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INTRODUCTION

0.1. Overview. This paper is the second in a series of five that together prove the geometric Langlands
conjecture. In this paper, we study the interaction between Kac-Moody localization and the global
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geometric Langlands functor of [GLC1]. We do so following the methodology of Beilinson-Drinfeld,
using chiral (a.k.a, factorization) homology.

0.1.1. The main result of this paper, which appears in the main body as Theorem 18.5.2, says:

Theorem 0.1.2. There is a commutative diagram

D-modest (Bung) —S— IndCohnirp (LS¢)
LOCG,crit ®[T TPoincsG,‘)ic
FLEG,cri
KL(G)crit,Ran  ———% IndCoh* (OpZo™-free) g ..

The terms appearing in the above diagram warrant further discussion. We will do so at more length
later in this introduction, but here is a brief synopsis:

e D-modit(Bung) is the category of critically twisted D-modules on Bung, as considered orig-
inally in [BD1];

e IndCohniip(LSs) was defined in [AG]| as the spectral category in geometric Langlands;

e The functor L¢ is the Langlands functor as constructed in [GLC1];

e KL(G)erit,Ran is the Ran space! version of the Kazhdan-Lusztig category at the critical level
(i.e., Kac-Moody modules at the critical level integrable with respect to the arc group £1(G));

° Op"c’«;“m’f’ree is the factorization space parametrizing local systems on the formal disc equipped
with an oper structure on the punctured disc;

o FLEG crit is the fundamental local equivalence at critical level. This equivalence of factorization
categories appears in Theorem 6.1.4 and extends the pointwise equivalence of [FG2]. It is the
main theorem of Part I of this paper;

e Locg et is the functor of critical level Kac-Moody localization;

e The Poincaré series functor, denoted functor Poincge:, is given at each finite set z € Ran of
points in X by pull-push along the correspondence ,

0 mon-free

P&, < Op

~free,glob
22} ree,glob LSG,
where the middle term parametrizes local systems on the global curve X equipped with an
oper structure on X — z;

e [ is a cohomologically shifted 1-dimensional vector space that can be ignored at first approxi-

. . . . el s ®% ®R—1 _
mation. Using notation defined in the paper, it is [G’Np(wx) ® [prx)[ ON o) |-

0.1.3. The above theorem has had folklore status in the subject. Its main ingredients were discussed
at the 2014 conference “Towards the proof of the geometric Langlands conjecture.”

However, some of the key technical aspects have not been addressed in the existing literature. This
is most notably true for the category IndCoh* (Opg‘or"f‘ee)Ram i.e., the category of ind-coherent sheaves
on the Ran space version of the space of monodromy-free opers (see Sect. 0.2.1 below).

0.1.4. The role of Theorem 0.1.2 in the geometric Langlands program is as follows:

The functor Locg, it is not surjective, but neither is it so far from being surjective (see [Gal, Prop.
10.1.6]). Therefore, understanding the interaction between Lg and Kac-Moody localization plays a
crucial role in understanding D-modcit(Bung) in spectral terms. See Remark 0.2.10 for an example
where this idea is applied.

0.1.5. What goes into the proof? As indicated above, we first need to define the various categories.

Second, we need to construct the functors appearing in the commutative diagram. Perhaps the most
interesting is FLEg crit, which is the subject of Part I of this paper. We discuss it further below.

Finally, we need to prove the diagram commutes. Ultimately, we do this by expressing both cir-
cuits in terms of chiral homology for the critical level W-algebra and appealing to the Feigin-Frenkel
isomorphism.

1The Ran space of X parameterizes finite collection of points of X.
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0.1.6. As was mentioned already, this paper builds on the ideas of Beilinson and Drinfeld.

In their seminal works [BD1] and [BD2], Beilinson and Drinfeld introduced the theory of chiral
algebras — which are equivalent to factorization algebras and, suitably understood, vertex algebras —
and of chiral homology as a tool for studying interactions between categories of local nature, such as
sheaves on the affine Grassmannian, and categories of global nature, such as sheaves on Bung.

The functors appearing in Theorem 0.1.2 are of local-to-global nature, and may be viewed as gen-
eralizations of the functor of chiral homology. It is in this sense that one can view the present work as
a continuation of [BD1, BD2].

0.1.7. In writing this text, we found that we needed to refine many foundational parts of the original
work of Beilinson-Drinfeld. This ultimately accounts for the length of the present work.

A significant part of these refinements has to do with the fact that we (have to) work with oco-
categories (whereas in [BD1, BD2] one mostly works with abelian categories).

0.2. What is done in this paper? We now highlight what we think are the most important contri-
butions of this paper.

0.2.1. Monodromy-free opers. First, as an algebro-geometric object, Opgc’“’free parametrizes a point

z € Ran, a local system o on the formal disc D, at x, and an oper structure on the restriction o[, x
of o to the punctured disc. B
mon-free
G,z

studied in [FG2]. However, the Ran space version presents a host of new challenges.

When we work over a fixed point x € X, the corresponding space Op was introduced and

This space has infinite type, so it is not immediately obvious how to define (ind-)coherent sheaves
on it. We explain the relevant geometry needed to make sense of IndCoh*(Opgon'ﬁee) in Sect. 3.

In Sect. 4.4, we show that IndCoh* (Opgon'ﬁee) can almost be realized as a category of factorization
modules. More precisely, in Sect. 4.4.4 we define a factorization algebra R o, € Rep(G) and prove
in Proposition 4.4.7 that its category of factorization modules is equivalent to IndCoh™ (Oprgon'ﬁee)
modulo homological convergence issues (more precisely: the corresponding bounded below categories

are equivalent).

0.2.2. The critical FLE. This result appears as Theorem 6.1.4. It asserts that we have a t-exact
equivalence of factorization categories

FLEG crit : KL(G)erie — IndCoh™ (Op°™ ).

One can view this equivalence as a (substantially amplified) categorical incarnation of the Feigin-
Frenkel isomorphism.

The idea of the proof is as follows:

First, we construct the functor FLEG crit. The ingredients are Feigin’s Drinfeld-Sokolov functor and
Beilinson-Drinfeld’s birth of opers construction.

