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A Proof of Jantzen Conjectures

A. BEILINSON AND J. BERNSTEIN

To our teacher Israel M. Gelfand

In this paper we will show that the localization functor sends the Jantzen
filtration on Verma modules (or, more generally, standard Harish-Chandra
modules) to the weight filtration on the corresponding perverse sheaves. This
fact immediately implies a lot of remarkable properties of the Jantzen filtra-
tion: the hereditary property (conjectured by Jantzen), the socle and cosocle
properties, and the Kazhdan-Lusztig algorithm for the computation of mul-
tiplicities in consecutive quotients (conjectured in [GJ1] and [GM)).

The paper is divided into two parts. The first part occupies Sections 1
and 2. In Section 1 we consider sheaves of noncommutative algebras on an
algebraic variety which are of “local origin” (we call them D-algebras); a
typical example is the algebra of differential operators. We list some basic
functorial properties of such algebras. Section 2 deals with an important class
of D-algebras: rings of twisted differential operators (tdo). We included in
Section 2 more material than the minimum needed for the main part of our
, Daper, since the language of tdo’s is a convenient gadget in many situations
(e.g., in algebraic versions of conformal field theory), and we thought it would
be nice to have a review of the subject. ,

The second part deals with representation theory. It is the heart of this
paper. In Section 3 we recall the localization construction [BB1] and write
down some properties of K-orbits of flag varieties that will be of use. In
Section 4 we define the Jantzen filtration in a geometric setting and describe
its intimate relation with the monodromy filtration on vanishing cycles. In
Section 5 mixed sheaves appear. We present a proof of Gabber’s theorem
about the weight filtration on vanishing cycles; since it is transmitted to rep-
resentation theory, it provides, together with the constructions of Section 4,
the Jantzen conjecture. : ,

The main results of this paper were proved in the spring of 1981. The -
first draft of this paper, which followed notes of a spring 1982 seminar at
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Moscow University, appeared in 1986. The second part of the present paper
is an abridged version of this draft (we just added a few recent references);
therefore it is a bit archaic in style (we use /-adic mixed sheaves instead of
mixed Hodge sheaves of Saito, etc.). We thank Robert Becker for carefully
typing this manuscript.

In what follows (except for Section 5) “variety” = “scheme” = “sepa-
rated scheme of finite type over C”, and “algebra” = “associative C-algebra
with 1”. In fact, one can replace C by any field of characteristic 0 in any
place that has nothing to do with the R1emann-H11bert correspondence (we
deal with arbitrary schemes in 1.1).

If #: X - Y is a morphism of varieties then 7_, 7~ denote the sheaf
theoretic direct and inverse image functors. If A4 is an algebra then .£(A)
denotes the category of left 4-modules, and ".#(A4) denotes the category of
right 4-modules. A subcategory & of an abelian category & is a Serre
subcategory if &% is a strictly full subcategory closed under extensions and
subquotients; in such a case we have the quotient abelian category & /% .

If M is asheaf and m is a local section of M, we write me M .

§1. D-calculus

1.1. D-algebras. Let R be a commutative algebra and M be an R-
bimodule. For r € R we have the endomorphism adr of M, adr(m) =
rm—mr . An increasing filtration M, on M iscalled a D-filtrationif M_, =
0 and adr(M;) c M;_, forany i and r € R (i.e., on gr, M the left and right
R-module structures coincide). For example, one has the D-filtration M’
defined by induction: Miv ={m e M: adr(m) € M,_, for any r € R} for
i > 0; this D-filtration is maximal in an obvious sense. We call M = M lv
the differential part of M ; our M is a differential bimodule if M" = M, .

Another way to spell this out is to consider M as an (R® R)-module; then
M ={meM:I''m= 0}, where I is the kernel of the multiplication
map R® R — R (i.e., the ideal of functions vanishing on the diagonal
Spec R — Spec R x Spec R). This description shows that our objects localize
nicely: if f € R, then for the localized R f-bimodule M = R f% M % R s

one has (Mf);’z(MiV)f=Rf%MiV=MI.V%Rf. _
1.1.1. REMARK. Let M, be a D-filtration on M . We have a canonical
morphism of R-modules ¢ = J;: gr; M — HomR(Q R, gr;_, M), defined
by d(m)(adb) = (abm — amb) mod M,;_,,where a,b € R, m e M, and
m is the image of m in gr, M. '
Using these morphisms we construct a complex

gr; M — Hom(Q'R, grl._l M) — .- - Hom ('R, gr, M) — .

—J

where the differential 6" HomR.(Qj R, gr,_; M) — HomR(Q’“R gr, . M)

i—j—1
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is given by ,
. , o
' (p)(apdayA--Aday, ) = (~1) S;_j(p(apda A -AdajA---Nda,, ))(da)).

Note that M, is maximal iff |JM, = M" and each map d, is injective
for i >0. _ :

1.1.2. Let 4 be an associative algebra equipped with a morphism of alge-
bras i: R — 4. An increasing filtration 4, on A is called a D-ring filtration
if it is a ring filtration (ie., 4,4; C 4;.;), A_; =0, i(R) C 4, and i(R)
lies in the center of the associated graded algebra gr. 4. We can consider
A as an R-bimodule; then such 4, is a D-filtration. Note that A isa
D-ring filtration, so it is a maximal D-ring filtration. We will say that A4 is
an R-differential algebra if A= A" (ie., if A4 is a differential R-bimodule).

1.1.3. The above definitions easily globalize. Namely, let X be a scheme.
A differential @,-bimodule M is a quésicoherent sheaf on X x X supported
on the diagonal X C Xx X . We will consider M as a sheaf of O x-bimodules
on X . It has the following properties:

(i) Forany open U C X, M(U) is a differential & (U)-bimodule.
(i) If U is affine, U = SpecR, and f € R, then M(U,) = M(U),.
Conversely, any sheaf of Ox-bimodules M with properties (i) and (i1) is
a differential @y-bimodule. .
Differential @y-bimodules are Zariski local objects: they form a stack on
- the Zariski topology of X. If X is affine, X = Spec R, then differential
Oy-bimodules are the same as differential R-bimodules. Note thatif M, N

 are differential &,-bimodules, then so is M 2 N.

1.1.4. An &, -differential algebra, or simplyxa D-algebra on X , is a sheaf
of associative algebras on the Zariski topology of X equipped with a mor-
phism of algebras i: &, — & such that & is a differential &y-bimodule..
One defines morphisms of D-algebras in an obvious manner. The D-algebras
form a stack on the Zariski topology of X . If X is affine, X = SpecR , then
@y-differential algebras are the same as R-differential algebras.

1.1.5. For a D-algebra & on X an & -module M is, by definition, a
sheaf of . -modules which is quasicoherent as an @y-module. Usually we
will use left ./ -modules, and call them simply &/ -modules. They form an
abelian category #(X, &) = #(¥). The category of right . -modules
will be denoted "# (). '

If X is affine and 4 := &/ (X ), then &7-modules are the same as A-
modules, since one has canonical equivalence of categories .# (&) =.#(A).

The %/-modules are local objects: if j: U — X is an open embedding
then &7, is an &,-differential algebra and we have the obvious adjoint func-

J
tors () 2= .4 (5;) ; the categories .4 () form a stack over the Zariski
. .
topology of X .
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If N is any (quasicoherent) &,-module then an &/-action on N is a
structure of & -modules on N compatible with the &-module structure (i.e.,
i(fym= fm for fe&y, meN).

1.1.6. FirsT ExampLEs. (i) Let M, N be (quasicoherent) &y -modules.
A C-linear morphism f: M — N is called a differential 0perator if for any
affine U c X the corresponding morphism f,: M(U) — N(U) lies in the
differential part of the & (U)-bimodule Hom(M(U), N(U ).

The differential operators form a sheaf of &y-bimodules Diff(M, N) C
Hom (M, N). If M is coherent therr lef(M N) is a differential G-
bimodule. In particular, for a coherent sheaf M we have an Oy dlfferentlal
algebra D,, := Diff(M, M). Weput D,

(i) If M B are D-algebras on schemes X Y respectlvely, then we have
a D-algebra &/ ®B on X x Y such that for affine U C X, V CY one has
(¥ RBYUxV)= M(U)@B(V)

1.2. Lie algebroids. For a scheme X a Lie algebroza’ Lon X isa (qu351-
coherent) &,-module equipped with a morphism of &,-modules ¢: L — Ty
(:=Der&, = tangent sheaf of X) and a C-linear pairing [-, -I: L® L—-L

such that

- [, -] is a Lie algebra bracket and o commutes with brackets,
- for I, € L, f €&y onehas U, L= fli, L1+ ol ) (N,

For a Lie algebroid L we set L9 .= Kero . This is an @-Lie algebra.

A Lie algebroid is called smooth if it is a locally free @-module of finite
rank. Lie algebroids form a category in an obvious way; this is a stack on the
Zariski topology of X .

A connection on a Lie algebroid L is an &-linear section V: Ty =
L of ¢ (so oV = 1d9—) Such a V is 1ntegrable if it commutes w1th

brackets. For a connection V, its curvature C(V) € Homﬁ ( /\ ,7 L(O)) is
defined by C(V)(7, AT,) =[V(1;), V(7,)]. The connections on L form a
Homﬁ (s L@ )-torsor & (L).

Let us describe some examples of Lie algebroids.

1.2.1. The tangent sheaf 7, is a Lie algebr01d (with 0 = 1d9- ). For

any Lie algebroid L there is a unique morphlsm L—Y9, and a morphlsm
Ty — L' is the same as an integrable connection on L.

1.2.2. Assume that a Lie algebra g acts on X, i.e., we have a morphism
of Lie algebras a: g — 7, . Then g, =, ® g becomes a Lie algebroid in a

natural way: the map o: ®g—+7 is a( f®7p) = fa(y) and the bracket
on &y ®g is defined by [f] ® Pis fz ® y,] = fi50 11, 1l + fia(r)(fy) ®

fza(rz)(fl) ®7,-
1 2.3. Let G be an algebraic group, g = LieG, and F bea G-torsor over
X . We have the Lie algebroid 7 of infinitesimal symmetries of (X, F):
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a section of Z is a pair (7, 7), where 7 is a vector field on X and T
is a G-invariant vector field on F that lifts 7. We have _o(r, T) =1,
[z, 7)), (15, T = ([, 1,1, [7,, 7,]). Note that g = (719) coincides
with the F-twist of O, ® g (with the usual @y-linear bracket) with respect
to the adjoint action of G. -

One can consider Lie algebroids of infinitesimal symmetries of any geo-
metric object over X of a local nature. For example, for a vector bundle & ,
we have a Lie algebroid T , which coincides with the Lie algebroid of the
corresponding GL-torsor. '

1.2.4. Assume we have a smooth groupoid acting on X, i.e., we have
a scheme Y equipped with two smooth projections 7, n,:Y — X, an

embedding e: X — Y, and a composition law Y x Y — Y that satisfies
) ' Ty, %,

the usual axioms (see, e.g., [D4]). The Lie algebroid L of our groupoid is
the normal bundle for the embedding e; one defines the Lie bracket and
projection ¢ by the usual formulas. If our groupoid is an ordinary group G
actingon X (so Y=GxX ), then L coincides with the Lie algebroid from
example 1.2.2 for g = Lie G, « being the corresponding infinitesimal action
of g. . .

1.2.5. Let & be a D-algebra on X. Put Lies := {(r,a) € 7, x
- Hit(f) = ai(f) - i(faforany f € @y}. This is a Lie algebroid on
X in an obvious manner (one has g(t,a) = 1 and [(z),a)), (1,, a,)] =
[z 1,1, la,, a,])); we will call Lies/ the Lie algebroid of s/ .

Clearly & ~~ Lie.% is a functor from the category of D-algebras to the
category of Lie algebroids. It has a left adjoint functor that assigns to a.
Lie algebroid L its universal enveloping D-algebra % (L) . Explicitly, (L)
is a sheaf of algebras equipped with the morphisms of sheaves i: Oy —
Z(L), it L—>%(L);itis generated, as an algebra, by the images of these
morphisms and the only relations are :

(1) i is a morphism of algebras;

(i) i, is a morphism of Lie algebras; _ :

(iii) for f € #,, | € L one has i (fl) = i(Ni 1), LD, i(N] =

ia(l)f). o :

One checks easily that %/(L) is actually a D-algebra.

Note that a #(L)-module is the same as an @-module with an L-action
(i.e., an &y-module M equipped with a Lie algebramap L — End; M such
that /(fm) = o(I)()m + (fO)m, Dm = f(Im) for f e @,, | € L,
m € M ). We will call %(L)-modules simply L-modules.

1.3. Etale localization. All the above definitions are actually étale local. To
be precise, let ¢: ¥ — X be an étale morphism. Then the Y-diagonal ¥ —
- YxY isa component (i.¢., an open and closed subscheme) of the preimage of
the. X-diagonal (¢ x (o)“l(X )= Y x Y. For a differential @y-bimodule M
“(which is an Oy« x-module supported on the diagonal) we define its pull-back
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My, = @"M as the restriction of (¢ x q))*M =0y ' ®  (px go)_lM
((0"?)-‘@,\5( X ’
to the Y-diagonal. This is a differential é’ -bimodule.
We have a canonical embedding ¢ 'M < o'M of ¢ ﬁ’ -bimodules
that induces isomorphisms &, ® o M= "M — qo_lM @ Gy .
e z? Ty
Therefore, the differential &) -blmodules are sheaves on the etale topology
X, of X;they forma stack on X,
If M, N are differential g, -bxmodules then ¢ (M ® N) =¢M®

Y

@*N . Therefore, if & is an Oy-differential algebra, then Ay =9 A is
an &, -differential algebra (the product is the composition ¢ M ® o'
Y

P (A RY) —— ) ¢" & ), the embedding ¢~ o o' is a ring morphism.

We see that the D-algebras are also sheaves on X, , and they form a stack

over X, . If M is an & -module then My, =¢'M =0, czl@ ¢ 'M isan

“ig, '
&,~-module. So we can consider M as a sheaf of & -modules on X, ; the
categones # () form a stack over X,

1.4. Functoriality. Let ¢: Y — X be a morphism of schemes, and & , B
be D-algebras on X, Y respectively. Consider the sheaf 9" =0, @
i,
go_'.M This is a (quasicoherent) &,-module equipped with a right go_ o -
action.
1.4.1. DEFINITION. A ¢-morphism A: & — & is an action of D-algebra
& on ¢ that commutes with the right & -action.
In other words, it is a morphism of algebras A: @ — End -1 M(go &) such
that A(i(f))a= fa for f€&y, acy o .
REMARK. If ¢ is the identity morphism, then ¢ o =& ,and 4 is a
usual morphism of D-algebras & — & .
Note that a qo-morphlsm A defines for any & -module M a %-action
on ¢*M =0, _6‘3; 0 'M: onehas ¢p'M = ¢/ Q?M(p 'M, andweput
¢
b(a® m) := A(b)a® m for be B, ace'y, meg M. We geta
canonical functor (¢, A)": £ () — L (F). -
If w: Z — Y is another morphism of schemes, & is a D-algebra on Z,
and u: % — % isa y-morphism, we define the composmon Au:% -
as the (¢- t//)-morphlsm which is the action of € on (¢-y)' & =y (0" )
considered as (w, #)"(¢,A)*% . The functors (¢ -y, 4- ,u) (w, n)* -
(¢, A)": H(F)— #(F) coincide.
1.4.2. A D-scheme, or D-variety, is a palr (X, &), where X isascheme,
and & isa D-algebraon X . A morphism of D-schemes (Y, FB)—(X,&)
is a pair (p, A) as above. We see that D-schemes form a category which we
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denote D-Sch; one has a canonical projection D-Sch — Sch, (X, & )— X,
whose fiber over X is the category of D-algebrason X . -

In fact this projection makes D-Sch a prefibered category over Sch (see
[SGAL1] for the terminology). This means that for any morphism of schemes
¢:Y — X and any D-algebra & on X, there is a (canonical) D-algebra
¢ on Y equipped with g-morphisms ¢'% — & such that for a D-
algebra % on Y the g-morphisms & — & are the same as morphisms
& — ¢’ . Indeed, ¢’/ is the algebra Diff -1, (9" , 9" ) of all (@y)-

differential operators on ¢*/ that commute with the right (0"% -action.
The universality property implies that ¢ is a functor from the category of
D-algebras on X to that on Y. It is compatible with Zariski localization;
if X = SpecR, Y = SpecS are affine schemes and 4 = I' (X , &) then
I(Y, ¢') is the ring of all S-differential operators acting on S % A that
commute with the right A4-action.

