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Abstract. This paper performs the following steps toward the proof of GLC in the de Rham
setting:

(i) We deduce GLC for G = GLn;
(ii) We prove that the Langlands functor LG constructed in [GLC1], when restricted to the cuspidal
category, is ambidextrous;
(iii) We reduce GLC to the study of a classical vector bundle with connection, denoted AG,irred,

on the stack LSirred
Ǧ

of irreducible local systems;

(iv) We prove that GLC is equivalent to the contractibility of the space of generic oper structures
on irreducible local systems;
(v) Using [BKS], we deduce GLC for classical groups.

First draft

Contents

Introduction 2
0.1. What is done in this paper? 2
0.2. How is ambidexterity proved? 4
0.3. Relation to opers 6
0.4. Contents 7
1. Summary of the Langlands functor 8
1.1. The functor LG via the Whittaker model 8
1.2. Langlands functor and Eisenstein series 9
1.3. The Langlands functor on the cuspidal part 10
1.4. First proof of Proposition 1.3.7 12
1.5. Spectral action 13
1.6. Conservativity 14
1.7. The algebra AG,irred 15
1.8. Proof of GLC for G = GLn 15
2. Left adjoint as the dual 17
2.1. The dual automorphic category 17
2.2. The dual of the cuspidal category 18
2.3. Duality and the Poincaré functors 19
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Introduction

This paper is the fourth in the series of five papers, whose combined content will prove the geometric
Langlands conjecture (GLC), as it was formulated in [GLC1, Conjecture 1.6.7].

0.1. What is done in this paper?

0.1.1. In the papers [GLC1, Lan2]1, we constructed the Langlands functor

(0.1) LG : D-mod 1
2
(BunG)→ IndCohNilp(LSǦ),

and GLC says that (0.1) is an equivalence.

0.1.2. The main result of [Lan2] says that (0.1) induces an equivalence

D-mod 1
2
(BunG)Eis → IndCohNilp(LSǦ)red,

where:

1The paper [Lan2] is in the process of being transformed into a combination of [GLC2] and [GLC3]. Once this
process is completed, [Lan2] will cease to exist, and the references will be updated accordingly.
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• D-mod 1
2
(BunG)Eis ⊂ D-mod 1

2
(BunG) is the full subcategory generated by Eisenstein series

from proper Levi subgroups;

• IndCohNilp(LSǦ)red ⊂ IndCohNilp(LSǦ) is the full subcategory consisting of objects, set-
theoretically supported on the locus of reducible local systems.

0.1.3. As one of the first steps in this paper we will show that GLC is equivalent to the statement that
the induced functor

(0.2) LG,cusp : D-mod 1
2
(BunG)cusp → IndCohNilp(LS

irred
Ǧ ),

is an equivalence (see Corollary 1.3.10). (Note also that IndCohNilp(LS
irred
Ǧ ) is the same as the usual

QCoh(LSirred
Ǧ ) category).

Thus, the proof of GLC amounts to the study of the functor LG,cusp.

0.1.4. Before we even begin the discussion of the main results of this paper, we observe (see Sect. 1.8)
that the above considerations already allow us to deduce GLC for G = GLn.

Namely, the fact that LG,cusp is fully faithful for GLn follows from [Ga2] (or, in a more modern
language, from [Be1]).

We then show that its essential surjectivity is equivalent to the existence of (non-zero) Hecke eigen-
sheaves attached to irreducible local systems, which was established in [FGV] using geometric methods
(or, alternatively, in [BD1] using localization at the critical level).

0.1.5. The main result of this paper, Theorem 3.1.4, which we call the Ambidexterity Theorem, says
that the left and right adjoints of the functor LG,cusp are isomorphic.

This already gets us pretty close to the statement that LG,cusp is an equivalence. Yet, we will need
to “milk” the ambidexterity statement some more in order to obtain the actual proof. Some of this
milking will be preformed in this paper, and some will be delegated to its sequel.

0.1.6. An additional crucial input comes from the paper [FR] (combined with [Be2]), which says that
the functor LG,cusp is conservative. This implies that in order to prove GLC, it is sufficient to show
that the monad

(0.3) LG,cusp ◦ LL
G,cusp

acting on QCoh(LSirred
Ǧ ) is isomorphic to the identity functor.

We observe (see Sect. 1.7.2) that the monad (0.3) is given by tensor product with an associative
algebra object

(0.4) AG,irred ∈ QCoh(LSirred
Ǧ ).

The monad (0.3) is an equivalence if and only if the unit map

(0.5) OLSirred
Ǧ
→ AG,irred

is an isomorphism in QCoh(LSirred
Ǧ ).

0.1.7. Now, the Ambidexterity Theorem tells us something about the structure of AG,irred. Namely, it
implies that AG,irred is self-dual as an object of QCoh(LSirred

Ǧ ). In particular, it is perfect, and hence
compact.

However, we prove more: we show (assuming that G is semi-simple) that AG,irred is a classical vector
bundle, equipped with a flat connection (see Theorem 3.1.8).

Thus, we can view AG,irred as a classical local system on LSirred
Ǧ . We also show that this local system

has a finite monodromy (see Proposition 4.2.8); this latter statement will play a role in the final step
of the proof of GLC in the next paper in this series.
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0.1.8. The above additional pieces of information concerning AG,irred result from Corollary 4.2.5, which
says that the fiber of AG,irred at a given irredicuble local system σ is isomorphic to the homology of
the space of generic oper structures on σ.

We will explain the mechanism for this in Sect. 0.3.

0.2. How is ambidexterity proved?

0.2.1. The proof of the Ambidexterity Theorem is obtained by essentially staring at what we call the
Fundamental Commutative Diagram (see [Lan2, Diagram (20.25)]):

(0.6)

Whit!(G)Ran
CSG−−−−−→
∼

Rep(Ǧ)Ran

coeffG

x xΓ
spec

Ǧ

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

LocG

x xPoinc
spec

Ǧ,∗

KL(G)crit,Ran

FLEG,crit−−−−−−→
∼

IndCoh∗(Opmon-free
Ǧ )Ran,

where we ignore some cohomological shifts and twists by constant lines.

Remark 0.2.2. In fact, (0.6) is a special case at levels (crit for G, ∞ for Ǧ) of an analogous diagram
that is expected to exist in the quantum case:

(0.7)

Whit!(G)κ,Ran

FLE∨
Ǧ,κ̌−−−−−→

∼
KL(Ǧ)−κ̌,Ran

coeffG

x xΓǦ,−κ̌

D-modκ(BunG)
LG,κ−−−−−→ D-mod−κ̌(BunǦ)co

LocG,κ

x xPoincǦ,∗

KL(G)κ,Ran

FLEG,κ−−−−−→
∼

Whit∗(Ǧ)−κ̌,Ran.

A remarkable feature of the quantum diagram is that it is self-dual : i.e., if we dualize all categories
and arrows in (0.7) we obtain a similar diagram, but for ((G, κ), (Ǧ,−κ̌)) replaced by ((Ǧ, κ̌), (G,−κ)).

0.2.3. We break (0.6) into the upper and lower portions, i.e.,

(0.8)

Whit!(G)Ran
CSG−−−−−→
∼

Rep(Ǧ)Ran

coeffG

x xΓ
spec

Ǧ

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

and

(0.9)

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

LocG

x xPoinc
spec

Ǧ,∗

KL(G)crit,Ran

FLEG,crit−−−−−−→
∼

IndCoh∗(Opmon-free
Ǧ )Ran,
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and we combine (0.8) (resp., (0.9)) with the inclusion of (resp., projection to) the cuspidal subcategory:

Whit!(G)Ran
CSG−−−−−→
∼

Rep(Ǧ)Ran

coeffG

x xΓ
spec

Ǧ

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

e

x xȷ∗

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ )

and

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ )

eL

x xȷ∗

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

LocG

x xPoinc
spec

Ǧ,∗

KL(G)crit,Ran

FLEG,crit−−−−−−→
∼

IndCoh∗(Opmon-free
Ǧ )Ran,

respectively.

0.2.4. Thus, we obtain the diagrams

(0.10)

Whit!(G)Ran
CSG−−−−−→
∼

Rep(Ǧ)Ran

coeffG ◦e
x xΓ

spec

Ǧ
◦ȷ∗

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ )

and

(0.11)

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ )

eL◦LocG

x xȷ∗◦Poinc
spec

Ǧ,∗

KL(G)crit,Ran

FLEG,crit−−−−−−→
∼

IndCoh∗(Opmon-free
Ǧ )Ran,

respectively.

The key feature of the latter diagrams is that in (0.10) the right vertical arrow is fully faithful, and
in (0.11) the left vertical arrow is a Verdier quotient (a.k.a., is a localization).

0.2.5. Starting from diagrams (0.10) and (0.11), the ambidexterity assertion is proved as follows.

Consider the functor dual to LG,cusp (with respect to the natural self-dualities of the two sides, see
Sect. 2).

The point now is that the vertical arrows in (0.10) admit left adjoints, and these left adjoints are
essentially2 isomorphic to the duals of the original functors. Combined with the fact that the right
vertical arrow is fully faithful, this implies that the dual of LG,cusp is isomorphic to the left adjoint of
LG,cusp.

Similarly, the vertical arrows in (0.11) admit right adjoints, and these right adjoints are essentially
isomorphic to the duals of the original functors. Combined with the fact that the left vertical arrow is
a Verdier quotient, this implies that the dual of LG,cusp is isomorphic to the right adjoint of LG,cusp.

Thus, we have identified both the left and right adjoints of LG,cusp with its dual.

2Essentially:=up to some twists.
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0.3. Relation to opers. We now turn to the statements announced in Sect. 0.1.8, which relate the
fiber of the object AG,irrred at a given σ ∈ LSirred

Ǧ to the homology of the space Opgen

Ǧ,σ
of generic oper

structures on σ.

0.3.1. Let
B

Op
G,irred ∈ QCoh(LSirred

Ǧ ),

be the object, obtained by applying the left forgetful functor

oblvl : D-mod(LSirred
Ǧ )→ QCoh(LSirred

Ǧ )

to the object

(πirred
Ran )!(ωOp

mon-free,irred

Ǧ
(Xgen)Ran

),

where:

• Opmon-free
Ǧ (Xgen)Ran is the space of pairs (σ, o), where σ ∈ LSǦ, and o is a generic oper structure

on it;

• πRan : Opmon-free
Ǧ (Xgen)Ran → LSǦ is the tautological map (σ, o) 7→ σ;

• Opmon-free,irred

Ǧ
(Xgen)Ran and πirred

Ran is the base change of the above objects along the inclusion

LSirred
Ǧ → LSǦ.

By construction, BOp
G,irred is naturally a co-commutative coalgebra in QCoh(LSirred

Ǧ ).

Note that since the map πirred
Ran is pseudo-proper (see Sect. 3.3.11), the fiber of BOp

G,irred at a given

σ ∈ LSirred
Ǧ is indeed given by the homology of the space

Opgen

Ǧ,σ
:= {σ} ×

LSǦ

Opmon-free
Ǧ (Xgen)

of generic oper structures on σ.

0.3.2. The point of departure is Theorem 4.6.3, which says that the comonad on

IndCohNilp(LS
irred
Ǧ ) ≃ QCoh(LSirred

Ǧ )

given by

Poincspec
Ǧ,∗,irred ◦(Poinc

spec

Ǧ,∗,irred)
R, Poincspec

Ǧ,∗,irred := ȷ∗ ◦ Poincspec
Ǧ,∗

is isomorphic to the comonad given by tensoring with B
Op
G,irred.

0.3.3. Consider the comonad
LG ◦ LR

G

acting on QCoh(LSirred
Ǧ ). Since it is QCoh(LSirred

Ǧ )-linear, it is given by tensor product with a co-
associative coalgebra object, denoted

BG,irred ∈ QCoh(LSirred
Ǧ ).

The fact that the left vertical arrow in (0.11) is a Verdier quotient implies that we have an isomor-
phism of comonads

LG ◦ LR
G ≃ Poincspec

Ǧ,∗,irred ◦(Poinc
spec

Ǧ,∗,irred)
R.

Combining with Theorem 4.6.3, we obtain an isomorphism3

BG,irred ≃ B
Op
G,irred.

However, the Ambidexterity Theorem implies that AG,irred ≃ BG,irred (as plain objects of
QCoh(LSirred

Ǧ )). Combining, we obtain an isomorphism

(0.12) AG,irred ≃ B
Op
G,irred,

also as plain objects of QCoh(LSirred
Ǧ ).

3One can show that this isomorphism respects the co-associative coalgebra structures, but we will neither prove nor
use this fact.
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From here we obtain the desired statements relating the fiber of AG,irred at a given irreducible local
system σ with the homology of Opgen

Ǧ,σ
.

0.3.4. Note, however, that the isomorphism (0.12) gives us more. Namely, since we already know that
AG,irred is concentrated in cohomological degree 0, we obtain that the connected components of Opgen

Ǧ,σ

are homologically contractible.

And since GLC is equivalent to the fact that the map (0.5) is an isomorphism, we obtain that it is
equivalent to either of the following:

• For every irreducible σ, the space Opgen

Ǧ,σ
is homologically contractible;

• For every irreducible σ, the space Opgen

Ǧ,σ
is connected.

0.3.5. Recall now that a recent result of [BKS] proves the homological contractibility of the spaces
Opgen

Ǧ,σ
, whenever G (and hence Ǧ) is classical.

Hence, we obtain that GLC is a theorem for classical G.

0.4. Contents. We now briefly review the contents of this paper section-by-section.

0.4.1. In Sect. 1 we review the contents of [GLC1, GLC2, GLC3] relevant for this paper, and draw
some consequences. In particular:

• We show that the functor LG is an equivalence if and only if the corresponding functor LG,cusp

is;
• We show that LG,cusp is an equivalence if and only if the object AG,irred is isomorphic to the

structure sheaf;

• We deduce GLC for GLn.

0.4.2. In Sect. 2 we review the self-duality identifications on the two sides of (0.2), and we show that
the left adjoint of LG,cusp identifies with its dual, up to a twist. This uses the compatibility of the
functor LG with the Whittaker model, i.e., the upper portion of (0.6).

In Sect. 3, we show that the right adjoint of LG,cusp also identifies with its dual (up to the same
twist). This uses the compatibility of the functor LG with localization at the critical level, i.e., the
lower portion of (0.6).

Combining, we deduce the Ambidexterity Theorem, which says that the left and right adjoints of
LG,cusp are isomorphic.

From here, we deduce that the object AG,irred ∈ QCoh(LSirred
Ǧ ) is self-dual, and hence compact.

0.4.3. In Sect. 4 we express AG,irred via the space of generic oper structures.

As a result, we prove that AG,irred is a classical vector bundle (when G is semi-simple).

And we deduce GLC for classical groups.

0.4.4. In Sect. 5 we reduce Theorem 4.1.5 stated in the previous section to the combination of two
general assertions about the space of rational maps. These assertions are proved in Sects. A and B,
respectively.

0.4.5. Conventions and notation. The conventions and notation in this paper follow those in [Lan2].
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1. Summary of the Langlands functor

In the papers [GLC1, GLC2, GLC3], a functor

LG : D-mod 1
2
(BunG)→ IndCohNilp(LSǦ)

was constructed.

The geometric Langlands conjecture, a.k.a. GLC ([Lan2, Conjecture 20.3.8]), says that the functor
LG is an equivalence. For the duration of this paper, we will assume the validity of GLC for proper
Levi subgroups of G.

In this section we will summarize the properties of LG relevant for this paper, and draw some
consequences.

1.1. The functor LG via the Whittaker model. In this subsection we will recall the “main” feature
of the functor LG; its compatibility with the Whittaker model.

1.1.1. Recall (see [Lan2, Sects. 12.3 and 12.4]) that the category D-mod 1
2
(BunG) is related to the

Whittaker category by a pair of adjoint functors

PoincG,! : Whit!(G)Ran ⇄ D-mod 1
2
(BunG) : coeffG .

1.1.2. Recall also that the category IndCohNilp(LSǦ) is related to the category Rep(Ǧ)Ran by a pair of
adjoint functors

Locspec
Ǧ

: Rep(Ǧ)Ran ⇄ IndCohNilp(LSǦ) : Γ
spec

Ǧ
.

Note, however, that the functor Locspec
Ǧ

factors as

Rep(Ǧ)Ran → QCoh(LSǦ)
Ξ{0},Nilp

↪→ IndCohNilp(LSǦ),

and the functor Γspec

Ǧ
factors as

IndCohNilp(LSǦ)
Ψ{0},Nilp

↠ QCoh(LSǦ)→ Rep(Ǧ)Ran,

where

Ξ{0},Nilp : QCoh(LSǦ)⇄ IndCohNilp(LSǦ) : Ψ{0},Nilp

are the natural embedding and projection, respectively.

1.1.3. By a slight abuse of notation, we will denote the resulting adjoint pair

Rep(Ǧ)Ran ⇄ QCoh(LSǦ)

by the same symbols (Locspec
Ǧ

,Γspec

Ǧ
).

We record the following (see Sect. C.1.9 for the proof):

Proposition 1.1.4. The functor

Γspec

Ǧ
: QCoh(LSǦ)→ Rep(Ǧ)Ran

is fully faithful.
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1.1.5. The Langlands functor LG is essentially4 determined by the property that it makes the diagram

(1.1)

Whit!(G)Ran
CSG−−−−−→
∼

Rep(Ǧ)Ran

coeffG[2δNρ(ωX )
]

x xΓ
spec

Ǧ

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

commute, where CSG is the geometric Casselman-Shalika equivalence (see [Lan2, Sect. 1.4]), and

δNρ(ωX )
= dim(BunNρ(ωX )

).

Remark 1.1.6. The commutation of (1.1) is the point of departure for any of the constructions of the
Langlands functor.

1.1.7. It is shown in [Lan2, Theorem 23.1.2] that the functor LG admits a left adjoint, to be denoted
LL
G. Passing to the left adjoints in (1.1), we obtain a commutative diagram

(1.2)

Whit!(G)Ran

CS−1
G←−−−−−
∼

Rep(Ǧ)Ran

PoincG,![−2δNρ(ωX )
]

y yLoc
spec

Ǧ

D-mod 1
2
(BunG)

LL
G←−−−−− IndCohNilp(LSǦ).

1.2. Langlands functor and Eisenstein series. In this subsection we will summarize the properties
of LG relevant for this paper that have to do with the Eisenstein series and constant term functors.

1.2.1. A key property of the functor LG is that it commutes with the Eisenstein functors, i.e., for a
parabolic P with Levi quotient M , the diagram

(1.3)

D-mod 1
2
(BunM )

LM−−−−−→ IndCohNilp(LSM̌ )

Eis!,twk

y Eisspec

y
D-mod 1

2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

commutes, where Eis!,twk is a “tweaked” !-Eisenstein functor, where the tweak involves a translation
along BunM and a cohomological shift (the precise details of the tweak are irrelevant for this paper).

The commutation of (1.3) is a basic feature of any of the constructions of the functor LG. See for
example, [Lan2, Theorem 20.4.5].

1.2.2. Passing to the right adjoints along the vertical arrows in (1.3), we obtain a diagram

(1.4)

D-mod 1
2
(BunM )

LM−−−−−→ IndCohNilp(LSM̌ )

CT∗,twk

x CTspec

x
D-mod 1

2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ),

which a priori commutes up to a natural transformation (in the above diagram, CT∗,twk is a “tweaked”
Constant Term functor, set to be the right adjoint of Eis!,twk).

However, one of the main results of the paper [Lan2], namely, Corollary 24.1.4 in loc. cit., says that
the natural transformation in (1.4) is an isomorphism. I.e., the diagram (1.4) commutes.

4See [Lan2, Sects. 20.1 and 20.3] for what the word “essentially” refers to.
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1.2.3. Note that by passing to left adjoints along all arrows in (1.4), we obtain a commutative diagram

(1.5)

D-mod 1
2
(BunM )

LL
M←−−−−− IndCohNilp(LSM̌ )

Eis!,twk

y Eisspec

y
D-mod 1

2
(BunG)

LL
G←−−−−− IndCohNilp(LSǦ).

1.2.4. Let

D-mod 1
2
(BunG)Eis ⊂ D-mod 1

2
(BunG)

be the full subcategory generated by the essential images of the functors Eis! (equivalently, Eis!,twk)
for proper parabolics,

Let

IndCohNilp(LSǦ)red ⊂ IndCohNilp(LSǦ)

be the full subcategory consisting of objects, set-theoretically supported on the locus

LSred
Ǧ ⊂ LSǦ

consisting of reducible local systems, i.e.., the union of the images of the (proper) maps

LSP̌ → LSǦ

for proper parabolic subgroups.

Combining diagrams (1.3) and (1.5) we obtain that the functors LG and LL
G send the subcatergories

D-mod 1
2
(BunG)Eis and IndCohNilp(LSǦ)red

to one another, thereby inducing a pair of adjoint functors

(1.6) LG,Eis : D-mod 1
2
(BunG)Eis ⇄ IndCohNilp(LSǦ)red : LL

G,Eis.

The main result of [Lan2], namely, Theorem 24.1.2 in loc. cit. says:

Theorem 1.2.5. The adjoint functors in (1.6) are (mutually inverse) equivalences.

