
THE IRREDUCIBILITY 

OF THE SPACE OF CURVES OF GIVEN GENUS 

by P. DELIGNE and D. M U M F O R D  (1) 

Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g 

over k. The main result of this note is that Mg is irreducible for every k. O f  course, 
whether or not M s is irreducible depends only on the characteristic of k. When the 

characteristic is o, we can assume that k ~- (1, and then the result is classical. A simple 

proof  appears in Enriques-Chisini [E, vol. 3, chap. 3], based on analyzing the totality 
of coverings of p1 of degree n, with a fixed number  d of ordinary branch points. This 
method has been extended to char. p by William Fulton [F], using specializations from 

char. o to char. p provided that p >  2g q-i .  Unfortunately, attempts to extend this method 
to all p seem to get stuck on difficult questions of wild ramification. Nowadays,  the 
Teichmtiller theory gives a thoroughly analytic but  very profound insight into this 

irreducibility when k----C. Our  approach however is closest to Severi's incomplete 

proof  ([Se], Anhang F ;  the error is on pp. 344-345 and seems to be quite basic) and 
follows a suggestion of Grothendieck for using the result in char. o to deduce the result 

in char. p. The basis of both Severi's and Grothendieck's ideas is to construct families 

of curves X, some singular, with pa(X)-=g, over non-singular parameter  spaces, which 
in some sense contain enough singular curves to link together any two components 

that Mg might have. 

The essential thing that makes this method work now is a recent " stable reduction 
theorem " for abelian varieties. This result was first proved independently in char. o 

by Grothendieck, using methods of etale cohomology (private correspondence with 

J .  Tate), and by Mumford,  applying the easy half of Theorem (2.5), to go from curves 
to abelian varieties (cf. [M2] ). Grothendieck has recently strengthened his method so 
that it applies in all characteristics (SGA 7, ~ 9 6 8 )  �9 Mumford has also given a proof  using 
theta functions in char. ~2 .  The result is this: 

Stable Reduction Theorem. - -  Let R be a discrete valuation ring with quotient field K. 
Let A be an abelian variety over K. Then there exists a finite algebraic extension L of K such 

(x) The first author wishes to thank the Institut des Hautes ]~tudes scientifiques, Bures-sur-Yvette, for support 
in this research and N. KATZ, for his invaluable assistance in the preparation of this manuscript; the second author 
wishes to thank the Tata  Institute of Fundamental  Research, Bombay, and the Institut des Hautes ]~tudes 
scientifiques. 
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76 P. D E L I G N E  AND D. M U M F O R D  

that, i f  R L = integral closure of R in L, and i f  di~ is the Ngron model of A • ~ L over Rs, then 
the closed fibre AL. ~ of di~ has no unipotent radical. 

We shall give two related proofs of our main result. One of these is quite elemen- 
tary, and follows by quite standard techniques once the Stable Reduction Theorem for 

abelian varieties is applied, in w 2, to deduce an analogous stable reduction theorem 

for curves. The other proof  is more powerful, and is based on the use of a larger category 
than the category of schemes, and on proving for the objects of this category many of the 

standard theorems for schemes, especially the Enriques-Zariski connectedness theorem 

(EGA 3, (4-3)). Unfortunately, this larger category is not quite a category - -  it is 
a simple type of 2-category; in fact, if X, Y are objects, then H o m ( X ,  Y) is itself a category, 
but  one in which all morphisms are isomorphisms. The objects of this 2-category we 

call algebraic stacks (1). The moduli space M~ is just  the " underlying coarse variety " 
of a more fundamental  object, the moduli stack =ggg studied in [Ma]. Full details on the 

basic properties and theorems for algebraic stacks will be given elsewhere. In this 
paper, we will only give definitions and state without  proof  the general theorems which 

we apply. Using the method of  algebraic stacks, we can prove not only the irreducibility 
of  Mg itself, but  of  all higher level moduli spaces of  curves too (cf. w 5 below). 

w I~ S t a b l e  c u r v e s  a n d  t h e i r  m o d u l i .  

The key definition of  the whole paper is this: 

Definition ( x . x ) .  - -  Let S be any scheme. Let g>2 .  A stable curve of genus g 

over S is a proper f la t  morphism 7~:C-+S whose geometric fibres are reduced, connected, 
I-dimensional schemes C 8 such that: 

(i) C 8 has only ordinary double points; 
(ii) / f  E is a non-singular rational component of Cs, then E meets the other components of C~ 

in more than 2 points; 

(iii) dim HI(0cs)=g.  

We will study in this section three aspects of the theory of stable curves: their 
pluri-canonical linear systems, their deformations, and their automorphisms. 

Suppose r~ : C-+S is a stable curve. Since r~ is fiat and its geometric fibres are 
local complete intersections, the morphism 7~ is locally a complete intersection (i.e., locally, 

C is isomorphic as S-scheme to V( f l ,  . . . , f n _ l ) c A n •  where U c S  is open, and 

f l , . - . , f , - l ~ F ( 0 A ,  xU) are a regular sequence). Therefore, by the theory of  duality 
of coherent sheaves [H], there is a canonical invertible sheaf eoc/s on C - -  the unique 

non-zero cohomology group of the complex of sheaves f ! (0s) .  We need to know the 
following facts about  ~c/s: 

a) for all morphisms f :  T-+S,  ~CxsW/W is canonically isomorphic to f*(O~c/s) ; 

(1) A slightly less general category of objects, called algebraic spaces, has been introduced and studied very 
deeply by M. ARTIN [Ai] and D. KmrrsoN [K]. The idea of enlarging the category of varieties for the study of 
moduli spaces is due originally, we believe, to A. Well. 

76 



THE I R R E D U C I B I L I T Y  OF TH E SPACE OF CURVES OF GIVEN GENUS 77 

b) if S = Spec(k), k algebraically closed, let f :  C ' ~ C  be the normalization of C, 

xl, . . . ,  xn, yl ,  . . . , y ~  the points of C' such that the z i=f(x~)=f(y i ) ,  i < i < n ,  are the 
double points of C. Then toc/s is the sheaf of i-forms ~ on C' regular except for simple 
poles at the x's andy ' s  and with Res~ i (~)+Re%i(~)=o  ; 

c) if S = Spec(k), and o~ is a coherent sheaf on C, then 

Hom(H' (C,  o~), k) ~ Hom~o(o~, toe/s). 

Theorem (x  . 2 ) .  - -  I f  g > 2  and C is a stable curve of genus g over an algebraically closed 
f ield k, then Hi(C, | --  toc/k)--(o) i f  n>2,  and (o| is very ample i f  n>3.  

Proof. - -  Since C is stable, of genus g > 2 ,  every irreducible component E of C 
either i) has (arithmetic) genus > 2  itself, 2) has genus I, but meets other components 
of C in at least one point, or 3) is non-singular, rational and meets other components 

of C in at least three points. But by b) above, toC/k| is isomorphic to toE/k(~Q~), 

where {Q~} are the points where E meets the rest of C. Since the degree of toE/k is 
2gE--2, it follows that in any of the cases I, 2 or 3, toc/kQg)E has positive degree. This 
shows immediately that toc/k is ample on each component E of C, hence is ample. 

l-][0/'a@l--n). Since 0 E has positive Next, by c) above, Hl(toc~) is dual to ~ ~c/k toc/k | 
l . . I 0 / , . , |  1 - -  n '~  _ _  degree, ~C/k'"e~-"C~0E~ has no sections for any E, any n>2;_ therefore .~ ~"c/k j - - (o)  

if n>2,  and so n i ( toc~)=(o)  if n>2 .  
To prove that an invertible sheaf ~ on any scheme C, proper over k, is very ample, 

it suffices to show 

a) for all closed points x+y 

H~ 5e)->H~ (~'|174174 
is surjective, 

b) for all closed points x, 

H~ 5r --->H~ ~r174 0=/m~) 
is surjective. 

Using the exact sequence of cohomology, these both follow if Hi(C, m~. m u . ~ 9~ = (o) 
for all closed points x, y e C .  In  our case, s toc| n > 3  ' so if we use duality, we must 
s h o w  : 

(*) Hom(m~. mu, to~-") = (o), if n >  2. 

I f  x is a non-singular point, mx is an invertible sheaf. I f  x is a double point, let rc : C'-+ C 
be the result of blowing up x, and let x~, x2eC' be the two points in r~-a(x). Then it is 
easy to check that for any invertible sheaf ~qo on C: 

Hom(m~, s162 ~ H~ ', ~*s 

Horn(m2+, s  Ho(C ', r:*Lf(xt +x2) ). 

Therefore, we have 3 cases of (*) to check: 

Case 1. - -  x, y non-singular points of C, then H~ if n>2 .  
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7 8 P. D E L I G N E  A N D  D. M U M F O R D  

Case 2 . -  x double point of  C, r ~ : C ' - + C  blowing up x, {xl, x2}=~-a(x) ,  
and y a non-singular point of C. Then 

H~ = (o), H~ if n>2 .  

Case 3. - -  x , y  double points of C, r~ : C ' -+C  blowing up x andy. 

H~ = (o) if n>2 .  

Then 

Now since the degree of O~c n (n>2) on all components E of C is less than or equal 
to - -2 ,  all of this is clear, except in those cases where n = 2, the degree of co c on some E 
is i, and in which two poles are allowed on E. This occurs if: 

(i) case I, pa (E )= I ,  E meets C - - E  at only one point, x, y e E .  
(ii) case I, pa (E)=o ,  E meets C - - E  at only three points, x, y e E .  
(iii) case 2, E a rational curve with one double point meeting C - - E  at one 

point, x = d o u b l e  point of E. 

But in all these cases, C has components besides E and a section in the H ~ in 
question must definitely vanish on all these other components. So at the points where E 

meets C - - E ,  the section has extra zeroes. Since the sheaf in question has degree o 
on E, the section is zero on E too. Q .E .D .  

Corollary. - -  Let ~ : C-+S be any stable curve of genus g>~._ Then ~c/s| is relatively 
very ample i f  n>3  and ~,(o)~) is a locally free sheqf on S of rank ( 2 n - - I ) ( g - - i ) .  

Proof. - -  In fact, since for all seS, Hl(o~c~|  it follows from [EGA, 

chap. 3, w 7], that rL(O)c~) is locally free and that %(~)|176174 
Therefore the corollary follows. Q .E .D .  

Taking n = 3, it follows that every stable curve C/S can be realized as a family 
of curves in psg-6 with Hilbert  polynomial: 

Pa(n) = (6n-- z)(g--  z). 

([MI],  P. 99), it is easy to prove that there is a Following standard arguments 

subscheme 
Hg r I -I i lb~g_ s 

o f "  all " tri-canonically embedded stable curves. (Hi lb  is the Hilbert  scheme over Z.) 
To be precise, there is an isomorphism of functors: 

i set of stable curves ~ : C-.~S, plus isomorphisms: 1 

Hom(S,  Hg) ~ i P(rL(~c~)) ~ p5g-G x S 
t 

(modulo isomorphism) 

We will denote by Zg c Hg •  ~g-6  the universal tri-canonically embedded stable curve. 