1.4.3. REMARK. For a differential bimodule M on X we define its pull-
back ¢'M as Diff,-, 6, Oy, 9"M) = {I € Diff(g,,o, ¢_§; o~ M) :

: X

I(fo'(8)=Il(flgfor fed,, g¢c Oy} this is a differential &, -bimodule.
This notation is compatible with the earlier one: if & is a D-algebra on X
then we have an isomorphism of &,-bimodules '

Diff, -, (p"s , 9" ) = Diﬂ'q,-nﬁx((a*ﬁ L0 ), n nogt(i).

Note that the functor ¢  is, in general, neither left nor right exact (be-
ing the composition of the right exact functor ¢" and the left exact one
Diﬁ'¢_. &x @y, +)), and it behaves badly with respect to composition of ¢’s.
To recover the g-functoriality one should, perhaps, work with the derived
categories from the very beginning.

1.44. Let Z -£5 Y be another morphism of schemes. For a D-algebra

&/ on X the composition of the canonical y- and p-morphisms y'¢'s/ —
o — A defines, by the universality property, a canonical morphism

CQo i VO = (py) L. If 32 W — Z is the third morphism of schemes
then the compositions Cw,xx.(cw.w)’ CouxCu 1 XV O = (puy) S co-
incide. In general, Cp,y are not isomorphisms (a possible remedy would be

to change the definition of ¢ so that the right ¢* would send the D-algebras

on X to the differential graded D-algebras on Y ; we will not pursue this
line further).

1.4.5. In certain cases one can describe ¢" quite explicitly.
(i) ¢ isétale. Then, by 1.3, p*&/ isan O, ~differential algebra. One has

a canonical isomorphism ¢*%/ s ¢'%/ of D-algebras that assigns

t0 a € "/ the operator of the left multiplication by a on 0" .
The inverse map ¢’ — 9"/ is [ —~ (1 ® 1).
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(ii) ¢ is a projection ¥ =T x X — X. Then q) W =0, RA, and
one has an isomorphism of D-algebras DR — ¢ M that sends

d®ac DR to the operator t®bi—>3(t)®ab
(ii) ¢:Y — X is a closed embedding defined by an ideal I C &y.
Then ¢*% = S (I . Let NI&/) = {a € ¥:al C 17} be
the normalizer of the ideal I in the algebra & . One has an
isomorphism of D-algebras N(I&)/I¢ — ¢ &/ that sends a €
N(1/) to the operator of left multlphcatlon by o on & /I ; the
" inverse mapis y— y(1®1). :

1.4.6. Let ¢: Y — X be a morphism of schemes and L, N be Lie
algebroids on X, Y respectwely A g-morphism y: N — L is an &y~
linear map y: N — ¢ L which satisfies the following conditions. Take
ne N;wrt yn) =S el, f ed,, I' ¢ L. Then one requires
that y([n,, m,]) = SAf el l’]+a(n1)(f’) ® 1’ a(my)(f}) ® 1y, and

a(n)(p*g) = Efw (c')(g)) for g€y . .0

If y:Z — Y is another morphism of schemes K is aLie algebroxd on
Z ,and §: K — N is a y-morphism, then the composmon y8 ==y (y)d is
a py-morphism K — L.

We will call a pair (X, L), where X isa scheme and L is a Lie algebroid
on X, a D-Lie scheme. We see that D-Lie schemes form a category D-Lie
(the morphisms are pairs ¢, 7 as above).

The projection (X, L) — X makes D-Lie a prefibered category over the
category of schemes (one easily constructs the pull-back functor ¢ : (Lie
algebroids on X ) — (Lie algebroids on Y)).

If, in the above situation, P is an L-module on X, then ¢ *P is natu-
rally an N-module: the N-actionis n(f®p):= agn)(fep+ S ffelp,
where y(n) = >, f ® ' . Therefore, we have the pull-back functor (¢, )" :'
(L-modules) — ( N-modules), ((o P)'P = ¢*P; clearly (v, y6)"
(w,8) (¢, 7)". In particular, ¢ *% (L) is an N-module hence y deﬁnes
a p-morphism of D-algebras % (N) — Z(L). Therefore, we have the uni-
versal enveloping algebra functor D-Lie — D-Sch, (X, L)~ (X ,Z(L)).

1.4.7. Let (p,A): (Y,&) — (X,&) be a morphism of D-schemes.
It defines the push-forward functor between the derived categories of right
modules R(g,1),: D™ #(Y,B) — D7 #(X,¥), R(p,4),(P) =

Ly
Ro (P 2 @*/). Here we consider ¢"&/ asa (%,¢ ! 27)-bimodule (so
P % ¢" o is a right rp‘lﬂ -module) and ¢_ is the sheaf theoretic direct
image.

If X = SpecR, Y = SpecS are affine schemes, 4 = I'(X, &), and
B=I(Y, %), then the functor R(p, A), sends a right B- module P to the

complex of A-modules P ® (S ® A).
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1.5. Smooth localization. Assume we are in the situation of 1.4.4.

1.5.1. LeMMA. Ifeither ¢ or y is a smooth morphism of schemes, then

Cp,y s an isomorphism. o

~ Proor. The statement is Zariski local. We assume that X = SpecR is
affine; put 4 =I'(X, o). Since locally any smooth morphism U — V is a
composition U - V xC" -5 V', where o is étale and 7 isa projection, it
suffices to check our lemma when the smooth morphism in question is either
étale or the projection. o L . _

(i) v is étale. Then y o & = y'p'/ by 1.4.5(i) and: C,,p 15 the

action of Yo'/ on y*p'¥ = @, % A. Since y*Diff(@,, ¢") =
. Diff(@, , "¢ /) the flatness of y implies that ¢, , is an isomorphism.

(ii)  isétale. One has ¢’/ = 9"/, Y o' = (py)*' o ,and y'¢'o7 ,
respectively (py) & , is the sheaf of all operators / € Diff(@, , &, %A) that
commute with the right action of t//"lé’ , respectively R. Since for any
f €, the map &, - &, @A=y'o, g Ify'(g) - I(N)i(g), is
a differential operator, it vanishes if and only if it vanishes on R. Hence
Voo =(py) . |

(ili) y: Z =C"xY — Y isa projection. One has (see 1.4.5(ii)) y ¢’/ =
DR« = {l € Diff(@,, T, ® 4): I(f(pw)"(8)) = U(N)i(g) for f €
@,,8€R}=(py) o . |

(iv) p: Y =C" x X — X is a projection. Let t;, J=1,...,n,bethe
coordinates on C", 6 = gy, 4,=vy'(t;)€,, 50

v=(¢;0)=(q,...,q,:0).
One has (py) & = {I € Diff(&@,, o, %A): I(fr) = I(f)i(r) for fea,,
reR}, 9 =DuRA, yosf ={me Diff(@, , "D %A): m(fr) =
m(f)i(r), m(qu)=m(j)i(tj) fqr fed,, reR, j=1,...,n}.
Write D = @@Cna;l' ---6,:" , 80 that in the above formula m =
Zm,.l '-‘i,,'aztl" . ..alin , where m; .. € bift@, , @, % A). Conditions on m ¢
VoS imply m; . €(py)¥ and |

m,'l...i" (qu) = qjmil""in (f) + m,'[ R S T (f) .

The map ¢, , sends m to my..o > clearly this is an isomorphism.

1.5.2. Let mp: P — X be a smooth X-scheme (this means that Tp is a
smooth morphism). For a D-algebra & on X we will call Sy =1'% the
(smooth) localization of &/ at P. The above lemma claims that the pull-
back functors are compatible with smooth localizations: for a commutative



10 A. BEILINSON AND J. BERNSTEIN

diagram
Q—*— P

"Ql "rl
Yy 2o X
where T, is also smooth, one has a canonical isomorphism ¢ M =(p & )
(both equal to (p7,) "%/ ). In particular, for any morphism a: P' — P of
smooth X-schemes one has & =« o ie., &/, formsa Cartesian section
of D-Sch over the category X of smooth X-schemes. : :

1.5.3. The category X_ has a Grothendieck topology structure (smooth
site of X ; a covering in X is a smooth surjective morphism of X-schemes).
Note that a morphism between D-algebras on X is an isomorphism if and
only if it is an isomorphism locally in smooth topology X, (use 1.4. 5(1),
(ii)). In fact D-algebras themselves are local objects w1th respect to the
smooth topology: they satisfy the smooth descent property.

To be precise, let 7,: P — X be a smooth covering (i.e., a smooth surjec-
tive morphism). Consider the corresponding Cech system

Ty M3 Ry3

P = PxPxP ——> PxP——aP kX,

For a D-algebra & on X denote by g, the composition n;MP = Ap_p
) X

A nz.ﬂ
A D- algebra on P is a pair (#, g), where & is a D-algebra on P
and g: . B - @ is an isomorphism that satisfies the cocycle property

T 13(g) = 7:23(g)7t1 ,(g). The D-algebras on & form a category in an obvious
way, and we have a canonical Z-localization functor ( D- algebras on X)—
-(D-algebras onP), & — (Y, &) -

1.5.4. LEMMA. This functor is an equivalence of categories.

PRrOOF. Let us construct the inverse functor. Denote by X_ P X, the
full subcategory of P-small objects (those T for which HomX (T, P) is
not empty).

A D-algebra (Z, g) on & defines a Cartesian section T — Py of D-

Sch over Xs(:) as follows. For a P-small T and a morphism y: T — P put
By, = Y% . If y': T — P is another morphism then, by 1.5.1, &, =
(v,7)n, & and Br, = (7, ¥') n, & , so we have a canonical isomorphism

Ly = v') (8): By, — By, ;onehas g, =g, 8, by the cocycle
property of g. Therefore B rp does not depend on y: this is our ..
If T3 T is a morphism in Xs(rﬁ), then we have a canonical morphism
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C,: @ By — By, defined as a composition a’@n =o'y B s (ya) B =
i, (this definition does not depend on the choice of ¥ € Hom(T, P)).

This ¢, is actually an isomorphism (this is clear from 1.5.1 if either
is smooth or there exists a smooth y: T'— P. The general case reduces to
this, since ¢, is compatible with smooth localizations: replace T and 7" by
T ;5 Pand T ;<r P respectively).

We can replace Xs(g) by the subcategory Xg’ ) that consists of P-small
T’s étale over X. By the étale descent (see 1.3) &, defines a D-algebra
& on X. Clearly &/ depends on (%, g) in a functorial way. One checks
immediately that this functor (D -algebras on &) — (D -algebras on X ),
(¥, g) — & , is inverse to the P-localization functor.

1.5.5. For a D-algebra & on X the categories .#(%/,) form a fibered
category # (X ) over X, (with respect to the pull-back functor 9*). The
usual flat descent property for #-modules implies that .# (Xgy) is a stack
over X_ .

1.5.6. One easily checks that the analogs of 1.5.1 and 1.5.4 are valid in
the Lie algebroid situation (see 1.4.6).

1.6. Affine D-schemes. Let (X,.%) bea D-scheme. Put A := I'x, &).
We have a pair (A, T) of adjoint functors (X, &) =X .#(4) ; (M) =
I'(X, M) is the global sections functor, A(N) =/ ? N. '

- 1.6.1. LeMMA. The following conditions on (X, ) arelequivalent:
(i) Forany M € #(X, %) one has H'(X, M) =0 Jor i>0 and M
Is generated, as an S/ -module, by its global sections.
(ii) The Junctors T', A are (mutually inverse) equivalences of categories.

If the conditions of 1.6.1 hold, then we will call (X, &) an affine D-
scheme, and X an & -affine variety. '

ExampLEs. (i) If X itself is an affine scheme, then it is &/ -affine for any

(ii) Let X be any quasiprojective variety. Then there exists a smooth
surjective morphism z: X — X such that X is affine (actually there exists
n which is a torsor with respect to an action of some vector bundle over

X ). Then X is n*é’x;-aiﬁne. For -a nontrivial noncommutative example, see
Section 3.

1.7. D-stacks. The smooth descent property shows that we can repeat all
the above notions and constructions in the context of algebraic stacks. Here
is a brief sketch of the first definitions, '

Let 2 be an algebraic stack (for the smooth topology, see [Lau]). A
D-algebra &/ on & consists of the following data: ‘

() For any scheme X and a smooth I-morphism #z: X — 2 one has
a D-algebra ,.M(X x) O X.
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(ii) For any (X, 7), (X', ') as above, a morphism a: X' — X,and a

2-morphism 7' - e, one has an isomorphism of D-algebras
aﬁ: "M(X',n') - "C{(X,n)'

We demand that @, behave naturally with respect to compositions of
(a, @)’s.

1.7.1. ExampLE. If 2 is smooth then we have the D-algebra of differ-
ential operators D, on 2. Namely, for any (X, m) as in (i) above the
scheme X is regular; we put ( 2’)(,\' n = =D,, and take for & in (ii) the

canonical isomorphism D, =« D it

1.7.2. D-algebras on 2’ are local objects: one can describe them as fol-
lows. Choose a smooth covering 7: X — & (so = is a smooth surjective
l-morphism); put ¥ := X xX Then Y is a smooth groupoid acting on X,

and # coincides with the quotient stack Y\ X. A D-algebra & on &
yields a D-algebra &, = & .n) on X equlpped with the Y-action (which

is an isomorphism g, : nl,%x — nZM that satisfies the cocycle condition).
As follows from 1.5.3 the functor & — (&, g,) from the category of
D-algebras on £ to the category of Y-equivariant D-algebras on X is an

equivalence of categories.

For a D-algebra & on £ an &% -module M is a collection of .52/( X1

modules M(X,ﬂ) together with & -isomorphisms M( X' 1) = « M( X.7)
compatible with the composition of (a, &)’s for (X, n), (@, @) as above.
In terms of a smooth covering X —— £ such an M is the same as a Y-
equivariant &/ -module (i.e., an &-module equipped with a g,y -isomor-
phism g,,: ;M — n;M that satisfies the cocycle condition). The 5 -

modules form an abelian category #(Z°, &) .

We leave to the reader further translations of 1.1-1.6 to the stack setting.
The only delicate point here is the construction of the derived category of /-
modules (and, consequently, the construction of the push-forward functors
from 1.4.7). It turns out that for the usual derived category DA (2", %)
the local to global spectral sequence for Ext’s no longer holds in the stack
case (the first example: take 2 = G, \ point, & = D, ). One must replace
it by a certain canonical f-category D(2, &) with the heart #(2°, &),
we hope to present a construction of D(Z°, &) elsewhere.

1.8. Equivariant setting. Let G be an algebraic group and X be a G-
variety, i.e., a scheme equipped with a G-action p: G x X — X . In this
subsection we will give an explicit description of D-algebras on the quotient
stack G\X and of corresponding modules.

1.8.1. Let g be the Lie algebra of G. Our u defines the infinitesi-
mal action a:g — J; by 1.2.2 we have the Lie algebroid g, . For a
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(quasicoherent) é’k—module P a G-action on P (which is an isomorphism
#P = p} P that satisfies the cocycle condition) defines a g-action a, on

P that lifts o (ie., ap is a Lie algebra morphism g — End. P such that
ap(V)(fP) = fap()(p) +a(y)(f)p, v €8, f €8y, p € P; equivalently, we
have a morphism of Lie algebroids ap: gy — 7, (see 1.2.2-1.2.3)).

1.8.2. Let M be an &, -differential bimodule. The group G x G acts
on X x X, and the diagonal subgroup G — G x G preserves the diagonal.
Let G" be the formal completion of G x G along the diagonal G this is a
formal subgroup of G x G that preserves the formal neighborhood X" of
the diagonal. We define a G-action on M asa G™-action on M considered
as an @y, y-module supported on the diagonal.

