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CHAPTER 1

D-modules on affine varieties

1. Lecture 1: Analytic continuation of distributions with respect to a
parameter and D-modules (01/31/02)

In this course we shall work over the base field k of characteristic 0 (in most case
one can assume that k = C). As a motivation for what is going to come let us first
look at the following elementary problem.

Analytic problem.
Let p ∈ C[x1, . . . , xn] be a polynomial in n variables (p : Rn → C) and let U be a
connected component of Rn\{x | p(x) = 0}. Define

pU(x) =

{
p(x) if x ∈ U

0 otherwise.

Let us take any λ ∈ C and consider the function |pU |λ.
It is easy to see that if Re λ ≥ 0 then |pU(x)|λ makes sense as a distribution on

Rn, i.e.
∫

U
|pU(x)|λf(x)dx is convergent for any f(x) ∈ C∞c (Rn) – a smooth function

on Rn with compact support.

Example. Let n = 1, p(x) = x and U = R+. Then
∫∞
0

f(x)xλdx is defined for
Re λ ≥ 0 (of course the integral is actually well-defined for Re λ > −1 but we do not
need this). We shall denote the corresponding distribution by xλ

+.

It is easy to see that for Re λ ≥ 0 we have a holomorphic family of distributions
λ 7→| pU(x) |λ.
Question(Gelfand): Can you extend this family meromorphically in λ to the whole
C?

Let E ∈ D(Rn) be a distribution on Rn. As usual we define ∂E
∂xi

(f) = −E( ∂f
∂xi

).

Example. Let n = 1, p(x) = x, U = R+. We have a distribution xλ
+ defined for

Re λ ≥ 0. We know that d
dx

(xλ+1
+ ) = (λ + 1)xλ

+. The left hand side is defined for
Re λ ≥ −1. Hence the expression

xλ
+ =

1

λ + 1

d

dx
(xλ+1

+ )

gives us an extention of xλ to Re λ ≥ −1, λ 6= −1. Continuing this process by
induction we get the following
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Proposition 1.1. xλ
+ extends to the whole of C meromorphicaly with poles in

negative integers. In particular, for every f ∈ C∞c (R)

αf (λ) =

∫ ∞

0

f(x)xλdx

has a meromorphic continuation to the whole of C with poles at −1,−2,−3, ....

Example. The proposition works not only for functions with compact support but
also for functions which are rapidly decreasing at +∞ together with all derivatives.
For example we can take f(x) = e−x. In this case we have

∫∞
0

e−xxλdx = Γ(λ + 1).
The proposition implies that Γ(λ) has a meromorphic continuation with poles at
0,−1,−2....

Theorem 1.2. [Atiyah, Bernstein-Gelfand] | pU |λ has a meromorphic continua-
tion to the whole C with poles in a finite number of arithmetic progressions.

The first proofs of this fact were based on Hironaka’s theorem about resolution
of singularities. We are going to give a completely algebraic proof of Theorem 1.2
which is due to Bernstein. For this let us first formulate an algebraic statement that
implies Theorem 1.2.

Let D = D(An) denote the algebra of differential operators with polynomial coef-
ficients acting on O = O(An) = C[x1, . . . , xn]. In other words D is the subalgebra of
End CO generated by multiplication by xi and by ∂

∂xj
.

Theorem 1.3. There exist d ∈ D[λ] and b(λ) ∈ C[λ] such that

d(pλ+1) = b(λ)pλ.

Example. Let n = 1 and p(x) = x. Then we can take d = d
dx

and b(λ) = λ + 1.

We claim now that Theorem 1.3 implies Theorem 1.2 (note that Theorem 1.3 is a
completely algebraic statement). Indeed, suppose d(pλ+1) = b(λ)pλ. Then d(| pU |λ+1

) = b(λ) | pU |λ. The left hand side is defined for Reλ ≥ −1, thus the expression

|pU |λ =
1

b(λ)
d(|pU |λ+1)

gives us a meromorphic continuation of | pU |λ to Re λ ≥ −1. So, arguing by induction
again, we see that | pU |λ can be meromorphicaly extended to the whole of C with
poles at arithmetic progressions α, α− 1, α− 2, . . . where α is any root of b(λ).

We now want to reformulate Theorem 1.3 once again. Set D(λ) = D ⊗C C(λ).
Denote by Mp the D(λ)-module consisting of all formal expressions q(x)pλ−i where
i ∈ Z and q(x) ∈ C(λ)[x1, . . . , xn] subject to the relations qpλ−i+1 = (qp)pλ−i} (the
action of D(λ) is defined in the natural way).

Theorem 1.4. Mp is finitely generated over D(λ).
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Let us show that Theorem 1.3 and Theorem 1.4 are equivalent.
Theorem 1.4 ⇒ Theorem 1.3: Denote by Mi the submodule of Mp generated

by pλ−i. Then Mi ⊂Mi+1 and

Mp =
⋃

i

Mi. (1.1)

Assume that Mp is finitely generated. Then (1.1) implies that there exists j ∈ Z such
that Mp = Mj. In other words for i as above the module Mp is generated by pλ−j.

Hence there exist d̃ ∈ D(λ) such that d̃(pλ−j) = pλ−j−1.
Let σj be an automorphism of C(λ) sending λ to λ+ j−1. Then σj extends to an

automorphism of the algebra D(λ) (which we shall denote by the same symbol) and

clearly we have σj(d̃)(pλ+1) = pλ. But σj(d̃) can be written as σj(d̃) = d
b(λ)

, where

d ∈ D[λ] and b(λ) ∈ C[λ]. Thus we have d(pλ+1) = b(λ)pλ.

Theorem 1.3 ⇒ Theorem 1.4: By shifting λ we see that for every integer i > 0
there exists a differential operator di ∈ D[λ] such that

di(p
λ) = b(λ− i)pλ−i.

This clearly implies that pλ generates Mp.

We now want to prove Theorem 1.4. To do this we need to develop some maschin-
ery.

1.5. Filtrations. Let A be an associative algebra over k. Recall that an in-

creasing filtration on A is the collection of k-subspaces FiA ⊂ A (for i ≥ 0) such
that

1) A = ∪FiA and ∩FiA = {0};
2) We have FiA ⊆ Fi+1A and FiA · FjA ⊆ Fi+jA. It is also convenient to set

F−1A = 0.

In this case one may define the associated graded algebra grF A of A in the following
way:

grF A =
∞⊕

i=0

FiA/Fi−1A.

We set grF
i A = FiA/Fi−1A. Then grFA has a natural structure of a graded algebra

(i.e. we have grF
i A · grF

j A ⊆ grF
i+j A). We shall sometimes drop the super-script F

when it does not lead to a confusion.
Similarly let M be a left module over A. Then an increasing filtration on M

consists of a collection of k-subspaces FjM ⊂M such that
1) M = ∪FjM and ∩FjM = {0};
2) We have FjM ⊆ Fj+1M and FiA · FjM ⊆ Fi+jM .
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As before one defines

grF M =

∞⊕

i=0

FjM/Fj−1M

Thus grF M is a graded gr A-module.

Definition 1.6. (1) An increasing filtration FjM is called a good filtration
if grF M is finitely generated as grA-module.

(2) Two filtrations FjM and F ′jM are called equivalent if there exist j0 and j1

such that

F ′j−j0M ⊆ FjM ⊆ F ′j+j1M.

Proposition 1.7. (1) Let FjM be a good filtration on a left A-module M .
Then M is finitely generated over A.

(2) If FjM is a good filtration on M then there exist j0 such that for any i ≥ 0
and any j ≥ j0 FiA · FjM = Fi+jM .

(3) Assume that we have two filtrations F and F ′ on M such F is good. Assume
also that for any i ≥ 0 the F0A-module FiA is finitely generated. Then there
exist j1 such that FjM ⊂ F ′j+j1

M for any j.

Corollary 1.8. Suppose that FiA is finitely generated over F0A as a left module.
Then any two good filtrations on a left A-module M are equivalent.

This clearly follows from the third statement of the theorem.

Proof. (1) By assumption grF M is finitely generated. Let s1, . . . sk be the
generators of grF M , si ∈ grF

ji
M . For any i choose ti ∈ Fji

M which projects
to si. It is now easy to see that ti generate M .

(2) If grFM is finitely generated over grA then grFM is generated by
⊕j0

i=0 grF
i M

for some j0. Then for any j ≥ j0

gri A · grF
j M = grF

i+j M

and hence FiA · FjM + Fi+j−1M = Fi+jM .
By induction on i we can assume that Fi+j−1M = Fi−1A · FjM . Then

Fi+jM = FiA · FjM + Fi−1A · FjM = FiA · FjM .
(3) First of all we claim that FjM is finitely generated over F0A for all j. It

is enough to show that grF
j M is finitely generated over F0A for all j. Let

m1, ..., mk be some generators of grFM . We may assume that they are ho-
mogeneous, i.e. mi ∈ grF

ji
M for some ji. Thus for every j ≥ 0 the map

k⊕

i=1

grj−ji
A→ grF

j M ; (a1, ..., ak) 7→ a1m1 + ...akmk
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is surjective. On the other hand since gri A is a quotient of FiA (for every
i) it follows that every gri A is finitely generated. Hence grF

j M is finitely
generated.

Let j0 be as above. Since F ′ is a filtration, we have Fj0M =
⋃

F ′jM∩Fj0M
and since Fj0M is a finitely generated F0A-module it follows that Fj0M ⊆
F ′j0+j1

M for some j1 ≥ 0.
Then Fi+j0M = FiA · Fj0M ⊆ FiA · F ′j0+j1

M ⊆ F ′j0+j1+iM . So we have
proved our proposition for j ≥ j0. By increasing j1 cam make it true for any
j.

�

Here is our main example. Let D be the algebra of polynomial differential opera-
tors in n variables. Let’s define two filtrations on D:

Bernstein’s (or arithmetic) filtration: F0D = k, F1D = k +span(xi,
∂

∂xj
), FiD is

the image of F1D⊗i under the multiplication map.

Geometric filtration (filtration by order of differential operator) denoted by D0 ⊂
D1 ⊂ ...:
D0 = O = k[x1, . . . , xn]
D1 = span(f ∈ O; g ∂

∂xi
where g ∈ O), Di is the image of D1

⊗i under the multipli-
cation map.

The following lemma describes the algebra D explicitly as a vector space. The
proof is left to the reader.

Lemma 1.9. For any d ∈ D there exists a unique decomposition

d =
∑

i1≤···≤ik

pi1,...ik

∂

∂xi1

. . .
∂

∂xik

where pi1...ik ∈ k[x1, . . . , xn].

This lemma immediately implies the following

Proposition 1.10. For both filtrations grD ∼= k[x1, . . . , xn, ξ1, . . . , ξn]. Here xi

are images of xi and ξj are images of ∂
∂xj

.

Proof. Let us show, that xi’s and ξj’s commute in grD is for both filtrations.
For each i 6= j we have xi

∂
∂xj

= ∂
∂xj

xi in D and hence in grFD. For i = j we have

xi
∂

∂xi
− ∂

∂xi
xi = −1 ∈ F0D and hence equal to 0 in grFD for both filtrations.

It follows now easily from the above lemma that grD is a polynomial algebra in
xi’s and ξ’s. �

For Bernstein’s filtration the above argument shows a little more – namely that
for all i, j we have [FiD, FjD] ⊂ Fi+j−2D (note that for the geometric filtration we
only have [Di,Dj] ⊂ Di+j−1). We shall need this fact in the next lecture.
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2. Lecture 2: Bernstein’s inequality and its applications (02/05/02)

Let D = D(An) be the algebra of polynomial differential operators in n variables.
In the last lecture we have introduced two filtrations on D: Bernstein’s filtration

FiD (xi and ∂
∂xj

are in F1D) and geometric filtration Di (xi ∈ D0 and ∂
∂xj
∈ D1). For

both of the filtrations grD ∼= k[x1, . . . xn, ξ1 . . . ξn]. Also dimk FiD <∞.

Let A be a filtered algebra such that dimk FiA <∞ and grA ∼= k[y1, . . . , ym]. Let M
be an A-module with a good filtration F . Define hF (M, j) = dimk FjM .

Theorem 2.1. There exists a polynomial hF (M)(t) (called the Hilbert polynomial

of M with respect to filtration F such that hF (M, j) = hF (M)(j) for any j � 0,

hF (M)(j) has a form hF (M)(t) = ctd

d!
+ {lower order terms}, where d ≤ m and

c ∈ Z+.

Let us mention that this is actually a theorem from commutative algebra since
hF (M, j) = hgr Fgr M, j where grF is the natural filtration on grM (coming from the
grading).

Lemma 2.2. c and d in the theorem above do not depend on filtration.

Proof. Let F and F ′ be good filtrations. Then there exist j0 and j1 such that

F ′j−j0
M ⊆ FjM ⊆ F ′j+j1

M

and hence hF ′(j − j0) ≤ hF (j) ≤ hF ′(j + j1). This can be true only if hF and hF ′

have the same degree and the same leading coefficient. �

Definition 2.3. For a finitely generated module M d = d(M) as above is called
the dimension of M (sometimes it is also called Gelfand-Kirillov of functional dimen-
sion of M).

Theorem 2.4. [Bernstein’s inequality] For any finitely generated module M over
D = D(An) with Bernstein’s filtration we have d(M) ≥ n.

Before proving Theorem 2.4 we want to derive some very important corollaries of it
(in particular we are going to explain how this theorem implies the results formulated
in the previous lecture).

Historical remark. This theorem was first proved in Bernstein’s thesis, then a
simple proof was given by A Joseph. Then O. Gabber proved a very general theorem
which we shall discuss later (this theorem implies that more or less the same is true
for geometric filtration). ADD REFERENCES.
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2.5. Examples. 1. Let n = 1 and M be a finitely generated D-module. Suppose
that d(M) = 0. This means that dimk M < ∞. For any two operators on M the
trace of their commutator should be 0. But [ d

dx
, x] = 1 in D and it cannot have zero

trace unless M = 0. Hence dimk M =∞ and d(M) ≥ 1.
2. O = k[x1, . . . , xn] is a module over D. Let FiO be all polynomials of degree less
or equal to i. Then dimk FiO =

(
n+i
n

)
is a polynomial of degree n with leading term

in

n!
. Thus d(M) = n and c(M) = 1.
3. Let n = 1, fix a ∈ An. Define D-module of δ-functions δa as a module with

basis {δ(k)
a }∞k=0 and the following action of D:

d

dx
(δ(k)

a ) = δ(k+1)
a

(x− a)δ(k)
a = (−1)kkδ(k−1)

a

(x− a)δ(0)
a = 0.

It is easy to see that d(δa) = 1 and c(δa) = 1.

Definition 2.6. If d(M) = n then M is called holonomic.

Remark. For a long time it was believed that all irreducible modules are holonomic,
but then Stafford found a counterexample and later Bernstein and Lunts constructed
a lot of non-holonomic simple modules.

Let A be a filtered algebra such that grA is Noetherian and let

0→M1 →M2 →M3 → 0

be an exact sequence of A-modules. Let {FjM2} be a good filtration on M2. It
induces filtrations on M1 and M3, namely FjM1 = FjM2∩M1 and FjM3 is the image
of FjM2. We have a short exact sequence

0→ grFM1 → grFM2 → grFM3 → 0.

In fact {FjM1} and {FjM3} are good filtrations (grFM3 is finitely generated because
it is a quotient of grFM2, which is finitely generated, to prove that grFM1 is finitely
generated, we need grA to be Noetherian).

Proposition 2.7. Using the same notations as above

(1) d(M2) = max(d(M1), d(M3))
(2) If d(M1) = d(M2) = d(M3), then c(M2) = c(M1) + c(M3)
(3) If d(M1) > d(M3), then c(M2) = c(M1) and if d(M3) > d(M1), then c(M2) =

c(M3)

Proof. Using the exact sequence as above we get

hF (M2, i) = hF (M1, i) + hF (M3, i).

All the statements of the proposition follow from this fact. �
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Corollary 2.8. Let M be a holonomic module and c = c(M). Then the length
of M is less than or equal to c.

Proof. Let M be a holonomic D-module, d(M) = n and c(M) = c.
Suppose we have an exact sequence

0→ N →M → N ′ → 0.

Then we have d(M) = d(N) = d(N ′) = n (since by Bernstein’s inequality d(N),
d(N ′) ≥ n) and c(M) = c(N) + c(N ′). Thus c(N) < c(M). Let’s take N such that
N ′ is irreducible. Then length(M) ≤ length(N) + 1. By induction length(N) ≤ c(N),
then length(M) ≤ c(N) + 1 ≤ c(M). �

2.9. Example. It is easy to see that very often length of M is actually strictly
smaller than c(M). For example, let n = 1, λ ∈ k and M(xλ) = {q(x)xλ+i |
(qx)xλ+i = qxλ+i+1} with the natural D-module structure. In this case we have

1. c(M(xλ)) = 2
2. M(xλ) is irreducible ⇔ λ /∈ Z.

Corollary 2.10. Let M be any module over D, FjM – filtration on M (not
necessarily good). Assume that there exist h ∈ R[t], h(t) = ctn

n!
+{ lower order terms }

where c ≥ 0, such that dimk FjM ≤ h(j). Then M is holonomic and length(M) ≤ c.

Proof. Let N be any finitely generated submodule of M . Let’s prove, that N is
holonomic and c(N) ≤ c.

Consider FjN – the induced filtration on N . Let F ′jN be a good filtration on N
such that F ′jN ⊂ FjN (such a filtration exists: for example choose j such that FjN
generates N and set F ′iN = FiN for i ≤ j and F ′iN = Fi−jD·FjN for i > j). Then we
have dim F ′jN ≤ dim FjN and hence hF ′(N)(j) ≤ h(j) = cjn

n!
+ {lower order terms}.

By Bernstein’s inequality d(N) ≥ n, hence hF ′(N)(j) = c′jn

n!
+ {lower order terms},

where c′ ≤ c, i.e. N is holonomic and has the length less or equal to c.
Using the same argument as in the proof of the previous corollary, we can prove

that M has a finite length, hence M is also holonomic and length(M) ≤ c. �

Let p ∈ k[x1, . . . xn] and recall that in the previous lecture we defined a D(λ)-
module Mp by setting

Mp = {q(x)pλ+i | (qp)pλ+1 = qpλ+1}.
Theorem 2.11. Mp is holonomic. In particular, it is finitely generated.

We have shown last time that the above result implies Theorem 1.2.

Proof. By Corollary 2.10 it is enough to find a filtration FjMp for which we have
dimk FjM ≤ h(j), where h(x) is a polynomial of degree n. Let

FjMp = {qpλ−j | deg q ≤ j(m + 1)}
12



for any j ≥ 0 (here m = deg p).
Let us show, that this is filtration: first of all Fj−1M ⊂ FjM and M =

⋃
FjM .

It is enough to prove that F1D · FjM ⊂ Fj+1M .
For any i = 1, . . . n we have

xi · (qpλ−j) = (xiqp)pλ−j−1 ∈ Fj+1M,

since deg(xiqp) = deg q + m + 1 ≤ j(m + 1) + m + 1 = (j + 1)(m + 1) and

∂

∂xi
(qpλ−j) =

∂q

∂xi
pλ−j + (λ− j)qpλ−j−1 ∂p

∂xi
=

=

(
p

∂q

∂xi
+ (λ− j)q

∂p

∂xi

)
pλ−j−1 ∈ Fj+1M,

since deg
(
p ∂q

∂xi
+ (λ− j)q ∂p

∂xi

)
= deg q + m− 1 ≤ (j + 1)(m + 1).

So, FjM is really filtration.

It is easy to see that dimk FjM =
(

j(m+1)+n
n

)
. Thus dimk FjM is a polynomial of

degree n in j. By Corollary 2.10 M is holonomic. �

Let us now prove Theorem 2.4. We begin with the following

Lemma 2.12. Let M be a module over D with a good filtration FiM . Then

FiD −→ Hom(FiM, F2iM)

is an embedding for any i.

Proof. We shall prove Lemma 2.12 by induction on i.
1) For i = 0 it is clear, because F0D = k.
2) Suppose the statement is true for all i′ < i. Let a ∈ FiD such that

a =
∑

i1≤···≤ik

pi1,...ik

∂

∂xi1

. . .
∂

∂xik

We may assume that a is not constant. Suppose ∂
∂xm

occurs in expression for a

with a nonzero coefficient. Then [a, xm] 6= 0. Similarly, if xm occurs in the expression
for a with a nonzero coefficient, then [a, ∂

∂xm
] 6= 0.

By the property of Bernstein’s filtration [a, xm] and [a, ∂
∂xm

] are in Fi−1D.

