
(i) 1+¢ 1>0
1) =
4 i+k 1<0
It is easy to verify that this is well-behaved in the sense of Definition 3.9, and that 17 < .

Moreover it has the properties

ob) > 0>k > ¢(a) b>0>a

) > pla)>t>k b>a>0
(>k>p(a)>pb) 0>b>a

It follows that pG+ = F** as a diagram in Hol(Dz)™. So there is a map of diagrams F** —
G in the localizing class 2, and therefore an isomorphism F** 2 limG*? in lim Hol(Dz). O

We will use this lemma to prove an important technical proposition.
Suppose we are given an isomorphism of admissibly filtered objects

. . b~ .
o = lima®? : imF"’ 5 imF*°
— : —

R

in lim Hol(Dy). Note that we obtain maps a®’ = qmax(@hmaxbr) . Feb . 7ob for any

. b . b . b
and hence also a map oy = limag” : im A%’ — ImF..
— — o — ’

Key Technical Point 3.20. Observe that while not necessarily an isomorphism, «y, is an
admissible monomorphism! For there is an embedding in the diagram category ker aZ’b
ker a®®. By a diagram chase (cf. the proof of Lemma 3.8 above) one can verify that the
kernel of a morphism of admissible diagrams is in fact an admissible diagam. We have
limker a®® = 0 in the pro-ind category. As an exercise, the reader may check that this

«—

—

a,

implies lim ker o), b= 0, and that this entails a4 is an admissible monomorphism.
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This is an important point! It allows us to form objects such as the cokernel coker(ay) in
the pro-ind category. It is mot true that the image of an arbitrary morphism of admissible
diagrams is admissible (try doing the diagram chase). In particular, this fails for just the
example we need: we will ultimately want to study this cokernel when the as are the Goresky-
MacPherson map j; — j. for holonomic D-modules. The Goresky-MacPherson functor
Jis = im(j; — j.) preserves injectivity and surjectivity but is not exact in the middle.
Consequently the diagram im a®® need not be admissible in this case!

Proposition 3.21. Consider the cokernel cokery, ; of the admissible monomorphism lim]:!a’b A

]:fé’ — limfi’,f, for any k£ < ¢. This cokernel is isomorphic to an object of the subcategory

Hol(Dz) C lim Hol(Dy).

Proof. By the definition of isomorphisms in the pro-ind category, the map of diagrams a®®
becomes invertible after applying one of the natural transformations ¢. In other words, there
exists a well-behaved ¢ > 15 and an isomorphism of diagrams ©F, — ©F, such that the
square

aa,b

2 ff’b

a,b
!

commutes. Here and throughout this proof we use the convention that ~ denotes a map
which becomes an isomorphism after taking lims, while = denotes a genuine isomorphism of

diagrams. We negate these symbols to indicate that the relevant property does not hold.
It follows immediately that there is also a commutative square of truncated diagrams

oY

R — (FF)"

| |+

fa,b 76 f-a,b
1e

a,b *,E
R
where the truncations of the vertical maps no longer become isomorphisms in the pro-ind
category.
Temporarily denote by # either | or *. Note that (§F;)i" = (G7F;)maxba)max(th) —

Ff (max(ta).emax(th) "Gince is order preserving, this is the same thing as F ax(iptpa) max(plieb) _
ff;’fb = (@Fy.0)*". We have canonical maps (pFy ,¢)*" = ]—"ﬁa;fe. The squares

commute.
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Hence we obtain a commutative diagram in Hol(Dy)™Y:

b b
Fror== =" Fou
# (Jﬁ,goé)a’b = (6f*7¢£)a,b "
a y
b #* b
'lff a,b Ff,g
(e}

Passing to the pro-ind category, we therefore obtain the isomorphism # in the following
commutative diagram in the pro-ind category, with exact sequences as indicated by — for
admissible monomorphisms and — for admissible epimorphisms.

liflffjﬂ(ﬂ’ 1@ﬁ?éb 7»Coker(1) L E&w
e V al,(pé
: a,b ’
; (v)
v
lﬁnfiﬁe& hin]: :Ig ——=coker(2) W Fhipt
cokery, ¢ coker (*) coker(v') == FF#! [ im at-#

Here the isomorphisms labeled (}) are by Lemma 3.19, and the isomorphisms in the bottom
row are by general abstract nonsense. We leave the commutativity of the rectangle marked
? as an exercise. O

An straightforward corollary of the proof is the following.

Corollary 3.22. If k = ¢ and the modules coker(a®®) are supported on a subvariety W C Z
for any a, b, then the holonomic module cokery . is also supported on W. O

3.3 Duality and direct image functors in lim Hol(Dy)

By Corollary 3.14, exact functors between the categories of holonomic D-modules we are
interested in, induce analogues in the lims of these categories. We will apply these functors

to the following collection of pro-ind hJonomic D-modules.

3.3.1 Definition of M~ and M, =
For any holonomic Dy-module M we define

—00,00 — 1 a,b )
M gn(/\/lg% I
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Note that M ® J, ; * is a holonomic Dy-module (see Appendix B.5.3), so these together form
a diagram of the required sort. One can check directly that this diagram is admissible, using
the fact that as k-vector spaces M ® J} Y > M @y s%[s]/s°k[s] and the maps among these

are the obvious ones. Moreover since each J Jf‘ ?is a free O-module, tensoring by it is an exact
functor. Consequently M +— M™°> ig an exact functor from Hol(Dy) to lim Hol(Dy). In

addition, M~°> is an admissibly filtered k((s))-object in the pro-ind category, filtered by

M = lm(M ® Jf7).
— OU ’
The action of s is induced from the action of s on the jj?’bs.

3.3.2 Duality

To analyze the duality functor on the pro-ind category, we will first need to understand it
for the J%s.

Lemma 3.23. We have DJ*? = 7757% as Dyx-modules, and with respect to this isomor-
phism, D(J** 5 Job) = g-b-a & g-b-a

Proof. Define a pairing
ja,b % j—b,—a N jO,l — O]kx

<f(5)7 g(s)) = <<3a~r0 + S“Hm + e+ Sbilxbfafl)ts, (Sibyo + 87b+1y1 4o+ Siailybfafl)tﬂ
= I}ZGOS f(S)g(—S) ds= _(xOyb—a—l + -+ $b—a—1y0)-

Here we have computed the residue formally after making the substitution s — —s (including
t* +— t~* so that the two cancel).

For O-coherent D-modules, the duality functor D coincides with the usual duality for
O-modules, Homo (e, O), with a canonically defined D-action

(§p)(m) = Ep(m) — o(Em).
It is straightforward to check that the pairing above induces an isomorphism of O-modules
DT = Home,, (T, Opx) = T 07

In fact this is an isomorphism of D-modules as well. To see that it respects the action of
9, note that it sends s " ¢* € J707% to ¢, € Homo,, (T**, Oyx) defined by ¢, (s*17t*) =
—8j4kb—a1- In particular, O(s70TF¢%) = s70TFFIE=13 is sent to ¢t ks, We have
(Dpi) (s™H1°) = Dpi(s"HL°) — (s 7t7)
_ _85j+k,b—a—1 + gOk(Sa+j+1t_1ts)
= —t 1 p—a1 =t ps1 (8T,

as desired. We leave the reader to check the last assertion (about the dual of the s-action). [
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Lemma 3.24. ]Dj;’b = jf_b’_a as Dy-modules, in a manner respecting the s action.
Proof. This follows from the last lemma and the computation
Dy J" = Dy((fle)' 7" dim X = 1] = (Do (flo) 7)1 - dim X] =
(o) Dex T[T = dim X] = ((flo)*T >"9)[1 - dim X] = 77"

The s action on the Jys is induced from that on the Js by functoriality, so the last assertion
comes for free. O

From the considerations discussed in Appendix B.5.3 we obtain the following corollary.

Corollary 3.25. For any holonomic Dy-module M, we have an isomorphism
DM @ T =DM @ J; 5"
OU OU

which respects the s-action. O

Taking duals sends the canonical maps figpap 0 ity —ar —p —a. Since (a,b) — (=b, —a)
is an automorphism of the poset II, we obtain the following.

Proposition 3.26. There is a canonical isomorphism of k((s))-objects in lim Hol(Dy)

D(M—%=) & (DM)~>=, [

We will need to know how this behaves with respect to the admissible filtrations described
above.

