
NOTES ON FACTORIZABLE SHEAVES

This is a preliminary version. Imprecisions are likely.

1. From Hopf algebras to factorizable sheaves

1.1. Configuration spaces. Let Λ be a lattice and Λneg ⊂ Λ a sub-semigroup, isomorphic to
(Z≥0)k.

Let X be an algebraic curve (smooth, but not necessarily complete). For λ ∈ Λneg, we will
denote by Xλ the algebraic variety classifying Λ-valued divisors D := Σλi ·xi with xi 6= xj and
λi ∈ Λneg. By definition, X0 = pt.

For a marked point x0 ∈ X and an arbitrary λ ∈ Λ, let Xλ
x0

be the ind-scheme classifying
Λ-valued divisors Σλi · xi as above but with a weaker condition, namely, that λi ∈ Λneg for
xi 6= x0.

Let us denote by addλ1,λ2 either of the maps

Xλ1 ×Xλ2 → Xλ1+λ2 and Xλ1 ×Xλ2
x0
→ Xλ1+λ2

x0
.

The map addλ1,λ2 is finite. For a perverse sheaves F1 on Xλ1 and F2 on Xλ2 or Xλ2
x0

, we
shall denote by F1 ? F2 the perverse sheaf

(addλ1,λ2)!(F1 � F2) ' (addλ1,λ2)∗(F1 � F2)

on Xλ1+λ2 (or Xλ1+λ2
x0

).

Let
(Xλ1 ×Xλ2)disj ⊂ Xλ1 ×Xλ2 and (Xλ1 ×Xλ2

x0
)disj ⊂ Xλ1 ×Xλ2

x0

the open subschemes, corresponding to pairs of divisors (D1, D2) with the condition that the
support of D1 does not intersect the support of D2 in the former case, and is also disjoint from
{x0} in the latter case.

1.2. The construction. Let A be a Λneg-graded Hopf algebra. For the following construction
we will work over the ground field C and we take X to be the affine line A1. (For the construction
to work for any X, we need that the antipode on A be involutive.) We will assume that A0 ' C
and that its graded components are finite-dimensional.

Theorem-Construction 1.3.
(1) To A one can canonically attach a system ΩA of perverse sheaves ΩλA on Xλ endowed with
factorization isomorphisms

(1.1) add∗λ1,λ2
(Ωλ1+λ2

A )|(Xλ1×Xλ2 )disj ' Ωλ1
A � Ωλ2

A |(Xλ1×Xλ2 )disj .

Moreover, the isomorphisms (1.1) are associative in a natural sense.
(2) The *-stalk of ΩλA at a point Σλi · xi ∈ Xλ is quasi-isomorphic to⊗

i

(Tor•A(C,C))λi ,

where the super-script refers to the corresponding graded component.
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1.4. Verdier duality. For a perverse sheaf F on Xλ let us view its Verdier dual D(F) as living
over X−λ (i.e., we change our semi-group to Λpos := −Λpos).

For a Λneg-graded Hopf algebra A as above, consider its graded linear dual A∨ as a Λpos-
graded Hopf algebra.

Proposition 1.5. There exists a natural isomorphism of perverse sheaves over X−λ.

D(ΩλA) ' ΩλA∨,oc ,

where the superscript ”oc” denotes the Hopf algebra with reversed co-multiplication (and the old
multiplication).

The above isomorphisms for all λ ∈ Λpos are compatible with the factorization isomorphisms
(1.1).

Note that D(D(ΩλA)) ' ΩAom,oc , where ”om” denotes the Hopf algebra with reversed multi-
plication. However, Aom,oc ' A, by means of the antipode.

As a corollary, we obtain the following description of the !-stalk of ΩλA at a point Σλi·xi ∈ Xλ.
Namely, it is quasi-isomorphic to ⊗

i

(Ext•A∨(C,C))λi .

1.6. Modules. We will now extend the construction of Sect. 1.2 to the case of modules. Let
Dr(A) be the Drinfeld double of A. We will consider the category Dr(A)-mod of Λ-graded
modules M over Dr(A), with finite-dimensional graded components and such that the set
{λ |Mλ 6= 0} is bounded from above (i.e., is contained in a set of the form λ′ + Λneg for some
λ′ ∈ Λ).

Theorem-Construction 1.7.
(1) To an object M ∈ Dr(A)-mod one can canonically associate system ΩA,M of perverse
sheaves ΩλA,M on Xλ

x0
for λ ∈ Λ endowed with following system of factorization isomorphisms

with respect to ΩA:

(1.2) add∗λ1,λ2
(Ωλ1+λ2

A,M )|
(Xλ1×Xλ2

x0 )disj
' Ωλ1

A � Ωλ2
A,M |(Xλ1×Xλ2

x0 )disj
.

The isomorphisms (1.2) are associative in a natural sense with respect to (1.1).
(2) The *-stalk of ΩλA,M at a point Σλi · xi ∈ Xλ + λ0 · x0 is quasi-isomorphic to⊗

i

(Tor•A(C,C))λi ⊗ (Tor•A(C,M))λ0 .

Note that linear duality M 7→ M∨ defines a contravariant equivalence between Dr(A)-mod
and Dr(A∨,oc)-mod, (reversing the braiding).

Proposition 1.8. There is a natural isomorphism

D(ΩλA,M ) ' Ω−λA∨,oc,M∨ ,

compatible with the isomorphisms (1.2).

The proposition implies the following description of the !-stalks of ΩλA,M . At a point Σλi ·xi ∈
Xλ + λ0 · x0, the !-stalk is isomorphic to⊗

i

(Ext•A∨(C,C))λi ⊗ (Ext•A∨(C,M))λ0 .
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1.9. Factorizable sheaves.

Definition 1.10. A factorizable sheaf with respect to ΩA is a system F of perverse sheaves Fλ

on Xλ
x0

equipped with an associative system of isomorphism

(1.3) add∗λ1,λ2
(Fλ1+λ2)|

(Xλ1×Xλ2
x0 )disj

' Ωλ1
A � Fλ2 |

(Xλ1×Xλ2
x0 )disj

,

and such that the set {λ |Fλ 6= 0} is bounded from above.

Factorizable sheaves with respect to ΩA naturally form a category that we shall denote
FS(ΩA).