Suppose for example that [a, xm] 6= 0 (the other case is treated similarly). We have
to show, that there exists α ∈ FiM such that a(α) 6= 0. By the induction hypothesis
there exists α′ ∈ Fi−1M such that [a, xm](α′) 6= 0. But if a(FiM) = 0, then

[a, xm](α′) = axmα′ − xmaα′ = a(xmα′)− xm(a(α′)) = 0.

Thus we get a contradiction. So a(FiM) 6= 0 and the map

FiD −→ Hom(FiM, F2iM)

is an embedding. �
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It remains to explain how the Lemma 2.12 implies Theorem 2.4.

We know that dimk FiD = i2n

(2n)!
+ {lower order terms}.

But by the previous Lemma dimk FiD ≤ dim Hom(FiM, F2iM) = hF (M, i)hF (M, 2i),

where hF (M, i) = dim FiM = cid

d!
+ {lower order terms}. Thus

i2n

(2n)!
+ {lower order terms} ≤ c2 id(2i)d

(d!)2
+ {lower order terms}.

This implies that n ≤ d.

�

3. Lecture 3 (02/07/02)

Let us study some further properties of the algebra D. We begin by the following

Lemma 3.1. D is both left and right Noetherian.

Proof. Let M be a finitely generated left D module. We have to prove that any
submodule N of M is also finitely generated. Since M is finitely generated it admits
a good filtration FiM . On N we have the induced filtration FiN = FiM ∩ N . We
already know, that grD ∼= k[x1, . . . , xn, ξ1, . . . , ξn] is Noetherian, thus FiN is a good
filtration and N is finitely generated. �

Intuitively there exists a correspondence between modules over D (algebra of
polynomial differential operators in n variables) and systems of linear differential
equations. Namely assume that we have a system of differential equations of the form

m∑

i=1

dij(fi) = 0 j = 1, 2, ... (3.1)

on m functions (or distributions) on Rn and dij are differential operators with poly-
nomial coefficients. Then we can consider a D-module M generated by m elements
ξ1, ..., xim with relations given by the same formulas as in (3.1). In this case solutions
of the system (3.1) in the space C∞(Rn) (or Dist(Rn) or any other similar space)
are the same as HomD(M, C∞(Rn)). In other words, we can think about a system
of linear differential equations (with polynomial coefficients) as a D-module together
with a choice of generators. In some sense the main point of the theory of D-modules
is that particular choice of generators is ”irrelevant”. Note that the noetherian prop-
erty of D implies that it is always enough to consider finitely many equations in (3.1)
– these equations are elements of the kernel of the natural map Dm → M sending
(d1, ..., dm) to d1(ξ1) + ... + dm(ξm) and this kernel is finitely generated.

It is especially interesting to look at the case when M is generated by one element
ξ (such modules are called cyclic). In this case we have M = D/I, where I is a
left ideal. If I is generated by d1, . . . dk then d(M) ≥ n − k and when d1, ..., dk are
in general position we have equality. Thus Bernstein’s inequality says us, that in
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order to have a consistent system of linear differential equations (i.e. a system which
has a chance to have non-zero solutions) generically you shouldn’t have more than n
equations.

In some sense, there are a lot of cyclic modules over D, for example every holo-
nomic module is cyclic. The proof is based on the following observation.

Lemma 3.2. D is a simple algebra, i.e. it has no proper two-sided ideals.

Proof. Assume that I ⊂ D is a two-sided ideal and 0 6= d ∈ I. Thus there
exists i ≥ 0 such that d ∈ FiD. We know that there exists xα or ∂

∂xβ
such that either

[xα, d] 6= 0 or [d, ∂
∂xβ

] 6= 0. Both of these commutators are in I, since I is two-sided

ideal and in Fi−1D, because of the property of Bernstein’s filtration. Proceeding in
the same way we’ll get 0 6= d′ ∈ I, such that d′ ∈ F0D = k. This means that I = D.

�

Lemma 3.3. Let A be a simple algebra which has infinite length as a left A-module.
Then every A-module of finite length is cyclic.

Remark. It is easy to see that D has inifinite length as a module over itself. We
proved last time that all holonomic D-modules have finite length. Hence it follows
that holonomic modules are cyclic.

Proof. By induction on the length of M it is enough to show, that if we have
an exact sequence of A-modules

0→ K →M
π→ N → 0,

where K 6= 0 is simple and N is cyclic of finite length, then M is also cyclic.
Let n ∈ N be a generator and let I = AnnA(n) be the annihillator of n in A.

Assume that there is no m ∈ π−1(n) which generates M . We claim that in this
situation I annihilates any element of K.

Indeed, choose some m ∈ π−1(n) and let M ′ = D · m (not equal to M). Then
π : M ′ → N is an isomorphism, since M ′ ∩ K = 0. (If M ′ ∩ K 6= 0, then K ⊂ M ′

since K is simple and M = M ′ because of the exactness of the sequence.) Thus
AnnA(m) = I. We see that for any k ∈ K Ann(m + k) = I, which implies I · k = 0
for any k ∈ K.

So, we have proved that I ⊂ I ′ =
⋂

k∈K Ann(k). I ′ is a two-sided ideal in A. Since
A is simple either I ′ = A or I ′ = 0. If I ′ = A then K = 0 (and we are considering
the case, when K 6= 0). If I ′ = 0 then we also have I = 0. Since N is generated by
n it follows and N is a free module of rank 1. Thus N doesn’t have finite length by
assumption of the lemma. �

Corollary 3.4. Any D-module of finite length is cyclic.
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3.5. The singular support of a D-module. Let M be a D-module and FiM
– good filtration on it. Then grF M can be thought of as a coherent sheaf on A2n.
We claim that dim( supp grF M) = d(M).

For any graded module M , supp grF M is invariant under the natural action of
Gm and is canonically defined as a cycle in A2n, i.e. for any irreducible component of
it there is a canonically given multiplicity. Thus supp grFM defines a cycle in P2n−1.
In fact, the degree of this cycle is c(M).

Lemma 3.6. Let M be a D-module, FiM – good filtration on it and grF M – the
corresponding graded module. Let IF = Ann(grF M). Then

√
IF does not depend

on F .

Proof. Let FiM and F
′

i M be good filtrations on M . Then they are equivalent,
i.e F

′

j−j0
M ⊂ FjM ⊂ F

′

j+j1
M for some j0 and j1. Let t = j0 + j1 + 1.

Suppose x̄ ∈ k[x1, . . . , xn, ξ1, . . . , ξn], deg x̄ = p and x̄ ∈
√

IF . Lift x̄ to some
x ∈ FpD. Since x̄ ∈

√
IF there exist q such that xq · FiM ⊂ Fi+pq−1M . Then

xqt ·F ′

i ⊂ F
′

i+tpq−1M (proof is left to the reader). This means that x̄qt ∈ IF ′ and hence

x̄ ∈
√

IF ′ . �

In fact, the same argument proves the following more general result:

Proposition 3.7. Let A be a filtered algebra such that grA is commutative and
FiA is a Noetherian module over F0A for any i. Then for any finitely generated A-
module M supp grF M is canonically defined, i.e. for any good filtration FiM on M√

Ann(grFM) does not depend on FiM .

Consider now the geometric filtration on D and let M be any finitely generated
D-module.

Definition 3.8. (1) supp grFM with respect to the geometric filtration is
called the geometric singular support of M . It will be denoted by s.s.(M).

(2) supp grFM with respect to Bernstein’s filtration is called the arithmetic
singular support of M . It will be denoted by s.s.a(M).

We shall later define s.s.(M) as a cycle in A2n (i.e. we shall assign a multiplicity
to every irreducible component of s.s.(M).

As we have already pointed out, s.s.a(M) is invariant under the standard action of
Gm. The geometric singular support s.s.(M) is invariant under the following action
of Gm on A2n: λ(xi) = xi and λ(ξj) = λξj.

The following theorem is non-trivial and it will be proved in Lecture 5.

Theorem 3.9. dim s.s.(M) = dim s.s.a(M).

(if either of them is equal to n, then M is holonomic).
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3.10. O-coherent modules. Let O = k[x1, . . . , xn] ⊂ D. Let M be D-module.
Then s.s.(M) = {ξ1 = · · · = ξn = 0} ⇔ M is finitely generated over O. On the level
of grF M it is equivalent to the fact, that ξj act locally nilpotently. We shall say that
M is O-coherent in this case.

It turns out that allO-coherentD-modules are quite simple asO-modules. Namely
we have the following

Theorem 3.11. If M is O-coherent then M is locally free over O (⇔ M is the
module of sections of a vector bundle on An)

Proof. Let x ∈ An and Ox be the local ring of x. Let mx ⊂ Ox be the maximal
ideal. As usual, define Mx = Ox⊗OM . Since M is O-coherent dimk Mx/(mx ·Mx) <
∞. Let s̄1, . . . , s̄k be a basis of this space. Lift this basis to s1, . . . , sk in M . By
Nakayama lemma s1, . . . , sk generate Mx. We have to show that these elements are
linearly independent over Ox. So, assume that we have

∑k
i=1 ϕisi = 0, where not all

of ϕi = 0.
We say, that ordxϕ = n if ϕ ∈ mn

x and ϕ /∈ mn+1
x . Define ν = mini(ordxϕi).

Without loss of generality we may assume that ordxϕ1 = ν.
Then there exists a vector field η (defined locally around x), that η(ϕ1) 6= 0 and

ordxη(ϕ1) < ν.
Let us apply such an η to the expression

∑
i ϕisi = 0. We will get

0 =
∑

i

η(ϕi)si +
∑

i

ϕiη(si).

Since si generates Mx we have η(si) =
∑

j aijsj for some aij. So, we have

0 =
∑

i

(
η(ϕi) +

∑

j

ϕjaji

)
si.

The coefficient of s1 in this sum is η(ϕ1) +
∑

j ϕjaj1. Since ordxη(ϕ1) < ν and

ordx(
∑

j ϕjaij) ≥ ν, this coefficient is non-zero and has order less than ν at x. By
continuing the same process we shall get a relation between the si’s with ν = 0, and
this means that there exist nontrivial linear relation between s̄1, . . . , s̄k (

∑
i ϕ̄is̄i = 0,

where ϕ̄i is the image of ϕi in Ox/mx). �

Here is a very important corollary of this result.

Corollary 3.12. Let M be a finitely generated D-module. Then M is O-
coherent if and only if

s.s.(M) = {(x, 0)| x ∈ A
n}.

More canonically, if we identify grD (with respect to the geometric filtration) with
O(T ∗An) then M is O-coherent if and only if s.s.(M) is equal to the zero section in
T ∗An.
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Proof. Assume that s.s.(M) is as above. Then it follows that for every good
filtration F on M (with respect to the geometric filtration on D) the module grFM
is finitely generated over k[x1, ..., xn, ξ1, ..., ξn] and all ξi act locally nilpotently on it.
This implies that grFM is finitely generated over k[x1, ..., xn] = O. Hence M is also
finitely generated over O.

Conversely, assume that M is O-coherent. Define a filtration on M by setting

FjM = M for every j ≥ 0.

Then grFM = M as an O-module and all ξi act on grFM by 0. By Theorem 3.11 we
know that M is locally free over O hence s.s.(M) is equal to the zero section. �

Here is an example:

Lemma 3.13. Let δb be module of δ-functions at some b ∈ A1. Then s.s.(δb) =
{(x, ξ) | x = b} and s.s.a(δb) = {(0, ξ)}.

One can think about D-modules as quasi-coherent sheaves on An (O-modules)
with an additional structure. Singular support somehow ”measures” singularities of
M .

3.14. Flat connections. Let us now study more carefully what kind of addi-
tional structure we need to introduce on a quasi-coherent sheaf so that it becomes a
D-module.

So let M be an O-module. Any D-module on M structure gives us a map ∇ :
M →M ⊗O Ω1(An), where Ω1(An) is the module of differential 1-forms. Namely, for
eny vector field v on An and any m ∈M we have ∇(m)(v) = v(m). This map satisfies
the following condition ∇(fm) = m⊗df + f ·∇(m) for any f ∈ O and m ∈M . Such
a map ∇ is called a connection.

To formulate which connections arise from a D-module structure let us define the
notion of flat connection.

Given a connection ∇ define a map ∇2 : M →M⊗OΩ2(An) in the following way:

∇2(m) = (∇⊗ 1)(∇(m)) +∇(m)⊗ d(w)

where d denotes the standard de Rham differential. It is easy to see that ∇2 is an
O-linear map and thus can be thought of an element of EndO(M)⊗

O
Ω2.

Definition 3.15. Connection ∇ is called flat if ∇2 = 0.

The following lemma is well-known and it is left to the reader.

Lemma 3.16. Let M be an O-module. Then a flat connection on M is the same
as a D-module structure.

Let V be a finite dimensional vector space over k and M = V ⊗k O as an O-
module. Let d : M → M ⊗ Ω1 be the de Rham differential. Then any connection ∇
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has the form ∇ = d + ω, where ω ∈ End(V )⊗ Ω1.

ω : M →M ⊗O Ω1 = V ⊗k Ω1

Let ω = T⊗α, where T : V → V . Then for any m = v⊗f we have ω(m) = T (v)⊗fα.

Lemma 3.17. ∇ is a flat connection iff dω + [ω, ω] = 0.

3.18. Poisson structures.

Definition 3.19. Let R be a commutative algebra. Poisson bracket {·, ·} : R ×
R→ R on R is a Lie bracket satisfying the following condition

{f1f2, g} = f1{f2, g}+ f2{f1, g}
for every f1, f2, f3 ∈ R.

Let X be a smooth affine algebraic variety over k. If we forget about Jacobi
identity, then a Poisson bracket on O(X) = R corresponds to η ∈

∧2 TX . (Jacobi
identity gives us some identity on η). Any η ∈

∧2 TX defines a map η : T ∗X → TX . If

this map is an isomorphism, then there exists ω ∈
∧2 T ∗X = Ω2

X , corresponding to η.
It is well-known that η satisfies the Jacobi identity if and only if ω is closed.

Definition 3.20. A closed non-degenerate 2-form ω is called a symplectic form.

Example. Let Y be any smooth variety. Then X = T ∗Y is symplectic. For ex-
ample let Y = An, then X = A2n with coordinates x1, . . . , xn, ξ1, . . . ξn. In this case
symplectic form is ω =

∑
i dxi ∧ dξi and for Poisson bracket we have {ξi, ξj} = 0,

{xi, xj} = 0 and {ξi, xj} = δi,j.

Assume that A is a filtered algebra and there exists a fixed l > 0 such that
[FiA, FjA] ⊂ Fi+j−lA. Then grA is commutative and is endowed with a canonical
Poisson bracket. Namely, for x̄ ∈ gri A and ȳ ∈ grj A let x ∈ FiA and y ∈ FjA be
their preimages. Define {x̄, ȳ} as the image z̄ of [x, y] in gri+j−l A.

The proof of the following lemma is left to the reader.

Lemma 3.21. (1) z̄ depends only on x and y ( and does not depend on x and
y).

(2) The assignment x, y 7→ z is a Poisson bracket on grA.

Examples.

(1) Bernstein’s filtration.
In this case we can set l = 2, since [FiD, fjD] ⊂ Fi+j−2D. The Poisson

bracket defined as above coincide with the standard Poisson bracket on

A
2n = Spec(k[x1, . . . xn, ξ1, . . . , ξn])

coming from the identification A
2n ' T ∗An.
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(2) Geometric filtration.
In this case [Di,Dj] ⊂ Di+j−1 and l = 1. The Poisson bracket on A2n is

the same as before.

Definition 3.22. Assume X is a Poisson affine algebraic variety and Z ⊂ X – a
closed subvariety. Let I(Z) ⊂ O(X) be the ideal of Z. Then Z is called coisotropic
if

{I(Z), I(Z)} ⊂ I(Z).

Lemma 3.23. Let X be a Poisson affine algebraic variety, Z ⊂ X – closed subva-
riety. Let η : T ∗X → TX map corresponding to the Poisson bracket. For any z ∈ Z
we have TzZ ⊂ TzX and TzZ

⊥ ⊂ T ∗z X.
Then Z is coisotropic if and only if then η(TzZ

⊥) ⊂ TzZ for any smooth point
z ∈ Z.

Proof of this lemma is left to the reader.

Lemma 3.24. Suppose X is symplectic and Z ⊂ X is coisotropic. Then T (Z) ⊃
T (Z)⊥.

Using this lemma, we get the following fact: if X is symplectic and Z ⊂ X is
coisotropic, then for any irreducible component Zα of Z we have dim Zα ≥ 1

2
dim X.

Theorem 3.25. [Gabber] Let A be a filtered algebra such that [FiA, FjA] ⊂
Fi+j−lA for some l. Let M be an A-module with a good filtration FiM . Let IF =
Ann(grF M) (the annihillator of grF M) in gr A and let J(M) =

√
IF . Then

(1) {IF , IF} ⊂ IF

(2) If grA is noetherian then {J(M), J(M)} ⊂ J(M).

Let us note that the first assertion of the theorem is basically trivial. The second
assertion is highly non-trivial and it will not be proved in these lectures.

Let us derive some corollaries from Gabber’s theorem.

Corollary 3.26. Let A be a filtered algebra such that [FiA, FjA] ⊂ Fi+j−lA for
some l > 0. Assume that grAis isomorphic to the algebra of functions on a smooth
affine symplectic variety X (as a Poisson algebra).

Let M be a finitely generated A-module endowed with a good filtration F . Then
the dimension of every irreducible component of supp grF M is greater or equal to
1
2
dim X.

Example. Take A = D with Bernstein’s filtration. Last time we’ve showed that
dim(supp grFM) ≥ n = 1

2
dim A2n (Bernstein’s inequality). The above Corollary,

however, is clearly a stronger statement. Also applying the same argument for the
geometric filtration we also see that the dimension of every component of s.s.(M) is
greater or equal to n.

Remark. Gabber’s theorem for D with geometric filtration was proved earlier by
Malgrange.
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Definition 3.27. Assume that X is a smooth symplectic variety , Z ⊂ X is
coisotropic and dim Zα = 1

2
dim X where Zα is any irreducible component of Z. Then

Z is called Lagrangian.

Corollary 3.28. Let M be a holonomic D-module. Then both s.s.(M) and
s.s.a(M) are Lagrangian.

REFERENCES?

4. Lecture 4 (02/12/02): Functional dimension and homological algebra

Let us pass to a different subject. Let M be a finitely generated D(An)-module,
da(M) = dim(s.s.a(M)) and dg(M) = dim(s.s.(M)).

Theorem 4.1. da(M) = dg(M)

In order to prove this theorem we shall need some results and constructions from
homological algebra which we now briefly recall. We shall study these things in much
more detail later when we discuss derived categories.

4.2. Complexes. Let A be any ring. Recall that a complex of (left) A-modules
is the following data:
• A (left) A-module M i for each i ∈ Z

• A homomorphism ∂i : Mi−1 →Mi for each i ∈ Z such that for all i we have

∂i ◦ ∂i−1 = 0.

When it does not lead to a confusion we shall write ∂ instead of ∂i.
One can also define a bicomplex as a collection M ij (i, j ∈ Z) of A-modules with

differentials ∂1
ij : M ij → M i+1,j and ∂2

ij : M ij → M i,j+1 satisfying ∂1
ij ◦ ∂1

i−1,j = 0,

∂2
ij ◦ ∂2

i,j−1 = 0 and ∂2
i+1,j ◦ ∂1

ij = ∂1
i,j+1 ◦ ∂2ij. In this case one can define the total

complex Tot(M •) of the bicomplex M • by setting

Totk(M•) =
⊕

i+j=k

M ij, ∂k =
⊕

i+j=k

∂1
ij + (−1)j∂2

ij.

4.3. Left exact and right exact functors. Let A-mod denote the category of
left A-modules. Let F : A-mod→ Ab be a an additive functor (here Ab denotes the
category of abelian groups).

Definition 4.4. (1) A functor F is called left exact if for any short exact
sequence of A-modules 0 → M1 → M2 → M3 → 0 the sequence 0 →
F (M1) → F (M2) → F (M3) is exact. (If F is a contravariant left exact
functor, then the short exact sequence of modules goes to the exact sequence
0→ F (M3)→ F (M2)→ F (M1).)

(2) Functor F is called right exact if for any short exact sequence of A-modules
0→M1 →M2 →M3 → 0 we have an exact sequence of F (M1)→ F (M2)→
F (M3)→ 0.
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(3) A functor F is called exact if it both left and right exact.

Example. The functor N 7→ Homa(M, N) is left exact. Also the functor N 7→
HomA(N, M) is a contravariant left exact functor.

In some sense the main point of homological algebra is to “correct” non-exactness of
certain functors. This is usually done by means of the following construction.

Definition 4.5. (1) A-module P is called projective if Hom(P, ·) is an exact
functor.

(2) An A-module I is called injective if Hom(·, I) is exact.

It is easy to see that free modules are projective.