Proposition 3.27. D(M, %) = (DM)~°>>®/(DM) 7>,

(The “quotient” really means cokernel of the corresponding admissible inclusion.) Proof.
A straightforward corollary of Lemma 3.19 is that coker(limZ[* < limZF®*) = lim;F*?,

where j Fob = Fmin(ak)minb.k) Tt ig clear that we have Djﬁ}f = _kjf_b’_a, SO
DM %) = lim(DM @ ;")
Now we recognize the righthand side as
coker{(DM) 79> < D(M™>>>)} = coker{l'g}n(]D)/\/l ® Jf_bk) — liLn(D/\/l ® Jf’b)}. O

The object in the category of Dy ((s)) modules analogous to D(M, ™) is the “truncated
Laurent series” M ® (Oy((s)) - f5/s7*Oy|[s]] - f*).
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3.3.3 Direct images
Next we discuss functors of direct image along the open embedding j.

Key Technical Point 3.28. Note that j is an open affine embedding (it is obtained by base
change from k* — k) so j. = j. is exact, and hence j, = Dj.D is also exact. In particular,
they take holonomic modules to holonomic modules, not complexes! Consequently there
are induced exact functors j, and j from lim Hol(Dy) to lim Hol(Dy).

Definition 3.29. For § = * or | we denote j;M™°>> by II¥* M or simply II* M.

The functor II/# : Hol(Dy) — lim Hol(Dy) is exact. If we write s for jy(s) : II*M —
[T M, we see that the structure of adrtlissibly filtered k((s))-object on M~ € lim Hol(Dy)
induces the same structure on IIFM € liin Hol(Dx), if we write Hi/\/l for the admissible

k[[s]]-subobject jzM; > C M. The functors IT% are also exact.

By Proposition 3.26 we obtain DII'M = II*IDM and vice versa. By Proposition 3.27 we
have DIT, M = (II*DM)/(I1* ,DM) and vice versa.

Next we wish to produce a canonical morphism I1/' — II#*. Recall that for a holonomic
Dy-module M there is a morphism jM — j, M. Let 7 : jij' j.M — j.M be the (co?)unit
morphism of the adjunction j «++ j' at the object j,M. Since j is an open embedding,
j* = j' = j® = restriction, and j'j,M = M. So there is a canonical map (the identity)
a: M — j'j,M. The canonical morphism « : M — j,M is given by

vo (@) : iM — jij j.M — jM.

This is entirely functorial, and hence compatible with the maps M ® j}l’b - M® j]?/’b/, by
naturality. Hence the morphisms

a™: M @ TF) = ju(M @ T})
give rise to a map a = lima®® : I'M — II*M in lim Hol(Dyx). This respects the s-action.

Similarly, we obtain oy = lima{"* = lima™*(@k)maxb:k) - 1 Af — TTEM.

>

Remark 3.30. Despite the raised symbols, the II* and H?C are actually covariant functors,
as the construction makes clear. Justifying this breach of convention, it leaves room for the
truncation index k below. Furthermore, we will see in the next section that the IT*s (without
truncation) are merely temporary notation anyway.

3.4 Main isomorphism

All of the machinery of the pro-ind category was set up so that we may prove the following
key theorem and its corollary.

Theorem 3.31. Let M be a holonomic Dy-module. In the category lim Hol(Dx), the map
I'M — II'M
s an isomorphism.
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Proof. Write a®® : ji(M ® jjf“’b) — (M ® jﬁ’b) for the natural map, and @ = lima®" :
OU OU

>

IT'M — II* M. This is a morphism of k((s))-objects in the category of pro-ind holonomic
Dx-modules. By Proposition 3.17 it suffices to show that there exists N > 0 such that s
annihilates both ker a®® and coker a®® for all a,b. Since Da®? is the canonical map for DM,
it is enough to check this for cokernels. That is, it suffices to prove that

s"j(M © Tp) Cim(i(M © Tf) = ju(M © i)

when N > 0, regardless of a and b.
For this we will use the results of §2. First, a consequence of Corollary 2.8 is that

JeM @ T7) = 3 Dxlsl(ffme® 1) € 3 3 Dxlsl(f'me® f1) = ju(M @ T}),
¢ ¢ i€z

for £ > 0, where m, runs through a collection of sections which generates the Dy-module
M. To prove the theorem, it is therefore enough to check that for some N > 0, the module
S Dx[s](ffmy @ f*) contains sV fim, @ f* for all exponents i € Z, since these sections
generate the Dy-module sVj,(M ®jﬁ’b). In fact, however, j,(M ®Jﬁ’b) is a holonomic
Dx-module, so it is generated over Dx[s] by the sV fim, @ f* for i > k' for some fixed
k' < 0. So it suffices to find N so that s f¥m, @ £, ..., s f*"'m, ® f* are contained in
Dx[s](f*me ® f*), or equivalently, such that s¥ f¥'m, ® f* € Dx[s](f*m, ® f*), for each ¢.

Let b, be the b-function of m,. By Theorem 2.1 we have

be(s) -my @ f* =di(s)fme® f° € Dx|[s](fme® f*),

where d; is a polynomial with coefficients in Dx. It follows formally that
be(s+k —Dby(s+k—2) ... bo(s+K)f¥me ® f° = Dy(s)ffme ® f° € Dx[s](fFm, @ f?),

where Dy(s) is a (much bigger) polynomial with coefficients in Dx. Denote the product of
translates of b, which occurs in this equation by By(s) € k[s]. Let I, denote the number of
integer roots of by. Then certainly s"By(s) has positive order at s = 0. In particular it can
be expanded as a power series Cy(s) € k[[s]]. Since j,(M ® jj?’b) is s*-torsion, it follows that
the identity 5ngfk/mg ® f* = s%f¥my @ f° holds in Dx[s](f*me @ f*), where C, is the
truncation of C; modulo s*. Consequently

s ffm, @ f° = @szkme ® f* € Dx[s](f*'mi @ f*) C j!*<M(;® jﬁ’b)'

Now if we take N = )", [, and replace s by s then the equation above holds for each ¢,
which proves the theorem. O

Definition 3.32. By the theorem II'M = II* M, so from now on we will denote this object
in lim Hol(Dz) simply by IIM.

The following crucial corollary of Theorem 3.31 is a consequence of Proposition 3.21
and Corollary 3.22, in light of the fact that each quotient j.(M ®j;’b)/j;*(./\/l ®jﬁ’b) is
supported on Y. (Recall that by Kashiwara’s theorem, cf. Appendix B.3.2, holonomic
Dx-modules supported on Y are equivalent to holonomic Dy-modules, via the functor i'.)
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Corollary 3.33. For any k& < /¢, the correspondence

;M
LM

M= IIEM =

gives an exact functor from Hol(Dy) to Hol(Dx). When k = £, TI}"* M is supported on Y,
so i'TI’" is an exact functor Hol(Dy) — Hol(Dy). O

Here the “quotient” II; M /I[[M really means to take the cokernel of the admissible
monomorphism 1T, M & IGM — I3 M; cf. Key Technical Point 3.20. We should remark
that exactness here follows from a version of the 9 Lemma for exact categories: II} is an exact
subfunctor of the exact functor IIj, and is moreover admissible, so the cokernel is exact as
well.

We will need to know below that the II}" are well-behaved with respect to duality.
Propositions 3.26 and 3.27 imply

Lemma 3.34. DIILM = IIDM/II* ,DM and DITM = IIDM /I, DM. m

Proposition 3.35. }D)Hﬁ’e./\/l =I,.“"*DM.

Ix

Proof. This is a formal consequence of Lemma 3.34: DH,ka = D coker(ILM — T[}M) =

ker(DIT,M — DIM) = ker(4ty — H@HQAM) = 11,°7"DM. O

3.5 Nearby cycles functor

The results of the last subsection allow us (finally!) to define the nearby cycles, maximal
extension, and vanishing cycles functors we need. We begin with nearby cycles.

Definition 3.36. The unipotent nearby cycles functor U, : Hol(Dy) — Hol(Dy) is
defined by
Wy (M) = TIOM.

Theorem 3.37. The functor W has the following properties.
(1) V(M) is a holonomic Dx-module supported on Y.
(1) Uy is exact.
(111) Wy commutes with duality.
Proof. Immediate from Corollary 3.33 and Proposition 3.35. O]

Example 3.38. Consider the case ¥;(Oyx). The entire point of the construction of the pro-
ind category was that O, ™ behaves exactly the like Dyx-module J > = O« ((s)) - t*,
and the filtration O™ like the J, % = sk Op«[[s]] - t*. In particular, ¥;Oyx may be
identified with “j,(Okx[[s]] - t*)/j1(Okx[[s]] - t°)”. Here is an interpretation of this expression
due to Ginzburg [G].

Recall that J has a filtration of length n with simple subquotients isomorphic to
JW 22 Opx. One can check that j, Oy« has a submodule isomorphic to Oy and the quotient
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is the simple Dy-module &, (the d-function); see Appendix B.6, B.3. Consequently j,J ™
has a filtration of length 2n with simple subquotients (from “bottom” to “top”)

0, dp, O, o, ..., 0, d.