The functor of stable curves itself is the sheafification of the quotient of functors: 

Hg/PGL(5g--6) .  
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THE IRREDUCIBILITY OF THE SPACE OF CURVES OF GIVEN GENUS 79 

We now consider the deformation theory of stable curves. Let k be any ground 
field. The deformation theory of X's smooth over k can be found in [SGA, 6o-6I]; 
for singular S's, the theory has been worked out in [Sc]. We shall indicate here the 
results of this theory for a scheme X which is 

(i) one-dimensional; 
(ii) generically smooth over k; 
(iii) locally a complete intersection. 

The advantages of this case are two-fold: first, the " cotangent complex " of 
Grothendieck, Lichtenbaum and Schlessinger reduces, in view of (ii) and (iii), to the 
single coherent sheaf fZx/k, the Kahler differentials. Secondly, we have: 

Lemma ( I .  3). - -  Ext2(f~x/k, (gx) = (o). 

Proof. - -  Use the spectral sequence: 

HP( X, Extq(f~x/k, 0x)) ~ ExtP+q(ax/k, ~)x)- 

Then (i) He(X, Ext ~ = (o) since dim X = I. (ii) Since ~x/k is locally free except 
at a finite number  of points, Extl(flx/k, Ox) has o-dimensional support, hence 
Hi(X, Ext l )=(o) .  (iii) Locally, if we embed X c A  n, then f2x/k has a free resolution 
of length 2: 

o ~ J / f i  -+  ~An| Ox ~ g~x/k ~ o 

where 3"=  sheaf of ideals defining X. Therefore Ext2= (o). Q .E .D.  

In Schlessinger's theory, the significance of Lemma (I .3) is that all obstructions 
vanish, i.e., deformations of X over base schemes Spec(A/U) (A = loca l  Artin ring with 
residue field k) can always be embedded in deformations over Spec(A). Moreover, 
the theory says that there is a canonical one-one correspondence between Extl(f~x/k, g)x) 
and the first order deformations of X, i.e., proper, flat morphisms p, and isomorphisms 
as follows : 

X~ D Xl• k <~ X 
(x 

P 

Speck[~]/~2 D Speck = Speck. 

Since the obstructions vanish, there is a versal formal deJbrmation ~ of X over the base 
scheme 

~ ' =  Spec Ok[[tl, . . . ,  /hi], 

where o k = k  if the char. is o, or the complete regular 

local ring, max. ideal p. ok, residue field k, 
if char. (k) = p ,  unique (by Cohen's structure theorem) 

and N = dimkExtl(g~x, ~)c)- 
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8o P. D E L I G N E  A N D  D. M U M F O R D  

This means that :Y is a formal scheme, proper and flat over M/, with fibre X over 
Spec(k) and the two properties: 

a) Every deformation of X is induced from YC, i.e., if A is a local Artin 0k-algebra 
with residue field k, and p : Y ~ Spec(A) is proper and flat with fibre X over Spec(k), 
then there is a commutative diagram: 

Y =~/T xj~Spec(A) > 

Spec(A) ] > ~ /  

Spec(k) 

b) I f  A = k[e]/(~2), the above m o r p h i s m f i s  uniquely determined by the diagram. 
This implies that the tangent space to dt'• at its closed point is canonically isomorphic 

to Extl(Ox/k, 0x). 

In case Ext~ g)x)=(o), ~ / ~ r  is, in fact, universal: i.e., in property a), f is 
always unique, which means that the functor represented by ~ in the category of artin, 
local ok-algebras is isomorphic to the functor of deformations Y/A of X. This fortu- 
nately holds for stable curves: 

Lemma ( I . t ) .  - -  I f  X is a stable curve, Ext~ Ox)=(o  ). 
Proof. - -  We may assume that k is algebraically closed. Now a homomorphism 

from f~x to d) x is given by an everywhere regular vector field D on X. Such a vector 
field is given, in turn, by a regular vector field D' on the normalization X'  of X which 
vanishes at all points of X '  lying over the double points of X. In particular, D' and 
hence D vanishes identically on all components E of  X whose normalization E' has 
genus > 2 .  There remain the following possibilities for E: 

 iiill 
E non-singular rational E' rational, E one double pt. 

E non-singular elliptic 

E' rational, E > 2  double pts. 

/ 
E' elliptic, E >  I double points 
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In all cases where E' is rational, note  that D' has to have at least 3 zeroes; and where E' 
is elliptic, D' has to have at least one zero. So D' vanishes on all components E'. This 

proves that Ext~ ~)x) = (o). Q.E.D.  
Schlessinger's theory also allows us to trace what happens to the singularities of X 

in this deformation J t .  For each closed point xeX,  he studies deformations of the 

complete local ring gx, x alone, i.e., flat A-algebras 0 plus isomorphisms: 

0| ~ x , x .  
2 

This is a functor of A exactly as before. Since Ext&(gl&/k, g , ) = ( o ) ,  there are no 
obstructions to extending deformations. First order deformations with A = k [ r 1 6 2  2) 

1 
are classified by Ext&(fl&i,, 0,). A n d  there is a versal formal deformation ~, which 

is a complete local ring and a flat 0k[[tl, . . . ,  tN]]-algebra , N =dimkExt&(t)&/k, ~,), 
such that 

g/(p, h, . . . ,  tN)=g.,x. 
Whenever X is smooth over k at x, N = o, and the theory is uninteresting. The first 
non-trivial example is a k-rational ordinary double point with k-rational tangent lines: 

=-kr [u, 073/(,. v). 
Then N = I ,  and 

r v, td]l( V-tl). 

In  other words, if 0 is any deformation of ~x,x and u, v are lifted suitably into g), then 

u. v = weA and 0 is induced from ~ via the homomorphism ok[[tl]]-+A taking t i to w. 
This is easy to prove. 

Finally, Schlessinger's theory connects global deformations to local ones. Let 
o~/~,g~ with ~'g~ = Spec(A) be the versal global deformation, let xl, . . . ,  xk~X be the 

points where X is not smooth over k, and let ~i as Ai-algebra be the versal deformation 

of the local ring ~,i.x" Let ~dc,0=Spec(Al|  | Ak). Then we may consider the 
local rings 

of &r at x i. There are o~-homomorphisms q~i:A/.-+A such that O~i,x~=Oi| A. 
Dualizing, we obtain a morphism 

O = H  Spec(q0i) : dt'gl-->dt'~0 
i 

which describes exactly how the various singularities of  X behave in the versal defor- 
mation f .  The final fact that we need is: 

Proposition (T. 5)- - -  q~ : ~'gz--~'z0 is formally smooth, i.e., there are isomorphisms 

,~'g, g Spec 0k[[tx, . . . ,  t N +M]] 

�9 -g,o ~Spec  o,[[tt ,  . . . ,  tN] ] 

such that ~*( tl) =ti ,  I < i < N. 
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Proof. - -  In view of the functorial significance of Mt'g z and .At'10 , this follows if we 
prove that the natural map:  

k 

( .)  Ext~x (~X/k ' 0X ) _ 1 ^ 

is surjective; (,) is the induced map dap on the tangent spaces to ddgt and ~'~0. Since f~x 
is an invertible Ox-Module outside the xi's , it follows that:  

k k 1 ^ A 

i~lEXt~xi(~2zi, 1~. )~- I-[ Ext,, (f~ , ~)~i) ~ i -  - -  i = 1  ~xi~ xi 

H~ x ,  Ext~ , (ax ,  ex)). 

Therefore, (,) is surjective by the spectral sequence used in Lemma (z .3) and the fact 

that t-P(X, Ext~ 0 x ) ) = ( o  ). Q .E .D.  

In particular, suppose C is a stable curve over an algebraically closed ground 

field k, and let xl, . . . ,  x k be the double points of C. Let N = d i m  Ext l(f~x, 0x). Then C 
has a universal formal deformation ~f/Mr where . . s  o,[[tl, . . . ,  t~]]. Note that 
since in this case, the invertible sheaf c~/~ is relatively ample, ~ is not only a formal 

scheme over ..It', but  also the formal completion of  a unique scheme proper and flat 
over dr', which we will also denote by ~.  cg is clearly a stable curve over .~t'. Now 

each double point xi has one modulus (cf. our example above) so the versal deformation 

space of  the rings O,i.c is o~[[ts . . . ,  t~]]. By Proposition ( I . 5 )  , w e  may identify t i 
with t~, and we conclude that for suitable ur v~: 

. . . ,  

In particular, tr = o is the locus in ~ where " x i remains a double point " 

The relation between the formal moduli space dr' of C and the local structure 

of Hg at a point x with •  corresponding to some tri-canonical model of C is 

exactly the same as in the case of non-singular curves ([M1] , chap. 5, w 2). Let ~ 

be the completion of the local ring O,,Hg, and let T = Spec(~) .  Let x denote the closed 

point of T too. The universal family of stable curves Z g c H g •  5g-6 induces a family 

Z ' c T  • whose fibre Z', over x is C. Then there is a unique morphism f :  T ~ '  

such that Z ' ~ •  , with this isomorphism restricting to the identity on the 
fibres over x, both of which are C. I claim that via f ,  T is formally smooth 

over ,/t', i.e., O,~ok[[ t l ,  . . . ,  tN, tN+l, . . . ,  t~]]. In fact, by choosing an isomorphism 
p ~  ~| ( .(~r Tphg-6X"ft', we obtain a tri-canonical embedding c~fipsg-6•162 of c~, 

hence a morphism s : ~'--->Hg such that ~ ,  with this embedding, is the pull-back of Zg. 
Then s factors through T and s : ~ ( - + T  is a section o f f .  On the other hand, consider 

the action of P G L ( h g - - 6 )  on Hg. Let S~ be the stabilizer of  the k-valued point x. 
Then S~ is finite and reduced. Because if it were not, S, would have a non-trivial tangent 

space at the origin, i.e., there would be a k[z]/(z2)-valued point of  P G L ( h g - - 6 )  centered 

at the identity, which maps the embedded stable curve C c phg- ~ corresponding to x into 

itself. But this action is given by an everywhere regular derivation on C, and we have 
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seen that  all such vanish. This means that  this k [r / (r -valued au tomorphism is the 
identity at all points of C and, since C is connected and spans psg-6, the automorphism 
is the identi ty everywhere. Thus  S, is finite and reduced. It  follows that  the action 
of P G L ( 5 g - - 6  ) on T is formally free, and hence that  T is formally a principal fibre 
bundle  over Mr' with group P G L ( 5 g - - 6  ). Therefore T is formally smooth over .W as 
required. 

Putt ing this together with what  we know about ~/t', we conclude the following: 

Let k be any algebraically closed field, 
let H'g = Hg • Spec(0k), Z'g = Zg • Spec(ok), 
let xeH'g be a closed point, 
let C cZ'g be the stable curve over x, 
let xl, . . . ,  xt~eC be its double points. 

