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Various incarnations of Langlands duality
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The landscape of automorphic forms/Q
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Theme of this talk: there are certain objects which come up naturally in
Geometric Langlands, but have a “marginal” role in § = 0 situations (e.g.
irrelevant to irreducible Galois representations).

However, they play important and surprising roles when § > 0.




@ —) = "“expected dimension” of the moduli space of Galois
representations into G at irreducible points.

/
@ § = range of degrees in which tempered (reg. alg.) automorphic forms

for G appear in singular cohomology.

@ So, 9 is a measure of “how derived” the Langlands correspondence is
for G.
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The derived Hecke algebra

Notation: Z//,Q'A
e A = /(-adic coefficient ring (e.g. Fy,Zy, Q).
® Qg = local field with residue field IF, characteristic # /.

TR ()

Usual (spherical) Hecke algebra:

Hqa(G, A) = Homg(g,)(c — Indg(z9A, ¢ — Ind gz A).
P ¥

Derived Hecke algebra:

: G(Qq) G(Qq)
Hq(G,A) := RHomg(g,)(c — IndG(Zq)/\, c— IndG(Zq)/\).



Let's examine H3(G, A) = Extg g, )(c — IndgzA, ¢ — Indgz7A).
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The basic structure of derived Hecke algebras remains mysterious.
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Cohomology of locally symmetric spaces

“The derived Hecke algebra acts on the derived G(Zq)-invariants
of any G(Qq)-representation”.

Hq(G,N) := RHomg(q,)(c — md & %I, ¢ — IndG(Q")/\) acts on

G(Zq)" G(Zq)
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Dream: derived Hecke operators commute with each other, and generate
all of m-isotypic cohomology from the bottom degree.
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Enemy: no interesting degree shifting operators.
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Venkatesh proves: subspace of End(H*(Y@; Zy)m) which are approximated
to arbitrary /-adic precision by derived Hecke operators, generates over the
bottom degree.
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Derived Galois deformation rings

Philosophy: (In the most favorable situations) cohomology of locally

symmetric spaces should be “free of rank 1" over the correct deformation
ring.

Hence, when 6 > 0, the correct deformation ring needs to be derived.
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The “extra obstructedness’ for Galois representations over number fields
could be thought of as coming from Hodge-theoretic restrictions on
nadies of motives, e.g. “p-adic Hodge theory”.
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(Derived) Galois deformation rings are understood via the Taylor-Wiles
method.
Idea: geometry improved by “passing to infinite level”, then descend.

@ At “infinite level”, global singularities are smoothed out.

@ At “infinite level”, derived rings are discrete.
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The spectral Hecke algebra

We want “reciprocity laws" for derived Hecke operators.

Reciprocity for classical Hecke operators: Hecke eigenvalues ~ Frobenius
eigenvalues.

What is the spectral counterpart to derived Hecke operators?

The analogous question and answer exist in Geometric Langlands.



Motivation from geometric Langlands
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The automorphic Hecke stack classifies:

“Two G-bundles on a disk, plus an isomorphism of their
restrictions to the punctured disk".

The spectral Hecke stack classifies:

“Two G-local systems on a disk, plus an isomorphism of their
restrictions to the punctured disk".
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Structure of the spectral Hecke algebra
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(Co)-action on the derived Galois deformation ring







Venkatesh's reciprocity law
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Venkatesh conjectures that WU Dhslee.

H*(Yg; %)m is free over /\‘H%_(@,‘Ad\pm : M - Py,
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Classical reciprocity law: Hecke operators T4, a priori indexed by g, are

actually parametrized by global data (e.g. image of Frob, in G(Fy)).
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Derived reciprocity law: derived Hecke operators, a priori indexed by
HY(T(F,);F,), are actually parametrized by a global Galois cohomology

group H}(Q, Ad* p(1))V.
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Derived Satake isomorphisms

(Joint work in progress with Dennis Gaitsgory).



Categorical trace of Frobenius






Application to character varieties