Second, we prove that FLEq cris preserves compact objects (in the sense suitable for factorization
categories). This expresses a finiteness property of Drinfeld-Sokolov reductions that is not immediate
using classical VOA methods; we show that it is immediate from the categorical construction of W-
algebras from [Ra2] (i.e., the affine Skryabin theorem).

Thanks to the preservation of compactness mentioned above, we are reduced to proving that
FLEG it is a pointwise equivalence. This is a theorem of [FG2]. We actually reprove this theo-
rem here to illustrate a more modern point of view on studying Kac-Moody representations using
categorical tools.

Namely, we show that in general, for a category C with an £(G)-action, the tempered quotient®
Sph(C)emp of Sph(C) := Cct (@ can be algorithmically recovered from Whit(C), the Whittaker

2See Sect. 7.1, where this notion is defined.
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model (i.e., £(N)-invariants against a non-degenerate character) of C. Heuristically, Whit(C) should
live as a sheaf over LSx(D*) and its sections over LS (D) should recover Sph(C)iemp; we give a
precise assertion of this type in Proposition 7.5.5. The key input for this result is the pointwise version
of derived Satake.

We then show that KL(G)erit = Sph(g-moderis,) equals its tempered quotient. However, by [Ra2],
Whit(g-moderit,z) ~ IndCoh™ (Opg®),
and hence we obtain the FLE from the previous paragraph.

To summarize: we deduce the FLE at critical level as an essentially formal consequence of derived
Satake and affine Skryabin.

Remark 0.2.3. We should add that a particular case of the pointwise abelian category version of the
FLE was established already in [BD1]:

Namely, in loc. cit. it was shown that the subcategory of (KL(Q)crit,)” consisting of modules with
regular central characters is freely generated over (QCoh(Opggx))O by the vacuum module.

Note, however, that a parallel statement would be false at the derived level; this observation is what
led the authors of [FG2] to considering the ind-scheme of monodromy-free opers,

0.2.4. The FLE and duality. The category KL(G)erit is canonically self-dual by a construction with
semi-infinite cohomology, see Sect. 2.2.4.

In Sect. 3, we show that IndCoh*(Op‘é‘O"'fmc) is canonically self-dual, which we express as an equiv-
alence
O ppmon-free : IndCoh'(OpE°™ ) ~ IndCoh* (OpE°" ).
G

This equivalence comes from a similar equivalence GOpxger using all opers in place of monodromy-free
opers; the latter should be thought of as a critical limit of the semi-infinite cohomology for W-algebras
considered by Dhillon in [Dh].

In Sect. 8, we prove that these two self-duality constructions match under the FLE. As indicated
above, this result should be considered as a compatibility between the FLE and two flavors of semi-
infinite cohomology.

0.2.5. The formalism of local-to-global functors. We develop axiomatics in Sect. 11. In some part, the
constructions here abstract Beilinson-Drinfeld’s construction of chiral homology.
There is a separate introduction to this material in Sect. 12.0, so we describe the material briefly:

One often finds the following situation: there is a local (factorization) category C'°°, a global
category C#°P_ and a local-to-global functor

1 lob
F: Cgren — C®°°.
Here are examples we have in mind:

e For a chiral algebra A, take® C'°° = A-mod™<*, C#°" = Vect, and F = C™*(X, A, —), i.e., the
functor of chiral homology;

e Take C'°° = KL(G)x, Celob — D-mod (Bung), and F = Locg,x;

e Take C'°° = Whit,(G) the category of x-twisted Whittaker D-modules on the affine Grass-
mannian, C#°" = D-mod,.(Bung), and F = Poincg, (or Poincg . );

e Take C'°° = Rep(G), C&°P = QCoh(LSs), and F = Loc®P*° the spectral localization functor;

e Take C'°° = IndCoh*(Op°" "), C&'°" = IndCoh(LS), and F = Poinc?* (or Poinc (")

3Technically, A-mod et only forms a laz factorization category. In fact, the material of Sect. 11 does not assume
any sort of factorization, just the existence of suitable categories over the (unital) Ran space.
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The last two examples can be considered as kK — oo limits of the second and third examples.

One key feature of each of the above constructions is that they are unital, in the sense that our
factorization categories are themselves unital and F (canonically) commutes with vacuum insertion.

The following construction plays a key role:

One starts with a non-unital (but laz unital) functor Fo and it turns out that there exists a procedure
that canonically produces from it a strictly unital local-to-global functor F.

For example, for a chiral algebra A, we could take Fg as

C,(R

A-mod2 22, 1 mod(Ran) L@, Voet

with second functor that of compactly supported de Rham cochains. The resulting functor F is that
of chiral homology. I.e., chiral homology can be thought of as a universal procedure that forces Fg to
commute with vacuum insertion.

We discuss this passage from lax to strict unital globlization functors at length in Sect. 11.

Remark 0.2.6. In favorable cases, Betti analogues of local-to-global functors have TQFT interpretations.
Namely, given a 4d TQFT Z and a boundary condition B for it, we obtain C&°" as Z(X); C° as
the evaluation of Z on a closed disc DB putting B on the boundary dDB*; and for z € Ran, we
suture the disc D2 around z into X \ (D' \ 9DE™") to obtain F. See Remark 11.3.9 for a related
discussion.

0.2.7. Localization. In Sect. 10, we construct and study the Kac-Moody localization functor, which
appears in Theorem 0.1.2. We do this in a loop group equivariant way, which has the effect of making
Locg respect the Hecke actions.

We reproduce some results from [CF]. For the purposes of Theorem 0.1.2, the most important
outcome is Theorem 12.8.8, which says we have a commutative diagram

Vac,glob
coeffG
D-mod.(Bung) ————— Vect

Locg, x ®[NP(WX)[6NP(WX>]T TQf'aCt(X,Wﬁ)

psenh

KL(G)x,Ran W,.-modfet,

Here the bottom horizontal arrow is Drinfeld-Sokolov reduction, the right vertical arrow is chiral ho-
mology, and the top horizontal arrow is the functor of vacuum Whittaker coefficient.

The similarity between this result and Theorem 0.1.2 is plain. In fact, the Langlands functor L¢ is
characterized using coeﬁ\éac’gbb, so this result is quite close to Theorem 0.1.2.