Both O and & are self-dual, and as we saw above so is J™ (disregarding the s-action). So

71Okx has a filtration
00,0, 09,0, ..., 0, 0.

The canonical map takes the last 2n—1 subquotients of j, to the first 2n—1 subquotients of j,.
Passing to the projective limit J%° corresponds to continuing the bottom of these filtration
indefinitely. We find (heuristically) that the modules j.(Ogx[[s]] - t*) and ji(Okx[[s]] - t°) have
respective filtrations

"'7075070750
7507075070'
Thus the map from the latter to the former is injective. (As per Theorem 3.31, it is the

truncation of a map which becomes an isomorphism in the pro-ind limit, i.e. ji(Oxx((s))-t*) =
G+(Ox ((5)) - t%).) The & at the “bottom” of 5 7™ killed by the canonical map j, — j. has
been relegated to irrelevance in the projective limit. Moreover, we see that the quotient
module is the dy at the “top” of j,J.

Heuristically, then, we expect ¥;(Ox) = &y € Hol(Dx), which is indeed supported
on {0} = k — k* as per part (i) of the theorem above. Under the Kashiwara equiv-
alence, this module is taken to i'd, = C, the unique simple holonomic D-module on a
point. Indeed, this computation is justified by the proof of Proposition 3.21, which implies
U0 = 5.T%V /5T for N = ¢(0) with ¢ > 1z the well-behaved function Z — Z
occuring in that proof. We saw above that any such quotient is 4.

3.6 Shifts and the maximal extension functor

3.6.1 Shifts and duality for II}'*, k # ¢

The nearby cycles were supported on Y, but we will also need a Hﬁk’g with k& # ¢ and thus
not supported on Y. Unfortunately, these do not quite commute with duality, according
to Proposition 3.35. Fortunately, there is an easy fix. Recall that the shift isomorphisms
oy : Fob — Fotkbtk induce the operator of multiplication by s* on an admissibly filtered
k((s))-boject liin]—"“’b, and given an isomorphism of k[[s]]-subobjects liinfg’b it liinfffk. (A
prior: this only makes sense for £ > 0, but since these maps are isomorphisms we may
formally denote o, ' by o_.) In particular, we obtain isomorphisms

8 Tk 114
M = 11 M
in lim Hol(Dx). These quite obviously induce an isomorphism
M 2 1 M.
Hence we have a canonical isomorphism

DITF M 22 11,5 DM 5 TIE DM,

I

26



Definition 3.39. The shifted nearby cycles functor is
TOM =M &80 M.
By definition DU M = ¥/ DM.

3.6.2 Maximal extension functor

Definition 3.40. The maximal extension functor ng) : Hol(Dy) — Hol(Dy) is defined
by
EOM =M M = 2, M.

Parts (iv)-(vi) of the next theorem are why the =, are significant.

Theorem 3.41. The functors =y have the following properties.
(i) ng) (M) is a holonomic Dx-module.
(ii) ng) is exact.
—(1) _ =(=i=1)

(iii) D= M = =" "DM.

(iv) There are canonical exact sequences
0— (M) S EP M) S 9P (M) =0

—i—1) Bt —(—i— ay .
0 — T (M) S =D (M) S G (M) — 0
which are interchanged by duality.
(v) aya_ : M — j, M is the canonical map o.
(vi) B_fy : V(M) — V(M) is multiplication by s (a.k.a., the monodromy operator).

Proof. Parts (i)-(iii) are clear. N
By Lemma 3.19, jiM & ji(M @ J;™) = IM/IT, ;M in lim Hol(Dy), for any i. The
exact sequence .
M — M — TP M
in the pro-ind category induces an exact sequence

M I M

(4)
MM M d

The first object is j1M by the remark just above and the second object is E?)M by definition;
so this is an exact sequence of holonomic Dx-modules. Part (iv) follows from this by duality,
observing that the dual of the trivial diagram corresponding to a holonomic module is the
trivial diagram corresponding to its dual.
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Part (v) is more or less immediate from the fact that a_ is induced from o; : II} <
IT¥, while a is just a projection. Likewise for part (vi), - is just a projection and we
leave it to the reader to confirm that its dual is multiplication by s. (Check it first for
projections J%* — J%*~1 using the explicit description of the duality on these modules
given in §3.3.2.) O

Example 3.42. Continuing Example 3.38, let us compute Z;(Oyx). The proof of Propo-
sition 3.21 implies in this case that Z;(Oyx) = . T /i I Y. In this case the Goresky-
MacPherson map 775 — JLY (simply a version of the map for 7%V~ shifted one degree
in filtration by the operator o) hits the portion of the filtration of 7. J%N indicated below:

——N—
07(507"' 7076070750'

The leftover quotient giving the maximal extension is filtered by dy, O, dg. It is not supported
at the origin. It has j,Oyx as a quotient. Moreover it is the largest extension of j,Opx whose
restriction to k* is Okx, which explains the terminology; see |G, 4.6.20] for more on this
point.

3.7 Vanishing cycles functor

Let M be a holonomic Dx-module, and write My = j'M = j*M for the restriction of M
to U. Let v_ : jMy = jiyM — M and 74 : M — j,j*M = j.My be the adjunction
morphisms. We can write down a diagram of Dy-modules

My T E (M) e M TS My, (3)
The following is clear.
Lemma 3.43. (a_,7-) is injective, and (o, —7v4) is surjective. O

In fact (3) is a complex: by Theorem 3.41(v) the composition aya— = a: jMy — j.My;
by applying jj' to the adjunction morphism v, : M — j,My we obtain a commutative
square

My 7;>/\/l

Ja 'YJrl

jyj!j*MU ?]*MU

and consequently v,v_ = v o jiax = « as discussed in §3.3.3.
Definition 3.44. The functor of vanishing cycles along Y, ®; : Hol(Dx) — Hol(Dy), is
defined as .
, =Y+
D (M) = M
im(a_,7-)

This time the basic facts about the functor are not quite as obvious.

Theorem 3.45. The functor ®; has the following properties.
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(1) (M) is a holonomic Dx-module supported on'Y .
(11) @ is exact.
(11i) ®¢ commutes with duality.
(iv) There exist canonical exact sequences
0—i'M— &p(M) S U (My) — HY'M =0

0—i'"M — \Iff(MU) i (I)f(M) — Hl’L*M —0
which are interchanged by duality.

(v) The compositions vu and uv are nilpotent.

Proof. (i) That ®;M is a holonomic Dx-module, at least, comes for free, as it is a subquo-
tient of the holonomic module in the middle of (3). To analyze its support, we first produce
the exact functor j' of restriction from lim Hol(Dy) to lim Hol(Dy) in the usual way. Since

FI My = jIEMy = limMy ® jfcf’kb, the cokernel jTI'M = My ® j;:’g by Lemma 3.19.
In particular j'Z; My = My. Therefore, applying j' to (3) we obtain

My — My & My — My. (4)

Both j'v_ and j'v, are the identity on M. Applying j' to the exact sequences of Theorem
3.41(iv) and observing that j'M;My = 0, we see j'ay is an isomorphism, which one can
check is actually the identity. So the morphisms in (4) are (1,1) and (1, —1). The homology
in the middle is trivial. So j'® ;M = 0.

(ii) The functor which sends M to the diagram (3) for M is exact, as each term in the
diagram is an exact functor of M. So a short exact sequenc eof Dx-modules M gives rise
to a short exact sequence of diagrams (3). We can regard these as chain complexes over
Hol(Dy). It is well-known that a short exact sequence of chain complexes gives rise to a
long exact sequence on their homology. But in this case, each diagram (3) has homology
concentrated in a single degree (the middle term), so the “long exact sequence” is actually
short exact.

(iii) The diagram (3) is self-dual.

(iv) Note that in these exact sequences we abusively write W My (resp. ®yM) for
i'W s My (resp. i'®;M). The map u is defined by u(v)) = (8.1,0). This lands in ker(a, —y4)
because a4 = 0 by Theorem 3.41(iv). The map v is defined by v(y) = v(&, u) = B-E.
This is well-defined because f_a_ = 0 by the same theorem. It is not hard to check that u
and v are interchanged by duality. We will not need the other assertions of (iv), so we omit
their proofs.

(v) The composition vuyp = f_3,1 = s by Theorem 3.37(vi). The operator s on any
Ji( My ® j}l’b) is nilpotent. By the proof of Proposition 3.21, s therefore acts nilpotently

on each H!kf/\/ly, and in particular on ¥;My. By duality it follows that uv is nilpotent as
well. 0
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4 The gluing category

With all this machinery we can answer Question 1.1.

4.1 Definition of the gluing category

We remain in the same XY U setup as always.