Theorem 1.11. The assignment
M 7→ ΩA,M

is an equivalence between the category Dr(A)-mod and FS(ΩA).

2. The commutative case

2.1. We begin with the following observation:

Lemma 2.2. A Hopf agebra A is co-commutative (resp., commutative) if and only if the
isomorphism (1.1) extends to a map

add∗λ1,λ2
(Ωλ1+λ2

A )→ Ωλ1
A � Ωλ2

A or Ωλ1
A � Ωλ2

A → add!
λ1,λ2

(Ωλ1+λ2
A ),

respectively.

Thus, for A which is co-commutative (resp., commutative) we have the maps

(2.1) Ωλ1+λ2
A → Ωλ1

A ? Ωλ2
A and Ωλ1

A ? Ωλ2
A → Ωλ1+λ2

A ,

that we shall refer to as co-multiplication and multiplication, respectively.

2.3. The Bar-complex. Again, for A co-commutative (resp., commutative) we can form a
complex of perverse sheaves on Xλ’s, denoted Bar(ΩA) by taking⊕

n≥0

A[±1] ? ... ? A[±1]︸ ︷︷ ︸
n

,

with the appropriate Λneg-grading and with ±1 = −1 in the co-commutative and ±1 = 1 in
the commutative case.

The system Bar(ΩA) itself is endowed with factorization isomorphisms, and, moreover, an
associative algebra (resp., co-associative co-algebra) structure with respect to ?. For a point
x ∈ X, the direct sums ⊕

λ∈Λneg

ι∗λ·x(Bar(ΩA)) and
⊕

λ∈Λneg

ι!λ·x(Bar(ΩA))

thus acquire structures of a co-associative co-algebra and associative algebra, respectively (here
ιλ·x denotes the embedding of the corresponding point into Xλ).

Lemma 2.4. We have canonical quasi-isomorphisms:⊕
λ∈Λneg

ι∗λ·x(Bar(ΩA)) ' A, as associative algebras for A co-commutative,

⊕
λ∈Λneg

ι!λ·x(Bar(ΩA)) ' A, as co-associative co-algebras for A commutative.
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2.5. Modules. Let A be co-commutative (resp., commutative). Then we can speak about
systems F of perverse sheaves Fλ on Xλ (or Xλ

x0
) that are co-modules (resp., modules) with

respect to ΩA and the ? operation. I.e., we have the maps

Fλ1+λ2 → Ωλ1
A ? Fλ2 or Ωλ1

A ? Fλ2 → Fλ1+λ2 ,

respectively, that are associative with respect to the maps (2.1).

For a co-module (resp., module) F with respect to ΩA, the convolution

(2.2) Bar(ΩA,F) := Bar(ΩA) ? F

acquires a natural differential, and as such is a module (resp., co-module) with respect to
Bar(ΩA).

Moreover, the assignment (2.2) establishes an equivalence of suitably defined derived cate-
gories. The functor in the opposite direction sends a system of complexes F′ with an action
(resp., co-action) of Bar(ΩA) to

Un-Bar(F′) := ΩA ? F′

with a canonical differential.

2.6. Modules vs. factorizable sheaves. Assume that A is co-commutative (resp., commu-
tative).

Definition 2.7. A factorizable sheaf F with respect to ΩA is said to be co-commutative (resp.,
commutative) if the factorization isomorphisms (1.3) extend to maps

add∗λ1,λ2
(Fλ1+λ2)→ Ωλ1

A � Fλ2 and Ωλ1
A � Fλ2 → add!

λ1,λ2
(Fλ1+λ2),

respectively.

We note that in the derived category being co-commutative (resp., commutative) is not a
property but an additional structure.

Let F be a co-commutative (resp., commutative) factorizable sheaf with respect to ΩA. By
adjunction, we obtain a co-associative co-action (resp., associative action)

F → ΩA ? F or ΩA ? F → F,

respectively.

Thus, we obtain a functor from the category of co-commutative (resp., commutative) factor-
izable sheaves with respect to ΩA to that of ΩA-comodules (resp., modules).

Proposition 2.8.

(1) The above functor is a fully faithful embedding.

(2) An ΩA-comodule (resp., module) F is a factorizable sheaf if and only if Bar(ΩA,F) is
supported on

∪
λ∈Λ

λ · x0 ⊂
⋃
λ∈Λ

Xλ
x0
.
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2.9. Let us see how the notion of (co)commutative factorizable sheaf couples with Theorem-
Construction 1.7.

Let A be co-commutative (resp., commutative). Let A-comod (resp., A-mod) denote the
category of graded A-comodules (resp. modules) N with finite-dimensional graded components
and such that the set {λ |Nλ 6= 0} is bounded from above.

We have a natural functor from A-comod (resp., A-mod) to Dr(A)-mod, which makes A act
(resp., co-act) via the augmentation.

Proposition 2.10.
(1) For N ∈ A-comod (resp., N ∈ A-mod) the corresponding object N ∈ Dr(A)-mod has the
property that ΩA,N is co-commutative (resp., commutative) with respect to ΩA.
(2) The assignment N 7→ ΩA,N establishes an equivalence between the category of A-comodules
(resp., A-modules) and that of co-commutative (resp., commutative) factorizable sheaves with
respect to ΩA.

(3) For N ∈ A-comod (resp., N ∈ A-mod),

(Bar(ΩA,ΩA,N ))λ ' (ιλ·x0)∗(Nλ).

3. The twisted case: preliminaries

3.1. Categories over a braided monoidal category. Let C be a braided monoidal category.
We denote by Sc1,c2 the braiding isomorphism c1 ⊗ c2 → c2 ⊗ c1. Let C denote the braided
monoidal category, which equals C as a monoidal category, but with the reversed braiding
Sc1,c2 := S−1

c2,c1 .

Let O be a monoidal category equipped with a central functor φ : C→ O, by which we mean
a monoidal functor endowed with functorial isomorphisms Sc,M : φ(c)⊗M →M⊗φ(c) for c ∈ C

and M ∈ O, compatible with tensor products and such that for c1, c2, Sc1,φ(c2) = φ(Sc1,c2). In
this case we will say that O is a monoidal category over C.

Note that the category Oop, obtained from O by reversing the monoidal structure naturally
receives a central functor from C.