One can spell out this definition without explicitly mentioning G" as fol-
lows. Consider the “complex Harish-Chandra pair” (g x g, G). It acts on
X x X, and a G-action on an O y~differential bimodule is the lifting of this
action to M considered as an Oy x-module. Explicitly, a (gx g, G)-action
on M isapair (4, a,) where U, is a G-action on M considered as an
Oy x-module (G acts on X x X diagonally), and « u 18 a (g x g)-action on
M (in other words o » 1s a Lie algebra map gx g — End. M such that one
has O!M())l ) Y2)(f1mj;) = a(yl)(f])mfz + fl(O‘M()’] ’ yz)m)fz + flma(yz)(f;)_) :
for y,,7, € g, fi,f, € Oy, m € M). This pair should be compati-
ble in the sense that the action of g that comes from U, coincides with
the a,-action of the diagonal g C g x g, and one has g*(a u(P )m) =
aylad, y,; ad, 7,)g"(m) for g€ G, me M, Y1»7, € g. Here g* stands
for the u,,-actionof g on M. ' :

REMARK. A G-action-on M as an &, ,-module defines (and is com-
pletely determined by) a G-action on M as an @y -module (with respect to
either only left or only right @y -action). We can formally weaken the above
definition by demanding only that in the pair (Bpy s @)) our p » Should be
the G-action on M as on a left (or right) &,-module. It is easy to check
that nothing changes: the compatibility with o » immediately implies that
K, is actually a G-action on M as an Oy x-module.

1.8.3. Let &/ bea D-algebra on X. A G-action on &/ is a G-action
(ty,ay,) on & asan @ -differential bimodule such that

(i) u, is compatible with the ring structure on &/ , 1.e., g*(alaz) =
(87a))(g"a,), g°(1)=1 for g€ G, a,a,ed . ‘

(i) For ye g, a,,a, € ¥ onehas o,(y, 0)(a,a,) = (a, (7, 0)a))a,,
a.y(o: y)(alaz) = alay(o’ 7)(‘12) . ,

Note that (i) implies that the structure morphism i Gy - & com-
mutes with the G-action. For y € g put ig(;v) = ay,(y, 0)(1) € & ; then
ay (v, r)a=i J(ra—ai ¢(72) . We can rewrite the above definition in terms
of i . Namely, a G-action on & is the same as a pair (u, , ig) » where u,
is a G-action on & as on a left (or right) &, -module and iig— & isa
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Lie algebra map such that

(i) u, is compatible with the ring structure on & .
(i) , commutes with the G-action (where G acts on g by the adjoint
representation).

(iii) The g-action on & that comes from u , coincides with ad, .
. a

We call a D-algebra equipped with a G-action a Harish-Chandra algebra
oran (G, G)-differential algebra.

EXAMPLE If G acts on a coherent &y-module P then D, is a Harlsh-
Chandra algebra in an obvious way (here i, =ap).

1.8.4. Now let P be a Lie algebroid on X. A G-actionon P isa G-
action u, on P asan &@,-module together with a morphxsr_n of Lie algebras
ig: g — P such that

(i) One has g*[(;, {,] = [87¢,, &7°C,1, &7(al) = a(g"() for g € G,
(,el. '
(i) i(ad,y)= g'i o,y for g€G, yeg.
(iii) Thc g-actlon on P that comes from g, coincides w1th ad,

We call a Lie algebroid equipped with a G-action a Harish-Chandra Lie
algebroid. If X is a point, then this is the same as a Harish-Chandra pair.

For a Harish-Chandra Lie algebroid P its universal enveloping algebra
% (P) is a Harish-Chandra algebra in an obvious manner. If &/ is a Harish-
Chandra algebra on X, then Lie&’ (see 1.2.5) is a Harish-Chandra Lle
algebroid.

One defines morphisms of Harish-Chandra algebras and Lie algebroids in
an obvious way.

EXAMPLE. g, is a Harish-Chandra algebroid in an obvious manner (the
G-action on g, comes from the adjoint action on g C g, ). For any Harish-
Chandra Lie algebroid P there exists a unique morphism g, — P. We
have an obvious ring homomorphism %(g) — #(g,); the corresponding
morphism of &,-modules &, ® %(g) — % (gy) is an isomorphism.

1.8.5. Let &/ be a Harish-Chandra algebra on X. A weak (&, G)-
module is an &/ -module M equipped with a G-action (as an @y-module)
compatible with the G-action on & (i.e.,for g€ G, ae ¥, m € M one
has g*(am) = g*(a)g"(m)). An (& , G)-module is a weak (& , G)-module
M such that the action of g on M that comes from the G-action coincides
with the one that comes from i gl 8 & and the .&7-module structure on
M . We will also call (&, G)-modules Harish-Chandra modules.

To see the difference between weak (%, G)-modules and Harish-Chan-
dra modules consider the tensor product algebra &% ® Z (g). It carries the

Harish-Chandra structure: the G-action is g(a® u) = g(a) ® Ad g(u), and
the i,~map is zg(y) =i (y)@ 1+1@7y.
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1.8.6. LEMMA Weak (&, G) -modules are the same as (.9/ ® %(g), G)-
modules. :

PRrROOF. An (& %)?/(g) , G)-module is a weak (%, G)-module (where &

acts via &/ — & ® %(g), a — a®1). Conversely, let M be a weak
(&, G)-module, For y € g consider the C-linear endomorphism w(y) of
M, wiym = y“)m y( )m where y(l) is the action of y that comes
from the action of G on M (as on &, v-module) and »® is the action of
i,(y) € & . One checks that w(y) commutes with % -action and the map
w:g— End, M is a Lie algebra homomorphism. Therefore the % -module
structure and w define a (& ® % (g))-module structure on M , and the G-

action makes M a Hansh-Chandra (& ® # (g))-module.

The (&, G)-modules form an abelian category M (& , G), the weak ones
form an abelian category /# (& , G)weak Clearly # (2, G) is a full sub-
category of A (&, G),,,, » Which is closed under subquotients. We have the
faithful forgetting of the G-action functor o: .# (& 5 C)yeare = (A ).

Exampres. (i) If & is a G-equivariant Lie algebroid on X then an

% (#)-Harish-Chandra module M isa Z-module equipped with a G-action
(as an &,-module) such that the corresponding infinitesimal action of g co-
incides with the action defined by the morphism 1 g ZP.If X isapoint
we recover the usual notion of a (%, G)-module '

(il) For any Harish-Chandra algebra &/ the free left &/-module & is a
weak (&, G)-module in an obvious manner. The corresponding g-actlon w

is w({)a = -ai ().

1.8.7. LemMA. (i) Harish-Chandra algebras on X are the same as D-
algebras on the quotient stack G\ X .

(ii) For a Harish-Chandra algebra- & , (& , G)-modules are the same as
modules over corresponding algebras on G\X.

PROOF. (i) Denote by Pg>Py: Gx X — G, X the projections. Consider
a D-algebra on G\X. According to 1.7 this is the same as a pair (&, g),
where &/ is a D-algebra on X and giuy = pXM is an isomorphism

of D-algebras that satisfies the cocycle condition. Let us define on & a

Harish-Chandra structure (u s Ig), 1., a G-action on &/ in the sense of
1.8.3.

Recall that p,.&/ = D, R & (see 1.4.5(ii)), hence py¥ =G, R is
the centralizer of pg @ C G4 x In pX.M Since 4’ is the pull-back of
pXJaf via the isomorphism (g B):Gx X =5 Gx X we see that us/

commdes with the centralizer of j ﬁ’ in y '8/ . Therefore our g U —
D X.M defines an isomorphism between the . '@ g-centralizers u_, : u o =

pX,sa{ This is the desired action of G on & as an @y-module. To define
ig consider the embedding v: g — D, c pXM that sends Yy € g to the
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corresponding left invariant vector field. For y € g put ig(y) =v(y) -
gps, 1) (¥(¥)) € Py ; this element commutes with p_‘ﬁG and v(g) and,
therefore, lies in p;l.si C p:‘,.% . We get iig— & ; it is easy to check that
(By» 1 g) is a Harish-Chandra structure on & .

Conversely, for a Harish-Chandra algebra & we define the isomorphism
g: 4 — p,s/ as p, on the centralizers of p; 'ﬁG and extend it to the
entire algebra using the above formula relating i , and v. One easily checks
the cocycle property for g.

(ii) Clear.

1.8.8. Here is a simple corollary of 1.8.7. Assume we have an embedding
of algebraic groups G C G’ . We have the induced G'-variety X' = G’ x X =

G x X/{(g',x) = (gg”", gx)}. The embedding X — X  induces an
isomorphism between the quotient stacks G\X — G'\X',.hence the pull-

-1

back to X is an equivalence between the categories of G'-Harish-Chandra
algebras on X' and G-Harish-Chandra algebras on X (and similarly for the
corresponding Harish-Chandra modules). We leave to the reader an explicit
construction of the inverse functors. '

1.8.9. Assume that G acts on X in a free way, so we have a morphism
of schemes n: X — Z that identifies Z with G\X (i.e., X is a G-torsor
over Z ). According to 1.8.7 the functor x : ( D -algebras on Z) — (Harish-
Chandra algebras on X ) is an equivalence of categories. Here is an explicit
construction of the inverse functor. Denote by g; the X-twist of &, ® g;
explicitly, g; = (1,0, ® g)G, G acts on g by the adjoint action. For a
Harish-Chandra algebra &/ on X put &, := (7,9 )G; this is a D-algebra
on Z. The map i, sends g; to &, . One can see that &, - I,(87)
is actually a 2-sided ideal in &, ; put &, := MZN/MZNiB(g;). The left
action of & on n'%, = n*MZN/n*(MZN)ig(g;) = & [ (g) defines the
isomorphism & =7 %, . ’

For any D-algebra &/, on Z consider the corresponding algebras & =
n Sy, A, 50 Hy= A, |94;i (g7) . Note that 7,/ = n*ﬁxg &/, and

. zZ
any (local) section of 7z (i.e., any G-isomorphism X = G x Z) induces an
isomorphism M =&, ® % (g). Assume that G is an affine group. Then

the functor n_: .# (X, .9% ) — A (Z n,s) 1s an equivalence of categories.
We have the adjoint functors H (A, G), ak«—% (Z,5;),

n,M = (n*M)G ,

n N = n_l(jt*.% K N) =& Q dyn ' N =8, ® &,n"'N.
) 'z T T
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1.8.10. LEMMA (1) The functors n, m., are mutually inverse equzvalences
of categories.

(ii) ., zdentzﬁes M (¥, G) with #(Z, £,), = coincides on #(Z, .537 )
with n!

§2. Twisted differential operators

2.1. First definitions and equivalences. (1) Let X .be a smooth algebraic
or analytic variety over C. ' | ]

' 2.1.1. DEFINITION. An algebra of twisted differential operators, or simply
atdo, on X is a sheaf of associative algebras D on X equipped with a mor-
phism of algebras i: @, — D such that there exists an increasing filtration
D, on D with the following propertieS'

(1) D. is a ring filtration (i.e., D, D C D, + -) such that the associated
graded algebra gr. D is commutatlve one has D_, =0, UD;=D.

(ii) The morphism i identifies &, with D, , and the obv1ous morphlsm
of the symmetric algebra S’ ( 1/Dy) into gr, D is an isomorphism
of &)y-algebras.

(iii) The morphism ¢: D,/D, — 9, a(d)(f) := 8f fo, where 0 €

D,, f €&y = D,, is an isomorphism.

ExaMPLE. If ¥ is a line bundle on X then D, is a tdo.

REMARK. Let D be a tdo; according to (ii) and (iii) above we have a
canonical isomorphism of &, -algebras gr, D = S’(.?;() = functions on the
cotangent bundle to X . The algebra gr, D carries a standard Poisson bracket
(>} e, Dxer,D > gr,, D, {f,8} = fg—gfmod D,,, ,. The
above isomorphism identifies {-, -} with the Poisson bracket that comes from
the standard symplectic structure on the cotangent bundle.

For a tdoD the filtration D, is a D-filtration on D. Therefore D is
an 0,-differential algebra. In fact one checks immediately that D. is the
maximal D-filtration D) ; in particular it is uniquely determined.

It is easy to see that the canonical complex from 1.1.1 for M = D is the

Koszul complex. To be precise, one has the following characterization of
tdo’s.

2.1.2. LEMMA. An O -differential algebra &/ is a tdo iff for the maximal
D-filtration &/ = %" the Jollowing conditions hold:
() i:Oy — &, is an isomorphism.
(i) The morphlsm o: %[, — Dersy = a(d )(f) =9f - fa
surjective.

PrOOF. The above remarks show that any tdo satisfies the cohditions in
2.1.2. Conversely, assume ./ satisfies the conditions 2.1.2. Since &, is

( )} We borrowed 2.1-2.4 below from an unpublished manuscript of A. Beilinson and
D. Kazhdan.
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the centralizer of i(&,), we see that ¢ is injective, and hence o is an iso-
morphism. The term & is closed under commutators (for 9,,0, € ¥,
f € &y one has ad f([8,, B,]) = —{[9,, 8,], f} = [add,, add,l(f) =
—[6(8,), (8,)1(f)), therefore the &) -subalgebra of gr &/ generated by
Iy = ¥,/%4, is commutative. It remains to show that the corresponding

map S '(9}}) — gr; &/ is an isomorphism. This follows by induction on i.
Namely, assume that we know this for any i < j. It is easy to check that for
i < j the maps d;: gr; =S'(F;) — Hom(Q}, gr,_, ) = F, © S " (Fy)
from 1. 1 1 are Koszul differentials, as well as the composition S’ (%) —
gr, 1, Hom(Q\, gr,_, ) = T, ® S'(T;). Since 8, is injective (see
1.1.1) the exactness of the Koszul complex implies that S’ (Fy) — gr I

It is easy to see that any morphism between tdo’s is an isomorphism,
i.e.,, tdo’s form a groupoid J2¢(X). Below we give several equivalent
descriptions of this groupoid.

2.1.3. DeFmuTION. A Picard Lie, or simply Picard, algebroid on X is a
Lie algebroid 72 equipped with a central section 1 ~of T = Kero, such
that the sequence 0 — &, .L',fﬁ,y -0, i(f) = f~'-f1 ~, is exact.

Recall that ¢ is the standard morphlsm of Lie algebr01ds deﬁned in 1.2;
we will 1dent1fy Oy with I 7 0 using the isomorphism ;.

Let J be a Picard algebroid. Since J © = = &y, the sheaf g( ) of
connections is an Q' -torsor. The curvature map c: %(7 ) — Q2 v has the
following property: c(v +V) = dv +¢(V) for v € Q;(, Ve %Qf) (see
1.2).

A morphism of Picard algebroids is a morphism of Lie algebroids that
preserves 1 &S Picard algebroids form a groupoid 4% (X). The Baer
sum construction defines on ¥ (X) a structure of “ C-vector space in cat-

egories Namely for f € ¥ (X), A; € C the linear combination 7 =
A 7 + 4, 9" is a Picard algebr01d T equipped with a morphism of Lie
algebr01ds Si,02,° ?xy 7—»9" such that s/1 " (i, ) =R fi+4,0).
For a tdo D consider the Lie algebroid 7 :=LieD (see 1.2.5). Clearly
Y D, and 1 5= 1 € &y C D, defines on 7 the structure of a Picard

algebroid. Conversely, for a Plcard algebroid " denote by D 5 the quotient

of Z (.7 ) modulo the ideal generated by the central element 1 - 1 ~. One
checks immediately that D isa tdo.

:2.1.4. LEMMA. The functors  DO(X) = £ (X), D Y T D,
are mutually inverse equivalences of categories.

2.1.5. Let d: A" — A™! bea morphism of sheaves of abelian groups on
X, considered as a length 2 complex 4" supported in degrees n and n+ 1.
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An A -torsor is a pair (¥, c), where F is an A"-torsor and ¢: F — 4™
is a map such that c(a+¢) = d(a)+c(p) for a€ 4", p € F (in other words,
¢ is a trivialization of the induced 4"*!-torsor d (¥)). The A -torsors form
a groupoid 4 -tors. One has Aut# = I'(X, Kerd) = H"(X, A", and iso-
morphism classes of A'-torsors are in a natural 1-1 correspondence with
H™ (X, 4). s - |

REMARK. A'-tors is a stack in Picard categorieson X ;if A" isa complex
of C-vector spaces, then A -tors is a C-vector space in categories (one forms
C-linear combinations of torsors in an obvious way). If D is surjective, then
A’-tors = (Kerd)-tors.