Definition 4.1. The gluing category Glue(U, Y) has as objects collection of data (My, My, v, u)
consisting of

e A holonomic Dy-module My,
e A holonomic Dy-module My, and

e Morphisms ¥ ; My - My — UMy such that vu = 3_3,, where the 34 denote the
maps of Theorem 3.41(iv) for My .

Definition 4.2. The ungluing functor unglue : Hol(Dx) — Glue(U,Y") is defined by
unglue(M) = (My, M, u, v)

using the notation of Theorem 3.45. The gluing functor glue : Glue(U,Y) — Hol(Dyx) is

defined by
ker<677 —'U)
glue( My, My, u,v) = ————=
( v i ) lm(ﬁJra u)
with respect to the complex
(6+,U) [ ('B*’—U)
UiMy) = EfMy) My - Vp(My). (5)

It is clear that gluing, much like ungluing, is exact — cf. the proof of Theorem 3.45(ii).
The main theorem is

Theorem 4.3. The functors glue and unglue are mutually quasi-inverse equivalences of
categories. O

The proof is discussed in §4.3.

This theorem gives an affirmative answer to Question 1.1: all the data about a Dx-
module are captured by its restriction to U and its vanishing cycles along Y, and conversely
almost any pair My, My can be obtained in this way, subject merely to the condition that
the morphisms u and v exist.

"For the purposes of this section, “Dy-module” means “Dx-module supported on Y?”, which by Kashi-
wara’s theorem is the same thing, and means we need not bother writing the i's.
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4.2 Example

Here we return to the simple example from §1.2 (X = A!  f = ¢) and analyze what the
Theorem 4.3 says in this case.

0
reg

Corollary 4.4. The category Hol; ,(Dx) is equivalent to the category of diagrams

v
M_—N
u
of vector spaces, with 1;; —uv and 1y —vu invertible.

Proof. As remarked in §1.3, Locy is equivalent to the category of vector spaces V' equipped
with a monodromy automorphism p, while Hol(Dy ) is just vector spaces. Let us analyze
the nearby cycles functor from this perspective. Recall that for us Locy consists of local
systems. Any such local system contains a maximal incomposable sub-object on which the
monodromy acts unipotently, or equivalently, on which 1y —u acts nilpotently. Given (V) u)
representing an object of Locy, write VO for the corresponding maximal subspace of which
1 —p is nilpotent, and v for the restriction of this operator of V.

The unique irreducible local system with unipotent monodromy is taken by the Riemann-
Hilbert correspondence to the Dy-module Oy = J%!. (Indeed, there is only one such object
up to isomorphism, as can be seen by thinking about it as a representation of m1(U), and
therefore it must be Op.) So any My € Locy has a submodule MY, (corresponding to V°)
with a filtration with irreducible subquotients isomorphic to Op. On the other hand, the
irreducible local system on the punctured line with nonunipotent monodromy are, in their
manifestation as D-modules, the ones commonly denoted “t” for A € C — Z. Formally this
is the quotient “t*” /(s — \)“t®” € Hol(Dy). It is isomorphic to Oy - t* where 0 acts by
O(ft*) = (Of + t71fA)t*. The logarithm of monodromy td acts on the generator by A, so
the eigenvalue of the monodromy of the corresponding irreducible local system is exp(2mi)).
Consider the tensor product “t*” @ J%". By definition the b-function of this tensor product
is s + % This has no integer roots by assumption. By the proofs of Theorem 3.31 and
Corollary 2.8, it follows that j;(“t*” ® J%") — j.(“t” ® J%") is an isomorphism, and that
U, (“t*) = 0. So ¥, only captures the part of a Dy-module with unipotent monodromy
(which is why we call it the “unipotent part” of the nearby cycles functor).

Therefore W;(My) = ¥y (MY). For each irreducible subquotient Oy of MY, we get by
Example 3.38 a copy of the Dy-module 6. Applying the functor i' to get a vector space
(D-module on the origin), we find W;(My) is the vector space V°. The nilpotent operator
1 —p is the logarithm of monodromy t0 = s = f_[3, acting on the nearby cycles.

Hence the gluing category is equivalent to the category of linear algebra data

{(Vip), W, V0 S W = v}

where V is a vector space, u is an automorphism of V', W is another vector space, V? is
the maximal subspace of V' on which 1 —y is nilpotent, and u and v are linear maps such
that vu = 1 —pu. By Theorem 4.3 (or rather the obvious version of it proved by replacing
Hol(Dy) by Locy and Hol(Dy) by Hol?eg(DX) everywhere®) this category is equivalent to

Hol’_(Dx). Note that this already gives a positive answer to Question 1.3.

reg

80me can show (although it is not entirely obvious) that Hol?eg(DX) is a full abelian subcategory of
Hol(Dyx), so the proof does indeed go through. See [Ber, 4].
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In fact we can further simplify the description of this linear algebraic category to yield
the corollary. Indeed, the category above is equivalent to the category of diagrams of vector
spaces M = N % M (with 1 —uv and 1 —vu invertible) as in the statement of the corollary.
The functor giving the equivalence takes the collection (M, N, u,v) to {(N,1 —vu), M°, u,v}
where M? is the maximal subspace of M on which uv is nilpotent. Since this equivalence is
purely an exercise in diagram chasing, we leave it to the reader. O]

4.3 Proof of Theorem 4.3

Beilinson [B] proves this by reducing the gluing and ungluing functors, through a series
of linear algeraic manipulations, to a mutually inverse pair of “reflection” functors on a
category of diads (a certain type of diagram in any exact category). Here we take a more
direct approach, constructing (one of) the natural isomorphisms which realize the equivalence
explicitly. In contrast, Beilinson’s method merely provides a neat recipe for producing such
natural isomorphisms.”

Let us show that M = glueounglue(M) is naturally isomorphic to M. This is a diagram
chase.

The Dx-module M is the cohomology of the complex

IB U (ﬁ—v_v)
\I’fMU(‘L)EfMUEB(I)fM — \IffMU

in the notation of Theorem 3.45.
Recall that the first map sends

UMy 3¢ B @By @ 0] € EpMy @ OpM,
where the brackets denote the cohomology class of 5,1 @0 € ker(ay, —7,); the second sends
EtMy @ oMo B(E-E)

where ¢ = ¢ + 1’ denotes a lift of ¢ to ker(ay, —v4) C =My & M.
(By definition ® ;M is the cohomology of the complex (3) from §3.7, which we rewrite
here for convenience:

a—y-)

. (o, =v4)
]!MU( — EMyaeM Y JMuy.)

Let 1 € M.

Lift ﬁ to 5 P RONS ker(ﬁ_, —U) C EfMU D CI)fM.

Lift p to o =& @ i € ker(ay, —y+) C Ep My & M.

Define w(z) = 1'. Note that £ @ is well-defined up to the addition of 5, & [+ @&0]. In
particular ¢ is well-defined modulo cohomology classes of the form [31¢ @ 0]. In particular
¢ is well-defined modulo im 5, @ 0. In particular @(p) is well-defined.

9Far from the simplest ones, though!.
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There are commutative diagrams

]'!MU(L EfMU \I’fMU(L EfMU

_’Y_\L a4 ul 67
Y 4
,/\/l 4>—7+ ]*MU (I)f./\/tU — \I/fMU

Given p € M, choose £ € =y My such that a & = y,p.

Then ¢ = [£ ® p] gives an element of ¢ M.

Choose & such that 5_& = ve.

Then 11 = [£ @ ¢] gives an element of M.

Define w(p) = f.

We leave it to the reader to verify for herself that w and w realize well-defined, mutually-
inverse, canonical isomorphisms between M and M.
_ We also leave it to the reader to carry out the analogous diagram chase to show that
G = unglue o glue(G) is canonically isomorphic to G, for gluing data G € Glue(U,Y). (The
difficult part of the latter is to identify ®;(glue(G)) with the part My of G.) O

5 Epilogue

We have proved everything we're going to prove. However, there are a number of topics
related to the content of this thesis which would be good places to begin further studies
in the subject.!® In this concluding section we list a few of these topics as “Problems” —
which is not to say that they are unsolved, although the solutions do not seem to be in the
literature.

5.1 Remarks on perverse sheaves

There is another notion of vanishing cycles functors in the setting of sheaves for the analytic
topology on a variety, say over C. They have their origins in Goresky-MacPherson intersec-
tion cohomology, and the definition we discuss in this subsection is due to Deligne [SGAT].
In this subsection I will try to say a few words about these functors (following [Di]) and their
relationship to the analogues defined above for D-modules in the algebraic category.

We begin with the topological setup for the definition.

