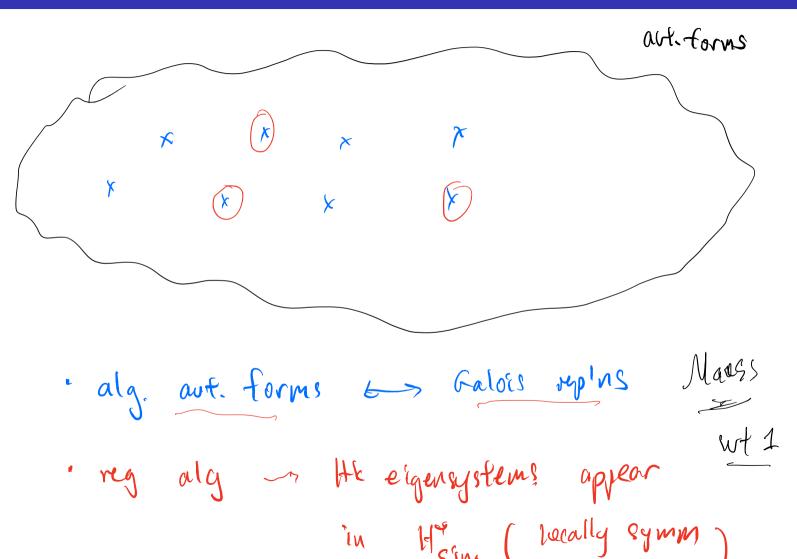
The Spectral Hecke algebra

Tony Feng

December 2, 2020

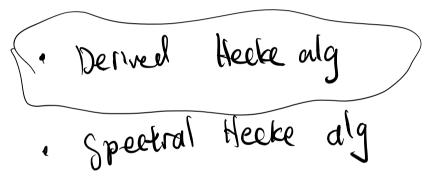
Number field	Function field	Geometric
\mathbb{Q}	$\mathbb{F}_q(t)$	X
Aut forms for G	Aut forms for G	<i>D</i> -modules on Bun _G
Galois reps to \widehat{G}	Galois reps to \widehat{G}	\widehat{G} -local systems

The landscape of automorphic forms/ \mathbb{Q}



Theme of this talk: there are certain objects which come up naturally in Geometric Langlands, but have a "marginal" role in $\delta = 0$ situations (e.g. irrelevant to irreducible Galois representations).

However, they play important and surprising roles when $\delta > 0$.



What is δ ?

- $-\delta =$ "expected dimension" of the moduli space of Galois representations into \widehat{G} at irreducible points.
- $\delta =$ range of degrees in which *tempered* (reg. alg.) automorphic forms for G appear in singular cohomology.
- So, δ is a measure of "how derived" the Langlands correspondence is for G.

The derived Hecke algebra

Notation:

- $\Lambda = \ell$ -adic coefficient ring (e.g. $\mathbb{F}_{\ell}, \mathbb{Z}_{\ell}, \mathbb{Q}_{\ell}$).
- $\mathbb{Q}_q = \text{local field with residue field } \mathbb{F}_q$, characteristic $\neq \ell$. $\overline{\mathbb{F}}_q(\{\xi\})$
- Usual (spherical) Hecke algebra:

$$H_q(G,\Lambda) := \operatorname{Hom}_{G(\mathbb{Q}_q)}(c - \operatorname{Ind}_{G(\mathbb{Z}_q)}^{G(\mathbb{Q}_q)}\Lambda, c - \operatorname{Ind}_{G(\mathbb{Z}_q)}^{G(\mathbb{Q}_q)}\Lambda).$$

Derived Hecke algebra:

$$\mathcal{H}_q(G,\Lambda) := \operatorname{RHom}_{G(\mathbb{Q}_q)}(\operatorname{c-Ind}_{G(\mathbb{Z}_q)}^{G(\mathbb{Q}_q)}\Lambda, \operatorname{c-Ind}_{G(\mathbb{Z}_q)}^{G(\mathbb{Q}_q)}\Lambda).$$