3.2. The Drinfeld double. For (C,O, φ) as above, we can consider the category ZC(O) whose
objects are V ∈ C, equipped with a system of isomorphisms

RM,V : M ⊗ V → V ⊗M, ∀M ∈ O,

compatible with tensor products of M ’s and such that for M = φ(c), c ∈ C, Rφ(c),V = Sc,V .

The tensor product in O equips ZC(O) with a monoidal structure. Moreover, ZC(O) is
naturally braided by means of SV1,V2 := RV1,V2 : V1 ⊗ V2 → V2 ⊗ V1.

Note, however, that unless C is symmetric, we do not have any naturally defined functor
C→ ZC(O). In other words, ZC(O) is not a category over C (unless C is symmetric).

Note that we have a naturally defined monoidal functor ZC(Oop) → (ZC(O))op, which re-
verses the braiding, and makes the following diagram commute:

ZC(Oop) −−−−→ (ZC(O))opy y
Oop Id−−−−→ Oop.
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3.3. Hopf algebras. Assume that we also have a faithful monoidal functor F : O → C such
that F ◦ φ = IdC, as monoidal functors, and such that F (Sc,M ) = Sc,F (M). In this case, we
will say that O is a monoidal category in C. Modulo representability, a datum of a monoidal
category in C is equivalent to that of a Hopf algebra A in C.

Note that Oop is then naturally a category over C. The corresponding Hopf algebra may be
thought of as Aoc (which it literally is, if C is symmetic).

As was mentioned above, the category ZC(O), although endowed with a monoidal functor
to C, does not correspond to a Hopf algebra in C. However, it corresponds to an algebra in
this category, denoted Dr(A). By definition, Dr(A)-mod := ZC(O). The forgetful functor
ZC(O)→ O defines a homomorphism of algebras A→ Dr(A).

3.4. The Koszul dual category. For (O,C, φ, F ) as above consider the category O′ =
FunctO(C,C) of functors C → C that commute in a natural sense with the action of O, the
latter being

M ∈ O, c ∈ C 7→ F (M)⊗ c.

Composition makes O′ into a monoidal category. We have a natural monoidal functor

F ′ : O′ → FunctC(C,C) ' Cop ' C,

where the last arrow comes from the braiding.

In addition, since C maps to Z(O) by means of φ, we have a natural monoidal functor
φ′ : C → Z(O′). I.e., we obtain that O′ is naturally a monoidal category over C. The functor
F ′ makes O′ into a monoidal category in C.

If O corresponds to a Hopf A in C, and assume that A is dualizable as an object of C. Then
O′ corresponds to the Hopf algebra A∨,oc in C.

3.5. Relationship between Drinfeld doubles. Note that we have a natural functor

ZC(O)→ ZC(O′)op,

which reverses the braiding and makes the following diagram commute

ZC(O) −−−−→ ZC(O′)y y
C −−−−→ C,

where the bottom horizontal line is the identity functor.

In the case when O corresponds to a Hopf algebra A in C, we obtain an isomorphism of
algebras

Dr(A) ' Dr(A∨,oc);

in particular, Dr(A) receives a homomorphism from A∨,oc.
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4. The twisted case: construction

4.1. Gerbes. Recall that on a topological space, a data of a C∗-gerbe allows to twist the
notion of a sheaf. Given a C∗-gerbe P over Y, we will refer to the corresponding category as
P-twisted sheaves on Y. If Y is stratified, we can talk about P-twisted constructible (or perverse,
if we are given a perversity function) sheaves on Y.

Let us recall the following constriction. Let L be a complex line bundle over Y, and q′ ∈ C∗.
We define the gerbe L⊗log(q

′) over Y as follows: its sections (over an open subset of Y) is the
category of 1-dimensional local systems on the corresponding circle bundle (over the given open
subset) with monodromy q′ along the fiber.

The corresponding category of L⊗log(q
′)-twisted sheaves identifies with that of sheaves on

the circle bundle, which are monodromic with monodromy q′ along the fiber.

4.2. Gerbes attaches to a pairing. Let q be a symmetric pairing Λ⊗ Λ→ C∗.
The following mimics [CHA], Sect. 3.10.3. Assume that for every λ ∈ Λ we are given a

C∗-gerbe PλX,q over X plus the following data: for every λ1, λ2 an identification

cλ1,λ2 : Pλ1
X,q ⊗ Pλ2

X,q ' Pλ1+λ2
X,q ⊗ ω2log(q(λ1,λ2))

X ,

where ωX is the canonical line bundle on X. We need the data of cλ1,λ2 to be symmetric in a
natural sense.

For three elements λ1, λ2, λ3 we need a data that identifies the three arising isomorphisms
of gerbes,

Pλ1
X,q ⊗ Pλ2

X,q ⊗ Pλ3
X,q ' Pλ1+λ2+λ3

X,q ⊗ ω2log(q(λ1,λ2))
X ⊗ ω2log(q(λ2,λ3))

X ⊗ ω2log(q(λ3,λ1))
X ,

such that the corresponding identity holds for 4-tuples of λ’s.

Given a pairing q, it is easy to see that the data of (PλX,q, c
λ1,λ2) exists (see below for a

construction). Having two pieces of data like this, their ratio is canonically a Ť -gerbe over X,
where Ť is the torus C∗ ⊗

Z
Λ.

Given q, we will refer to a data Pq := {(PλX,q, cλ1,λ2)} as above as a q-twisted Ť -gerbe on X.

4.3. The canonical gerbe attached to a pairing. We define a q-twisted Ť -gerbe on X by
setting:

Pλcan,X,q := (ωX)log(q(λ,λ)),

and cλ1,λ2 to be the natural identification

(ω)log(q(λ1+λ2,λ1+λ2)) ' (ωX)log(q(λ1,λ1)) ⊗ (ωX)log(q(λ2,λ2)) ⊗ (ωX)2·log(q(λ1,λ2)).

In what follows we will refer to this choice as a canonical q-twisted Ť -gerbe on X, and denote
it Pq,can.