1.3. The Langlands functor on the cuspidal part. In this subsection we will study the restriction
of LG to the cuspidal subcategory. We will show that GLC is equivalent to the statement that the
resulting functor

LG,cusp : D-mod 1
2
(BunG)cusp → IndCohNilp(LS

irred
Ǧ ) ≃ QCoh(LSirred

Ǧ )

is an equivalence.

1.3.1. Let

D-mod 1
2
(BunG)cusp :=

(
D-mod 1

2
(BunG)Eis

)⊥

be the cuspidal subcategory.

Tautologically, D-mod 1
2
(BunG)cusp is the intersection of the kernels of the functors CT∗ (equiva-

lently, CT∗,twk) for all proper parabolics.

1.3.2. Denote by e the tautological embedding

D-mod 1
2
(BunG)cusp ↪→ D-mod 1

2
(BunG).

Since D-mod 1
2
(BunG)Eis is generated by objects that are compact in D-mod 1

2
(BunG), the functor

e admits a left adjoint, to be denoted eL.
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1.3.3. Let

LSirred
Ǧ

ȷ
↪→ LSǦ

be the embedding of the irreducible locus. We can regard IndCohNilp(LS
irred
Ǧ ) as a full subcategory of

IndCohNilp(LSǦ) of IndCohNilp(LSǦ) via ȷ∗, and as such it identifies with

(IndCohNilp(LSǦ)red)
⊥ .

Tautologically,

IndCohNilp(LSǦ)red = ker(ȷ∗).

1.3.4. From the commutation of (1.4), we obtain that the functor LG sends D-mod 1
2
(BunG)cusp to

IndCohNilp(LS
irred
Ǧ ). Denote the resulting functor by

(1.7) LG,cusp : D-mod 1
2
(BunG)cusp → IndCohNilp(LS

irred
Ǧ ).

I.e., we have a commutative diagram

(1.8)

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

e

x xȷ∗

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ ).

Note that from the commutation of (1.3) we obtain a commutative diagram

(1.9)

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

eL

y yȷ∗

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ ).

1.3.5. Note also that when we view D-mod 1
2
(BunG)cusp and IndCohNilp(LS

irred
Ǧ ) as quotient categories

of D-mod 1
2
(BunG) and IndCohNilp(LSǦ) via eL and ȷ∗, respectively, from the commutation of (1.5),

we obtain that there exists a well-defined functor

LL
G,cusp : IndCohNilp(LS

irred
Ǧ )→ D-mod 1

2
(BunG)cusp

that makes the diagram

(1.10)

D-mod 1
2
(BunG)

LL
G←−−−−− IndCohNilp(LSǦ)

eL

y yȷ∗

D-mod 1
2
(BunG)cusp

LL
G,cusp←−−−−− IndCohNilp(LS

irred
Ǧ ).

commute.

Taking into account (1.9), we obtain that the functors

(1.11) LG,cusp : D-mod 1
2
(BunG)cusp ⇄ IndCohNilp(LSǦ)red : LL

G,cusp

are mutually adjoint, i.e.,

LL
G,cusp ≃ (LG,cusp)

L.
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1.3.6. We claim, however:

Proposition 1.3.7. The functor LL
G sends IndCohNilp(LS

irred
Ǧ ) to D-mod 1

2
(BunG)cusp.

We will give two proofs of this proposition: one in Sect. 1.4 and another in Sect. 1.5.7.

Corollary 1.3.8. The following diagram commutes:

(1.12)

D-mod 1
2
(BunG)

LL
G←−−−−− IndCohNilp(LSǦ)

e

x xȷ∗

D-mod 1
2
(BunG)cusp

LL
G,cusp←−−−−− IndCohNilp(LS

irred
Ǧ ).

1.3.9. Taking into account Theorem 1.2.5, we obtain:

Corollary 1.3.10. The functor LG is an equivalence if and only if so is the functor LG,cusp.

1.4. First proof of Proposition 1.3.7. In this subsection we will use some notation, which is intro-
duced later in the paper, specifically in Sect. 2.1.

1.4.1. We will use [Lan2, Theorem 23.2.5], which says that the functor LL
G identifies, up to a cohomo-

logical shift, with the composition

(1.13) IndCohNilp(LSǦ) ≃ IndCohNilp(LSǦ)
∨ L∨

G→ D-mod 1
2
(BunG)

∨ ≃

≃ D-mod 1
2
(BunG)co

MirBunG→ D-mod 1
2
(BunG)

τG→ D-mod 1
2
(BunG),

where:

• The first arrow is given by Serre duality on IndCohNilp(LSǦ);
• The second arrow is the functor dual to LG;
• The third arrow is given by Verdier duality on BunG;
• The fourth arrow is the Miraculous Functor on BunG, see [Ga1, Sect. 3.1];
• The fifth arrow is the Cartan involution.

It is enough to show that the composition (1.13), and a similar functor for a Levi, intertwines the
functors CTspec and CT∗, up to tweaks.

1.4.2. Passing to the dual functors in (1.13), we need to show that the composition

D-mod 1
2
(BunG)

∨ τG→ D-mod 1
2
(BunG)

∨ Mir∨BunG−→ D-mod 1
2
(BunG)

∨
co ≃

≃ D-mod 1
2
(BunG)

LG→ IndCohNilp(LSǦ) ≃ IndCohNilp(LSǦ)
∨,

and a similar functor for a Levi, intertwines (CT∗)
∨ and (CTspec)∨, up to tweaks.

1.4.3. We note that under the identification

(1.14) D-mod 1
2
(BunG)

∨ ≃ D-mod 1
2
(BunG)co

and the resulting identification

D-mod 1
2
(BunG)

∨
co ≃ D-mod 1

2
(BunG)

the functor Mir∨BunG
identifies with the original MirBunG .

Furthermore, under (1.14), the dual of the functor CT∗,twk is an appropriately tweaked version of
the functor

Eisco,∗ : D-mod 1
2
(BunM )co → D-mod 1

2
(BunG)co

(see [Ga1, Sect. 1.4]), and under

IndCohNilp(LSǦ)
∨ ≃ IndCohNilp(LSǦ),
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the dual of CTspec is an appropriately tweaked version of Eisspec.

Hence, we need to show that the functor

D-mod 1
2
(BunG)co

τG→ D-mod 1
2
(BunG)co

MirBunG→ D-mod 1
2
(BunG)

LG→ IndCohNilp(LSǦ)

and a similar functor for a Levi, intertwines Eisco,∗ with Eisspec.

1.4.4. However, this follows from the commutation of (1.3) combined with the commutation of the
following diagram from [Ga1, Theorem 4.1.2]:

D-mod 1
2
(BunM )co

τM◦MirBunM−−−−−−−−−→ D-mod 1
2
(BunM )

Eisco,∗

y yEis!

D-mod 1
2
(BunG)co

τG◦MirBunG−−−−−−−−→ D-mod 1
2
(BunG).

□[Proposition 1.3.7]

1.5. Spectral action. In this subsection we will recall another crucial feature of the functor LG: its
compatibility with the QCoh(LSǦ)-actions on the two sides.

1.5.1. Recall (see e.g., [Lan2, Theorem 20.1.2]) that the Hecke action gives rise to an action of the
monoidal category QCoh(LSǦ) on D-mod 1

2
(BunG).

1.5.2. We have:

Proposition 1.5.3. With respect to the QCoh(LSǦ)-action on D-mod 1
2
(BunG), the full subcategory

D-mod 1
2
(BunG)Eis ⊂ D-mod 1

2
(BunG)

is set-theoretically supported on LSred
Ǧ , i.e.,

(1.15) D-mod 1
2
(BunG)Eis ⊗

QCoh(LSǦ)
QCoh(LSirred

Ǧ ) = 0.

This proposition is probably well-known. We will supply a proof for completeness in Sect. 1.5.8.

As a formal consequence, we obtain:

Corollary 1.5.4. We have an inclusion

(1.16) D-mod 1
2
(BunG) ⊗

QCoh(LSǦ)
QCoh(LSirred

Ǧ ) ⊂ D-mod 1
2
(BunG)cusp

as full subcategories of D-mod 1
2
(BunG).

In fact, a stronger assertion is true (to be proved in Sect. 1.6.6):

Theorem 1.5.5. The inclusion (1.16) is an equality.

1.5.6. By the construction of the functor LG, it is QCoh(LSǦ)-linear, where QCoh(LSǦ) acts on
IndCohNilp(LSǦ) naturally.

Since the symmetric monoidal category QCoh(LSǦ) is rigid, we obtain that the functor LL
G is also

equipped with a natural QCoh(LSǦ)-linear structure.

Moreover, the monad

LL
G ◦ LG,

acting on IndCohNilp(LSǦ), is QCoh(LSǦ)-linear.
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1.5.7. Second proof of Proposition 1.3.7. By QCoh(LSǦ)-linearity, the functor LL
G sends

IndCohNilp(LSǦ) ⊗
QCoh(LSǦ)

QCoh(LSirred
Ǧ ),

viewed as a full subcategory of IndCohNilp(LSǦ), to

D-mod 1
2
(BunG) ⊗

QCoh(LSǦ)
QCoh(LSirred

Ǧ ),

viewed as a full subcategory of D-mod 1
2
(BunG).

However, the former is tautologically the same as IndCohNilp(LS
irred
Ǧ ), while the latter is contained

in D-mod 1
2
(BunG)cusp by Corollary 1.5.4.

□[Proposition 1.3.7]

1.5.8. Proof of Proposition 1.5.3. According to [BG]5, the functor Eis! can be factored as a composition

D-mod 1
2
(BunM )→ D-mod 1

2
(BunM ) ⊗

QCoh(LSM̌ )
QCoh(LSP̌ )

Eis
part.enh
!−→ D-mod 1

2
(BunG),

where the functor Eispart.enh! is QCoh(LSǦ)-linear.

This implies the required assertion.
□[Proposition 1.5.3]

1.6. Conservativity. In this subsection we recall a crucial result from [FR], which says that the
functor LG,cusp is conservative.

In a sense, this unveils the main reason why GLC holds: that the functor LG does not lose information
(in a very coarse sense, by sending some objects to zero).

1.6.1. We now import the following result from [FR, Theorem A] (which is a combination of [FR,
Theorem B] and [Be2, Theorem A]):

Theorem 1.6.2. The functor LG,cusp is conservative.

Remark 1.6.3. Note that in the case when G = GLn, the assertion of Theorem 1.6.2 follows immediately
from (the much more elementary) Theorem 1.8.2 below.

1.6.4. We now claim:

Theorem 1.6.5. The functor LG is conservative.

Proof. The follows immediately by combining Theorems 1.6.2 and 1.2.5.
□

1.6.6. Proof of Theorem 1.5.5. The assertion of the theorem is equivalent to

(1.17) D-mod 1
2
(BunG)cusp ⊗

QCoh(LSǦ)
QCoh(LSǦ)red = 0,

where QCoh(LSǦ)red = ker(ȷ∗).

By Theorem 1.6.2, it suffices to show that the functor LG,cusp annihilates the subcategory (1.17).
However, LG,cusp sends this category to

IndCohNilp(LS
irred
Ǧ ) ⊗

QCoh(LSǦ)
QCoh(LSǦ)red,

and the latter is obviously 0.
□[Theorem 1.5.5]

5The paper [BG] only treats the case of P = B. The general case will be treated in a forthcoming paper of
J. Fægerman and A. Hayash.
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1.7. The algebra AG,irred. In this subsection we will introduce an object

AG,irred ∈ AssocAlg(QCoh(LSirred
Ǧ ),

which encodes the monad LG,cusp ◦ LL
G,cusp.

We will show that the validity of GLC is equivalent to the fact that the unit map (1.18) is an
isomorphism.

The proof of GLC that will be presented in the sequel to this paper will amount to the showing
that the algebraic geometry and topology of LSirred

Ǧ essentially force this map to be an isomorphism
(modulo a certain computation on the automorphic side).

1.7.1. Consider the monad LG,cusp◦LL
G,cusp on IndCohNilp(LS

irred
Ǧ ) corresponding to the adjoint functors

(1.11). By Sect. 1.5.6, this monad is QCoh(LSǦ)-linear.

Since the action of QCoh(LSǦ) on IndCohNilp(LS
irred
Ǧ ) factors through

ȷ∗ : QCoh(LSǦ)→ QCoh(LSirred
Ǧ ),

we obtain that LG,cusp ◦ LL
G,cusp is QCoh(LSirred

Ǧ )-linear.

1.7.2. Note that Nilp|LSirred
Ǧ

= {0}, so

IndCohNilp(LS
irred
Ǧ ) = QCoh(LSirred

Ǧ ).

Hence, the monad LG,cusp ◦ LL
G,cusp is a QCoh(LSirred

Ǧ )-linear monad on QCoh(LSirred
Ǧ ) itself, and

thus corresponds to a unital associative algebra, to be denoted

AG,irred ∈ QCoh(LSirred
Ǧ ).

1.7.3. The unit of the (LL
G,cusp,LG,cusp)-adjunction corresponds to the unit map

(1.18) OLSirred
Ǧ
→ AG,irred.

Tautologically, the functor LL
G,cusp is fully faithful if and only if the map (1.18) is an isomorphism.

1.7.4. Given Theorem 1.6.2 and Corollary 1.3.10, we obtain:

Corollary 1.7.5. The functor LG is an equivalence if and only if the map (1.18) is an isomorphism
in QCoh(LSirred

Ǧ ).

1.8. Proof of GLC for G = GLn. In this subsection, we will show how Theorem 1.2.5 allows us to
prove GLC in the case when G = GLn.

1.8.1. The point of departure is the following result, established in [Be1] (or, in a slightly different
language, in [Ga2]):

Theorem 1.8.2. The restriction of the functor coeffG to the subcategory

D-mod 1
2
(BunG)cusp ⊂ D-mod 1

2
(BunG)

is fully faithful.
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1.8.3. From Theorem 1.8.2 we will now deduce:

Corollary 1.8.4. The functor LG,cusp is fully faithful.

Proof. From (1.1) and (1.8), we obtain a commutative diagram

Whit!(G)Ran
CSG−−−−−→
∼

Rep(Ǧ)Ran

coeffG[2δNρ(ωX )
]

x xΓ
spec

Ǧ

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

e

x xȷ∗

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ ).

It is sufficient to show that the composite right vertical arrow in the above diagram is fully faithful.
Indeed, this would imply that the fully-faithfulness of the functors

coeffG[2δNρ(ωX )
] ◦ e and LG,cusp

are logically equivalent.

Note that since

QCoh(LSirred
Ǧ ) = IndCohNilp(LS

irred
Ǧ ),

the right vertical arrow in the above diagram can be identified with

(1.19) QCoh(LSirred
Ǧ )

ȷ∗
↪→ QCoh(LSǦ)

Γ
spec

Ǧ−→ Rep(Ǧ)Ran.

Now, in the composition (1.19) both arrows are fully faithful: this is obvious for ȷ∗, and for Γspec

Ǧ
this is the content of Proposition 1.1.4.

□

Remark 1.8.5. Note that the proof of Corollary 1.8.4 shows that it is actually logically equivalent to
Theorem 1.8.2. Hence, once we establish GLC, we will know that Theorem 1.8.2 also holds for any G.

1.8.6. By Corollary 1.7.5, in order to prove GLC, we need to show that the map (1.18) is an isomorphism
in QCoh(LSirred

Ǧ ). Since LSirred
Ǧ is eventually connective, it is sufficient to show that for any field-valued

point

σ : Spec(K)→ LSirred
Ǧ ,

the resulting map

(1.20) K → AG,σ

is an isomorphism, where AG,σ denotes the fiber of AG,irred at σ.

Applying base change to the functor LG,cusp along σ, we obtain a functor

LG,σ : D-mod 1
2
(BunG)cusp ⊗

QCoh(LSirred
Ǧ

)

VectK → VectK .

Since the functor LG,cusp is fully faithful and admits a left adjoint, we obtain that LG,σ is also fully
faithful. In particular, LG,σ is conservative. Hence, by Barr-Beck, it can be identified with the forgetful
functor

AG,σ-mod→ VectK .

Such a functor can be fully faithful either when (1.20) is an isomorphism (which is what we want
to show), or when AG,σ = 0. Thus, it remains to rule out the latter possibility.
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1.8.7. We need to show that the category

D-mod 1
2
(BunG)σ := D-mod 1

2
(BunG)cusp ⊗

QCoh(LSirred
Ǧ

)

VectK

is non-zero. For this, we can further replace K by its algebraic closure.

Performing base change k ⇝ K, we can assume that K = k. Then the category D-mod 1
2
(BunG)σ

is, by definition, the category of Hecke eigen-sheaves with respect to σ.

However, it was shown in [FGV] that for G = GLn and σ irreducible, the category D-mod 1
2
(BunG)σ

contains a non-zero object.

Remark 1.8.8. Alternatively, the proof of the existence of a non-zero Hecke eigensheaf for a given
irreducible local system, valid for any G, follows by combining the [BD1] construction of Hecke eigen-
sheaves via localization at the critical level and the result of [Ari], which says that any irreducible local
system carries a generic oper structure.

□[GLC for G = GLn]

2. Left adjoint as the dual

In this section we will establish the ”first half” of the Ambidexterity Theorem, namely that the
functor left adjoint to LG,cusp is, up to a certain twist, is canonically isomorphic to its dual.

In order to do so, we will first have to show that the source and the target of LG,cusp are canonically
self-dual.

2.1. The dual automorphic category. In this subsection we recall, following [DG] or [Ga1], the
description of the dual of the category D-mod 1

2
(BunG).

2.1.1. Recall the category D-mod 1
2
(BunG)co. It is defined as the colimit

colim
U

D-mod 1
2
(U),

where U runs over the poset of quasi-compact open substacks of BunG, and for U1
j1,2→ U2 the corre-

sponding functor

D-mod 1
2
(U1)→ D-mod 1

2
(U2)

is (j1,2)∗.

For a given quasi-compact open

(2.1) U
j
↪→ BunG,

we let

jco,∗ : D-mod 1
2
(U)→ D-mod 1

2
(BunG)co

denote the tautological functor.

2.1.2. The category D-mod 1
2
(BunG)co is endowed with a tautologically defined functor

Ps-Idnv : D-mod 1
2
(BunG)co → D-mod 1

2
(BunG),

characterized by the following property:

For a quasi-compact open as in (2.1), we have

(2.2) Ps-Idnv ◦jco,∗ ≃ j∗,

as functors

D-mod 1
2
(U)→ D-mod 1

2
(BunG).
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2.1.3. Note that Verdier duality on BunG gives rise to a canonical identification

(2.3) D-mod 1
2
(BunG)

∨ DVerdier

≃ D-mod 1
2
(BunG)co.

It is characterized by the requirement that for (2.1), we have

jco,∗ ≃ (j∗)∨,

where we identify

D-mod 1
2
(U)∨ ≃ D-mod 1

2
(U)

via usual Verdier duality, also denoted DVerdier.

2.2. The dual of the cuspidal category. In this subsection we will use Sect. 2.1 to show that the
cuspidal automorphic category is canonically self-dual.

2.2.1. Let

D-mod 1
2
(BunG)co,Eis ⊂ D-mod 1

2
(BunG)co

be the full subcategory, generated by the essential images of the functors

Eisco,∗ : D-mod 1
2
(BunM )co → D-mod 1

2
(BunG)co

(see [Ga1, Sect. 1.4]) for proper parabolic subgroups.

Set

D-mod 1
2
(BunG)co,cusp :=

(
D-mod 1

2
(BunG)co,Eis

)⊥
.

Let

eco : D-mod 1
2
(BunG)co,cusp ↪→ D-mod 1

2
(BunG)co

denote the tautological embedding. It admits a left adjoint, making D-mod 1
2
(BunG)co,cusp into a

localization of D-mod 1
2
(BunG)co.

2.2.2. The identification (2.3) gives rise to an identification

(2.4) D-mod 1
2
(BunG)

∨
cusp

DVerdier
cusp
≃ D-mod 1

2
(BunG)co,cusp,

so that

eco ≃ (eL)∨ and eL
co ≃ e∨.

2.2.3. Recall now that the category D-mod 1
2
(BunG)co,cusp has the following property (see [Ga1, Propo-

sition 2.3.4]): there exists a quasi-compact open substack

U0
j0
↪→ BunG,

such that the functor

eco : D-mod 1
2
(BunG)co,cusp → D-mod 1

2
(BunG)co

factors as

(j0)co,* ◦ eU0,co,

for (an automatically uniquely defined fully faithful functor)

eU0,co : D-mod 1
2
(BunG)co,cusp → D-mod 1

2
(U0).

2.2.4. Furthermore, according to [Ga1, Theorem 2.2.7], the functor Ps-Idnv sends D-mod 1
2
(BunG)co,cusp

to D-mod 1
2
(BunG)cusp, and the resulting functor

Ps-Idnv
cusp : D-mod 1

2
(BunG)co,cusp → D-mod 1

2
(BunG)cusp

is an equivalence.

We automatically have

(2.5) e ◦ Ps-Idnv
cusp ≃ (j0)∗ ◦ eU0,co.
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2.2.5. Thus, combining (2.4) with the equivalence Ps-Idnv
cusp we obtain a self-duality

(2.6) D-mod 1
2
(BunG)

∨
cusp

Ps-Idnv
cusp ◦DVerdier

cusp
≃ D-mod 1

2
(BunG)cusp.