0.2.8. Localization at the critical level and Hecke eigensheaves. In Sect. 15, we prove the Hecke eigen-
property of localization at the critical level. This result extends one of the main theorems of [BD1];
there Beilinson-Drinfeld considered the vacuum representation, but our result allows consideration of
arbitrary objects of KL(G)erit-

More precisely, Feigin-Frenkel duality (or the FLE) allows us to consider KL(G)crit,Ran as a module

category for QCoh(OpZ°™"**)Ran.

Now let Oplcf‘or"f“*}’glob be the space over Ran parametrizing € Ran, a G-local system ¢ on X, and
mon-free,glob mon-free
We prove in Corollary 15.5.9 that Locg,crit factors through a functor

LOCg,pcrit : KL(G)crit,Ran (2] Qcoh(opgon-ﬂree,glob) s D-modu, (BunG)
QCoh(opgon-fme)

an oper structure on o|x\,. There is an evident map Op

that is Rep(G)ran-linear with respect to the following actions:
e Rep(G)Ran acts on D-modei, (Bung) through the Hecke action.
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e Rep(G)ran acts on

KL(G)crit,Ran ® QCOh(Opgoniﬁee’gIOb)Ran

QCoh(OpZon-free) g,

by
spec

Rep(é)Ran —G> QCOh(LSG)
and pullback along the tautological map Opgon'free’glOb — LSs.

Applying the FLE, we can rewrite Locgf’Crit as a functor

IndCoh (OpE"™ ™ )an  ®  QCoh(Op”™***#) - D-modes (Bunc).
QCOh(OprG{lon—frcc>

We have canonical functors

60 mon-free
QCoh(OpE*™ )0y — IndCoh* (OpE*" ™) gy — @ IndCoh* (OpE™ ™) s

that we can compose with the above to obtain a functor

QCoh(Op’G{IOH’free’glOb) — D-modeyit (Bung).
Our Hecke property implies that this functor sends the skyscraper sheaf at an oper x € Opgon'fme’glOb
to an eigensheaf for the local system underlying x. When x is a regular oper on X, this is the main
construction of [BD1].4

Remark 0.2.9. Beilinson-Drinfeld show that their eigensheaves are non-zero by computing their char-
acteristic cycles. This does not directly apply in the monodromy-free setting, but one can use Theo-
rem 0.1.2 to verify that they are non-zero by calculating the Whittaker coefficients of these localized
D-modules.

Remark 0.2.10. The above eigen-property for Kac-Moody localization was used in Drinfeld-Gaitsgory’s
proof of the spectral action of QCoh(LSs) on D-modeit (Bung), cf. [Gal] Theorem 4.5.2. The proof
presented there is based on Kac-Moody localization, with [Gal, Theorem 10.3.4] essentially asserting
the Hecke property discussed above. In this sense, the present work fills an important gap in the
literature.

0.3. Structure of this paper.

0.3.1. Overall, the paper proceeds as follows. In Part I, we formulate and prove the critical level FLE,
which is the main local result of this paper. We also consider the interactions of the FLE with various
duality functors.

Part II considers the vertical local-to-global functors from Theorem 0.1.2 as well as the Hecke actions.
Some of our main results here reproduce results and arguments from [CF]. We put particular emphasis
on the role of unital structures, building on ideas from [BD2], [Ra6], [Ro2] and [Ga4].

The proof of Theorem 0.1.2 relies on chiral homology and some mild variants thereof. Because [BD2]
largely considered abelian categories of chiral modules, we need some extensions of their ideas to the
derived setting; these appear in the appendices to this paper.

4Ac‘cu'a»lly, even in this case, our notion of eigensheaf is somewhat more homotopically robust than the one from
[BD1].
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0.3.2. In more granular detail, the paper is structured as follows.
Part I deals with the local theory:

Sect. 1 reviews various factorization categories on the geometric side associated with the affine Grass-
mannian of GG, as well as their spectral counterparts. The key points here are the geometric Casselman-
Shalika formula (Theorem 1.4.2) and (derived) geometric Satake equivalence (Theorem 1.7.2). This
material is largely taken from [CR].

In Sect. 2 we discuss the Kazhdan-Lusztig category and quantum Drinfeld-Sokolov reduction for its
modules.

In Sect. 3, we consider ind-coherent sheaves on various spaces of local opers. We reinterpret these
objects using factorization module categories in Sect. 4.4.

In Sect. 4 we explain how various factorization categories of interest can be expressed as factorization
module categories over factorization algebras. We use this to define a categorical action of the Feigin-
Frenkel center on Kac-Moody modules at the critical level.

Sect. 5 reviews the Feigin-Frenkel isomorphism at the critical level and Beilinson-Drinfeld’s birth of
opers, i.e., the local interplay of Hecke symmetries and Feigin-Frenkel duality.

In Sect. 6, we formulate the FLE at critical level. We reduce the statement to the pointwise assertion,
which was proved in [FG2]. We also prove some important compatibilities for the FLE here.

As discussed above, we also provide another proof of the pointwise assertion in the present paper, by
combining general considerations about derived Satake with Feigin and Frenkel’s duality for W-algebras.

In Sect. 8, we study the interaction between the FLE and natural duality functors between the DG
categories appearing in it.

0.3.3. 'We now turn to Part II, which deals with local-to-global constructions.

Sect. 9 reviews the definition of Whittaker coefficient functors and establishes some conventions
related to them.

In Sect. 10, we introduce the Kac-Moody localization functor Loca.

In Sect. 11, we discuss axiomatics for local-to-global functors for factorization categories (or even
just categories over Ran). The key construction produces unital local-to-global functors from laz unital
such functors, abstracting the construction of chiral homology.

Sect. 12 considers the interaction between Kac-Moody localization and restriction/inflation along
group homomorphisms H — G. This material appeared previously in [CF].

In Sect. 13, we discuss an alternative construction of Kac-Moody localization from the eighth author’s
thesis. The idea is to realize D-modules on Bung as quasi-coherent sheaves equipped with infinitesimal
Hecke equivariance structures at every point of Ran.

In Sect. 14, we apply the material from Sect. 12 to calculate Whittaker coefficients of Kac-Moody
representations in terms of chiral homology for the critical level W-algebra.