Definition 4.6. Projective resolution of a module M is a complex P • of projec-
tive modules

· · · → P−2 ∂−1−→ P−1 ∂0−→ P 0 → 0

such that P 0/Im(∂0) = M and H−i(P •) = Ker(∂−i+1)/Im(∂−i) = 0 for any i > 0.

Recall that Exti(M, N) is defined as follows: let P • be a projective resolution of
M . Then Hom(P •, N) is also a complex

0→ Hom(P 0, N)→ Hom(P−1, N)→ Hom(P−2, N)→ . . .

By definition Exti(M, N) is the i-th cohomology of this complex.

Theorem 4.7. (1) Exti(M, N) is a functor in both variables (in particular,
it does not depend on the choice of P •).

(2) Let
0→M1 →M2 →M3 → 0

be a short exact sequence of modules. Then we have a long exact sequence
of Ext groups:

...→ Exti(M3, N)→ Exti(M2, N)→ Exti(M1, N)→ Exti+1(M3, N)→ ...

Similarly, for a short exact sequence

0→ N1 → N2 → N3 → 0

we have a long exact sequence

...→ Exti(M, N1)→ Exti(M, N2)→ Exti(M, N3)→ Exti+1(M, N1)→ ...

One can think about the second assertion of Theorem 4.7 as the statement which
“compensates” the non-exactness of the Hom functor.

In fact Ext(M, N) makes sense not only for modules but also for complexes.
Namely, suppose M • and N• are bounded complexes (i.e. collection of {M i} i ∈ Z,
where M i = 0 for | i |� 0 and maps ∂ : M i → M i+1). There exists a complex of
projective modules P • and a map of complexes α : P • → M• such that α induces
isomorphism on cohomologies.
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Define a bicomplex Hom(P •, N•):

↑ ↑
. . . −→ Hom(P−i, N j+1) −→ Hom(P−i−1, N j+1) −→ . . .

↑ ↑
. . . −→ Hom(P−i, N j) −→ Hom(P−i−1, N j) −→ . . .

↑ ↑
. . . −→ Hom(P−i, N j−1) −→ Hom(P−i−1, N j−1) −→ . . .

↑ ↑
(by the definition Homij(P •, N•) = Hom(P−i, N j)).

If we have any bicomplex {C ij i, j ∈ Z} with differentials ∂1 and ∂2 which com-
mutes, we can define a total complex K• = Tot(C ij), where Kp =

⊕
i+j=p Cij (here

we assume that in each summation only finitely many summands are non-zero).
There is a way to define differential on this complex. By definition Exti(M•, N•) =
H i(Tot(Hom(P •, N•))).

Theorem 4.8. Let A be a filtered algebra over k such that grA is a finitely
generated commutative regular algebra of dimension m ( regular means the algebra
of functions on a smooth affine algebraic variety). Let M be any finitely generated
left A-module. Define d(M) = dim(supp grFM), where F is any good filtration on
M and j(M) = min(j | Extj(M, A) 6= 0). Then

(1) d(M) + j(M) = m;
(2) Extj(M, A) is a finitely generated right A-module and dim(Extj(M, A)) ≤

m− j;
(3) for j = j(M) we have an equality in 2.

Let’s consider A = D with either filtration.

Corollary 4.9. da(M) = dg(M) = 2n − j(M) for any finitely generated D-
module M .

From now on we set d(M) = da(M) = dg(M).

Corollary 4.10. M is holonomic ⇔ Extj(M,D) 6= 0 only for j = n.

Proof. If M is holonomic, then d(M) = n and hence j(M) = n. So we have
Extj(M,D) = 0 for j < n be definition of j(M). For j > n Extj(M,D) = 0 (by
the second part of the theorem it’s dimension is less or equal to 2n − j < n and by
Bernstein’s inequality it’s 0).

�

As we have seen before Extn(M,D) has a natural structure of right D-module.
In fact D = D(A2n) has a natural antiinvolution σ (i.e. σ : D → D such that
σ(d1d2) = σ(d2)σ(d1)) namely xi 7→ xi and ∂

∂xj
7→ − ∂

∂xj
. And hence every right

module is also a left module.
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Remark. The existence of the above involution is an ”accidental” fact, i.e. when
we replace An by a general algebraic variety it will not exist anymore. However, we
shall see later (when we discuss general varieties) that the existence of a canonical
equivalence between the categories of left and right D-modules is not accidental.

Corollary 4.11. For any holonomic module M let D(M) be Extn(M,D) con-
sidered as a left module. Then M 7→ D(M) is an exact contravariant functor from
the category of holonomic modules to itself and D(D(M)) = M .

Proof. The fact that D is exact follows immediately from the long exact sequence
of Ext’s.

Let us show that D2 ' Id. Let P be a finitely generated projective D-module.
Let P ∨ = Hom(P,D) be the dual module (considered as a left module as before). It
is clear that P ∨ is projective. If P • is a complex of projective D-modules then we
shall denote by (P ∨)• the complex defined by

(P∨)i = (P−i)∨

with the obvious differential.
Let M be a holonomic D-module and let P • be its projective resolution. Then it

is clear that (P ∨)•[n] is a projective resolution of D(M). Thus (P ∨[n])∨[n] = P is a
projective resolution of D(D(M)). Hence D(D(M)) = M . �

Corollary 4.12. Let M be O-coherent. Then D(M) = HomO(M,O) = M∨ as
an O-module (i.e. D(M) is a dual vector bundle). The dual connection is described
in the following way: Let ∇M : M → M ⊗O Ω1. Then for ∇M∨ : M∨ → M∨ ⊗O Ω1

we have ∇M∨(ξ)(m) = −ξ(∇M(m)) ∈ Ω1 for every ξ ∈M∨ and m ∈M .

The proof will be given next time.

Example. Let M = V ⊗ O be a trivial O-module and ∇M is given by ωM ∈
End(V )⊗Ω1. Then ωM∨ ∈ End(V ∗)⊗Ω1 is (−ωM )T (here the T -superscript denotes
the transposed matrix).

5. Lecture 5 (02/14/02)

In this lecture we want to prove Theorem 4.8 and Corollary 4.12. Let us start
with the latter. To do this we’ll need to develope some technology.

To prove this statement let us introduce the de Rham complex. Let M be any
left D-module. Let us form a complex

0 → M → M ⊗O Ω1 → M ⊗O Ω2 → . . . → M ⊗O Ωn → 0
−n −n + 1 −n + 2 0

(the second row shows the cohomological degress). Differentials in this complex
d : M ⊗O Ωk → M ⊗O Ωk+1 are defined as follows. We have a flat connection
∇ : M →M ⊗O Ω1. For any m⊗ ω ∈M ⊗O Ωk we set

d(m⊗ ω) = m⊗ d(ω) +∇(m) ∧ ω.
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From the condition of flatness it follows, that this is really a complex, i.e. d2 = 0.
Remark. Let n = 1. Then for any M the corresponding de Rham complex dR(M)

has a form 0→M
∇−→M ⊗O Ω1 → 0.

In particular one can consider the complex dR(D). Note that dR(D) is a complex
of right D-modules (EndDM acts on dR(D) and in particular Dop acts on dR(D)).

Lemma 5.1. H i(dR(D)) =

{
0 if i 6= 0;

Ωn if i = 0.

To prove this lemma let us look at the complex dR(D) more closely. For any
0 ≤ i ≤ n (dR(D))−i = D ⊗O Ωn−i. In turn, Ωj = O ⊗ Λj(kn). So the de Rahm
complex for D has a form

0→ D → D ⊗k kn → · · · → D ⊗k Λj(kn)→ · · · → D ⊗k Λn(kn)→ 0

In case of An this complex coincides with Koszul complex of M . Let us briefly recall
this notion.

5.2. Koszul complex. Let N be module over k[y1, . . . , yn]. There exists a nat-
ural complex, associated with N , called Koszul complex

0→ N → N ⊗ kn → · · · → N ⊗ Λj(kn)→ · · · → N ⊗ Λn(kn)→ 0.

The map N → N ⊗ kn is given by n 7→ ⊕iyi(n), the map N ⊗ kn → N ⊗ Λ2(kn) is
given by (p1, . . . , pn) 7→ ⊕(yipj − yjpi), all the other maps are defined in the same
way. We shall denote this complex by Kos(M).

Lemma 5.3. If M is free over O then Koszul complex, corresponding to M then
Kos(M) is a free resolution of M/(< y1, . . . , yn > ·M), i.e. for i 6= 0 H i(Kos(M)) = 0
and H0(Kos(M)) = M/(< y1, . . . , yn > ·M).

To see, that H0(Koszul(M)) = M/(< y1, . . . , yn > ·M), one should look at the

map N ⊗ Λn−1(kn)
d−→ N ⊗ Λn(kn) → 0. Λn−1(kn) is isomorphic to kn and d maps

(p1, . . . , pn) to
∑n

i=1 yipi.

Observation. Let M be any D-module, dR(M) – de Rahm complex of M . Then
M has a structure of k[ ∂

∂x1
, . . . , ∂

∂xn
]-module, since ∂

∂xj
∈ D. Koszul complex, corre-

sponding to this module structure is the same as dR(M).

Example. Let n = 2. The de Rham complex has a form

0→M →M ⊗ Ω1 →M ⊗ Ω2 → 0.

Here the first map is m 7→ ∂m
∂x1

dx1 + ∂m
∂x2

dx2, and the second p1dx1 + p2dx2 7→(
∂p2

∂x1
− ∂p1

∂x2

)
dx1 ∧ dx2. It’s easy to see that these maps coincide with differentials

in Koszul complex.
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Corollary 5.4. If M is free over k[ ∂
∂x1

, . . . , ∂
∂xn

] then H i(dR(M)) = 0 for any

i 6= 0 and H0(dR(M)) = M/(< ∂
∂x1

, . . . , ∂
∂xn

> ·M).

In particular we can take M = D.
Then H0(dR(D)) = D/(< ∂

∂x1
, . . . , ∂

∂xn
> ·D). We can naturally identify it with Ωn,

but since we have chosen coordinates in An this is the same as O. So dR(D) is a free
resolution of O.

5.5. Projective resolution of any O-coherent module. Let M and N be
left D-modules. Then M ⊗O N is also a left D-module. Derivatives are acting on
M ⊗O N by Leibnitz rule: ∂

∂xi
(m⊗ n) = ∂m

∂xi
⊗ n + m⊗ ∂n

∂xi
.

Given M we can consider M ⊗O dR(D). Since M is O-coherent, it’s locally free
and hence projective.

Fact (from commutative algebra). Let R be any commutative ring, P – projective
module over R. Then N 7→ P ⊗R N is an exact functor.

Using this fact, we get H i(M ⊗O dR(D)) = 0 for i 6= 0 and H0(M ⊗O dR(D)) =
M ⊗O O = M . So, M ⊗O dR(D) is a projective (over D) resolution of M . (It is
projective over D , because if M is projective over O, then M ⊗D is projective over
D since HomD(M ⊗O D, N) = HomO(M, N) and exactness of one of these functors
is equivalent to the exactness of the other.)

Let us compute duality using this resolution.
Consider thr complex HomD(M ⊗ dR(D),D) which looks like

0→ HomD(M ⊗ dR0(D),D)→ · · · → HomD(M ⊗ dR−n(D),D)→ 0

We claim that HomD(M ⊗ dR(D),D) = M∨ ⊗ dR(D)[−n] (by dR(D)[−n] we
mean the complex, shifted by n to the right).

HomD(M⊗dR(D),D) = HomD(M⊗OD⊗Ωn−i,D) = M∨⊗OD⊗Hom(Ωn−i,O).
But Hom(Ωn−i,O) ∼= Ωi, if an identification of O and Ωn is chosen (as in our case).
And the differential of this complex is exactly the one of M∨ ⊗ dR(D).

Example. Let n = 1, M be O-coherent sheaf of rank 1 (M ∼= O as an O-module).
Let α be a one form, such that the flat connection, corresponding to the D-module
structure, has a form ∇(f) = df + fα.

The corresponding de Rham complex has the form 0 → D → D → 0, where the
map D → D is given by right multiplication by d−α (i.e. if we’ve chosen coordinate
x and in this coordinate α = g(x)dx then d− α means d

dx
− g(x)).

As O-modules M and M∨ are the same. As D-modules they correspond to forms
α and −α. Thus the above complex shows that D(M) = M∨. Exercise. Let M = δa,
where a ∈ k. Prove that D(δa) = δa.

Let us prove Theorem 4.8. We shall need the following fact from commutative
algebra.
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Theorem 5.6. [Serre] Let R be a regular algebra of dimension m and let M
be a finitely generated R-module. Set d(M) = dim(supp M) and j(M) = min(j |
Extj(M, R) 6= 0). Then

(1) d(M) + j(M) = m;
(2) Extj(M, R) is a finitely generated R-module and dim(Extj(M, R)) ≤ m− j;
(3) for j = j(M) we have an equality in 2.

We are going to apply this theorem to R = grA.

Lemma 5.7. For any filtered A-module M there exists a filtered resolution P • of
M such that grP • is a free resolution of grM .

Proof. Choose homogeneous generators (m̄i)i∈I of gr M (so that each mi is of
some degree ki). The map RI →M is a surjective map of graded modules if we shift
the grading on i-th component by ki.

Lift m̄1, . . . , m̄k to m1, . . . , mk, where mj ∈ FijM . Earlier we’ve proved that {mi}
generates M . So, we get a map Ak → M which is also a map of filtered modules if
we shift the filtration on j-th component by ij.

We have two surjective maps α0 : AI
� M and β0 : RI

� M . By construction gr
α0 = β0.

Let N be the kernel of α0. We can repeat the same construction for N and get
α1 : AJ

� N such that gr α1 = β1 : RJ
� N . So we shall have two exact sequences

Al α1−→ Ak α0−→M → 0 and Bl β1−→ Bk β0−→ grM → 0.
Repeating the same construction we shall get eventually a filtered resolution of

M whose associated graded complex is a free resolution of grM .

Let K• be a complex with filtration {FiK
•} (this means that d(FiK

p) ⊂ FiK
p+1).

Then grFK• is also a graded complex: grFK• = ⊕grF
j K•, where grF

j K• is a complex

{· · · → grF
j Kp → grF

j Kp+1 → . . . }. So we have a set of groups H i(grF
j K•).

Homologies of the original complex {· · · → K i−1 d−→ Ki d−→ Ki+1 → . . . } also
inherits a filtration. So we have another set of groups grF

j (H i(K•)).
The following lemma is well-known in homological algebra.

Lemma 5.8. (1) grF
j (H i(K•)) is a subquotient (i.e. a quotient of the sub-

space) of H i(grF
j K•).

(2) Assume that there exists some n ∈ Z such that H i(gr K•) = 0 for i > n.
Then grF

j (Hn(K•) = Hn(grj K•) for all j.

It is clear that Lemma 5.8 and Theorem 5.6 imply Theorem 4.8.

6. Lecture 7 (02/21/02): D-modules on general affine varieties

Let X be an affine algebraic variety over a field k of characteristic 0. We would
like to define the algebra of differential operators on X which we denote by DX .
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Definition 6.1. (1) Let R be a commutative ring. Define the filtered alge-
bra of differential operators on R inductively: D0(R) = R acting by mul-
tiplication. For d : R → R we say that d ∈ Dn(R) if for any element
r ∈ R [d, r] ∈ Dn−1(R); D(R) = ∪Dn(R). Elements of Dn(R) are called
differential operators of order less or equal to n.

(2) Let M and N be two R-modules. Define the space of differential operators
Diff(M, N) = ∪Diffn(M, N) from M to N in the following way:
• Diff0(M, N) = HomR(M, N)
• d ∈ Diffn(M, N) iff for any r ∈ R we have [d, r](m) = d(rm) −

r(dm) ∈ Diffn−1(M, N).

We set DX = D(OX).
This definition makes sense for arbitrary X but we shall work with it only when

X is a smooth variety.
Note that DX has two natural structures of a OX -module. Let U be an affine

open subset of X. It is easy to see that DU ' OU ⊗DX ' DX ⊗OU . In other words
the two quasi-coherent sheaves on X (coming from DX considered as an OX -module
with either OX -module structure) are canonically isomorphic. Therefore, it makes
sense to talk about one sheaf of differential operators on X (this remark will become
especially important when we start discussing non-affine varieties).

Remark.

• For X = An we get the previous definition of D with geometric filtration.
• There exists a correct notion of D-modules on singular variety X. We shall

discuss it in the next lecture.

Let U ⊂ X be an open subset of X and dim X = n.

Definition 6.2. A coordinate system on U is a set of functions x1, . . . , xn,
xi ∈ OU and a set of vector fields ∂1, . . . , ∂n such that ∂i(xj) = δi,j (i.e. an etale map
U → An).

Lemma 6.3. For any point x ∈ X there exist a neighborhood U 3 x such that on
U there exist a coordinate system.

Assume that there exist a coordinate system on all of X.

Lemma 6.4. We have DX = ⊕αOX∂α, where α = (α1, . . . , αn), αi ∈ Z+ and
∂α = ∂α1

1 . . . ∂αn
n .

Corollary 6.5. DX is generated by OX and V ecX , where V ecX is the OX-
module of vector fields on X.

Proof. This is true locally and thus globally since X is affine. �

Corollary 6.6. DX is filtered and gr(Dx) ∼= OT ∗X .
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Proof. Let us define a map ϕ : gr(DX) → OT ∗X . It’s easy to see that gr(DX)
is generated by gr1(DX) over gr0(DX). Let gr0(DX) = OX ↪→ OT ∗X , gr1(DX) =
V ecX → OT ∗X be natural maps. Locally ϕ is defined by these maps and is an
isomorphism. Since X is affine, this is true globally. �

6.7. Left and right modules over DX . LetMl(DX) denote left DX-modules
andMr(DX) – right DX-modules.

Let M be an OX -module. To define the left DX-module structure on M we have
to describe the action of the Lie algebra V ecX on M such that for any ∂ ∈ V ecX and
any f ∈ OX we have (f∂)(m) = f(∂(m)).

The right DX-module structure is the same as an action of vector fields satisfying
the following conditions:

(1) (∂1 · ∂2 − ∂2 · ∂1)(m) = −[∂1, ∂2](m) for any vector fields ∂1 and ∂2

(2) (f∂)(m) = ∂(fm) for any f ∈ OX and any ∂ ∈ DX .

Lemma 6.8. Ωn(X) has canonical structure of right DX-module structure.

Proof. In fact we claim that the action of vector fields on Ωn(X) by −Lie∂

satisfies the properties listed above.
By Cartan formula Lie∂(ω) = d(ι∂(ω))− ι∂(d(ω)). For ω ∈ Ωn(X) the last term is

equal to 0 and since d(ιf∂)(ω) = d(ι∂(fω)) Ωn(X) is a right DX-module. Functions
on X form a left DX -module, because vector field acts by Lie∂(g) = ι∂(dg) (by Cartan
formula) and ιf∂(dg) = fι∂(dg). �

Lemma 6.9. Let M be a left DX-module. Then M ⊗ Ωn(X) has a structure of
right DX-module given by

∂(m⊗ ω) = ∂m ⊗ ω −m⊗ Lie∂(ω).

Similarly if M is a right DX -module, then M ⊗ (Ωn(X))−1 has a structure of left
DX-module.

Exercise. Describe the action of ∂ on M ⊗ (Ωn(X))−1.

Corollary 6.10. The categories Ml(DX) andMr(DX) are canonically equiva-
lent. The equivalence is given by M 7→M ⊗ Ωn(X).

We shall use the notationM(DX) for this category.

Let M ∈ M(DX) be finitely generated. There exist a good filtration on M
and s.s.(M) = supp(grM) is a closed subset of T ∗X which doesn’t depend on the
filtration. By Gabber’s theorem dim s.s.(M) ≥ n. As in the case of An a DX-
module M is called holonomic if dim s.s.(grM) = n.

Assume that M is holonomic. In this case we can define a cycle s.c.(M) (the
singular cycle of M) in the following way: assume that Z1, ..., Zk are the irreducible
components of supp(grM) (note that Gabber’s theorem implies that the dimension
of each Zi is equal to n). Define mi to be the rank of gr M at the generic point of
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Zi. Then we define s.c.(M) =
∑

miZi. It is easy to see that s.c.(M) doesn’t depend
on the choice of a good filtration. Moreover, if 0 → M1 → M2 → M3 → 0 is a short
exact sequence of holonomic modules then s.c.(M2) = s.c.(M1) + s.c.(M3).

Lemma 6.11. Holonomic modules have finite length.

Proof. It is easy to see by induction that if s.c.(M) =
∑

miZi then the length
of M does not exceed

∑
mi. �

Inverse and direct image functors.

6.12. Inverse image. Let π : X → Y be a morphism of affine algebraic varieties.
Then for any f ∈ C∞(Y ) we can consider a new function f ◦π ∈ C∞(X). We would
like to have an analogous construction for D-modules.