2.2.6. For later use we introduce the following notation:

Let

(2.7) eU0 : D-mod 1
2
(BunG)cusp → D-mod 1

2
(U0)

be the uniquely defined functor, so that

eU0,co ≃ eU0 ◦ Ps-Id
nv
cusp .

The functor eU0 is automatically fully faithful and

e ≃ (j0)∗ ◦ eU0 .

Let eL
U0

denote the left adjoint of eU0 . We have:

(2.8) eL ≃ eL
U0
◦ j∗0 .

2.3. Duality and the Poincaré functors. In this section we will recall the result of [Lin] that says
that the !- and *-versions of the geometric Poincaré functor become isomorphic, once we project to the
cuspidal automorphic category.

2.3.1. Recall (see [Lan2, Sect. 12.4]) that in addition to the functor

PoincG,! : Whit!(G)Ran → D-mod 1
2
(BunG),

there exists a naturally defined functor

PoincG,∗ : Whit∗(G)Ran → D-mod 1
2
(BunG)co.

2.3.2. By construction, with respect the duality (2.3) and the canonical duality

(2.9) (Whit!(G)Ran)
∨ ≃Whit∗(G)Ran,

we have

(2.10) (coeffG)
∨ ≃ PoincG,∗ .

2.3.3. Recall now (see [Lan2, Sect. 1.3.5]) that, in addition to the duality (2.9), there exists a canonical
equivalence

(2.11) ΘWhit(G) : Whit∗(G)Ran ≃Whit!(G)Ran.

The following assertion is a “baby” version of the main result of [Lin] (see Lemma 1.3.4 in loc. cit.):

Theorem 2.3.4. The functors

eL ◦ PoincG,! ◦ΘWhit(G) and eL ◦ Ps-Idnv ◦PoincG,∗[2δNρ(ωX )
],

Whit∗(G)Ran ⇒ D-mod 1
2
(BunG)cusp

are canonically isomorphic.

2.4. Self-duality on the spectral side. In this short subsection we set up our conventions regarding
the self-duality of the category QCoh(LSirred

Ǧ ).

2.4.1. Let us identify QCoh(LSǦ) with its own dual via the naive duality

(2.12) QCoh(LSǦ)
∨ Dnaive

≃ QCoh(LSǦ).

I.e., the corresponding anti-self equivalence of

QCoh(LSǦ)
c = QCoh(LSǦ)

perf

is given by monoidal dualization.
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2.4.2. The self-duality (2.12) induces a self-duality

(2.13) QCoh(LSirred
Ǧ )∨

Dnaive

≃ QCoh(LSirred
Ǧ ).

2.4.3. Recall now (see, e.g., [AGKRRV1, Sect. 11.3]) that the canonical self-duality on Rep(Ǧ) gives
rise to a self-duality of the category Rep(Ǧ)Ran.

2.4.4. We have:

Lemma 2.4.5. With respect to the above self-dualities of QCoh(LSǦ) and Rep(Ǧ)Ran, the functors

Locspec
Ǧ

: Rep(Ǧ)Ran ↔ QCoh(LSǦ) : Γ
spec

Ǧ

identify with each other’s duals:

(Locspec
Ǧ

)∨ ≃ Γspec

Ǧ
and (Γspec

Ǧ
)∨ ≃ Locspec

Ǧ
.

2.5. Left adjoint vs dual. In this subsection we finally formulate and prove the main result of this
section, Theorem 2.5.3, which says that the left adjoint and the dual of LG,cusp are isomorphic, up to
a twist.

2.5.1. Consider the functor dual to LG,cusp

L∨
G,cusp : QCoh(LSirred

Ǧ )∨ → D-mod 1
2
(BunG)

∨
cusp.

Using the identifications (2.13) and (2.6), we can think of L∨
G,cusp as a functor

(2.14) QCoh(LSirred
Ǧ )→ D-mod 1

2
(BunG)cusp.

Let

ΦG,cusp : QCoh(LSirred
Ǧ )→ D-mod 1

2
(BunG)cusp

denote the composition of the functor (2.14) with the Cartan involution and the shift [−2δNρ(ωX )
], i.e.,

ΦG,cusp := τG ◦ L∨
G,cusp[−2δNρ(ωX )

].

2.5.2. We are going to prove:

Theorem 2.5.3. The functor ΦG,cusp identifies canonically with LL
G,cusp.

This theorem is a particular case of [Lan2, Theorem 23.2.5], and its proof is much simpler in that it
only uses Theorem 2.3.4, rather than the full force of the result from [Lin]. We will supply a proof for
the sake of completeness, and it occupies the rest of this subsection.

2.5.4. By Proposition 1.1.4, it suffices to establish an isomorphism

LL
G,cusp ◦ ȷ∗ ◦ LocspecǦ

≃ ΦG,cusp ◦ ȷ∗ ◦ LocspecǦ

as functors

Rep(Ǧ)⇒ D-mod 1
2
(BunG)cusp.

We will do so by showing that both diagrams

(2.15)

Whit!(G)Ran

CS−1
G←−−−−−
∼

Rep(Ǧ)Ran

PoincG,![−2δNρ(ωX )
]

y yLoc
spec

Ǧ

D-mod 1
2
(BunG) QCoh(LSǦ)

eL

y yȷ∗

D-mod 1
2
(BunG)cusp

LL
G,cusp←−−−−− QCoh(LSirred

Ǧ )
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and

(2.16)

Whit!(G)Ran

CS−1
G←−−−−− Rep(Ǧ)Ran

PoincG,![−2δNρ(ωX )
]

y yLoc
spec

Ǧ

D-mod 1
2
(BunG) QCoh(LSǦ)

eL

y yȷ∗

D-mod 1
2
(BunG)cusp

ΦG,cusp←−−−−− QCoh(LSirred
Ǧ )

commute.

2.5.5. The commutation of (2.15) is immediate from (1.2) and (1.10). Thus, it remains to deal with
(2.16).

First, according to [Lan2, Lemma 1.4.11], we have

τG ◦ CS−1
G ≃ ΘWhit(G) ◦ CS∨

G .

Combining with Theorem 2.3.4, this allows us to replace (2.16) by

(2.17)

Whit∗(G)Ran
CS∨

G←−−−−− Rep(Ǧ)Ran

PoincG,∗

y yLoc
spec

Ǧ

D-mod 1
2
(BunG)co QCoh(LSǦ)

eL◦Ps-Idnv

y yȷ∗

D-mod 1
2
(BunG)cusp

L∨
G,irred[−2δNρ(ωX )

]

←−−−−−−−−−−−−−− QCoh(LSirred
Ǧ ).

2.5.6. Using

eL ◦ Ps-Idnv ≃ Ps-Idnv
cusp ◦e∨,

we can rewrite (2.17) as

Whit∗(G)Ran
CS∨

G←−−−−− Rep(Ǧ)Ran

PoincG,∗

y yLoc
spec

Ǧ

D-mod 1
2
(BunG)co QCoh(LSǦ)

Ps-Idnv
cusp ◦e∨

y yȷ∗

D-mod 1
2
(BunG)cusp

L∨
G,irred[−2δNρ(ωX )

]

←−−−−−−−−−−−−−− QCoh(LSirred
Ǧ ),

and further by

(2.18)

Whit∗(G)Ran
CS∨

G←−−−−− Rep(Ǧ)Ran

PoincG,∗

y yLoc
spec

Ǧ

D-mod 1
2
(BunG)co QCoh(LSǦ)

e∨
y yȷ∗

D-mod 1
2
(BunG)co,cusp

L∨
G,irred[−2δNρ(ωX )

]

←−−−−−−−−−−−−−− QCoh(LSirred
Ǧ ),
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where we now think of L∨
G,irred as a functor

QCoh(LSirred
Ǧ )→ D-mod 1

2
(BunG)co,cusp

via (2.13) and (2.4).

2.5.7. Passing to the dual functors in (2.18), we obtain that it is equivalent to

Whit∗(G)Ran
CSG−−−−−→ Rep(Ǧ)Ran

coeffG

x xΓ
spec

Ǧ

D-mod 1
2
(BunG) QCoh(LSǦ)

e

x xȷ∗

D-mod 1
2
(BunG)cusp

LG,irred[−2δNρ(ωX )
]

−−−−−−−−−−−−−−→ QCoh(LSirred
Ǧ ).

However, the commutativity of the latter diagram follows from (1.1) and (1.8).
□[Theorem 2.5.3]

3. Right adjoint as the dual

In this section we will assume that G is semi-simple6.

We will prove the “second half” of the ambidexterity theorem, namely, that the functor right adjoint
to LG,cusp is isomorphic to the (twist of) the dual of LG,cusp.

The full Ambidexterity Theorem says that the left and right adjoints of LG,cusp are isomorphic.
Of course, this statement a posteriori follows from GLC, but in the current strategy, it constitutes a
central step in its proof.

3.1. The ambidexterity statement.

3.1.1. We continue to regard the categories D-mod 1
2
(BunG)cusp and QCoh(LSirred

Ǧ ) as self-dual via the

identifications (2.13) and (2.6), respectively.

Recall the functor ΦG,cusp, see Sect. 2.5.1. We will prove:

Theorem 3.1.2. The functor ΦG,cusp identifies canonically with the right adjoint of LG,cusp.

3.1.3. Before we prove the theorem, let us draw some consequences. First, by combining Theorems
2.5.3 and 3.1.2, we obtain what we call the Ambidexterity Theorem:

Main Theorem 3.1.4. The left and right adjoints of LG,cusp are isomorphic.

Corollary 3.1.5. The endofunctor

LG,cusp ◦ LL
G,cusp

of QCoh(LSirred
Ǧ ) is isomorphic to its own left and right adjoint.

6This assumption is just a convenience. The statement holds for any reductive G, just the proof would involve
slightly more notation.
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3.1.6. Recall (see Sect. 1.7.2) that the functor LG,cusp◦LL
G,cusp is given by tensoring with the associative

algebra object
AG,irred ∈ QCoh(LSirred

Ǧ ).

From Corollary 3.1.5 we obtain:

Corollary 3.1.7. The object AG,irred ∈ QCoh(LSirred
Ǧ ) is self-dual. In particular, it belongs to

QCoh(LSirred
Ǧ )perf , i.e., it is compact.

Eventually we will prove an even more precise version of the second part of the above corollary (see
Sect. 4.4):

Main Theorem 3.1.8. The object AG,irred ∈ QCoh(LSirred
Ǧ ) is a classical vector bundle, which is

equipped with a naturally defined flat connection7.

Remark 3.1.9. Note that it makes sense to talk about classical vector bundles on LSirred
Ǧ , since, under

the assumption that Ǧ is semi-simple, the stack LSirred
Ǧ is classical and smooth.

3.1.10. The rest of this section is devoted to the proof of Theorem 3.1.2.

3.2. Critical localization. In this subsection, we will show that the right adjoint of the critical
localization functor (functor LocG below) is essentially isomorphic to its dual, once we restrict to the
cuspidal automorphic category.

3.2.1. Let LocG be the functor

KL(G)crit,Ran → D-mod 1
2
(BunG)

of [Lan2, Sect. 13.1.5].

3.2.2. Denote by LocG,cusp the composite functor

KL(G)crit,Ran
LocG−→ D-mod 1

2
(BunG)

eL→ D-mod 1
2
(BunG)cusp.

We have the following counterpart of Proposition 1.1.4, proved in Sect. 3.2.7:

Proposition 3.2.3. The functor LocG,cusp is Verdier quotient.

In fact, we will see shortly that the right adjoint of LocG,cusp is continuous. We can reformulate
Proposition 3.2.3 as the assertion that the right adjoint LocRG,cusp of LocG,cusp is fully faithful.

3.2.4. Recall (see [Lan2, Sect. 4.3]) that the category KL(G)crit,Ran is also canonically self-dual. Thus,
using the self-duality of D-mod 1

2
(BunG)cusp given by (2.6), we can regard the dual of LocG,cusp as a

functor

(3.1) Loc∨G,cusp : D-mod 1
2
(BunG)cusp → KL(G)crit,Ran.

The following assertion is a counterpart of Lemma 2.4.5:

Proposition 3.2.5. We have a canonical identification between Loc∨G,cusp and

LocRG,cusp⊗det(Γ(X,OX)⊗ g)[δG].

In the statement of Proposition 3.2.5, the integer δG is dim(BunG). The rest of this subsection is
devoted to the proof of Proposition 3.2.5.

3.2.6. Let U0 be as in Sect. 2.2.3. Denote

LocG,U0 := j∗0 ◦ LocG, KL(G)crit,Ran → D-mod 1
2
(U0),

so that

(3.2) LocG,cusp ≃ eL
U0
◦ LocG,U0

where eL
U0

is the left adjoint of the functor eU0 of (2.7).

7Note that Corollary 4.2.5 and Proposition 4.2.8 imply that the resulting local system on LSirred
Ǧ

has a finite

monodromy
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3.2.7. Proof of Proposition 3.2.3. It is known that for any quasi-compact U , the corresponding functor
LocG,U is a Verdier quotient. Now, the assertion follows from (3.2), since eL

U0
is also a Verdier quotient.
□[ Proposition 3.2.3]

3.2.8. It follows formally that we have the identifications

Loc∨G,cusp ≃ Loc∨G,U0
◦eU0 and LocRG,cusp ≃ LocRG,U0

◦eU0 .

Thus, in order to prove Proposition 3.2.5, it suffices to show that for a quasi-compact U ⊂ BunG,
with respect to the Verdier self-duality of D-mod 1

2
(U), we have

(3.3) Loc∨G,U ≃ LocRG,U ⊗ det(Γ(X,OX)⊗ g)[δG]

as functors

D-mod 1
2
(U)→ KL(G)crit,Ran.

3.2.9. For any level κ and U as above, we have a canonical identification between the dual of the functor
LocG,U,κ+crit

KL(G)κ+crit,Ran

LocG,κ+crit−→ D-modκ+crit(BunG)
j∗→ D-modκ+crit(U)

and the right adjoint of LocG,U,−κ+crit

KL(G)κ−crit,Ran

LocG,−κ+crit−→ D-mod−κ+crit(BunG)
j∗→ D-mod−κ+crit(U),

where we identify D-mod−κ+crit(U) with the dual of D-modκ+crit(U) using the pairing

D-modκ+crit(U)⊗D-mod−κ+crit(U)
!
⊗−→ D-mod2crit(U) = D-moddlog(detBunG

)(U) ≃

≃ D-moddlog(det(T∗(BunG)))(U)
−⊗det(T∗(BunG))⊗−1[− dim(BunG)]−→ D-mod(U)

C·
dR(U,−)
−→ Vect,

where the identification

dlog(detBunG) ≃ dlog(det(T ∗(BunG)))

is induced by the identification of the line bundles

detBunG ≃ det(T ∗(BunG))⊗ det(Γ(X,OX)⊗ g).

Indeed, the above right adjoint/dual functor (for a fixed x ∈ Ran) is given by

Γ(U levelx ,−),

where

U levelx := U ×
BunG

Bun
levelx
G , D-mod−κ+crit(U)→ KL(G)−κ+crit,x.

This functor is well-defined due to the assumption that U is quasi-compact, so that U levelx is a
quasi-compact scheme.

3.2.10. Specializing to κ = 0, we obtain the desired identification (3.3).

3.3. The spectral Poincaré functor. In this section we will show that the right adjoint of the
spectral Poincaré functor (functor Poincspec

Ǧ,∗ below) is essentially isomorphic to its dual, once we restrict

to the locus of irreducible local systems.

NB: it is in this subsection that the assumption that G (rather Ǧ) is semi-simple is used8.

8In fact, it is used twice, and one can show that the two usages cancel each other out. We just chose not to go
through this exercise.
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3.3.1. Let
Poincspec

Ǧ,∗ : IndCoh∗(Opmon-free
Ǧ )Ran → IndCohNilp(LSǦ)

be the functor of [Lan2, Sect. 17.2].

Denote by Poincspec
Ǧ,∗,irred the composite functor

IndCoh∗(Opmon-free
Ǧ )Ran

Poinc
spec

Ǧ,∗−→ QCoh(LSǦ)
ȷ∗→ QCoh(LSirred

Ǧ ).

3.3.2. Recall now (see [Lan2, Sect. 17.1]) that in addition to IndCoh∗(Opmon-free
Ǧ )Ran, we can consider

the category
IndCoh!(Opmon-free

Ǧ )Ran,

and we have a canonical identification

(3.4) (IndCoh∗(Opmon-free
Ǧ )Ran)

∨ DSerre

≃ IndCoh!(Opmon-free
Ǧ )Ran.

.
In addition, we have an identification

ΘOp(Ǧ) : IndCoh
!(Opmon-free

Ǧ )Ran → IndCoh∗(Opmon-free
Ǧ )Ran.

Composing we obtain a datum of self-duality:

(3.5) IndCoh∗(Opmon-free
Ǧ )∨Ran

ΘOp(Ǧ)◦D
Serre

≃ IndCoh∗(Opmon-free
Ǧ )Ran.

3.3.3. We are going to prove:

Proposition 3.3.4. With respect to the self-dualities (3.5) and (2.13), we have a canonical identifica-
tion between the functor dual to Poincspec

Ǧ,∗,irred and

(Poincspec
Ǧ,∗,irred)

R ⊗ l⊗−1
Kost[δG],

where lKost is the line of [Lan2, Sect. 17.2.2].

The rest of this subsection is devoted to the proof of Proposition 3.3.4.

3.3.5. Recall (see [Lan2, Sect. 17.1]) that in addition to the functor Poincspec
Ǧ,∗ , there exists a functor

Poincspec
Ǧ,!

: IndCoh!(Opmon-free
Ǧ )Ran → IndCohNilp(LSǦ).

Denote
Poincspec

Ǧ,!,irred
:= ȷ∗ ◦ Poincspec

Ǧ,!
.

According to [Lan2, Theorem 17.2.4], we have:

Poincspec
Ǧ,!
≃ Poincspec

Ǧ,∗ ◦ΘOp(Ǧ) ⊗ lKost[δG].

Hence, the assertion of the proposition can be reformulated as an isomorphism

(3.6) (Poincspec
Ǧ,!,irred

)∨ ≃ (Poincspec
Ǧ,∗,irred)

R[2δG],

as functors
QCoh(LSirred

Ǧ )⇒ IndCoh∗(Opmon-free
Ǧ )Ran,

where we regard (Poincspec
Ǧ,!,irred

)∨ as a functor

QCoh(LSirred
Ǧ )

(2.13)−→ QCoh(LSirred
Ǧ )∨ → IndCoh!(Opmon-free

Ǧ )∨Ran ≃ IndCoh∗(Opmon-free
Ǧ )Ran.

To simplify the notation, we will prove a variant of (3.6), where instead of the entire Ran we worked
at a fixed point x ∈ Ran. I.e., we will prove

(3.7) (Poincspec
Ǧ,!,x,irred

)∨ ≃ (Poincspec
Ǧ,∗,x,irred)

R[2δG]

as functors
QCoh(LSirred

Ǧ )⇒ IndCoh∗(Opmon-free
Ǧ (D×

x )),



26 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

3.3.6. Recall that

Poincspec
Ǧ,∗,x and Poincspec

Ǧ,!,x

are given by

(πx)
IndCoh
∗ ◦ (sx)IndCoh,∗ and (πx)

IndCoh
∗ ◦ (sx)!,

respectively, for the morphisms

Opmon-free
Ǧ (D×

x )
sx← Opmon-free

Ǧ (X − x)
πx→ LSǦ .

Let

coeffspec

Ǧ,x
: IndCoh(LSǦ)→ IndCoh∗(Opmon-free

Ǧ (D×
x ))

denote the functor

(sx)
IndCoh
∗ ◦ (πx)

!.

For future use, we also introduce the notation for the Ran version of this functor

coeffspec

Ǧ
: IndCoh(LSǦ)→ IndCoh∗(Opmon-free

Ǧ )Ran.

3.3.7. Let

(3.8) IndCoh(LSǦ)
∨ DSerre

→ IndCoh(LSǦ)

be the identification, given by Serre duality.

Note that with respect to identifications (3.8) and (3.4), we have

(3.9) (Poincspec
Ǧ,!,x

)∨ ≃ coeffspec

Ǧ,x
.

3.3.8. Due to the assumption that G (and hence Ǧ) is semi-simple, the stack LSirred
Ǧ is smooth, so the

natural embedding

QCoh(LSirred
Ǧ ) ↪→ IndCoh(LSirred

Ǧ )

is an equivalence.

In particular, the identification (3.8) induces an identification

(3.10) QCoh(LSirred
Ǧ )∨

DSerre

→ QCoh(LSirred
Ǧ ).

From (3.9) we obtain

(ȷ∗ ◦ Poincspec
Ǧ,!,x

)∨ ≃ coeffspec

Ǧ,x
◦ȷ∗ =: coeffspec

Ǧ,x,irred
,

as functors

QCoh(LSirred
Ǧ )⇒ IndCoh∗(Opmon-free

Ǧ (D×
x )),

where we use (3.10) to identify QCoh(LSirred
Ǧ ) with its own dual.

3.3.9. Note now that since Ǧ is semi-simple, the Killing form on ǧ defines a canonical symplectic
structure on LSirred

Ǧ . Hence,

DSerre ≃ Dnaive[dim(LSirred
Ǧ (X))] = Dnaive[2δG].