Let's examine $\mathcal{H}^{\bullet}_{q}(G, \Lambda) = \mathsf{Ext}^{\bullet}_{\mathcal{G}(\mathbb{Q}_{q})}(c - \mathrm{Ind}_{\mathcal{G}(\mathbb{Z}_{q})}^{\mathcal{G}(\mathbb{Q}_{q})}\Lambda, c - \mathrm{Ind}_{\mathcal{G}(\mathbb{Z}_{q})}^{\mathcal{G}(\mathbb{Q}_{q})}\Lambda).$ States c G(Za) protinite mother pro-q · $\Lambda = Q_{e}$ $H_{q}(G, \Lambda) = H_{e}(G, \Lambda)$ · $\Lambda = 24e$ & derived part "Small" Analogy (Hala) 2 Pervalla, of · A= Fe a Wen $\mathcal{H}_{\gamma}(a) \simeq \mathcal{D}_{\mathcal{H}_{\alpha}}(\mathcal{G}_{\alpha}, \mathcal{A})$

Example: derived Hecke algebra of a split torus T.

ple: derived Hecke algebra of a split torus
$$T$$
. Tr (Frob)
Stab_x = $T(\mathcal{I}_{q})$ only ventry if
 $f = 1$ while
 $f^{*}(Stab_{x}) = f^{*}(T(F_{q})_{(e)}, \mathcal{A})$

$$\mathcal{H}_{q}(T, \Lambda) = \mathcal{H}_{e}(T, \Lambda) \otimes \mathcal{H}^{r}(T(F_{e})_{(e)}, \Lambda)$$

The basic structure of derived Hecke algebras remains mysterious.

Q IS
$$A_q(G, \Lambda)$$
 commutative?
The (Venkcatesh) $q = 1 \in \Lambda$, $e : |w|$
 $A_q(G, \Lambda) \xrightarrow{\sim} H_q(T, \Lambda)^W$
given by restriction.
Sketch Smith theory wrf. $Z_q \xrightarrow{\sim} F_q^*$
 $\xrightarrow{\sim} O(\overline{a_e})$

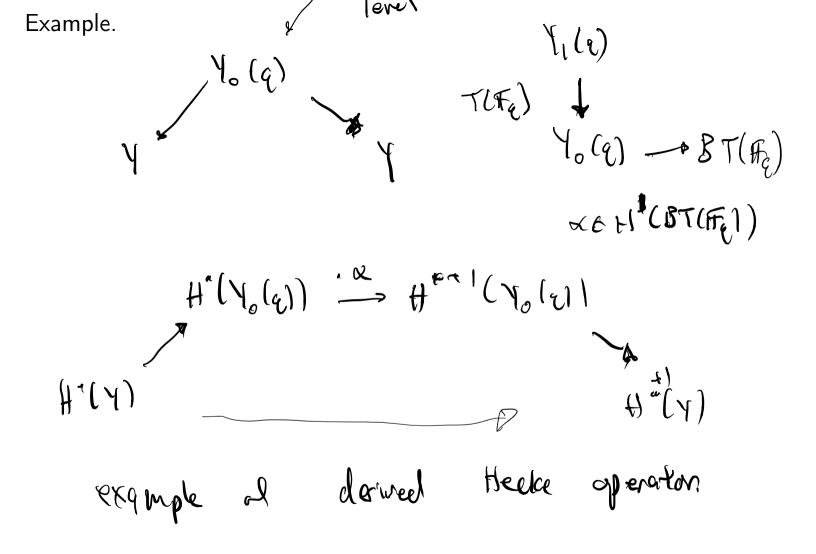
Cohomology of locally symmetric spaces

"The derived Hecke algebra acts on the derived $G(\mathbb{Z}_{q})$ -invariants of any $G(\mathbb{Q}_a)$ -representation". $\mathcal{H}_q(G,\Lambda) := \operatorname{RHom}_{\mathcal{G}(\mathbb{Q}_q)}(\operatorname{c-Ind}_{\mathcal{G}(\mathbb{Z}_q)}^{\mathcal{G}(\mathbb{Q}_q)}\Lambda, \operatorname{c-Ind}_{\mathcal{G}(\mathbb{Z}_q)}^{\mathcal{G}(\mathbb{Q}_q)}\Lambda) \text{ acts on }$ $\operatorname{RHom}_{G(\mathbb{Q}_q)}(\operatorname{c-Ind}_{G(\mathbb{Z}_q)}^{G(\mathbb{Q}_q)}\Lambda,???) \quad \neg \quad \operatorname{RHom}_{\operatorname{LCM}_{\mathfrak{C}}}(\Lambda, \sim)$ ala) (Aa) (K & G(Zg) Sma [6(Zq) Y Gros = Gla) Gland Ka 5 Gland ~ Barle