Consider now the truncated de Rham complex Qil = (Q}{ - Qf\,cl),

where Qi,d are closed 2-forms. By 2.1.3 we have the functor : Py (X) —

—_—

Qf,l-tors, T - (%(.?), c).

2.1.6. LEmMA. %: Y (X) — Qil-tors is an equivalence of C-vector
spaces in categories.

By 2.1.5 we can identify the set of isomorphism classes of tdo’s with
H(X,Q2"). For atdo D we will denote by ¢,(D) € H (X, Q3" the
corresponding cohomology class.

2.1.7. For a tdo D a connection V on D is a connection on the corre-
sponding Picard algebroid &, . Note that pairs (D, V), V is a connection
- onatdo D, are rigid: the only automorphism of D that preserves V is the
identity. The pairs (D, V) are in 1-1 correspondence with closed 2-forms;
for w e Q? Cl(X ) we will denote by (D, V,) the (unique up to a canonical
isomorphism) tdo with ¢(V) = w. A corresponding Qilftorsor (%, ¢c,) is
Fo=Qy, c,(V)=dv+w.

2.1.8. Now consider the cotangent bundle 7* = T* (X) = X. This is

a vector bundle over X ; also 7™ carries a canonical symplectic 2-form o
such that # is a polarization (which is a smooth projection with Lagrangian
fibers). If v is a I-form on X and t,:T" T, t(a)=a+ Vu(a)» 18 the
translation by v, then £)(w) = n*(dv) + w.

- - n .
DEFINITION. A twisted cotangent bundle is a T*-torgor v — X (ie., m,

is a fibration equipped with a simple transitive action of T** along the fibers)
together with a symplectic form ®, on y such that m, is a polarization
for w, , and for any 1-form v one has t(w,)=n'dv+w. _

For a twisted cotangent bundle ¥ we will denote by AW the &, -algebra
”w*ﬁw‘ Then Aw carries a Poisson bracket {- -} (defined by w ) and a
filtration Awi = functions of degree < i along the fibers of z,, . Clearly one
has 4, = {a e 4,:{a,0,} 4,1} and the associated graded algebra

gr. Aw is naturally isomorphic to the symmetric algebra Ape = S'Z\, as a
Poisson algebra. :
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2.1.9. REMARKS. (i) A T -torsor structure on y is uniquely determined

by the symplectic structure @, and the polarization m, (since the infinites-

imal action of a 1-form v € QI(X ) is given by the vector field {(v) defined
by {(v)w, =7, (V).

(ii) Twisted cotangent bundles over X form a groupoid J &% (X). Ac-
cording to (i), TE#(X) is a full subcategory of the category of triples
(Y, wy, n,) where (Y, wy) is a symplectic manifold and 7,:Y — X
is a polarization (for the symplectic structure).

2.1.10. LEMMA. One has a canonical equivalence of categories I': TEB(X)
= Q;'-tors.

Proor. Put I'(y) = Q!-torsor of a section of v ;themap c: I'(y) — Qi,d

1s ¢(y) = y*(a)w) . Note that the corresponding Picard algebroid J, is 4,
equipped with the bracket {:, -}.

The inverse functor I'"' sends an Qf,l-torsor (F,c) to (v, T, @,),
where M, ¥ — X isthe space of the torsor & , and the symplectic form @,
is the unique form such that for a section y € ¥ of T, the corresponding
isomorphism T°X — y, 0+ 7, identifies w, with w +7'¢c(y).

2.1.11. ReMARK. Let D be a tdo, and y be the corresponding twisted
cotangent bundle. Then D is a “quantization” of y in the sense that D
is a deformation of a commutative algebra A4 v To be precise, one has a
canonical famlly D = {D,} of sheaves of filtered rings on X parametrlzed

by points ¢ € P! (i.e., D is a flat &,-algebra) such that:

(i) For £# oo onehas D, =D & (here T = Z) ; in particular, D, = D,
D,=D, )

(ii) D = A , and the @ -Poisson bracket on A, is given by the usual
formula {gol , 9,1 = [t(9,0, — 9,9,)] mod ™' (here 9 EID , and
qJ are arbitrary local sections of D at { = oo such that (o (00 ) =@;)..

(iil) gr, D =(S%)(-a).

2.1.12. Let us see what the above constructions mean in the case D = D &
where . is a line bundle. The corresponding Picard algebroid :7;, = 9’;2’
is the Lie algebroid of infinitesimal symmetries of (X, .%#), see 1.2.3. The
Qf,l-torsor (Fy,Cy) = %(@) is the sheaf of connections on .#, and ¢,
is the usual curvature. Note that the functor & *-tors — Q>l-tors is precisely
the push-out functor for the morphism dlog: &y — Qld Qf,l[l].
particular it transforms ® to the sum of torsors. One has ¢ (Dg) = ¢ (&) €
H(X,Q2Y.

2.1.13. A tdo D is called locally trivial if locally it is isomorphic to
D, = D, ; according to 2.1.6, locally trivial tdo’s are the same as Q/'\f'-
torsors. Note that in analytic situations every tdo is locally trivial. In alge-
braic situations this is not true in general. For example, let X be a compact
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algebraic variety. "The space of isomorphism classes of tdo’s H> (X, Qzl)
coincides with the Hodge filtration subspace F' H, 2 pr » and the locally trivial
tdo’s correspond to those classes that vanish on some Zariski open subspace
of X, i.e., precisely to C-linear combinations of the algebraic cycles classes.

2.2. Functoriality. Let ¢: Y — X be a morphism of smooth varieties.
We have the corresponding morphism ¢*: go"Q' - Q, between the de
Rham complexes, hence the morphism of groupoids ¢": Q/ -tors — Q’
tors. f w: Z —-Y is another morph1sm of vanetles then we have a canomcal
isomorphism of functors y/ o = (pw)": Q/ -tors — Q/ -tors, therefore
Q%'-tors form a fibered category over the category of schemes It is easy to
see that (o satisfies the descent property if ¢ is a smooth surjective map,
ie., Q”'_tors form a stack on the category of smooth schemes equlpped with
the smooth topology.

The equivalent versions I2¢ , &Y , and T %‘@ of Q>'-tors therefore
are also stacks. The pull-back functors for tdo’s and Picard algebroids coin-
cide with those defined in 1.4. - .

To be precise, for a Picard algebroid Jy on X the Lie algebrmd 17 9
(see 1.4.6) is a Picard algebroid. Namely, as an &,-module ¢ .7 coin-

cides with the fibered product ¢ 9} x Z, (with respect to the projections
. ty -

X
—_— d .
(”*‘7,\' L0, (0*9;{ «iﬁ' ); and we put 1 5 =9 19»: , 0). One defines
the pull-back for connections in an obvxous way, this identifies & (¢ 7, )
with ¢ ‘5(7' ).
Let us turn to tdo’s:

LEMMA. (i) Let ¢: Y — X be a morphism of smooth schemes and D be
atdoon X. Then the @ v-differential algebra ¢'D (defined in (1.4.1)) isa
tdo.

(ii) One has a canonical isomorphism of Picard algebrozds 7 =@ f

PROOF. (i) The morphism ¢ can be written as a composmon of a closed
imbedding and a projection. By Lemma 1.5.1 it is enough to prove the
statement for these two cases. The case of projection immediately follows
from 1.4.5(ii). In the case of a closed imbedding one proves the statement
by direct local computations using 1.4. 5(iii).

(i1) easily follows from (i).

Note that for y: Z — Y the canonical morphism is compatible with the
corresponding isomorphism of Picard algebroids. '

According to 1.4 we have the pull-back functors ¢*: # (D) — # (¢’ D)
between the categories of D-modules that make the #(D)’s a stack.

2.3. Twisted D-modules and projective connections. Let D be a tdo. We
say that a D-module M is lissé if it is coherent as an @y-module.
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2.3.1. LeMMA. Let M be a lissé D-module. Then

(i) M is a vector bundle, ‘
(ii) one has a canonical isomorphism of tdo’s D — D get 1)1 where
d =1k M . In particular, D is locally trivial.

PrOOF. (i) Repeat a proof for ordinary D-modules (see [B]).
(ii) This canonical isomorphism comes from the morphism of Picard al-

gebroids I}, — . ,, that sends 1 g, 10 dl Tt Formula: 7T = Ty,

Tgepr(My A Amy) =T )YAmMy N Amy+--+m A= AT(my) .

Let & be a coherent &,-module; consider the Lie algebroid J; from
1.2.3. Note that &, -idg is an ideal in F ; put 7 g := F5 /0, -idg . This
is a Lie algebroid. A projective connection on & is a connection on 7

Foratdo D a D-action on & is the same as a morphism of Lie algebroids
a: I, — 9”; that sends 1 g to idg. Suchan « defines an integrable pro-

—_— D — :
jective connection V_ on & by the formula V _(0(7)) = a(r) mod g, -idg .
2.3.2. LEMMA. Assume that the map &, — End&, f — fidg , is injec-
tive. Then the above map o Va from the set of pairs (D, o), where D isa
tdo and « is a D-action on & , to the set of projective-integrable connections
on & s bijective.

ProOOF. One constructs the inverse map as follows. Let V: — ,7
be an integrable projective connection. Then 7 =9 X ? is a Picard
%

—

algebroid, and the projection og: F5 — 9; defines the Dé:_ -action on & .
. v

2.4. Subprincipal symbols.(z) Let Q = det Qll‘, be the sheaf of volume

forms on X, and J, be the corresponding Picard algebroid. One has a

canonical section £:.J, — J, which assigns to 9 € 7, its Lie derivative
£(9). Clearly ¢ commutes with the Lie bracket and for f € &, one has
fe(0) =£(f9)-0(f).

2.4.1. Let D be any tdo on X. The dual to the tdo D is a tdo D°
equipped with an isomorphism %: D = D° of filtered sheaves such that

x(ab) = x(a) = (b), =f = f for any sections a, b € D, feé’ =D, =D,.
Clearly one has gr;(+) = (~ 1)’ 1ds ig. -
Consider the corresponding Picard algebroids T = f T° = : %o
one has an isomorphism of sheaves *: T =5 T° such that #([0,, 1) =
~[+0y, *8,], #(f8) = [+ =0 (O)(), *i ) = ig(f), and 0(+D) = ~0(9)
for 9,, 9, € 7 f €&, . The Picard algebroid T is canonically isomor-
phic to ? ~J . Namely, +8 $;,_1(—£0o(9), —0) (see 2.1.3 for notation).

(2) We are grateful to V. Drinfeld whose remarks made the exposition of this section much
clearer. :
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5. 2.4.2. EXAMPLE. Consider the tdo DQI/Z The above isomorphism identi-
fies .791/: with .7 I o2 =.7Qr/z therefore Dy is a self-dual tdo (i.e., we
have the involution *: D,z — D, QU2 > = id, x(ab) = x(b) » (@) ). Denote
by DQ.,, the +1 eigenspaces of * on o2 - One has grDQ./z = @Sz'? ,

grDyp = @Sz’“f The :I:-gradmg is not compatible with the product,
but 1t is compatible (in different ways) with the brackets [6,, 8,1 =8,0,-9,9,
and the symmetrized product 8, « 9, = (1 /2)(8,0, + 6,0,) .

24.3. For a tdo D conS1der the graded C[t]-algebra D, = DD, (for :
0, ED D, and 9, eD —D their product is 9,9, GDH_J, and 19,
9, € D, v = D +1) For any nonzero A € C we have the 1somorph1sm
D/(t— )D——»D 8 A'a for aeD D, and D/tD grD = 57

Consider the operations e, {-, -} on D defined by the formulas 8, ¢, :
(1/2)(6,0, + 9,0,) , {61,62} = (1/1)(6,0, — 0,0,). Then {-,:} is a L1e
algebra bracket, e is a commutative (nonassocratlve) product and one has
{0,,0,00,} = {0,,0,}08,+8,¢{8,, 8,}. Put grD =D/ D @®D,/D,_,;
the operations e, {, -} 1nduce the corresponding operations on the quotlent
grD.

2.44. LEMMA. The operation e on grD is associative. Therefore grD

is-a Poisson C[t}/t -algebra (with respect to the product e and the Poisson
bracket {-, -}).

Proor. For 9; eDl , ]—1 2,3, onehas (9, -c')) ©9;—0,0(0,00;) =
(1/4)[9,,[0,, 8 ]] € D, iyt =2

We can describe ﬂ'llS Porsson algebra as follows. Consider the Picard al-
gebroid I 2% 9‘ T - Let (v, 7, 0 y) be its twisted cotangent bun-
dle, and A = ﬁ be the corresponding ﬁltered commutative algebra with
Poisson bracket { -} (see 2.1.8). As above we have the graded Poisson
C[t]—algebra A: = @4, (one has {4, 4, i} C 4, e l), and the quotient
grd= A/t A which is a C[z]/t -Poisson algebra

24. 5 PROPOSITION. One has a canonical isomorphism of graded Poisson
C[t]/t -algebras a: grD > gt A that lifis the zsomorphzsm og:grD/tgrD =

grD — S .7 =grA/tgrA.

PROOF. For 1 € 9, denote by 7~ the unique element of 7, a2 = (Dgin),
such that o(t”) = 7; for f ¢ Oy one has (f1)” = f1~ +i& Consider
the isomorphism of sheaves 0,: 7 =T, 7V, 8 1(8) =5, _(8,0(8)7) (see
2.1.3 for Sy ._y)- Then 8, is an 1somorphlsm of extensions of Iy by @,

it commutes with brackets and for f € Oy, € 7 one has 0,(f e 0) =
0,(f0 + 1/26(8)(f)) = f6,(9). Therefore for any i > 0 we have the
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isomorphism 6, = S.(0,): FT s A, where S.T) is the symmetric

power with respect to the &@y-module structure on 9; , (f,0) 1~ fed.
The graded ring F = @Sif is a graded C[t]-algebra in the usual manner
(the multlphcatlon by ¢ is the multiplication by 1 € &, C 7,'3, which is
an embedding S, 7 cS, “7 ), and the bracket on .7 defines the Poisson

structure on .%”. Clearly 6 = @ 6;: & = Aisan isomorphism of the graded
Poisson CJ¢]-algebras. On the other hand, the identity map id ~ extends

to a morphism y: & - grD of graded C[t] -algebras. It commutes with
Poisson brackets and the induced map ., /t 5” — grD isan Zisomorphism
of C[t]/t -Poisson algebras. We put o := Ow :gtD — A/t A=grA: this
is the desired isomorphism.

REMARK. An exphc1t formula for the inverse 1somorphlsm is 6" 1grd
—+grD. We have g, —1d§ , Of (a) =38, (a,0(a)) (here a € grd =

A, .7V and we identify gr,D = D, 97) with fz’)+9§/z).

If a=a,---a, €grd= Ai/Az'——Z’ where a; € 4, one has El_l(a) =
l/z'z o, 1(ag(l)) ~_l( g(i)),where the sum is taken over all permutations
g of i indices.

2.4.6. COROLLARY. The boundary map
op: H'(X,8'T;) - H (X, 8'F)

Jor the short exact sequence 0 — Sj"ﬁ} —D;/D;_, — SJYX — 0 is convo-
lution with the class ¢,(D) - 1c,(Q) € H'(X, Q}).

2.5. Monodromic D-modules. Let H be a torus (i.e., an algebraic group
isomorphic to a product of C*’s), h = Lie H. For a variety X we will call
an H-torsor 7: X — X over X an H-monodromic structure on X ; we call
a pair (X, X) an H-monodromic variety.

2.5.1. Assume that X is smooth, An_H-monodromic structure XonX
defines, by 1.2.3, a Lie algebroid T - 7 on X. The &,-Lie algebra 7 7 ©
coincides with § = Gy ® b identified w1th the (commutative) Lie algebra of
vertical H-invariant vector fields; we have the short exact sequence 0 — E —
T 5 Iy — 0. The group H acts on D3 in a usual way. On X we have

the D-algebras n Dy D D := [n,D5]

7. clearly n Dy =n0;® D as an
: yX .
@ -module. _

The embedding 9~ C D induces an isomorphism %(9) —> D in par-
ticular S(h) . coincides with the center of D and 5/b5 = D, (since any
(local) section of =, i.e., an isomorphism X = H x X, identifies D with

D, ®%(h) =D, ®S(h)). For x € h* denote by m, the corresponding
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| maximal ideal of S(h). Then Dx = 5/m15 is a (locally trivial) tdo on X ;
clearly Dx depends on y ina C-linear way. Therefore, one can consider D
as a “linear” family of tdo’s on X parametrized by §*.