Hence, (3.7) becomes equivalent to an isomorphism

(3.11) coeffspec

Ǧ,x,irred
≃ (Poincspec

Ǧ,∗,x,irred)
R.

3.3.10. Thus, we have to establish an adjunction between

ȷ∗ ◦ (πx)
IndCoh
∗ ◦ (sx)∗ and (sx)

IndCoh
∗ ◦ (πx)

! ◦ ȷ∗.

Since the functors ((sx)
IndCoh,∗, (sx)

IndCoh
∗ ) form an adjoint pair, it suffices to establish an adjunction

between

ȷ∗ ◦ (πx)
IndCoh
∗ and (πx)

! ◦ ȷ∗.
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3.3.11. Set

Opmon-free,irred

Ǧ
(X − x) := Opmon-free

Ǧ (X − x) ×
LSǦ

LSirred
Ǧ .

Let πirred
x denote the resulting morphism

Opmon-free,irred

Ǧ
(X − x)→ LSirred

Ǧ .

By base change, the required adjunction is equivalent to an adjunction between

IndCoh(Opmon-free,irred

Ǧ
(X − x))

(πirred
x )IndCoh

∗−→ IndCoh(LSirred
Ǧ )

and

IndCoh(LSirred
Ǧ )

(πirred
x )!

−→ IndCoh(Opmon-free,irred

Ǧ
(X − x)).

However, this follows from the fact that, under the assumption that Ǧ is semi-simple, the morphism
πirred
x is ind-proper. This follows from the fact that the generic non-degeneracy condition for opers is

automatic, once the underlying local system is irreducible.
□[Proposition 3.3.4]

3.4. Proof of Theorem 3.1.2. This proof will amount to comparing the commutative diagrams,
obtained from the diagram expressing the compatibility of LG with critical localization (diagram (3.13)
below) by passage to right adjoint and dual functors, respectively.

3.4.1. By Proposition 3.2.3, in order to construct an isomorphism

(LG,cusp)
R ≃ ΦG,cusp,

it suffices to establish an isomorphism

(3.12) (LocG,cusp)
∨ ◦ (LG,cusp)

R ≃ (LocG,cusp)
∨ ◦ ΦG,cusp.

3.4.2. Recall that according to [Lan2, Theorem 20.6.2], we have the following commutative diagram:

(3.13)

D-mod 1
2
(BunG)

LG−−−−−→ IndCohNilp(LSǦ)

LocG ⊗l

x xPoinc
spec

Ǧ,∗

KL(G)crit,Ran

FLEG,crit−−−−−−→ IndCoh∗(Opmon-free
Ǧ )Ran,

where :

• FLEG,crit is the critical FLE functor of [Lan2, Equation (7.1)];
• l is the comologically graded line

l
⊗ 1

2
G,Nρ(ωX )

⊗ l⊗−1
Nρ(ωX )

[−δNρ(ωX )
],

where:

– l
⊗ 1

2
G,Nρ(ωX )

is the (non-graded) line of [Lan2, Equation (12.9)];

– lNρ(ωX )
is the (non-graded) line of [Lan2, Equation (14.2)];

– δNρ(ωX )
= dim(BunNρ(ωX )

).
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3.4.3. Concatenating diagrams (3.13) and (1.9), we obtain a commutative diagram

(3.14)

D-mod 1
2
(BunG)cusp

LG,cusp−−−−−→ IndCohNilp(LS
irred
Ǧ )

LocG,cusp ⊗l

x xPoinc
spec

Ǧ,∗,irred

KL(G)crit,Ran

FLEG,crit−−−−−−→ IndCoh∗(Opmon-free
Ǧ )Ran.

Passing to the right adjoints in (3.14) we obtain a diagram

(3.15)

D-mod 1
2
(BunG)cusp

(LG,cusp)
R

←−−−−−−− IndCohNilp(LS
irred
Ǧ )

LocRG,cusp

y y(Poinc
spec

Ǧ,∗,irred
)R⊗l

KL(G)crit,Ran

FLE−1
G,crit←−−−−−− IndCoh∗(Opmon-free

Ǧ )Ran.

We will establish (3.12) by showing that the diagram

(3.16)

D-mod 1
2
(BunG)cusp

ΦG,cusp←−−−−− IndCohNilp(LS
irred
Ǧ )

LocRG,cusp

y y(Poinc
spec

Ǧ,∗,irred
)R⊗l

KL(G)crit,Ran

FLE−1
G,crit←−−−−−− IndCoh∗(Opmon-free

Ǧ )Ran

commutes as well.

3.4.4. Consider the diagram obtained by passing to the duals in (3.14):

(3.17)

D-mod 1
2
(BunG)cusp

(LG,cusp)
∨

←−−−−−−− IndCohNilp(LS
irred
Ǧ )

Loc∨G,cusp ⊗l

y y(Poinc
spec

Ǧ,∗,irred
)∨

KL(G)crit,Ran

FLE∨
G,crit←−−−−−− IndCoh!(Opmon-free

Ǧ )Ran

Recall now that according to [Lan2, Theorem 7.6.4], we have a canonical identification

FLE∨
G,crit ≃ τG ◦ FLE−1

G,crit ◦ΘOp(Ǧ)

as functors

IndCoh!(Opmon-free
Ǧ )Ran → KL(G)crit,Ran.

Combining with Proposition 3.3.4, we can rewrite (3.17) as

(3.18)

D-mod 1
2
(BunG)cusp

τG◦(LG,cusp)
∨

←−−−−−−−−−− IndCohNilp(LS
irred
Ǧ )

Loc∨G,cusp ⊗l

y y(Poinc
spec

Ǧ,∗,irred
)R⊗l⊗−1

Kost [δG]

KL(G)crit,Ran

FLE−1
G,crit←−−−−−− IndCoh∗(Opmon-free

Ǧ )Ran,

and further as

(3.19)

D-mod 1
2
(BunG)cusp

ΦG,cusp←−−−−− IndCohNilp(LS
irred
Ǧ )

Loc∨G,cusp[2δNρ(ωX )
]

y y(Poinc
spec

Ǧ,∗,irred
)R⊗l⊗−1⊗l⊗−1

Kost [δG]

KL(G)crit,Ran

FLE−1
G,crit←−−−−−− IndCoh∗(Opmon-free

Ǧ )Ran.
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Taking into account Proposition 3.2.5, we can further rewrite (3.19) as

(3.20)

D-mod 1
2
(BunG)cusp

ΦG,cusp←−−−−− IndCohNilp(LS
irred
Ǧ )

LocRG,cusp[2δNρ(ωX )
]

y y(Poinc
spec

Ǧ,∗,irred
)R⊗l⊗−1⊗l⊗−1

Kost⊗det(Γ(X,OX )⊗g)⊗−1

KL(G)crit,Ran

FLE−1
G,crit←−−−−−− IndCoh∗(Opmon-free

Ǧ )Ran.

3.4.5. Comparing (3.20) with the desired diagram (3.16), we conclude that it suffices to construct an
identification of lines

l⊗−1
Kost ⊗ det(Γ(X,OX)⊗ g)⊗−1 ≃ (l

⊗ 1
2

G,Nρ(ωX )
)⊗2 ⊗ l⊗−2

Nρ(ωX )
.

However, the latter is the content of [Lan2, Proposition 21.1.6].
□[Theorem 3.1.2]

3.5. An addendum: ambidexterity for eigensheaves. The contents of this subsection will not
be used elsewhere in the paper. Here we will explain another approach to ambidexterity, albeit so far
working only for Hecke eigensheaves (or more generally D-modules with nilpotent singular support, see
Remark 3.5.9).

3.5.1. Fix a point σ ∈ LSirred
Ǧ , and let

D-mod 1
2
(BunG)σ := D-mod 1

2
(BunG) ⊗

QCoh(LSǦ)
Vect

be the corresponding category of Hecke eigensheaves, where

QCoh(LSǦ)→ Vect

is the functor of *-fiber of σ, to be denoted (iσ)
∗.

Note that since σ was assumed irreducible, the forgetful functor

(3.21) D-mod 1
2
(BunG)σ

oblvσ→ D-mod 1
2
(BunG)

lands in D-mod 1
2
(BunG)cusp.

3.5.2. The functor LG induces a functor

LG,σ : D-mod 1
2
(BunG)σ → Vect .

According to Theorem 3.1.4, the left and rights adjoints of LG,σ are (canonically) isomorphic. In
this subsection we will exhibit another way of constructing such an isomorphism9.

3.5.3. Note that by construction, the functor LG,σ is isomorphic to the composition

D-mod 1
2
(BunG)σ

oblvσ→ D-mod 1
2
(BunG)

coeff
Vac,glob
G−→ Vect,

where coeffVac,glob
G is as in [Lan2, Sect. 12.5.3].

The left adjoint of LG,σ, denoted LL
G,σ sends the generator k ∈ Vect to the object

(iσ)
∗(PoincVac,glob

G,! ),

where:

9However, it is is not obvious that the isomorphism we will construct in this subsection is the same as one from
Theorem 3.1.4.
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• (iσ)
∗ denotes the functor

D-mod 1
2
(BunG) ≃ D-mod 1

2
(BunG) ⊗

QCoh(LSǦ)
QCoh(LSǦ)

id⊗(iσ)∗−→

→ D-mod 1
2
(BunG) ⊗

QCoh(LSǦ)
Vect = D-mod 1

2
(BunG)σ,

left adjoint to the forgetful functor oblvσ;

• PoincVac,glob
G,! ∈ D-mod 1

2
(BunG) is the object from [GLC1, Sect. 1.3].

3.5.4. Thus, we wish to construct a canonical isomorphism

(3.22) HomD-mod 1
2
(BunG)σ (F,L

L
G,σ(V)) ≃ HomVect(coeff

Vac,glob
G ◦oblvσ(F),V)

for F ∈ D-mod 1
2
(BunG)σ and V ∈ Vect.

We will rewrite both sides of (3.22) and show that they are canonically isomorphic.

3.5.5. Using Theorem 2.3.4, we rewrite LL
G,σ(V) as

(3.23) (iσ)
∗(Ps-Idnv(PoincVac,glob

G,∗ ))⊗ V,

where

PoincVac,glob
G,∗ := DVerdier(PoincVac,glob

G,! )[−2δNρ(ωX )
] ∈ D-mod 1

2
(BunG)co.

Since σ is a smooth point of LSirred
Ǧ , we have

(iσ)
∗ ≃ (iσ)

![dim(LSirred
Ǧ )]⊗ det(T ∗

σ (LSǦ)),

where iσ : QCoh(LSirred
Ǧ ) → Vect is the functor of !-pullback, which is defined for maps of finite

Tor-dimension, and is the the right adjoint of (iσ)∗, since the map iσ : pt→ LSirred
Ǧ is proper.

In particular, the functor

D-mod 1
2
(BunG) ≃ D-mod 1

2
(BunG) ⊗

QCoh(LSǦ)
QCoh(LSǦ)

id⊗(iσ)!−→

→ D-mod 1
2
(BunG) ⊗

QCoh(LSǦ)
Vect = D-mod 1

2
(BunG)σ

is the right adjoint of oblvσ.

Note also that using the symplectic structure on LSirred
Ǧ , we can trivialize the line det(T ∗

σ (LSǦ)),

and we note that dim(LSirred
Ǧ ) = 2 dim(BunG).

Combining, we obtain that the left-hand side in (3.22) identifies with

(3.24) HomD-mod 1
2
(BunG)(oblvσ(F),Ps-Id

nv(PoincVac,glob
G,∗ )⊗ V)[2 dim(BunG)].

3.5.6. Denote

F
′ := oblvσ(F).

We rewrite (3.24) using Verdier duality as

(3.25) HomVect(C
·
c(BunG,F

′ ∗
⊗ PoincVac,glob

G,! ),V)[2 dim(BunG) + 2δNρ(ωX )
].

And we rewrite the right-hand side of (3.22) as

(3.26) HomVect(C
·(BunG,F

′ !
⊗ PoincVac,glob

G,∗ ),V)[2δNρ(ωX )
].

Hence, in order to establish (3.22), we need to construct an isomorphism

(3.27) C·
c(BunG,F

′ ∗
⊗ PoincVac,glob

G,! )[−2 dim(BunG)] ≃ C·(BunG,F
′ !
⊗ PoincVac,glob

G,∗ ).
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3.5.7. By the main theorem of [Lin], we have

PoincVac,glob
G,! [−2 dim(BunG)] ≃ MirBunG(PoincVac,glob

G,∗ ).

Now (3.27) follows from the fact that F′ has nilpotent singular support (see [AGKRRV1, Corollary
14.4.10]) combined with the next general assertion from [AGKRRV2, Theorem 3.4.2]:

Theorem 3.5.8. For any F′ ∈ D-mod 1
2
,Nilp(BunG) and any F′′ ∈ D-mod 1

2
(BunG)co, there is a canon-

ical isomorphism

C·
c(BunG,F

′ ∗
⊗MirBunG(F′′)) ≃ C·(BunG,F

′ !
⊗ F

′′).

Remark 3.5.9. The above argument can be generalized so that it proves ambidexterity for the functor
induced by LG

D-mod 1
2
,Nilp(BunG)cusp → IndCoh(LSirred,restr

Ǧ
),

where
D-mod 1

2
,Nilp(BunG)cusp := D-mod 1

2
,Nilp(BunG) ∩D-mod 1

2
(BunG)cusp

and
LSirred,restr

Ǧ
:= LSrestr

Ǧ ∩LSirred
Ǧ .

Note that LSirred,restr

Ǧ
is a disjoint union of formal schemes, each of which is isomorphic to the formal

completion of a point in a smooth symplectic scheme of dimension 2 dim(BunG).

4. The expression for AG,irred via opers

In this section we will prove that the object AG,irred ∈ QCoh(LSirred
Ǧ ) can be expressed via opers.

This will lead to a number of structural results concerning AG,irred, as well as the space of generic
oper structures on irreducible local systems.

Furthermore, given the recent result of [BKS], we will deduce GLC for classical groups.

4.1. Statement of the result.

4.1.1. Consider the space Opmon-free
Ǧ (Xgen)Ran fibered over Ran, whose fiber over x ∈ Ran is

Opmon-free
Ǧ (X − x).

Let πRan denote the resulting map

Opmon-free
Ǧ (Xgen)Ran → LSǦ .

Set
Opmon-free,irred

Ǧ
(Xgen)Ran := Opmon-free

Ǧ (Xgen)Ran ×
LSǦ

LSirred
Ǧ .

Let πirred
Ran denote the resulting map

Opmon-free,irred

Ǧ
(Xgen)Ran → LSirred

Ǧ .

Note that the morphism πirred
Ran is pseudo-proper, i.e., a (not necessarily filtered) colimit of proper

maps, see Sect. 3.3.11.

4.1.2. Consider the object10

B
Op
G,irred := oblvl

(
(πirred

Ran )!(ωOp
mon-free,irred

Ǧ
(Xgen)Ran

)

)
∈ QCoh(LSirred

Ǧ ),

where
oblvl : D-mod(LSirred

Ǧ )→ QCoh(LSirred
Ǧ )

is the “left” forgetful functor, see [GaRo1, Equation (5.3)].

By construction, BOp
G,irred is a co-commutative coalgebra in QCoh(LSirred

Ǧ ).

10The superscript “Op” in the notation below refers to opers and not to the opposite algebra structure.
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4.1.3. Denote by

LR
G,cusp : QCoh(LSirred

Ǧ )→ D-mod 1
2
(BunG)cusp

the functor right adjoint to LG,cusp.

Since the monoidal category QCoh(LSirred
Ǧ ) is rigid and the functor LG,cusp is QCoh(LSirred

Ǧ )-linear,

the functor LR
G,cusp is also naturally QCoh(LSirred

Ǧ )-linear.

Hence, the comonad

LG,cusp ◦ LR
G,cusp

acting on QCoh(LSirred
Ǧ ) is given by tensoring by a co-associative coalgebra object, to be denoted

BG,irred.

4.1.4. The main result of this section reads:

Theorem 4.1.5. There exists a canonical isomorphism between

BG,irred ≃ B
Op
G,irred

as plain objects of QCoh(LSirred
Ǧ ).

Remark 4.1.6. One can show that the isomorphism of Theorem 4.1.5 respects the co-associative coal-
gebra structures on the two sides. However, we will neither prove11 nor use this.

4.2. Combining with ambidexterity. Prior to proving Theorem 4.1.5 we will derive some conse-
quences.

4.2.1. Note that a priori, the comonad

LG,cusp ◦ LR
G,cusp

is the right adjoint of the monad

LG,cusp ◦ LL
G,cusp.

Hence, the coalgebra BG,irred identifies a priori with the monoidal dual of the algebra AG,irred.

4.2.2. Combining with Corollary 3.1.7 we obtain:

Corollary 4.2.3. There is a canonical isomorphism

AG,irred ≃ BG,irred

as objects of QCoh(LSirred
Ǧ ).

4.2.4. Combing further with Theorem 4.1.5, we obtain:

Corollary 4.2.5. There is a canonical isomorphism

AG,irred ≃ B
Op
G,irred

as objects of QCoh(LSirred
Ǧ ).

And as a result:

Corollary 4.2.6. The object BOp
G,irred ∈ QCoh(LSirred

Ǧ ) is compact.

11See, however, Remark 4.6.7.
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4.2.7. Consider the object

(4.1) (πirred
Ran )!(ωOp

mon-free,irred

Ǧ
(Xgen)Ran

) ∈ D-mod(LSirred
Ǧ ).

Assuming Theorem 3.1.8 for a moment, we obtain that the object (4.1) has the form

ωLSirred
Ǧ
⊗ B

Op
G,irred,

where B
Op
G,irred is a classical local system of finite rank on LSirred

Ǧ .

We will prove the following assertion, which would be needed for the final step in the proof of GLC:

Proposition 4.2.8. The local system B
Op
G,irred has a finite monodromy, i.e., it trivializes over a finite

étale cover of LSirred
Ǧ .

4.3. Proof of Proposition 4.2.8. We will deduce Proposition 4.2.8 from Theorem 4.1.5.

4.3.1. Denote
F := (πirred

Ran )!(ωOp
mon-free,irred

Ǧ
(Xgen)Ran

)[−n],

where12 n = dim(LSǦ).

Since the map πirred
Ran is pseudo-proper, this object can be written as

colim
i∈I

Fi Fi ∈ D-mod(LSirred
Ǧ ),

over some diagram I, where each Fi is of the form

(fi)∗,dR(ωYi)[−n],
where fi : Yi → LSirred

Ǧ is a proper map of algebraic stacks.

For each index i, consider the Stein factorization of the map fi

Yi → Y
0
i

f0
i→ LSirred

Ǧ ,

so that f0
i is a finite map.

Denote
F

0
i := (f0

i )∗,dR(ωY0
i
)[−n].

4.3.2. Let η be the generic point of a connected component of LSirred
Ǧ . It is enough to show that F|η

has a finite monodromy.

We have
Fi|η ∈ D-mod(η)≤0, F

0
i |η ∈ D-mod(η)♡

and the map
Fi → F

0
i

induces an isomorphism
H0(Fi|η)→ F

0
i |η.

By Theorem 3.1.8 combined with Corollary 4.2.5, the object F|η is concentrated in cohomological
degree 0. Hence, we obtain that

F|η ≃ colim
i∈I

F
0
i |η.

Since F|η is finite-dimensional, we obtain that I contains a finite sub-diagram If ⊂ I such that the
map

⊕
i∈If

F
0
i |η → F|η

is surjective.

Since each F0
i |η has a finite monodromy, we obtain that so does F|η.

□[Proposition 4.2.8]

12The cohomological shift is introduced for the sake of perverse normalization.
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4.4. Proof of Theorem 3.1.8. In this subsection we will continue to assume Theorem 4.1.5, and
deduce Theorem 3.1.8.

4.4.1. Since AG,irred is perfect, in order to prove that it is a classical vector bundle, it suffices to show
that the *-fibers of AG,irred at k-points of LSirred

Ǧ are concentrated in cohomological degree 0.

By the self-duality assertion in Corollary 3.1.7, it suffices to show that the *-fibers of AG,irred are
concentrated in non-positive cohomological degrees.

4.4.2. By Corollary 4.2.5, it suffices to show that the *-fibers of BOp
G,irred are concentrated in non-positive

cohomological degrees.

However, the *-fiber of BOp
G,irred at a k-point σ ∈ LSirred

Ǧ is isomorphic to C·(Opgen

Ǧ,σ
), where

Opgen

Ǧ,σ
:= {σ} ×

LSirred
Ǧ

Opmon-free,irred

Ǧ
(Xgen)Ran.

It is automatically concentrated in non-positive cohomological degrees, being the homology of a
prestack.

4.4.3. The D-module structure on AG,irred comes from the isomorphism of Corollary 4.2.5.
□[Theorem 3.1.8]

4.5. Contractibility of opers. In this subsection we will continue to assume Theorem 4.1.5. We will
show that the validity of GLC is equivalent to the contractibility (and, in fact, just connectedness) of
the space of generic oper structures on irreducible local systems.

4.5.1. Note that in the course of the proof of Theorem 3.1.8 above we have established:

Corollary 4.5.2. The homology of the fibers of the map πirred
Ran is acyclic off degree 0.