5.1.1 The local Milnor fiber

Let X be a smooth affine complex variety and let f : X — C be a non-constant analytic
function on X. To fix some notation, denote the fibre f~1(¢t) by X;, and choose a point
x € Xy and a ball B of radius § about z. Let D, be a small disk around the origin in C (with
€< d), DX =D.—{0}, T= f1(D)NB (asmall “bube” around BN Xy), and T* = T — X.
We allow the hypersurface X, to be singular, but choose € small enough so that for ¢t € D,

10Tndeed, given another couple of months to work on this thesis I would have endeavored to treat some or
all of the following material more completely.
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the fiber X;N B is smooth, and moreover f : T* — DX is a locally trivial fibration. (Indeed,
it turns out that this is always possible, whether in the algebraic or the analytic setting; for
a nice explanation of this result, see the expository article [Se].) In particular, all the nearby
fibers B N X; “look the same”; any one is known as the local Milnor fiber F, of f at x. A
picture of the situation can be seen in the figure below.

’O (e} o o ® O
0 O X ° \° O

Figure 1: The Milnor fibration. (Picture from [Se].)

5.1.2 Nearby and vanishing cycle functors

A natural question to ask is how one can study the Milnor fiber F, . The nearby and
vanishing cycles functors associated to the function f on X provide tools for this purpose.
We will briefly sketch the definition of functors ¢, ¢ on the bounded derived category
D%(X) of constructible complexes of Cx-modules. (We will gives the precise definition of
this category here; see [Di]. Note, however, that for a morphism 7 : Y — X we obtain the
usual inverse and direct image functors m, R, : €y — €x and 7', 7" : €x — Gy .)

We need names for some maps of spaces, which are indicated in the following diagram.

«

F Txcj X i)XO

|

~ y
DE s DE
Here 7 and j are the natural inclusions, DX — D is the universal covering space, and the

space F' and the maps « and (8 are defined as the fiber product EGX x T*. One can show

D
that F' = F,, is the Milnor fiber.
With this notation, we can define the functor ¢y : D’(X) — D2(X,) of nearby cycles.
Given a complex F~ € D%(X) its nearby cycles are given by

U F =i R(ja).(jo)* F € DY(Xo).

The relationship between the functor 1y and the topology of the Milnor fiber can already
be seen from the following fact, a direct computation from the definition.
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Theorem 5.1. [Di, Prop. 4.2.2] Consider the case F© = Cx. Then there is a canonical
isomorphism
H* (¥sCx), = H(F,; C)

between the stalk at x of the kth cohomology sheaf of the complex ;Cx, and the kth reduced
singular cohomology group of the Milnor fiber F,. '* [

The functor R(ja), is right adjoint to (ja)*, so the unit of the adjunction induces a
comparison morphism compy. : *F — ¢yF . We define the functor of vanishing
cycles ¢y : DY(X) — Db(Xp) by setting p;F" to be the mapping cone Cone(compy.). The
functors we have given naturally sit in a distinguished triangle in D?(Xj)

% 4~ COMP . . [1]

UF = F = o F =
Corresponding to this triangle is a long exact sequence of cohomology sheaves. Setting
F = Cx and using the isomorphism given in Theorem 5.1, the stalks at x of this long exact
sequence are

- — HY(B N Xy;C) — H(F,;C) — H(¢;Cx), — H (BN Xp;C) — - -

(reduced cohomology groups). The geometric significance of this sequence can be seen by
considering its dual; we obtain

The map from the homology of the local Milnor fiber to that of a neighborhood of x in
the singular fiber is the “obvious one”, induced by a continuous (not analytic) specialization
map from a sufficiently nearby fiber X, to the special fiber Xy (cf. [GM, 6.2]). Thus the
cohomology of the vanishing cycles (or its dual) may be interpretted as saying which cycles
“die” in collapsing a nearby fiber to the singular one. This, of course, gives some justification
for the terminology.

5.1.3 Monodromy

In this setting there is a geometric monodromy action of the fundamental group Z =
m (DX, t) as difftomorphisms of the Milnor fiber F,. This induces a monodromy opera-
tion on the topological nearby and vanishing cycles functors; studying this action (e.g. by
decomposing it into eigenspaces) provides a wealth of topological information about the
singularity in question.

Suppose v : I = [0,1] — DX is any path. On some neighborhood Uy C DX of any point
v(s), we can trivialize T* — DX . Then there is a diffeomorphism ¢ : f~1(U,) — U, x F,.
Fix a point £, € X, N B and let (y(s),y) = ¢(f). Then we can define a lift 7 of v on
some interval containing s by F(s') = ¢ '(y(s'),y). By patching together finitely many
trivializations to cover the compact set «(I), we can lift the whole path . This induces
a diffeomorphism T, : X, N B — X, 1) N B. In the case of a loop « based at ¢ which

"There are, of course, generalizations of Theorem 5.1 for any F* € €x.
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generates (DX, t), we obtain a diffeomorphism of X; N B (and hence of F,) by defining

T(t) = 7(1). One can prove that this map is well-defined up to homotopy, independent
of the choice of representative path v and the choices of trivializations used to determine
the lift. Consequently, there is a well-defined monodromy representation on the level of the
singular cohomology H*(F,,C) of F,. In terms of the picture above, the idea is that as we
“flow it around” the singularity x, a given cycle in singular homology might change.

The monodromy action 7" induces (see [Di]) a monodromy operator on the nearby and
vanishing cycles.

5.1.4 Perverse sheaves and D-modules

The triangulated category D?(X) contains an abelian subcategory of perverse sheaves dis-
covered by Beilinson, Bernstein and Deligne. The surprising theorem is that the shifted
functor of vanishing cycles ¢ s[—1] preserves this subcategory.

A consequence of this is that for regular holonomic D-modules, which by the Riemann-
Hilbert correspondence [Ber, 5.9] form a category equivalent to that of perverse sheaves
via the DeRham functor DR, one has in addition to the functors ®; we consturcted also
Deligne’s functors ¢¢[—1].

Problem 5.2. Prove the following comparison theorem, and its generalization to nonunipo-
tent versions of the Beilinson functors ¥y, @, Z¢ (replace J*!' in the main construction of
this thesis by an irreducible local system of eigenvalue « ¢ Z; cf. [B, 3.2]).

Theorem 5.3. For an object F in the category of perverse sheaves let p¢[—1]""PF denote
the part of the vanishing cycles on which the monodromy operator T acts unipotently. Then
for a regular holonomic D-module M one has DR® ;M = p¢[—1]""? DRM.

5.2 Kashiwara-Malgrange construction

Kashiwara and Malgrange proved a version of Theorem 5.3 for an alternative construction
of vanishing cycles for regular holonomic D-modules.

Theorem 5.4. Let X be smooth and let Y be a hypersurface f = 0. The sheaf Dx has
a well-defined exahaustive decreasing Z-indexed filtration V*Dx defined in the case where
f is smooth as follows. Choose local coordinates x1,...,%xn_1,f on X. Define VIDx =
Zk7€2j ha,k,e(x)aﬁfkafﬁ for a multi-index o. There is an analogue of this filtration when f
15 singular as well.

Let M be a holonomic D-module. There exists a unique decreasing Z-indexed filtration
Ve M with the following properties:

o ViDy - VIM C VM for all i € Z.
e V "Dy - VM =V""M and V'"Dx - VIM = V" forn >0 and £ > 0.
e The eigenvalues of fO; acting on gr), M have real part in [0,1). O

We refer the reader to [Sa] for details about this Kashiwara-Malgrange filtration, the
proof of the theorem, and for the construction of nearby and vanishing cycles functors \I/ff M
and @fM in terms of it.
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Problem 5.5. Prove a comparison theorem between the Beilinson functors Wy, ®; and (the
unipotent part of) the Kashiwara-Malgrange functors Wi @M.

5.3 Vanishing cycles commute with proper direct image

A property of the functors ¥, and ®; which is important for applications is their behavior
under proper direct image. (Proper direct image is very well-behaved for D-modules: if
h:Z — X is proper then hy, h, : D°, (D7) — D", (Dx) coincide [Ber, 3.10].)

coh coh

Problem 5.6. Prove the following theorem, the analogue of which for the functors \II? M CID? M
(see §5.2) can be found in [LM].

Theorem 5.7. Let X,Y,U, f be as before. Let h : Z — X be a proper morphism. Set
W =Y xZ=(fh)"*0).
X

WCL»ZT)V
Lo
Y(—l.>X<j—)U

Then nearby cycles commute with proper direct image: h,V sy Mz =V h, Mz, and similarly
for vanishing cycles.
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A Some category theoretic background

In Section 3 we need some general constructions from category theory.

A.1 Localization of categories

Given a category % and a nice class of morphisms ¥ in % there is “universal” category
Y 1€, equipped with a functor Qs : € — L 71¥ called the localization of ¢ with respect
to X, such that for all ¢ € ¥ the image (),¢ is an isomorphism.