Definition 6.13. Let M be a left DY -module. The inverse image of M is the
left (DX)-module π0(M) = Ox⊗OY

M as an OX -module with the following action of
vector fields: for any ∂ ∈ V ecX ∂(f ⊗m) = ∂(f)⊗m + f ⊗ π∗(∂)m.

Let DX→Y be the inverse image of DY This is a left DX -module and right DY -
module.

Lemma 6.14. π0M = DX→Y ⊗DY
M .

Proof. For any module M there exist k and l (each of them may by equal to
infinity), such that the sequence Dl

Y → Dk
Y → M → 0 is exact. The functor π0 is

right exact, so we have an exact sequence

π0Dl
Y → π0Dk

Y → π0M → 0.

For M = DY the claim is true. Thus it is true also for an arbitrary M .
Another way to see it:

DX→Y ⊗DY
M = (OX ⊗OY

DY )⊗DY
M = OX ⊗OY

M.

�

Suppose we have a coordinate system y1, . . . ym, ∂1, . . . , ∂m on Y . Then DY =
⊕αOY ∂α and DX→Y = ⊕αOX∂α, where α is a multi-index.

6.15. Direct image. Let π : X → Y . For every distribution f with compact
support on X we can construct π0(f), taking integral of f over the fibers of π. Let us
define an analogous operation on modules. Since distributions intuitively correspond
to right D-modules it will be easier to spell out the definition of direct image for right
modules. Since we have canonical equivalence between the categories of left and right
modules the definition will make sense for left modules as well.

Definition 6.16. For any π : X → Y we define the functor π0 : Mr(DX) →
Mr(DY ) defined by π0(M) = M ⊗DX

DX→Y .
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Remark.“0” means that the functors are not yet derived.

Example. Let X = {0} and Y = A1 and π : X ↪→ Y . Consider k as a DX-module.

π0k = DX→Y = OX ⊗OY
DY =

⊕

n≥0

k

(
∂

∂x

)n

= DA1/(x · DA1) = δ0

as a right DY -module.

Since the categories of right and left D-modules are canonically equivalent, we can
define direct and inverse images for both left and right modules. For example, let M
be the left DX -module. Then

π0(M) = (M ⊗ Ωn(X)⊗DX
DX→Y )⊗ (Ωm(Y ))−1.

Example. Let X = A
1 and Y = pt. Then for any right DX-module M we have

π0M = M/
(
M · ∂

∂x

)
. Indeed, DX→Y = OX ⊗k k = OX , and OX is generated by 1

with relations ∂(1) = 0 for any ∂ ∈ V ecX . Hence π0M = M ⊗DX
OX = M/

(
M · ∂

∂x

)
.

More generally we have the following lemma.

Lemma 6.17. Let X be a smooth affine variety, π : X → pt. Then for every right
DX-module M π0M = M/ span(M · ∂) (coinvariants of V ecX on M).

For functions f, g ∈ C∞(X) we also can consider their product. The correspond-
ing operation on modules is the tensor product: let M and N be left DX-modules,
then M ⊗N = M ⊗OX

N with the action of vector fields by Leibnitz rule.
For modules there exist also an operation called exterior product: for M ∈ M(DX)

and N ∈ M(DY ) we can consider M � N ∈ M(DX×Y ). By the definition this is
M ⊗

k
N with the natural structure of a DX×Y = DX ⊗k DY -module.

Lemma 6.18. M ⊗ N = ∆0(M � N), where ∆ : X → X × X is the diagonal
embedding.

Let’s formulate some results about inverse and direct images.

Theorem 6.19. Let X
π−→ Y

τ−→ Z be the morphisms of affine algebraic vari-
eties. Then

(1) (τ · π)0 = τ0 · π0 and (τ · π)0 = π0 · τ 0.
(2) Functors π0 and π0 maps holonomic modules to holonomic ones. The same

is true for their derived functors (since π0 and π0 are right exact, Liπ0 and
Liπ0 are defined).

Theorem 6.20. [Kashiwara] Let π : X → Y be a closed embedding. Then π0

is an equivalence between M(Dx) and MX(DY ), where MX(DY ) is a category of
DY -modules, which are set-theoretically supported on X.
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Let us recall that a module M is set-theoretically supported on X if for f ∈ IX ⊂
OY acts locally nilpotently on M .

Example. Let X = 0 and Y = A1. Let δ0 = DY /(x · DY ) and M be any DY -
module, supported at 0. Then Hom(δo, M) = {m ∈M | xm = 0}.Since x acts locally
nilpotently, there exist m ∈ M , (m 6= 0) such that x(m) = 0. If M is irreducible ,
then M = δ0. Thus Kashiwara’s theorem in this case says that any module supported
at 0 is a direct sum of δ0’s which is equivalent to saying that Ext1(δ0, δ0) = 0. This
may be computed explicitly.

7. Lecture 8 (02/26/02): Proof of Kashiwara’s theorem and its corollaries

We now want to prove Theorem 6.20. Theorem 6.19 will be proved in the next
lecture.

Let us show first of all that the image of i0 is contained inMX(DY ). By definition,
i0(M) = M ⊗DX

DX→Y , and DX→Y = DY /JDY , where J is the ideal of X. Every
element of DX→Y is killed by a large power of J , i.e. for every d ∈ DY there exists
n, such that dJ n ⊂ JDY ( actually, one can take n = ord(d) + 1). (It’ s enough
to prove that for d = ∂1 . . . ∂k, where ∂j ∈ V ecY .) And this means that i0(M) is
set-theoretically supported on X.

In order to prove Kashiwara’s theorem we shall construct a functor i! :M(DY )→
M(DX), which will be the inverse of i0, when restricted on MX(DY ). For every
M ∈ M(DY ), define i!M = HomOY

(OX , M) = { all m in M , killed by J }. The
structure of DX-module is given as follows: any vector field ∂ ∈ V ecX can be extended
locally to a vector field ∂̃ ∈ V ecY , which preserves J . For any m ∈ i!M define
∂m = ∂̃m. This is an element of i!M , since ∂̃ preserves J . Let us show, that this
definition does not depend on the choice of the extension. Suppose we have two
such extensions ∂̃ and ∂̃′. Then ∂̃ − ∂̃′ = 0 on X, i.e. v = ∂̃ − ∂̃′ ∈ J · V ecX and
thus v(m) = m · v = 0, since m is killed by J . But v(m) is supported on X, so

(∂̃ − ∂̃′)(m) = 0.
Recall the following definitions.

Definition 7.1. Suppose we have two functors F : C1 → C2 and G : C2 → C1.
Then F is called left adjoint to G (or G – right adjoint to F ), if for any A ∈ C1 and
B ∈ C2 there exist a functorial isomorphism αA,B : Hom(F (A), B)→ Hom(A, G(B)).

In this case we have canonical maps

FG→ IdC1 , IdC2 → GF,

called adjunction morphisms.

Remark. For a given F , if G exists, it is unique up to canonical isomorphism.

Theorem 7.2. (1) i! is right adjoint to i0.

(2) The functorsM(DX)
i0
�

i!
MX(DY ) are mutually inverse.
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It is clear that Theorem 7.2 implies Theorem 6.20.

Proof. Let i : X ↪→ Y be a closed embedding. We want to prove that i! is
right adjoint to i0, i.e. that for any DX -module M and DY -module N we have
Hom(i0M, N) ∼= Hom(M, i!N).

There exists a map M ↪→ i0M = M ⊗DX
DX→Y , given by m 7→ m ⊗ 1. Given

f ∈ Hom(i0M, N), restrict it to M . In fact, we’ll get a map M → i!N . Given
g ∈ Hom(M, i!N), we want to construct g̃ : M ⊗DX

DX→Y → N . We know that
DX→Y = DY /JDY . So a map m⊗ d 7→ g(m)d is well-defined, since g(m) is killed by
J . The first part of Theorem 7.2 is proved.

Since i0 and i! are adjoint, we have canonical adjunction morphisms i0i
! → Id and

Id → i!i0. In order to prove the second part of the theorem, we have to prove that
these morphisms are in fact isomorphisms. It is enough to show this locally.

By induction on codimension of X in Y it is enough to assume that X is a smooth
hypersurface in Y , given by an equation f = 0. Locally we can choose a coordinate
system y1, . . . , ym ∂1, . . . , ∂m on Y , such that ym = f .

We claim that DX→Y is free over DX :

DX→Y =
⊕

n

DX∂n,

where ∂ is a vector field on Y , such that ∂(f) = 1. Indeed

DX→Y = OX ⊗DY =
⊕
OX∂α1

1 . . . ∂αm

m

and
⊕

α1,...,αm−1
OX∂α1

1 . . . ∂
αm−1

m−1 is DX .

Let us prove that Id→ i!i0 is isomorphism. Let M be DX-module. Then

i0M = M ⊗DX
DX→Y = M ⊗DX

(
⊕

j

DX∂j

)
=
⊕

j

M∂j .

We have a map f : M∂j → M∂j−1. It is isomorphism for i > 0 (it follows from
the fact, that ∂ ◦ f acts on M∂j by j, and this can be proved by induction).

So Kerf |i0M= M , and this means that i!i0M = M .

Now we have to show that i0i
! → Id is an isomorphism.

Let N be DY module supported on X and Kerf = S ⊂ N . By definition S = i!N .
We’ll prove that N = i0S, i.e. N =

⊕
S∂j .

Consider Ñ =
∑

j S∂j ⊂ N and d = f∂. On S∂j d acts by eigenvalue j. This

can be proved by induction: if nd = λn, then n∂d = n(f∂ + 1)∂ = (nd)∂ + n∂ =

(λ+1)(n∂). Since ∂f = f∂ +1, it acts by j +1 on S∂j. This means that Ñ is in fact
the direct sum and f : S∂j → S∂j−1 is surjective on Ñ .

Consider L = N/Ñ . To show that L = 0, it is enough to show that f has zero
kernel on L ( since we know that f acts locally nilpotently on L).
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Let l ∈ N , such that lf ∈ Ñ . We want to show that l ∈ Ñ . Since f is surjective,
there exist n ∈ Ñ such that nf = lf . This means that (n − l)f = 0. Since n ∈ Ñ

and n− l ∈ S ⊂ Ñ , l ∈ Ñ . �

Let us see some applications of Kashiwara’s theorem (we shall see more applica-
tions in the future).

7.3. D-modules on singular varieties. Let X be any affine variety. There
exists a closed embedding X ↪→ Y , where Y is smooth. DefineM(DX) =MX(DY ).
By Kashiwara’s theorem this definition for smooth varieties is the same, as we already
have. We claim that this definition does not depend on the embedding.

Suppose i1 : X ↪→ Y1 and i2 : X ↪→ Y are two such embeddings. Then there exist
Y3, such that the diagram

X
i1−−−→ Y1

i2

y j1

y

Y2
j2−−−→ Y3

where all maps are closed embeddings, is commutative.
It follows clearly from Kashiwara’s theorem that for k = 1 or 2 we haveMX(DYk

) ⊂
MX(DY3

). This defines an equivalenceMX(DY1
) 'MX(DY2

. Let us check that that
this equivalence does not depend on the choice of Y3.

We have a functor F : MX(DY ) → M(OX) defined by M 7→ {m ∈ M |
J ·m = 0}. It is easy to see that this functor is faithful. If we have two embeddings
i1 : X ↪→ Y1, i2 : X ↪→ Y2 then it is easy to see that the above equivalence commutes
with the corresponding functors Fi : MX(DYi

) → M(OX). This implies that this
equivalence does not depend on the choice of Y3. Moreover, it shows that we have
a well-defined faithful functor M(DX) → M(OX) for an arbitrary affine variety.
This shows that we can think of an object of M(DX), defined above, as an object
of M(OX) plus some additional structure. If M ∈ M(OX) is a ”DX-module” in
our definition, then one can show that DX acts on M (cf. problem set 4), but a
”DX-module” structure is not recovered from DX-action.

Historical remark. Kashiwara proved his theorem before Bernstein’s inequality
was stated. In fact, the first proof of this inequality, which was in Bernstein’s thesis,
used Kashiwara’s theorem.

Exercises
In this collection of problems all varieties are assumed to be affine.
1. Let X be an algebraic variety, ∆ : X → X ×X the diagonal embedding. Let

J denote the ideal of ∆(X) in OX×X and let X (n) denote the closed subscheme of
X ×X corresponding to the ideal Jn.

2. Let η : A → B be a homomorphism of commutative algebras such that B is
finite over A. Recall that in this case we have the functor η ! : A−mod → B −mod

34



defined as
η!(M) = HomA(B, M).

Let X be a scheme over our base field k (the definitions below makes sense (and
are interesting) when k has arbitrary characteristic but we shall consider only the
case when it has characteritic 0). Recall that a nilpotent extension of X is a closed
embedding i : X → Y where Y is another scheme and the ideal of X in Y is nilpotent.
If Y and Z are two nilpotent extensions of X we say that η : Y → Z is a morphism
of extensions it it is a morphism of schemes which is equal to identity on X.

A !-crystal on X is a collection of the following data:

(1) An OY -module MY for every nilpotent extension Y of X.
(2) An isomorphism αη : MY ' η!MZ for every finite map of extensions η : Y →

Z.

This data should satisfy the following compatibility condition: for every chain

Y
η→ Z

ρ→W of finite morphisms of nilpotent extensions of X we have αη◦ρ = αη ◦αρ

(I hope that the meaning of the right hand side is clear.
We denote by Crys(X) the category of !-crystals on X.
Let X be a (not necessarily smooth) algebraic variety. M ∈ calM(DX) (defined

via right modules). Let also X → Y be a nilpotent extension of X. We may imbed
Y into some smooth variety Z. In this case M gives rise to a DZ-module MZ on Z
supported on X. Define MY to be the set of all elements of MZ which are scheme-
theoretically supported on Y .

a) Show that the collection {MY } has a natural structure of a !-crystal.
b) Show that the resulting functor M(DX) → Crys(X) is an equivalence of

categories (hint: do it first for smooth X using problem 1).

8. Lecture 9 (02/28/02): Direct and inverse images preserve
holonomicity

Last time we have defined two functors of inverse image i! and i0. The first is left
exact and the second is right exact. What is the relation between those functors?

Lemma 8.1.
i! = Ldim X−dimY i0 (∗)
i0 = Rdim Y−dimX i! (∗∗)

(This is true even for O-modules.)

Proof. As in the proof of Kashiwara’s theorem, we can assume that X has
codimension 1 in Y and is given by equation f = 0. By definition i0M = OX ⊗OY

M .

0→ OY
f→ OY → OX → 0

is a free resolution of OX . Taking tensor product with M we get

M
f→M → OX ⊗OY

M → 0.
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By definition L−1i0M = Kerf = i!M and i0M = Cokerf = R1i!M . �

Lemma 8.2. Let i : X ↪→ Y be smooth embedding. Then i! maps holonomic
modules inMX(DY ) to holonomic modules inM(DX).

Proof. As before, we can assume that X has codimension 1 in Y and is given
by equation f = 0.

In the proof of Kashiwara’s theorem we have shown that i0M =
⊕

j M∂j , where

∂ is a vector field on Y such that ∂f = 1. It’s easy to see that in this case d(i0M) =
d(M) + 1.

By Kashiwara’s theorem i0i
!N = N if N ∈ MX(DY ). So d(N) = d(i0i

!N) =
d(i!N) + 1 and d(i!N) = d(N)− 1. If N is holonomic, so is i!N . �

Definition 8.3. Suppose X ⊂ Y is singular. Then M ∈ M(DX) =MX(DY ) is
holonomic if it is holonomic as DY -module.

Lemma 8.4. i! and i0 define inverse equivalences ofMhol
X (DY ) andMhol(DX).

By this lemma the definition above does not depend on Y .

Theorem 8.5. Let π : An → Am be an affine map (i.e. a composition of a
linear map and a translation). Then π0, π0 and their derived functors map holonomic
modules to holonomic. For any holonomic DAn-module N and any holonomic DAm-
module M ∑

i

c(Liπ0N) ≤ c(N) and
∑

i

c(Liπ0M) ≤ c(M). (1)

Theorem 8.5 implies that if π is an affine map then the functors π0, π0 and their
derived functors preserve holonomicity. We shall se later that this statement is true
in general (i.e. when π is an arbitrary map of algebraic varieties).

Example. Let π : X → pt. Then for every right DX -module M π0M = M/(M ·
V ecX). For any left module M π0M = M ⊗Ωn(X)/(M ⊗Ωn(X) ·V ecX). (We have
not multiplied by Ω−n(pt), since Ω−n(pt) = 1).

We claim that Liπ0M = Hn+i
dR (M). In our case DX→Y = OX . This means that

π0M = M ⊗DX
DX→Y = M ⊗DX

OX for right modules and π0M = Ωn(X) ⊗DX
M

for left modules.
Earlier we have proved that dR(DX) is a projective resolution of Ωn(X) as a right

DX-module. To compute L•π0M , we have to compute H•(dR(DX)) = dR(DX)⊗DX

M = dR(M). Thus Liπ0M = Hn+i
dR (M).

Corollary 8.6. If M is holonomic, dim H i
dR(M) <∞.

Proof. Let be a map π : X → pt. In the example above we have seen that
H i

dR(M) = Li−nπ0M . Hence, since M is holonomic, H i
dR(M) is holonomic by theorem

Theorem 8.5. And any holonomic module over Dpt is finite dimensional. �
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Proof of Theorem 8.5. Any affine map is a composition of a standard projection and
an affine embedding. So, it’s enough to prove the theorem for embeddings and for
projections.

If π is a projection, then π0 is exact. By induction we can assume that m = n− 1
and π : An → An−1. In this case OAn = k[x1, . . . , xn], OAn−1 = k[x1, . . . , xn−1] and
thus

π0M = OAn ⊗O
An−1

M =
⊕

i

Mxi
n.

Let FiM be a good filtration on M . It induces filtration on π0M , namely

Fkπ
0M =

∑

i+j=k

FjM · xi
n.

Since M is holonomic dim FjM = c(M)jn−1

(n−1)!
+ . . . . This means that

dim Fkπ
0M =

c(M)kn

n!
+ . . . ,

hence π0M is holonomic and c(π0M) ≤ c(M) (we have discussed it in lecture 2).
Since π0 is exact, we proved the theorem in this case.

Suppose π is an embedding. By induction we can assume m = n + 1, π : An ↪→
An+1. Let An = {x = 0}, where x = xn and M be a holonomic module on An+1.

Choose a good filtration FiM on M (with respect to Bernstein’s filtration on
DAn+1). Let N ⊂M be the part of M on which x acts nilpotently. Then N = π0π

!M .
In the proof of Kashiwara’s theorem we’ve showed, that x acts surjectively on N. This
means that Coker(x) on M is the same as Coker(x) on M/N . On M/N x has no
kernel and M/N is holonomic as a quotient of holonomic module. Thus to prove that
π0M = Coker(x) is holonomic, it is enough to assume that Ker(x) on M is 0.

The module π0M = M/xM inherits filtration from M which might be not good.
Since M is holonomic we know that

dim FiM =
c(M)in+1

(n + 1)!
+ . . .

By definition the map FiM/(x · Fi−1M) � Fi(M/xM) is surjective. Since x has
no kernel it follows that dim x · Fi−1M = dim Fi−1M and hence

dim Fi(M/xM) =
c(M)in

n!
+ . . .

In lecture 2 we’ discussed that such an equality for an arbitrary filtration implies that
M/xM is holonomic and c(M/xM) ≤ c(M). Hence π0M is holonomic.

Now let’s prove inequality (1). Let M1 be maximal submodule of M supported
on An−1. From the following exact sequence

0→M1 →M →M/M1 → 0
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we know, that c(M) = c(M1) + c(M/M1). By construction π0M1 = 0 = π!(M/M1).
Thus c(π!M1) = c(M1) and c(π0M/M1) ≤ c(M/M1). Since π! = L−1π0, we have
c(L−1π0M) + c(π0M) ≤ c(M). Our theorem is proved for π0.

In order to prove this statement for π0 we shall introduce the Fourier transform

F :M(DV )→M(DV ∗), where V is vector space and V ∗ – its dual.
Since DV is generated by V ∗ ⊂ O(V ) and V ⊂ V ecV , DV ∗ is generated by

V ⊂ O(V ∗) and V ∗ ⊂ V ecV ∗, DV and DV ∗ are isomorphic via V ↔ V and V ∗ ↔ V ∗.
Obviously, this isomorfhism preserves Bernstein’s filtration. So F maps holonomic
modules to holonomic.

Example. In case V = A
1 isomorphism between DV and D∗V is given by x 7→ d

dx
and

d
dx
7→ −x.

Let π : V → W be a linear map and π̃ : W ∗ → V ∗ be its dual.

FW (π0M) = π̃0(FV M)

Thus, if the theorem is true for π0, it’s true for π0 also.