2.5.2. A monodromic D-module on X is a weak (Dg, H)-module (see
1.8); denote by /2(X )= A (D5, H )weak the corresponding category. Ac-
cording to 1.8.9, we have the mutually inverse equivalences of categories
M Xx)= —’" w4 (D) compatible with @-tensor products of modules.

Let M be a D-module For an ideal I C S(h) put M= {m EM: Im=
0}; this is a D-submodule of M. In partlcular for x € b* we have the
submodules M, = M"™x C M = U, M"%; let. My, be the union of
the M"’s, where the I°s are ideals of finite codimension in S(h). Clearly

= Dyep M. Denote by .# (D)fm C #(D) the full subcategory of
b- ﬁmte modules, 1e such M that My = M ; we also have the full subcat-
gories ﬁ(X) = D)—{MG/Z(D) M, M}C%(X ={M €
M (D) M~=M } so A (D =L,y # (X ) The equlvalence 7 sends
M (D)ﬁn to the subcategory /Z (X)g, C % X); we will identify (X )y >
M(X )z with the corresponding subcategones of #(X).
2.5. 3 Consider now the category (X ) of Dy-modules. The projection

n is affine, therefore 7n_: .# (X ) — M (x, D;) = %’ (X, m, D) is an equiva-
lence of categones

Let bz Hom(H C*) C 4" be the lattice of integral weights; for x €h”
denote by x* the corresponding translation automorphism of S(h), x*(h) = .
h+x(h), heb. Foran ideal I C S(h) anda 7, Dz-module N we have the
D-submodule N’ c N. Note that N’ =3 N"-I is actually a 7, Dy~
submodule. In particular, for ¥ € §* /bZ we have the n*D;\,v-submodules
Ny = N™ ¢ Nf =U, N™: , where X € " is any lifting of ¥, and also the
submodule N, := UN7 I c S(b), has finite codimension.

Clearly Nﬁ ®Yeh b N Again, we say that N is an h-finite module

if Ny, = N. We have the correspondmg full subcategories .# (x, D )
M (7 DX)~ C .M (n, Ds)g, C A (7 .Dz) and the decomposition .# (n . X)ﬁn
= erb e M7 DX)~ The above equivalence (7r$)_1 sends these subcate-
gories to %(X) C%(X)~C/Z ) c#(X).

Consider the forgettmg of the H-action functor o: ./ (X) — (X’ ).

The equivalences =, n, identify o with the induction functor .# (D)
M (n, D %), M — 7 D~®M =7 ﬁ~®M Clearly o sends h-finite modules

to b-finite ones, /f(X),x to /A/(X)Y, and %(X)X to /{(X)—x_v, where 7 =y
mod b, .
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2.5.4. LEMMA. (i) The functors o: ﬂ(X)x - %()?)2-, /{(X); - %’(f)f
are equivalences of categories.
(ii) The corresponding functor between the derived categories D by (X); —

pba (X) is fully faithful. It identifies Dr//l (X))~ Z with the full subcategory of
those complexes that have cohomology in 4 (X )% .

Proor. (i) The inverse functor to the induction .# X)y — A (n*D;\;)f

sends a 7, Dy-module N to the D-module N;:=U N™.

(ii) Since our functor is 7-exact it suffices to check the first statement (i.e.,
to show that o induces isomorphism on Ext’s). A standard Cech resolvent
argument shows that the problem is X-local, hence we can assume that X is
affine, X = H x X . It suffices to verify that Ext’s are the same for a family
of generators; take one formed by the modules # (DX ®V), V isan S(h)-
module killed by some m; . The Kiinneth formula reduces the problem to
the case X = point, H = C*, where it is obvious. , :

2.5.5. REMARKS. (i) For ¢ € b, = Hom(H, C*) put g, :={f end:
f(rX) = p(h)f(X), h € H, ¥ € X}; this is a line bundle on X which is a
D-module in an obvious manner. Note that n,05; =@ pen: g, . We have an

autoequivalence 7,: # (D) = .#(D), T,(M)=0, g M , which preserves
) X

# (D), and sends M (X); to M (X), . Cleatly oT, =o0.

(ii) For a section s: h*/h, — h™ put .#(X); = nieb‘/h;j{(X);(f) - Then
o: H(Xy;y - H ():’ )s, 1S an equivalence of categories. One can say that
M (X )sn 1S @ quotient of #Z (D)ﬁn with respect to the action of bz by T ’s.

(iii) p*/ hz is the character group of the fundamental group of H,; the
exponential map identifies A" /h with the dual torus H" . The Riemann-
Hilbert correspondence identifies tame Ds-modules from # (X )§ with the

¥-monodromic perverse sheaves on X (those perverse sheaves that are lissé
along the fibers and have ¥ as eigenvalues of fiberwise monodromy).

(iv) We will use 2.5.4 to transmit the standard results about D-modules
to the monodromic h-finite situation (without repeating the proofs). For ex-
ample, the derived category D”.# (X X)2" c D*# (X)™ , where “coh” means

“complexes with coherent cohomology”, is stable with respect to the Verdier
duality which sends Dl (X )0011 to P (X )°°3. Therefore, we have a du-

ality on D°.# (D) which sends D°.# (X )m’h to DOA(X (X )“’; it induces a

duality on the abelian category of holonomic modules .# (D)h°] which sends
M(X )hol to (X )ho1 The same thing happens with the &-tensor product

If Y cXisa smooth subvarlety with the closure Y, then Y carries the
- induced monodromic structure ¥ = (Y), and we have the Kashiwara
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equivalence between .# (Y) and the quotient of the subcategory of .# (X )

which consists of modules supported on Y modulo those supported on Y\ Y _
We leave to the reader the general functoriality with respect to morphisms
between the monodromic varieties.

(v) The monodromic category M (X) depends onlyon H modulo isogeny
(if Q € H is a finite subgroup, then the D algebras for the H- and H/Q-
monodromic structures X respectively Q\X coincide).

2.5.6. Let us discuss briefly the equivariant setting. Let G be an algebraic
group, and x: G — Aut H be an action of G on H . Since Aut H is discrete,
-k is trivial on the connected component G° of G and (@) is finite. An H-
monodromic G—varzety is an H-monodromic variety (X, X ) together with
a G-action u: Gx X — X such that ghX = k(g)(h)gx for ge'G, he H,
X € X in partlcular 4 descends to an action u: Gx X — X. Equivalently,
this is a variety X with an action of the x-semidirect product G x H such
that H actson X in a free way. The infinitesimal action &: 5] — I sends

g to g c n*yx, therefore G acts on the Lie algebroid T and the D-

algebra D. Note that the induced action on h C T coincides with x. A
G-equivariant monodromic module on X is a D3-module equipped with a
weak (G x H)-action that is strong along G.

Such modules form a category M (X G) we have the following equiva-
lence of categories 7, : (X G) = M (D, G). The b-finite G-equivariant
Dy-modules form a full subcategory M (X, G, C M (X, G); for a k-
’ orb1t X €x(G)\h"* we have the corresponding subcategories .# (X, G) C .

MH(X, G)M c M (X, G)g, ; this prov1des a decomposition ./ (X, G)ﬁn =
[H#(X, G)M . ‘

The followmg easy lemma shows that it suﬂices to consider omly one--
element orbits.

2.5.7. LEMMA. For x € 4" let G, be the stabilizer of x with respect to the

Kk-action, and let x" be the x(G)- orbzt of x. Then the functor # (X, G) .-
H(X,G ) M- M~ is an equivalence of categories.

2.5.8. Consider now the category ./# (X G) of (G-equivariant D~-mod—
ules; we have the corresponding full subcategories .# (X, G)_ cH (X G)

cH(X, G)ﬁ c #(X,G),where x € k(G)\(" /hZ) such that .Z (X, G)
=[[#(X, G)~ The functor .Z( (X,G)— #(X,G) of forgetting of the
H-action sends H(X, G)« to A (X G)~ . If x €4 is a weight such that :

X
~the x(G)-stabilizers of x and X coincide (e.g., if x is fixed by K(G)-actlon)
then this functor is an equivalence of categories.
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As in 2.5.5(iv), the elementary functoriality of G-equivariant D-modules
translates immediately fo the monodromic settmg For example, we have the
duality on the subcategory M (X, G)h°l M (X, G)g, of holonomic modules '
that sends . #(X, G)}‘ to (X, G)_? For a smooth G-subvariety ¥ C X
we have the Kashiwara theorem that identifies the category (Y, G);« with

the subquotient category of £ (X, G);. If G' > G is a larger group and x

extends to #': G — AutH, then we have the induced H-monodromic G-
variety (X, X') = (G’ >G< X,G x X) and the pull-back functor for X — X’

provides an equivalences of categories .# (X', G') = # (X, G), # (X', G)

= A (X’ , G) that identifies the corresponding categories of h-finite mod-
ules. '

2.6. Langlands classification. Let (X, X ) be an H-monodromic G-
variety such that X has only finitely many G-orbits. We present an explicit
classification of the irreducible objects in M (X, G, = (D Gy -

2.6.1. For x € X consider the action of the stabilizer G, C G on the
H-torsor X’ = n—l(x) Since the (G := Kerk)- and H-actions commute
we see that G =G" NG, acts on X via the morphism ¢ _: G — H . Note
that the connected component (Kerg, )° coincides with the connected com-
ponent Gv of the stabilizer G; of any X e X This is a normal subgroup
of G ; put G, =G /G~ Both the G-actlons on X and x factorize
through G(x) ,and ¢ _ defines the embeddmg G < H.n particular, we
have B = Lie G(x) < B; together with «, thlS deﬁnes a Harish-Chandra
pair (G (x)? b).

2.6.2. Assume that our X is a single orblt so X = Gx. Then we can
identify (X, X) with an H-monodromic G-variety induced from the H-
monodromic G -vanety (x X ). Hence we have canonical equivalences
of categories %(X G) = M(x G,)=#(SH), ( )) VAUR G ) (the
category of Harish-Chandra modules for the pair (b, G )). We see that

M (X, G)g, = I1 49, G(x))? has ﬁmtely many 1rreduc1bles By 2.5.7 we
can identify .Z (, G(x));—- with .Z (b, Gx)y)7 - The categories M (X, G), =
VAGR G(x))x- are semisimple. We have a similar description of .4 (X » Gy
(see 2.5.8). Note that any coherent M € ./# (X, G)g, is tame and lissé (i.e.,
RS holonomic @-coherent in the termmology of [Bo]); any M € # (X, G)

for 7 € by /hZ Q/Z® b, = H,, _ has finite monodromy and hence is of
geometric origin (see [BBD, (6.2.4)]).

2.6.3. Now consider the general case. Let I be the set of G-orbits on X ;
this is a finite partially ordered set. For i € I let Q; be the corresponding

orbit; then i, < i, means that Q, C Q.z. We will say that a subset J c I
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is closed if for j € J any j < j liesin J; eg, for i € I the set 7 :=
{jel,j<i} isclosed. The closed subsets of I form a lattice A(I); we
can identify A(I) with the lattice of all closed G-invariant subsets of X
sending J to Q; = U;c;Q; (then Q; = Q). For J € A(I) denote by
A(X,G), CHX,G), HX,G), c#ZX, G) the full subcategories of
modules supported on X
Let us fix this kind of frame. Below I could be any finite partially ordered
sct. '
2.6.4. DEFINITION. Let C be an abelian category. An I-stratification on
C is a collection C;, J € A(I), of Serre subcategories of C such that for
any J,, J, C A(I) one has: ,
@ Cyn 5, =G NC; and C, uJ, is the smallest Serre subcategory that
contams C 5 C . In partlcular if J,c J, then C 5, C C 7, -
(i) The embeddmgs -

,CJanz CJ,_uJ2

induce equivalences of categories

(Ch,/Chns) x (C; ,/C JnJ = Crun/Char,

(iii) For J, C J, the projection C - C, /C has left and rlght adjoints’
denoted _]J\J, and jJ\_,*

Our categories /(X G) O /{(X Glgn O A (X, G ») /%(X, G);‘- R
H(X,G) > (X, Gy, O -+ are I-stratified. :

In any I-stratified category one has the standard devissage pattern. Name-
ly, for i € I put C = C/ ni} > We will call C, the i-stratum of C. We
have the functors j,,, s C; = G left and rlght adjoint to the projection

: G = C;. Since j Jiw = J; jl, Id,. we have a natural morphism Ju—

. Put Jaw =1m(j, — j.); this functor transforms irreducible objects to
1rreduc1ble ones.

We say that C is finite if any object of C has finite length. The devissage
shows that this is equivalent to the property that objects in C; have finite
length. In this situation any irreducible object of C is 1somorph1c to some

Jau(F;), where F, is an irreducible object in C;, and the pair (i i, F) is
uniquely determined. :
Let us summarize our discussion.

2.6.5. LEMMA. (i) The categories # (X, G), #(X , G) and their standard
subcategories are I-stratified. The i strata coincide with the corresponding
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categories Jor the orbits X;. For x € X; we have the canonical equivalence
F.: /Z(X G), A, G(x))
" (ii) The categories 4 (X , G);‘:‘ , M (X, G are finite. The zsomorphzsm
 classes of irreducible objects of A (X, G)g, are in 1-1 correspondence with
pairs (i, V), i € I, V is an isomorphism class of irreducible (b, G(x))
modules (where x € X, ). _
(iii) Any M €. #(X, G\ is tame. If 1" € k(G) \ H, s = %(G) \ (hg/h7)
then any irreducible M € # (X, G) . isof geometrzc origin.

2.6.6. REMARKS. (i) The modules j,(V), jl*(V) where V € # (b, G X))
=#(Q;, G), are called -, *-standard modules respectively.

(ii) If the embedding j;: @, — X is affine, then the functors j,, j, are
exact.

(iii) If C is an I-stratified category then the dual category C° is I-
stratified by C}’ ’s. The duality interchanges the functors j, and j,, .

(iv) Let C,, a=1, 2, be I -stratified categories, ¢: I, — I, be a mor-
phism of partially ordered sets, and F: C;, — C, be an exact functor. We
say that F is a g-stratified functor if F (Cl,) C C2¢(z) for iel. Suchan F
induces the exact functors F,: C,, 1i = Copyy called the strata of F. Our func-
tor is a stratified equivalence if ¢ is an isomorphism; F is an equivalence
of categories and F(C,;) = C,; forany i € I, . Any stratified equivalence
commutes with the j,’s and the j; ’s

§3. Localization of representations;
the structure of K-orbits on the flag variety

3.1. g-modules. Let g be a complex semisimple Lie algebra. Denote by
G the algebraic group of automorphisms of g, so G’ is the adjoint group,
and g = Lie G; the action of g € G on g will be denoted Ad . Let Z(g)
be the universal enveloping algebra and 2" C %(g) be its center

Let b be the Cartan algebra of g, A C h* the root system, A* the set
of positive roots, £ C A" the set of simple roots, W the Weyl group, and

=1/2% ca+v; for a € A let h be the corresponding co-root and g, €
W the corresponding reflection. So for any Borel subalgebra b C g and
n =n, = [b, b] we have canonical identification § = b/n invariant under
G°-conjugation, and A" are weights of p-action on g/b~n". (3)

We will think of W as the group of affine transformations of §* that leave
—p fixed; this defines an action of W on the algebra S(h). One has the
Harish-Chandra isomorphism y: 2 = S(b)W; let y:§" = SpecS(h) —

Spec.Z" be the corresponding W -sheeted map of spectra. For y € h* we
denote by m, CS(h), My C Z the corresponding maximal ideals.