Then  

Theorem ( I .  6). - -  There are isomorphisms 

ok[[t,, . . . ,  

g~.z; ~ ok[[ui, vr tx, . . . ,  ti~]]/(u~v,--t,). 

Corollary (x. 7). - -  Hg is smooth over Z.  In particular, for  all algebraically closed fields k, 
Hg • Spec(k) is a disjoint union of  a f inite number of  non-singular algebraic varieties over k. 

Let 

0 _ { x e H g  l the corresponding stable curve (Zg)~ is non-singular}. H g - -  

S = {xeZg ] the projection 7: : Zg--->Hg is not smooth at x}. 

Definition ( x . 8). - -  Let p : X-->Y be a smooth morphism of  f inite type, with Y a noetherian 
scheme, and let D c X  be a relative Cartier divisor. Then D has normal  crossings relative 

to Y i f  for  all xED, the local equation d =  o of  D decomposes in the strict completion (1) "~,x 

of  0~. x as d = d l . . ,  d~, where dl, . . . ,  d k are linearly independent in fftx, x/fft~, x + my, y . '~ ,  x ,  
with y = p ( x ) .  

Corollary (x .9) .  - -  H ~  *, where S* is a divisor with normal crossings relative 
to Z.  Zg and S are smooth over Z,  and the projection p : S-->S* is finite and an isomorphism at 
all points where S* is smooth over Z,  i.e., S is the normalization o f  S*. 

Pro@ - -  In  the notat ion of Theorem (I .6), S* is defined in g~,a} by the local 
equat ion t , . . .  tk = o. And  

~ , Z ~  '~ Ok[[Ui, Vi, tl, . . . ,  ti--1, t i+l ,  . . . ,  tN]] 

0k[[tl, . . . ,  t ,_ , ,  t ,+,,  . . . ,  ts]]. Q .E .D.  

(x) The complete local ring, formally etale over ~ ,  x with residue field the separable closure of d)x, x/rex, x. 
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Next we take up the isomorphisms and automorphisms of stable curves. Suppose 

p : X-+S,  q : Y-+S are two stable curves: 

Definition ( I .  1 o ) .  - -  Isoms(X , Y) is the functor on (Sch/S) associating to each S-scheme S' 
the set of S'-isomorphisms between X •  and Y •  S'. I f  X = Y ,  we denote Isoms(X , X) 

by Auts(X ). 

Since both X and Y have the canonical polarizations C0x/s, O~y/s respectively, any 

isomorphism f : X - + Y  must satisfy J*(c%:/s)~O~x/s. Therefore, by Grothendieck's 
results on the representability of the Hilbert  scheme and related functors [Grl] , we conclude 
that Isoms(X , Y) is represented by a scheme I s o m s ( X  , Y), quasi-projective over S. 

Concerning this scheme, we have: 

Theorem (x. I I ) .  - -  I s o m s ( X  , Y) is finite and unramified over S. 

Proof. - -  To check that I s o m s ( X  , Y) is unramified, we may take S to be the 
spectrum of an algebraically closed field k, in which case I s o m s ( X  , Y) is either empty 

or isomorphic to Aut~(X). A point o f A u t k ( X  ) with values in k[r z) with image the 

identity may be identified with a vector field on X. By Lemma ( i .4 ) ,  stable curves 

have no non-zero vector fields. This proves that I s o m s ( X  , Y) is unramified over S, 
and since it is also of finite type over S, it is quasi-finite over S. It remains to check 

that I s o m s ( X  , Y) is proper over S. 

Locally over S, X and Y are the pull-backs of the universal tri-canonically embedded 
stable curve by some morphisms from S to Hg, so that it suffices to prove the properness 

of  I s o m s ( X  , Y) in the " universal " case where S = Hg • Hg, X and Y being the two 

inverse images of the universal curve on Hg. In that case, the open subset o f I s o m s ( X  , Y) 
corresponding to smooth curves is dense, so that the Theorem follows from the valuative 
criterion of properness which holds by:  

Lemma ( I ,  I 2 ) .  - -  Let X and Y be two stable curves over a discrete valuation ring tl. with 
algebraically closed residue field. Denote by ~ and s the generic and closed points of Spec(P,.), 
and assume that the generic fibres X~ and Y~ of X and Y are smooth. Then any isomorphism % 
between X~ and Y~ extends to an isomorphism ~ between X and Y .  

(A posteriori, it follows from Theorem (I .  I I) that the lemma holds for any valuation 

ring P,. and without assuming X,  or Y, smooth.) 

Proof. - -  Another way to put  the lemma is that if we start with a smooth curve X ,  

of genus g > 2  over the quotient field K of I(, there is, up to canonical isomorphism, 
at most one stable curve X over R with X ,  as its generic fibre. We shall deduce this 
from the analogous uniqueness assertion for minimal models ([L] and [S]): given a 

smooth curve X~ of genus g >  I over K, there is, up to canonical isomorphism, at most 

one regular 2-dimensional scheme X, proper and flat over R, with X~ as its generic 

fibre, without exceptional curves of the first kind in X s. 

Let z denote a generator of the maximal ideal of R and consider the affine plane 

curve C n over R given by:  

xy=z'*. 

84 



T H E  I R R E D U C I B I L I T Y  O F  T H E  S P A C E  O F  C U R V E S  O F  G I V E N  G E N U S  8 5 

Let C .  denote the scheme obtained by: I) blowing up the maximal  ideal at the unique 
singularity of Cn; 2) blowing up the maximal  ideal at the unique singularity of this 

s c h e m e ,  and so on [ l im s It ea , to chec  th t regular whos  

special fibre is the same as that  of C n except that  the Singular point  is replaced by a 
sequence of n - - I  projective lines as follows: 

.xz%z 5  
Now suppose x is a singular point  of the stable curve X over R.. At x, X is formally 

isomorphic as scheme over R to one of the schemes Cn, so we may  blow up X the same 

way we blew up Cn. I f  we do this for all singular points of X, we get a regular scheme 

with generic fibre X~. In  addition, any non-singular rational component  of Xs is 
linked to the other irreducible components  by at least two points, hence it is not exceptional 

of first kind. Therefore X is the minimal  model  of X~. Note finally that  C n is a normal  

scheme, hence so is X;  therefore X is the unique normal  scheme obtained from X by 

contracting all non-singular rational components  of Xs linked to the other irreducible 
components  by exactly two points. This  proves that  X is essentially unique. Q .E .D .  

Another  impor tant  fact about  the automorphisms of stable curves is: 
Theorem ( x .  x 3 ) .  - -  Let k be an algebraically closed f ie ld  and X a stable curve over k. 

Let Pie~ denote the group of  invertible sheaves on X of  degree o on each component. Then 

the map (o f  ordinary groups) : 
�9 0 Autk(X ) -+ autk(Pxc (X)) 

is injective. 

Proof. - -  Let q~ be an automorphism of X inducing the identity on PIe~ 
Lemma ( I .  x4). - -  I f  X is smooth, then ~ is the identity. 

Proof. - -  I f  not, by the Lefschetz-Weil fixed point formula, the number  n of fixed 
points of % counted with their multiplicities, is 

n = I --  Tr(% Tl(Pic~ + i = 9 '  - -  2 g < o  

which is absurd. Q .E .D .  
Lemma (x .  15). - -  I f  X is irreducible, then ~ is the identity. 

Proof. - -  Let q~' be the action of q~ on the normalizat ion X'  of X. Each singular 
point  of X,  together with an ordering of its 2 inverse images in X' ,  defines a distinct 
morphism from G m to Pic~ so that  the inverse image S of the singular locus of X 
is pointwise fixed by q~'. One has either 

a) g e n u s ( X ' ) > 2 :  then conclude by L e m m a  (I .  14); 
b) g e n u s ( X ' ) = i ,  IS1>2 ,  then q0' is a translation on X'  leaving a point  fixed, 

and so q~' is the identity;  
c) X' is the projective line, [ S 1>4 and q)' is a projectivity leaving more than 

three points fixed, so is the identity. Q .E .D.  
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cible components of 

is the case, unless X i 
points. Q .E .D .  

Let I" be the following (unoriented) graph: 

(i) The set of vertices of  F is the set Y o of irreducible components of  X, 

(ii) the set of  edges of  P is the set pl of  the singular points of X which lie on 

two distinct irreducible components, 

(iii) an edge xa I 'i has for extremities the irreducible components on which x lies. 

Lemma (x. i 6 ) .  - -  I f  ~ induces the identity on F, then ~ is the identity. 

Proof. - -  I f  X 1 is an irreducible component  of X, then 9 ( X i ) = X 1  and 9 leaves 
fixed the points of  intersection of X 1 with the other components. In addition, PIe~ 

maps onto PIe~ so that q0 acts trivially on Pie~ Either: 

a) genus (X1)>2 and 91Xi  is the identity by Lemma (I .15) ; 

b) genus (X1)= i, q0 acts by a translation and leaves a point fixed, so is the 

identity on X1; 

c) X 1 is the projective line and q~ leaves fixed at least three points, so is the 

identity on X 1. Q .E .D .  

Lernma ( I .  I7) .  - -  (i) Any edge in F has distinct extremities. 

(ii) Any vertex which is the extremity of  o, i or 2 edges is f ixed by 9. 

(iii) ~ acts trivially on H~(F, Z). 

Proof. - -  It  is easy to check that the subgroup of  PIc~ corresponding to inver- 
tible sheaves whose restriction to each irreducible component  of  X is trivial is canonically 

isomorphic to 
H~(F, Z ) |  m. 

This implies (iii), and (i) is trivial. 

The morphism from PIe~ to the product  OPIe~ extended over the irredu- 

X, is surjective, so that if Pie~ + {e}, then q~(Xi)=X i. This 

is a projective line, linked to the other components in at least three 

We prove now that if an automorphism 9 of any finite graph P has the properties 
stated in Lemma (I .  I7) , it is the identity. Make induction on the sum of the number  

of  vertices and edges o fF .  I f P  has an isolated point x, then q0(x) = x  so let F* = F--{x}.  
Then q0 = identity on F* by induction, so 9 = identity on F too. I f  F has an extremity x, 

then q~(x)---x, and again let P* be F minus x and the edge abutting at x. Then F* 
has all the properties P has, so q~ = identity on P*, hence q~=identity on P. I f  F has a 

vertex x on which only 2 edges abut, we have one of  the two cases: 

(2) 

_ _ _  

e 1 e~ 
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In the first case, q0(y)=y, and let F* be F minus x, e 1 and e 2. Then q0 = iden t i t y  oil F* 

and ?(ei )= e~ too, since if q~ reverses the e~'s, this contradicts (iii). In the second case, 
let I'* be P minus x, and with e 1 and ez identified: 

e 

Then q~ = identity on P*, so q~ = identity on P. Next, say F has an edge e with extremities x 
a n d y  such that q0(x)=x, q~(y)=y, q0(e)=e. Let P* be P minus e. Then q~=identity 

on F*, so q~ = identity on P. I f  none of these reductions are possible, we must be in a 
situation where a) every vertex is the abutment  of  at least three edges and b) no edge 
is left fixed. It  is easily seen that the first Betti number  b 1 of any of the connected 

components of  I' is at least 2. Let 

n o = number  of fixed vertices 

n l = n u m b e r  of  edges reversed by ~. 