�

Corollary 8.7. If M is holonomic on An then∑
dim H i

dR(M) ≤ c(M).
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CHAPTER 2

D-modules on general algebraic varieties

1. Lectures 10 and 11 (03/5/02 and 03/7/02): D-modules for arbitrary
varieties

Let X be any algebraic variety (for simplicity we shall assume that all the varieties
in question are quasi-projective; this, however, doesn’t affect the statements but only
simplifies the exposition). Then there exists unique sheaf DX of differential operators
on X such that for any affine subset U ⊂ X Γ(U,DX) = DU . This sheaf has both
right and left OX -modules structures.

Lemma 1.1. DX is quasi-coherent with respect to either OX-module structure.

Suppose X is affine, f ∈ OX and U = Uf = {x ∈ X | f(x) 6= 0} – an open affine
subset of X. Let F be a sheaf of OX-modules. Then

Γ(U,F) = OU ⊗OX
Γ(X,F).

DX has two OX -module structures and

OU ⊗OX
DX ' DX ⊗OX

OU ' DU .

As in the case of affine varieties, here we have quasi-coherent sheaves of left DX-
modules Ml(DX) and quasi-coherent sheaves of right DX-modules Mr(DX). And
these two categories are isomorphic via M 7→M ⊗ Ωn(X), where n = dim X.

Some statements that we proved for affine varieties remain true (with the same
proof) in the general case. For example, since Kashiwara’s theorem is a local state-
ment, it is still true in general case. If X is singular, we can cover it by Ui such that
each Ui can be embedded into a smooth variety. In this case D-module on X is the
set {Mi} of D-modules on Ui (for each i ), such that for any i and j Mi |Uj

= Mj |Ui
,

and for any triple i, j and k compatibility condition holds.
Let X be smooth. Then DX is a filtered sheaf of algebras and

grDX = p∗O(T ∗X),

where p : T ∗X → X is a standard projection. In this case we also have a functor of
singular support: M 7→ s.s.(M) ⊂ T ∗X. Let’s denote the cycle, given by singular
support of M , by s.c.(M).

Definition. Module M is called holonomic iff d(s.s.(M)) = n.
In this case holonomic modules also have finite length.

Inverse and direct images in case of arbitrary varieties.
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Let π : X → Y and N ∈ Ml(DY ). Then we can define the inverse image
π0N = OX ⊗π∗OY

π∗(N) – sheaf of π∗OY -modules ( since π∗OY ↪→ OX). This
definition is totally analogous to the case of affine varieties.

Let’s try to define direct image, as we’ve done for affine varieties. First of all
define DX→Y = π0DY . Let M ∈ Mr(DX) be right DX-module. If we set π0M =
π∗(M ⊗DX

DX→Y ), then π0 is neither left nor right exact, since ⊗DX
DX→Y is right

exact and π∗ is left exact. Moreover, π0 defined in this way is not compatible with
composition.

In fact, direct image is defined correctly only in derived category. We’ll discuss
this definition later.

Remark. If π is closed embedding, this definition is still good.

1.2. D-affine varieties. Definition. An algebraic variety X is called D-affine
if the functor of global sections M 7→ Γ(X, M) is an equivalence between Ml(DX)

and the category of modules over Dglob
X = Γ(X,DX)).

Remark. If we replace D by O in definition, by Serre we’ll just get affine varieties.

Theorem 1.3. Pn is D-affine.

Proof. We claim, that any variety X is D-affine if and only if functor of global
sections Γ is exact on DX-modules and for any nonzero module M Γ(X, M) 6= 0.

If X is D-affine it is easy to see that these two properties are satisfied. The
other implication follows from the more general fact, to formulate which we need the
following definition.

Definition. Let A be an abelian category with infinite direct limits. On object
P ∈ A is called projective generator, if P is projective and Hom(P, X) 6= 0 for any
X 6= 0. The following result is well-known.

Lemma 1.4. Let Λ = End P and F : A → {right Λ-modules} be the functor
defined by F (X) = Hom(P, X). Then F is an equivalence of categories.

If Γ is exact on DX-modules and Γ(X, M) 6= 0 for any M 6= 0, then DX is
a projective generator of M(DX) (since Γ(X, M) = Hom(DX , M)). In this case

Λ = EndDX = (Dglob
X )op. So, X is D-affine by the lemma above.

Now let us prove the theorem Theorem 1.3. In our case X = Pn = P(V ). Let

Ṽ = V \{0}, j : Ṽ → V be natural inclusion and π : Ṽ → P(V ) be projection.
Let M be DPn-module. Then

Γ(Ṽ , π0M) =
⊕

k≥0

Γ(Pn, M ⊗O(k)).

Let us introduce the Euler vector field E =
∑

xi
∂

∂xi
.This vector field acts on

Γ(Pn, M⊗O(k)) by multiplication by k. Thus we have Γ(Pn, M) = Γ(Ṽ , π0M)E (note

that E acts semi-simply on Γ(Ṽ , π0M), hence taking E invariants doesn’t influence
the exactness).
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Consider the following sequence of functors:

M 7→ π0M 7→ Γ(Ṽ , π0M).

Here the first functor is exact, but the second may be not exact. In fact you can

again decompose Γ(Ṽ , π0M) as a composition of two functors: first we replace M by
j0M and then take global sections on V . Since V is affine the latter is exact.

For any open embedding j : U → X the functor of direct image j0 is left exact
and all higher derived functors are supported on X\U . Consider the embedding

j : Ṽ ↪→ V . For any short exact sequence of DPn-modules

0→M1 →M2 →M3 → 0

we have the long exact sequence

0→ j0π
0M1 → j0π

0M2 → j0π
0M3 → R1j0π

0M1 → . . . .

By Kashiwara’s theorem R1j0π
0M1 is a direct sum of δ0 – modules of δ-functions

(since it is supported at 0).
The eigenvalues of E on Γ(V, δ0) are −1,−2,−3, . . . . And since the eigenvalues

of E on Γ(V, j0π
0M3) are nonnegative, α : Γ(V, j0π

0M3) → Γ(V, R1j0π
0M1) should

be zero. Hence the functor M 7→ Γ(Ṽ , π0M) is exact and hence the functor M 7→
Γ(P(V ), M) = Γ(Ṽ , π0M)E is also exact.

Let us prove that Γ(Pn, M) 6= 0 if M 6= 0. There exists k ≥ 0 such that Γ(Pn, M⊗
O(k)) 6= 0. Hence there exists 0 6= m ∈ Γ(Ṽ , π0M) such that Em = km. Since
E( ∂

∂xi
m) = (k − 1) ∂

∂xi
m, if there exist i such that ∂

∂xi
m 6= 0, then there exist l ∈

Γ(Ṽ , π0M) with eigenvalue k − 1. If ∂
∂xi

m = 0 for all i, then Em = 0. Hence (by

induction on k) Γ(Ṽ , π0M)E 6= 0. �

2. Derived categories.

2.1. Motivation of studying derived categories. Let π : X → Y . There is
no way to define direct image on the level of abelian categories M(DX) → M(DY )
so, that it will be compatible with composition. In order to define such a functor, we
need to work in derived category.

Let A be abelian category and C(A) be category of all complexes. Define C+(A)
as a category of complexes K•, such that K i = 0 for i � 0. In the same way define
categories C−(A) of complexes bounded from above and Cb(A) of bounded complexes.

Let C0(A) be the category of complexes with zero differential. We have a map
H : C(A)→ C0(A) =

⊕
i∈Z
A.

Theorem 2.2. There exist unique up to canonical equivalence pair category D(A)
(called derived category) and functor Q : C(A)→ D(A) such that

1. If f : K• → L• is a quasi isomorphism, then Q(f) is isomorphism.
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2. This pair is universal with the property 1, i.e. for any functor F : C(A)→ D′
satisfying 1, there exist unique functor G : D(A)→ D′ such that F = G ◦Q.

More generally, let C be any category and S – any class of morphisms. Then there
exist category C[S−1] and a morphism C → C[S−1] which satisfy conditions 1 and 2

of the theorem above.

2.3. Structures on derived categories. 1. Shift functors.
For any i there exist a functor of shift to the left K• 7→ K•[i], where Kj[i] = Kj+i

for any j.
2. Distinguished triangles.

Motivation of introducing the notion of distinguished triangle:
Let F : A → B be a left exact functor. Then the functor RF : D(A) → D(B) is

well defined. To say, that this functor is exact, we need to have some analog of short
exact sequences which is distinguished triangles.

First of all let us define the notion of cone of a morphism. Let K•
f→ L• be the map

of complexes. Define a complex C(f)•, called cone of f , as follows: C(f)• = K•[1]⊕
L•, i.e. C(f)i = Ki+1 ⊕ Li with differential d(ki+1, li) = (−dKki+1, f(ki+1) + dL(li)).

Exercise. Show that if f is an embedding, then C(f) is quasi isomorphic to
L•/K•.

Lemma 2.4. The sequence

H i(K)→ H i(L)→ H i(C(f))→ H i+1(K)→ . . .

is exact.

Proof. If the sequence K• → L• → C(f) were exact, this lemma would be the
well known statement from algebraic topology. In our case it is not exact, but we can
replace L• by a quasi isomorphic complex such that the sequence will become exact.

Let’s define a complex, called cylinder of f by Cyl(f) = K• ⊕ K•[1] ⊕ L• with
the following action of differential

d : (ki, ki+1, li) 7→ (dKki − ki+1,−dKki+1, f(ki+1)− dLli).

The natural inclusion L• → Cyl(f) is a quasi isomorphism and the sequence K• →
Cyl(f)→ C(f) is exact. �

Definition. Distinguished triangle in D(A) is a ”triangle” X → Y → Z → X[1]
which is the image under Q of K• → L• → C(f)→ K•[1].

Main problem: given a morphism f : X → Y in D(A) there is no canonical way
to complete it to exact triangle. (There is a map X → Y → Z and it’s unique, but
up to noncanonical isomorphism.)

Definition. Let A and B be categories. A functor F : D(A)→ D(B) is called exact,
if it maps distinguished triangles to distinguished triangles.
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Definition. An object X ∈ D(A) is called H0-complex if H i(X) = 0 for i 6= 0.

Lemma 2.5. A → D(A) induces an equivalence between A and the full subcate-
gory of H0-complexes.

Let X and Y be the objects of A. Then we can redefine notions Ext func-
tors: Exti(X, Y ) = HomD(A)(X

•, Y •[i]) (HomA(X, Y ) = HomD(A)(X
•, Y •)). If A has

enough projectives or injectives, this definition coincides with previous one.

2.6. Another way of thinking about derived category. Let S be any class
of morphisms in category A.

Definition. S is called localizible class of morphisms if

1) If s, t ∈ S then s ◦ t is also in S, if it’s defined.
2) For any given morphisms s ∈ S and f there exist an object W and morphisms

t ∈ S and g. such that the following diagrams are commutative

W

t∈S
���
�

�

g //___ Z

s∈S
��

X
f

// Y

W Z
goo_ _ _

X

t∈S

OO�
�

�

Y
f

oo

s∈S

OO

3) Let f, g : X → Y . Then there exist s ∈ S such that sf = sg iff there exist
t ∈ S such that ft = gt.

If S is a localizible class, then C[S−1] has a nice description. Morphisms in this
category are given by diagrams

X ′

s∈S

~~||
||

||
|| f

  B
BB

BB
BB

B

X Y.

Two diagrams X ′

s∈S

~~||
||

||
|| f

  A
AA

AA
AA

A

X Y

and X ′′

t∈S

}}||
||

||
|| g

!!B
BB

BB
BB

B

X Y

define the same mor-

phism if there exist an object X ′′′ and morphisms S 3 r : X ′′′ → X ′, f : X ′′′ →
X ′′, such that the following diagram is commutative
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X ′′′

r

}}zz
zz

zz
zz h

""D
DD

DD
DD

D

X ′

s

�� ((RRRRRRRRRRRRRRRRR X ′′

vvlllllllllllllllll

h
��

X Y.

Lemma 2.7. If S is a localizible class, then C[S−1] is the category with objects –
objects of C and morphisms – equivalence classes of the diagrams above.

We want to define derived categoryD(A) as localization of C(A) by quasi-isomorphisms.
Unfortunately they do not form a localizible class.

Example. Let A be the category of abelian groups. Consider the complex

K• = {0 → Z
∗2−→ Z → 0}

−1 0
and the complex 0 → Z/2Z → 0, quasi

isomorphic to K• via s. Let f : K• → K• be multiplication by 2. Then sf = 0
which contradicts to the condition 3 of definition, i.e. there is no quasi isomorphism
t : L• → K•, such that ft = 0 (since for any such quasi-isomorphism t(L0) 6= 0 and
hence 2t(L0) 6= 0).

So, we shall replace C(A) by homotopy category K(A), where quasi-isomorphisms
form a localizible class.

Let f : K• → L• be a map between complexes. Then f is homotopic to 0 if there
exist hi : Ki → Li−1

. . . d // Ki−1

f
��

d // Ki

hi

||y
y

y
y

f
��

d // Ki+1

hi+1

||y
y

y
y

y

f
��

d // . . .

. . . d // Li−1 d // Li d // Li+1 d // . . .

such that f = dh + hd. If f, g : K• → L• are two such morphisms, they are said to
be homotopic if there exist a map h as above, with f − g = dh + hd.

Lemma 2.8. If f is homotopic to 0 then it is equal to 0 in derived category.

This is true because if f is homotopic to 0, it can be factorized through the cone
of id : K• → K•.

Definition. Let A be any abelian category. Then the homotopy category K(A)
is the category with objects Ob(K(A)) = Ob(C(A)) and morphisms Mor(K(A)) =
Mor(C(A))/{f | f is homotopic to 0}.

Defined in this way, K(A) is an additive category. Cohomology is well defined in
K(A), so quasi-isomorphisms are defined.

Theorem 2.9. Quasi-isomorphisms form a localizible class in K(A).
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In the example above the map f itself was homotopic to 0 so the third condition
of definition of localizible class is satisfied.

Claim. Derived category D(A) is the localization ofK(A) by quasi-isomorphisms.

Corollary 2.10. D(A) is additive.

To define addition we need to define the common denominator for two morphisms

X ′

s∈S

~~||
||

||
|| f

  A
AA

AA
AA

A

X Y

and X ′′

t∈S

}}||
||

||
|| g

!!B
BB

BB
BB

B

X Y.

By definition this is a pair of diagram

X ′′′
p∈S

}}{{
{{

{{
{{ f̃

!!C
CC

CC
CC

C

X Y

and X ′′′
p∈S

}}{{
{{

{{
{{ g̃

!!C
CC

CC
CC

C

X Y

, equivalent to the given two. The sum

of the last two is given by f̃ + g̃.

As before, we can define Db(A), D+(A), D−(A). Assume A has enough pro-
jectives, i.e. for any X ∈ A there exist projective P , which maps surjectively on
X. Let K−(P) denote the category of complexes · · · → P i → P i+1 → . . . , where
all P j are projective, with morphisms up to homotopy. Then the natural functor
K−(P) → D−(A) is an equivalence of categories. From this easily follows that for
any X, Y ∈ A HomD(A)(X, Y [i]) = Exti(X, Y ). To see it one has to replace X and
Y by their projective resolutions.

If A has enough injectives, then K+(I)→ D+(A) is an equivalence of categories.

2.11. Derived functors. Let F : A → B be an additive and left exact functor.
We would like to define the derived functor RF : D+(A) → D+(A) by universal
properties. We denote by K+(F ) the natural extension of F to the functor K+(A)→
K+(B).

Definition.THe derived functor of F is a pair (RF, εF ) where RF : D+(A)→ D+(B)
is an exact functor and εF : QB ◦ K+(F ) → RF ◦ QA is a morphism of functors
satisfying the following universality condition:

For every exact functor G : D+(A) → D+(B) and a morphism of functors ε :
QB ◦ K+(F ) → G ◦ QA there exists unique morphism η : RF → G for which the
following diagram is commutative:

QB ◦ K+(F )
εF

xxppppppppppp
ε

''OOOOOOOOOOOO

G ◦ QA η◦QA←− RF ◦ QA
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It is easy to see that if (RF, εF ) exists then it is unique up to canonical isomor-
phism. The problem in general is to show existence as well as to compute RF . For
this we have to introduce some additional definitions.

Definition. Let R be some class of objects of A. We say that R is admissible
with respect to F , if there exist an acyclic complex · · · → K i → Ki+1 → . . . in C+(A)
with Ki ∈ R such that F (K•) is also acyclic and for any X ∈ A there exist Y ∈ R
in which X can be included.

Example. Consider the left exact functor Hom(X, ·). Injective objects form an
admissible class with respect to it.

Similarly we can define the same notion for right exact functors.
If R is an admissible class with respect to F , then RF exist and can be defined as

follows: any object of D(A) is isomorphic to the image of some object K ∈ C+(R).
We set RF (QA(K)) = QB(F (K)).

Proposition 2.12. 1. Hn(RF (K•)) is a subquotient of
⊕

p+q=n

RpF (Hq(K•)).

2. Let A F→ B G→ C. If there exist RA and RB – admissible classes for F and G
such that F (RA) ⊂ RB, then R(G ◦ F ) = RG ◦RF .

The same can be done for right exact functors.
Examples. 1. Let R be any commutative ring, N 7→ M ⊗R N – right exact

functor. The corresponding derived functor is N 7→ M
L
⊗ N , where M

L
⊗ N is in

D−(R−modules).
2. Y 7→ RHom(X, Y ) ∈ D+(Ab).

Functor M
L
⊗ N does not depend on the variable, with respect to which we derive.

If A has enough injectives and projectives, the same is true for RHom.

Let’s go back to D-modules. Define D(DX) = Db(M(DX)).

Theorem 2.13. If X is smooth, Db(Mhol(DX)) ' Dhol(DX), where the last
category is the full subcategory of D(DX) with holonomic cohomologies.

This kind of statement is not true in general. For example Db
f.dim.(g−modules) 6'

Db( finite dimensional g−modules), where g is a simple Lie algebra over C.

3. Lectures 13 and 16 (03/14/02 and 04/02/02)

Let us now go apply the machinery of derived categories to D-modules. We shall
denote by D(DX) the bounded derived category of DX -modules. When we want to
stress that we work with left (resp. right) DX we shall write Dl(DX) (resp. Dr(DX)).
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3.1. Duality. Let’s define duality D : Dl(DX)→ Dr(DX) by M 7→ RHom(M,DX)
for any left DX -module. Here Hom(M,DX) is a quasi coherent sheaf of DX-modules,
whose sections on every open subset U ⊂ X are Hom(Γ(U, M),DU).

Let’s define the map D : Dl(DX)→ Dl(DX) by D(M) = RHom(M,DX⊗Ω−1
X )[n],

where n = dim X.

Theorem 3.2. (1) D2 ' Id.
(2) Let M, N ∈ Db(Mcoh(DX)). Then

HomD(DX)(M, D(N)) = HomD(DX)(N, D(M)).

Proof. LetR be the class of locally free DX-modules. To check that D2 = Id, it’s
enough to check it on complexes of locally free locally finitely generated DX-modules.
For such modules Hom Hom((M,DX),DX) ' M . So we have a natural morphism
Id → D2. Since it is an isomorphism for every object in R, it is an isomorphism in
general. �

Theorem 3.3. RHom(M, N) ' RHom(DN, DM) for any left DX-modules M and
N .

Proof. There exist a natural morphism RHom(M, N)→ RHom(DN, DM). For
locally free modules this is an isomorphism, so it is an isomorphism in general (we
can take a resolution by locally free modules). �

3.4. Inverse image. Let π : X → Y be a morphism and π• – sheaf theoret-

ical inverse image. Define the inverse image functor π! by π!(M) := OX

L
⊗π•OY

π•M [dim X − dim Y ] for any DY -module M . Here
L
⊗ means the derived functor.

If π is closed embedding, then π! : Db(DY )→ Db(DX) in derived category, is the
left derived of the functor π! :M(DY )→M(DX) for modules.

As before define DX→Y = π!DY [dim Y − dim X] = OX

L
⊗π•OY

π•DY .

3.5. Direct image. Let π : X → Y be any morphism. Let us define the direct
image of a right DX-module M ∈ Db(DX) as follows

π∗(M) = Rπ•(M
L
⊗DX

DX→Y ).

Here π• is the usual sheaf theoretical direct image. By definition π∗(M) is a complex of
sheaves of DY -modules. A priori it’s not clear, why these sheaves are quasi coherent.
One way to show it is to use the following theorem

Theorem 3.6. [Bernstein] Let A be a quasi coherent sheaf of associative algebras
on X. Then

Db
q.coh.(M(A)) ' Db(Mq.coh(A)),

where the first category is the full subcategory of Db(M(A)) consisting of complexes
with quasi coherent cohomologies.
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Using a decomposition of π into a locally closed embedding and projection, one
can show that π∗(M) has quasi coherent cohomologies.