(3) People often use the op;;osite ordering of A; we choose the one for which dominant
weights correspond to positive line bundles on the flag space.
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Denote by U = Z(g) % S(h) the extended universal enveloping algebra;

then S(h) is the center of U, the group W acts on U (via S(b)), and
%(g) = UY . The algebras #(g), S(h), U carry canonical involutions
(anti-automorphisms of order 2), denoted by x — ‘x, compatible with the
standard embeddings: ¢ = ¢, 'h = =2p(h)—h for EegCc %(g) C U,
h€hc S c U; clearly © commutes with the W-action. Denote by
S(h)™® the localization of S(h) off the nonregular hyperplanes for the w-
action (so C-points of S(h)™® are regular weights); if 4 is any S(h)-algebra
put 4™ = S(h)™ s%,) A. In particular, we have the algebra U™ and '

extends to U™®. The group G acts on all the above objects in a compatible
way; the action on h, A, and W factors through the finite quotient G/G°.
The action of G/G° on b is faithful; we will denote it by & .

Let .#(g) and .#(U) be the categories of left % (g)- and U-modules and
let #£(U )f'g' C #(U) be the subcategory of finitely generated ones. The
embedding #(g) C U defines an obvious functor .#(U) — .# (g) . We also
consider the categories .# of the right modules; we will identify ".# with
M in a canonical way using ‘. . _

Foranyideals I C 2, J C S(b) let #(g)' =4 (% (9)/1%(5)), #(U)’ =
A (U[/JU) be the categories of g- and U-modules killed by I, J respec-
tively. For x € b* put U, = U/m, U ; we have the categories .# (U ), =
A (U,) = #(U)™ and M (U); == {M e #(U): any m € M is killed
by some power of m,} C #(U); we also have the corresponding quo-
tient ?J(g)ym = ?Z(g)/mm)?/ (g) and the full subcategories .#(g)

i C
r(x) »
M (g) e C #(g) . Note that the embedding #%(g) — U induces an isomor-

phism #(g),,, — U, forany x € h*;if x is regular then % (g)/my % (g) =
U/m;U for any n. The above functor sends M(U)l , /Z/(U); to %(g)ym ,
A (g) ik the functor .# (U )x — M (g)r(x) is always an equivalence of cate-
gories; the functor (U ); — M (g) ) is an equivalence if and only if y is

a regular weight.

-3.2. The flag variety. Let X = X . be the flag variety of g points of X
are Borel subalgebras of g. For x € X let b, be the corresponding Borel.
subalgebra, B, C G’ the corresponding Borel subgroup, and N, C B, the
‘maximal nilpotent subgroup. Then Lie B, =b,, LieN, =n_ :=1[b_, b1,
and h =b /n_. Put H := B,/N,. This torus (the Cartan group of G)
does not depend on the choice of x by the same reason as § did not; one
has LieH = . The group G acts on X and on H and these actions are
compatible with the above actions on Lie algebras. The action of G° on X
is transitive with the stabilizer of x € X equal to B, ,s0 X =G’/B,.

Let X=X , be the enhanced flag variety (or “base affine space”) of G': its.

point X is a pair (b, , {a}), where b . C g is a Borel subalgebra, and az,
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a € X, is a generator for the a-root subspace in g/b, . The groups G and H
acton X from the left according to formulas gx = (Ad,(b,), {Ad (a®)}),
hx = (b, , {expa(h) - a"}). One has ghx = x(g)(h)gx; in partlcular, G°
commutes with H. The H-action is free, H\ X = X, and the G’-action
is transitive. For ¥ € X the stabilizer G—% equals N_; hence we have the
isomorphism G°/N_ - X, gN, ~ gx . Note that G°/N_ carries the H-
action h(gN,):= gh_le (here H = B_/N_), and the above isomorphism
is H-equivariant.

We will consider X as an H-monodromic G-vanety (with the compatibil-
ity morphism « ). By 2.5 we get the D-algebra D = ?/(,7 ) on X equipped
with a (G-action. The Lie algebra map g x ) — T deﬁnes~the morphism of

the universal enveloping algebras % (g x ) = % (g) ®S(b).i> D. It is easy to

see that & (z® l) = 3(1 ®y(z)) for z € &, hence § factors through a mor-
phism 5:U—D of S(h)-algebras. It induces the morphxsm 6 U — D
between the m -quotlents Note that U, (g)r(o) , Dy = Dx , and 6
comes from the mﬁnltesnnal g-action on X N

The above Lie algebra morphism defines a morphism g7l7 — 7 of Lie
algebroids on X (see 1.2). This morphism is surjective; its kernel is an Oy~
Lie algebra b := {red,®g: y(x) € b, for x € X} embedded in g x ™ by
y— (y, y mod n). Here n=[b,b]= {y €0y ®y: y(x)En for x € X}, so
b/f = . We see that the induced morphism g — T is also surjcctlve with
kernel 7. Therefore J = - g X b/b =g/7, hence D = (g x| b/b) % (g/n).

REMARK. We see that b and 7 are normal subalgebras in g xb and g.

3.2.1. LEMMA. The D-algebra D carries a unzque involution * such that
the canonical morphism 6: U — D commutes with *

~

Note that ‘ induces the duality D; —D_, oy It is easy to check that the
morphism g — %X (that comes from the action of G on Q x ) induces an
isomorphism of tdo’s D_, ’ =D L and, with respect to this isomorphism,
the above duality coincides with the canonical one from 2.4.1.

3.2.2. LeMMA. The morphism 6: U — T (X, D) is an isomorphism. For

all x € b* the corresponding morphisms 6 U -TIX,D ) are also iso-
morphisms.

For a proof see, e.g., [S1].
3.3. Localization. According to 1.6, d defines adjoint functors
A ~
M(U) 2 H (D) = #(X)
T

with I'(M) := I'(X, M), A(N) = N ® D. These functors are S(h)-linear,
) S
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hence for any ideal I c S(h) they preserve the subcategories of modules
killed by /. Also they commute with (directed) inductive limits. In particu-
lar, I and A induce adjoint functors between the full subcategories

A, A
A (U), 2 H(X),, MUYy 2 M(X).
X[ XL X

X X

Recall that a weight y is dominant if (y + p)(hy) ¢ {-1,-2,...} for
any positive co-root h € b . We have the basic

3.3.1. THEOREM. If y is a regular dominant weight, then X is D ~affine
(see 1.6.1), so (I, , A,) are mutually inverse equivalences of categones The
functors (F~ A~) are also equivalences of categories.

For a proof of the first statement see [BB1]. An easy dev1ssage then shows
that actually X is D/m D-aﬂ"me for any n > 1, which implies the second
statement. »

For the case of nondominant or nonregular x see [BB2 KL1].

- 3.3.2. Now assume we have a Harish-Chandra pair (g, K), so K is an
algebraic group equipped with a morphism Ad: K — G and a Lie algebra
embedding #,: ¢ := Lie K — g which are compatible in an obvious sense. We
have the corresponding categorles of Hansh-Chandra modules # (g, K) =

A (U(g),K), #(U,K), #(D,K); for " ¢ k(K)\b" we have the cor-
responding standard subcategories £ (U, K ) cH(U,K ) cH# (U, K),
etc. (see 2.5.6). As above we have an obvious functor M (U, K ) —M# (g, K)
which induces the equivalences .# (U, K ) s H(g, K ) ; if x is regu- .

lar and the stabilizers of x and y(x ) in IC(K ) coincide (e. g 1f K(K)x =x),
then # (U, K)~ — #(g, K)—, is also an equivalence of categories.

X P(x , o
The functors I and A send, in an obvious way, the K-equivariant mod-
ules to K-equivariant ones, therefore we have the adjoint functors

H (U, K)@.M(D K)=4#(X,K)

~ which induce the functors between the full subcategories

H# (U, K).. :n_‘/z(ux. LK) =A(X,K) .,
A~

MU, K)~ «-/Z(D K)M _/%(X K)~
X
3.3.3. CoroLLARY. If x is a regular dominant weight, then (F A -,
(F ~ Am) are equivalences of categories.

According to 2.6.5 these equivalences define an [-stratification on the cat-
egories .4 (U, K)x' , # (U, K);, where I is the set of K-orbits on X .
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3.4. Admissible orbits. In the rest of this section we will collect some
geometric information about K-orbits on X that will be used in the con-
struction of the geometric Jantzen filtration. In this section our (X, X) is
any H-monodromic K-variety. :

For x € X consider the pair (h, K ,)) defined in 2.6.1. Put h7(x) :=
{e € b k(K )P =9, o(i(e,)) = 0} (this is the set of morphisms from
(b, K,y) to the trivial Harish-Chandra pair (C, {1})). Also put by (x) =
b;nb (x). Since b*(kx) = k(k)h*(x), for a fixed K-orbit Q c X the spaces
b*(x) and l)z(x) for x € Q are canonically 1dent1ﬁed we denote them by

(Q) and b,(Q).

"It is easy to see that a weight ¢ € bz belongs to bZ(Q) if and only if there
exists a nonzero K-invariant function f on Q =n (Q) cX such that

Je (hX) = (exp @)(h) Jy (¥) for X € Q. Such a function f is determined by
¢ uniquely up to multlphcauon by a nonzero constant.
Let Q be the closure of Q in X. We say that f is. Q-regular if f €

&) c 4(Q); [, is Q-invertible if f, € #7°(Q); and f, is Q-positive if
f, is Q-regular and‘f;‘(O) = Q\ Q. Put bh;°(Q) = {p € b(Q): f, is
Q-invertible }, b, (Q) = {9 € b(Q): f, is QO-positive } .

3.4.1. DEFINITION. (1) An orbit Q is admissible if b (Q) is not empty.

(ii) The K-action on (X, X) is admissible if it has finitely many orbits
on X and every orbit is admissible. '

3.4.2. LeMMA. (i) For any admissible orbit Q the embeddings Q — X ,
0= X are affine. ,

(ii) b, (Q) is the subgroup of bz(Q) and b,(Q)/%; (Q) has no torsion.

(iti) If Q is admissible, then b *(Q) is a subsemigroup of bz(Q) that gen-
erates bz(Q) and is invariant under bz (Q) translations. If ¢ € hZ(Q) and
ng € bz (Q) forsome n >0, then ¢ ef) *(Q). The quotient by (Q)/b;"(Q)
is isomorphic to Z, for some a.

(iv) An orbit is admzsszble if and only if (some, or any of ) its connected
components is admissible with respect to the action of the connected component
K°. Hence a K-action is admissible iff its restriction to K° is admzsszble
. (v) Assume we have a larger group K' > K and an extension «': K' —

AutH of «k; let X', X be the induced K'-variety (see 2.5.8). Fora K-
orbit Q on X let Q' = K'Q be the corresponding K'-orbit on X'. Then
hy(Q) = bZ(Q) and the same for h*°, p** .

Hence (X', X') is an admissible K'-variety if and only if (X, X) is an

admissible K-variety.

3.5. Admissible orbits on the flag variety. Let (g, K), (X, X ) be as
in 3.3.2. We will say that our Harish- Chandra pair is admissible if the K-
action on (X, X) is admissible.
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3.5.1. LEMMA. The pair (g, N), where N is a maximal nilpotent sub-
group, is admissible. ‘

Proor. Consider a Schubert cell @, » where w € W, Let l);+ be the cone
- of positive regular integral characters. We will see that for any w € W one
has b, (Q,) D p + b,' , hence Q,, is admissible. For y € p + b,  take an
irreducible G°-module V with highest weight y;let v ¢ V'V \{0} be alowest
weight vector. Consider the map q,: X = G°/N — V'\ {0}, q,(g) = gv. Itis
clear that if / € V" isa linear function on V,then lq, isa y-homogeneous
function on X. Choose / € V* such that l(wv) # 0, I(nwv) = 0 (here
n=LieN). One has wv € qv(é,w) , the image qv(é,w) lies in the linear N-
invariant subspace generated by wv , and 4,(Q, - Q,) C nwv , where a,
is the closure of Qw - Hence Iq, is the desired y-homogenous N-invariant
function that vanishes on 0, \ 0, .

REMARK. The B-action on X is not admissible.

Now assume that (g, K) is a symmetric pair, which means that ¢ = gg
for some involution @ of g. Note that 0 is uniquely determined by ¢ (its
—1 eigenspace coincides with the Killing orthogonal complement to £); in
particular 6 commutes with AdK. For x € X denote by p,(x) € W the
relative position of (b, 0b.). Clearly Uolkx) = k(k)(uy(x)) for k € K.
In particular Uy 1s constant along the connected components of K-orbits; if
Q° is such a component we will write 1e(Q°) = py(x), x € Q°.

REMARK. The following properties are equivalent:

(i) An orbit Q is closed. '
(i) u(Q)=1.
(iii) For x € Q one has dimK n N, =dimQ.
(iv) dimQ = dim X, . :

3.5.2. LEMMA. Any symmetric pair is admissible.

PROOF. According to 3.4.2(iv) we can assume that K is connected.

(i) Let us. consider the special case: g=tx%¥ i:¢— g is the diagonal
embedding. Then @ is the transposition and X 0 = X, x X ¢« If ¥ € X,, then
the K-space X , is induced from N, -space XE = )?, x{X} = X o> and the K-
orbitson X , are the same as N, -orbits on X, : these are Y, =K(Q, xx),

w € W,. One has bz(Y,) = {(x, —WY), X € by} C by, x bez = b,z » since

K \_f’w is isomorphic to H, , with the (Hg = H, x H,)-action given by the
formula (h,, hy)h = hlw(h;l)h . Then clearly h;;f(Yw) ={(x,~wy),x e
b:;(Qw)}, sincev f(x,—wx)'fwxﬁ} = j; Hence we are done by 3.5.1.

(ii) The general case. Consider the embeddings myg: X < XxX, mg: X
— X x X, defined by formulas mq(x) = (x, 6(x)) and the same for m.

These maps are equivariant with respect to the K-action on X and the diag-

onal action of K on X x X (via Ad: K — G ); one has my(x) € Y, - For
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w € W consider the locally closed K-invariant subvariety X, := u, ’(w)_ =
my 1(Yw) C X . The number of K-orbits on' X is finite. This follows from

every K-orbit Q C X, is opeh in X, . _ (%)

This follows from the corresponding infinitesimal statement for any x €
KXow _ -
-the tangent space Ty, . to the K-orbit

’ (%x)

coincides with d m;l( Ty . m,,(x))'

We give a proof: one has Ty, ., = {(fmod b, ,{mod 6b,), S €g}="

{(¢modb,, 6(8Emodb,))}, dmy(Ty ) = {(¢modb,, (6 modb,))};
hence ndmg(yx’x) ={({modb, , 6((modb, )):{-0()eb, )=

m»"'e(") )
{(nmod b,, 6(nmod b))}, where 7 = ({ + 6({))/2 € ge , which proves
(%) ' ’

In particular, (+) implies that for any K-orbit Q on X one has u,(Q) ¢

o~

,ue@\ Q). Thus for any homogeneous G’-invariant function f on Y#a(Q)

the function fom, is a homogeneous K-invariant function on Q,andif f
is positive, then fom, is also positive. Now the statement (i) above finishes
the proof.

3.6. Contravariant duality for standard modules. If (g, K) is a finite pair,
then we have the Verdier duality on the category of S(h)-finite coherent
(D, K )-modules (see 2.5.5(iv)). This duality is local with respect to X and
transforms to the Verdier duality on perverse constructible sheaves via the
Riemann-Hilbert correspondence. On the other hand, if (g, K) is a sym-
metric pair, or if K = N, then one has the usual contravariant duality for
(g, K)-modules. It is an interesting problem to find a geometric ( D-modules)
description of this duality. At the moment one knows how the contravariant
duality acts on the irreducible (g, K)-modules in terms of their geometric
Langlands parameters. We recall this description below.

3.6.1. Consider the involution ¢ on U, c(u)=w_, 'u, where w_, € W
is the element of maximal length, which acts only on S(p). It coincides
with —1 on g and induces on S(h) the involution c(x) =w,, (-2p - x),
X € b" = SpecS(h) ; one has c(A+) = A*. For a left U-module V let V°
be the dual vector space to V' considered as a left U-module via c¢: for
ueU,veV, v €V’ onehas (uv*,v) = (v*, c(u)v). As a g-module
V? is just the module dual to ¥ ; we use ¢ instead of ’ since it transforms
(regular) dominant weights to (regular) dominant ones, which is handy for
localization. _ v

3.6.2. Let us first define the contravariant duality in the case K = N.
Choose a complementary maximal nilpotent subgroup N', N'n N = {1}.