Definition A.1. ¥ C Morphisms(%’) is multiplicative if the following properties hold.
(1) ¥ contains all isomorphisms;

(2) X is closed under compositions;

(3) For two morphisms Y L X 5 X with s € Y, there exist Y’ € Objects(%),t €
Y. N Homg(Y,Y’), g € Homg(X',Y’) such that gs = tf; dually, for two morphisms
X Ly & ¥ there exists X' € Objects(%), s € ¥ N Home (X', X), g € Home (X', V")
with tg = fs;

(4) For two morphisms f,g € Homg(X,Y), if there exists s : W — X in ¥ satisfying
fs = gs, then there exists t : Y — Z in X satisfying ¢ f = tg; dually, for two morphisms
fyg € Homy (X, Y), if there exists t : Y — Z in 3 satisfying ¢f = tg then there exists
s: W — X in ¥ satisfying fs = gs.

Proposition A.2. If ¥ is multiplicative, then a localization Qyx, : € — X' exists. If
% is additive then so is X1, and the functor Qyx, is additive. If ¢ admits kernels (resp.
cokernels, finite products, finite coproducts) then so does ¥7'%’, and Qx commutes with all
these operations.

Proof. We omit the proof; see [KS, Prop. 7.1.22, Ex. 8.4]. ]

One way of describing the localization is as follows. Objects in ¥4 are just objects in
¢. Morphisms in ¥7!% are defined in the following manner. Construct an directed graph
I' with vertices Objects(%’) and edges Morphisms(%’) U {5 | s € X}, where 5 is an edge that
reverses s. Call two paths in I from A to B equivalent if one can be obtained from the

other via a sequence of replacements of the forms: (i) replace X Ly 4z by X 9 g

for any composable f,g; or (ii) replace X = Y = X by X L X for any s € X. Define
Homg-14 (A, B) to be equivalence classes of paths from A to B in T'.

The canonical functor s, takes objects to themselves and morphisms to the correspond-
ing equivalence class.
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A.2 Exact categories

An additive category % is called exact is if is equipped with a set £ of sequences A —
B — C of objects and morphisms in & satisfying the following axioms. We call a morphism
admissible monic if it occurs as the first arrow in a sequence in £. We call a morphism
admissible epic if it occurs as the second arrow in a sequence in £.

(0) An admissible monic (resp. epic) is a kernel (resp. cokernel) of any corresponding
admissible epic (resp. monic).

(1) Any identify morphism is an admissible monic and an admissible epic.
(2) Admissible monics and admissible epics are both closed under composition.

(3) Arbitrary pushouts (resp. pullbacks) of admissible monics (resp. epics) are admissible
monics (resp. epics).

We will need to use the following fact.

Proposition A.3. Let (¢,&) be an exact category, and let X714 be a localization with
respect to a multiplicative system of %-morphisms Y. Define an exact structure on Y~ '¢
by taking the collection Q=€ = {Qx(A — B — C) | (A — B — C) € £} to define the

admissible morphisms. The resulting category is exact.

Proof. Follows immediately from Proposition A.2 and the definition above. O]

The next criterion will also be useful.

Proposition A.4. A full subcategory € of an abelian category 7 is exact if it is closed
under extensions, with respect to the class £ of short exact sequences in .o/ involving objects
in ¢. O

The “point” of exact categories, at least as they are used in this thesis, is that one has a
good notion of exact functors between them. (Namely, those which preserve the distinguished
class £ of short sequences.) In particular, given a diagram of exact functors &/ — ¢ — A
with & and £ abelian and % exact, the composition & — £ is exact in the usual sense.
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B Basics of D-modules

In this appendix we give a brief overview, with examples, of the essentials of D-modules. A
more comprehensive, but not very detailed, treatment can be found in [Ber|; other references
include [G] and [HTT].

B.1 Differential operators and D-modules

Fix an algebraically closed field k of characteristic 0. Let X be a smooth algebraic variety
over k with structure sheaf Ox. Consider the sheaf Endy(Ox) of endomorphisms of Ox
viewed as a sheaf of k-vector spaces. We regard Ox as a subsheaf (of rings) of Endx(Ox)
via its action of left multiplication. Another subsheaf of Endy(Ox) is the tangent sheaf © x
of k-derivations of Ox.

Definition B.1. The sheaf Dy of differential operators on X is the Ox-subalgebra of
Endx(Ox) generated by O x.

Proposition B.2. Dy is a locally-free Ox-module. (In particular, it is quasi-coherent.)

Proof. We work in a sufficiently small affine neighborhood U of a point p € X. Since X is
smooth, we can choose regular functions (local analytic coordinates) 1, ...,x, near p, so
that the differentials d z; are a basis for the free Oy-module Qf; of Kahler differentials, and
we can consider the dual basis 0; = % for ©y. Then by definition

Dx(U) =Dy = P 0Ovo”,

a€eNnP
where we have used multi-index notation, & = (aq,...,a,) and 0% = 9" ---9%". In the
sequel we will refer to x;s and 0;s chosen as above as a local coordinate system. O]

The global sections Dx = I'(X, Dx) are called the Weyl algebra when X = A" is affine
space, and is traditionally denoted by A,,. This is the polynomial algebra in the coordinates
t; on A™ and the corresponding partial derivatives 0; = a%-? which satisfy the commutation
relations [tl, t]] = [82, (9]] = 0, [tl, 83] = 51]

It is not difficult to show that Dx can also be characterized inductively in a coordinate-
free manner, using the notion of the order of a differential operator.

Definition B.3. The sheaf of differential operators of order < k on X is defined inductively
as

Dy '=0, DY ={d€&ndi(Ox)|ld, f] € D", forallf € Ox} (k> 0).

It is a simple exercise to prove that Dx has an exhaustive filtration by the D)S(k, and
that this filtration makes Dx into a sheaf of (non-commutative) filtered Ox-algebras (i.e.
D)S(ICD)S(IZ C D)S(HE). By the proof of Proposition B.2, the sheaf of associated graded rings is
locally generated as an Ox-algebra by the symbols &; of the tangent vectors 9;. The &; are
coordinate functions on the cotangent space of X, which yields a canonical identification

grDx = m.0r-x,

where 7 : T*X — X is the cotangent bundle. We will return to the order filtration below.
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Definition B.4. A Dy-module is a quasicoherent sheaf of Ox-modules with a left action
of Dx respecting the Dx D Ox-module structure.

Remark B.5. Since Dy is generated by Ox and O x and their sections satisfy [€, f] = £(f),
it is not difficult to check that a Dx-module structure on a quasicoherent Ox-module M is
equivalent to a k-linear map V : Ox — Endy(M) satistying Ve = fVe, Vef =&(f) + fVe
and Vigey = [Ve, Vi]. (The equivalence is given by setting £ - m = V¢(m).) So if M is
locally O-free of finite rank, and thus corresponds to an algebraic vector bundle £ — X, a
D x-module structure on M is equivalent to the datum of a flat (a.k.a. integrable) connection
on E. For this reason, we shall refer to D-modules which are locally O-free of finite rank
as integrable connections. One can show that this condition not only implies, but is
equivalent to, the condition on a D-module of being O-coherent (see, e.g., [G, Prop. 3.5.1]).

Example B.6. It is useful to have a few simple of examples of D-modules in mind. Obviously
Dy itself is a Dx-module, as is Oy, and more generally any sheaf of smooth functions, such
as the sheaf of complex analytic functions on X in the case where k = C.

When X = A', we can describe Dx-modules (= modules over the Weyl algebra A; =
Dy =k(t,0)) very explicitly; here we give several key examples.

e Corresponding to Ox we have the polynomial ring k[t]. It is a simple exercise to
deduce from the commutation relations in the Weyl algebra that k[t] =~ A;/A;0 as left
A;-modules.

e k[t] is an A;-submodule of k[t,¢7!], which is itself generated as an A;-module ¢!,
satisfying Ot - 7! = 0 (since the successive derivatives of ¢~! give all the negative
powers of t). It follows that k[t,t7!] = A; - t7! =~ A; /A0t as A;-modules.

e With respect to the preceding identification the submodule k[t] = At-t7' ~ A t/A,0t.
So the quotient module k¢, #7!]/k[t], which we denote by &y, is isomorphic to A;/A;t.
This is called the J-function module, because the generator 1 of this quotient, which
we might suggestively denote by 4, satisfies t0 = 0, much like the Dirac § “function”
from calculus.