We shall give another proof of this fact, based on the explicit construction of
direct image. The main idea is the following: suppose there exists a complex of quasi

coherent sheaves K• = K•(M), quasi isomorphic to M
L
⊗DX

DX→Y . Let’s choose
a cover X =

⋃
i Ui by affine open subsets. Consider the Cech complex Č(K•) with

respect to this cover, i.e. the total complex of the following bicomplex
⊕

α

(jα)∗K
•|Uα
→
⊕

α1,α2

(jα1,α2
)∗K

•|Uα1
∩Uα2

→...,

where jα1,...,αk
: Uα1

∩ · · · ∩ Uαk
→ X. K• and Č(K•) are quasi isomorphic and

moreover

π•Č(K•) = Rπ•(K
•)

Since Ki(M) are quasi coherent, so are Č(K•)i and hence π•Č(K•). So, in this case
π∗(M) = Rπ•(K

•) consist of quasi coherent modules.
Now, let us find such a complex K•(M) (complex of quasi coherent sheaves, quasi

isomorphic to M
L
⊗ DX→Y ). Let’s consider Koszul complex Kos(M) which is quasi

isomorphic to M . This complex is defined as follows: we know that dR(DX) is a
locally free resolution of the sheaf KX of the top forms on X. Then dR(DX)⊗K−1

X is
a locally free resolution of OX . Let Kos(M) = M ⊗ dR(DX)⊗K−1

X , i.e. Kos(M)i =
M ⊗Ωi

X ⊗DX ⊗K−1
X . This complex is obviously a resolution of M . It carries an OX

action from the left (acts on M and DX) and right DX action (acts on DX). Since
M might not be locally free over DX it follows that Kos(M) also doesn’t have to be
locally free. However, it is easy to see that Kos(M) is still locally free in ∂-direction.
(This means that if we choose coordinates x1, . . . , xn, ∂1, . . . , ∂n Kos(M) consists of
free k[∂1, . . . , ∂n]-modules.)

Modules, which are locally free in ∂-direction form an admissible class with respect
to ⊗DX

DX→Y , since DX→Y is locally free over OX . This means that Kos(M) ⊗DX

DX→Y is quasi isomorphic to M
L
⊗ DX→Y . Since the OX -action and DX-action

commutes, K•(M) = Kos(M)⊗DX
DX→Y is a complex of quasi coherent OX-modules.

Using the arguments above, we get that π•(K
•(M)) = π∗(M) is a complex of quasi

coherent modules.

3.7. Some computations of direct images. Example. Let π : X → pt. We
claim that π∗M = Rπ•(dR(M l)) where M l = M ⊗ K−1

X . Indeed, if Y = pt then

DX→Y = OX . As before M
L
⊗DX

DX→Y is quasi isomorphic to Kos(M)⊗DX
DX→Y .

And (Kos(M)⊗DX
DX→Y )i = (M ⊗ Ωi

X ⊗DX ⊗K−1
X )⊗DX

OX = M ⊗ Ωi
X ⊗K−1

X =
dR(M l)i. We get π∗M = Rπ•(dR(M l)).

We can also say that if is a left module then we just have π∗(M) is just isomorphic
to the hypercohomology of dR(M).
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Let π : X → Y be any morphism. It can be decomposed as a product of locally
closed embedding and smooth morphism.

(1) If π : X → Y is an open embedding direct image for modules coincides with
the usual direct images of OX -modules.

(2) Let π : X → Y be closed embedding. In this case we can write π∗(M) =
π•(M ⊗DX

DX→Y ).
(3) Suppose π : X → Y is smooth and let M be a left DX-module. In this case

π∗(M) = Rπ•(dRX/Y (M)), where dRX/Y (M) is a relative de Rham complex

0→M →M ⊗ Ω1
X/Y → · · · →M ⊗ Ωdim X−dimY

X/Y → 0.

The relative 1-forms are defined from the following exact sequence

0→ π∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.

and Ωi
X/Y = ΛiΩ1

X/Y . Proof of this statement is analogous to the case of
Y = pt, considered in example above.

3.8. Base change property. For any diagram

X ×Y Z
τ̃ //

π̃
��

X

π

��
S τ

// Y

we have a natural isomorphism of functors τ !π∗F = π̃∗τ̃
!F , where F ∈ Db(DX).

Proof. Let us decompose τ as a locally closed embedding and projection.

(1) If τ is an open embedding, the statement is obvious, since direct image is
compatible with restriction to open subsets.

(2) Let τ : X → Y be projection. Let S = Y × Z, then X ×Y S = X × Z. We
have the following diagram

X × Z

π̃
��

τ̃ // X

π

��
Y × Z τ

// Y

For any DX-module F τ̃ !F = F �OZ [dim Z] and
π̃∗τ̃

!(F) = π∗F �OZ [dim Z] = τ !π∗F .
(3) Suppose that τ is a closed embedding. In this case we are going to call it i

(this is our stadard notation for a closed embedding). Consider the following
diagram

W
� � ĩ //

��

X

π

��

U?
_

j̃

oo

��
S

� � i // Y V?
_

j
oo
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Here S is closed in Y and V is the open complement to S. For each

W
� � ĩ // X U?

_

j̃

oo we have an exact triangle ĩ∗ĩ
!F → F → j̃∗F|U , which

get rise to the following diagram

ĩ∗ĩ
!F // F // j̃∗F|U

i∗i
!π∗F // π∗F // j∗π∗F|U

Here the last terms are isomorphic by 1.
We need to construct an isomorphism between the two left terms in this

diagram. Note that if we lived in an abelian category and the rows of the
above diagram were short exact sequences we would get such an isomorphism
automatically. However, here we are dealing with derived categories and we
cannot derive the existence of such an isomorphism from general reasons
because cone in the derived category is not canonical. However, it follows
from the 5-lemma that if we construct any morphism between the two left
terms of the above diagram which makes the whole diagram commutative
then this morphism will necessarily be an isomorphism. This can be done in
the following way.

Let R ∈ DS(DY ) and T ∈ D(DV ). Then

Hom(R, j∗T ) = Hom(R|V , T ) = 0.

Let R = π∗ ĩ∗ ĩ
!F . In this case we have

0 = Hom(R, j∗π
∗F|U [−1])→ Hom(R, i∗i

!π∗F)→
→ Hom(R, π∗F)→ Hom(R, j∗π

∗F) = 0.
So Hom(R, i∗i

!π∗F) ' Hom(R, π∗F). Since we are given canonical ele-
ment in Hom(R, π∗F) we also get an element in Hom(R, i∗i

!π∗F). The fact
it makes the whole diagram commutative is clear.

Let us now explain why the isomorphism of functors constructed above doesn’t depend
on the decomposition of of τ as a product of a closed embedding and a smooth
morphism. �

Example. If π : X → Y is a smooth map, then π! maps coherent modules to
coherent (in this case π! is exact up to a shift). If π : X → Y is projective, then
π∗ maps coherent modules to coherent. To show the last statement, it’s enough to
assume, that π : X = PN × Y → Y , where Y is affine. In the category of coherent
modulesDX is a projective generator (we showed this in the proof of the fact that PN is
D-affine), so it’s enough to prove the statement for DX . We have DX→Y = OPN �DY .
Thus

(KX⊗DX)⊗DX→Y = ((ΩPN �ΩY )⊗OX
(DPN �DY ))⊗DX

(OPN �DY ) = KPN �(ΩY⊗DY ).

So π∗DX = DY [−N ].
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Theorem 3.9. Let π : X → Y be projective. Then

(1) π∗ is left adjoint to π!.
(2) Dπ∗ = π∗D.

Proof. As before, it is enough to assume that X = PN × Y , where Y is affine.
Let us prove 1. Let F ∈ D(DX) and G ∈ D(DY ). We want to prove that

RHom(π∗F ,G) ' RHom(F , π!G). It is enough to consider F = DX , since it’s a
projective generator and D(DX) is equivalent to the homotopic category of free com-
plexes.

As we have computed, π∗DX = DY [−N ]. So

RHom(π∗DX ,G) = RHom(DY [−N ],G) = RΓ(Y,G)[N ]

On the other hand π!G = OPN � G[N ], and hence

RHom(DX , π!G) = RΓ(π!G) = Γ(Y,G)[N ].

To prove 2 it is again enough to construct the above isomorphism for DX which
is done by means of a similiar calculation. �

Theorem 3.10. Let π : X → Y be smooth. Then

(1) Dπ![dim Y − dim X] = π!D[dim X − dim Y ].
(2) π![2(dim Y − dim X)] is left adjoint to π∗.
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CHAPTER 3

The derived category of holonomic D-modules

1. Lecture 17

So far we have discussed the general properties of the derived category of holo-
nomic D-modules. However, it turns out that many interesting things can only be
done for holonomic D-modules. So, let us turn to a more detailed study of the derived
category of holonomic D-modules.

Let us first summarize (and reformulate a little) what we already know about
the direct and inverse image functors. Let π : X → Y . There are two functors
associated with π: π∗ and π! (the last one is not always defined; recall that π!M exists
if π∗DM is coherent). If π! is defined, there exists a canonical morphism π! → π∗,
defined as follows. Firs of all let us decompose π as a product of an open embedding
and projective morphism (as usual we shall leave the verification of the fact that
the resulting morphism does not depend on the choice of this decomposition to the
reader). Recall that if π is projective then π! and π∗ are the same. Thus it is enough
to construct our morphism for an open embedding. If we have an open embedding
j : U ↪→ X then for any module M on U we have Hom(N, j∗M) = Hom(N |U , M).
For N = j!M we have N |U = M and hence Hom(j!M, j∗M) = Hom(M, M). We let
the morphism jIM → j∗M be the image of the identity in Hom(M, M).

Similarly we have the functors π! and π∗ (where the latter is only partially defined).

Theorem 1.1. Let π : X → Y be smooth morphism. Then

(1) π! maps Dcoh(DY ) to Dcoh(DX).
(2) π∗ = Dπ!D = π![2(dim Y − dim X)].
(3) π∗ is left adjoint to π∗.

In case when π is open embedding, π! = π∗.
Of course it would be very useful to have a situation in which we are guaranteed

that π∗ and π! exist. It turns out that this is always the case for holonomic modules.
Moreover, we have the following theorem.

Theorem 1.2. Dhol(D) is stable under π∗, π!, D and �.

Corollary 1.3. On Dhol(DX) we can always define π! = Dπ∗D and π∗ = Dπ!D.

Defined in this way, π! is left adjoint to π! and π! is right adjoint to π∗.
?? and Corollary 1.3 above give us an example of a so called Grothendieck’s formalism
of six functors. We do not give a precise definition; let us just note that it follows
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that we have 6 kinds of functors acting between the categories Dhol(DX) - namely,
π∗, π∗, π

!, π! (for a morphism π : X → Y ), D and �.
Before proving this theorem, let us give an example of its application. Namely let

us discuss the structure of holonomic modules and classify irreducible ones.

Lemma 1.4. Let M be a holonomic module on X with suppM = X. Then there
exists a smooth open U ⊂ X such that j !M is OU -coherent on U . (Here j : U ↪→ X.)

Recall that an OU -coherent DU -modules may be thought of as a vector bundle on
U endowed with a flat connection.

Proof. We know that j !M is OU -coherent iff s.s.(M) = { zero-section in T ∗U}.
Let us consider the following diagram

s.s.(M) � � //

%%J
JJJJJJJJJ
T ∗X

��
X

Since s.s.(M) is conic it follows that any fiber of the map s.s.(M)→ X is either
0 or of dimension greater or equal to 1. Since dim s.s.(M) = dim X the fiber over
generic point cannot be of dimension > 0. So, over the generic point the diagonal
arrow is an isomorphism. Hence there exists U as above , such that j !M is O-coherent.

�

It is clear that we may choose the open subset U above to be affine.
Let us now look at the case when M is irreducible. In this case let us try to restore

M from j !M . Here j : U → X is any open embedding. First of all, if M is irreducible,
so is j !M . Indeed, suppose we have a short exact sequence 0→ K → j !M → N → 0
with K, N 6= 0. Then we have the map M → j∗N which in fact factorizes as

M → H0(j∗N) → j∗N (since j∗N lives in degress ≥ 0. Let K̃ denote the kernel of

this map. Then j !K̃ = K which shows that K̃ is non-zero but different from M . This
contradicts irreducibility of M .

Let us now set N = j !M and pretend that we are only given N nut not M and we
want to effectively construct M . In fact it turns out that we can do more: to every
holonomic DU -module we are going to associate (canonically) a newholonomic calDX-
module j!∗N called the intermediate or minimal (or Deligne-Goresky-MacPherson)
extension of N to X which in particular will solve our problem in the case when N
is irreducible. This extension will in fact be uniquely characterized in the following
way.

Theorem 1.5. Let X be an irreducible variety and let U ⊂ X be an open subset.
For every holonomic DU -module N there exists unique DX-module M satisfying the
following properties:

(1) j !(j!∗(N)) = N ;
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(2) j!∗ has no submodules or quotients concentrated on X\U .

Moreover, we claim that if N is irreducible then j!∗(N) (defined by (1) and (2)
above) is also irreducible. Indeed, suppose there is a submodule M ↪→ j!∗(N). Ap-
plying the functor j ! we get j !M → N . Since N is irreducible, this map is either an
isomorphism or it is equal to 0. Assume first that this map is 0; in this case M is
concentrated on X\U which contradicts property (2). In the case when this map is
an isomorphism it follows j!∗(N)/M is concentrated on X\U which again contradicts
property (2).

In particular, it follows that if N is an irreducible DU -module then N has unique
irreducible extension to X - namely the intermediate extension j!∗N .

1.6. Construction of intermediate extension. Let us now construct the ex-
tension j!∗N satisfying properties (1) and (2) of Theorem 1.5. As is suggested by both
the name and the notation it should somehow be constructed out of j!N and j∗N .

General remark: Let A and B two be abelian categories. Let us introduce the
following notations: D≥0 = {K• | H i(K•) = 0 for i < 0} and D≤0 = {K• | H i(K•) =
0 for i > 0}. Then for any left exact functor F : A → B we have RF : D≥0(A) →
D≥0(B) and for any right exact functor G : A → B we have LG : D≤0(A)→ D≤0(B).

In particular, j∗ : D≥0
hol(DU)→ D≥0

hol(DX) and j! : D≤0
hol(DU)→ D≤0

hol(DX).

Consider the map j!N → j∗N . By the remark above j!N ∈ D≤0
hol and j∗N ∈ D≥0

hol.
Hence this map factorizes through the chain

j!N → H0(j!N)→ H0(j∗N)→ j∗N. (1.1)

Let j!∗ be the image of this map. Note that is j is an affine.embedding (we can in
fact always reduce the situation to this case) then j!∗N is simply the image of j!N in
j∗N .

We claim that j!∗N defined in this way satisfies properties (1) and (2) of Theo-
rem 1.5.

First, all the maps in (1.1) become isomorphisms after restricting to U . Thus the
restriction of j!∗N to U is equal to N . Hence property 1 is satisfied.

Let us now show property 2. We have the maps j!N → j!∗N → j∗N . It is
easy to see from the definition that for any non-zero DX-module L the induced maps
Hom(j!∗N, L)→ Hom(j!N, L) and Hom(L, j!∗N)→ Hom(L, j∗N) are injective.

Let L be anyDX-module concentrated on X\U . Then Hom(j!N, L) = Hom(N, j !L) =
0 since j !L = 0. Similarly, Hom(L, j∗N) = Hom(j∗L, N) = Hom(j !L, N) = 0.
This means that j∗N has no submodules concentrated on X\U and j!N has no
quotients concentrated on X\U . Hence by the above observation it follows that
Hom(j!∗N, L) = Hom(L, j!∗N) = 0.

Warning. We have shown above that j!∗N has neither quotients nor submodules
concentrated on X\U . However, we do not claim (and in general it is not true) that
j!∗N has no subquotients concentrated on X\U .
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Let us now show that the properties (1) and (2) of Theorem 1.5 define j!∗N
uniquely.

Let M be DX module satisfying these properties. In particular, j !(M) = j∗M =
N . Thus by adjointness the map j!N → j∗N factorizes through the sequence

j!N →M → j∗N.

Since M is concentrated in cohomological degree 0 it follows that this sequence in
fact factorizes through

j!N → H0(j!N)
α→M

β→ H0(j∗N)→ j∗N.

Also all of these maps become isomorphisms when restricted to U . Thus the cokernel
of α is a quotient module of M which is concentrated on X\U and therefore it is 0.
Similarly the kernel of β is a submodule of M concentrated on X\U and hence it is
0. In other words, α is surjective and β is injective. This means that M is the image
of the map H0(j!N)→ H0(j∗N) which finishes the proof.

Example. Let X = A
1, U = A

1\{0} and N = OU . In this case j!OU = Dj∗OU

and there are two exact sequences 0→ OX → j∗OU → δ0 → 0 and 0→ δ0 → j!OU →
OX → 0, dual to each other. So we have a sequence j!OU � OX ↪→ j∗OU , which
means that j!∗OU = OX .

If N is DU -module generated by xλ, where λ 6= Z, then j!N → j∗N is an isomor-
phism, since both modules are irreducible.

Note that in fact j!∗ is defined not only for an open embedding j but for any
locally closed embedding.

Let us point out several properties of j!∗.

Lemma 1.7. (1) j!∗N is functorial in N .
(2) If N is irreducible then so is j!∗N .
(3) j!∗(DN) = D(j!∗N).

Proof. (1) follows immediately from the fact that j! and j∗ are functors. Note,
however, that j!∗ is neither left exact nor right exact. As a result the functor j!∗ makes
sense only for modules and it doesn’t make sense for general objects of the derived
category.

(2) we have already discussed above.
To prove (3) let us check that D(j!∗N) satisfies properties (1) and (2) of The-

orem 1.5. Property (1) is in fact obvious. To prove (2) let us remark that D is
a contravariant equivalence of categories which does not change the support of a
module. Hence it transforms submodules concentrated on X\U to quotient modules
concentrated on X\U and vice versa. �

Here is some interesting application of the notion of intermediate extension (prob-
ably one of the most important ones). Let X be singular variety. Let U ⊂ X be
smooth dense open subset. Set
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ICX = j!∗OU ∈ Mhol(DX)

We shall call ICX the intersection cohomology D-module of X.
If π : X → pt, then π∗(ICX) is called the intersection cohomology of X. In the

case when X is smooth one clearly has ICX = OX since OX is irreducible. Thus by
Theorem ?? in the case when X is smooth its intersection cohomology is naturally
isomorphic to the ordinary cohomology (with complex coefficients) of the underlying
analytic space.

The intersection cohomology D-module of X has many nice properties. For ex-
ample since OU is self-dual then so is ICX . Assume for example X is proper, then
Dπ∗ = π∗D. Hence

Dπ∗(ICX) = π∗D(ICX) = π∗(ICX)

i.e. the intersection cohomology of an proper variety satisfies Poincare duality.

1.8. Description of irreducible holonomic modules. It is clear from the
above discussion are essentially classified by pairs (Z, N), where Z ⊂ X is an irre-
ducible smooth locally closed and N is an irreducible O-coherent module on Z. The
corresponding module is then j!∗N where j : Z → X is the natural embedding. In-
deed, if M is an irreducible DX-module, let Y ⊂ X be the support of M . This is an
irreducible closed subset of X and by Kashiwara’s theorem M corresponds to some
irreducible holonomic DY -module MY . We now choose Z to be any smooth open
subset of Y such that MY |Z is O=coherent.

Moreover, if Z ′ ⊂ Z is open, then (Z ′, M |Z′) and (Z, M) correspond to the same
holonomic module on X. In this case we say that (Z, M) and (Z ′, M ′) are equivalent.
Let us generate by this an equivalence relation on the pairs (Z, M) as above. Then
irreducible holonomic DX-modules are in one-to-one correspondence with equivalence
classes of pairs (Z, M).

Exercise: Assume that an algebraic group G acts on an algebraic variety X with
finitely many orbits. Let x1, . . . xk be representatives of orbits and Zi = StabG(xi) be
stabilizators of xi in G.

1. Define the notion of G-equivariant modules.
2. Prove, that irreducible G-equivariant modules are in one to one correspondence

with set of pairs {i, irreducible representation of Zi/Z
0
i }.

2. Lecture 18: Proof of Theorem 1.2

We now turn to the proof of Theorem 1.2. It is easy to see that the theorem is
true for the functor �. Also, we already know that it is true for the functor D. It
remains to prove it for inverse and direct images.

Let us first prove this Theorem 1.2 for π!. Any morphism can be decomposed as a
product of closed embedding and projection. Let π : X = Y ×Z → Y be projection.
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For any F ∈ Dhol(DY ) π!F = F � OZ [dim Z] and hence is holonomic. The case
when π is closed embedding, we’ve already proved.