For a dominant regular y consider the subcategory .# (U, N )§ c#(U,N) .
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of finitely generated modules. For V ¢ .# (U,N )}’: denote by V° the sub-

space of those vectors in ¥* on which n’ = Lie N’ acts in a locally nilpotent

way. Then V* is a U-submodule of ¥° and the action of n’ on V° inte.

grates to an algebraic action of N',so Ve # (U, N')c(x) . One knows that
actually V° is finitely generated and V= V' » 0 the contravariant duality

c:(#(U,N )i)p - M (U, N')cf(x) is an equivalence of categories.

The Bruhat decomposition identifies the set of N-orbits on X with the
set W equipped with the Bruhat order. By 3.3.3, .Z(U, N){- isa W-
stratified category. For w € W we have a single irreducible L, in the
corresponding stratum. The corresponding standard modules Jun(Ly,) are
the Verma modules. .

Let ¢, be the involution on W , Cp(w) = wmax'ww;a'x . One has an easy

3.6.3. LEMMA. One has L ~L

cy(w)*

Using the fact that the involution Cy Dpreserves the Bruhat order, it is
easy to show that the duality ¢ is a ¢y -stratified equivalence of categories.
In particular it sends !-standard modules to -standard ones (see 2.6.6(iii),
(iv)). ‘

3.6.4. Consider now the case of a symmetric subgroup K. Then K is re-
ductive and for a finitely generated V € .# (U, K )}f« one knows that any irre-
ducible representation of K occurs in ¥ with finite multiplicity. The group .
K actson V'’ as an abstract group; denote by V° the maximal subspace on
which K acts algebraically. It is easy to see that V' — OV criv =v°,
where V = @ V, is K-isotypic decomposition of V. Clearly V¢ is a
U-submodule of V°, hence V¢ e .£(U, K). - One knows that V° is
also finitely generated and V' = V', so we have the contravariant duality
c: (# (U, K)§)" = (U, K){m |

Let us describe how ¢ acts on the Langlands parameters. Consider, as in
2.6.3, the ordered set I of K-orbits on X . Then A (U, K)§ =4 (X, K)?’h
‘is an [-stratified category. It turns out that ¢ is an I-stratified functor. Let
us define explicitly the corresponding involution ¢; of I. For i € I consider
the corresponding orbit Q;. Put

Qi:={(xl,x2)eXxX:'xl €0,,
bx, N bxz is a O-stable Cartan subalgebra}.
One knoWs (see, e.g, [Mil, (A2.3)]) that for x € Q; the fiber over x of the
first projection §, — Q> (¥, %) = x;, is a nonempty (K n N, )-torsor.
Hence the second projection Q - X, (X15 X,) = X, , maps Qi onto a
single K-orbit ch(i). Clearly il -1, i ¢;(i), is an involution.

3.6.5. LEMMA. The involution C; Dpreserves the order on the set I and the
Junctor c: # (U,K )§ - MH(U,K )cf,(;) is a c,-stratified involution.
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For a proof see [HMSW2].
Let us describe the action of ¢ on the strata .# (U, K)}fi,. . By 2.6.5(i) for

x € Q; we have the canbpical equivalence F,: .Z (U, K)%. =M(X,K )g)ﬁh:»
(b, K.

Take (x,x') € Q,. ,s0 X' € Qc,(i) . Tt is easy to see that the projections
K.(x) —~K NK,— K(x,) are surjective and have the same kernel; therefore,
they define an isomorphism a: K, — K- This isomorphism extends to
an isomorphism of the Harish-Chandra pairs a: (b, K,)) — (b, K that

acts on h as w_, . Denote by ¢, ,: A, K(x))§° - (Y, K(x,)){—(;)

the duality functor c(x’x,)(V) = a*(VO ® ¢). Here o : #(h, K,)) —
A, K(x,)) is the equivalence defined by «, V° is the dual module, and ¢
is the (b, K(x))-module detn, .

3.6.6. LEMMA. The equivalences F_, F, identify the i-stratum of the

involution c: (# (U, KLY = .#U,K Y with ¢, -
A ' c(x)e (i) ’

For a proof see [HMSW2]. This lemma describes how ¢ acts on the
irreducible representations in terms of their Langlands parameters. By 3.6.4
and 2.6.6(iii), (iv) ¢ interchanges !- and *-standard modules.

§4. The Jantzen filtration

In this section we will define the Jantzen filtration on standard modules;
the main point is its relation with the monodromy filtration on nearby cycles.

4.1. The monodromy filtration. We will need a tiny complement to [D2,
1.6]. For an object Q of an abelian category and a nilpotent endomorphism
s € EndQ let u, = ,u,Q denote the monodromy filtration on Q (see [D2,
(1.6.1)]). Let P® = P, := Ker(Gr{ — Grl_,) be the primitive part of
Gr' [D2, (1.6.3)]; one has the primitive decomposition [D2, (1.6.4)]—a
canonical isomorphism of graded Z[s}-modules Gr' ~ @ i< ® Zfsl/s™,
degs = -2, degP;, = —j.. Consider the following increasing filtration on
Kers: _

Ji;:=Kersn Ims~' fori<O, J; =Kers fori>0.
Dually we define an increasing filtration ‘
J = (Kersi +Ims)/Ims
on Cokers. Wecall J, , J,. the Jantzen filtrations. Filtrations J., J, coin-

cide with the filtrations induced by x. on Kers, Cokers; one has Gr,.J! =P,

: Gr,.J* = P_; [D2, (1.6.6)]. Consider now Q := Q/Kers together with the
nilpotent endomorphism § induced by s, and let 7, be the corresponding
monodromy filtration.
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© 4.1.1. LEMMA. (i) The exact sequences

0— (Kers, J.) = (Q, u.) = (Q, H._,) = 0,
0-(Q, &) = (Q, 1) - (Cokers, J,.) » 0

are strictly compatible with filtrations.
(ii) Conversely, p. is the unique increasing filtration on Q such that su, C

U._, and either one of the above two sequences is strictly compatible with
filtrations. ‘ : : '

ProoF. (i) is [D2, 1.6.5]. ' : ’ :

(i) Let u. be another such filtration strictly compatible with, say, the firs
exact sequence. It suffices to show that u; D ;. But ,u:. = u; for i > 0 (since
Jio = Kers). For i <0 we have p; D J,; +s(u;_,), and s(u|_,) = s(i;_y)
and we are done by downard induction on i . ' ,
 Assume now that our categories are over a field k of characteristic 0, and
let ® be an exact k-bilinear bifunctor. Let (R, #) be another object with
nilpotent endomorphism, and u? be its monodromy filtration. Consider
the tensor product filtration y,.Q’R =), thei ,uf X uf on QX R. We have

R 0 R :
Gr' ¢ =Grl ®Gr' , and the primitive decomposition together with [D2,
(1.6.11, 1.6.12)] implies _

4.1.2. LeEMMA. (i) u,Q’R is the monodromy filtration with respect to s
id, + idQ X. v | _

(ii) One has an “almost canonical” isomorphism P_QJ'.X'R ~ P P_Qj, Pf'jn ,
where (j', j") run through the set of pairs {(j, PN =i"<i< i+,
j=j +j" mod2}.

4.2. The Jantzen and the monodromy filtration in a geometric setting. Recall
~ the construction of nearby cycles for D-modules [B, K, M, V2]; we follow
mainly [B]. Let Y be a smooth variety, f 1Y — A' bea function, and Z :=

S'OS Y LU= A —{0}). For n >0 consider a lissé Dyi_y-
module 1™ witha C[s]/s"-action, which is a free rank 1 (@1 _ (0 ®Cls1/s")-
module with generator “ ¢ ” such that 19,(£") = st (here ¢ is the parameter
on A'); we have the obvious projections 1™ — [ /g"=1 _ (=1

For a Dy-module M, put fM® .= f*[® 8 My: thisis a (Dy ®

U
Cls/s")-module, f*M{ = My, and f'MP = SMPIs® foragn.
Assume now that MU is holonomic. Fix some ¢ > 0. Consider the

‘morphism s%(n): j, f“M((,") ~ Jj, f"Mf,") of (D, ® C[s]/s")-modules that co-
incides with s° on U; one has s*(n) mod 5" = s%(n - 1). The lemma
about b-functions implies that the projective system Cokers®(n) stabilizes,
S0 we can put n;(MU) := Cokers®(n) for n > 0. This is a holonomic



40 ' A. BEILINSON AND J. BERNSTEIN

D,-module with a nilpotent endomorphism s; the restriction to U of
;',(M ) is equal to f"M(a) '

The most important #’s are n? = ‘P““—the part of the nearby cycles
functor with unipotent action of monodromy (one has ¥ 7 (MU)I v =0)
and 7' y=:E&—the maximal extension functor (one has Z (M Dy =My ).
We give a list of properties of n; (see [B]):

4.2.1. Lemma. (i) nf: M(U)yy — M(Y)y, is an exact functor.
(ii) For a, b > 0 one has canonical exact sequences

. b b
0— (S MD) > n‘jff (My) — T} (My) =0,
b .
0 — 1 (My) — 2 (My) - j,(f M) - 0,

and
a+b a+b

Im(s" iMoo o )_7rf
(i)’ In particular one has exact sequences
0 — j(My) = (M) — ¥ (My) - 0,
0— ¥ (My) - E (M) - j,(My) =0

~ with j, = Ker(s: Ef — Ef) , j, = Coker(s: Ef - Ef).
(ili) 77 commutes with the duality.

Now 4.1 gives us the monodromy filtration #* on n;. On U the term
pga) coincides with s/~ /2. f’Ml(ja ) (here [] := integral part). In particular,
we have the monodromy filtrations on ‘I’““ and 2, and the Jantzen filtrations
Jno» Jp. onjy, J, (via B op and (ii)’ above)

4.2.2. REMARKS. (i) 4.1 implies that, up to a shift, we will get the same
. Jantzen filtration if we use the isomorphisms 4.2.1(ii), j, ~ Ker(s: n° — 1)
for any a > 1; the same holds for j, .

(ii) One has Jno = Ji» Jn_y = Ker(j, — j,,). The embedding ¥} —
E, identifies Ker(s: ¥/' — W) with J,,_, ; this isomorphism shifts the
corresponding Jantzen filtration by one. '

Dually, Jf*—l =0, Jf*0 = Ji, CJ,,etc

(iii) Let @, C U be a closed subvariety, and Q be the closure of @,
in Y. Let #£(Q) Cc #(Y), #(Q,) C #(U) be the subcategories of D-
modulessupported on Q. The above functors z} transform #(Q) to
#(Q), and being restricted to .#(Q,,) they depend on f |o only. Since
everything is local, we get the functors np: MH(Qy) — #(Q) etc., for any
regular function f on Q with @, = Q\ 0.

(iv) The above functors will not change if we multiply f by a nonzero
constant ¢ € C, since one has an isomorphism of (D, ", [s]/s")-modules
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I"=c"I", ¢ v (ct)° (here c: ¢+ ct is considered as an automorphism of
Al - {0}). |

(v) The above constructions have an obvious counterpart for constructible
perverse sheaves compatible with the Riemann-Hilbert correspondence (see
[Bo]). One identifies canonically ¥ with the part of the nearby cycles
functor R‘I‘E[—l] on which the geometric monodromy acts unipotently, s
corresponds to the logarithm of monodromy; here % is the generic geometric
point Spec(U,, C((t'/"))) of C((2)).

4.3. The case of standard modules. Assume we are in situat_ion 3.1. Let
Q C X be an admissible orbit. For ¢ € b;(Q) consider the corresponding
functors 77 : #(Q) — .#(Q), see 4.2.2 (iii); since, by 4.2.2(iv), they depend

(4

. . a . a
on ¢ only, we will write n, =7 5,

These functors preserve K-equivariance and monodromicity (by construc-
- tion). Therefore, we have the functors n;: W AGH K x))?' =4(Q,K )%"‘ —

M (5, K )%d — M (X, K) (here x € Q, see 2.6.2) and the Jantzen filtrations

Ji., J,. on the functors Jors Jou: ALP K(x))}‘ —H(X,K );.} In particular,
we have the Jantzen filtrations on standard modules Jo(V), Jou(V), where
V' is an irreducible (b, K,));-module. A priori these filtrations depend on
the choice of weight ¢ € h,*(Q).

- Note that these constructions can be done directly in terms of the I-
stratification pattern (see 2.6.4). Namely, for an orbit Q,,apoint x € Q,
and a weght ¢ € §,;"(Q ) let Iq(,") be the (, K ,))-module C[s]/s" such
that 2 € b acts as ¢(h)s and K,y acts trivially. The equivalence of cate-

—~

gories F.: #(Q_,K) > 4 (, K (see 2.6.2) identifies /[@f;(l(")) with
F(#)®1I ;")v , and we can repeat the constructions of 4.2 using the functors
Jat> Jourand @I, o

If (g, K) is an admissible Harish-Chandra pair, we get the Jantzen filtra-
tions on !- and *-standard (U, K )l-modules (x €b” is a dominant regular
weight) using the equivalence 3.3.2. If K = N or K is a symmetric sub-
group then jj-extension is contravariant conjugate to j,-extension (see 3.6);
hence the morphism j,(V @ I™) - j (V ® I{") s just the contravari-

ant form. This shows that our definition of Ji, coincides with the original
Jantzen filtration. : ' ‘

In the Verma modules case one can define the Jantzen filtration by using
the deformations of the central character in an arbitrary nondegenerate di-
‘rection ¢, not necessarily in the positive one. According to Barbasch [Ba],
the result does not depend on the choice of ¢ . In the geometric situa-
tion we can repeat, in principle, the same constructions and consider for any
nonzero meromorprhic function f on X the morphism A, (1 (myy -
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J. Ay ® f (I(”))) , where U := X \ div(f). To define vanishing cycles one
needs the stabilization of cokernels when n — co. It would be very nice if
this fact were true for any f', just as in the case when f (or f -1 ) is regular
on X, but we have no idea how to prove it.

85. Weight filtrations

5.1. Weights of nearby cycles. Gabber’s theorem, which is our main tool,
seems not to be published yet. (4) Below we reproduce the proof following
Gabber’s report at IHES in the spring of 1981.

Let us start with the Kiinneth formula for néarby cycles. Let S be the
spectrum of a strictly local Henselian ring; o and # be the closed and the
generic points of S;and 77 bea geometrlc pomt locahzed at n.

Let X — § be an S-scheme and X, Lx <—’X <— X_ be the correspond-

ing fibers. In what follows Dt (Y) will denote elther the bounded derived
category of étale constructible Z/¢"-sheaves on Y (where £ is prime to char
o) or its Q,-counterpart [D1]. '

By [D1, (3.2)], there exist nearby cycles functors Yo = ‘I’ﬁX: Db(Xﬂ) —
D*(X,), Wy = i"Rjk,k". Let ¥ — S be another S-scheme, and Z =
X xY — § be the fiber product. Then for F € D’(X,), G € D’(¥,) one

s ' .

has a canonical morphism in Db(ZO)
Yox (F) BY¥5y (G) — Yo, (F R G). (%)
5.1.1. LEMMA. (%) is an isomorphism.

ReEMARK. The transcendental version (hence, the characteristic 0 case) is
almost obvious by the ordinary Kiinneth formula applied to local varieties of
vanishing cycles. This, together with the Riemann-Hilbert correspondence,
implies a similar fact for tame D-modules. To obtain a similar formula for
arbitrary holonomic D-modules one must use the total nearby cycles functor
of Deligne [D2].

PrOOF. We can assume that the coefficients are Z/¢ (the Z/¢" and Q,
version follow in a moment). Put m = dim X, n = dim Y. The proof goes
by simultaneous induction in m and in ».

Let C be the cone of (x). The induction assumption, together with the
trick of Deligne [D1, (3.3)], shows that the cohomology sheaves of C are
supported at a finite set of points. So the statement C = 0 is equivalent
to the statement RI'(C) = 0. The problem is local, hence we can assume
X, Y to be affine. Then replacing X and Y by their closures we can
assume that they are projective S-schemes. In this case RF(C ) = 0, since
RI'“P-(F) RI‘(F ) in the projective case.