Then, unless F = O ,  the Lefschetz fixed point formula reads: 

no + nl = b0--bl<O , 

which is impossible. Q .E .D.  

w 2. Degenera t ions  o f  curves  and  their  jacob ians .  

We consider the situation: 

K = discretely-valued field; 
1~ = integers in K, k = l~/~Jl = residue field (assumed algebraically closed) ; 
S = S p e c ( R ) ,  ~ and s its generic and closed points respectively; 
C = a curve, smooth, geometrically irreducible and proper over K, of genus g ~  2 ; 

J = the jacobian variety of C; 

og = the N6ron model of J over R (cf. [N]);  
J ~  the open subgroup scheme with J ~  component of J s ;  
c~ = the minimal model of C over R.. 

A word about  the existence and uniqueness of c~ is needed. We recall that c~ 

is to be a regular scheme, flat and proper over R., with generic fibre c~n = C such that 
t for any other regular scheme c~,, flat over P,., with generic fibre ~fn = C, the birational 

map c~,~c~ is a morphism, gafarevich in IS] and Lichtenbaum [L] have proven 
that such a ~ (which is obviously unique) exists, provided that there is some regular 5 ' ,  
proper and flat over R, with generic fibre C. And, in fact, that c~ is projective 

over R. To construct such a c~,, proceed as follows: first let c~,, be any scheme, projective 

and flat over R with generic fibre C. Let R be the completion of  R, and let 

c~,,__c~,,• spoo R SP ec R. Then @'  is an excellent surface, so by [Ab] and by unpu- 
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blished results of Hironaka, there is a sheaf of ideals 3 with support in the singular locus 

of @' such that blowing up J leads to a regular surface @. But then 

for some n, so .~ is induced by a unique Sheaf of ideals Jc0~e, , .  Let ~ '  be obtained by 
blowing up J .  Then 

~,  ~ cg, • spe, •Spec R. 

so cg, is regular, c~, is also projective over R, hence a projective cg exists. 

Definition (2. x ). - -  J has stable reduction i f  J 8  has no unipotent radical. 

Definition (2.2) .  - -  C has stable reduction in sense i i f  c~s is reduced and has only 
ordinary double points. C has stable reduction in sense 2 i f  there is a stable curve c~, over R 
with generic fibre cgs  

Note that if a stable ~ exists, then by Theorem (I.  I I) it is unique. 

Proposition (2 .3) .  - -  The two senses of  stable reduction for C are equivalent. 

Proof. - -  Say a stable cg, exists. Blowing up the singularities of c~, as in 
Lemma ( i .  12), we obtain the minimal model ~ of  C and it is seen that c~8 is reduced 

with only ordinary double points. Conversely, suppose the minimal model ~ has this 

property. Let El, . . . ,  E, be the non-singular rational components of ~ which meet 
the other components in only two points. Then the Ei's divide into several chains of 

the type: 

unless the entire fibre consisted of E~'s and has the type: 

n > 2  

~'8 = loop of Ei's 

(E?)oo  = - - 2 .  

But in this case genus(C) = genus(Cgs) = I, which contradicts our assumption. Now, 

according to Theorem (2 7. I) of Lipman [Li] (generalizing a result of  Artin [A2] , 

which works for surfaces of finite type over a field) any set ofk  non-singular rational curves 

connected in a chain as above on a regular surface X, with self-intersection 2 on X, can 
be blown down to a rational double point P of type A k on a normal surface X 0. Reversing 
the process and blowing up a rational double point of  type Ak, it is easy to see that non- 

singular branches y on X, crossing transversally only the first or the last rational curve 
in the chain: 

E 2 Ek 

. . . .  
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are still non-singular branches when mapped to X0; and if Y1, Y2 intersect E 1 or E k in 

distinct points, then they cross transversally on X o. Therefore, suppose we blow down 
all the chains of Ei's on c~. Let c~, be the normal surface so obtained. Then if one of 
these chains fits into ~ ,  like this: 

then on ~; ,  the images of F and G still have only ordinary double points, each has one 
non-singular branch through the singular point P, and these branches cross transversally. 

Therefore ~ '  is a stable curve over R. Q.E .D.  

We are now ready to prove the key result on which our proof  of irreducibility 

depends: 

Theorem (2.4). - -  J has stable reduction i f  and only i f  C has stable reduction. 

Proof. - -  The connection between ~ and of is based on the following result of 
Raynaud  [R] : 

Theorem (2.5).  - -  I f  c~ and of are as above, and the greatest common denominator d of 
the multiplicities of the components of ~ is i, then ofo represents the functor Pic~ 

(This result is not stated as such in JR]. It comes out like this, in the terminology 
o f is paper : 

a) Condition (N) is verified and p,(0~e)-=0s, so 

b) ~ is cohomologically flat over S in dim. o by Theorem 4; 

c) therefore Pie ~ is representable and separated over S by Theorem 3; 

d) since E = { o }  and Q = P / E ,  we find P~  and since C~is I-dimensional 

over S, p0 and Q0 are smooth over S; therefore R ~  Q0 and P,, = R. 

e) Then by Theorem 5, Pie~ is the identity component  of the Ndron model of 

Pic~ =J.) 
Now assume that C has stable reduction. Then ~ is reduced so d = I .  By 

Theorem (2.5) , o f ~ 1 7 6  Therefore of~176 ). Since ~8 is reduced 
with only ordinary double points, its generalized jacobian Pic~ is an extension 

of an abelian variety by a torus, i.e., has no unipotent radical. Therefore J has stable 

reduction. 

The converse is more difficult. Assume J has stable reduction. We first prove 
that C has stable reduction under the additional hypothesis that C has a K-rational 
point (1). In this case, ~ has an R-rational point, and since ~ is regular, sections of 

over R pass through components of ~ of multiplicity one. Therefore d = I ,  and 

(1) This is in fact the only case which will be needed in our application to questions of  irreducibility. 

12 
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Theorem (2.5) applies. In particular, P ie~  j o  so Pie~ ) has no unipotent 
radical. We apply: 

Lemma (2 .6) .  - -  Let D be a complete i-dimensional scheme over k such that H~ _k ,  

and such that the generalized jacobian of D has no unipotent radical. Then 

(i) %(OD)=X(ODred); 
(ii) the singularities of Dr0 a are all transversal crossings of a set of non-singular branches 

(i.e., analytically isomorphic to the union of the coordinate axes in Am). 

Proof. - -  Let J c @D be the ideal of nilpotent elements. Filtering J by a chain 
of ideals or k such that J . J k C J k + l ,  and using the exact sequence: 

o --, * k / J k + l o  ( r  --" 0 

it is easy to deduce that Pie~ is an extension of Pie~ by a unipotent group. 
Therefore, since by assumption Pie~ has no unipotent subgroups, 

P i c ~  ~= P i c ~  

Since H~(@D), resp. Ht(@D~ea), is naturally isomorphic to the Zariski tangent space to 

Pic~ resp. Pie~ it follows that 

H~(0D) ~ Hl(~)Dred ) 

hence (i) is proven. Let ~ : C--~Dr~ a be the normalization of Dr, d and let D* be the 
local ringed space which, as topological space is D, and whose structure sheaf is given by: 

F(U, @D.)={f~F(U,  7L(@c) ) ]x~, x2~-~(U) , f (x~)=f (x2)  if r:(x~)=~z(x2) } 

It  is easy to check that D* is a 1-dimensional scheme whose singularities are all transversal 
crossings of a set of  non-singular branches and that ~ factors: 

C ---> ---> Dre d . 

I claim that rd' : D*->Dr~ d is an isomorphism. Filter @D,/@D~eG SO as to obtain a chain 

of coherent @Prod-algebras: 

(~D* : ('0(0) :~ ~)(1)2~ . . . ~1 ~(k)~__. ~)Dred 

such that l((r162 '~+1))=I. Equivalently, this factors rd': 

D*= D O -+ D 1 --->... ~ D k = D~e a 

where @(h)~ @D,, and all arrows are homeomorphisms. I f  {x~}=Supp(@(')/@(~+~l), 
then we get an exact sequence: 

O - - +  ~ ) D n + l - - +  ODn-'+kzn-+O 
(k v denotes the residue field a ty ,  as sheaf on D), and hence: 

1 * o ~ k -+ n (OD,+~) -+ H~(~)]~,) -+ o. 

It  follows easily that Pie~ is an extension of Pie~ by G~. But Pie~ 

has no unipotent subgroups, and this can only happen if D~, a = D*. Q.E .D.  for lemma. 
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We apply the lemma to c~. According to Lichtenbaum [L] and Safarevich [S], 

there is a divisor K on ~ such that for all positive divisors D lying over the closed point 
of Spec(R), we have: 

(D. (D + kK)) 
z ( e D )  - 

2 

Let El, . . . ,  E,, be the components of c~, dl ' . . . ,  dn their multiplicities. Then conclu- 
sion (i) of the lemma implies that:  

But ( ( ~ d i E i ) . E k ) = o  , all k, since ~ d i E  i is the divisor of a function r:~R if (=)---=maximal 

ideal of R. Therefore : 

(*) ((~(d,--I).Ei).K)=(~Ei.~Ei). 

Note that at least one di equals i since c~ has a section over Spec(R) and every section 
must pass through a component of c~ s of  multiplicity I. Moreover the intersection 
matrix (E i. ES) is negative indefinite, with one-dimensional degenerate subspace generated 

b y  ~]d~Ei, hence ~ some di>I  , it follows that ( ~ E , . ~ E i ) < o .  Therefore, by (*), 
$ 

(Ei0.K)<o for some i 0. Then we have: 

a) (E~o.K) < o ;  

b) (Ei0. E~o ) < o; 

c) 

hence in fact (E~0. E~0 ) = (E~0. K) = - -  ~ so E~o is an exceptional curve of the first kind. 
This contradicts our assumption that on ~ all possible curves have been blown down. 
Therefore di = i, all i. 

This proves that ~ is reduced. By conclusion (ii) of the lemma, plus the fact 
that the dimension of its Zariski tangent-space is everywhere one or two (since c~ lies 
on a regular surface ~),  we deduce that c~s has only double points. This proves that C 
has stable reduction in the case that C(K)4=0. 

In the general case, C will acquire a rational point in a finite extension K'  of K. 

Let S' be the spectrum of the localisation at some maximal ideal of the integral 
closure of R in K' ;  S' is the spectrum of a valuation ring and is faithfully flat over S. 

We put S " = S ' •  and denote by C' and C" the inverse images of C on 
! 