This can be equivalently reformulated as follows:

Corollary 4.5.3. The connected components of the fibers of the map πirred
Ran are homologically con-

tractible.

4.5.4. Applying Corollary 1.7.5, we obtain:

Corollary 4.5.5. The following assertions are equivalent:

(i) The functor LG is equivalence.

(ii) The fibers of the map πirred
Ran are connected.

(iii) The fibers of the map πirred
Ran are homologically contractible.

4.5.6. In particular, we obtain that GLC is equivalent to the following conjecture:

Conjecture 4.5.7. The space of generic oper structures on a given irreducible local system is homo-
logically contractible.

Remark 4.5.8. Note that the “bottom” layer of Conjecture 4.5.7 says that the space of generic oper
structures on a given irreducible local system is non-empty. This statement is actually a theorem,
thanks to [Ari].

Remark 4.5.9. The assertion of Conjecture 4.5.7 is easy for G = GLn. In particular, in this way we
obtain another proof of GLC in this case (i.e., one that is logically different from that in Sect. 1.8)13.

13The difference between the two arguments is that one uses a fully faithfulness assertion on the automorphic side,
another on the spectral side.
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4.5.10. Recall now that thanks to [BKS], Conjecture 4.5.7 is actually a theorem whenever G is a classical
group14. Hence, we obtain:

Main Theorem 4.5.11. The geometric Langlands conjecture holds when G is a classical group.

Remark 4.5.12. Formally speaking, the main theorem of [BKS] establishes Conjecture 4.5.7 for a slightly
different notion of oper, namely, for ǧ-opers, rather than Ǧ-opers (and it is the latter that appears in
Conjecture 4.5.7). In other words, [BKS] implies Conjecture 4.5.7 not for Ǧ itself but rather for its
adjoint quotient.

However, as we shall see in the sequel to this paper, the statement of GLC for a given pair (G, Ǧ)
formally follows from the case when Ǧ is replaced by its adjoint quotient (resp., G is replaced by the
simply-connected cover of its derived group).

4.6. Proof of Theorem 4.1.5. As we shall presently see, the proof of the theorem follows almost
immediately from diagram (3.14), once we combine the following pieces of information:

• The functor FLEG,crit is an equivalence;
• The functor LG,cusp is a Verdier quotient.

4.6.1. Consider the adjoint pair

(4.2) Poincspec
Ǧ,∗,irred : IndCoh∗(Opmon-free

Ǧ )Ran ⇄ QCoh(LSirred
Ǧ ) : coeffspec

Ǧ,irred
,

see (3.11), where coeffspec

Ǧ,irred
is the version of the functor coeffspec

Ǧ,x,irred
when x varies in families along

Ran.

4.6.2. We will deduce Theorem 4.1.5 from the following assertion, which takes place purely on the
spectral side.

Theorem 4.6.3. The comonad on QCoh(LSirred
Ǧ ) corresponding to (4.2) is given by tensor product

with B
Op
G,irred.

This theorem will be proved in Sect. 5. Let us assume it, and proceed with the proof of Theorem 4.1.5.

4.6.4. Since we only want to identify

(4.3) BG,irred ≃ B
Op
G,irred

as objects of QCoh(LSirred
Ǧ ) (and not as co-algebras), it suffices to construct an isomorphism of comonads

(4.4) Poincspec
Ǧ,∗,irred ◦(Poinc

spec

Ǧ,∗,irred)
R ≃ LG,cusp ◦ (LG,cusp)

R

acting on QCoh(LSirred
Ǧ ). Indeed, each side of (4.3) is obtained by applying the corresponding side of

(4.4) to OLSirred
Ǧ

.

4.6.5. Since FLEG,crit is an equivalence, the left-hand side in (4.4) identifies with

Poincspec
Ǧ,∗,irred ◦FLEG,crit ◦FLER

G,crit ◦(PoincspecǦ,∗,irred)
R.

Since LocG,cusp is a Verdier quotient, the right-hand side in (4.4) identifies with

LG,irred ◦ (LocG,cusp⊗l) ◦ ((LocG,cusp⊗l)R ◦ (LG,cusp)
R.

14Here by a classical group we mean a reductive group whose root datum is of type A, B, C or D.
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4.6.6. Hence, it suffices to establish an isomorphism between the comonads

Poincspec
Ǧ,∗,irred ◦FLEG,crit ◦FLER

G,crit ◦(PoincspecǦ,∗,irred)
R ≃

≃ LG,irred ◦ (LocG,cusp⊗l) ◦ ((LocG,cusp⊗l)R ◦ (LG,cusp)
R,

which is the same as

(Poincspec
Ǧ,∗,irred ◦FLEG,crit) ◦ (PoincspecǦ,∗,irred ◦FLEG,crit)

R ≃

≃ (LG,irred ◦ (LocG,cusp⊗l)) ◦ (LG,irred ◦ (LocG,cusp⊗l))R.

However, this follows formally from the commutativity of (3.14).
□[Theorem 4.1.5]

Remark 4.6.7. Note that Theorem 4.1.5 only says that BG,irred and B
Op
G,irred are isomorphic as objects

of QCoh(LSirred
Ǧ ), but not as co-associative co-algebras. One can upgrade the proof given above to an

isomorphism of coalgebras along the following lines:

It follows from the construction that both comonads in (4.4) are linear with respect to the ac-
tion of Rep(Ǧ)Ran on QCoh(LSirred

Ǧ ) via the functor ȷ∗ ◦ Locspec
Ǧ

, and the isomorphism between them
constructed above respects this structure.

It also follows from the construction that the QCoh(LSirred
Ǧ )-linear structure on LG,cusp ◦ (LG,cusp)

R

agrees with the above Rep(Ǧ)Ran-linear structure.

The comonad given by tensor product with B
Op
G,irred has a tautological linear structure with respect

to QCoh(LSirred
Ǧ ), and hence also with respect to Rep(Ǧ)Ran. It follows from the proof of Theorem 4.6.3

given in the next section that the above Rep(Ǧ)Ran-linear structure on − ⊗ B
Op
G,irred agrees with the

Rep(Ǧ)Ran-linear structure on Poincspec
Ǧ,∗,irred ◦(Poinc

spec

Ǧ,∗,irred)
R.

Thus, we obtain that the two comonads

−⊗ BG,irred and −⊗BOp
G,irred

are identified as Rep(Ǧ)Ran-linear comonads. Since the functor ȷ∗ ◦ Locspec
Ǧ

is a Verdier quotient, this

implies that the above identification is automatically QCoh(LSirred
Ǧ )-linear. The latter is equivalent to

the identification of BG,irred and B
Op
G,irred as co-associative coalgebras in QCoh(LSirred

Ǧ ).

5. Proof of Theorem 4.6.3

The rest of the paper is devoted to the proof of Theorem 4.6.3. In particular, it takes place purely
on the spectral side.

We will break up Theorem 4.6.3 into two assertions: Propositions 5.1.2 and 5.1.5. The former can
be informally phrased as “the Ran integral equates the quasi-coherent and de Rham direct images”.
The latter can be informally phrased as “the Ran integral erases the difference between the local and
the global”.

It will turn out that both these assertions are quite general, i.e., have nothing to do with the specifics
of opers or local systems.

5.1. Strategy of the proof.

5.1.1. Consider the tautological natural transformation

(5.1) (πRan)
IndCoh
∗ ◦ oblvr

Opmon-free
Ǧ

(Xgen)Ran
→ oblvr

LSǦ
◦ (πRan)∗,dR,

as functors

D-mod(Opmon-free
Ǧ (Xgen)Ran)⇒ IndCoh(LSǦ).

We will prove



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE IV 37

Proposition 5.1.2. The natural transformation (5.1) is an isomorphism when evaluated on objects in
the essential image of the functor

π!
Ran : D-mod(LSǦ)→ D-mod(Opmon-free

Ǧ (Xgen)Ran).

Remark 5.1.3. For the validity of Proposition 5.1.2, it is essential that we work with the entire Ran
and not a fixed x ∈ Ran.

5.1.4. Let (sRan)
IndCoh
∗ denote the functor

IndCoh(Opmon-free
Ǧ (Xgen)Ran)→ IndCoh∗(Opmon-free

Ǧ )Ran,

and let (sRan)
IndCoh,∗ denote its left adjoint.

The counit of the ((sRan)
IndCoh,∗, (sRan)

IndCoh
∗ )-adjunction defines a natural transformation

(5.2) (πRan)
IndCoh
∗ ◦ (sRan)

IndCoh,∗ ◦ (sRan)
IndCoh
∗ → (πRan)

IndCoh
∗ .

We will prove:

Proposition 5.1.5. The natural transformation (5.2), postcomposed with the coarsening functor

ΨLSǦ
: IndCoh(LSǦ)→ QCoh(LSǦ),

is an isomorphism, when evaluated on objects in the essential image of the functor

π!
Ran : IndCoh(LSǦ)→ IndCoh(Opmon-free

Ǧ (Xgen)Ran).

5.1.6. We claim that the combination of Propositions 5.1.2 and 5.1.5 implies the assertion of Theo-
rem 4.6.3.

Recall that the morphism πirred
Ran is pseudo-proper, so we can identify (πirred

Ran )! ≃ ((πirred
Ran )∗)

R. Hence,
the comonad

Poincspec
Ǧ,∗,irred ◦(Poinc

spec

Ǧ,∗,irred)
R

identifies with

ȷ∗ ◦ (πRan)
IndCoh
∗ ◦ (sRan)

IndCoh,∗ ◦ (sRan)
IndCoh
∗ ◦ (πRan)

! ◦ ȷ∗.
According to Proposition 5.1.5, this comonad maps isomorphically to the comonad

ȷ∗ ◦ (πRan)
IndCoh
∗ ◦ (πRan)

! ◦ ȷ∗ ≃ (πirred
Ran )IndCoh

∗ ◦ (πirred
Ran )!.

In particular, we obtain that this comonad is obtained by the !-tensor product with the coalgebra
object

(5.3) (πirred
Ran )IndCoh

∗ ◦ (πirred
Ran )!(ωLSirred

Ǧ
) ≃ (πirred

Ran )IndCoh
∗ (ω

Op
mon-free,irred

Ǧ
(Xgen)Ran

).

5.1.7. Restricting along the horizontal arrows in the Cartesian diagram

Opmon-free,irred

Ǧ
(Xgen)Ran

ȷ−−−−−→ Opmon-free
Ǧ (Xgen)Ran

πirred
Ran

y yπRan

LSirred
Ǧ

ȷ−−−−−→ LSǦ,

from Proposition 5.1.2 we obtain that the natural transformation

(5.4) (πirred
Ran )IndCoh

∗ ◦ oblvr

Op
mon-free,irred

Ǧ
(Xgen)Ran

→ oblvr
LSirred

Ǧ
◦ (πirred

Ran )∗,dR

is an isomorphism, when evaluated on objects lying in the essential image of

(πirred
Ran )! : D-mod(LSirred

Ǧ )→ D-mod(Opmon-free,irred

Ǧ
(Xgen)Ran).

Hence, we obtain that the coalgebra (5.3) maps isomorphically to

oblvr
LSirred

Ǧ

(
(πirred

Ran )∗,dR ◦ (πirred
Ran )!(ωLSirred

Ǧ
)
)
≃

≃ oblvr
LSirred

Ǧ
◦ (πirred

Ran )∗,dR(ωOp
mon-free,irred

Ǧ
(Xgen)Ran

).
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Finally, we note that

oblvr
LSirred

Ǧ
(−) ≃ oblvl

LSirred
Ǧ

(−)⊗ ωLSirred
Ǧ

.

□[Theorem 4.6.3]

5.2. Framework for the proof of Proposition 5.1.2. In this subsection we will explain a general
framework for the proof of Proposition 5.1.2: it has to do with a morphism between D-prestacks over
X.

5.2.1. Consider the prestack

(Opmon-free
Ǧ (Xgen)Ran)dRrel := (Opmon-free

Ǧ (Xgen)Ran)dR ×
(LSǦ)dR

LSǦ,

so that

IndCoh((Opmon-free
Ǧ (Xgen)Ran)dRrel),

is the category of relative D-modules on Opmon-free
Ǧ (Xgen)Ran with respect to the projection πRan.

Denote by

indrel : IndCoh(Opmon-free
Ǧ (Xgen)Ran)⇄ IndCoh((Opmon-free

Ǧ (Xgen)Ran)dRrel) : oblv
rel

the resulting pair of adjoint functors.

Consider also the functors

(5.5) (πRan)
IndCoh
∗,dRrel : IndCoh((Opmon-free

Ǧ (Xgen)Ran)dRrel)→ IndCoh(LSǦ)

and

(5.6) (πRan)
!
dRrel : IndCoh(LSǦ)→ IndCoh((Opmon-free

Ǧ (Xgen)Ran)dRrel).

5.2.2. As in Sect. 5.1.1 we have a natural transformation

(5.7) (πRan)
IndCoh
∗ ◦ oblvrel → (πRan)∗,dRrel ,

as functors

IndCoh((Opmon-free
Ǧ (Xgen)Ran)dRrel)⇒ IndCoh(LSǦ).

The assertion of Proposition 5.1.2 follows immediately from the one:

Proposition 5.2.3. The natural transformation (5.7) is an isomorphism when evaluated on objects in
the essential image of the functor (5.6).

In its turn, Proposition 5.2.3 follows from the next assertion:

Proposition 5.2.4. The counit of the adjunction

indrel ◦ oblvrel → Id

is an isomorphism, when evaluated on objects in the essential image of the functor (5.6).

5.3. An abstract version of Proposition 5.2.4. In this subsection we will show that Proposi-
tion 5.2.4 is a particular case of a general assertion that has to do with a morphism f : Z → Y of
D-prestacks over X.
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5.3.1. Consider the prestack Sect∇(X,Y) of horizontal sections of Y, as well as

Sect∇(Xgen,Y)Ran and Sect∇(Xgen,Z)Ran

that associate to a point x ∈ Ran the spaces of horizontal sections of Y and Z over X − x, respectively.

Note that we have a tautological map

Sect∇(X,Y)× Ran→ Sect∇(Xgen,Y)Ran

(and similarly for Z).

Denote

Sect∇(Xgen,Z/Y)Ran := Sect∇(Xgen,Z)Ran ×
Sect∇(Xgen,Y)Ran

(Sect∇(X,Y)× Ran).

Denote by πRan the natural projection

Sect∇(Xgen,Z/Y)Ran → Sect∇(X,Y)

and by πRan,dRrel the map

(Sect∇(Xgen,Z/Y)Ran)dRrel → Sect∇(X,Y)

5.3.2. We will impose the following finiteness conditions on Y and Z:

• Y is sectionally laft in the sense of [Ro, Sect. 3.1.3(ii)], i.e.,
– The prestack Sect∇(X,Y) is locally almost of finite type;
– The condition of [Ro, Sect. 3.1.3(ii)] is satisfied for points of Sect∇(X,Y);

• Z is meromorphically sectionally laft relative to Y, i.e.,
– The prestack Sect∇(Xgen,Z/Y)Ran is locally almost of finite type;
– The condition of [Ro, Sect. 3.1.3(ii)] is satisfied for points of Sect∇(Xgen,Z/Y)Ran.

5.3.3. Denote

(Sect∇(Xgen,Z/Y)Ran)dRrel := (Sect∇(Xgen,Z/Y)Ran)dR ×
Sect∇(X,Y)dR

Sect∇(X,Y).

Let

(5.8) indrel : IndCoh(Sect∇(Xgen,Z/Y)Ran)⇄ IndCoh
(
(Sect∇(Xgen,Z/Y)Ran)dRrel

)
: oblvrel

the resulting pair of adjoint functors.

We have:

Proposition 5.3.4. The counit of the adjunction

indrel ◦ oblvrel → Id

is an isomorphism, when evaluated on objects in the essential image of the pullback functor

(πRan,dRrel)
! : IndCoh(Sect∇(X,Y))→ IndCoh

(
(Sect∇(Xgen,Z/Y)Ran)dRrel

)
.

The proof will be given in Sect. A.

5.3.5. Note that Proposition 5.2.4 is indeed a particular case of Proposition 5.3.4: we take Y to be the
constant D-stack with fiber pt /Ǧ and Z := OpǦ.

□[Proposition 5.2.4]

5.4. A digression: the category QCohco. In order to formulate (an abstract version of) Proposi-
tion 5.1.5, it will be convenient to introduce a general construction of a certain variant of the category
of quasi-coherent sheaves on a prestack, denoted QCohco(−).
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5.4.1. Let W be a prestack. We define the category QCohco(W) by

QCohco(W) := colim
S→W, S∈Schaff

QCoh(S),

where the colimit is taken with respect to the direct image functors15.

5.4.2. Example. Suppose that W is a scheme. Then it is easy to see that the naturally defined functor

QCohco(W)→ QCoh(W)

is an equivalence.

In fact, according to [Ga4, Proposition 6.2.7 and Theorem 2.2.6], the same is true when W is an
eventually coconnective quasi-compact algebraic stack of finite type with an affine diagonal.

Note that W = LSǦ is an example of such an algebraic stack.

Remark 5.4.3. We do not know whether QCohco(W) is dualizable. However, QCohco(W) is tautologi-
cally the pre-dual of QCoh(W), i.e.,

QCoh(W) ≃ Funct(QCohco(W),Vect),

where Funct(−,−) is the category of colimit-preserving functors.

In particular, if W is such that QCohco(W) is dualizable, then so is QCoh(W).

5.4.4. Example. Let W be an ind-scheme, written as

W = colim
i

W i, W i ∈ Sch,

where the transition maps W i →W j are closed embeddings.

In this case,

QCohco(W) ≃ colim
i

QCoh(W i)

where the colimit is taken with respect to the direct image functors.

Note that if W is of ind-finite type, we have a naturally defined functor

(5.9) ΨW : IndCoh(W)→ QCohco(W).

Indeed, we can write

IndCoh(W) ≃ colim
i

IndCoh(W i)

(under direct image functors) and (5.9) is given by the compatible family of functors

ΨW i : IndCoh(W
i)→ QCoh(W i).

One can show that (5.9) is an equivalence if W is formally smooth.

5.4.5. The assignment

W⇝ QCohco(W)

has the following functoriality properties for maps f : W1 →W2:

• We have the direct image functor

f∗ : QCohco(W1)→ QCohco(W2).

• If f is schematic, we also have the pullback functor

f∗ : QCohco(W2)→ QCohco(W1),

which is a left adjoint of f∗.

15The reason for the notation “QCohco” is that it is a version of the QCoh category, i.e., we take the colimit with
respect to the *-direct image maps, instead of the limit with respect to the *-pullback maps.
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• For a pullback square

W1
f−−−−−→ W2y y

S1
f−−−−−→ S2,

where S1 and S2 are affine schemes, the functor

QCoh(S1) ⊗
QCoh(S2)

QCohco(W2)→ QCohco(W1),

defined by f∗, is an equivalence;

• If f is schematic and of finite Tor dimension, we also have the !-pullback functor

f ! : QCohco(W2)→ QCohco(W1).

Note that if f is also proper, then the functors (f∗, f
!) are mutually adjoint.

5.4.6. Let WRan be a prestack over Ran. Set

(5.10) QCohco(W)Ran := lim
S∈Schaff

aft
, S→Ran

QCohco(WRan ×
Ran

S) ⊗
QCoh(S)

IndCoh(S),

where the limit is formed using the *-pullback functors along the QCohco(WRan ×
Ran

S)-factors and

!-pullback functors along the IndCoh(S)-factors.

Thus, an object F ∈ QCohco(W)Ran gives rise to an object

FS,x ∈ QCohco(WRan ×
Ran

S) ⊗
QCoh(S)

IndCoh(S)

for every x ∈ Ran(S).

In the case when WRan → Ran is schematic, so that for every (S, x) as above we have
QCohco(WRan ×

Ran
S) ≃ QCoh(WRan ×

Ran
S), we will simply write QCoh(W)Ran instead of

QCohco(W)Ran.

Remark 5.4.7. The assignment

S ⇝ QCohco(WRan ×
Ran

S)

naturally forms a sheaf of categories over Ran, to be denoted

QCohco(W)Ran.

The above definition of QCohco(W)Ran is a particular case of the following construction: for any
sheaf of categories CRan over Ran, we can assign the category

CRan := lim
S∈Schaff

aft
, S→Ran

C(S) ⊗
QCoh(S)

IndCoh(S).

Note that since Ran is 1-affine, we have

CRan ≃ Γ(Ran,CRan) ⊗
QCoh(Ran)

IndCoh(Ran).

In particular, since the functor

QCoh(Ran)→ IndCoh(Ran), F 7→ F ⊗ ωRan

is an equivalence, we have an equivalence

CRan ≃ Γ(Ran,CRan).
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5.4.8. Let pWRan denote the projection

WRan → Ran.

Note that we have a well-defined functor

(pWRan)∗ : QCohco(W)Ran → IndCoh(Ran) ≃ D-mod(Ran).

Let us denote by

ΓIndCohRan(WRan,−) : QCohco(W)Ran → Vect

the functor equal to the composition

QCohco(W)Ran

(pWRan
)∗

−→ D-mod(Ran)
ΓIndCoh(Ran,−)−→ Vect,

where we can alternatively think of ΓIndCoh(Ran,−) as the functor

C·
c(Ran,−) : D-mod(Ran)→ Vect,

left adjoint to k 7→ ωRan.