Sect. 15 constructs a Hecke equivariance structure for Locg. This can be considered as an extension
of the main construction of [BD1, Sect. 7], allowing more choices of characters for the Feigin-Frenkel
center while adding homotopy coherence to loc. cit.

Sect. 16 contains the proof of Theorem 15.2.8, a technical point from Sect. 15.

Sect. 17 constructs the functor Poirlcséfi:3 and its relative Poincsé)e,c.

Finally, Sect. 18 considers the interaction between the Langlands functor L and the constructions
of earlier sections. Most importantly, we conclude the proof of Theorem 0.1.2 here. We also prove that
L¢ is compatible with the factorizable derived Satake equivalence here, to be used in the sequel to this
paper.
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0.3.4. This paper relies on a lot of foundational material, a big part (but not all) of which has not
been previously written down. This material is developed in the Appendix® to this paper.

In Appendix A we develop the IndCoh theory for algebro-geometric objects that are not of finite
type. As it turns out, there are two versions, denoted IndCoh' (—) and IndCoh*(—), respectively, which
in good situations are mutually dual. We introduce the property of schemes, called placidity, which
guarantees that these categories behave particularly well. In addition, we introduce another category,
denoted QCoh,,(—), useful in many situations, and which is a pre-dual of QCoh,,.

In Appendix B we discuss the pattern of factorization. We introduce factorization spaces, and
construct examples of such (e.g., loops or arcs into a given target, or various spaces attached to the
formal disc). We introduce factorization algebras and modules, and various operations between them.
One of the central notions in this paper is that of factorization category. We show how various categories
of algebro-geometric or representation-theoretic nature acquire this structure (notably, IndCoh*(—) of
monodromy-free opers and the category of Kac-Moody representations).

In Appendix C we discuss the phenomenon of unitality. We introduce categorical prestacks, D-
modules and sheaves of categories on them. Our main example is the unital Ran space. We in-
troduce unital and counital factorization spaces, and their common generalization, called “unital-in-
correspondences” factorization spaces; it is this latter notion that plays the most important role. We
introduce unital factorization algebras and categories. We emphasize that some phenomena (such as
restriction of module categories) work differently in unital and non-unital settings, and it is the former
that are responsible for some of the fundamental constructions in this paper.

In Appendix D we prove one of the general fundamental theorems that describe a category of
algebro-geometric nature as modules over a factorization algebra. Namely, we show that (at the level
of bounded below categories), the category QCoh_,(£v(Y)) (here Y is an affine D-scheme, and £v(Y)) is
the space of its horizontal sections on the punctured disc) identifies with factorization modules over the
(commutative) factorization algebra of regular functions on Y. The equivalence at the level of abelian
categories is nearly evident. However, at the derived level, it is quite non-trivial, and requires that Y
be of finite presentation in the D-sense.

In Appendix E we explain how to make sense of the spectral spherical category, i.e., the category
of ind-coherent sheaves on the local spectral Hecke stack Heckeg’ec’loc, as a factorization category.
The problem is that Heckeg’ec’loc does not quite fit into the paradigm of Sect. A, in which we can
make sense of IndCoh(—) by an algorithmic procedure. Yet, we give an algebro-geometric definition of

IndCoh* (Heckeg’ec‘loc), and then compare it with a representation-theoretic one of [CR].

In Appendix F we recap (essentially, following [BD2]) the relation between the scheme of horizontal
sections of an affine D-scheme Y and the factorization homology of the factorization algebra of regular
functions on Y.

In Appendix G we describe a procedure that attaches factorization module categories over Rep(G)
to module categories over QCoh(LSE), and show that this functor is fully faithful on a certain sub-
category.

In Appendix H we recast some of the material from Sect. 11 using the notion of the “independent”
category, attached to a crystal of categories on the unital Ran space. We then discuss various notions
of action of a factorization monoidal category on a DG category.

Appendix I contains some complementary material to Sect. 11: we give an interpretation to the
functor of the integrated insertion of the unit in terms of left-lax functors between crystals of categories
over the unital Ran space.

Appendix J is homotopy-theoretic. Here we introduce a device that allows us to construct us
monoidal actions from Sects. 4.6 and 5.3 up to coherent homotopy. These monoidal actions play a key
role in the definition of the FLE functor.

5The Appendix is coauthored by J. Campbell, L. Chen, D. Gaitsgory, K. Lin, S. Raskin and N. Rozenblyum.
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0.4. Conventions and notation: generalities.

0.4.1. The players. Throughout the paper we work over a fixed algebraically closed field k of charac-
teristic 0. Thus, all algebro-geometric objects are defined over k.

In particular, X is a smooth projective curve over k, G is a reductive group over k, and G is the
Langlands dual of G.

0.4.2. Categories. When we say “category”, we mean an oo-category. Conventions pertaining to the
oo-categorical language are borrowed from [GaRo3, Chapter 1, Sect. 1].

0.4.3. Conventions pertaining to DG categories follow those in [GaRo3, Chapter 1, Sect. 10]. Unless
explicitly stated otherwise, a DG category C is assumed cocomplete (i.e., to contain arbitrary direct
sums). (An exception would be, e.g., the category of compact objects in a given C, denoted C°.)

Unless explicitly stated otherwise, given a pair of DG categories C; and Cz, by a functor F': C; —
C, we will always understand a continuous functor, i.e., one that commutes with arbitrary direct sums
(equivalently, colimits).

0.4.4. Given a DG category C with a t-structure, we will use cohomological conventions. Le., C=°
will denote the subcategory of connective objects. We will denote by C¥ the heart of the t-structure.

0.4.5. Conventions adopted in this paper regarding higher algebra and derived algebraic geometry
follow closely those of [AGKRRV].

0.4.6. Factorization. Conventions and notation pertaining to the Ran space and factorization are ex-
plained in Sect. B.
There are several pieces of notation associated with factorization categories:

Given a factorization category C, we will denote by C the corresponding sheaf of categories over
Ran, by Cran its category of global sections, and for Z — Ran by Cgz the category of sections of the
pullback of C to Z. In particular, for a k-point x € Ran, we will denote by C; the fiber of C at z.