S~ = Spec(K') t !  and S~ respectively. 

C" ~ C' 

p r l  

S" ~ S' 
pr~  

:, C 

l 
io 

> S 
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Let C' be the stable curve on S' having C' as generic fibre. The restriction, C', of C' 
! 

to S~ carries a descent da tum with respect to p, i.e. an isomorphism, %, between the 
restrictions of pr~(C') and pr~(C') to S'~'. It  remains only to extend the isomorphism q~ 
to an isomorphism, p, between the pr~(C'). Then  q~ will be a descent da tum for C' 
with respect to p. As C' is canonically polarized ( I .2) ,  this descent da tum will be 
effective, and so define a stable curve, C, over S with generic fibre C. 

Because j 0  has no unipotent radical, the inverse image, p , j0 ,  of j 0  on S' is 

the identity component of the N6ron Model of the jacobian of C', so that, defining 
q = p o p r l = p o p r 2 ,  one has 

PicO (C,/S ,) _p*jO 

P i c 0 ( p r ~ , ) =  �9 0 *--, P i e  ( p r2C )=  q . j 0  

We denote by T the closed subscheme of I som(S" ,  pr~(C'), pr~(C')) corresponding to 
those isomorphisms which induce (via the preceeding identifications) the identity on 
the inverse image of j 0 .  

By (I.  I I ), T is finite and unramified over S", and by (I.  1 3) T is radicial over S". 
We conclude that the morphism from T to S" identifies T with a closed subscheme X 

/ !  t t  of S". As X contains S, ,  which is schematically dense in S , we have that X is S" 

and T " is " the desired section, 9, of  I som(S" ,  * - - '  pr~(C ), pr;(C')) over S" which 
extends ~%. Q.E .D.  

Combining Proposition (2.3), Theorem (2.4), and the stable reduction theorem 
for abelian varieties quoted in the introduction, we obtain the most important  
consequence: 

Corollary (2 .7) .  - -  Let R be a discrete valuation ring with quotient f M d  K. Let C be a 

smooth geometrically irreducible curve over K of genus g > 2. Then there exists a finite algebraic 

extension L of K and a stable curve WL over RL, the integral closure of R in L, with generic fibre 

CCl~, ~ ~ C  XKL. 

w 3" Elementary derivation of  the theorem. 

Let k be an algebraically closed field of char. p 4: o. We use the notation of w I, 
except that we will now denote by Hg the product Hg• of the previous Hg 
with Spec(k): it is a disjoint union of non-singular varieties Hg,1 , . . . ,  Hg, n over k and 

�9 P g  0 is the subscheme of Hilbp0g-0/k of tri-canonical stable curves. Similarly, H a is the 
open dense subset of  Hg of tri-canonical non-singular curves. By the results of [M1] , 
we know that a coarse geometric quotient 

o _ HO/PGL ( 5 g _  6) Mg--  

exists, that it is a disjoint union of normal varieties over k and is the coarse moduli space 
* 0 for non-singular curves of genus g. Let S = Hg--Hg.  Then everything decomposes 

into the same set of components. 
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Let 
Hg, i = components of Hg 

0 _ H ~ of Hg then Hg, i - -  Hg, i ca 0 

and 0 _ 0 Mg, i - -  Hg, d P G L ( 5 g - -  6) ---- components of M ~ 

and S*----disjoint union of $1, . . . ,  Sn, Si--~Hg, icaS ~. 

We want to prove that M~ or equivalently H ~ or equivalently Hg is irreducible. We 
shall use: (i) the fact that these statements are true in char. o; (ii) the inductive assumption 
that these statements are true for smaller genus. 

Step I .  - -  No component of M ~ is complete (i.e., proper over k). 

Proof.  - -  Here we use the char. o result. By [M1] , there is a scheme X, quasi- 
projective over Spec(W(k)), W(k) the Witt vectors, whose closed fibre is M ~ and whose 
generic fibre X~ is the char. o coarse moduli space over the quotient field of W(k). In  
particular, X ,  is known to be connected. Since X is quasi-projective over W(k), we 
can embed X as an open dense subset of  a scheme X projective over W(k). X~ is still 
connected, hence by the connectedness theorem of Enriques-Zariski [EGA 3], the closed 
fibre "~0 of .~ is connected. But if Y were a complete variety which is a component 
of M~ then: a)  Y is an open subset of M~, which is an open subset of "~0, and: b)  since Y 
is proper/k, Y would be a closed subset of  "~0 too. Therefore, Y = "X0, hence M~ is 
itself irreducible and complete. On the other hand, if Ag is the coarse moduli space 
of principally pclarized g-dimensional abelian varieties, then the map associating to 
each curve its jacobian defines a morphism: 

0 : M~ 

If  M~ were complete, the image of 0 would be closed. But it is well known that the 
closure of the image of 0 contains all products of lower dimensional jacobians too, so 
it is not closed. Q.E.D.  

Step 1I. - -  No component of Hg consists entirely of non-singular curves, i.e., S~ ~= O 
for all i. 

Proof.  - -  Here we combine Step I with the result of  w 2. Take any i. Let 
T = Speck [ It] ]. Since M ~ ~ is not complete, there is a morphism q~ of the generic point T ,  
of  T into M~ which does not extend to a morphism of T into M~ Now we replace T 

t 0 by its normalization T '  in a finite algebraic extension and let q~' : T~--->Mg.i be the 
0 induced morphism, which still does not extend to a morphism from T'  to Mg.~. By 

the results of  w 2, if T '  is chosen suitably there exists a stable curve 7: : C'-->T' over T '  
t 

whose generic fibre C, is a non-singular curve corresponding to the morphism 
r t 0 q~ : T,--~Mg via the functorial properties of the moduli space. Since T '  is the spectrum 

of  a local ring, we can choose an isomorphism 

P (r~. (co~/3T,)) ~P~g-G•  

and get a tri-canonical embedding C ' c P S g - ~ •  '. C', with this embedding, is then 
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induced from the universal tri-canonically embedded  stable curve by a morphism 
t : T ' ~ H g .  Since the generic fibre of C' is C, ,  we get a commutat ive  diagram:  

+ 
T'  ) Hg 

U U 

r~s",@l T', _ 0 ~ H g  

M ~ C: o " 9 ~ M 9  

I f  Im(qJ) c H  ~ then ?' would extend to a morphism from T '  to M ~ hence from T'  to M~ 
and this is a contradiction. Moreover, ~(T,)  must  be a point  of H~ since its image 
in M ~ is in M ~ Therefore the image x of  the closed point of T '  by ~ is in the closure 

0 of Hg, i , i.e., in Hg, i , but  not in HOg./ itself. Q .E .D.  

Step I IL  - -  S* is connected. 

Proof. - -  This will follow using only the induct ion assumption of irreducibility 
for lower genera. Let Z c H g •  5g-G be the universal tri-canonically embedded  stable 
curve. Let S c Z  be the set of points where Z is not smooth over Hg. As we proved 
in w I, S is non-singular and is the normalizat ion of S*. In particular,  this shows that  
if xeS*, then the corresponding curve Z x has exactly one double point  if and only if x 
is a non-singular point  of S*. Stable curves C of genus g with exactly one double point  
belong to one of the following types: 

type o : C ~  

type k: 

C irreducible 
normalization C' of C has genus g - - I .  

C has two non-singular components  C1, C 2 

genus(C1) = k  
genus(Ca) = g - -  k 

r a ]  
i f  one dou 'e  oint is o ty o ' hon 

open dense subset of S* of non-singular points is the disjoint union of open subsets 

S * ( o ) , . . . , S * ( / g / ) .  We first check: 

(.) Each set S*(k) is irreducible. 

Proof of ( . ) . -  Take the case k = o :  the cases i < k <  [g] are similar. Let 

T =  {(xl, x2) ix  1 +x2 and r~(x,)=rc(x~)eH~_,}cZg_ 1XHg_lZg_l. 

T is smooth with irreducible fibres over H~ hence T is irreducible. Consider the 
correspondence relating S*(o) and T:  
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,' set of pairs xeS*(o), {xl, x2}eT such that  if y = re(x,) = =(x2), j 
I then there exists a birational morphism 

~such that  f (xl )=f(x2) .  

I t  is easy to check that  W is Zariski-closed. Moreover, for any {x,, x2}eT , 
W n (S*(o) • {xl, x2} ) is an orbit  in S*(o) under  P G L ( 5 g - - 6 ) :  so these are non-empty  
irreducible subsets all of the same dimension. It  follows that  W itself is irreducible. 
But the projection from W to S*(o) is surjective, so S*(o) is irreducible. Q .E .D .  for (,). 

Now for any k, I < k <  l g / ,  choose any stable curve C ( k ) o f  the type: 

@~ Q, one non-singular component  C(k)' of genus k. 
Q2 one component  C(k)" with one double point,  normalizat ion of genus 

g--k--I .  

Let P(k) be a point  of Hg such that  Zp(k)-~C(k) .  Step I I I  will be completed if we 
prove : 

(**) P(k) is in the closure of S*(o) and of S*(k), hence S*(o), S*(k) both lie in the 
same topological component  of S*. 

Proof of (**). - -  Let T =  Spec k[[t]].  Using the fact that  S* has two branches 
through P(k), one for each of the double points of C(k), we see that  there exist two 

morphisms f l , f2  : T-+S* 

f,(T~) =f~(T~) = P(k), T~ = closed point  of T 

D ~ , , q  D2, ,,1 
;, / 

,/ / 
,.J-- ,, < - -  , 

C(k) C(k) 
such that  if =1: DI-+T,  =2 :D2-+T are the two stable curves over T induced by f l  
and f2, then:  a) the closed fibres Dl, s, Dz, 8 are C(k) ; b) there are sections s x : T-+D1,  
s 2 : T - + D  2 whose images are non-smooth points of re1, ~ and such that  sl(Ts) 
and s~(T~) are the two double points Q.1 and Qa of C(k) respectively, and : c) the generic 
fibres DI,, ,  D2, ~ have only one double point  (el. figure). I claim: 

A) D1, , is of type (k); 
B) D2, ~ is of type (0). 
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To prove A), let D' i be the result of  blowing up the subscheme s 1 (T) of D 1. Then D[ 
is still flat and proper over T and its special fibre is the special fibre of D 1 with Q1 blown 
up (use the fact that formally at Q t ,  D1 is isomorphic to k[[t, x,y]]/(x.y) with the section 
given by x = y = o ) .  Therefore the special fibre of D' 1 is the disjoint union of C(k)', C(k)", 
so the general fibre of D' 1 is the disjoint union of two irreducible curves which specialize 
to C(k)', C(k)" respectively. Since D~,~ has only one double point, D'i, ~ is non-singular, 
so D'I, ~ is the disjoint union of two non-singular irreducible curves which must then have 
the same genera as C(k)' and C(k)", i.e., k, g- -k .  Thus D1, ~ has type (k). 