Now let us consider the case of π∗. Any arbitrary morphism π : X → Y can be
decomposed as a product of a closed embedding and projective morphism. We have
already proved the theorem for closed embedding. The case of projective morphism
follows from the main step: the case of an open embedding.

First way of proving this statement for projective morphisms (without using the
main step).
Let F be any holonomic DY -module. Then π∗F is coherent and has finite dimensional
fibers. This means that for any i : y ↪→ Y and ĩ : π−1(y) ↪→ Y i!π∗F = π∗ĩ

!F is
finite dimensional (this is coherent module on a point and hence a vector space).
Theorem follows from the following proposition.

Proposition 2.1. [Bernstein] Let F ∈ Dcoh(DX). Then F is holonomic iff it has
finite dimensional fibers.

Second way of proving theorem in case of projective morphism.
We have to prove that for π : Y × PN → Y π∗ : Dhol(DX) → Dhol(DY ). We have
already proved the analogous claim for π : An → Am. Using the same method one
can prove it for π : Y ×A

N → Y (namely reducing to the case of affine Y and N = 1,

where π∗M = {M
∂

∂x→M}).
Now let us consider π : Y × PN → Y . We’ll do induction on N . Let j : U =

Y ×A
N ↪→ X = Y × P

N . For any sheaf F on X, there is the following exact triangle
F → j∗F |U→ K. Here K is supported on Y × PN−1.

General remark: Let F → G → H → F [1] be an exact triangle. Then if two
of the terms are holonomic, so is the third one. To see this one should write the
corresponding long exact sequence of cohomologies.

In our case F is holonomic by assumption and j∗F |U is holonomic by main step
(which we have not proved yet). Hence K is also holonomic. Applying π∗ to that
triangle we get

π∗F → π∗j∗F |U→ π∗K.

Let us denote π̃ : Y ×AN → Y . Then π∗j∗ = π̃∗ and hence π∗j∗F |U is holonomic
by the previous step. By induction hypothesis π∗K is also holonomic and hence so is
π∗F .

Proof of the main step:
Let j : U ↪→ X be open embedding. Since holonomicity is a local property, we

can assume that X is affine. We can also assume that U is affine and moreover U is a
zero locus of p ∈ OX . (If not, we can cover U with finitely many affine open subsets
{Uα} and consider the Check complex Č(M) with respect to this cover. This is a
complex DX-modules jα1 ,...,αk∗(M |Uα1

∩···∩Uαk
) where jα1 ,...,αk

: Uα1
∩ · · · ∩ Uαk

↪→ X

and Č(M) = j∗(M) ∈ D(DX). Hence j∗M is holonomic when jα1,...,αk∗(M |Uα1
∩···∩Uαk

)
are holonomic.)
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Example. Let X = An, p ∈ OX and λ ∈ k. Consider DU -module M(pλ) (here
U is the zero locus of p). At the begining of the course we’ve proved that j∗M is
holonomic.

One way of proving the main step is to reduce it to the case X = An, embedding
X into an affine space. Consider U – zero locus of p and generalize the proof for
M(pλ) to any module M .

We’ll give another proof of this fact. Here is the sketch of it.
Step 1. We can assume that M is generated by some element u ∈ M . Let

N = j∗M . Consider a submodule Nk ⊂ N generated by upk. Then for k � 0 Nk is
holonomic and Nk = Nk+1.

Step 2. Lemma on b-functions.
Let λX = X ⊗ k(λ) be the same variety as X considered over a field k(λ). Let
λM = M⊗pλ. Then there exist d ∈ DλX such that d(upλ) = upλ−1. (This is equivalent
to say, that there exist d ∈ DX [λ] and b(λ) ∈ k[λ] such that d(upλ) = b(λ)upλ−1.)

If lemma on b-functions holds, then λM is generated by upλ+k. And for k � 0 it
is holonomic by step 1.

Step 3. Let M̃ be O-D-module on A1×X (i.e. an O-module on A1 and D-module
on X), defined as follows:

M̃ = span{q(λ)mpλ+i | i ∈ Z, m ∈M, q(λ) ∈ k[λ]}.
For any α ∈ A

1 let Mα = M̃/(λ− α)M̃ . We claim that for generic α this module

is holonomic. Indeed, let Z be singular support in DX-direction of M̃ in T ∗X ×A1 .
After passing to a generic point of A1 we’ll get the singular support of λM , which is
holonomic by step 2. This means that dim(Z ⊗ k(λ)) = dim X.

So, we have a map Z → A1 with fibers Zα = s.s.Mα, M0 = M (and in fact
Mi = M for any i ∈ Z) . The general fiber of this map has dimension dim X.
Hence there exist an integer i, such that dim Zi = dim X and this means that M is
holonomic.

Now let us deduce step 1 from the following lemma

Lemma 2.2. Consider an inclusion I : Mhol(DX) → Mcoh(DX). It has a right
adjoint functor G : Mcoh(DX) → Mhol(DX) defined by G(N) = { the maximal
holonomic submodule of N}. This functor commutes with restriction to open subsets.

Let N = j∗M . By the lemma G(N) |U= M . For k � 0 we have upk ∈ G(N) and
hence Nk ⊂ G(N). In particular Nk is holonomic. Since G(N) is holonomic, it has
finite length and this means taht Nk = Nk+1 for k large enough.

Now let us deduce step 2. Consider λN = j∗(
λM) and apply step 1 to it. We’ll

get λNk =λ Nk+1 for k � 0. And this gives us the lemma on b-functions.
For any k λN is generated by upλ+k, so λN =λ Nk and hence is holonomic.

Proof of Lemma 2.2: Let us give an another construction of G. Given N we
can constuct D(N), which is a complex, living in negative degrees. Let G(N) =
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DH0(D(N)). Defined in such a way, G obviously commutes with restriction to an
open sets. To prove, that it coincides with G, let’s prove that it’s right adjoint to I.
Let K ∈ Mhol(DX) be holonomic. Then

Hom(K, DH0(DN)) = Hom(H0(DN), DK) = Hom(DN, DK)

since DN ∈ D≤0(DX), and DK is a module, since K is holonomic. So, Hom(K, DH0(DN)) =
Hom(N, K) and our functor coincedes with G. �

3. Lecture 18 (04/09/02)

Let π : X → Y be any morphism. By the theorem we proved last time, the
functor π∗ = Dπ!D : Dhol(DY )→ Dhol(DX) is well defined.

Proposition 3.1. (1) π∗ is left adjoint to π∗.
(2) If π is smooth π! = π∗[2(dim Y − dim X)].

Proof. (1) Let’s decompose π as a product of an open embedding and pro-
jective morphism.

If π : U ↪→ X is an open embedding, then π∗ = π! and is simply the
restriction to U . We’ve already discussed that in this case π∗ is left adjoint
to π∗.

If π is projective, then π! = π∗ and

Hom(π∗M, N) = Hom(Dπ!
DM, N) = Hom(DN, π!

DM) =

= Hom(π!DN, DM) = Hom(π∗DN, DM) = Hom(M, π∗N).

(2) Let π : Z × Y → Y , where Z is smooth. Then π!M = OZ � M [dim Z] and
π∗M = Dπ!DM = D(OZ�DM [dim Z]) = OZ�M [− dim Z] = π!M [−2 dim Z].

Any smooth morphism π : X → Y is formally a projection, i.e. for any
x ∈ X and y = π(x) there exist a formal neighborhood of x X̂x = Ŷy × Z

(here Ŷy is a formal neighborhood of y and Z is smooth) such that π |X̂x
:

Ŷy × Z → Ŷy. This proves proposition.
�

3.2. Elementary comlexes. Let Z be a smooth variety and j : Z ↪→ X be
locally closed embedding.

Definition. If M is an O-coherent DZ-module, then j∗M is called an elementary
complex.

Let A be an abelian category.

Definition. An object K ∈ D(A) is glued from L1 and L2, if there exist an exact
triangle L1 → L2 → K → L1[1].
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Definition. Let L be a class of objects of D(A) invariant under shift functor. Then
K is called class of objects glued from L, if it satisfies the following properties

(1) L ⊂ K
(2) If L1, L2 ∈ K, then K, glued from L1 and L2 is also in K.

Lemma 3.3. Every object of Dhol(DX) is glued from elementary objects.

Proof. Let us assume, that M ∈ Dhol(DX) is a module.
We’ll prove this lemma by induction on dim(suppM). Any module on a point is

by definition an elementary complex. By induction hypothesis we know this lemma
for any M , such that suppM = Z ⊂ X is a proper subvariety. Suppose suppM = X.
Then there exist an open subset U ⊂ X, such that M |U is O-coherent. Consider the
following exact sequence

M → j∗(M |U)→ K,

where j : U ↪→ X. Here K is supported on Z = X\U and hence by induction
hypothesis is glued from elementary complexes. Since j∗(M |U) is an elementary
complex by definition, M is also glued from elementary complexes. �

Example. (from problem set)
Let X = A

1 and U = A
1\0 ⊂ U . For any n ∈ Z let us introduce DU -module

En = M(xλ)/λn.
Topological interpretation. For every n En has regular singularities and

hence corresponds to some representation of π1(U) = Z. Namely, En corresponds
to the representation Z 3 1 7→ Jordan block of size n.

Consider DU -module E2. Let us describe j!∗E2 as a module, glued from elementary
complexes. (Here j : U ↪→ X.) For E2 we have the following exact sequence 0 →
OU → E2 → OU → 0. This gives us two other exact sequences

0→ j∗OU → j∗E2 → j∗OU → 0

and
0→ j!OU → j!E2 → j!OU → 0.

Hence the following two sequences are exact

0→ j∗OU → j!∗E2 → OX → 0;

0→ OX → j!∗E2 → j!OU → 0.

So j!∗E2 is glued from OX and j∗OU or from j!OU and OX .
Because of the following exact sequences

0→ OX → j∗OU → δ → 0,

0→ δ → j!OU → OX → 0,

we can say, that j!∗E2 has form OX)δ)OX (i.e. j!∗E2 is glued from δ and two copies of
OX in the indicated order).

More generally, j!∗En has a form OX)δ)OX) . . . )δ)OX .
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3.4. A little bit more about intersection cohomology module. In the
examples below we’ll use the following notations

H i(M) = H i(π∗M); H i
c(M) = H i(π!M).

Examples (Poincare duality). Let X be any variety, M ∈ Dhol(DX) and
π : X → pt.

(1) If X is smooth then π∗M = H∗dR(M). On the other hand

π∗M = Dπ!DM = (π!DM)ˇ.

So, H i(π∗M) = H−i(π!DM)ˇ.
(2) Suppose X is smooth and proper and M = OX . Then DOX = OX and

π∗ = π!. Hence H i(OX)ˇ = H−i(OX) .
(3) Let X be projective, but not smooth. Let j : U ↪→ X be a smooth open

subset of X. We’ve defined the intersection cohomology module ICX =
j!∗OU = Image(H0j!OU → H0j∗OU).

For any module M on U the intermediate extension j!∗M has the following prop-
erties:

(1) j!∗M |U= M ,
(2) j!∗M has no submodules or quotients, supported on X\U ,
(3) D(j!∗M) = j!∗(DM). In our case D(ICX) = ICX , since DOU = OU .

So, H i(ICX)ˇ = H−i(ICX).
(4) If X is any variety, then H i(ICX) = H−i

c (ICX)ˇ.

3.5. Examples.

(1) Let X ⊂ A2 be given by equation xy = 0. Then X = X1 t X2, where
X1 = {x = 0} and X2 = {y = 0}. It’s easy to see, that ICX = i1∗OX1

⊕
i2∗OX2

(conditions (a) and (b) are satisfied, and those two determine the
intermediate extension uniquely). Here i1 : X1 → X and i2 : X2 → X. For
cohomology we have

dim H i(ICX) =

{
2 if i = −1;

0 otherwise.

(2) Let X be a smooth variety and Γ – a finite group, acting on X freely at the
general point. Let Y = X/Γ and π : X → Y be a natural morphism. Then
Γ acts on π∗OX as follows: let Γ 3 γ : X → X. By definition πγ = π and
γ∗OX

∼= OX . Consider the following composition

π∗OX → (π ◦ γ)∗OX = π∗(γ∗OX) ∼= π∗OX

It gives us a map π∗OX
∼→ π∗OX , which depends on γ.

Lemma 3.6. In the situation above, let j : V ↪→ Y , where V is smooth. Then

j!∗((π∗OX) |V ) = π∗OX .
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Proof. Let j̃ : U ↪→ X, where U = π−1V . Since Γ acts freely at the general
point of X, π is proper. Hence

j!((π∗OX) |V ) = π∗(j̃!O |U) and j∗((π∗OX) |V ) = π∗(j̃∗O |U).

So
Im(j!(π∗OX |V )→ j∗(π∗OX |V )) = π∗(Im(j̃!OU → j̃∗OU)) = π∗OX ,

since X is smooth. And this means that j!∗((π∗OX) |V ) = π∗OX . �

Corollary 3.7. ICY = (π∗OX)Γ.

Corollary 3.8. H i(ICY ) = Hn+i(Y an, C) = Hn+i(Xan, C)Γ, where n = dim X.

3.9. Example. Let Y be a quadratic cone in C
3. Then H∗(ICY ) = H∗(Y an, C)[2].

This follows from Corollary 3.8 together with the fact that Y ' C2/ZZ2.
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CHAPTER 4

D-modules with regular singularities

1. Lectures 14 and 15 (by Pavel Etingof): Regular singularities and the
Riemann-Hilbert correspondence for curves

Let X be a C∞-manifold. Recall that a local system on X consists of the following
data:

1) A vector space Vx for every point x ∈ X
2) An isomorphism αγ : Vx1

→ Vx2
for every C∞-path γ starting at x1 and ending

at x2.
This data should depend only on the homotopy class of γ and should be compatible

with composition of paths.
If X is connected, then by choosing a point x ∈ X we may identify the category

of local systems on X with the category of representations of the fundamental group
π1(X, x) (we shall often omit the point x in the notations).

Let X be a complex manifold. Then we have equivalance of categories ”holomor-
phic vector bundles on X with connection=representations of π1(X) (=local systems
on X)”.

This is not true in the algebraic setting. For example let X = A1 and and consider
the connection on the trivial vector bundle on X given by the formula:

∇(f(x)) = (f ′(x)− f(x))dx.

Then this connection has a nowhere vanishing flat section given by the function ex.
Hence the corresponding local system is trivial. On the other hand it is clear (for
example, bacause ex is not a polynomial function) that over C[x] the above connection
is not isomorphic to the trivial one. Thus we cannot hope to have an equivalence
between the category of algebraic vector bundles with connection with the category
of local systems.

It turns out that we can single out some nice subcategory ofO-coherent D-modules
on smooth algebraic variety X (called D-modules with regular singularities) for which
the above equivalence is still valid. Today we are going to do it for curves.

1.1. Regular connection on a disc. First of all let us develop some analytic
theory and then we’ll apply it to the algebraic setting. Let D denote the complex disc
{x ∈ C||x| < r} and let D∗ denote the punctured disc. Let OD denote the algebra of
holomorphic functions on D and let OD[x−1] be the algebra of meromorphic functions.
Also we denote by ΩD[x−1] the space of meromorphic one-forms on D which are
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holomorphic outside 0. Let also Ωlog denote the space of 1-forms with pole of order
at most 1 at 0.

By a meromorphic connection on D we mean a vector bundle M with a connection
∇ : M →M ⊗ ΩD[x−1].

By a morphism of meromorphic connections we mean a meromorphic map α :
M1 → M2 which is holomorphic outside 0 and which is compatible with the connec-
tions. Thus meromorphic connections form a category (note that there is no functor
from this category to the category of vector bundles on D).

If we choose a meromorphic trivialization of M then ∇ is given by a matrix
A of meromorphic one forms. A is defined uniquely up to gauge trasformations
A 7→ gAg−1 + g−1dg where g is a holomorphic function on D∗ taking values in the
vactor space Mat(n) of n× n-matrices which is meromorphic at 0.

Definition 1.2. We say that ∇ has regular singularities if there exists a trivi-
alization a as above such that all the entries of A have a pole of order at most one
1. More invariantly (M,∇) is regular if it is isomorphic to some (M ′,∇′) where
∇′ : M ′ →M ′ ⊗ Ωlog.

In other words, M ′ above stable under the algebra generated by OD and the vector
field x d

dx
. In a coordinate-free way it means that ∇(M ′) ⊂M ′ ⊗ Ωlog.

Examples. Let us give some examples of regular and non-regular connections. First
of all any connection with connection matrix having poles of order ≤ 1 is regular. We
claim that the converse is true if rank(M) = 1. Indeed, in this case the connection
matrix A is just a differential one-form which is meromorphic at 0. The RS-condition
says that there exists a meromorphic function g such that A+g−1dg has pole of order
≤ 1 at 0. But g−1dg also has a pole of order ≤ 1 at 0. Hence the same is true for A.

Here is an example of a connection matrix of rank 2 which has poles of order
> 1 but still defines a maromorphic connection with regular singularities. Namely let
β an arbitrary meromorphic function on D and consider the connection ∇β whose
connection matrix is

Aβ =

(
0 β
0 0

)

We claim that for every beta the connection ∇β has regular singularities at 0. Indeed,
it is easy to see that there exists a meromorphic function u on D such that −u′ + β
has pole of order ≤ 1. Define

g =

(
1 u
0 1

)
.

Then it is easy to see that the matrix gAβg−1 + g−1dg has poles of order ≤ 1 at 0.
Hence ∇β has regular singularities.

Here are some first properties of RS.
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Given two meromorphic connections (M1,∇1) and (M2,∇2) w may consider their
tensor product ∇1⊗∇2 (this is a connection on M1M

OD2

). It is easy to see that if both

∇1 and ∇2 have RS then their tensor product has that property too.
Also given a meromorphic connection (M,∇) we may define the dual meromorphic

coneection ∇∨ on M∨ = Hom(M,OD). If ∇ has RS then ∇∨ has RS too.
Given two meromorphic connections as above we can define their inner Hom by

Hom(M1, M2) = M∨
1 ⊗M2.

It follows from the above that if ∇1 and ∇2 have RS then the same is true for the
corresponding connection on Hom(M1, M2).

Here is an analytic characterisation of regular singularities (RS) on D.

Definition 1.3. Let f be a vector-valued function defined in some sector

{z = ρeiθ| 0 < |ρ| < r, α < θ < β}.
We say that f has moderate growth if there exist some constants C and γ such that

||f(ρeiθ)|| ≤ Cρ−γ.

Theorem 1.4. A meromorphic connection ∇ regular if and only if for every sector
α < arg(x) < β the horizontal sections for ∇ on this sector have moderate growth.

Proof. Suppose first that ∇ is regular. Thus we are looking for the asymptotics
of solutions of the equation

dF

dz
= A(z)F

where A is an n× n-matrix of meromorphic functions having poles of order ≤ 1 at 0

and F is a function of z with values in Cn. Let Ã(z) = zA(z). Then Ã is regular at
0. So, we have the equation

ρ
d

dρ
= Ã(ρeiθ)F.

Lemma 1.5. Let f, B : [0, L]→Matn(C) be two C1-functions such that

f ′(t) = B(t)f(t).

Then we have
||f(L)|| ≤ ||f(0)||eLmax ||B||. (1.1)

Proof. We have

f(L) = lim
n→∞

n−1∏

j=0

e
L
n

B( j
n

)f(0).

Let us set M = max ||B||. Then for ε >? we have

||f(L)|| ≤ lim sup
n→∞

n−1∏

j=0

||eL
n

B( j
n

)||·||f(0)|| ≤
n−1∏

j=0

(1 +
L

n
(1+ ε)M)||f(0)|| ≤ eL(1+ε)M ||f(0)||.
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As n→∞ we set that the above inequality becomes true for all = ε > 0. �

�

Theorem 1.6. Restriction to D∗ is an equivalence of categories ”meromorphic
connections with regular singularities= connections on D∗”.

Proof. The restriction functor is clearly exact and faithful. Also we claim that it
is surjective on objects. Indeed, since π1(D

∗) = Z it follows that every connection on
D∗ of rank n is isomorphic to a connection on the trivial rank n vector bundle on D∗

with connection form equal to A dz
z

where A is some constant n×n-matrix. Extending
this bundle in the trivial way to D we get a connection with regular singularities.

Let us denote the restriction functor by R. To prove Theorem 1.6 it is enough now
to show that for two meromorphic connections (M1,∇1) and (M2,∇2) with regular
singularities we have

Hom(M1, M2) = Hom(R(M1), R(M2))

(here in the left hand side we look at the morphisms in the category of meromorphic
connections on D and in the right hand side we deal with morphisms in the category
of connections (local systems) on D∗).