 $\Rightarrow C'(Y_{G}) = C'(Y_{G, \mathcal{D}})^{hG(Z_{Q})}$ (~, ~) Ha(~, ~)

adding mipotent I radiced al Incity.

add Iwahari



$$G = \text{semissinple}, \quad S(G) = \text{sk } G(R) - \text{rk } K_{00}$$

$$e.s. \quad S(Sh_{1}) = \begin{array}{c} 1 & \frac{n-1}{2} \end{array} \quad e.s. \\ Shimova^{21} \\ \text{(NG)} \\ \text{(NG)} \\ \text{(Sold-Wallach)} \\ \text{(Bod-Wallach)} \\ \text{(Koild)} \\ \text{(Sold-Wallach)} \\ \text{(Koild)} \\ \text{(Sold)} \\ \text{(S$$

Dream: derived Hecke operators commute with each other, and generate all of \mathfrak{m} -isotypic cohomology from the bottom degree.

¥

Enemy: no interesting degree shifting operators.

Venkatesh proves: subspace of $\text{End}(H^*(Y_{\mathcal{K}}; \mathbb{Z}_{\ell})_{\mathfrak{m}})$ which are approximated to arbitrary ℓ -adic precision by derived Hecke operators, generates over the bottom degree.

$$Z_{\ell} \rightarrow Z_{\ell} \rho$$
 $q = 1 \in Z_{\ell}^{n}$

Derived Galois deformation rings

Philosophy: (In the most favorable situations) cohomology of locally symmetric spaces should be "free of rank 1" over the correct deformation ring.

Hence, when $\delta > 0$, the correct deformation ring needs to be derived.

aut toms

(char O)

The "extra obstructedness" for Galois representations over number fields could be thought of as coming from Hodge-theoretic restrictions on families of motives, e.g. "*p*-adic Hodge theory".

$$e = rep'n od \pi(R)$$
 over Fe
 $Det_{R}^{e} = \{detarmations to Artin/Fe \} / 2e$
 $Det_{R} = \{detarmations to Artin/Fe \} / 2e$
 $Det_{Z(VS)} \longrightarrow Det_{Z(VS)} = romited$
 $primes$
 $Derved 6001 \ Det_{Qe} = \int_{Qe}^{Crys} Det$

(Derived) Galois deformation rings are understood via the Taylor-Wiles method.

Idea: geometry improved by "passing to infinite level", then descend.

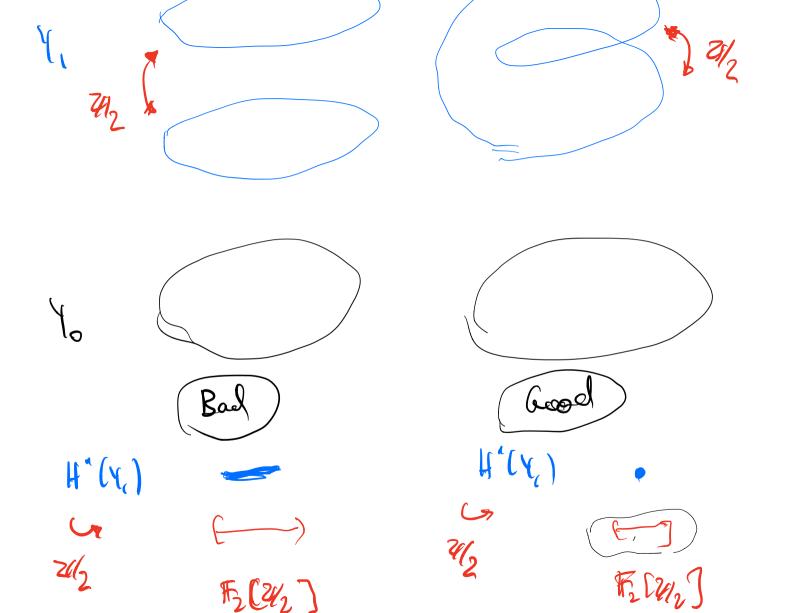
- At "infinite level", global singularities are smoothed out.
- At "infinite level", derived rings are discrete.