5.4.9. Assume now that WRan is locally almost of finite type (so that IndCoh(WRan) is defined) and
assume that WRan → Ran is a relative ind-scheme.

We claim that in this case, there exists a well-defined functor

(5.11) ΨWRan : IndCoh(WRan)→ QCohco(W)Ran,

which is a variant of (5.9).

Indeed, we can write

IndCoh(WRan) ≃ lim
S∈Schaff

aft
, S→Ran

IndCoh(WRan ×
Ran

S),

so it is enough to define a compatible family of functors

(5.12) IndCoh(WRan ×
Ran

S)→ QCohco(WRan ×
Ran

S).

Write

WRan ×
Ran

S ≃ colim
i

W i
S ,

where W i
S are schemes, and the transition maps W i

S →W j
S are closed embeddings.

The functors (5.12) are given by the compatible family of functors

IndCoh(W i
S)→ QCoh(W i

S) ⊗
QCoh(S)

IndCoh(S),

Serre-dual to the tautological functors

QCoh(W i
S) ⊗

QCoh(S)
IndCoh(S)→ IndCoh(W i

S),

given by !-pullback along W i
S → S.

5.5. Abstract version of Proposition 5.1.5: the absolute case. As with Proposition 5.1.2, we
will prove an abstract statement, of which Proposition 5.1.5 is a particular case. The general set-up
involves a morphism

Z→ Y

of D-prestacks as in Sect. 5.3.1. For expository purposes, we will first consider the absolute situation,
i.e., one when Y = pt.
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5.5.1. Let Z be an affine D-scheme over X. For x ∈ Ran we will denote by Zx (resp.,
◦
Zx) the scheme

(resp., ind-scheme) Sect∇(Dx,Z) (resp., Sect∇(Dx − x,Z)).

Consider the corresponding categories

QCoh(Zx) and QCohco(
◦
Zx).

In addition, we can consider the ind-scheme Sect∇(X − x,Z), and the categories

IndCoh(Sect∇(X − x,Z)) and QCohco(Sect∇(X − x,Z)).

5.5.2. Letting x ∈ Ran move in a family over Ran, we obtain the spaces ZRan and
◦
ZRan, where

ZRan → Ran

is a relative scheme, and
◦
ZRan → Ran

is a relative ind-scheme. Consider also the relative ind-scheme Sect∇(Xgen,Z)Ran.

We define the categories QCoh(Z)Ran, QCohco(
◦
Z)Ran and QCohco(Sect∇(Xgen,Z))Ran by the recipe

of Sect. 5.4.6.

5.5.3. Consider the map

sZ,Ran : Sect∇(Xgen,Z)Ran →
◦
ZRan,

obtained by restricting horizontal sections along

Dx − x→ X − x.

When Z is unambiguous, we will simply write sRan instead of sZ,Ran.

We have an adjoint pair of functors

(sRan)
∗ : QCohco(

◦
Z)Ran ⇄ QCohco(Sect∇(Xgen,Z))Ran : (sRan)∗.

5.5.4. An abstract version of Proposition 5.1.5 (in the absolute case) case reads:

Proposition 5.5.5. The natural transformation

ΓIndCohRan(Sect∇(Xgen,Z)Ran,−) ◦ (sRan)
∗ ◦ (sRan)∗ → ΓIndCohRan(Sect∇(Xgen,Z)Ran,−)

is an isomorphism, when evaluated on the image of ωSect∇(Xgen,Z))Ran
along

IndCoh(Sect∇(Xgen,Z)Ran)
ΨSect∇(Xgen,Z)Ran−→ QCohco(Sect∇(Xgen,Z))Ran.

The proof will be given in Sect. B.

5.6. Abstract version of Proposition 5.1.5: the relative case. In this section we will introduce
a relative version of the set-up of Sect. 5.5.

5.6.1. First, we introduce a relative version of the construction from Sect. 5.4.1. Let

W→ Y

be a morphism of prestacks.

We define the category QCohco(W/Y) by

lim
S→Y, S∈Schaff

QCohco(W×
Y
S),

where the limit is formed using *-pullbacks.
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5.6.2. Assume for a moment that Y has an affine diagonal. Then each of the above maps S → Y is
affine, so we have well-defined pullback functors

QCohco(W)→ QCohco(W×
Y
S),

which combine to a functor

(5.13) QCohco(W)→ QCohco(W/Y).

Remark 5.6.3. As in Remark 5.4.7, to W → Y as above, we can attach a sheaf of categories
QCohco(W/Y) over Y.

By definition,

QCohco(W/Y) ≃ Γ(Y,QCohco(W/Y)).

5.6.4. Assume for a moment that both Y and W are locally almost of finite type, Y is an algebraic stack,
and W → Y is a relative ind-scheme. In this case, as in Sect. 5.4.4 we obtain a canonically defined
functor

(5.14) ΨW/Y : IndCoh(W)→ QCohco(W/Y).

5.6.5. Let now WRan → YRan be a morphism of prestacks over Ran. We define the category
QCohco(W/Y)Ran by

QCohco(W/Y)Ran := lim
S∈Schaff

aft
, S→Ran

QCohco(WRan ×
Ran

S/S) ⊗
QCoh(S)

IndCoh(S),

cf. Sect. 5.4.6.

Assume now that both YRan and WRan are locally almost of finite type, YRan is a relative algebraic
stack over Ran, and WRan → YRan is a relative ind-scheme.

In this case, as in Sect. 5.4.9 we obtain a canonically defined functor

(5.15) ΨWRan/YRan
: IndCoh(WRan)→ QCohco(W/Y)Ran.

5.6.6. Let Y → X be a D-prestack with an affine diagonal, satisfying the finiteness assumptions of
Sect. C.1.116. Let Z → Y be an affine morphism between D-prestacks, satisfying the assumptions of
Sect. 5.3.2.

Denote

(
◦
Z×

◦
Y

Y)Ran :=
◦
ZRan ×

◦
YRan

YRan.

Consider the corresponding category

(5.16) QCohco(
◦
Z×

◦
Y

Y/Y)Ran.

5.6.7. Let Sect∇(Xgen,Z/Y)Ran have the same meaning as in Sect. 5.3.1. We will view it as a relative
ind-scheme over

Sect∇(X,Y)× Ran.

Consider the corresponding category

QCohco(Sect∇(Xgen,Z/Y)/ Sect∇(X,Y))Ran.

16For our applications, we will take Y to be the constant D-stack with fiber pt /Ǧ.
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5.6.8. Let πRan denote the projection

Sect∇(Xgen,Z/Y)Ran → Sect∇(X,Y).

Combined with the projection

pSect∇(Xgen,Z/Y)Ran
: Sect∇(Xgen,Z/Y)Ran → Ran,

we have a map

πRan × pSect∇(Xgen,Z/Y)Ran
: Sect∇(Xgen,Z/Y)Ran → Sect∇(X,Y)× Ran,

and a well-defined functor

(πRan × pSect∇(Xgen,Z/Y)Ran
)∗ : QCohco(Sect∇(Xgen,Z/Y)/ Sect∇(X,Y))Ran →

→ QCoh(Sect∇(X,Y))⊗ IndCoh(Ran).

Let us denote by

(πRan)
IndCohRan
∗ : QCohco(Sect∇(Xgen,Z/Y)/ Sect∇(X,Y))Ran → QCoh(Sect∇(X,Y))

the composite functor

QCohco(Sect∇(Xgen,Z/Y)/Sect∇(X,Y))Ran

(πRan×pSect∇(Xgen,Z/Y)Ran
)∗

−→

→ QCoh(Sect∇(X,Y))⊗ IndCoh(Ran)
Id⊗ΓIndCoh(Ran,−)−→ QCoh(Sect∇(X,Y)).

Note that we have a commutative diagram

(5.17)

IndCoh(Sect∇(Xgen,Z/Y)Ran)
ΨSect∇(Xgen,Z/Y)Ran/ Sect∇(X,Y)−−−−−−−−−−−−−−−−−−−−−−−→ QCohco(Sect∇(Xgen,Z/Y))Ran

(πRan)
IndCoh
∗

y y(πRan)
IndCohRan
∗

IndCoh(Sect∇(X,Y))
ΨSect∇(X,Y)−−−−−−−−→ QCoh(Sect∇(X,Y)),

where the top horizontal arrow is the functor of (5.15).

5.6.9. Restriction to the parameterized formal punctured disc gives rise to a map

sZ/Y,Ran : Sect∇(Xgen,Z/Y)Ran → (
◦
Z×

◦
Y

Y)Ran.

When Z and Y are unambiguous, we will simply write sRan instead of sZ/Y,Ran.

We have an adjoint pair of functors

(sRan)
∗ : QCohco(

◦
Z×

◦
Y

Y/Y)Ran ⇄ QCohco(Sect∇(Xgen,Z/Y)/ Sect∇(X,Y))Ran : (sRan)∗.

5.6.10. We claim:

Proposition 5.6.11. The natural transformation

(πRan)
IndCohRan
∗ ◦ (sRan)

∗ ◦ (sRan)∗ → (πRan)
IndCohRan
∗

is an isomorphism, when evaluated on objects that lie in the essential image of the functor

IndCoh(Sect∇(X,Y))
π!
Ran−→ IndCoh(Sect∇(Xgen,Z/Y)Ran)→

→ QCohco(Sect∇(Xgen,Z/Y)/ Sect∇(X,Y))Ran,

where the second arrow is the functor ΨSect∇(Xgen,Z/Y)Ran/ Sect∇(X,Y)×Ran of (5.15).

The proof will be given in Sect. C.
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5.6.12. Let us show how Proposition 5.6.11 implies Proposition 5.1.5.

We apply Proposition 5.6.11 to Z = OpǦ and Y being the constant D-prestack with fiber pt /Ǧ, so
that

(
◦
Z×

◦
Y

Y)Ran = (Opmon-free
Ǧ )Ran

and

Sect∇(Xgen,Z/Y)Ran = Opmon-free
Ǧ (Xgen)Ran.

According to Sect. 5.4.4, we have a naturally functor

IndCoh∗(Opmon-free
Ǧ )Ran → QCohco(Opmon-free

Ǧ )Ran.

Combining with (5.13), we obtain a functor

(5.18) IndCoh∗(Opmon-free
Ǧ )Ran → QCohco(Opmon-free

Ǧ /(pt /Ǧ))Ran,

where the notation QCohco(Opmon-free
Ǧ /(pt /Ǧ))Ran is the particular case of (5.16).

We have a commutative diagram

(5.19)

IndCoh(Opmon-free
Ǧ (Xgen)Ran)

(5.15)−−−−−→ QCohco(Opmon-free
Ǧ (Xgen))Ran

(sRan)
IndCoh
∗

y y(sRan)∗

IndCoh∗(Opmon-free
Ǧ )Ran

(5.18)−−−−−→ QCohco(Opmon-free
Ǧ /(pt /Ǧ))Ran.

Moreover, the diagram

(5.20)

IndCoh∗(Opmon-free
Ǧ )Ran

(5.18)−−−−−→ QCohco(Opmon-free
Ǧ /(pt /Ǧ))Ran

(sRan)
IndCoh,∗

y y(sRan)
∗

IndCoh(Opmon-free
Ǧ (Xgen)Ran)

(5.15)−−−−−→ QCohco(Opmon-free
Ǧ (Xgen))Ran,

obtained from (5.19) by passing to left adjoints along the vertical arrows, commutes as well.

The conclusion of Proposition 5.1.5 follows now from Proposition 5.6.11, by juxtaposing the com-
mutative diagrams (5.17), (5.19) and (5.20).

□[Proposition 5.1.5]

Appendix A. Proof of Proposition 5.3.4

The idea of the proof of Proposition 5.3.4 can be summarized by the following slogan: the unital
version of the space of rational horizontal sections maps isomorphically to its own de Rham prestack.

We will deduce it from the main theorem of [Ro] by a rather formal manipulation.

A.1. The unital Ran space. In order to prove Proposition 5.3.4 we will need to work with the unital
Ran space, which is no longer a prestack (i.e., a functor from affine schemes to∞-groupoids) but rather
a categorical prestack, i.e., a functor from affine schemes to ∞-categories.

A.1.1. Recall the notion of categorical prestack, see [Ro, Appendix C]. By definition, this is just a
functor

(Schaff)op → 1-Cat,

where 1-Cat denotes the (∞, 1)-category of (∞, 1)-categories.

Thus, a categorical prestack X assigns to an affine scheme S a category, to be denoted X(S), and to
a map f : S1 → S2 a functor

X(f) : X(S2)→ X(S1),

equipped with a datum of compatibility for compositions.
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A.1.2. Let Ranuntl be the unital version of the Ran space, see [Ga4, Sect. 4.2] or [Ro, Sect. 2.1].
I.e., Ranuntl associates to an affine scheme S the category of finite subsets of Hom(S,XdR), where the
morphisms are given by inclusion.

Let

t : Ran→ Ranuntl

denote the tautological map.

A.1.3. Along with the prestacks

Sect∇(Xgen,Z)Ran, Sect∇(Xgen,Z/Y)Ran, (Sect∇(Xgen,Z/Y)Ran)dRrel , etc

one can consider their unital versions, which are now categorical prestacks, denoted

(A.1) Sect∇(Xgen,Z)Ranuntl , Sect∇(Xgen,Z/Y)Ranuntl , (Sect∇(Xgen,Z/Y)Ranuntl)dRrel ,

respectively, see [Ro, Sect. 3.3.1].

Explicitly, for an affine scheme S, the category Sect∇(Xgen,Z)Ranuntl(S) consists of pairs (x, z),
where x ∈ Ranuntl(S) and z is a horizontal section of Z on X × S −Graphx.

A morphism (x1, z1)→ (x2, z2) is an inclusion x1 ⊆ x2 and an identification

z1|X×S−Graphx2
≃ z2.

And similarly for the other two categorical prestacks in (A.1).

A.1.4. By definition, the projections from the categorical prestacks in (A.1) to Ranuntl are value-wise
co-Cartesian fibrations in groupoids.

Denote by πRanuntl the projection from

(Sect∇(Xgen,Z/Y)Ranuntl)dRrel → Sect∇(X,Y).

A.1.5. We will denote by t the maps from the non-unital to the unital versions. We have

πRanuntl ◦ t = πRan.

A.2. IndCoh on categorical prestacks.

A.2.1. Let X be a categorical prestack locally almost of finite type, see [Ro, Sect. C.1.3] for what this
means. In this case, it makes sense to talk about the category IndCoh(X) (see [Ga4, Sect. 2.2] or [Ro,
Sect. C.3]).

Namely, an object F ∈ IndCoh(X) associates to an affine scheme S (assumed almost of finite type)
a functor

X(S)→ IndCoh(S),

in a way compatible with !-pullback for morphisms between affine schemes.

We will denote this data as follows:

• For an object x ∈ X(S), we have an object

x!(F) ∈ IndCoh(S);

• For a morphism x1
α→ x2 in X(S) a morphism

x!
1(F)→ x!

2(F)

in IndCoh(S).
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A.2.2. We let

IndCoh(X)str ⊂ IndCoh(X)

be the full subcategory, consisting of objects F ∈ IndCoh(X) such that for every affine test-scheme S
and an arrow

x1
α→ x2, x1, x2 ∈ X(S),

the resulting map

x!
1(F)→ x!

2(F)

is an isomorphism.

In other words, if we denote by

X
str→ Xstr

the prestack, obtained from X by inverting all arrows, the pullback functor

IndCoh(Xstr)
str!−→ IndCoh(X)

defines an equivalence

IndCoh(Xstr)
∼→ IndCoh(X)str.

A.2.3. We claim:

Lemma A.2.4. The natural diagram of categories

IndCoh(XdR)str //

��

IndCoh(X)str

��
IndCoh(XdR) // IndCoh(X)

is a pullback square.

Proof. Follows from the fact that for an affine scheme S almost of finite type, the !-pullback functor
with respect to Sred → S is conservative.

□

A.3. A reformulation.

A.3.1. Note that the projection

(Sect∇(Xgen,Z/Y)Ran)dRrel

π
Ran,dRrel

→ Sect∇(X,Y)

factors as

(Sect∇(Xgen,Z/Y)Ran)dRrel
t→ (Sect∇(Xgen,Z/Y)Ranuntl)dRrel

str→

→
(
Sect∇(Xgen,Z/Y)Ranuntl

str

)
dRrel

(π
Ranuntl,dRrel )str

→ Sect∇(X,Y),

where (
Sect∇(Xgen,Z/Y)Ranuntl

str

)
dRrel

:=
(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
str

.

Hence, the pullback functor

π!
Ranuntl.dRrel : IndCoh(Sect∇(X,Y))→ IndCoh

(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
maps to

IndCoh
(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
str
⊂ IndCoh

(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
.
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A.3.2. We obtain that Proposition 5.3.4 follows from the next more precise statement:

Proposition A.3.3. The counit of the adjunction

indrel ◦ oblvrel → Id

is an isomorphism, when evaluated on objects in the essential image along t! of

IndCoh
(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
str
⊂ IndCoh

(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
.

A.3.4. Consider the commutative diagram

(A.2)

Sect∇(Xgen,Z/Y)Ran
t−−−−−→ Sect∇(Xgen,Z/Y)Ranuntly y

(Sect∇(Xgen,Z/Y)Ran)dRrel
t−−−−−→ (Sect∇(Xgen,Z/Y)Ranuntl)dRrel

This diagram is value-wise Cartesian. Hence, we have a well-defined pair of adjoint functors

(A.3) indrel
untl : IndCoh(Sect∇(Xgen,Z/Y)Ranuntl)⇄

IndCoh
(
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

)
: oblvrel

untl,

and both functors are compatible with their non-unital counterparts (5.8) via t!.

A.3.5. We also have a commutative diagram

Sect∇(Xgen,Z/Y)Ranuntl
str−−−−−→ Sect∇(Xgen,Z/Y)Ranuntl

stry y
(Sect∇(Xgen,Z/Y)Ranuntl)dRrel

str−−−−−→
(
Sect∇(Xgen,Z/Y)Ranuntl

str

)
dRrel

,

where

Sect∇(Xgen,Z/Y)Ranuntl
str

:= (Sect∇(Xgen,Z/Y)Ranuntl)str ,

which is value-wise Cartesian. Hence, we have another pair of adjoint functors

(A.4) indrel
untl,str : IndCoh

(
Sect∇(Xgen,Z/Y)Ranuntl

str

)
⇄

⇄ IndCoh
((

Sect∇(Xgen,Z/Y)Ranuntl
str

)
dRrel

)
: oblvrel

untl,str,

where both functors are compatible with their non-strict counterparts (A.3) via str!.

We can equivalently think of (A.4) as an adjunction

(A.5) indrel
untl,str : (IndCoh (Sect∇(Xgen,Z/Y)Ranuntl))str ⇄

⇄ (IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel))str : oblv
rel
untl,str.

A.3.6. The assertion of Proposition A.3.3 follows from the following even more precise statement:

Proposition A.3.7. The functor

oblvrel
untl,str : (IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel))str → (IndCoh (Sect∇(Xgen,Z/Y)Ranuntl))str

is an equivalence.

A.4. A description of relative D-modules. In order to prove Proposition A.3.7, we will describe
the category

IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel)

à la [Ro, Corollary 4.6.10].
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A.4.1. As a warm-up, let us fix a point x, and consider the prestack

Sect∇(X − x,Z/Y) := Sect∇(X − x,Z) ×
Sect∇(X−x,Y)

Sect∇(X,Y)

along with its variant

Sect∇(X − x,Z/Y)dRrel := Sect∇(X − x,Z)dR ×
Sect∇(X−x,Y)dR

Sect∇(X,Y) ≃

≃ (Sect∇(X − x,Z/Y))dR ×
Sect∇(X,Y)dR

Sect∇(X,Y).

We will describe the category

IndCoh(Sect∇(X − x,Z/Y)dRrel)

along with its forgetful (i.e., pullback) functor to IndCoh(Sect∇(X − x,Z/Y)).

A.4.2. Consider the map

addx : Ranuntl → Ranuntl,

given by

y 7→ y ∪ x.

Set

Sect∇(Xgen,Z/Y)Ranuntl,x := Sect∇(Xgen,Z/Y)Ranuntl ×
Ranuntl,addx

Ranuntl.

Restriction along X − (y ∪ x) ⊂ X − x gives rise to a map

(A.6) Sect∇(X − x,Z/Y)× Ranuntl → Sect∇(Xgen,Z/Y)Ranuntl,x.

A.4.3. Denote by

Sect∇(Xgen,Z/Y)∧Ranuntl,x

the formal completion of Sect∇(Xgen,Z/Y)Ranuntl,x along (A.6).

The projection

Sect∇(X − x,Z/Y)× Ranuntl → Sect∇(X − x,Z/Y)dRrel

tautologically extends to map

(A.7) Sect∇(Xgen,Z/Y)∧Ranuntl,x → Sect∇(X − x,Z/Y)dRrel .