To prove B), it suffices to check that D2, ~ is geometrically irreducible. I f  not, 
D2, n would have two components meeting at the single point sz(Tn). Since D 2 is smooth 
over T at each generic point of  its special fibre, distinct geometric components of D2, 
have to have specializations which are distinct components of (Dz),. Then (D2) 8 would 
have two components meeting at the point Qz = s2(Ts). This is false, so B) is proven. 

Now because of A), fl(T~)eS*(k), hence P (k )=f l (T , )  is in the closure of S*(k). 
And because of B), f2(T~)cS*(o), hence P(k)=f2(T~) is in the closure of S*(o) 
too. Q.E.D.  for (**). 

This completes the proof of Step I I I  since we now see that all irreducible compo- 
nents of S* are part  of the same topological component. Finally, from Steps II  and III ,  
we see that 

a) S*, being connected, is part  of a single component of Hg, while 
b) each component  of Hg contains part  of  S*. Thus Hg is irreducible, as was to be proven. 

w 4" S o m e  r e s u l t s  o n  a l g e b r a i c  s t a c k s .  

The proofs of  the results stated in this section will be given elsewhere. 
Let C be a category and let p : 5 ~ C  be a category over C. For each U e O b  C, 

we denote by 5% the fibre p - l ( U ) .  The category 5P is fibered in groupoids over C if the 
following two conditions are verified: 

a) For all 9 : U - + V  in C and y e O b S ~  there is a map f : x - + y  in 5P with 

p( f )  = ~. 
b) Given a diagram 

in ~9 ~ let 

x 

4 y/ 
U 

/ 
V 
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be its image in C. Then for all x : U ~ V  such that ? = + X ,  there is a unique 

h :x -+y  such that f = g . h  and p ( h ) = x .  
Condition b) implies that the f :  x-+y whose existence is asserted in a) is unique 

up to canonical isomorphism. 

Assume that for each ? : U - + V  in C and each Y e O b  5:v, such an f :  x ~ y  has 
been chosen. This x will be written as ?*y. Then, q0* " is " a functor from 5:  v to 5:  U 
and if ?+ is a composite morphism in C, the functors (?+)* and +*q0* are canonically 
isomorphic. 

We propose the terminology " stack " for the French word " champ " of non- 

abelian cohomology (Giraud [G]). 

Definition (4. I ). - -  Let C be a category with a Grothendieck topology. We assume products 

and fibre products exist in C. A stack in groupoids over C is a category over C , p  : 5r  

such that: 

(i) 5:  is fibered in groupoids over C. 

(ii) For any U e O b  C and any objects x, y in 5~j the functor from C / U to (sets) which 

to any q ~ : V ~ U  associates Homs:v(?*x, ?*y) is a sheaf. 

(iii) I f  q0~: V i ~ U  is a covering family in C, any descent datum relative to the ?i, for  

objects in 5", is effective. 

For each x a O b  ~9~ there are given isomorphisms between the inverse images 

of x i=  ?ix and x j = ~ x  over V o = V i •  and the pull-backs of these isomorphisms 
on Vi /k=Vi•  ~ satisfy a " cocycle " condition. In (iii) it is required that 

reciprocally, any such " descent da tum " be defined by some xaS~ . 
In what follows, for  the sake of  brevity, we will use " stack " to mean " stack in groupoids " 

I f  U c O b  C and if  ~9 ~ is a stack over C, the fibre 5:  U will be called the category 

of  sections of 5e over U. 
Let C be as in (4. I)- The stacks over C are the objects of a 2-category [B] 

(stacks/C): i-morphisms are functors from one stack to another, compatible with the 

projection into C; and 2-morphisms are morphisms of  functors. In this 2-category 
every 2-morphism is an isomorphism. Products and 2-fibre products exist in this 

2-category. 
To each X e O b  C is associated the " representable " stack over C whose category 

of  sections over U is the discrete category whose objects are the morphisms from U to X.  
This stack will be denoted simply X. For any stack 5e, the category 

Hom(X,  5:) 

is canonically equivalent to the category of  sections of 5 # over X. Because of this, 

5e is sometimes said to " classify " its sections over variable X e O b  C. In the category 

Hom(5",  X),  all morphisms are identities, i.e., Horn(5: ,  X) is just a set. 

Let us denote also by C the 2-category having the same objects and morphisms 

as C, and in which the identities are the only 2-morphisms. The above construction 

then identifies C with a full sub-2-category of (stacks/C). 
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For each S~Ob C, the category C/S satisfies the assumptions of (4 . I ) .  Any 
stack 5o0 over C/S (an " S-stack ") gives rise to a stack 5 ~ over C; a section (% ~) of 5O 
over U ~ O b C  consists of 

(i) a morphism ? : U ~ S ;  
(ii) a section ~ of 5o0 over (U, 9)- 

Definition (,t.2). - -  A I-morphism of stacks over C, F : 5O1~5O2, will be called repre- 
sentable i f  for any X in C and any i-morphism x : X-+5O2, the fibre product X• is a 
representable stack. 

In down to earth terms, this means the following: 

(i) for any f :  Y - + X  in C, the category whose objects are pairs 

{a section, y, of  5~ over Y; an isomorphism F(y)-~f*(x)} 

is equivalent to a category S ( f )  in which all morphisms are identities; 

(ii) the functor f~Ob  S(f) is representable by some g : Z -+X.  Such a Z repre- 
sents the fibre product  X •162 

L e t / '  be a property of  morphisms in C, stable by change of base and of a local 
nature on the target. 

Definition (4.3).  - -  A representable morphism F : 5O1-+ 5O2 of stacks over C has property t" 
i f  for any I-morphism x : X-+SO 2 the morphism in C deduced by base change: F' : X •  SI-+X 
has that property. 

Proposition ( 4 . 4 ) .  - -  Let 5O be a stack. The diagonal map 

5O-'. SO x so 

is representable i f  and only i f  for all X, Y ~ O b  C and i-morphisms x : X-+SO, y : Y-+SO, 
the fibre product X x ~ Y  is representable. 

I f  X ~ O b  C and x, y are sections o f s o o v e r  X, we denote by Isom(X, x,y) the sheaf 
on C / X  which to every Z over X associates the set of  isomorphisms between the inverse 
images ofx  a n d y  over Z. Then  the object representing 5O•215 (the prodtlct  taken 
with the map  (x,y) : X ~ S P •  is just  I som(X,x ,y ) .  I f  x : X ~ s o ,  y : Y ~ S O  
are I-morphisms, then the object representing X •  is just  I som(X•  

Henceforth, C will be the category of schemes with the etale topology (SGAD, IV, (6.3)). 

Definition (4 .5) .  - -  A stack 50 is quasi-separated / f  the diagonal morphism from to 
5O to 50 • 5O is representable, quasi-compact and separated. 

Definition (4.6) .  - -  A stack 50 is an algebraic stack (1) /f  

(i) 5O-+ SOx so is representable; 
(ii) there exists a i-morphism x : X ~ SO such that for all y : Y ~ SO, the projection 

morphism X •  is surjective and etale (i.e., x is etale and surjective). 

(1) Th i s  definition is the " r ight  " one only for quasi -separated stacks. It  will however  be sufficient for our  
purposes.  
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The 2-category of algebraic stacks contains the representable stacks and is stable 
under products and fibre products. I f  5: is a quasi-separated algebraic stack, the diagonal 
map is unramified and quasi-affine. 

Definition (4-7). - -  An algebraic stack 5: is separated / f  ,9~ 5: is proper (or, 
equivalently, finite). A I-morphism f :  5:1-+5:2 is separated (resp. quasi-separated) i f  for 
any morphbm x : X->~9~ from a separated scheme X to 5:2, the fibre product 5:1• X is 
separated (resp. quasi-separated). 

Example (4.8).  - -  Let X be a scheme over S. Let G be a group scheme over S, 
etale, separated and of finite type over S, which operates on X. We will denote by IX/G] 

the S-stack whose category of sections over an S-scheme T is the category of principal 
homogeneous spaces (p.h.s.) E over T, with structural group G (i.e., a p.h.s, under  GT) , 
provided with a G-morphism q~ : E ~ X .  The principal homogeneous space G • X over X 
(G acting only on the first factor) plus the G-morphism G •  X - + X  (given by the action 
of G on X) is a section of [X/G] over X. The corresponding morphism q : X-+ [X/G] 
is etale and surjective, so that [X/G] is an algebraic stack. In addition, X is a principal 
homogeneous space over [X/G];  the stack [X/G] is representable if and only if X is a 
principal homogeneous space over a scheme Y, in which case 

[X/G] m y .  

I f  X = S, then [X/G] = [S/G] might be called the " classifying stack " of G over S. 

Example ( 4 . 9 ) .  - -  Suppose a stack $f has the property that in each category $fx 
the only morphisms are the identity morphisms. Then 2f x is just a set o~(X) = Ob ~9~ 
and this set, under pull-back, is a contravariant functor o~ in X. Conditions (ii) and (iii) 
of  (4. I) assert that the functor o~ is a sheaf on C. Artin and Knutson [K] have defined 
an algebraic space to be a sheaf o ~ such that:  

(i) for any morphisms X > o ~ ,  y-->o~ of representable functors to o~, the fibre 
product X •  is representable; 

(ii) there exists a morphism X-+o~, represented by surjective, etale morphisms 
of schemes. 

This is exactly what we have called an algebraic stack in this case. 

Definition (4. xe). - -  Let 5# be an algebraic stack. The etale site 5~ of 5:  is 
the category with objects the etale morphisms 

x : X ~ 5 "  

and where a morphism from (X, x) to (Y,y) is a morphism of schemes f :  X-+Y plus a 
2-morphism between the I-morphism x : X - + 5  ~ and y . f  : X-+S:.  A collection of morphisms 

f~ : (X~, x~) ~ (X, x) is a covering family i f  the underlying family of morphisms of schemes is 
surjective. 

The site 5:et is in a natural  way ringed. When we speak of sheaves on 5r we 

mean sheaves on Sect. 
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We now explain how many concepts from the theory of schemes may be applied 
to algebraic stacks. 

Let p be a property of morphisms of schemes, stable by etale change of base, and 
of  a local nature (for the etale topology) on the target. 

For instance: being an open immersion with dense image, being dominant,  
birational... 

A representable morphism of algebraic stacks f :  T I ~ T , ,  is said to have property P 
if for one (and hence for every) surjective etale morphism x : X ~ T 2 ,  the morphism 
of schemes deduced by base change f '  : Xxr2T--~X has that property. 

Let P be a property of morphisms of schemes, which, at source and target, is of 
a local nature for the etale topology. This means that, for any family of commutative 
squares 

Xl gi > X 

4 l, 
Yi hi> y 

where the gi (resp. hi) are etale and cover X (resp. Y): 

P ( f )  .r Vie(f/). 

For ins tance : f  flat, smooth, etale, unramified, normal, locally of finite type, locally 
of finite presentation. 