Prop [Galatius-Venkatesh] Pick
$$q \notin S$$

Def crys \sim Def crys h
 $Zef(rs] \sim$ Def $rgs h$
 $Zef(rs] \sim$ Def $rgs h$
 $Zef(rs] = 1$ mod l^n

veragn-Delay, x Delay rom "h-tp Tw $ZCY_{\alpha} = \frac{1}{2} \frac{$ Det De- \sim '4_Q~ 18] R Zelly, ZIJ $\mathcal{A} \left[\left(\chi_{1}, \chi_{57} \right) \right]$

S = Eder der of t (Dep^{crys} ZCKI) = $H^{*}(z \sum_{j=1}^{n} j)$ $H^{*}(z \sum_{j=1}^{n} j)$ I derived these action is "by" loy mode $H^{*}(\gamma) = \frac{8}{3}$



H'(4) $H^{(\gamma_{o})}$ H°(B2A2) H'(SZIV) "Def ZIEVIST K2 [x,] Structure of derved hi) art uattach to F_2 [1+T]~ (Y ar F2 [[im 21/2"] ~ 0 ver S' = coolim H'(400) (= codim Dep Zl'Soul E expected and in g C Det Qdo

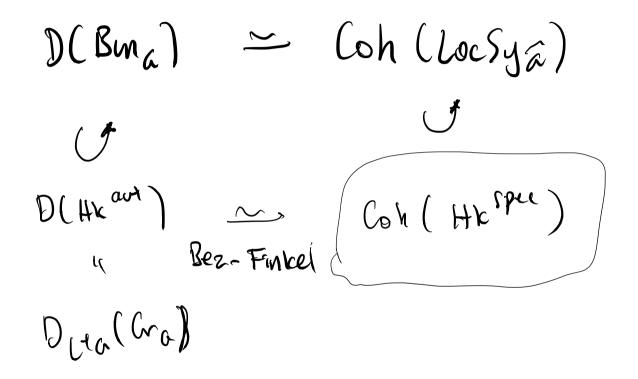
We want "reciprocity laws" for derived Hecke operators.

Reciprocity for classical Hecke operators: Hecke eigenvalues \sim Frobenius eigenvalues.

What is the *spectral counterpart* to derived Hecke operators?

The analogous question and answer exist in Geometric Langlands.

Motivation from geometric Langlands



The automorphic Hecke stack classifies:

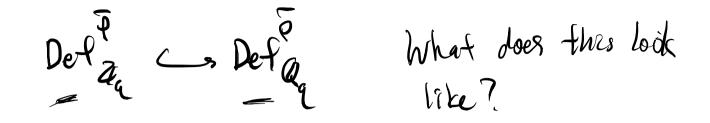
"Two G-bundles on a disk, plus an isomorphism of their restrictions to the punctured disk".

The spectral Hecke stack classifies:

"Two \widehat{G} -local systems on a disk, plus an isomorphism of their restrictions to the punctured disk".

Arothmetric & md L.
"Two
$$\pi_1(\mathcal{I}_{\mathcal{E}})$$
 - replas, f (Sem
as $\pi_1(\mathcal{Q}_{\mathcal{E}})$ - replas, f (Sem
 $\mathcal{I}_{\mathcal{E}}$) $\mathcal{I}_{\mathcal{E}}$
 $\mathcal{I}_{\mathcal{E}}$) $\mathcal{I}_{\mathcal{E}}$
 $\mathcal{I}_{\mathcal{E}}$
 $\mathcal{I}_{\mathcal{E}}$) $\mathcal{I}_{\mathcal{E}}$
 $\mathcal{I$

Structure of the spectral Hecke algebra



· all déformations tame Inertia ~ ker (G'(Ze) - G'(Fe)) (strongly) - E(Froby) regular > all determations abelian (221 mull, FiFmbe) dat eg.