A.4.4. The following is a version of [Ro, Corollary 4.6.10], where we allow poles at x:

Theorem A.4.5. The functor

IndCoh (Sect∇(X − x,Z/Y)dRrel)→

→ IndCoh (Sect∇(X − x,Z/Y)) ×
IndCoh(Sect∇(X−x,Z/Y)×Ranuntl)

IndCoh
(
Sect∇(Xgen,Z/Y)∧Ranuntl,x

)
,

given by pullback along the maps Sect∇(X − x,Z/Y) → Sect∇(X − x,Z/Y)dRrel and (A.7), is an
equivalence.

Remark A.4.6. In fact, this theorem is a particular case of [Ro, Corollary 4.6.10]: replace the original
Z by its restriction of scalars along X − x→ X.
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A.4.7. We will now state a version of Theorem A.4.5, where we let x vary along Ranuntl. Consider the
map

add : Ranuntl × Ranuntl → Ranuntl, x1, x2 7→ x1 ∪ x2.

Set

Sect∇(Xgen,Z/Y)add := Sect∇(Xgen,Z/Y)Ranuntl ×
Ranuntl,add

(Ranuntl × Ranuntl),

and

Sect∇(Xgen,Z/Y)pr1 := Sect∇(Xgen,Z/Y)Ranuntl ×
Ranuntl,pr1

(Ranuntl × Ranuntl),

where

pr1 : Ranuntl × Ranuntl → Ranuntl

is the projection on the first factor. In other words,

Sect∇(Xgen,Z/Y)pr1 ≃ Sect∇(Xgen,Z/Y)Ranuntl × Ranuntl.

Restriction along X − (x1 ∪ x2) ⊂ X − x1 gives rise to a map

(A.8) Sect∇(Xgen,Z/Y)pr1 → Sect∇(Xgen,Z/Y)add.

A.4.8. Denote by

Sect∇(Xgen,Z/Y)∧add

the formal completion of Sect∇(Xgen,Z/Y)add along (A.8).

The projection

Sect∇(Xgen,Z/Y)pr1 → (Sect∇(Xgen,Z/Y)Ranuntl)dRrel

tautologically extends to a map

(A.9) Sect∇(Xgen,Z/Y)∧add → (Sect∇(Xgen,Z/Y)Ranuntl)dRrel .

The following is a version of Theorem A.4.5 in families:

Theorem A.4.9. The functor

(A.10) IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel)→
→ IndCoh (Sect∇(Xgen,Z/Y)Ranuntl) ×

IndCoh(Sect∇(Xgen,Z/Y)pr1)
IndCoh

(
Sect∇(Xgen,Z/Y)∧add

)
,

given by pullback along the maps Sect∇(Xgen,Z/Y)Ranuntl → (Sect∇(Xgen,Z/Y)Ranuntl)dRrel and (A.9),
is an equivalence.

A.5. Proof of Proposition A.3.7.

A.5.1. The functor (A.10) induces a functor

(A.11) IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel)str →
→ IndCoh(Sect∇(Xgen,Z/Y)Ranuntl)str ×

IndCoh(Sect∇(Xgen,Z/Y)pr1)str

IndCoh
(
Sect∇(Xgen,Z/Y)∧add

)
str

,

where the two sides in (A.11) are full subcategories in the corresponding sides in (A.10).

Since the functor (A.10) is an equivalence, we obtain that (A.11) is fully faithful.

A.5.2. We will prove:

Lemma A.5.3. The functor

IndCoh
(
Sect∇(Xgen,Z/Y)∧add

)
str
→ IndCoh (Sect∇(Xgen,Z/Y)pr1)str

is an equivalence.

Let us assume this lemma for a moment and finish the proof of Proposition A.3.7.
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A.5.4. By Lemma A.5.3, we obtain that the right-hand side in (A.11) projects isomorphically onto the
first factor. Hence, we obtain that the pullback functor

(A.12) IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel)str → IndCoh(Sect∇(Xgen,Z/Y)Ranuntl)str,

which is the functor oblvrel
untl,str of Proposition A.3.7, is fully faithful.

It remains to show that the functor (A.12) is essentially surjective.

A.5.5. Let F be an object in IndCoh(Sect∇(Xgen,Z/Y)Ranuntl)str, which, by Lemma A.5.3, we interpret
as an object in the right-hand side of (A.11).

By Theorem A.4.9 it corresponds to an object FdR ∈ IndCoh ((Sect∇(Xgen,Z/Y)Ranuntl)dRrel), and
we only need to show that FdR is strict. However, this follows from (a relative version of) Lemma A.2.4.

□[Proposition A.3.7]

A.6. Proof of Lemma A.5.3.

A.6.1. We will prove that the map

(Sect∇(Xgen,Z/Y)pr1)str →
(
Sect∇(Xgen,Z/Y)∧add

)
str

is an isomorphism of prestacks.

A.6.2. We claim:

Lemma A.6.3. Let W → Ranuntl × Ranuntl be a map of categorical prestacks, which is a value-wise
co-Cartesian fibration. Then then the induced map

W ×
Ranuntl×Ranuntl,∆

Ranuntl →W

induces an isomorphism (
W ×

Ranuntl×Ranuntl,∆

Ranuntl

)
str →Wstr.

Proof. This follows from the fact that the diagonal map ∆ : Ranuntl → Ranuntl ×Ranuntl is value-wise
cofinal.

□

A.6.4. Applying Lemma A.6.3, it suffices to show that the map

Sect∇(Xgen,Z/Y)pr1 ×
Ranuntl×Ranuntl,∆

Ranuntl → Sect∇(Xgen,Z/Y)∧add ×
Ranuntl×Ranuntl,∆

Ranuntl

induces an isomorphism on strictifications.

We claim that the above map is actually an isomorphism as-is.

A.6.5. Since the operation of formal completion commutes with fiber products, it suffices to show that
the map

Sect∇(Xgen,Z/Y)pr1 ×
Ranuntl×Ranuntl,∆

Ranuntl → Sect∇(Xgen,Z/Y)add ×
Ranuntl×Ranuntl,∆

Ranuntl

is an isomorphism.

However, the latter is evident on the nose.
□[Lemma A.5.3]

Appendix B. Proof of Proposition 5.5.5

In this section we let Z be an arbitrary affine D-scheme over X.

We will show that the assertion of Proposition 5.5.5 essentially amounts to [BD1, Proposition 4.6.5],
combined with some unitality considerations.

B.1. A reformulation in terms of unital structure.
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B.1.1. Let us return to the setting of Sect. 5.4.6. Suppose that WRan extends to a categorical prestack
WRanuntl over Ranuntl, so that

WRan ≃WRanuntl ×
Ranuntl

Ran,

and

WRanuntl → Ranuntl

is a value-wise co-Cartesian fibration in groupoids.

Effectively, this means that for S ∈ Schaff and a map α : x1 → x2 in Ranuntl(S) we have a map of
prestacks

αW : WRan ×
Ran,x1

S →WRan ×
Ran,x2

S.

We will refer to WRanuntl as the unital structure on WRan.

Let t denote the tautological map

WRan →WRanuntl .

B.1.2. To the data as above we can attach a category QCohco(W)Ranuntl . Namely, the data of an object
of QCohco(W)Ranuntl consists of an object F ∈ QCohco(W)Ran, and for every α as above of a map(

(αW)∗ ⊗ IdIndCoh(S)

)
(FS,x1

)→ FS,x2

in

QCohco(WRan ×
Ran,x2

S) ⊗
QCoh(S)

IndCoh(S).

Let t! denote the tautological forgetful functor

QCohco(W)Ranuntl → QCohco(W)Ran.

B.1.3. Note that the space Sect∇(Xgen,Z)Ranuntl from Sect. A.1.3 provides a unital structure on
Sect∇(Xgen,Z)Ran.

We will deduce Proposition 5.5.5 from the following more precise statement:

Proposition B.1.4. The natural transformation

ΓIndCohRan(Sect∇(Xgen,Z)Ran,−) ◦ (sRan)
∗ ◦ (sRan)∗ → ΓIndCohRan(Sect∇(Xgen,Z)Ran,−)

is an isomorphism, when evaluated on the essential image of the functor

t! : QCohco(Sect∇(Xgen,Z))Ranuntl → QCohco(Sect∇(Xgen,Z))Ran.

In the rest of this subsection we will show how Proposition B.1.4 implies Proposition 5.5.5.

B.1.5. Assume that WRanuntl is locally almost of finite type (in particular, WRan is locally almost of
finite type, so that the category IndCoh(WRan) is well-ddefined). We claim that we have a well-defined
category IndCoh(WRanuntl).

By definition, the data of an object of IndCoh(WRanuntl) consists of an object F ∈ QCohco(WRan),
i.e., for every x ∈ Ran(S) we have an object FS,x ∈ IndCoh(WRan ×

Ran,x
S), and for every α as above of

a map

(αW)∗(FS,x1
)→ FS,x2

in IndCoh(S).

Let t! denote the tautological forgetful functor

IndCoh(WRanuntl)→ IndCoh(WRan).



54 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

B.1.6. Assume now that WRan → Ran is a relative ind-scheme. Then as in Sect. 5.4.9 we have a functor

(B.1) ΨW
Ranuntl

: IndCoh(WRanuntl)→ QCohco(W)Ranuntl ,

which makes the diagram

IndCoh(WRanuntl)
ΨW

Ranuntl−−−−−−−→ QCohco(W)Ranuntl

t!

y yt!

IndCoh(WRan)
ΨWRan−−−−−→ QCohco(W)Ran

commutes.

B.1.7. Thus, we obtain that in order to prove Proposition 5.5.5, it suffices to show that the object

ωSect∇(Xgen,Z)Ran
∈ IndCoh(Sect∇(Xgen,Z)Ran)

lies in the essential image of the functor

t! : IndCoh(Sect∇(Xgen,Z)Ranuntl)→ IndCoh(Sect∇(Xgen,Z)Ran).

However, this is true for any WRanuntl for which the maps αW are proper, which is the case for
Sect∇(Xgen,Z)Ranuntl .

□[Proposition 5.5.5]

B.2. The local unital structure.

B.2.1. Recall the categories QCoh(Z)Ran and QCohco(
◦
Z)Ran, see Sect. 5.4.6. We will now introduce

their variants, to be denoted

QCoh(Z)Ranuntl and QCohco(
◦
Z)Ranuntl ,

respectively.

In order to do so, as in Sect. B.1.2, we must attach to a map α : x1 → x2 in Ranuntl(S) functors

(B.2) QCoh(ZRan ×
Ran,x1

S)→ QCoh(ZRan ×
Ran,x2

S)

and

(B.3) QCohco(
◦
ZRan ×

Ran,x1

S)→ QCohco(
◦
ZRan ×

Ran,x2

S),

respectively.

B.2.2. Recall that for a point x of Ran we have

Zx ≃ Sect∇(Dx,Z) and
◦
Zx ≃ Sect∇(Dx − x,Z).

For x1 ⊆ x2, set
◦
Zx1⊆x2

:= Sect∇(Dx2 − x1,Z).

Restriction along

Dx1 ⊆ Dx2

defines a map

(B.4) Zx2
→ Zx1

.

We define the functor

(B.5) QCoh(Zx1
)→ QCoh(Zx2

)

to be given by pullback along (B.4).
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B.2.3. Restriction along

Dx1 − x1 ⊆ Dx2 − x1 ⊇ Dx2 − x2

defines maps

(B.6)
◦
Zx1
←

◦
Zx1⊆x2

→
◦
Zx2

.

The operation of *-pull and *-push along (B.6) gives rise to a functor

(B.7) QCohco(
◦
Zx1

)→ QCohco(
◦
Zx2

).

B.2.4. The operations in (B.5) and (B.7) make sense when x1 and x2 are S-points of Ran, and give
rise to the sought-for functors (B.2) and (B.3), respectively.

We will denote by t! the corresponding forgetful functors

QCoh(Z)Ranuntl → QCoh(Z)Ran and QCohco(
◦
Z)Ranuntl → QCohco(

◦
Z)Ran,

respectively.

B.2.5. We will deduce Proposition B.1.4 from the following even more precise assertion:

Proposition B.2.6. The natural transformation

ΓIndCohRan(
◦
ZRan,−)→ ΓIndCohRan(

◦
ZRan,−) ◦ (sRan)∗ ◦ (sRan)

∗ ≃

≃ ΓIndCohRan(Sect∇(Xgen,Z)Ran,−) ◦ (sRan)
∗,

arising from the unit of the ((sRan)
∗, (sRan)∗)-adjunction, is an isomorphism, when evaluated on objects

lying in the essential image of the functor

t! : QCohco(
◦
Z)Ranuntl → QCohco(

◦
Z)Ran.

In the rest of this subsection we will show how Proposition B.2.6 implies Proposition B.1.4.

B.2.7. Let Fglob be an object of QCohco(Sect∇(Xgen,Z))Ran, and assume that it lies in the essential
image of

t! : QCohco(Sect∇(Xgen,Z))Ranuntl → QCohco(Sect∇(Xgen,Z))Ran.

We wish to show that the map

ΓIndCohRan

(
◦
ZRan, (sRan)∗ ◦ (sRan)

∗ ◦ (sRan)∗(Fglob)

)
→ ΓIndCohRan

(
◦
ZRan, (sRan)∗(Fglob)

)
,

induced by the counit of the ((sRan)
∗, (sRan)∗)-adjunction, is an isomorphism.

It is sufficient to show that the map

ΓIndCohRan

(
◦
ZRan, (sRan)∗(Fglob)

)
→ ΓIndCohRan

(
◦
ZRan, (sRan)∗ ◦ (sRan)

∗ ◦ (sRan)∗(Fglob)

)
,

induced by the unit of the adjunction, is an isomorphism.

B.2.8. Denote

Floc := (sRan)∗(Fglob) ∈ QCohco(
◦
Z)Ran.

Thus, we have to show that the map

(B.8) ΓIndCohRan(
◦
ZRan,Floc)→ ΓIndCohRan(

◦
ZRan, (sRan)∗ ◦ (sRan)

∗(Floc)),

induced by the unit of the adjunction, is an isomorphism.
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B.2.9. Note that the functor

(sRan)∗ : QCohco(Sect∇(Xgen,Z))Ran → QCohco(
◦
Z)Ran

gives rise to a functor

(sRanuntl)∗ : QCohco(Sect∇(Xgen,Z))Ranuntl → QCohco(
◦
Z)Ranuntl ,

so that the diagram

QCohco(Sect∇(Xgen,Z))Ranuntl

(s
Ranuntl

)∗
−−−−−−−→ QCohco(

◦
Z)Ranuntl

t!

y yt!

QCohco(Sect∇(Xgen,Z))Ran
(sRan)∗−−−−−→ QCohco(

◦
Z)Ran

commutes.

B.2.10. Hence, the assumption on Fglob implies that Floc lies in the essential image of

t! : QCohco(
◦
Z)Ranuntl → QCohco(

◦
Z)Ran.

Hence, the isomorphism (B.8) follows from Proposition B.2.6.
□[Proposition B.1.4]

B.3. An expression for the global sections functor. In this subsection we will recall the expression
for the functor

ΓIndCohRan (Sect∇(Xgen,Z)Ran,−) ◦ (sRan)
∗

in terms of factorization homology à la [BD1, Sect. 4.6].

B.3.1. To any categorical prestack W we can attach the prestack W→ that classifies arrows in W. I.e.,
for a test affine scheme S, the groupoid W→(S) classifies triples

(w1 ∈W(S), w2 ∈W(S), α : w1 → w2).

B.3.2. Denote

Ran⊆ := (Ranuntl)→.

Denote by

prsmall, prbig : Ran⊆ → Ran

the maps that correspond to the source and the target of the arrow, respectively.

Explicitly, the groupoid Ran⊆(S) consists of

{x1, x2 ∈ Ran(S) |x1 ⊆ x2},

and the maps prsmall and prbig send a point as above to x1 and x2, respectively.

B.3.3. Denote

ZRan⊆,small := ZRan ×
Ran,prsmall

Ran⊆, ZRan⊆,big := ZRan ×
Ran,prbig

Ran⊆

and
◦
ZRan⊆,small :=

◦
ZRan ×

Ran,prsmall

Ran⊆,
◦
ZRan⊆,big :=

◦
ZRan ×

Ran,prbig

Ran⊆.

Proceeding as in Sect. 5.4.6, one can define the corresponding categories

QCoh(Z)Ran⊆,small, QCoh(Z)Ran⊆,big

and

QCohco(
◦
Z)Ran⊆,small and QCohco(

◦
Z)Ran⊆,big,

respectively.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE IV 57

B.3.4. Denote by

pZRan : ZRan → Ran

and

pZRan⊆,small
: ZRan⊆,small → Ran⊆ and pZRan⊆,big

: ZRan⊆,big → Ran⊆,

as well as

p◦
ZRan

:
◦
ZRan → Ran

and

p◦
ZRan⊆,small

:
◦
ZRan⊆,small → Ran⊆ and p◦

ZRan⊆,big

:
◦
ZRan⊆,big → Ran⊆,

the resulting maps.

We will consider the corresponding functors

(pZRan)∗ : QCoh(Z)Ran → IndCoh(Ran)

and

(p◦
ZRan⊆,big

)∗ : QCoh(Z)Ran⊆,big → IndCoh(Ran⊆)

as well

(p◦
ZRan

)∗ : QCohco(
◦
Z)Ran → IndCoh(Ran)

and

(p◦
ZRan⊆,big

)∗ : QCohco(
◦
Z)Ran⊆,big → IndCoh(Ran⊆).

B.3.5. Note now that the unital structures on the categories QCoh(Z)Ran and QCohco(
◦
Z)Ran, deter-

mined by QCoh(Z)Ranuntl , and QCohco(
◦
Z)Ranuntl , respectively, give rise to functors

(B.9) QCohco(Z)Ran⊆,small → QCohco(Z)Ran⊆,big

and

(B.10) QCohco(
◦
Z)Ran⊆,small → QCohco(

◦
Z)Ran⊆,big.

Denote the compositions

QCoh(Z)Ran
pr!small−→ QCohco(Z)Ran⊆,small

(B.9)−→ QCohco(Z)Ran⊆,big

and

QCohco(
◦
Z)Ran

pr!small−→ QCohco(
◦
Z)Ran⊆,small

(B.10)−→ QCohco(
◦
Z)Ran⊆,big

in both instances by ins. vac.; we will refer to this functor as the “insertion of vacuum”.

B.3.6. Let

diag : Ran→ Ran⊆

denote the diagonal map,

x 7→ (x ⊆ x).

In terms of Sect. B.3.1, it corresponds to the identity morphisms on objects of WRanuntl(S).

Note that we have pullback squares

(B.11)

ZRan
diag−−−−−→ ZRan⊆,big

pZRan

y ypZRan⊆,big

Ran
diag−−−−−→ Ran⊆.
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and

(B.12)

◦
ZRan

diag−−−−−→
◦
ZRan⊆,big

p◦
ZRan

y yp◦
ZRan⊆,big

Ran
diag−−−−−→ Ran⊆.

Note also that we have a canonical identification

diag! ◦ ins. vac. ≃ Id,

in both instances.

B.3.7. Recall that sZ,Ran (or simply sRan) denotes the map

Sect∇(Xgen,Z)Ran →
◦
ZRan.

We will use the same symbol sZ,Ran (or simply sRan) to denote the map

Sect∇(X,Z)× Ran→ ZRan.

The following assertion is a variant with parameters of [BD2, Proposition 4.6.5]:

Proposition B.3.8.

(a) The functor

QCoh(Z)Ran
(sRan)

∗
−→ QCoh(Sect∇(X,Z))⊗ IndCoh(Ran)

Γ(Sect∇(X,Z),−)⊗Id−→ IndCoh(Ran)

identifies canonically with

QCoh(Z)Ran
ins.vac.−→ QCoh(Z)Ran⊆,big

(pZRan⊆,big
)∗

−→ IndCoh(Ran⊆)
(prsmall)

IndCoh
∗−→ IndCoh(Ran).

Under the above identification, the map

(pZRan)∗ → (pZRan)∗ ◦ (sRan)∗ ◦ (sRan)
∗,

given by the unit of the ((sRan)
∗, (sRan)∗)-adjunction, corresponds to the map

(pZRan)∗ ≃ (prsmall)∗ ◦ (pZRan⊆,big
)∗ ◦ diag∗ ≃

≃ (prsmall)∗ ◦ (pZRan⊆,big
)∗ ◦ diag∗ ◦ diag

! ◦ ins. vac.→ (prsmall)∗ ◦ (pZRan⊆,big
)∗ ◦ ins. vac. .

(b) The functor

QCohco(
◦
Z)Ran

(sRan)
∗

−→ QCohco(Sect∇(Xgen,Z))Ran

(pSect∇(Xgen,Z))Ran
)∗

−→ IndCoh(Ran)

identifies canonically with

QCohco(
◦
Z)Ran

ins.vac.−→ QCohco(
◦
Z)Ran⊆,big

(p◦
ZRan⊆,big

)∗

−→ IndCoh(Ran⊆)
(prsmall)∗−→ IndCoh(Ran).

Under the above identification, the map

(p◦
ZRan

)∗ → (p◦
ZRan

)∗ ◦ (sRan)∗ ◦ (sRan)
∗,

given by the unit of the ((sRan)
∗, (sRan)∗)-adjunction, corresponds to the map

(p◦
ZRan

)∗ ≃ (prsmall)∗ ◦ (p◦
ZRan⊆,big

)∗ ◦ diag∗ ≃

≃ (prsmall)∗ ◦ (p◦
ZRan⊆,big

)∗ ◦ diag∗ ◦diag
! ◦ ins. vac.→ (prsmall)∗ ◦ (p◦

ZRan⊆,big

)∗ ◦ ins. vac. .