Given a pair of factorization categories C; and C2 and a functor ® between, we will distinguish
between a property of this functor (such as admitting an adjoint or being an equivalence) taking place
at the pointwise or factorization level.

The former means that the given property holds for the corresponding functor
P:Ci;—>Cop
for any k-point z of the Ran space. The latter means that the given property holds for
®:Cyz = Cayz

for any prestack Z — Ran (equivalently, one can take Z to be Ran itself).

0.5. Acknowledgements. As should be clear from what we said above, the majority of the second
part of this paper can be traced back to the ideas of A. Beilinson and V. Drinfeld recorded in [BD1]
and [BD2].

The FLE as presented in Part I relies crucially on the Feigin-Frenkel isomorphism, as a passage

between G and G, see Sect. 5.

A crucial role in local and local-to-global constructions is played by the concept of factorization. Its
appearance in representation theory was pioneered by M. Finkelberg, I. Mirkovi¢ and V. Schechtman,
and it was further subsequently elucidated by A. Beilinson and J. Lurie.

Separate thanks are due to J. Lurie for enabling representation theorists to work within Higher Alge-
bra. The mathematics developed in this paper would not be possible if one worked “up to homotopy”.

The fifth and seventh authors wish to thank IHES, where a significant part of this paper was written,
for creating an excellent working environment.
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Part I: Local Theory

This Part is mainly dedicated to the proof of a key local result: the critical FLE. It says that the
Kazhdan-Lusztig category at the critical level (for G) is equivalent to the category of ind-coherent
sheaves on the space of monodromy-free opers on the punctured disc (for G).

The FLE involves crossing the Langlands bridge. L.e., at some point, we will need to know something
about the relationship between G and G. In fact, there are exactly two sources of such results (as long
as we stay at the critical level for G and level co for G): one is the geometric Casselman-Shalika formula
(Theorem 1.4.2), and the other is the Feigin-Frenkel isomorphism (Theorem 5.1.2). The compatibility
between the two is encapsulated by Theorem 5.2.5. The other results of local Langlands nature,
including the FLE, are ultimately deduced from one (or a combination) of these two.

Once the FLE is proved, we will use it in Part II to establish a certain global compatibility of the
Langlands functor, which will play a key role in subsequent papers in this series. This property will
essentially say that the Langlands functor is compatible with the Beilinson-Drinfeld construction of
eigensheaves via Kac-Moody localization and opers.

1. GEOMETRIC SATAKE AND CASSELMAN-SHALIKA FORMULA: RECOLLECTIONS

In this section we will review the constructions of categories of geometric nature associated, on the
geometric side, to spaces of maps
D — G and D* — G,

and (twisted) D-modules on these spaces, and on the spectral side to spaces of maps
DdR — G and 'D(?R — G
and ind-coherent sheaves on these spaces.

Thus, the main players are:
e The category Whit(G) of Whittaker D-modules on the affine Grassmannian;
e Its spectral counterpart QCoh(LSS®) =~ Rep(G);

e The equivalence Whit(G) ~ Rep((), which we call the geometric Casselman-Shalika formula
(Theorem 1.4.2);

e The local spherical category Sph;
e Its spectral counterpart Sphiy*;
e The (derived) geometric Satake equivalence Satc : Sphg =~ Sph® (Theorem 1.7.2).

When dealing with these objects there is one major trouble and three “annoyances”, all of which
will be introduced in this section, and that will plague us throughout the paper:

(1) The trouble is that the local algebro-geometric objects on the spectral side are mot of finite
type (once we consider their factorization versions), so the IndCoh(—) categories associated to
them need extra work to define;

(2) This paper is concerned with the classical geometric Langlands. However, “classical” for G
means the critical level. This means that the categories on the geometric side® will consist not
of D-modules, but of critically or half-twisted D-modules. As a result, throughout the paper,
we will have to watch carefully what happens with these twistings as we move between different
spaces.

(3) Ultimately, on the geometric side, the object we need to consider is not the constant group-
scheme on X with fiber G, but rather its twist by the T-torsor p(wx). This twist is analogous
to the usual p-shift in the representation theory of the finite-dimensional G. Thus, all spaces
associated with G will undergo the corresponding twist.

SWe avoid using the word “automorphic” in the local context, as automorphy refers to the global situation.
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(4) Both categories Sphg and Sphy* are endowed with anti-involutions, denoted o and o***°. A
source of constant headache throughout this paper is that these anti-involutions are compatible
under Satg, up to the Chevalley involution on G, denoted 7. This can be seen as a vestige
(in a rather precise sense) of the fact that the square of the usual Fourier transform is not the
identity, but rather is given by the action of —1.

1.1. The critical twist.

1
1.1.1. 'We choose once and for all a square root w§2 of the canonical line bundle wx on X.

Warning: In this series of papers, wx denotes the canonical line bundle on X, and not the dualizing
sheaf on X, which is the [1] shift of that. (So, properly, we should have used %, rather than wx.)
This deviates from the convention, according to which, for a prestack Y we denote by wy its dualizing
sheaf. So the only exception for this rule is when Y is the curve X itself.

1.1.2. Consider the affine Grassmannian Grg as a factorization space over X, equipped with an action
of the (factorization) group indscheme £(G).

We refer the reader to Sects. B.1.8 and B.5.5, respectively, where the definition of these objects is
recalled, and to Sect. B.1.6, where the general theory of factorization spaces is set up.

1.1.3. Let detagr, denote the determinant (factorization) line bundle on Grg.

1
Remark 1.1.4. According to [BD1, Sect. 4], the choice of w?f gives rise to a square root of detar., as

a line bundle over Grg ran. However, this square root is incompatible with factorization.”

1.1.5. For a line bundle £ on a space Y and an integer n, let £ denote the étale un-gerbe of nth
roots of L.

Recall now that given a p,,-gerbe G on a space Y, we can consider the G-twisted category of D-modules
on Y, to be denoted

D—modg (9 ) .

Thus, for (Y,£,n) as above we can consider the corresponding category

D-modL Y).

1
n

1
1.1.6. Consider the p2-gerbe detérc.
We will use the short-hand notation
D-mod 1 (Grg)
to denote the (factorization) category

D-mod 4 (Gre)

dCtGrG

1
of deté, ,-twisted D-modules on Grg.