4.4. Gerbes over configuration spaces. A datum of a q-twisted Ť -gerbe on X gives rise
to the following construction:

For every n-tuple λ1, ..., λn of elements of Λ we obtain a C∗-gerbe P
λ1,...,λn
Xn,q over Xn, whose

restriction to the diagonal
∆φ : Xm ↪→ Xn

corresponding to a surjection φ : {1, ..., n}� {1, ...,m} identifies with P
µ1,...,µm
Xm,q , where

µj = Σ
i,φ(i)=j

λi.
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Namely, we set

P
λ1,...,λn
Xn,q := Pλ1

X,q � ...� PλnX,q �

(
�
i 6=j

O(−∆i,j)2log(q(λi,λj))

)
.

For n = n1 + n2 and {λ1, ..., λn} = {λ1
1, ..., λ

1
n1
} ∪ {λ2

1, ..., λ
2
n2
} we have an identification of

gerbes

P
λ1,...,λn
Xn,q |(Xn1×Xn2 )disj ' P

λ1
1,...,λ

1
n1

Xn1 ,q � P
λ2

1,...,λ
2
n2

Xn2 ,q |(Xn1×Xn2 )disj .

In particular, for a semi-group Λneg ⊂ Λ, the above datum gives to a C∗-gerbe denoted PXλ,q
over Xλ and a C∗-gerbe denoted PXλx0

,q over Xλ
x0

endowed with factorization isomorphisms

(4.1) PXλ1+λ2 ,q|(Xλ1×Xλ2 )disj ' PXλ1 ,q � PXλ2 ,q|(Xλ1×Xλ2 )disj

and

(4.2) P
X
λ1+λ2
x0 ,q

|
(Xλ1×Xλ2

x0 )disj
' PXλ1 ,q � P

X
λ2
x0 ,q
|
(Xλ1×Xλ2

x0 )disj
,

which are associative in the natural sense.

4.5. The braided category attached to q. Let q be as above. We consider a new braiding
on the category of Λ-graded vector spaces. Namely, for two such vector spaces M1 and M2 and
elements mi ∈Mi od degrees λi, respectively, we set

m1 ⊗m2 7→ q(λ1, λ2) ·m2 ⊗m1.

We denote this category by VectΛ
q .

Let now A be a Hopf algebra in VectΛ
q . Assume that as a Λ-graded vector space, A satisfies

the same assumptions as in the non-twisted case.

We take our curve X to be A1 with a fixed coordinate. Let Pq be Pq,can as defined in
Sect. 4.3. (Note that the choice of a coordinate trivializes the gerbes Pλq,can,X for every λ,
however, the gerbe PXλ,q,can over Xλ is non-trivial 1.)

The following generalizes Theorem-Construction 1.3 to the present context:

Theorem-Construction 4.6.

(1) To A one can associate a system ΩA of PXλ,q-twisted perverse sheaves Ωλ on Xλ, endowed
with factorization isomorphisms as in (1.1), (the latter make sense in view of (4.1)), which are
associative in the natural sense.

(2) The *- and !-stalks of ΩA are calculated by the same formula as in the non-twisted case.
(This makes sense, since according to our choice of the q-twisted Ť -gerbe, its restriction to the
strata of the diagonal stratification of Xλ is trivial, so *- and !-fibers of a twisted sheaf are
(non-twisted) vector spaces ).

1The choice of the coordinate allows to trivialize each individual PXλ,q,can as well, which is how it is done

in [BFS], but this will not be compatible with the factorization isomorphisms.
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4.7. Factorizable sheaves in the twisted situation. Due to (4.2), the definition of fac-
torizable sheaf given in Sect. 1.9 transfers to the twisted context, where the Fλ’s are now
PXλx0

,q-twisted perverse sheaves. Thus, for A as above, we have a well-defined category FS(ΩA).

Recall now the category (which is in fact braided monoidal) Dr(A)-mod. Generalizing
Theorem-Construction 1.7 and Theorem 1.11 we have:

Theorem-Construction 4.8.

(1) To an object M ∈ Dr(A)-mod one can canonically associate an object ΩA,M in FS(ΩA).
Moreover, the assignment M → ΩA,M is an equivalence of categories.

(2) The *- and !-stalks of ΩA,M are calculated by the same formula as in the non-twisted case.

4.9. Verdier duality in the twisted case. Given a C∗-gerbe P over Y we have the Verdier
duality functor that maps the (derived category of) P-twisted sheaves to that of P−1-twisted
sheaves.

Recall that we can think of A∨,oc as a Hopf algebra in VectΛ
q−1 , and there is an isomorphism

Dr(A)-mod→ Dr(A∨,oc)-mod,

as monoidal categories that reverses the braiding. The rigidity functor on Dr(A)-mod can be
thought of as a contravariant functor

Dr(A)-mod→ Dr(A∨,oc)-mod,

which underlies the dualization functor

M 7→M∨ : VectΛ
q → VectΛ

q−1 .

We have:

Proposition 4.10. D(ΩA) ' ΩA∨,oc and D(ΩA,M ) ' ΩA∨,oc,M∨ .

5. The quantum group

5.1. Lusztig’s algebra. Let Λ be the weight lattice of a reductive group G. We denote by I
the Dynkin diagram, and for i ∈ I by αi the corresponding root. Let Λpos be the positive span
of the αi’s. Let q be as above.

Our primary interest is the category of modules over Lusztig’s quantum group LUq (with
divided powers). We will denote by LUq-mod the category of Λ-graded modules with weights
bounded from above. This quantum R-matrix makes LUq-mod into a braided monoidal cate-
gory.

Along with LUq we have the Kac-De Concini version of the quantum group, denoted KDUq,
and the corresponding category of modules KDUq-mod. We have a homomorphism of Hopf
algebras

φ : KDUq → LUq,

compatible with the the fiber functor to Vect. The morphism φ is known to be an isomorphism
”away from roots of unity”, i.e., when q(αi, αi) is not a root of unity for any i ∈ I, and at q = 1.

We remark, however, that KDUq-mod fails to be a braided category at roots of unity.
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5.2. Positive and negative parts. Let Uq[B+] be either Lusztig’s are the Kac-De Concini
sub-Hopf algebra of Uq, corresponding to the quantum Borel.

The projection on the torus and the forgetful functor to VectΛ define monoidal functors

VectΛ � Uq[B+]-mod,

and it is easy to see that Uq[B+]-mod becomes a monoidal category in VectΛ
q−1 . We shall

denote by LU+
q and KDU+

q , respectively, the resulting Hopf algebras in VectΛ
q−1 . As associative

algebras, they coincide with the same-named sub-algebras of LUq and KDUq, respectively.