A general recipe for producing Dx-modules, which provides much motivation for the
theory, is to make them from (systems of) linear partial differential equations on X with
polynomial coefficients. Indeed, in the affine case, such a system of p equations in ¢ unknown
functions is given by a collection P;; € Dx, for 1 <¢ < p,1 < j < g, corresponding to the
system of equations

Y Pifi=0,  (i=1,...,p) (5)
j=1

Corresponding to this equation we can consider the Dx-module
_ D)1 Dx - ¢;
> i1 Dx (Z?:1 Piﬁj)

The existence of a solution to the given system of PDEs by sections of a sheaf of functions
F (e.g. analytic functions OF') with a Dx-module structure (e.g. the obvious one on O%)

Mg
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is equivalent to the existence of a morphism of Dy-modules Mg — F. In some sense it
is reasonable to equate a function defined by a differential equation with the corresponding
D-module.

For a concrete example of this with X = A!, consider the differential equation

o 0 . 0 0
&taf =0, or equivalently {taﬁ =0, taﬁ = fi}-

The local solutions (f1, f2) = ¢(1,log(t)) to this equation in the sheaf of analytic functions
on the complex plane are given up to scale by branches of the logarithm. So we abusively
denote by log the generator of the A;-module

Al . IOg = Al/Alata ~ (A161 D Aleg)/(A1t861 + Al (t@eg - 61))

(or the corresponding Dx-module). Observe that the action of 9 on the D-module A; - log
is given (in terms of the generators ey, es) by the nilpotent matrix (§§). The exponential
exp(2mitd) = ({ %) gives the (unipotent) monodromy action on the fundamental solution
(1,1og) to the differential equation.

B.2 Left and right D-modules

In addition to left D-modules, we can consider right D-modules. The most important exam-
ple of a right Dx-module is the sheaf wx of top-degree differential forms on X, which has a
right action by vector fields given by w - ¢ = —Liecw, where

Liegw(fh_,,,fn) = g -w(&,...,fn) - Zw(glw-':[&5@']7"'a€n)'

This extends, the reader can check, to a right Dx-module structure as claimed. Also, the
construction can be relativized to give a right Dy-module structure on wy,x for a morphism
Y — X.

This construction yields a functor wx ® e from left Dx-modules to right Dx-modules,
Ox

where the module structure on the tensor product wx ® F is given by
Ox
(WRuU=w-{@u—w®E - u.

Proposition B.7. [Ber, 1.4] This functor gives an equivalence of categories between left
and and right Dy-modules; the inverse functor is Home, (wx, ), where the left Dx-module
structure on this Hom is given by (£ - ¢¥)(w) = —¢(w) - & + P(w - §). O

These side changing functors allow one to pass freely from left to right D-modules.

B.3 Direct and inverse image functors
B.3.1 Definitions
Given a morphism « : Y — X one can define a naive inverse image functor a® : Mod(Dy) —

Mod(Dy), coinciding with the inverse image @ = Oy ® o '(e) for O-modules equipped

ailox
with the D-action defined in a local coordinate system by

Sfom)=Ef@m+ )y fé(w) @ om.
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It is more convenient to work in the derived category of bounded complexes of D-modules,
D*(Dx), and to add a homological shift by the codimension of Y relative to X. So we define
the inverse image functor D°(Dy) — D°(Dy) by

o' = La®[dimY — dim X].

The definition of direct images is more involved; it is easier to define them first for right D-
modules and then use the side changing functors to obtain the definition for left D-modules.
The direct image functor j, : D*(Dy) — D*(Dx) is defined in terms of transfer bimodules.
If we set

Dy_x = OéA(DX),

a (Dy,a 'Dx)-bimodule, then a naive guess for transfering a right Dy-module structure on
G to X is to take the sheaf a.(G ® Dy _ x). Using the side changing functors, one sets
Dy

Dx—y =Dy_x (g? Wy/X
Y

a (a~'Dx, Dy)-bimodule, and considers the functor a.(Dx.y ® ). This proves ill-behaved,
Dy

so one passes to the derived categories as above and defines the direct image as
. L .
oz*g = RCM.(D}Q_Y X Q )
Dy

for a complex of Dy-modules G'. With these slightly odd-looking definitions, certain nice
properties hold, such the facts that o/ 3 = (8a)' and a,f. = (af3),, and that Ha, is left
adjoint to H’a' when « is a closed embedding.

Example B.8. For an example computation, consider an open embedding U <, X. In this
case the O-module inverse image j& is simply the exact functor j~!' of restriction, so the
same is true of j'. We will sometimes write F|y for j'F in this case.

What about the direct image j,7 The transfer bimodules are

Dox=0y ® jilDX = DX|U = Dy
Ji~10x

, which is a two-sided Dy-module, and Dx.y = Dy ® wy/x. Since j'wy = wy we have
Ou

wy/x = Op; thus Dx_y = Dy as well. So the direct image functor is
. . L .
J» = Rj.(Dy ®e) =Ry,
Dy

where j. is the ordinary direct image for O-modules. For an open affine embedding j. is

exact, so j, = j.. For example, when A! — {0} = U < X = A! we have j,0p = j.0p. So the
corresponding A;-module is T'(X, j.0y) = T'(U, Oy) = k[t,t7!]. That is, if we regard k|[t, "]
as a Dy-module and take its direct image, we obtain the same abelian group regarded as an
Aj-module, in this case.
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Now let {0} =Y <5 X = A! be the complementary closed embedding. Note that
L

Dy =k, so Dy-modules are just vector spaces. The direct image 1,0y = Ri.(Dx_y ® Oy).
Dy

Since Oy = Dy = k and since the sheaf-theoretic direct image i. is exact for the closed
embedding ¢, this is just i.(Dx_y) = i.(Dy_x ® wy,x) = i(i'Dx ® wy). The global
OY iilox

sections of this sheaf are

Dxo ® Oy =41 00x0 ® k=4, 9k
Ox.0 k 10)

X,0 k(]

where k is functions on the point Y, viewed as an k[¢t]-module with trivial action of ¢. Since
k = k[t]/tk[t] as k[t]-modules, we find T'(X,:,0y) = A;/Ait, so i.Oy is the J-function
module ¢y defined earlier.

B.3.2 Kashiwara’s theorem

One of the most important facts about direct images concerns the special case of a closed

embedding (such as Y <> X in the main situation studied in the body of this thesis). For a
closed embedding o : Y — X, the direct image has no higher cohomology; the functor H’«,
is exact.

Theorem B.9 (Kashiwara). The functor Ha, induces an equivalence of categories Coh(Dy)
Cohy (Dx) between coherent Dy-modules and the full subcategory of coherent Dx-modules
supported on'Y . The inverse functor is H'a'(= a”[dim Y — dim X]). H

A proof can be found in [Ber, 1.10].

B.3.3 Tensor products

Given Dx and Dy -modules F and G, one can form their external tensor product FXG €
Mod(Dxxy) using the projection maps px : X x Y — X and py : X xY — Y. Set

FXRG=Dxxy ® (p;(l]:%??;lg)-

px Dx®xpy ' Dy

Given two Dx-modules F and G one can also define the internal tensor product F ® G
Ox
as a Dx-module, using the Leibnitz rule: the action of vector fields given by

§(feg) =8flog+ foi(g)

defines the D-module structure. Of course when working with complexes of Dx-modules

(i.e., in the derived category) one must derive the tensor product. It is not hard to show
L

that there is a canonical isomorphism F ® G = A!(]-"' X G), where A : X — X x X is
Ox

the diagonal map. We will use this isomorphism below when sketching the proof of a lemma
used in the body of the thesis.
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B.4 Duals

A crucial tool in the theory of quasicoherent O-modules is the notion of duality; any Ox-
module M has a dual MY = Home, (M, Ox). The natural definition turns out to take
complexes of left D-modules to complexes of right D-modules, which we turn into left D-
modules via the side-changing functor discussed above. Hence we define

DxM = RHomDX(M',DX)gi) wy [dim X7.
X

This gives a duality (exact, contravariant autoequivalence of categories) on the bounded

derived category DP, (Dx) of complexes of Dx-modules with Dx-coherent cohomology.'? It

has additional nice properties which we will return to below, when we have defined holonomic
D-modules.

B.5 Holonomicity

The category of D-modules admits an Artinian subcategory of holonomic D-modules, which
are in some sense the “smallest” ones.

B.5.1 Singular support and holonomicity

Recall that Dx has an increasing filtration by the order of differential operators, and that
the associated graded sheaf gr Dx = Op-x.

Definition B.10. An increasing filtration M° C M! C --- of a quasicoherent Ox-module
M making it into a filtered Dx-module (with respect to the order filtration) is call good
if the following equivalent conditions hold: (i) The associated graded gr Dx-module gr M is
gr Dx-coherent; (ii) Each M’ is Ox-coherent and D' M? = M for all i > 0.

Using the isomorphism gr Dx = O1«x we can make the following defnition.

Definition B.11. The characteristic variety (a.k.a. singular support) of a D-module
M with a good filtration is the closed subvariety

S.S.(M) = suppgr M C T*M.