( ) Added in 1992: a proof appeared recently in a paper of Morihiko Saito.
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Now we can pass to Gabber’s theorem. Assume we are in a mixed situ-
ation, so we consider the schemes over a finite field F,. Let #(X mixed

Db(X )mixea D€ the category of mixed perverse sheaves on X and the corre-
sponding derived category. -

Let T be a curve, 0 € T be a closed point, and U := T\{o}. Let S
be a strict localization of T at o and 7 be the generic geometric point of
S. Fora T-scheme f: X — T put X, = f""(0), X, = f~'(U). One has
the nearby cycles functor ‘I’ﬁ)‘c: D’ (X U)mixed — Db(X o)mixea (S€€ [D2]). It
is convenient to use the twisted functor ¥, := ¥; [-1]. This functor is #-
exact, i.e., W (£ (X)) Cc # (X,), and commutes with the Verdier duality as
follows: ¥ D = D¥ /(1) (here (1) is the Tate twist). The monodromy group
acts on ‘I‘f; for a perverse sheaf M let s € End ‘Pf(MU) be the logarithm

of the unipotent part of geometric monodromy, and x. be the corresponding
monodromy filtration on ¥ (My). '

5.1.2. THEOREM. If My, is pure of weight w , then yu, +w—y Coincides with
the weight filtration W on Y (My).

PrROOF. The case when f is the identity (or a finite map) is Deligne’s
theorem [D2, (1.8.4)]. The proof in the general case follows similar lines:
~ (i) We can assume that My, is irreducible.

(ii) Replacing T by a finite cover, we can assume that the geometric mon-
odromy is unipotent.

(iii) The weights on Kers (= invariants of monodromy action) are <
w-—1.

PROOF OF (iii). Consider the canonical isomorphism Kers = Ker(jM,, —
J. M) . Since Jy does not increase weights, the weights of JM, are < w.
This implies that the perverse sheaf JiMy,/ w,_( JiMy) is pure of weight
w, and hence is semisimple. But the only irreducible quotient of JiMy is

JuMy , hence Kers C W 1UiMy).

Dually, the weights of Cokers are 2 w -1 (since Cokers =
Coker(j, M, — JMp)(1))..

(iv) Since the weight of s is ~2, to prove the theorem it suffices to show
that the primitive part P_, is pure of weight w—-1-i. We have Gr,.J' =P,
Gr* = P_(=i) (see 4.1), so (iif) implies the inequalities for weights {w}
of P:ww—1, w,+2i2w-1,ie, w—1—2i<wi<w—l. In
particular, for i = 0 we are done.

(v) Consider the fiber square Mg’ 2[—l] : this is a perverse sheaf on X x X

T
(at least over the generic point of T—the only thing we need) of weight
2w~ 1. Since ¥, (MZ'[-1]) = ¥ (M;)™ by 5.1.1, Lemma 4.1.2(ii)

implies that P_,®P_,(-i) occurs in Po(‘I‘f>< sz[—l]). Hence, by (iv),
one has 2w,.+2i=.2w—2,orwi=w—i—1,.v ' _
5.‘1.3. Assume we have a parameter tat 0, t € &(T). We can define
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the functors of 4.2 in the mixed situation (see [B]): namely, one has the
functors n;: M) ied = M(X) gixed » (nf My)ly isa consecytive extepsion
of twists M, , M, (1), ... , My(a— 1). Now 5.1.2 together with 4.1.1, 4.2.1,
and 4.2.2(v) gives

CoroLLARY. (i) If M, is pure of weight w then the filtrations Jﬁ and
W on j,,(My) coincide. The same for the filtrations J, and W, on

+w
(ii) The monodromy ﬁltratzon i, on nf(M )' coincides with W, .._, .
In particular, for (M Y onehas p. =W . -

5.2. Pointwise purity and the socle property of the weight filtration. A mixed

complex F* on X is #-pointwise pure of weight w if for any closed point
.x € X the complex i,(F’) is pure of weight w (ie., H'i_F" is pure of .
weight i+ w; here i, is the embedding x — X ). One deﬁnes l-pointwise
purity similarly using i; instead of i;; the Verdier duality interchanges *-
and !-purity. Note that if a pure perverse sheaf is *-pointwise pure of weight
w, then w coincides with its weight.

Now let (X, X) be a finite H-monodromic K-variety. Recall that any
pure monodromic sheaf M has finite geometric monodromy along the fibers
of X = X, hence if M is geometrically irreducible, it liesin Z (X, K ) for
some x € H__ (by the local monodromy theorem; note that the restriction
of any monodromic sheaf to any fiber of the map X — X is tame by [V1]).
We will say that X is (K, ¥)-pointwise pure for ¥ € Hmrs if any pure
Me#X, K)— is x- and !-pointwise pure, and X is K-pointwise pure if
this holds for any ¥, i.e., any pure K-equivariant monodromic sheaf is *-
and !-pure. '

5.2.1. Exampies. (i) Here is a simple sufficient condition for *-pointwise
purity. Let M be a pure perverse sheaf. Assume that for any x € X
there exists an &tale neighborhood U of x such.that the canonical map
H (U, M)— H'i;M is surjective. Then M is x-pointwise pure (since the
weights on H i;M are < -+ w by definition). In particular, this implies
that “toric” irreducible perverse sheaves on a toric variety are pointwise pure,
which leads to an explicit formula for Goresky-MacPherson Betti numbers
of toric varieties (J. Bernstein, 1981, unpublished).

(ii) According to Kazhdan-Lusztig [KL.2] and Lusztig [L, Chapter 1] the
flag variety X is N-pointwise pure. Lusztig and Vogan [LV] have shown
that X ] is K -pointwise pure if K is a fixed point subgroup of an involution;
it seems that their method, together with the decomposition theorem, should
prove the K-pointwise purity of X for any symmetric pair (g, K).

Recall that one defines the socle filtration S,(M) on an object M of an
abelian category by induction: §_, = 0, §, := maximal semisimple sub-
object of M, S,(M)/S,_,(M) = Sy(M/S,_,(M)). One defines the cosocle
filtration M = C(M) > C_;(M) D --- in a dual manner.
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If M is a mixed perverse sheaf, then S,(M) and C.(M) will denote the
socle and cosocle filtrations on M considered as a geometric sheaf (Frobe-
nius forgotten). Clearly both §. and C. are (being functorial) Frobenius
invariant, hence S,(M) and C.(M) are mixed subsheaves of M .

5.2.2. LeMMA. Let iy: Y < X be a locally closed subscheme, M, a pure

perverse sheaf on Y of weight w, and N C pHOi)*M a mixed subsheaf
such that any irreducible subquotzent of N is \-pointwise pure. Then S N) =
w ). - |
PROOF. We have S_|(N) =0= W, _,(N) (since iy, increases weights),
0(N) w (N) = iy,* (iyN) (since by the adjunction property of i,
(”H iy, Y) M), Slnce Gr" is geometrically semisimple, one has
Y (M D ,+w(N) so 1t remains to prove that S;(N) C ,+w(N) for i >
We will do this by double induction: first in d1m Y, then in i. So assume
that 5.2.2 is known for any (Y', My, N') with d1m Y' < dimY, and that
S;(N) = 1+w(N) for j < i. Suppose that S;(N) ¢ W, (N). Then
S;/S;_y =8;/W,,;—; contains a pure geometrically irreducible subsheaf A4

of welght a > i+w (possibly, after a finite extension of the finite base field).
Note that Supp4d C Y\ Y.

(i) Assume that A4 is supported at a closed point x. Consider the ex-
tension 0 — W, .. (N)/ w+,__2(N) — B — 4 — 0 defined by N. Since
B ¢ S;_,(N), this extension is geometrically nontrivial, hence it corresponds

. . 1.
to a nonzero element in HomFmb(A HEW, . (N)/W,. . ,(N)). By the

l-pointwise purity condition H'i' Wit ()W, ,(N)) has weight w+i;
but a > w + i, hence a contradlctlon

(ii) If dimsupp 4 > 0 we will use induction in dimY . The conditions of
the lemma are local, so we can assume that X is affine. Choose a “generic”
hyperplane section Z C X, namely such that for any irreducible subquo-
tient L of ?H’ iy, M, a canomcal morphism zzL(l)[Z] — zZL is an iso-
morphism. Then M, , := sz(M )[1] is a pure perverse sheaf of weight
w+1 on YNZ. Consider the complex lynzeMynz) = zz[l]z M, ; one

has W H i, My, = zz[l]W HzY*M A subsheaf N, := 12[1](N)
of 7H° lynzeMynz satifies the conditions of the lemma, hence, by the in-

duction hypothesis, zZ[l](A) has weight i + 1. Since zz[l](A) # 0 (since
dimsuppA4 > 0) our A has weight i, and we are done.

5.2.3. CoRrOLLARY. Let M, M, be pure perverse sheaves of weights w, ,
w, that are both *- and '-pomthse pure. Suppose that Ext' v (M, M)+

mixed

0. Then exactly one of the following condztzons holds (here Y, :=supp M, ):
(i) Y, CY,, Y| #7, ), Wy =w,+1.
(i1) YC s Y #Y,, w=w,+ 1.
(iii) Yl = Yz. '
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ProoF. Clearly either ¥, C Y, or ¥, C ¥, (otherwise Ext' =0). Let 0 —
M, - N — M, — 0 be a nonsplit mixed extension If Y, # Y,and Y, CY,,
then a canonical morphism N — ?H® l(Yz\Y)*le\Y N ="?H° iy, \Y)* (M. i},\y)
is injective (since N is nonsplit), so we are in situation (1) by 5.2.2. If
Y, #Y, and Y, CY,, then N is a quotient of z(yl\yz)!(M |Yl\Y2) and (i1)

_ follows from a statement Verdier dual to 5.2.2.

5.2.4. Let X be a finite monodromic K-variety. Note that if M, M,

are irreducible objects in # (X K)— such that ExtM(Q Ky (M, M,) # 0,

then supp M, # supp M, (this follows, using the functor z!* , from the fact
that the category #£(Q, K )7,1 is semisimple if Q is a single orbit).

COROLLARY. Assume that X is K-pointwise pure. Let M be an object
in MN(X ) K)z mixea SUch that W,_ (M) = 0 and W, (M) = Sy(M). Then
M) =S,(M) forany i. -

a+1 (

Proor. This follows by induction in i, using 5. 2 2, the previous remark
and also the fact that any subquotient of M is K° -equivariant.

5.2.5. ExamrLE. Consider an irreducible M € #(X, K )x s X € Hmrs
Let I(M) be an injective envelope of M in A4 (X, K )z - Then I(M) admits
a mixed structure (possibly after a finite extension of the base field), and for
any such structure the weight filtration coincides with the socle filtration up.
to a shift.

Proor. The only problem is the existence of a mixed structure. But
M clearly has one (being a middle extension of a lissé sheaf with finite
monodromy). Any extension of the Frobenius action M — Frob* M to
I(M) — Frob™ I(M) defines some mixed structure on I(M) (since any irre-
ducible subquotient of I(M) admits a mixed structure, and any Frobenius
action on an irreducible perverse sheaf is unique up to a twist).

5.3. Jantzen conjectures. Let us apply the above considerations to (g, K)-
modules. Let (g, K) be an admissible Harish-Chandra pair (see 3.2), and
X € bg be a fixed rational dominant regular weight. The irreducible objects of
M(X,K )z are of geometric origin (see 2.6.5(iii)), hence the corresponding
standard objects each carry a weight filtration defined up to a shift. According
to 5.1.3(i) it coincides with the Jantzen filtration. So an array of weight
filtration prop~erties also holds for its Jantzen counterpart via the equivalence

i _
AU, K)~ — A (X, K), (below we use freely the road from F to C,
see [BBD, Section 6]).

5.3.1. CorOLLARY. The Jantzen filtration on standard (U, K )x -modules

has semisimple consecutive quotients and does not depend on the choice of a
positive deformation direction ¢ (see 4.3).
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5.3.2. COROLLARY. Assume that X is (K, X)-pointwise pure (see 5.2).
(i) The Jantzen filtration J,, on a *-standard (U, K) ,-module coincides
. with the socle filtration; the Jantzen filtration Ji. on a !-standard module
coincides with the cosocle filtration.
(i) If K = N, then' J,. also coincides, up to a shift, with the cosocle
filtration, and J,, coincides with the socle one. ’

PROOF. (i) follows from 5.2.2 plus the Verdier dual statement. (ii) follows
from 5.2.4 and the fact that any Verma module contains a unique irreducible
submodule. '

5.3.3. REMARKs. (i) The statement (ii) above was proved in [Ba] by purely
algebraic methods. One can conjecture that it remains valid in the case of an
arbitrary symmetric pair. .

(ii) In fact, in [Ba] the socle property of J,. for Verma modules was proved
for Jantzen filtration defined by means of deformations of the central char-
acter in arbitrary nondegenerate directions, and we (in Section 4) used only
those deformations in the positive directions. We do not know whether one
can use such arbitrary deformations in the definition of J,. for any symmetric

air.
? For a regular y € §* put A(")’::{a €A: x(h,) € Z}. It is well known that
A% s a root system with the Weyl group W% = {w e W: wy — X € b}
(recall that l); = ZA). The orbit W% X contains a unique dominant weight,
and for 3’ ¢ W®@y one has Hom(M,:, M,) = 0 and [M,: L] =0 (here
Mx €.# (U, N) is the Verma module, Lx 1s its irreducible quotient).

Let X1 2% € ba be regular weights such that Mx. C sz . Then for some -
(unique) dominant weight y one has X; = w;x, where w; € w® and
w,; € w, with respect to the usual order on W& _ '

3.3.4. COROLLARY. One has hi(M, ) = M, Ny e(uy)—t(w)(My,) (here ¢
is the length function on W), '

PRrROOF. Since dim Horn(Mxl , sz) = 1, the embedding of the corre-
sponding standard mixed sheaves is pure of certain weight a. Turning back
to representations we see that J!'(Mx.) = Mx. N J!,M(sz) . It remains to
show that a = {(w,) — £(w,). We can assume that t(w,) —£(w)) =1 (if
not, choose a chain le - Mw. c-CM CM, of Verma sub-

- 2(wy)—L(w))~1 vé]
modules such that each consecutive M has this property, and descend along

it). Then Shapovalov’s formula for the determinant of contravariant form

implies that the vacuum vector of Mx. lies in J,_I(sz) /J, —»(M, ). Hence
! ! )

a=1,

‘Let y € b‘& be a dominant regular weight, w,, w, € W pyt

P, ., = Z [Gr’_"!i(MW): L, It
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5.3.5. CorROLLARY. This polynomzal equals the Kazhdan-Lusztig polyno-
mial for the group W& .

ProofF. According to [L, Chapter 1], Kazhdan-Lusztig polynomials are
the matrix coefficients of the matrix that transforms the basis j,,(Q,) of
the K-group of the category .# X, N)z mixea 10 the basis Jo1e(Q,) . Since
the Jantzen filtration coincides with the weight filtration, our polynomials
correspond to the entries of the inverse matrix. Since these matrices coincide
up to standard changes of signs of the coefficients [KL1], we are done.

5.3.6. REMARKs. (i) Corollary 5.3.4 is Jantzen’s Conjecture [J, (5.18)], see
also [GJ1, (4.2)]. Corollary 5.3.5 was conjectured in [GJ1, GM]; in [GJ1] it
was shown that 5.3.4 implies 5.3.5 by purely algebraic arguments.

(ii) It would be nice to get the analogs of 5.3.4 and 5.3.5 for arbitrary
symmetric pairs. The only problem is to compute the weights in the space
of Hom’s between standard modules. Certainly one would like to know the
weights in all the Ext’s; we are ignorant of thls -even in the Verma modules
case. .

(iii) For a regular y € h* let g ) be a semisimple Lie algebra with the
root system A(z) U™ its extended universal enveloping algebra, and bm ,
its Cartan algebra Then bm is (canonically) a direct summand of §; let
Xz be the b(") -component of y, so Xz, € b(") One knows (see [Sol] for
a stronger statement) that .#Z (U, N) X is equivalent to a product of several

copies of # (U ) , N (x)) ; this equivalence preservés the Verma modules.
This immediately 1mp11es that in all the above results about .Z (U, N )
can drop the rationality assumption y € b Moreover, it sufficies to prov1de
the proof for integral y’s only, which is the sameas y =0.

(iv) For a treatment of mixed categories of representations and the Koszul
and Langlands dualities in this framework see [Sol, So2, BGSo].
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