Similarly, we consider the Hopf algebra Uq[B−], and the category Uq[B−]-mod with the
corresponding functors VectΛ � Uq[B−]-mod. We change the monoidal structure on the above
functors by multiplying it by q(λ, µ) on the (λ, µ) graded component for the ← functor, and
by its inverse for the → functor. This makes Uq[B−]-mod into a monoidal category over
VectΛ. We shall denote by LU−q and KDU−q , respectively, the resulting Hopf algebras in VectΛ

q .
As associative algebras, they coincide with the same-named sub-algebras of LUq and KDUq,
respectively.

The Drinfeld doubles

Dr(LU−q ), Dr(KDU−q ), Dr(LU+
q ) and Dr(KDU+

q )

make sense as Hopf algebras in Vect.

The quantum R-martix on Uq has the property that the monoidal restriction functors
LUq-mod→ LUq[B−]-mod→ KDUq[B−] naturally lift to a braided monoidal functors

(5.1) LUq-mod→ ZVectΛ
q
(LUq[B−]-mod) and LUq-mod→ ZVectΛ

q
(KDUq[B−]-mod)

Moreover, the above functors are equivalences away from roots of unity.

Similarly, when we consider LUq-mod with the inverted braiding, we have the functors

(5.2) LUq-mod→ ZVectΛ
q

(LUq[B+]-mod) and LUq-mod→ ZVectΛ
q

(KDUq[B+]-mod),

which are equivalences away from roots of unity.

We have the corresponding homomorphisms of Hopf algebras

(5.3) Dr(LU−q )→ LUq, Dr(KDU−q )→ LUq, Dr(LU+
q )→ LUq and Dr(KDU+

q )→ LUq.

The categories

(5.4) ZVectΛ
q

(LUq[B−]-mod), ZVectΛ
q

(KDUq[B−]-mod),

ZVectΛ
q

(LUq[B+]-mod), ZVectΛ
q
(KDUq[B+]-mod)

will serve as approximations for LUq-mod. In the sequel we will make an assumption that
q(αi, αi)2 6= 1 for any i ∈ I, and will define categories that approximate LUq-mod even better.
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5.3. The free algebras. We consider the braided monoidal category VectΛ
q , and we let frU−q

be the free associative algebra in it, generated by the elements Fi, i ∈ I, where deg(Fi) = −αi.
We define a Hopf algebra structure on it by Fi 7→ Fi ⊗ 1 + 1⊗ Fi.

Similarly, we consider the braided monoidal category VectΛ
q−1 , and we let frU+

q be the free
associative algebra in it, generated by the elements Ei, i ∈ I, where deg(Ei) = αi. We define a
Hopf algebra structure on frU+

q by Ei 7→ Ei ⊗ 1 + 1⊗ Ei.

We let cofrU−q be (frU+
q )∨,oc, which is a Hopf algebra in VectΛ

q , and we let cofrU+
q be

(frU−q )∨,oc, which is a Hopf algebra in VectΛ
q−1 .

From now on, we will assume that q(αi, αi)2 6= 1 for any i ∈ I. Then the formulas (Fi, Ei) =
1

1−q(αi,αi)−2 define canonical maps of Hopf algebras

(5.5) frU−q → cofrU−q and frU+
q → cofrU+

q .

5.4. Lusztig’s and Kac-De Concini algebras. By definition, the Kac-De Concini version
KDU−q of U−q is a quotient Hopf algebra of frU−q given by the quantum Serre relations, and
similarly for KDU+

q .

Under the above assumption on q, Lusztig’s algebra LU−q is a Hopf sub-algebra of cofrU−q ,
and similarly for LU+

q , such that the isomorphisms

cofrU−q ' (frU+
q )∨,oc and cofrU+

q ' (frU−q )∨,oc

induce isomorphisms
LU−q ' (KDU+

q )∨,oc and LU+
q ' (KDU−q )∨,oc.

The maps
KDU−q → LU−q and KDU+

q → LU+
q ,

induced by (5.5) coincide with those induced by the map φ : KDUq → LUq.

In particular, we have:

ZVectΛ
q

(LUq[B−]-mod) ' ZVectΛ
q−1

(KDUq[B+]-mod)

and
ZVectΛ

q
(KDUq[B−]-mod) ' ZVectΛ

q−1
(LUq[B+]-mod),

i.e.,
Dr(LU−q ) ' Dr(KDU+

q ) and Dr(LU+
q ) ' Dr(KDU−q ),

reversing the braiding, and compatible with the homomorphisms (5.3).

5.5. The small quantum group. Let u−q (resp., u+
q ) be the images of the maps

φ− : KDU−q → LU−q and φ− : KDU+
q → LU+

q ,

respectively. These are Hopf algebras in VectΛ
q and VectΛ

q−1 , respectively.

By the above,
u+
q ' (u−q )∨,oc.

Let U−,
+
2

q ⊂ LUq and, U+,−2
q ⊂ LUq be the sub-Hopf algebras, equal to the images of

Dr(LU−q )→ LUq and Dr(LU+
q )→ LUq,
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respectively. They are generated as algebras by (LU−q , u
+
q ) and (u−q ,

LU+
q ). I.e., the correspond-

ing categories of modules, denoted U−,
+
2

q -mod and U,−2
q -mod are monoidal, and braided since

the subalgebras U−,
+
2

q ⊂ LUq and, U+,−2
q ⊂ LUq contain the R-matrix of LUq.

We have a commutative diagram of homomorphisms of Hopf algebras:

Dr(LU−q ) ' Dr(DU+
q ) −−−−→ U−,

+
2

q −−−−→ LUqx x
Dr(u−q ) ' Dr(u+

q ) −−−−→ U+,−2
qx

Dr(KDU−q ) ' Dr(LU+
q ).

The above diagram is compatible with the R-matrices of

Dr(LU−q ), Dr(u−q ), Dr(KDU−q ) and LUq,

respectively.

The intersection
uq := U−,

+
2

q ∩U+,−2
q ⊂ LUq

is the small quantum group. The above diagram shows that uq identifies both with Dr(u−q ) (as
a Hopf algebra with an R-matrix), and with the image of φ : KDUq → LUq.