I f  f :  TI-~T~ is a morphism of algebraic stacks, we say f has property / '  if for 
one, then necessarily for every, commutative diagram 

X x > T1 

4 l' 
y u> T 2 

where X and Y are schemes and x,y  are etale and surjective, f '  has proper ty / ' .  

Similarly, if P is a property of schemes, of a local nature for the etale topology, 
an algebraic stack T will be said to have property t '  if for one (and hence for every) 
surjective etale morphism x : X-+T,  X has property P. This applies to, for instance, 
the properties of being regular, normal, locally noetherian, of characteristic p, reduced, 
Cohen-Macaulay... 

An algebraic stack T will be called quasi-compact if there exists a surjective etale 
morphism x : X - + T  with X quasi-compact. A morphism f :  TroT. ,  of algebraic 
stacks will be called quasi-compact if for any quasi-compact scheme X over T2, the fiber 

product T~•  is quasi-compact. It is enough to test the condition for a surjective 
family fr : X~-+T 2. We define a morphism f :  T I ~ T  2 to be of finite type, if it is quasi- 
compact, and locally of finite type; of finite presentation, if it is quasi-compact, quasi- 
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separated, and locally of finite presentation. An algebraic stack is noetherian, if it is 
quasi-compact, quasi-separated, and locally noetherian. 

The key point in what follows will be the definition of a " proper morphism " 
and the analogue of Chow's lemma. 

A morphism f :  TI -+T ~ is said to have a property P, locally on T~, if there exists 
a surjective etale morphism x : X-+T~ such that the morphism f '  deduced from f by 
the change of base by x has property P. 

Definition ( 4 - I I ) .  - -  A morphism f :  TI-+T 2 is proper / f  it is separated, of finite 
type and if, locally over T2, there exists commutative diagrams 

T3 ~ ~, T I 

with g surjective and h representable and proper. 
The following form of Chow's Lemma will be sufficient for our purposes. 
Theorem ( 4 - I 2 ) .  - -  Let S be a noetherian scheme and f be a morphism from an etale site T 

to S. We assume f to be separated and of finite type. Then, there exists a commutative diagram 

T , g  T'  ~ ,  T"  

! t' 

in which T'  and T"  are schemes and such that 

(i) g is proper, surjective and generically finite; 
(ii) j is an open immersion; 
(iii) f "  is projective. 

Using (4. I2), it is easy to extend the cohomological theory of coherent sheaves to 
the present situation. In  fact if f : T I -+T 2 is a proper morphism of noetherian algebraic 
stacks and if o~ is a coherent sheaf on T~, then the R~f.(~-) are coherent sheaves on T~. 

However, the R~f,(~-) don' t  need to be zero for i large enough. Let S be a scheme 
and G a finite group. We denote by p the projection p : [S/G]-+S. Quasi-coherent 
(resp. coherent) sheaves of modules on [S/G] may (and will) be identified with quasi- 
coherent (resp. coherent) sheaves of modules on S, on which G acts. One has 

R~p,(y) ~H~(G, o~). 

In  general, the (quasi-coherent sheaf) cohomology of algebraic stacks appears as a mixture 
of  finite group cohomology and of scheme cohomology. 

The disjoint sum T of a family (Ti)~e I of  stacks is the stack a section of which over a 

scheme X consists of  

(i) a decomposition X = [ I x  i of X;  

(ii) a section of Tr over Xi for each i. 
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The void stack O is the one represented by the void scheme. 
A stack is connected if it is non-void and is not the disjoint sum of two non-void 

stacks. 

Proposition (4. x3 ). - -  A locally noetherian algebraic stack is in one and only one way the 
disjoint sum of a family of  connected algebraic stacks (called its connected components). 

We denote by n0(T ) the set of  connected components of locally noetherian algebraic 
stack T. I f  x : X--+T is surjective and etale, n0(T ) is the cokernel of the two maps 

~o(X x~X) ~ ,~o(X) -+ ~o(T). 

Proposition (4. x4)- - -  Let T be an algebraic stack of finite type over a field k. Then, 
T is connected i f  and only i f  there exists a connected scheme X ,  of finite type over k, and a surjective 
morphism from X to T.  

An open subset U of an algebraic stack T is a full subcategory U c T which is an 
algebraic stack, which contains together with any t eOb(T)  all isomorphic t' and such 
that the inclusion j : U - - + T  is representable by open immersions. The open subsets 
of  T corresponds bijectively to the open subsets of  its etale site. 

For each open subset U of T, there exists one and only one full subcategory T - - U  
of T, which is an algebraic stack, which contains together with any t eOb(T)  all isomor- 
phic t' and such that 

(i) T - - U  is reduced;  
(ii) the inclusion map i : T - - U - - + T  is representable by closed immersions; 
(iii) for any etale surjective morphism x : X - + T ,  the inverse image of T - - U  on X 

is the complement of the inverse image of U. 

An algebraic stack F in T satisfying (i) and (ii) is a closed subset of T, and the functor 
U ~ T - - U  is an isomorphism of the set of  open and the set of closed subsets of  T. I f  F 
satisfies only (ii), Fr~,~ satisfies (i) and (ii) so that F defines a closed subset of T. 

An algebraic stack T is irreducible if it is not the union of two closed subsets, non 
void and distinct from T. 

Proposition (4.  x5) .  - -  A noetherian algebraic stack T is in one and only one way the union 
of  irreducible closed subsets, none of which contains any other. They are called the irreducible 
components of T. I f  U is an open dense subset of T,  the irreducible components of  U are the 
non-void intersections of  U with the irreducible components of T.  

Each irreducible component Of T is contained in a connected component of T. 
Conversely: 

Proposition (4.  x6) .  - -  The connected components of a normal noetherian algebraic stack 
are irreducible. 

Theorem (4. x7). I Let f be a morphism of finite type from an algebraic stack T to a 
noetherian scheme S. For seS, let n(s) be the number of  connected components of the geometric 

fibre of  T at s. Then 

(i) n(s) is a constructible function of s; 
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(ii) i f  f is proper and flat, then n(s) is lower-semi-continuous; 
(iii) i f  f is proper flat, and has geometrically normal fibres, then n(s) # constant. 

Let f :  T-+S be a morphism of finite type from an algebraic stack T to a noetherian 
scheme S. Assume that the diagonal map T-~T)<s T is separated and quasi-compact. 

Theorem (4. z8) (Valuative criterion for separation.) - -  The morphismf is separated 
i f  and only if, for any complete discrete valuation ring with algebraically closed residue field and 
any commutative diagram 

T 

Spec(V) ~. S 

any isomorphism between the restrictions of gl and g2 to the generic point o.f Spec(V) can be extended 
to an isomorphism between gl and g2. 

This criterion is nothing other but the valuative criterion of properness (EGA, 
II, 7.3 .8) applied to the (representable) diagonal morphism. 

Theorem (4. I9) (Valuative criterion for properness.) - -  I f  f is separated, then f is 
proper i f  and only if, for any discrete valuation ring V with field of fractions K and any commutative 
diagram 

Spec(K) , Spec(V) ~. S 

there exists a finite extension K'  of K such that g extends to Spec(V'), where V '  is the integral 
closure of V in K'  

// 

Spec(K') - - / - - - - ~  Sp.ee (V') \ 

Y - l  \ 
Spec(K) > Spec(V) > S 

To prove a given f is proper, it suffices to verify the above criterion under the 
additional hypothesis that V is complete and has an algebraically closed residue field. 
Further, given a dense open subset U of T, it is enough to test only g's which factor 
through U. 

Proposition ( 4 . 2 0 ) .  - -  Let 5P be an algebraic stack. The functor which, to any algebraic 
stack over St, f :  $'--->5 ~ associates the Ose sheaf of algebras f,O,- induces an equivalence of 
categories between: 

(i) the category of algebraic stacks representable and affine over St'; 
(ii) the dual of the category of quasi-coherent Os~-algebras. 
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Let ~r be a quasi-coherent sheaf of d~-algebras on an algebraic stack 5~ For 
each etale morphism x : U-+5r with U affine, let d ' ( U )  be the integral closure of  
F(U, Os~ ) in d ( U ) .  By (EGA, II, 6 .3 .4)  , the d ' ( U )  for variable U are the sections 
over U of a quasi-coherent sheaf d '  on ~9 ~ which will be called the integral closure of (0~ 
in d .  

Let f :  ~ " ~ 5 r  be representable and affine. The algebraic stack which is asso- 
ciated by (4.2o) to the integral closure of ~9~ in f.0~- will be called the normalization 
of  5 a with respect to $'. Its formation is compatible with any etale change of basis. 

Theorem (4 .2I ) .  - -  Let 5 a be a quasi-separated stack over a noetherian scheme S. 

Assume that 

(i) the diagonal map 5t'-+~9~215 5P is representable and unramified; 

(ii) there exists a scheme X of finite type over S and a smooth and surjective S-morphism 
from X to 5f. 

Then, ,9" is an algebraic stack of finite type over S. 

M. Artin has developed powerful methods to relate pro-representability of a stack 
to the existence of etale surjective maps x : X-->5 ~ 

w 5. Second  p r o o f  o f  the  i r reduc i b i l i t y  t h e o r e m .  

Let ~'g (g>2)  be the stack whose category of sections over a scheme S is the 
category of stable curves of genus g over S, the morphisms being the isomorphisms of 
schemes over S. By (I.  i i ) ,  the diagonal morphism A :~r215 is representable, 
finite and unramified. 

We saw in w I that the stack classifying the tricanonically embedded stable curves 
of genus g is represented by a scheme Hg, smooth and of finite type over Spec(Z). The 
" forgetful " morphism 

ng-  g 

is representable, smooth and surjective. Indeed, if p : C-+S is a stable curve over S, 
defining a morphism 

~, : S-+~gg, 

then the fibre product Fig • S is the scheme, smooth over S, of isomorphisms between 

the standard projective space of dimension 5 g - - 6  over S and P(p,(o~c~) ). We deduce 

from this and (4.2 I) that:  

Proposition (5. x). --..lt 'g is a separated algebraic stack of  finite type over Spec(Z). 
Let us denote by ~ the open subset of  ~r which " consists of " smooth curves, 

and by ~g the " universal curve " over dr'g, the algebraic stack classifying pointed stable 

curves. 

Theorem (5.2) .  - -  The algebraic stacks .ZZg and ~g  are proper and smooth over Spec(Z) 
and the complement of  v s  ~ in ~ g  is a divisor with normal crossings relative to Spec(Z). 
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Proof. - -  Let x : X--->dt'g 
of algebraic stacks of finite type over Spec(Z) : 

X •162 0 x\! • ~'g .~eg q' 

be etale and consider the following commutative diagram 

x, ~" Hg 

In this diagram, the four horizontal arrows are etale and the four vertical arrows 
are smooth and surjective. As Hg and Zg (p. 78). are smooth over Spec(Z), so are X 
and X • :L~'g. In  addition, q ' - i  x-  t (~gt'0 ~ = x ' -  I(H~ is the complement of a divisor with 

normal crossings relative to Spec(Z), so that the inclusion ofx-~(dc'g) in X has the same 
property. This being true for any x, JC'g and ~g are smooth over Spec(Z) and ~'~ 
is the complement of a divisor with normal crossings relative to Spec(Z). In part icular~s ~ 
is dense in Jt'~. 