Det 7 - Det 2 Ham ((tame Gal)^{ab}, 7) Fq x Z "Iderbed part" is $\Lambda \otimes \Lambda = H_{*}(T(F_{q}), \Lambda)$ $\Lambda(T(F_{q})]$ matches "dend Heck alg" ~ (() & H"(T(Fz)) completed at maxel ideal

(Co)-action on the derived Galois deformation ring

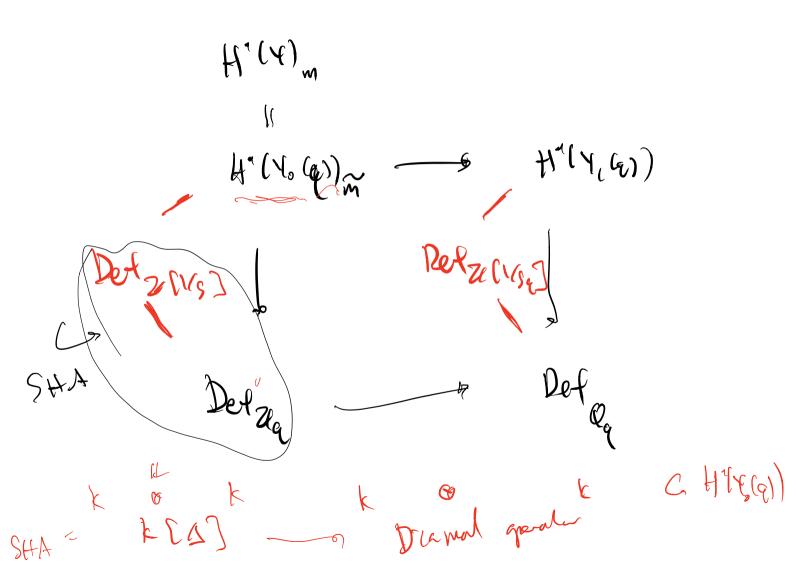
groupord Der 11 11 acts Cn f_{Zq} r Dep^P Ø. Def Cnys Ze Cl/se x lef Za Cry's **W**[Vs 7

Spec ll

Venkatesh's reciprocity law

Ad Pm etrossa as ('H'(Q, td'p(n))' (m)-1 Venkatesh conjectures that HV77, Scholze $H^*(Y_G; \mathbb{Q})_{\mathfrak{m}}$ is free over $\wedge^{\bullet} H^1_{\mathcal{M}}(\mathbb{Q}, \operatorname{Ad}^* \rho_{\mathfrak{m}}(1))^{\vee}$. M ~ Prm Ve Fe $\#^{n}(U(I,n),)$ Classical reciprocity law: Hecke operators T_q , a priori indexed by q, are actually parametrized by global data (e.g. image of Frob_q in $\widehat{G}(\mathbb{F}_{\ell})$). (q=) mel (n) Derived reciprocity law: derived Hecke operators, a priori indexed by $H^1(T(\mathbb{F}_q); \mathbb{F}_\ell)$, are actually parametrized by a global Galois cohomology group $H^1(\mathbb{Q}, \operatorname{Ad}^* \rho_{\mathfrak{m}}(1))^{\vee}$. (HT & H'(THE)) $(\tau(F))$ $(\tau(F_{i}))$

aw. onal proo DHA intreduced Thus action 'is brig. () Thus action 'is brig. () aut. forms") S&A Thm Understand Derived Galors determation structure of derived Gal. determ. DHA SHA as good 9. "R=T"



H. (r. Ce) (Zhu) $\mathcal{H}_{q}(h, \mathcal{N}) \simeq \operatorname{RHan}\left(\begin{array}{c} \mathcal{O} \\ \mathcal{V}_{oc} \end{array} \right)$ Ø Tr(tion) Director ~ Dren > Armon -Bez

Derived Satake isomorphisms

(Joint work in progress with Dennis Gaitsgory).

Categorical trace of Frobenius