5.6. The quantum Frobenius. Let Λcl ⊂ Λ be the sub-lattice consisting of elements
{λ | q(λ, µ)2 = 1, ∀µ ∈ Λ}. Note that the corresponding braided monoidal subcategory
VectΛcl

q ⊂ VectΛ
q is symmetric. We denote the corresponding category simply by VectΛcl .

For i ∈ I let `i be the minimal integer such that q(αi, αi)`i = 1. Then, it is easy to see that
αi,cl := `i · αi ∈ Λcl, and α̌i,cl := α̌i

`i
∈ (Λcl)∨.

According to [Lu], (Λcl, (Λcl)∨, I, αi,cl, α̌i,cl) form a root datum. We shall denote by Ucl

the resulting quantum enveloping algebra. The braided monoidal category Ucl-mod is in fact
symmetric. Let Gcl denote the reductive group, corresponding to the above root datum. By loc.
cit., the category Ucl-mod is equivalent, as a braided monoidal category, to Ocl–the category
O corresponding to Gcl.

In addition, we have a homomorphism of Hopf algebras (the quantum Frobenius):

Frobq : LUq → Ucl,

and the corresponding braided monoidal functor

Frob∗q : Ucl-mod→ LUq-mod.

The composition
Ucl-mod→ LUq-mod→ uq-mod

factors as
Ucl-mod→ VectΛcl → uq-mod,

where elements of VectΛcl are considered as 1-dimensional representations of uq-mod with the
Ei’s and Fi’s acting trivially.
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Moreover, we have an exact sequence of Hopf algebras:

(5.6) 1→ u−q → LU−q → U−cl → 1

(see, [Lu], Theorem 35.4.2 or [AG]).

6. Factorizable sheaves attached to the quantum group

6.1. The algebras. Denote

(6.1) LΩ−q := ΩLU−q
, LΩ+

q := ΩLU+
q
, KDΩ−q := ΩKDU−q

and KDΩ+
q := ΩKDU+

q

and also

(6.2) Ω−q,small := Ωu−q
, Ω+

q,small := Ωu+
q
.

We have canonical maps between factorization algebras:

LΩ−q → KDΩ−q and LΩ+
q → KDΩ+

q .

By the previous section, the categories in (5.4) are equivalent to

FS(LΩ−q ), FS(KDΩ−q ), FS(LΩ+
q ) and FS(KDΩ+

q ),

respectively, and

(6.3) FS(Ω−q,small) ' uq-mod.

6.2. Free factorization algebras. Assume now that q(αi, αi)2 6= 1 for any i ∈ I. Denote

(6.4) frΩ−q := ΩfrU−q
, frΩ+

q := ΩfrU+
q
, cofrΩ−q := ΩcofrU−q

, cofrΩ+
q := ΩcofrU+

q
.

We obtain the following isomorphisms:

LΩ−q ' D(KDΩ+
q ), KDΩ−q ' D(LΩ+

q ), frΩ−q ' D(cofrΩ+
q ), cofrΩ−q ' D(frΩ+

q )

and

Ω−q,small ' D(Ω+
q,small).

We have canonical maps

(6.5) frΩ−q � KDΩ−q � Ω−q,small ↪→
LΩ−q ↪→cofr Ω−q .

The Verdier dual of this sequence is

frΩ+
q � KDΩ+

q � Ω+
q,small ↪→

LΩ+
q ↪→cofr Ω+

q .

In what follows we will describe the above factorization algebras more explicitly.
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6.3. Change of gerbe. Recall that the factorization algebras of (6.5) were in the category
of perverse sheaves twisted by the gerbes Pq,can. Consider a different q-twisted Ť -gerbe Pq,can′

on X, where we put
PλX,q,can′ := ω

log(q(λ,λ))−log(q(λ,2ρ))
X ,

where 2ρ ∈ Λ is the sum of positive roots. The data of cλ1,λ2 for Pq,can′ follows from that of
Pq,can′ since the function λ 7→ q(λ, 2ρ) : Λ→ C∗ is linear.

Let us assume now that the C∗-gerbes ωq(λ,2ρ)X have been trivialized in a way compatible
with isomorphisms

ω
q(λ1+λ2,2ρ)
X ' ωq(λ1,2ρ)

X ⊗ ωq(λ2,2ρ)
X .

For example, such a trivialization arises from a trivialization of ωX , and for X = A1 there is a
canonical choice for one.

This data defines an equivalence of q-twisted Ť -gerbes Pq,can′ = Pq,can. Thus from now on,
we will think of the factorization algebras in (6.5) as being in Pq,can′ -twisted perverse sheaves.

Remark. The above replacement of the gerbe has no significance for X = A1, but would have
one if we worked with arbitrary curves. The necessity of the replacement can be explained as
follows:

In order for the construction A 7→ ΩA to be defined for any X, we need to consider VectΛq as
a ribbon category, and we need that the square of the antipode on A be equal to the balancing
on VectΛq . The modification of the gerbe effects the required modification of the balancing on
VectΛq .

6.4. Description on the open part. A crucial property of Pq,can′ is that the C∗-gerbe
PλX,q,can′ is canonically trivial for λ = −αi for i ∈ I. Indeed, we have:

q(λ, λ) = q(λ, 2ρ) for λ = w(ρ)− ρ, w ∈W,

and −αi = si(ρ)− ρ.

For λ ∈ Λneg let
◦
Xλ be the open subset of Xλ corresponding to ”multiplicity-free” divisors

i.e., to points of the form Σλk · xk with xk 6= xk′ and each λk of the form −αi for some i ∈ I.

By the above, the gerbe PXλ,q,can′ , restricted to
◦
Xλ is canonically trivial. Hence, we can

think of PXλ,q,can′-twisted sheaves on
◦
Xλ as ordinary sheaves.

Let ?
◦
Ω?

? denote the restriction of any of the twisted perverse sheaves appearing in (6.5) to
◦
Xλ. By the above, we can think of it as ordinary perverse sheaves.

Proposition 6.5. The maps

fr
◦
Ω−,λq � KD

◦
Ω−,λq �

◦
Ω−,λq,small ↪→

L
◦
Ω−,λq ↪→cofr

◦
Ω−,λq

are isomorphisms. The corresponding perverse sheaf is canonically the sign local system on
◦
Xλ.

Proof. The assertion follows from the fact that for all of the algebras U− involved
(TorU−(C,C))−αi is 1-dimensional and is concentrated in the cohomological degree −1.