1
Remark 1.1.7. According to Remark 1.1.4, a choice of wg“ gives rise to a trivialization of the gerbe

1
detérG. However, this trivialization is incompatible with factorization.

For that reason, henceforth, we will avoid using it.

"More precisely, this square root exists as a factorization Z/2Z-graded line bundle, where the grading over the
connected component Gryy of Grg (here A € Ag,¢ = m0(Grg)) equals (), 2p) mod 2.
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1.1.8. Recall that for a space Y, we can consider de Rham twistings on Y (see, [GaRo2, Sect. 6]).
These are by definition O*-gerbes on Y4gr, equipped with a trivialization of their pullback to Y.

Given a de Rham twisting T, we can consider the corresponding twisted category of D-modules
D-mods(Y),
see [GaRo2, Sect. 7].

Recall also that to a line bundle £ on Y, we can associate a de Rham twisting, which in this paper we
denote by dlog(£) (the corresponding O*-gerbe on Yq4g is trivial, but the trivialization of its pullback
to Y differs from the tautological one by tensoring with £).

Note that tensoring by £ defines an equivalence

(1.1) D-mod(Y) — D-modaiog(c)(Y)-

Finally, recall (see [GaRo2, Corollary 6.4.5]) that the space of de Rham twistings on a given space
Y carries a natural a k-linear structure. Thus, for ¢ € k, we have a well-defined twisting ¢ - dlog(£L),
and the corresponding category

D-mod..diog(c)(Y)-
1.1.9. Let (Y,£,n) be as above. Note that for c =n € Z C k, we have
n - dlog(£) = dlog(£L®™).
In particular, we have a canonical identification of the corresponding twisted categories of D-modules:

(1.2) D—modL% = D-mod%dlog(m(‘zj).

For example, when n = 1, the identification (1.2) is the identification of (1.1).

1.1.10. We will use the short-hand notation
D-moderit (Gra)

for the (factorization) category
D_mOd%-dlog(detGrG)(Grc)‘

1.1.11. Applying (1.2) to Y = Grg and £ = deta:,, we obtain a canonical equivalence of (factoriza-
tion) categories
D-mod% (Grg) ~ D-moderit (Gra).

Remark 1.1.12. According to Remark 1.1.4, we can also identify
D—mod% (Grg,ran) ~ D-mod(Grg,ran),
or equivalently
D-moderit (Gra,Ran) =~ D-mod(Grea,ran),
as plain categories, but these identifications are incompatible with the factorization structures.

Remark 1.1.13. We distinguish D-mode.it(Grg) and D—mod% (Gre) notationally for the following two
reasons:

(1) The étale gerbe-twisted version makes sense not just in the context of D-modules, but also in other
sheaf-theoretic contexts (e.g., Betti, f-adic).

(2) The category D-modcrit(Greg) comes equipped with a natural forgetful functor to IndCoh(Grg),
while for a general étale gerbe, the gerbe-twisted category of D-modules does not carry such a functor.

Thus, the distinction between gerbes and twistings becomes relevant when discussing connections be-
tween D-modules and modules over Lie algebras, as we often do in this paper. We use the D-mod1 (Grg)

(or D—mod% (Bung)) to evoke the sheaf-theoretic geometry of these spaces, while D-modc.it(Grg) (or
D-moderit (Bung)) evokes the connection to Kac-Moody representation theory at the critical level.
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1.1.14. We can also consider the corresponding multiplicative factorization ps-gerbe on £(G), equipped
with a multiplicative trivialization of its restriction to £7(G).

Since the group indscheme £(N) is contractible, the restriction of the above gerbe to it also admits
a canonical multiplicative trivialization.

In particular, if H is a factorization subgroup of either £ (G) or £(NN), it makes sense to consider
the (factorization) category

D-mod% (Gre)”

of H-equivariant D-modules.
1.2. A geometric twisting construction.

1.2.1. Let H be a group mapping to G, and let Py be an H-torsor over X. Taking sections over the
formal disc, Py gives rise to a factorization torsor over £1(H); by a slight abuse of notation, we will
denote this £1(H)-factorization torsor by the same symbol Py;.

Given a space Y over X, equipped with an action of £7(H), we can form a twist, to be denoted
yprv i'e'7

Yry = (Pr x Y)/LT(H).

If Y was endowed with a factorization structure compatible with the £1(H)-action, then so is Y»,, .
1.2.2.  The space Yy, is acted on by the adjoint twist £ (H)p,, of £7(H).

Note that we have a canonical isomorphism

(1.3) Y/ST(H) = Y9, /L7 (H)pyy

1.2.3.  We will denote by the subscript Pg the various categories of D-modules associated with the
above geometric objects, such as

D-mod(Y) ~ D-mod(Y)»,, and D-mod(¥)* ) ~ (D-mod(¥) ),

H*

Note, however, that thanks to the identification (1.3), the category (D—mod(‘é)£+(H))g)H is canoni-

ot (1)

cally equivalent to the original category D-mod(Y) . We will denote this equivalence by

+ ~ +
@y ane : D-mod(Y)* 5 (D-mod(Y)* )5,

1.2.4. A typical example of the above situation that we will consider is when H = T, and the T-bundle

1
is p(wx), i.e., the bundle induced from wiz by means of

20:Gp — T
1.3. The Whittaker category on the affine Grassmannian.

1.3.1.  We apply the construction of Sect. 1.2.4 to Y := Grg, viewed as a scheme acted on by £1(T) C
£7(G), and the group indscheme £(N).

Thus, we can form the (factorization) space Grg ,(wy), Which is acted on by £(G),wy), and in
particular £(V) (w)-
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1.3.2. The group indscheme £(NN),(. ) is equipped with a homomorphism
(1.4) X £(N)p(wx) = Ga,
equal to the composition

SN plaos) = LN/ IN, N pux) = T(Ga)uy =5 M Ga X8 G,

where:

I is the set of vertices of the Dynkin diagram of G;

£(Ga)wy is the twist formed with respect to the £ (G, )-action on £(Gy);

Res : £(Ga)wy — G is the canonical residue map;

Xo is a non-degenerate character (i.e., a character non-trivial along each factor).