Proposition B.12 (Bernstein). Any D-coherent Dy-module admits a good filtration, and
its singular support does not depend upon which good filtration one chooses. O

The most important fact about singular supports is the following.

Theorem B.13 (Bernstein’s inequality). Let M be a coherent Dx-module. Then the di-
mension of any irreducible component of S.S.(M) is > dim X, unless M = 0. ]

12There is something to prove here, of course; cf. [Ber, 3.5].
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This is essentially an algebraic fact. One reduces to the affine case X = Spec R, and
observes the notion of singular support makes sense for any module over a (not necessar-
ily commutative) filtered R-algebra A. The theorem follows from Kashiwara’s Theorem
B.3.2 plus the general fact (which holds subject to suitable hypotheses on R and A, sat-
isfied for rings of differential operators on a smooth variety) that a finitely-generated A-
module M has a canonical filtration of length 2dim R, the subquotients of which satisfy
codim S.S.(C"/C") = i. For details see [HTT, 2.3].

Definition B.14. A coherent Dx-module M is called holonomic if M = 0 or dim S.S.(M) =
dim X.

One can show that a Dx-module M is Ox-coherent (i.e. an integrable connection) if
and only if S.S.(M) is actually the zero section of T*X — X [Ber, 2.8]. So Ox-coherent
Dx-modules are holonomic. In fact, any holonomic D-module is O-coherent on a dense open
subset [Ber, 2.11].

Key properties of holonomic modules include:

e Holonomic modules form an abelian subcategory Hol(D) of the category of all D-
modules, closed under subquotients and extensions. This follows essentially from the

fact that S.S.(G) = S.S.(F) US.S.(H) for an extension 0 — F — G — H — 0 of
coherent D-modules.

e Holonomic modules have finite length.

e The bounded derived category D} (Dx) of complexes of Dx-modules with holonomic
cohomology, is canonically equivalent to the bounded derived category D°(Hol(Dx))
of complexes of holonomic modules.

e The functors o, and ' take holonomic complexes to holonomic complexes.

L
e Since F®G = A(F X G) up to a homological shift, it follows that internal tensor
0

product preserves holonomicity as well.

Remark B.15. In the case of D-modules on affine space, there is an alternative criterion of
holonomicity, which uses an additional Bernstein filtration on the Weyl algebra that gives
degree 1 to all the generators ¢; and 0;; see Remark 2.6.

B.5.2 Extension

One nice property of holonomic D-modules which is used in the body of the thesis (specifi-
cally, for the proof of the b-function lemma in Section 2) is the following eztension lemma.

Lemma B.16. [Ber, 3.7] Let F be a Dx-module, U an open subset of X, and H C Fly a
holonomic submodule. Then there exists a holonomic submodule H' C F extending H, i.e.
such that H'|y = H. O
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B.5.3 Duality

The duality functor D defined in §B.4 is well-behaved not only for the derived category

D%, (Dx), but also for D ;(Dx) and for the subcategory of holonomic modules (not com-

plexes). The important fact is the following.

Proposition B.17. [Ber, 3.5] M is holonomic if and only if DM is a module (concentrated
in cohomological degree 0). Moreover, D restricts to an exact, contravariant autoequivalence
of the category Hol(Dx). O

B.5.4 Functors for holonomic modules

The previous result enables the definition of dualized versions of direct and inverse image
on the derived category of holonomic modules, analogous to exceptional inverse image and
direct image with compact support in the category of abelian sheaves.

Definition B.18. Let o : Y — X be a morphism. The functors oy : D} ;(Dy) — D?,(Dx)
and o* : D? (Dx) — D} (Dy) are defined by

o'F =Dya'DxF,  aG =Dxa.DyG.
Of the properties of these functors, the most important for this thesis are [Ber, 3.9]:
e o is left adjoint to o'
e o is left adjoint to a.
e o' = a*[2(dimY — dim X)] if « is smooth.

e There exists a canonical Goresky-MacPherson map oG — «a.G. Its definition for
« an open immersion is given in §3.3.3. It is an isomorphism for a proper. See also
Theorem 2.3.

We finish with a result about duality and internal tensor product for holonomic modules
and local systems.

Proposition B.19. Let M and £ be holonomic D-modules, with £ assumed O-coherent
(i.e. an integrable connection). Then

D(M L) = D(M)  D(£)

and moreover

D(L) = LY = Home(L, O)

with the canonical D-module struction on the Hom defined by (£¢)(¢) = &(€) — (&) for
vector fields &.

Proof. See [G, Prop. 4.4.6]. O
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C D-modules Quick Reference / List of notation

In the following, X (resp. Y') is a variety over k of dimension n (resp. m), F (resp. G) is a
Dx (resp. Dy) -module, and « : Y — X is a map of varieties.

e Categories:
(§6B.1,B.5) @ Mod(Dx) (resp. Hol(Dx), Coh(Dx)) = all (resp. holonomic, resp. coherent) left

Dx-modules.

o D%(a/) = derived category of bounded complexes of objects in the abelian category
/. We abbreviate D*(Mod(Dx)) by D*(Dx).

e DY (Dx) (resp. D%, (Dx)) = derived category of bounded complexes of Dx-
modules with holonomic (resp. coherent) cohomology.

e Some D-modules and functors between them:

(§B.1) @ Dy = sheaf of algebraic differential operators on X.
e A, = Weyl algebra, ring of differential operators on A™.

(§B.2) ® wy (resp. wy,x) = the sheaf of n-forms on X (resp. relative (n —m)-forms on Y'),
a locally-free Oy (resp. Oy) -module of rank 1, endowed with a right Dy (resp.
Dy ) -module structure defined by the action of vector fields via Lie derivative,
ie. w-¢{ = —Lieqw.

(§B.3) ® .G (resp. o F) = direct (resp. inverse) image functor for O-modules.
e o®F = o F endowed with its canonical Dy-module structure.

e Dy_x = a”(Dx) (transfer (Dy,a 'Dx) bimodule).

L
e a®F=Dy_x @ o 'F;La®*F =Dy_x @ o 'F

a*lDX OéilDX
e o'F = La®F |m —n] (inverse image: D°(Dy) — D®(Dy)).

e Dx_y = Dy_x @ wy/x (transfer (o 'Dx,Dy) bimodule).
Oy

L
e 0.G =Ra.(Dx_y ® G) (direct image: D’(Dy) — D’(Dx)).
Dy
(§B.4) @« DF = DxF = RHomp, (F,Dx) (;8) wx[n] (duality: D% , (Dx)®® — D%, (Dx)).
X

e Preserves holonomicity, on objects and complexes.
e Coincides with Home, (e, Ox) for integrable connections.
(§B.5.3) @ a*F = Dya'DxF (* inverse image).
e o' = a*[2(n — m)] for smooth a [Ber, 3.9].
e G =Dxa,DyG (! direct image).
e J canonical morphism oy — «, isomorphism for o proper [Ber, 3.9].
(Thm. 2.3) e a;,G = im(H(G) — H’(a..G)), Goresky-MacPherson extension.
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e Adjunctions: [Ber, 3.9]

o o is left adjoint to o

e o is left adjoint to a.
(8A.2) e Exact Categories:

e — = admissible monomorphism

e —» = admissible epimorphism
(§3.2.1) e Pro-ind Category:

o 11 = {(a,b) € Z* | a < b} as a poset under (a,b) < (a’, V) & a>d , b>V.

o o/ = category of “Pi-shaped diagrams” in the abelian category .

o /! = admissible diagrams in 27!

o pF** = diagram F¥(@)#0®) induced from F € o7'.

° liin;zf = localization of &Z!! by the class ¥ of morphisms induced by natural
transformations @F** — @Z]: @b > 1) well-behaved maps Z — Z.

e lim = localization functor &' — lim.e7.

—

o F; = truncated diagram Fj"’ = Frmax(eh)max(bk) for F e g,

e ,F = reverse truncated diagram Fin(e.6)min(b.6),

e Pro-ind holonomic D-modules:
(§3.3.1) « M™% = lim(M ® J;).
o M, = ligl(/\/l ® J}f}f)-
e More functors:
(683.3.3, 3.4) @ II'M = II*M = M ~>® = j M™% = limj}(M ® jﬁ’b).
o ILM (resp. IEM) = M, "™ (resp. j.M, ™).
(§3.4) ® TI}"* M = coker(IlLM — ;M < ITEM), for £ > k.
(83.5 \Ilgf)/\/l = II;' M (nearby cycles). Case i = 0 is denoted W ;M.
(§3.6.2) o ng)./\/l = II;/*' M (maximal extension). Case i = 0 is denoted = ;M.
3.7) « &M = nonzero homology of complex (3) in §3.7 (vanishing cycles).
!

)
)
)
)
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