�

We will denote the resulting local system simply by
◦
Ω−,λq .
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6.6. Description of extensions. Let jλ denote the open embedding
◦
Xλ → Xλ. We shall

denote by jλ? , ? =!, ∗, !∗ the corresponding functors on the category of PXλ,q,can′ -twisted per-

verse sheaves. (Note that although the twisting was trivial on
◦
Xλ and can be non-canonically

trivialized over the entire Xλ, each of the above extension functors in the twisted and the
non-twisted contexts is different.)

Proposition 6.7. We have:

frΩ−,λq ' jλ! (
◦
Ω−,λq ) and cofrΩ−,λq ' jλ∗ (

◦
Ω−q ),

compatibly with factorization isomorphisms. The map
frΩ−,λq → cofrΩ−,λq

corresponds to the canonical map jλ! → jλ∗ .

Proof. It is enough to prove the first isomorphism, since the second one would follow by Verdier
duality and replacing − by +.

Our assertion is equivalent to (
TorfrU−q (C,C)

)λ
= 0

for λ being not one of the negative simple roots. However, the latter follows from the fact that
frU−q is the free associative algebra with the generators in the specified degrees.

The assertion about factorization follows from the corresponding property over
◦
Xλ, and

likewise the assertion about the map between Ω’s.
�

Corollary 6.8. We have:

Ω−,λq,small ' j
λ
!∗(
◦
Ω−,λq )

compatibly with factorizations.

Proof. This follows by combining the previous proposition with (6.5). �

Combining the above corollary with (6.3), we reprove the main result of [BFS].

6.9. Description of LΩ−q and KDΩ−q . By (6.5), as perverse sheaves, LΩ−,λq injects into

jλ∗ (
◦
Ω−,λq ) and KDΩ−,λq receives a surjective map from jλ! (

◦
Ω−,λq ).

Let ∆λ denote the main diagonal on Xλ. Let j′λ denote the open embedding of its comple-
ment. By factorization and induction on |λ|, we can assume that we know the restrictions of
LΩ−,λq and KDΩ−,λq to Xλ −∆λ, and we can assume that λ 6= −αi, i ∈ I.

Proposition 6.10.
(1) The perverse sheaf LΩ−,λq admits the following description in terms of its restriction to
Xλ −∆λ, i.e., j′∗(LΩ−,λq )

for λ 6= w(ρ)− ρ, w ∈W, LΩ−,λq ' j′∗(j′∗(LΩ−,λq )),
for λ = w(ρ)− ρ, `(w) ≥ 3, LΩ−,λq ' H0

(
j′∗(j

′∗(LΩ−,λq ))
)
,

for λ = w(ρ)− ρ, `(w) = 2, LΩ−,λq ' j′!∗(j′∗(LΩ−,λq )).
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(2) The perverse sheaf KDΩ−,λq admits the following description in terms of its restriction to
Xλ −∆λ, i.e., j′∗(KDΩ−,λq )

for λ 6= w(ρ)− ρ, w ∈W, KDΩ−,λq ' j′!(j′∗(LΩ−,λq )),
for λ = w(ρ)− ρ, `(w) > 2, KDΩ−,λq ' H0

(
j′!(j

′∗(KDΩ−,λq ))
)
,

for λ = w(ρ)− ρ, `(w) = 2, KDΩ−,λq ' j′!∗(j′∗(KDΩ−,λq )).

Proof. Again, by Verdier duality, it suffices to prove statement (2). By Theorem-
Construction 4.6(2), the *-restriction of KDΩ−,λq to ∆λ is the constant sheaf tensored with
TorKDU−q

(C,C), and the latter satisfies
0 for λ 6= w(ρ)− ρ, w ∈W,
is concentrated in cohomlogical degees < −2 for λ = w(ρ)− ρ, `(w) > 2,
is concentrated in cohomlogical degee − 2 for λ = w(ρ)− ρ, `(w) = 2,

since the Kac-De Concini algebra has the same homology as the classical U(n−).

This implies the assertion regarding KDΩ−,λq except in the case λ = w(ρ) − ρ, `(w) = 2.
In the latter case, we have to show that the !-restriction of KDΩ−,λq to ∆λ is concentrated in
the perverse cohomological degrees ≥ 1. Again, by Verdier duality, it suffices to show that the
*-restriction of LΩ−,λq to ∆λ is concentrated in the perverse cohomological degrees ≤ −1, i.e.,

that
(

TorKDU−q
(C,C)

)λ
is concentrated in degrees ≤ −2.

However, Tor1
KDU−q

(C,C) is spanned by elements whose weights are proportional to the
negative simple roots, implying our assertion.

�

7. Geometric incarnation of the quantum Frobenius

7.1. For λ ∈ Λcl let us denote by Xλcl the corresponding space taken with respect to the lattice
Λcl, and by Xλ the corresponding space taken with respect to the lattice Λ. We have a natural
closed embedding

∆λ
Frob : Xλcl → Xλ.

Let

Ω−cl, Ω+
cl, Ω−,∨cl ' D(Ω−cl), Ω+,∨

cl ' D(Ω+
cl)

be the factorization algebras corresponding to the lattice Λcl and the ”classical” quantum group
Ucl with the sub-algebras U−cl and U+

cl. These are PXλcl ,qcl,can-twisted perverse sheaves on the
spaces Xλcl , λ ∈ Λcl.

Note that the corresponding qcl-twisted Ťcl-gerbe Pqcl,can has the property that the identifica-
tions (4.1) extend to identifications of gerbes over the entire Xλ1cl×Xλ2cl . Thus, we can speak
about factorization algebras that are commutative or co-commutative as in the non-twisted
case.

Lemma 7.2. The factorization algebras Ω−cl and Ω+
cl are co-commutative and the factorization

algebras Ω−,∨cl and Ω+,∨
cl are commutative.
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7.3. Note that the C∗-gerbe PXλcl ,qcl,can on Xλcl identifies with the pull-back of PXλ,q,can by
means of ∆λ

Frob.

Note also that for λ ∈ Λcl and µ ∈ Λ we have natural identifications of gerbes:

PXλ+µ,q,can|Xλcl×Xµ ' PXλcl ,q,can � PXµ,q,can

and also
PXλ+µ

x0 ,q,can|Xλcl×Xµ ' PXλcl ,q,can � PXµx0 ,q,can
,

compatible with the factorization property of the PXλcl ,q,can’s.