1.3.3. Let C be a category acted on by £(G),wy) at the critical level.® Denote:
! , .
Whit'(C) := C*™rx)X and Whit.(C) := Cew), ) s
where we impose equivariance against the pullback of
exp € D-mod(G,)

by means of x (see [Ra2] for more details). Our normalization for exp is that it is a character sheaf in
the *-sense, i.e.,

add” (exp) ~ expMexp.
Note that
(1.5) (Whit, (C))" ~ Whit'(C"),
up to replacing xo by its inverse, where®

(=)Y := Funct((—), Vect).

1.3.4. Although the assignments
C ~ Whit'(C) and C ~» Whit. (C)

involve the group ind-scheme £(N),« ), they behave nicely on the 2-category of £(G),()-module
categories (see [Ra2]).

Namely, they both commute with limits and colimits. Combined with (1.5), this implies that if C
is dualizable, then so are Whit'(C) and Whit. (C).

However, more is true.

1.3.5. Let wée(r}wﬂ(w)() € D-mod(£(NV),(wy)) be the renormalized dualizing sheaf on £(N) (. ), defined

to be the *-pullback of the dualizing sheaf along the projection
'S(N)P(Wx) - E(N)P(wx)/£+(N)p(wx)'

Consider the object

*

WEN), ()X 7= WEN) () @ X (€xP) € D-mod(L(N)p(wy))-

8The discussion here is applicable both when we work over a fixed point z € Ran and in the factorization setting.
9n the next formula Funct(—, —) stands for colimit-preserving functors. We will always use this convention when
talking about functors between cocomplete categories, unless explicitly specified otherwise.
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1.3.6. Let C be as above. The operation of *-convolution with wff(’}\,)p( )x Is an endofunctor of C
wx)?

(as a plain DG category), and this endofunctor factors as
C — Whit.(C) — Whit'(C) — C.
Denote the resulting functor Whit. (C) — Whit'(C) by
Ownit(c) : Whit, (C) — Whit'(C).
The following fundamental result was established in [Ra2]:
Theorem 1.3.7. The functor Ownit(c) 5 an equivalence.

Remark 1.3.8. The proof of Theorem 1.3.13, as recorded in [Ra2], is given for a fixed formal disc, but
the same argument applies to prove a version of this theorem over Ran.

1.3.9. We apply the above discussion to
C .= D—mod% (GI‘GJ,(WX)).
Thus we obtain the (factorization) categories

Whit!(D—mod% (Gre,p(wy))) and Whit. (D—mod% (Gre,pwy)))-

We will use for them short-hand notations
Whit'(G) and Whit. (G),
respectively.
Remark 1.3.10. The categories Whit'(G) and Whit.(G) are canonically independent of the choice of
Xo:

Indeed, given two non-degenerate characters x4 and x32, there exists an element ¢ € T that conju-
gates x$ to x&. Translation by ¢ on Grg,p(wy) defines then an equivalence between the corresponding
Whittaker categories.

The choice of ¢ is unique up to an element z € Zg. However, the translation action of z on Greg ,(wy)
is trivial.
1.3.11. By (1.5), the categories Whit'(G) and Whit.(G) are naturally mutually dual, up to replacing
Xo by its inverse. Note, however, that due to Remark 1.3.10, they are actually mutually dual.

Furthermore, as is shown in [Ga6], both Whit'(G) and Whit.(G) are compactly generated (see
Sect. B.11.9 for what compact generation means in the factorization setting).

1.3.12. Let
@Whit(G) : Whit*(G) — Whit!(G)
denote the functor from Sect. 1.3.6.
As a particular case of Theorem 1.3.7, we obtain:

Theorem 1.3.13. The functor Ownit(g) s an equivalence (of factorization categories).

1.3.14. The factorization categories Whit'(G) and Whit,(G) are unital (see Sect. C.11.1) for what
this means. Here is the explicit description of their factorization units:

The factorization unit Ly, (o) € Whit.(G) is the object, denoted Vacwuit, (o), equal to the pro-
jection along
D—mod% (Gra,p(wy)) = Whit.(G)
of 61Grc,p(wx) € D-mod%(GrG,p(wX)), the latter being the factorization unit 1D'm0d%(GrG,p(wX)) for

D-mod% (Grag,pwy)) itself.
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1.3.15.  The factorization unit 1y (q) € Whit'(G) is the object, denoted Vacwuie! (o), equal to the
*_direct image along the locally-closed embedding
SN pwx) /LT (V) perx) = G, plux)
of
® X" (exp) € D-mod(£(N) /EH(N) ) SN
wE(N)P(WX)/£+<N)P(“X) X \exp mo plwx) plwx) :
Note that the above *-extension is clean, i.e., receives an isomorphism from the !-extension.

This implies that the functor co-represented by Vacyypi () identifies with the functor of !-fiber at
the unit point 1GrG,p(wX) € Grg,p(wy), restricted to

Whit'(G) C D-mod (Gre,p(wx))-
1.4. The geometric Casselman-Shalika formula.

1.4.1. The following is the statement of the geometric Casselman-Shalika formula (see [Ra3, Theorem
6.36.1]'0):

Theorem 1.4.2. There exists a canonically defined equivalence of factorization categories:
CSq : Whit'(G) — Rep(G).

Remark 1.4.3. In the course of the proof of Theorem 1.4.2 one uses the naive (i.e., non-derived)
geometric Satake to construct a functor

Rep(G) — Whit' (@),
and one shows that it is an equivalence, see Remark 1.7.8.
1.4.4. The functor CS¢ is normalized so that it sends the standard object

A* € Whit'(G), X e A,

corresponding to the £(N), ., )-orbit

St 1= &(N) ) - 1
to the highest weight module

V* € Rep(@Q).

(In the above formula, ¢ denotes the uniformizer on D.)

Remark 1.4.5. By fixing the above normalization for CSg we made a choice. We could have made a
different choice by applying the Chevalley involution 7¢ on G, or equivalently, on G.

The normalization for CSg ultimately forces how we normalize the Langlands functor Lg. Our
particular choice for CS¢ is dictated by the following: we want the Langlands functor Lg for G and
its Levi subgroups to be compatible via the Eisenstein and Constant Term functors.