Let φ ∈ Hom(R(M1), R(M2)). We can regard φ as a flat section of Hom(M1, M2)
on D∗. By Theorem 1.4 φ has moderate growth. Also φ is holomorphic on D∗. Such
a section is automatically holomorphic on D. Hence φ comes from an element of
Hom(M1, M2). �

1.7. Regular connections on an arbitrary curve. Let X be a smooth pro-
jective curve, j : Y ↪→ X an open subset, S – the complement of Y (finite set). Let
DS

X denote the subsheaf of algebras of the sheaf DX generated (locally) by OX and
vector field which vanish on S. We say that an OY -coherent DY -module N has regu-
lar singularities if there exists an OX -coherent (=vector bundle on X) submodule M
of j∗(N) which is stable under DS

X .
It is clear that the category of OY -coherent RS DY -modules is closed under sub-

quotients.
This definition of regular singularities is connected with what we studied before

in the following way.
Let M be as above. Let s ∈ S and let D be a small disc around s (not containing

any other point from S). Then the restriction of M to D acquires a meromorphic
connection with regular singularities.

Theorem 1.8. The natural functor ”O-coherent D-modules on Y with regu-
lar singularities” → ”connection on Y an (i.e. Y considered as a complex analytic
manifold)” is an equivalence of categories. In particular, we have an equivalence ”O-
coherent D-modules on Y with regular singularities” ' ”representations of π1(Y ).
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Proof. Let us denote the functor in question by N 7→ N an (we shall call the
analytification functor). This functor is clearly exact and faithful. Hence to show
that it is an equivalence of categories we must show the following two statements:

1. The analytification functor is surjective on objects.
2. For every two OY -cohere DY -modueles N1, N2 we have

Hom(N1, N2) = Hom(Nan
1 , Nan

2 ).

Let us prove 1. Let (N an,∇an) be a holomorphic vector bundle with a connection
on Y . We must show that there exists an algebraic vector bundle M on X with a
connection ∇ with poles of first order along S such that (M,∇)|anY = (Nan,∇an). By
Theorem 1.6 such an M exists locally in the analytic topology. Thus globally we get
a holomorphic vector bundle M an on Xan with a meromorphic connection ∇an having
poles of first order along S. By GAGA M an ha unique algebraic structure and thus
gives rise to an algebraic vector bundle M on X. Thus ∇an becomes a holomorphic
section of some algebraic vector bundle on X and therefore is also algebraic by GAGA.

�

Theorem 1.9. The notion of RS-modules is stable under extensions.

Enough to prove this for the disc – there we have to make an explicit calculation.
In general we say that a holonomic D-module on a (not necessarily projective)

curve X is RS if at the generic point it is an O-coherent module which is RS.
As an example let us consider X = C. Consider D-modules on C which have RS

and which are O-coherent on C∗. We can completely describe this category. Namely
let τ : C/Z→ C be any lift of the natural projection (we shall assume that τ(0) = 0.
We claim that this category is equivalent to the following one:

”pairs of finite-dim. vector spaces E, F with morphisms u : E → F and v : F → E
such that the eigenvalues of vu lie in the image of τ (it is then automatically true
also for uv)”. The functor in one direction is described in the following way. If M is
a module as above then let Mα (for α ∈ C) denote the generalized α-eigenspace of
x d

dx
. Then we define

F = ⊕α∈Im(τ)M
α−1, E = ⊕α∈Im(τ)M

α

We also let v be multiplication by x and let u be d
dx

.
The functor in the opposite direction is: given (E, F, u, v) define

M = C[x]⊗ E ⊕ C[
d

dx
]⊗ F

Also define the action of x and d
dx

by

d

dx
(1⊗ e) = 1⊗ u(e) x(1⊗ f) = 1⊗ v(f)

(the action of x on C[x]⊗E and the action of d
dx

on C[ d
dx

]⊗F are assumed to be the
natural ones).
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It is easy to see that these two functors are mutually inverse.
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CHAPTER 5

The Riemann-Hilbert correspondence and perverse sheaves

1. Riemann-Hilbert correspondence

1.1. Constructible sheaves and complexes. Let X be a complex algebraic
variety. We denote by Xan the correspondent analytic variety, considered in classical
topology.

Let CX be the constant sheaf of complex numbers on Xan. We denote by Sh(Xan)
the category of sheaves of CX -modules, i.e., the category of sheaves of C-vector
spaces. Derived category of bounded complexes of sheaves will be denoted by D(Xan).
We shall call sheaves F ∈ Sh(Xan) CX-modules and complexes F · ∈ D(Xan) CX-
complexes. We shall usually omit the · superscript when it does not lead to a confusion.

We shall call a CX-module F constructible if there exists a stratification X = ∪Xi

of X by locally closed algebraic subvarieties Xi, such that F |Xan
i

is a locally constant
(in classical topology) sheaf of finite-dimensional vector spaces. We shall call a CX-
complex F · constructible if all its cohomology sheaves are constructible CX-modules.
The full subcategory of D(Xan) consisting of constructible complexes will be denoted
by Dcon(X

an).
Any morphism π : Y → X of algebraic varieties induces the continuous map

πan : Y an → Xan and we can consider functors

π!, π∗ : D(Y an) −→ D(Xan)

π∗, π! : D(Xan) −→ D(Y an).

Also we shall consider the Verdier duality functor

D : D(Xan) −→ D(Xan).

Theorem 1.2. The functors π∗, π!, π
∗, π! and D preserve subcategories Dcon( ).

On this categories D ◦ D ' Id and

Dπ∗D = π!, Dπ∗D = π!.

1.3. De Rham functor. Denote by Oan
X the structure sheaf of the analytic

variety Xan. We will assign to each OX -module F corresponding “analytic” sheaf of
Oan

X -modules Man, which is locally given by

Man = OXan ⊗
OX

M.
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This defines an exact functor

an :M(OX) −→M(OXan).

In particular, the sheafDan
X is the sheaf of analytic (holomorphic) differential operators

on Xan and we have an exact functor

an :M(DX) −→ M(Dan
X ).

Since this functor is exact it induces a functor

an : D(DX) −→ D(Dan
X ).

Definition 1.4. Define the De Rham functor DR : D(DX)→ D(Xan) = D(Sh(Xan))
by

DR(M ·) = Ωan

X ⊗
Dan

X

(M ·)an.

Remarks. 1. We know that the complex dR(DX) is a locally projective resolution of
the right DX-module ΩX . Hence

DR(M ·) = dR(Dan
X ) ⊗
Dan

X

(F ·)an[n] = dR((M ·)an)[n],

where n = dim X.
In particular, if M is an O-coherent DX-module corresponding to some vector

bundle with a flat connection and L = Mflat is the local system of flat sections of F
(in classical topology), then by Poincaré lemma

DR(M) = L[n].

2. Kashiwara usually uses a slightly different functor Sol : Dcoh(DX)o → D(Xan)
defined by

Sol(M ·) = RHomDan
X

(Man,Oan
X ).

We claim that Sol(M·) = DR(DM ·)[−n]. This follows from the following formula.
Let P be any locally projective DX-module and let P ∨ = HomDX

(P,DΩ
X). Then

HomDX
(P,OX) = ΩX ⊗

DX

(P∨),

Here is the main result about the relation between D-modules and constructible

sheaves.

Theorem 1.5. a) DR(Dhol(DX)) ⊂ Dcon(X
an). Also on Dhol(DX) we have

D ◦DR = DR ◦ D.

(note that in the laft hand side D means the Verdier duality and in the right hand
side D stands for the duality of D-modules).

For M · ∈ Dhol(DX) and N · ∈ D(DY ) we have

DR(M ·
� N ·) ≈ DR(M ·) � DR(N ·).
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b) On the subcategory Drs the functor DR commutes with D, π∗, π
!, π!, π

∗ and �.

c) DR : Drs(DX)→ Dcon(X
an) is an equivalence of categories.

1.6. Simple statements. First let us consider some basic properties of the func-
tor DR.
(i) DR commutes with restriction to an open subset. For an étale covering π : Y → X
the functor DR commutes with π∗ and π!.

(ii) For a morphism π : Y → X there exists a natural morphism of functors α :
DRπ∗ → π∗ ◦DR which is an isomorphism for proper π.

In order to prove this let us consider the functor
πan
∗ : D(Dan

Y )→ D(Dan
X ) on the categories of Dan-complexes, which is given by

πan
∗ (M ·) = Rπan

• (Dan
X←Y ⊗

Dan
Y

M ·).

We claim that DR ◦ πan
∗ = π∗ ◦DR. Indeed,

DR(πan
∗ (M ·)) = Ωan

X

L
⊗
Dan

X

Rπan
• (Dan

X←Y

L
⊗
Dan

Y

M ·) =

Rπan
• (π•(Ωan

X )
L
⊗

π•Dan
X

Dan
X←Y

L
⊗
Dan

Y

M ·) = Rπan
• (Ωan

Y

L
⊗

Dan
Y

M ·),

since π•ΩX D
π.DX⊗X←Y

≈ ΩY as a DY -module.

Now there exists in general the natural morphism of functors

an ◦Rπ•(M
·) −→ Rπan

• (M ·)an.

This functor is not an isomorphism in general, since direct image on the left and on
the right are taken in different topologies. But according to Serre’s “GAGA” theorem
it is an isomorphism for proper π. Combining these 2 observations we obtain (ii).

(iii) On the category of coherent DX -complexes there exists a natural morphism of
functors

β : DR ◦ D(M ·)→ D ◦DR(M ·)

which is an isomorphism for O-coherent M · and which is compatible with the iso-
morphism π∗ ◦DR = DR ◦ π∗ for proper π, described in (ii).

By definition of the duality functor D in the category D(Xan) we have

D(F ·) = RHomCX
(F ·, CX [2 dim X]).

(Note that CX [2 dim X] is the dualizing sheaf of Xan). Hence in order to construct β
it is sufficient to construct a morphism

β ′ : DR ◦ D(M)⊗CX
DR(M) −→ CX [2 dim X].

As we have seen above DR ◦ D(M) is naturally isomorphic to

Sol(M)[dim X] = RHomDan
X

(Man,Oan
X )[dim X].
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Let us realize DR(M) as dR(M an) and DR◦D(M) as RHomDan
X

(Man,Oan
X [dim X]).

Hence we get a morphism

β ′′ : Man ⊗CX
DR(M) −→ Oan

X [dim X]).

Since dR(Oan
X ) = CX [2 dimX] by applying dR to both sides we get β ′.

It is easy to check that the corresponding β is an isomorphism for O-coherent M .
It remains to check that β is compatible with (ii). By it is enough to do it for

projections Z×X → X where Z is smooth for which the statement is straightforward.

(iv) There is a natural morphism of functors

γ : DR(M � N) −→ DR(M) � DR(N)

which is an isomorphism for O-coherent M .
The morphism γ is defined by the natural imbedding Ωan

X �C Ωan
Y −→ Ωan

X×Y . If
M is O-coherent and N is locally projectively then γ is an isomorphism by partial
Poincaré lemma. This implies the general statement.

(v) There is a natural morphism of functors

δ : DR ◦ π!(M)→ π!DR(M)

which is an isomorphism for smooth π.
It is enough to construct δ in the following two cases:
1. π is an open embedding.
2. π is a smooth projection.
3. π is a closed embedding.
In the first case the construction of δ is obvious (it is also clear that in this case

δ is an isomorphism). Consider the second case. In this case the isomorphism δ
can be constructed on generators – locally projective modules. Indeed, let π : Y =
T × X → X be the projection, then π!(M) = OT � M [dim T ] and π!DR(M) =
CT � DR(M)[2 dim T ] = DR(OT ) � DR(M)[dim T ].

Consider now the case of a closed embedding i : Y → X. Using i∗, which com-
mutes with DR, we will identify sheaves on Y with sheaves on X, supported on Y .
Then i∗i

!M = RΓY M in both categories, which gives the natural morphism

δ : DR ◦ i∗i
!(M) = DR(RΓY M) −→ RΓY DR(M) = i∗i

!DR(M).

1.7. Proof of Theorem 1.5 a). Let M be a holonomic DX-complex. Consider
the maximal Zariski open subset U ⊂ X such that DR(M)|U is constructible. Since
M is O-coherent almost everywhere it follows that U is dense in X.

Let W be an irreducible component of X \ U . We want to show that DR(M) is
locally constant on some Zariski dense open subset W0 ⊂ W .
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Proposition 1.8. We can assume that

X = P×W, W = p×W, where p ∈ P

and that V = U ∪W is open in X. Here P denotes some projective space.

Indeed, consider an étale morphism of some open subset of W onto an open subset
of an affine space Ak and extend it to an étale morphism of a neighbourhood of W
onto an open subset of An ⊃ Ak. By changing base from Ak to W we can assume
that V = U ∪W is an open subset of X ′ = P

n−k ×W . Then we can extend M to
some holonomic D-module on X ′.

Now consider the projection pr : X = P×W → W . Since it is a proper morphism
it follows that DR(pr∗(M)) = pr∗DR(M). Since pr∗(M) is a holonomic DW -complex,
it is O-coherent almost everywhere. Hence DR(pr∗(M)) is locally constant almost
everywhere.

Put S = DR(M) ⊂ D(Xan). Replacing W by an open subset, we can assume that
pr∗(S) = DR(pr∗(M)) is locally constant. We have an exact triangle

SU → S → SX\U

where SU = (iU)!S|U) and iU : U → X is the natural embedding.
By the choice of U the complex S|U is constructible. Hence the complex SU is

constructible. Thus the complex pr∗(SX\U) is constructible. Replacing W once again
by an open subset we can assume that it is locally constant.

Now SX\U is a direct sum of 2 sheaves (iW )!S|W and something concentrated on
{X \ U} \W (here we use the fact that V is open in X). This implies that S|W is
a direct summand of the locally constant sheaf pr∗(SX\U ) and hence itself is locally
constant. �

1.9. Proof of Theorem 1.5 b) for D and �. Let us now show that DR
commutes with D for holonomic complexes. Let M ∈ Dhol(DX). Put

Err(M) = Cone(DR ◦ D(M)→ D ◦DR(M)).

This sheaf vanishes on a dense open subset where M is O-coherent. Also we know that
the functor Err commutes with direct image for proper morphisms. Repeating the
above arguments we can show that Err = 0, i.e., DR commutes with D on Dhol(DX).

Also the same arguments show that DR(M � N) = DR(M) � DR(N) for holo-
nomic M .

Remark. Of course this proof is simply a variation of Deligne’s proof of “Théorèmes
de finitude” in SGA 4 1/2. Note the crucial role in the proof of both statements
is played by the fact that we have a well-defined morphism between the two corre-
sponding functors for all D-modules. Then we use Deligne’s trick to show that it is
an isomorphism for holonomic ones.
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1.10. Proof of Theorem 1.5 b) for direct image. Let us prove that the
morphism

DR ◦ π∗(M)→ π∗ ◦DR(M)

is an isomorphism for M ∈ Drs(DY ).

Case 1. π = j : Y → X is a regular extension 1 and M is an O-coherent DY -module
with regular singularities. Blowing up Y and making use of (ii) above we see that it
is enough to consider the case when Y has codimension 1 in X.

In this case the proof is straightforward, using the definition of RS (it was done
by P. Deligne). Since M has RS there exists an O-coherent submodule M ′ ⊂ j∗M
with respect to which our connection has a pole of order ≤ 1. It is clear that both
j∗(DR(M) and DR(j∗(M) depend only on (M ′)an (which is a meromorphic connec-
tion).

Now, locally in the neighbourhood of a point x ∈ X \Y we can choose coordinates
x1, . . . , xn such that X \ Y is given by the equation

x1 = 0.

We may replace x by an analytic neighbourhood of x such that π1(X \ Y, x) = Z.
Since the above fundamenta group is commutative, we can decompose M ′ into 1-
dimensional subquotients. Using commutativity with � we can reduce to the case
dim X = 1. Hence as OX -module M ′ is generated by one element e, which satisfies the
equation x∂(e) = λe. In this case our statement can be proved by a direct calculation.
Case 2. M is an O-coherent DY -module with regular singularities.

In this case we decompose π = π+ ◦ j, where j : Y → Y + is a regular extension
and π+ : Y + → X is a proper morphism. Then we know that DR commutes with j∗
by Case 1 and with π+

∗ by Section 1.6 (ii).

General Case. It is sufficient to check the statement on generators. Hence we can
assume that M = i∗(N), where i : Z → Y is a locally closed imbedding and N an
O-coherent DZ-module with regular singularities. Then

DR(π∗(M)) = DR(π ◦ i)∗(N)
Case 2
= (π ◦ i)∗ DR(N) =

π∗(i∗DR(N))
Case 2
= π∗DR(i∗(N)) = π∗DR(N).

It follows that on Drs(DX) the functor DR also commutes with π! since π! = D◦π∗◦D
and we have already checked that DR commutes with D.

1by a regular extension we mean an open embedding j : Y → X such that the corresponding
embedding X \ Y → X is regular
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1.11. Proof of Theorem 1.5 b) for inverse image. It is enough to prove
Theorem 1.5 for the functor π! (since π∗ = D ◦ π! ◦ D).

In Section 1.6 (v) we have constructed the morphism δ : DR ◦ π ! → π! ◦ DR
which is an isomorphism for smooth π. Hence it is sufficient to check that for RS
DY -complexes the morphism δ is an isomorphism for the case of a closed embedding
π = i : Y ↪→ X. Denote by j : U = X \Y → X the embedding of the complementary
open set. Then we have the morphism of exact triangles

DR(i∗i
!M)−→DR(M)−→DR(j∗(M |V ))yδ

yid

yα

i∗i
!DR(M)−→DR(M)−→j∗(DR(M)|V ).

Since we already know that α is an isomorphism it follows that δ is an isomorphism.

1.12. Proof of Theorem 1.5 c). First of all, let us prove that DR gives an
equivalence of Drs(DX) with a full subcategory of Dcon(X

an). We should prove that
for M, N ∈ Drs(DX) the map

DR : HomDrs
(M, N) −→ HomDcon

(DR(M), DR(N))

is an isomorphism.
It turns out that it is simpler to prove the isomorphism of RHom. Let π denote

the morphism from X to pt. We know that

RHom(M, N) = π∗RHom(M, N) = π∗DM ⊗N.

Note that ⊗ in the sense of D-modules is transformed to
!
⊗ in Dcon(X

an). 2

This implies that

DR(RHom(M, N)) = RHom(DR(M), DR(N)).

This proves that DR gives an equivalence of the category Drs(DX) with a full sub-
category of Dcon(X

an).
Now let us prove that this subcategory contains all isomorphism classes of Dcon(X

an).
Since it is a full triangulated subcategory, it is sufficient to check that it contains
some generators. As generators we can choose CX -complexes of the form i∗(L) where
i : Y → X is an imbedding and L is a local system on Y . We ca also assume that Y
is smooth. Since DR commutes with direct images it is sufficient to check that there
exists an O-coherent DY -module M such that DR(M) ' L[dim Y ]. This is a result
by P. Deligne.

2By the definition F
!

⊗H = ∆!F �H where ∆ : X → X ×X is the diagonal embedding.
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1.13. Perverse sheaves. Theorem 1.5 gives us a dictionary which allows to
translate problems, statements and notions from D-modules to constructible sheaves
and back.

Consider one particular example. The category Drs(DX) of RS-complexes con-
tains the natural full abelian subcategory RS-category of RS-modules.

How to translate it in the language of constructible sheaves?
From the description of the functor i! for locally closed imbedding one can imme-

diately get the following

Criterion. Let M be a holonomic DX -complex. Then M is concentrated in non-
negative degrees (i.e., H i(M) = 0 for i < 0) if and only if it satisfies the following
condition.
(∗)rs For any locally closed embedding i : Y → X there exists an open dense subset
Y0 ⊂ Y such that i!M |Y0

is an O-coherent DY0
-complex, concentrated in degrees ≥ 0.

In terms of constructible complexes this condition can be written as
(∗)con For any locally closed embedding i : Y → X there exists an open dense subset
Y0 ⊂ Y such that i!S|Y0

is locally constant and concentrated in degrees ≥ - dim Y .
Thus we have proved the following.

Criterion. A constructible complex S lies in the abelian subcategory

DR(Drs(DX)) iff S and DS satisfy (∗)con.

Such a complex is called a perverse sheaf on Xan.

1.14. Analytic criterion of regularity. For any point x ∈ X let us denote
by Oan

x (resp. Oform
x ) the algebra of convergent (resp. formal) power series on X at

the point x. For any DX -complex M the natural inclusion Oan
x → Oform

x induces a
morphism

νx : RHomDX
(M,Oan

x ) −→ RHomDX
(M,Oform

x ).

We say that M is good at x if νx is an isomorphism.

Theorem 1.15. (1) Let M be an RS DX-complex. Then M is good at all
points.

(2) Assume that X is proper. Then M is good at all points of X if and only if
M is RS.

Proof. FILL IN LATER �
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