B.4. Inputing the unitality structure. In this subsection we will prove Proposition B.2.6 by com-
bining Proposition B.3.8(b) with a cofinality argument.
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B.4.1. Note that in the situation of Sect. B.3.1, the prestack W→ itself can also be extended to a
categorical prestack.

Applying this to Ranuntl, we obtain a categorical prestack, denoted Ranuntl
⊆ . Explicitly, the space of

morphisms

(x1 ⊆ x2)→ (x′
1 ⊆ x′

2)

is {
{∗} if x1 ⊆ x′

1 and x2 ⊆ x′
2,

∅, otherwise.

Denote by

t⊆ : Ranuntl → Ranuntl
⊆

the corresponding map.

B.4.2. The following assertion follows by unwinding the constructions:

Lemma B.4.3. The composite functor

QCohco(
◦
Z)Ranuntl

t!→ QCohco(
◦
Z)Ran

ins.vac.−→ QCohco(
◦
Z)Ran⊆,big

(pZRan⊆,big
)∗

−→ IndCoh(Ran⊆)

factors via a functor

QCohco(
◦
Z)Ranuntl → IndCoh(Ranuntl

⊆ ),

followed by t!⊆.

B.4.4. Note that from (B.12), we obtain commutative diagrams

QCohco(
◦
Z)Ran⊆,big

diag!−−−−−→ QCohco(
◦
Z)Ran

(p◦
ZRan⊆,big

)∗
y y(p◦

ZRan

)∗

IndCoh(Ran⊆)
diag!−−−−−→ IndCoh(Ran)

and

QCohco(
◦
Z)Ran

diag∗−−−−−→ QCohco(
◦
Z)Ran⊆,big

(p◦
ZRan

)∗
y y(p◦

ZRan⊆,big

)∗

IndCoh(Ran)
diag∗−−−−−→ IndCoh(Ran⊆).

Hence, combining Proposition B.3.8(b) and Lemma B.4.3, we obtain that in order deduce Proposi-
tion B.2.6, it suffices to prove the following assertion:

Proposition B.4.5. The natural transformation

ΓIndCoh(Ran,−) ◦ diag! ≃ ΓIndCoh(Ran,−) ◦ (prsmall)∗ ◦ diag∗ ◦diag
! →

→ ΓIndCoh(Ran,−) ◦ (prsmall)∗ ≃ ΓIndCoh(Ran⊆,−)

of functors IndCoh(Ran⊆) ⇒ Vect, is an isomorphism, when evaluated on the essential image of the
functor

t!⊆ : IndCoh(Ranuntl
⊆ )→ IndCoh(Ran⊆).

□[Proposition B.2.6]
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B.4.6. Proof of Proposition B.4.5. We need to show that the natural transformation

(B.13) C·
c(Ran,−) ◦ diag! ◦t!⊆ → C·

c(Ran⊆,−) ◦ t!⊆,

as functors

IndCoh(Ranuntl
⊆ )⇒ Vect,

is an isomorphism.

First, as in [Ga4, Theorem 4.6.2], one shows that the map t⊆ is universally homologically cofinal.
Hence, the natural transformation

C·
c(Ran⊆,−) ◦ t!⊆ → C·

c(Ranuntl
⊆ ,−),

as functors

IndCoh(Ranuntl
⊆ )⇒ Vect,

is an isomorphism.

Consider now the composition

t⊆ ◦ diag : Ran→ Ranuntl
⊆ .

It is easily seen to be value-wise cofinal. Hence, the natural transformation

C·
c(Ran,−) ◦ diag! ◦t!⊆ → C·

c(Ranuntl
⊆ ,−),

as functors

IndCoh(Ranuntl
⊆ )⇒ Vect,

is an isomorphism.

Combining, we obtain that (B.13) is also an isomorphism, as desired.
□[Proposition B.4.5]

Appendix C. Proof of Proposition 5.6.11

.
We will show that Proposition 5.6.11 amounts to a parameterized version of Proposition 5.5.5,

combined with a fully-faithfulness assertion regarding the localization functor LocY.

C.1. The localization functor in the abstract setting.

C.1.1. Let YRan satisfy the following conditions:

• The diagonal map YRan → YRan ×
Ran

YRan is affine. Note that this formally implies that the

diagonal map of Sect(X,Y) is affine;

• For every S → Ran, the prestack YRan ×
Ran

S is passable (see [GaRo2, Chapter 3, Sect. 3.5.1]

for what this means);

• The prestack Sect(X,Y) is passable.

C.1.2. Note that the above conditions imply that the morphism

sY,Ran : Sect(X,Y)× Ran→ YRan

behaves nicely with respect to push-forwards:

For any prestack W mapping to YRan, and the base-changed map

s′Y,Ran : (Sect(X,Y)× Ran) ×
YRan

W→W,

the functor

(s′Y,Ran)∗ : QCoh((Sect(X,Y)× Ran) ×
YRan

W)→ QCoh(W),

right adjoint to (s′Y,Ran)
∗, commutes with colimits, and satisfies the base change formula. This follows

from [GaRo2, Chapter 3, Proposition 3.5.3].



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE IV 61

C.1.3. Consider the resulting pair of adjoint functors

(sY,Ran)
∗ : QCoh(Y)Ran ⇄ QCoh(Sect(X,Y))⊗ IndCoh(Ran) : (sY,Ran)∗.

Denote

LocY := (Id⊗ΓIndCoh(Ran,−)) ◦ (sY,Ran)
∗, QCoh(Y)Ran → QCoh(Sect(X,Y)).

The right adjoint LocRY of LocY is thus given by

(sY,Ran)∗ ◦ (Id⊗(ωRan ⊗−)), QCoh(Sect(X,Y))→ QCoh(Y)Ran.

C.1.4. We will prove:

Proposition C.1.5. Let Y be a D-prestack with an affine diagonal, satisfying the finiteness assumptions
of Sect. C.1.1 above. Then the natural transformation

LocY ◦(sY,Ran)∗ ≃ (Id⊗ΓIndCoh(Ran,−)) ◦ (sY,Ran)
∗ ◦ (sY,Ran)∗ → (Id⊗ΓIndCoh(Ran,−)),

arising from the counit of the ((sY,Ran)
∗, (sY,Ran)∗)-adjunction, is an isomorphism, when evaluated on

the essential image of the functor

t! ⊗ Id : QCoh(Sect(X,Y))⊗ IndCoh(Ranuntl)→ QCoh(Sect(X,Y))⊗ IndCoh(Ran).

This proposition will be proved in Sect. C.3.

C.1.6. Combined with the contractibility of the Ran space, i.e., the fact that the map

ΓIndCoh(Ran, ωRan)→ k,

given by the counit of the (ΓIndCoh(Ran,−), ωRan ⊗ −)-adjunction, is an isomorphism, from Proposi-
tion C.1.5 we obtain:

Proposition C.1.7. Let Y be a D-prestack with an affine diagonal, satisfying the finiteness assumptions
of Sect. C.1.1 above. Then the counit of the adjunction

LocY ◦LocRY → Id,

is an isomorphism.

Note that Proposition C.1.7 can be restated as:

Corollary C.1.8. Under the above assumptions on Y, the functor

LocRY : QCoh(Sect(X,Y))→ QCoh(Y)Ran

is fully faithful.

C.1.9. Note that for Y being the constant D-stack with fiber pt /Ǧ, we have

Sect(X,Y) ≃ LSǦ .

Furthermore, we have a tautological identification

QCoh(Y)Ran ≃ Rep(Ǧ)Ran.

Under this identification, we have

LocY ≃ Locspec
Ǧ

and

LocRY ≃ Γspec

Ǧ
.

Hence, Corollary C.1.8 contains Proposition 1.1.4 as a particular case.

Remark C.1.10. As far as the actual proof of Proposition C.1.5 is concerned, we will first establish
Proposition C.1.7, and then deduce the general case stated in Proposition C.1.5.

C.2. Proof of Proposition 5.6.11. In this subsection we will assume Proposition C.1.5 and deduce
Proposition 5.6.11.
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C.2.1. Note that along with the category QCohco(Sect∇(Xgen,Z/Y)/Sect(X,Y))Ran, we can consider
its unital version QCohco(Sect∇(Xgen,Z/Y)/ Sect(X,Y))Ranuntl , equipped with a forgetful functor
(C.1)

t! : QCohco(Sect∇(Xgen,Z/Y)/Sect(X,Y))Ranuntl → QCohco(Sect∇(Xgen,Z/Y)/ Sect(X,Y))Ran.

We will show that the natural transformation

(C.2) (πRan)
IndCohRan
∗ ◦ (sZ/Y,Ran)

∗ ◦ (sZ/Y,Ran)∗ → (πRan)
IndCohRan
∗ ,

induced by the counit of the ((sZ/Y,Ran)
∗, (sZ/Y,Ran)∗)-adjunction, is an isomorphism, when evaluated

on objects lying in the essential image of the forgetful functor (C.1).

C.2.2. Set

(
◦
Z×

◦
Y

Y)′Ran := (Sect(X,Y)× Ran) ×
YRan

(
◦
Z×

◦
Y

Y)Ran,

viewed as a prestack mapping to Sect(X,Y)× Ran.

Let us denote by π′
Ran the projection

(
◦
Z×

◦
Y

Y)′Ran → Sect(X,Y).

Consider the corresponding category

QCohco((
◦
Z×

◦
Y

Y)′/Sect(X,Y))Ran.

A procedure similar to that defining the functor (πRan)
IndCohRan
∗ gives rise to a functor

(π′
Ran)

IndCohRan
∗ : QCohco((

◦
Z×

◦
Y

Y)′/Sect(X,Y))Ran → QCoh(Sect(X,Y)).

C.2.3. Note that the morphism

sZ/Y,Ran : Sect∇(Xgen,Z/Y)Ran → (
◦
Z×

◦
Y

Y)Ran

can be naturally factored as

Sect∇(Xgen,Z/Y)Ran

s′
Z/Y,Ran−→ (

◦
Z×

◦
Y

Y)′Ran

s′Y,Ran−→ (
◦
Z×

◦
Y

Y)Ran,

where s′Y,Ran is a base change of the map

sY,Ran : Sect(X,Y)× Ran→ YRan,

which appears in Proposition C.1.5.

Thus, we can factor (sZ/Y,Ran)∗ as

QCohco(Sect∇(Xgen,Z/Y)/Sect(X,Y))Ran

(s′
Z/Y,Ran)∗−→ QCohco((

◦
Z×

◦
Y

Y)′/ Sect(X,Y))Ran

(s′Y,Ran)∗−→

→ QCohco(
◦
Z×

◦
Y

Y/Y)Ran

and (sZ/Y,Ran)
∗ as

QCohco(
◦
Z×

◦
Y

Y/Y)Ran

(s′Y,Ran)
∗

−→ QCohco((
◦
Z×

◦
Y

Y)′/Sect(X,Y))Ran

(s′
Z/Y,Ran)

∗

−→

→ QCohco(Sect∇(Xgen,Z/Y)/Sect(X,Y))Ran.
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C.2.4. Consider the natural transformation

(C.3) (π′
Ran)∗ ◦ (s′Y,Ran)

∗ ◦ (s′Y,Ran)∗ ◦ (s′Z/Y,Ran)∗ →
→ (πRan)∗ ◦ (s′Z/Y,Ran)

∗ ◦ (s′Y,Ran)
∗ ◦ (s′Y,Ran)∗ ◦ (s′Z/Y,Ran)∗,

arising from the unit of the ((s′Z/Y,Ran)
∗, (s′Z/Y,Ran)∗)-adjunction.

Its composition with (C.2) is the natural transformation

(C.4) (π′
Ran)∗ ◦ (s′Y,Ran)

∗ ◦ (s′Y,Ran)∗ ◦ (s′Z/Y,Ran)∗ → (π′
Ran)∗ ◦ (s′Z/Y,Ran)∗ ≃ (πRan)∗,

arising from the counit of the ((s′Y,Ran)
∗, (s′Y,Ran)∗)-adjunction.

We will show that both (C.3) and (C.4) are isomorphisms when evaluated on objects lying in the
essential image of the functor (C.1). This will imply that (C.2) is also an isomorphism on such objects.

C.2.5. Verification that (C.3) is an isomorphism. Along with QCohco((
◦
Z×

◦
Y

Y)′/ Sect(X,Y))Ran we can

consider its unital version

QCohco((
◦
Z×

◦
Y

Y)′/ Sect(X,Y))Ranuntl .

Note that the functors

(s′Y,Ran)
∗, (s′Y,Ran)∗, (s′Z/Y,Ran)

∗, (s′Z/Y,Ran)∗

upgrade to functors

(s′Y,Ranuntl)
∗, (s′Y,Ranuntl)∗, (sZ/Y,Ranuntl)

∗, (sZ/Y,Ranuntl)∗

between the corresponding unital categories.

Hence, the functor
(s′Y,Ran)

∗ ◦ (s′Y,Ran)∗ ◦ (s′Z/Y,Ran)∗

sends objects that lie in the essential image of the functor (C.1) to objects that lie in the essential
image of the corresponding functor

(C.5) t! : QCohco((
◦
Z×

◦
Y

Y)′/ Sect(X,Y))Ranuntl → QCohco((
◦
Z×

◦
Y

Y)′/ Sect(X,Y))Ran.

We obtain that it is enough to show that the natural transformation

(C.6) (π′
Ran)

IndCohRan
∗ ◦ (s′Y,Ran)

∗ → (πRan)
IndCohRan
∗ ,

arising from the counit of the ((s′Y,Ran)
∗, (s′Y,Ran)∗)-adjunction, is an isomorphism when evaluated on

objects lying in the essential image of the functor (C.5).

However, the latter statement is a parameterized (by Sect(X,Y)) version of Proposition B.2.6.

C.2.6. Verification that (C.4) is an isomorphism. As above, it is enough to show that the natural
transformation

(C.7) (π′
Ran)

IndCohRan
∗ ◦ (s′Y,Ran)

∗ ◦ (s′Y,Ran)∗ → (π′
Ran)

IndCohRan
∗

is an isomorphism when evaluated on objects lying in the essential image of the functor (C.5).

However, by base change along the Cartesian diagram

(
◦
Z×

◦
Y

Y)′Ran

s′Y,Ran−−−−−→ (
◦
Z×

◦
Y

Y)Rany y
Sect(X,Y)× Ran

sY,Ran−−−−−→ YRan,

this reduces to the assertion of Proposition C.1.5.
□[Proposition 5.6.11]
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C.3. Proof of Proposition C.1.5.

C.3.1. We will first reduce the assertion of Proposition C.1.5 to that of Proposition C.1.7, and then
prove Proposition C.1.7.

We need to show that the natural transformation

(Id⊗ΓIndCoh(Ranuntl,−)) ◦ (sRanuntl)
∗ ◦ (sRanuntl)∗ → (Id⊗ΓIndCoh(Ranuntl,−))

arising from the counit of the ((sRanuntl)∗, (sRanuntl)∗)-adjunction, is an isomorphism.

C.3.2. First, note that the left-lax symmetric monoidal structure on the functor

ΓIndCoh(Ranuntl,−) : IndCoh(Ranuntl)→ Vect,

arising by adjunction from the monoidal structure on the functor ωRanuntl ⊗ −, is actually strictly
symmetric monoidal structure. Indeed, this follows from the fact that the diagonal morphism

Ranuntl → Ranuntl × Ranuntl

is value-wise cofinal.

C.3.3. Similarly, we obtain that the functor

(Id⊗ΓIndCoh(Ranuntl,−)) ◦ (sRanuntl)
∗ : QCoh(Y)Ran → QCoh(Sect(X,Y))

is IndCoh(Ranuntl)-linear, where IndCoh(Ranuntl) acts on QCoh(Sect(X,Y)) via the symmetric
monoidal functor ΓIndCoh(Ranuntl,−).

C.3.4. This implies that we have a canonical isomorphism between the functor

(Id⊗ΓIndCoh(Ranuntl,−)) ◦ (sRanuntl)
∗ ◦ (sRanuntl)∗

and(
(Id⊗ΓIndCoh(Ranuntl,−)) ◦ (sRanuntl)

∗ ◦ (sRanuntl)∗ ◦ (Id⊗(ωRanuntl ⊗−))
)
⊗ ΓIndCoh(Ranuntl,−),

and this isomorphism is compatible with the map of both to

(Id⊗ΓIndCoh(Ranuntl,−)) ≃
(
(Id⊗ΓIndCoh(Ranuntl,−)) ◦ (Id⊗(ωRanuntl ⊗−))

)
⊗ ΓIndCoh(Ranuntl,−).

However, the latter map is an isomorphism, by Proposition C.1.7.
□[Proposition C.1.5]

C.4. Proof of Proposition C.1.7.

C.4.1. Due to the assumption that Sect(X,Y) is passable, self-functors on QCoh(Sect(X,Y)) are in
bijection with objects of QCoh(Sect(X,Y)× Sect(X,Y)), and the identity endofunctor is given by

(∆Sect(X,Y))∗(OSect(X,Y)).

Thus, we need to show that the map

(C.8) (Id⊗(LocY ◦LocRY ))((∆Sect(X,Y))∗(OSect(X,Y)))→ (∆Sect(X,Y))∗(OSect(X,Y))

is an isomorphism.
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C.4.2. We rewrite the left-hand side in (C.8) as the image of OSect(X,Y) along the push-pull along the
diagram

Sect(X,Y)

∆Sect(X,Y)

y
Sect(X,Y)× Sect(X,Y) ←−−−−− Sect(X,Y)× Sect(X,Y)× Ranyid×sY,Ran

Sect(X,Y)× YRan

id×sY,Ran←−−−−−−− Sect(X,Y)× Sect(X,Y)× Rany
Sect(X,Y)× Sect(X,Y).

By base change, we rewrite this as the push-pull along

Sect(X,Y)× Sect(X,Y)× Ran −−−−−→ Sect(X,Y)× Sect(X,Y)ysY,Ran ×
Ran

sY,Ran

YRan

∆YRan/Ran−−−−−−−−→ YRan ×
Ran

YRan

of the object

(pYRan)
∗(ωRan) ∈ QCoh(Y)Ran.

C.4.3. Consider the following version of the set-up of Sect. B.3.

Let f : Z1 → Z2 is an affine morphism of D-prestacks. Consider the following commutative (but
non-Cartesian) diagram

Sect(X,Z1)× Ran
sZ1,Ran−−−−−→ Z1,Ran

Sect(f)×id

y yfRan

Sect(X,Z2)× Ran −−−−−→
sZ2,Ran

Z2,Ran.

The ((sZ1,Ran)
∗, (sZ1,Ran)∗)- and ((sZ2,Ran)

∗, (sZ2,Ran)∗)-adjunctions give rise to natural transfor-
mation

s∗Z2,Ran ◦ (fRan)∗ → (Sect(f)∗ ⊗ Id)∗ ◦ s∗Z1,Ran

as functors

QCoh(Z1)Ran ⇒ QCoh(Sect(X,Z2))⊗ IndCoh(Ran).

Consider the induced natural transformation

(C.9) (Id⊗ΓIndCoh(Ran,−)) ◦ s∗Z2,Ran ◦ (fRan)∗ →

→ (Id⊗ΓIndCoh(Ran,−)) ◦ (Sect(f)∗ ⊗ Id)∗ ◦ s∗Z1,Ran ≃ Sect(f)∗ ◦ (Id⊗ΓIndCoh(Ran,−)) ◦ s∗Z1,Ran

as functors

QCoh(Z1)Ran ⇒ QCoh(Sect(X,Z2)).

The following is a parametrized version of Proposition B.3.8(a):

Proposition C.4.4. The natural transformation (C.9) is an isomorphism, when evaluated on objects
lying in the essential image of the forgetful functor

t! : QCoh(Z1)Ranuntl → QCoh(Z1)Ran.

Corollary C.4.5. The natural transformation (C.9) is an isomorphism, when evaluated on the object

(pZ1,Ran)
∗(ωRan) ∈ QCoh(Z1)Ran.
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C.4.6. We will apply the above to
Z1 = Y, Z2 = Y× Y

and f being the diagonal map.

Unwinding the definitions, we obtain that the map

(C.10) (Id⊗ΓIndCoh(Ran,−)) ◦ (sY,Ran ×
Ran

sY,Ran)
∗ ◦ (∆YRan)∗((pYRan)

∗(ωRan))
(C.9)−→

→ (∆Sect(X,Y))∗ ◦ (Id⊗ΓIndCoh(Ran,−)) ◦ (sY,Ran)
∗((pYRan)

∗(ωRan))
∼→ (∆Sect(X,Y))∗(OSect(X,Y))

identifies with the map

(Id⊗ΓIndCoh(Ran,−)) ◦ (sY,Ran ×
Ran

sY,Ran)
∗ ◦ (∆YRan)∗((pYRan)

∗(ωRan))→ (∆Sect(X,Y))∗(OSect(X,Y))

of (C.8).

Hence, the latter map is an isomorphism by Corollary C.4.5.
□[Proposition C.1.7]
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