We may now use the valuative criterion for properness in its modified form (4- 19) 
to deduce the properness of Jt'g from the stable reduction theorem. The properness 
of .o~fg then results from that ofp.  

(5 .3)  Let p : X - - ~ S  be a stable smooth curve of genus g > 2  over S. I f  k~N 
is invertible in 0s, the sheafR.lp,(Z/kZ) on Set is locally free over Z/kZ,  of rank 2g, and the 
cup-product is a non degenerate alternating form 

Rlp,(Z/kZ) | edp, (Z/kZ) R p,(Z/kZ) 1. 

Locally on Set , ~k is isomorphic to Z/kZ,  and thus, locally, R.lp,(Z/kZ) is provided 
with a non degenerate symplectic form with values in Z/kZ,  which is determined up 
to an unit in Z/kZ,  or, as we shall say, R.lp,(Z/kZ) is provided with an homogeneous 
symplectic structure. The constant sheaf (Z/kZ) 2g will be provided with the homo- 
geneous symplectic structure induced by the standard symplectic structure of (Z/kZ) 2g. 

Definition (5-4). - -  AJacobi  structure of level k on X is an isomorphism (respecting their 
homogeneous symplectic structures) between Rlp,(Z/kZ) and (Z/kZ) 2g. 

(5 .5 )  Given a section s of p, and a set of  prime numbers P including all residue 
characteristics of S, the specialisation theorem for the fundamental  group enables one 
to construct a pro-objet tel(X/S, s)/P/ of  the category (l.c. gr (P)) of locally constant 
sheaves of finite groups of order prime to P, with the properties 

(i) Homs(~l(X/S , s) (P), G ) = R ~ p , ( X  mod s, p*G)=Rlp , (Ker (p*G~s ,G) )  functo- 
rially in Ge(1.c. gr a')) ; 

(ii) the formation of hi(X/S, s) (P) is compatible with any change of base. 
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I f G  and H are two sheaves of groups on Set, we define the sheaf of exterior morphisms 
from H to G, Home~t(H, G), as the quot ient  of Hom(H, G) by the action of H induced 
by its action on itself by inner automorphism.  

The  sheaf 
Hom~ s) (P), G),-~ R}p,(p*G) (for G~(1.e. gr(P))) 

is " independent  " of the choice of s. 

We shall denote it as 
Uomyt(rzl(X/S) (P), G). 

As p : X ~ S  admits sections locally for the etale topology, this sheaf makes sense 
without  assuming p to have a global section. I t  is independent  of the choice of P, so 
long as P is pr ime to the order of G and includes all residue characteristics of S. 

Definition (5 .6) .  - -  Let G be a finite group of order n prime to P. A Teichmfiller 
structure of level G on X is a surjective exterior homomorphism from nl(X/S) to G. 

The  finite generation of z:I(X/S ) (SGA, 6o/6I,  exp. IO) implies: 
Lemma (5 .7) .  - -  The sheaf on (Sch/S) of the Teichmiiller structures of level G on X is 

represented by an etale covering of S. 
We denote by ~,0 the stack classifying the stable smooth curves of genus g and G g 

characteristic pr ime to n, with a Teichmfiller structure of level G. 
For any algebraic stack dr', we denote by ~s  its open subset dr ' •  Spec(Z[i /n]) .  

L e m m a  (5.7) may  now be rephrased: 
Proposition ( 5 . 8 ) . -  The " forgetful " morphism 

is representable, finite and etale. 

The  stack a.A '~ thus in an algebraic stack. Let e~go be the normalisation o f . g  0 [ I In] 
with respect to a . g  ~ The  stack o.g0, being representable and finite over .g0[I /n] ,  
is proper  over Spec(Z[i /n]) .  

Theorem (5.9) .  - -  The geometric fibres of the projection of a.go onto Spee(Z [ I/n]) are 
normal, and, fibre by fibre, ~.g~ is dense in ~.go" 

Proof. - -  We will use Abhyankar-Art in 's  lemma, in its " absolute " form: 
Lemma ( 5 .  x e ) .  - -  Let D be a divisor with normal crossings on an excellent regular 

scheme X ,  Y an etale covering of X - - D  and Y the normalisation Of X with respect to Y.  Assume 
that the generic points of the irreducible components of D are all of characteristic o. Then every 
geometric point of X has an etale neighbourhood x : X ' - + X  such that, on X':  

(i) D becomes a union of regular divisors (D,),~I, D, of equation t~-~o. 
(ii) There exists an integer k prime to residue characteristics of X '  such that Y becomes 

isomorphic to a disjoint union of quotients (by subgroups of g i) of the covering of X '  obtained by 
extracting the Uh-roots of the ti's. 

I f  x :  X - + . g g [  I ]  is an etale morphism,  then X ~  is the complement  
L - - . . I  

in X of a divisor with normal  crossing relative to Spec(Z), X ~ ---= X • (aMl~g) is an etale 
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covering of X ~ and X 1 = S X.s (a~lt'g) is the normalisation of X with respect to this 
covering of X ~ 

By the explicit local description (5. io), for any prime number  l prime to n, 
Xl• is the normalisation of X• with respect to X1xSpec(Fz).  
As this is true for any modular  family, we get (5.9). 

Corollary (5. x I ). - -  The geometric fibres of the projection 

G g -+ Spec Z 

all have the same number of connected components. 

Proof. - -  By (4.17), all geometric fibres odt'gX Spec(Fz) of a.~t'g over Spec(Z[I/n]) 
have the same number  of connected components. These connected components are 
irreducible (4- 16). Furthermore a~'~xSpec(Fz) is dense in adt'g• Spec(F~) and thus 
has the same number  of connected (or irreducible) components as Q.A~'g X Spec(Fz), and 
this number  is independent of I. 

(5- x2) Let us denote by H the fundamental  group of an oriented closed differen- 
tiable surface S O of genus g. The group II may be defined by generators and relations 
as follows: 

(i) generators: xi for i < i < 2g; 
(ii) relation: (x~, xa+l). . . (x~, xa+~). . . (xg, x2a)=e , where (a, b )=aba- lb  -1. 

Let (e~) be the standard basis of Z 2g. The morphism q0 from H to Z eg with q~(Xi ) = el 
identifies H/(H, n)=Hl(n, Z) with Z ~a. 

The surface S O is a K(II ,  i) and thus 

H~(H, Z ) =  I-P(S0, Z ) = Z ,  

and the cup product defines a symplectic structure on II/(II ,  H). This structure is 
identified by q0 with the standard symplectic structure of Z 2g. 

We denote by Aut~ the subgroup of Aut(II)  which acts trivially on H2(II, Z). 
Dehn has proved that each exterior automorphism of II is induced by a diffeomorphism 
of S O onto itself and that the map induced by q~: 

Aut~ --> S p ~ ( Z ) ,  

is surjective (see[Ma]). 

Theorem (5. I3). - -  The number of connected components of any geometric fibre of  the 
projection of  Q~o onto Spec(Z[I/n]) is equal to the number of orbits of Aut~ in the set of 
exterior epimorphisms from H to G. 

Proof. By (5. I3), it suffices to prove that 0 - -  Gdt'gxSpec(C) has the said number  
of connected components. As results from (4-14), 

rr0(a-/t'~ X Spec(C)) = r:0(GM~) 

where aMg is the coarse moduli scheme classifying stable smooth curves of genus g over C 
with a Teichmtiller structure of level G. 
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Recall that a Teichmiiller curve of genus g is a stable smooth curve C of genus g over (I 
together with an exterior isomorphism q~ of the transcendental fundamental  group rq(C) 
with H, which induces a symplectic isomorphism (1) between 

H d C  , Z) ~ ~dC) / (~dC) ,  ~1(C)) 

and II/(II ,  H). By Teichmfiller's theory [W], the analytic space T 0 classifying 
Teichmiiller curves of a given genus g > 2  is homeomorphic to a ball, and hence 
connected. 

I f  ~? is a surjective homomorphism from II to G, the map 

(C, 9) ~ (C, +9) 

defines a morphism t+ : T o -->GM0. Two such maps t+ and t+, have the same image if 
and only if + = +'~ for ~Aut~ and 

H t~,(T0) GMa = r mod Aut~ 
which implies (5- i3). 

(5. x4) Let us denote by n ~ '~  the algebraic stack classifying stable smooth curves 
with a Jacobi structure of level n. This algebraic stack " i s "  a true scheme 

for n >  3 (by [S]). 
I f  9 is a Jacobi  structure of level n on a stable smooth curve p : X ~ S ,  we define 

the " multiplicator " ~(9) of 9 by the commutative diagram 

A (z/nz) 20 z / n z  

A2Rlp,(g/nZ) A> ~ _ ~  K2p,(g/ng) 

The scheme of isomorphisms between Z/nZ and ~ - 1  is Spec(Z[e ~'~j", i/n]) thus 
9~[~(9) defines a morphism ~ from S to Spec(Z[e 2~/", I/n]). This being true for any X 
and S, [z is induced by 

: ,dr '~ ~ Spec(Z[e ~/n, I/n]). 

Theorem ( 5 .  x 5 ) .  - -  The geometric fibres of the morphism ~ are connected. 
Proof. ~ By definition, n ~ '~  is open and closed in G Jr'0 ~ for G = ( Z / n Z )  ~. The 

group GL2g(Z/nZ ) acts on G, and thus on odt '~ One has: 

(i) the open subset ,all ~ of ~/ t  '~ is stable under the subgroup H = CSp2g(Z/nZ ) 
of symplectic similitudes; 

0 0 ( i i )  - J  = II o( de' tl 0 G/H ~n gJ �9 

(1) An arbi t rary  isomorphism 9 induces an isomorphism betwen Hx(C, Z) and I I / ( I I ,  II)  which is always 
symplectic up to sign. 
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It now results from (5. I I) that all geometric fibres of ~z have the same number 
of connected components. 

Consider the geometric fibre of ~ at the standard complex place of 
Spec(Z[e z~/~, i/n]). This fibre is the algebraic stack classifying complex stable smooth 
curves C provided with a symplectic isomorphism 

H~(C, Z/nZ) -% (Z/nZ) 2g. 

Reasoning as in (5-I3), we are reduced to proving 
Lemma (5- x 6). - -  The homomorphism 

Aut~ -+ Sp~(Z/nZ) 
is surjective. 

Proof. - -  This results from Dehn's theory (5. I2) and from the fact that the 
groups Sp,, being split semi-simple simply connected groups, are generated by their 
unipotent elements, so that the reduction map 

sp /z) Sp /Z/ Z) 
is surjective. 
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