Therefore, given a co-commutative (resp., commutative) factorization algebra Ωcl on the
Xλcl , we can speak about co-modules (resp., modules) with respect to it on the Xµ’s.

The maps of Hopf algebras
LU−q → U−cl and LU+

q → U+
cl

define maps

(7.1)
(
∆λ

Frob

)∗
(LΩ−,λq )→ Ω−,λcl and

(
∆λ

Frob

)∗
(LΩ+,λ

q )→ Ω+,λ
cl ,

and hence, by duality, a map

Ω+,∨,λ
cl →

(
∆λ

Frob

)!
(KDΩ−,λq ).

Let addλcl,µ denote the corresponding maps

Xλcl ×Xµ → Xλ+µ and Xλcl ×Xµ
x0
→ Xλ+µ

x0
,

and let (
Xλcl ×Xµ

)
disj
⊂ Xλcl ×Xµ

denote the corresponding open subset.

Lemma 7.4. The map

add∗λcl,µ(LΩ−,λ+µ
q )|(Xλcl×Xµ)

disj

→ Ω−,λcl � LΩ−,µq |(Xλcl×Xµ)
disj

,

which results from (7.1) and (1.1), extends canonically onto the entire Xλcl ×Xµ. Similarly,
the map

Ω+,∨,λ
cl � KDΩ−,µq |(Xλcl×Xµ)

disj

→ add!
λcl,µ

(KDΩ−,λ+µ
q )|(Xλcl×Xµ)

disj

extends canonically onto the entire Xλcl ×Xµ.

Thus, we obtain that LΩ−q is naturally a co-module with respect to Ω−cl, and KDΩ−q is
naturally a module with respect to Ω+,∨

cl .

7.5. Recall the natural maps
KDΩ−q → Ω−q,small and Ω−q,small →

LΩ−q ,

as well as the notation regarding the bar-construction.

Proposition 7.6. The natural map

Ω−q,small → Bar(Ω−cl) ?
LΩ−q

is a quasi-isomorphism. Likewise, the map

Bar(Ω+,∨
cl ) ? KDΩ−q → Ω−q,small

is a quasi-isomorphism.
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Proof. The assertion of the proposition is the short exact sequence of Hopf algebras (5.6), i.e.,
that

TorLU−q
(C,C) ' TorU−cl

(
C,Toru−q

(C,C)
)
.

�

Remark. From the above proposition, we obtain that Ω−q,small, as an object of the derived
category, carries an action of Bar(Ω−cl), which is an incarnation of U−cl, and a co-action of
Bar(Ω+,∨

cl ), which incarnates an action of U+
cl. We would like to be able to phrase in what way

these two structures are compatible, i.e., how to speak about an action on Ω−q,small of the entire
Ucl. Morally, this should correspond to the outer action of Gcl on uq coming from the short
exact sequence of Hopf algebras

1→ uq → LUq → Ucl → 1.

7.7. Let F be a factorizable sheaf with respect to LΩ−q . We shall say that it is co-commutative
with respect to Ω−cl if the map

add∗λcl,µ(Fλ+µ)|(Xλcl×Xµ)
disj

→ Ω−,λcl � Fµ|(Xλcl×Xµ)
disj

(which follows from (7.1) and (1.3)) has been extended to a map

add∗λcl,µ(Fλ+µ)→ Ω−,λcl � Fµ

on the entire Xλcl ×Xµ.

Similarly, if F is a factorizable sheaf with respect to KDΩ+
q , we shall say that it is commutative

with respect to Ω+,∨
cl if the map

Ω+,∨,λ
cl � Fµ|(Xλcl×Xµ)

disj

→ add!
λcl,µ

(Fλ+µ)|(Xλcl×Xµ)
disj

has been extended to a map

Ω+,∨,λ
cl � Fµ → add!

λcl,µ
(Fλ+µ)

on the entire Xλcl ×Xµ.

We remark that in both cases above, if F consists of twisted perverse sheaves, than an
extension of the required map, if exists, is unique. This is no longer the case in the derived
category, where such an extension is an additional structure.

Proposition 7.8.
(1) There exists an equivalence between the category of factorizable sheaves with respect to LU−q
co-commutative with respect to Ω−cl and U−,

+
2

q -mod, such that we have a commutative diagram
of functors

U−,
+
2

q -mod −−−−→ Dr(LU−q )-mod

∼
y ∼

y
FS(LΩ−q )Ω−cl−cocom −−−−→ FS(LΩ−q ).

(2) The assignment F 7→ Bar(Ω−cl) ? F defines a functor

FS(LΩ−q )Ω−cl−cocom → FS(Ω−q,small)
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that makes the following diagram of categories commutative:

U−,
+
2

q -mod −−−−→ uq-mod

∼
y ∼

y
FS(LΩ−q )Ω−cl−co−com −−−−→ FS(Ω−q,small).

Similarly, we have:

Proposition 7.9.
(1) There exists an equivalence between the category of factorizable sheaves with respect to KDΩ−q
commutative with respect to Ω+,∨

cl and U+,−2
q -mod, such that we have a commutative diagram

of functors
U+,−2
q -mod −−−−→ Dr(KDU−q )-mod

∼
y ∼

y
FS(KDΩ−q )Ω+,∨

cl −com −−−−→ FS(KDΩ−q ).

(2) The assignment F 7→ Bar(Ω+,∨
cl ) ? F defines a functor

FS(KDΩ−q )Ω+,∨
cl −com → FS(Ω−q,small)

that makes the following diagram of categories commutative:

U+,−2
q -mod −−−−→ uq-mod

∼
y ∼

y
FS(KDΩ−q )Ω+,∨

cl −co−com −−−−→ FS(Ω−q,small).

Remark. Let M be a module over LUq. Consider its restriction to uq and let F be the cor-
responding factorizable sheaf with respect to Ω−q,small. We obtain that it carries an action of
Bar(Ω−cl) and a co-action of Bar(Ω+,∨

cl ). We would like to be able to spell out the compatibil-
ity of these two structures, which would determine which factorizable sheaves with respect to
Ω−q,small correspond to modules that came by restriction from LUq.
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