If we composed Lg with 7, the resulting functor would intertwine the Eisenstein/Constant Term
functors on the geometric side with similar functors on the spectral side, but with respect to the opposite
parabolic.

Note also that when G is a torus 7', in our normalization, the Langlands functor Ly is as in [GLCI,
Sect. 1.5.2].

Remark 1.4.6. For the validity of Theorem 1.4.2 at the factorization level, it is crucial that in the
definition of Whit'(G) we use the twisted category D—mod% (Grg), rather than the untwisted one, i.e.,

D-mod(Grg).

10The original result in this direction is the main theorem of [FGV].
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1.4.7. The following is a basic pattern of how the equivalence CS¢g interacts with duality.

Let us denote by

FLE¢ ., : Rep(G) — Whit. (G)
the functor equal to CS%, with respect to the canonical dualities:
Whit. (G) = (Whit'(G))" and Rep(G)" ~ Rep(Q).

Remark 1.4.8. The notation FLEs ., stems from the fact that the above functor is indeed the limiting
value of the (positive level) FLE equivalence.

1.4.9. Exzample. Note, in particular, that the functor FLEs ., sends

Vo ¢ Rep(G) — V* € Whit.(G),
where for u € A* we denote by

V# € Whit.(G)
the object dual to A* € Whit'(G), i.e.,
(F, V") = Homype oy (A", F),  F € Whit'(G),

where

(=, =) : Whit'(G) ® Whit.(G) — Vect

is the canonical pairing.

1.4.10. Note that the Whittaker category is canonically attached to the pair (G, B). Hence, the group
of outer automorphisms of G (i.e., the group of automorphisms of the polarized!! root datum of G)
acts on both versions of the Whittaker category.

Let 7¢ be the Chevalley involution, viewed as an outer automorphism of G. The corresponding
automorphism of the polarized root datum acts as A — —wo(A).

1.4.11. We have:
Lemma 1.4.12. The composition
. FLEg Owhi
Rep(G) —3™ Whit.(G) =49 Whit'(G)

identifies canonically with
76 o (CSg) ™.

Remark 1.4.13. As a reality check, note that both functors in Lemma 1.4.12 send
Vo e Rep(G) — A* € Whit' (G).
Indeed, the functor Ownit(q) is easily seen to send A to V.
The proof of Lemma 1.4.12 follows easily from the construction of CS¢s via naive geometric Satake.

1.5. The spherical category.

1.5.1.  We denote by Sphg’™ ™" the (factorization) monoidal category
D—mod%(£+(G)\2(G) /£T(@)).

We have a naturally defined right action of Sphy™ ™" on D-mod%(Grg), compatible with the left
action of £(G).

11By a polarization of a root datum we mean a choice of the subset of positive roots.
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1.5.2.  We let Sph; denote its renormalized version, which is defined as the ind-completion of the full
subcategory in Sphy™ ™" consisting of objects whose image under (either of) the forgetful functors

D-mod (LT O\L(Q)) « D-mod (T ONLG)/£1(@) = D-mod  (£(G) /£7(@))
is compact (see [CR, Proposition 6.3.2] for more details).
By construction, the monoidal (and also factorization) unit
lsphg ~ 016, € Sphg
is compact.
1.5.3.  We have an adjoint pair of functors
ren : Sphg """ 2 Sphg, : non-ren,

with ren being fully faithful and non-ren monoidal. This makes Sph¢’™ " into a monoidal colocalization
of Sph.

In particular, we have a right action of Sph, on D-mod 1 (Grg), compatible with the left action of

£(G) and factorization.

1.5.4. Inversion on the group £(G) defines an anti-involution, denoted o, of Sph,. We will refer to it
as the “flip” anti-involution.

Henceforth, we will use o to pass between left and right module categories over Sph. In light of
this, we will not necessarily distinguish between left and right actions of Sph,.

1.5.5.  The fact that Grg is ind-proper implies that the composition of the involution ¢ with Verdier
duality (on compact objects) defines an equivalence

(1.6) Sph¢; ~ Sphy,,
which identifies both with right and left monoidal dualization.

Combined with the fact that the unit in Sph,; is compact, we obtain that Sph,; is rigid as a monoidal
category.'?

1.5.6. Recall the setting of Sect. 1.2. For any G-bundle Pg on X, we can form the twisted version
Sphe .,
of Pq.
We have a naturally defined action of Sphg 5, on D-mod 1 (Grg,»), compatible with the left action
of £(G)y,, and factorization.
1.5.7.  In particular, we have a natural action of Sphg ,(, ) on Whit'(G) and Whit.(G).
These actions are compatible both with the duality
(1.7) (Whit'(G))" ~ Whit.(G)
(see Sect. 1.5.4) and the functor Owniy(c)-

1.5.8. Note, however, that according to Sect. 1.2.3, we can identify'3

Ap(wx ), taut

Sth = Sth,p(wx)y
and thus we can regard Whit'(G) and Whit..(G) as acted on by Sph,, itself.

1.6. The spectral spherical category.

12Being a monoidal colocalization of a rigid category, Sphg’™ ™" is semi-rigid (see [AGKRRV, Appendix C]).
13In the formula below we consider £(G) as acted on by £ (@) x £7(G).
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1.6.1. Consider the local spectral Hecke stack

1
Hecke’P*'°¢ .= 1LS'® x LS<8,
fe] G pgmer G
G

as a factorization space.

In the above formula LSE® (resp., LSE®) is the factorization space that attaches to x € Ran the
stack LSx(Dy) (vesp., LSa(D))) of G-local systems on the formal multi-disc D (resp., the punctured
multi-disc Dy := D — z), see Sect. B.7.1.

1.6.2. The fiber Heckeg’zCleC of Heckeg’ec’loc over a given point z € Ran is the stack

(1.8) HeckeP°1° := LS*®  x LSI®

»Z 1 gmer Gz’
SG&

The stack (1.8) is locally of finite type. In fact, its is isomorphic of the product of copies of

(1.9) pt/G  x  pt/G
30/ Ad(G)

for each distinct point that comprises z.
1.6.3. Hence, it makes sense to consider the category
spec ,__ spec,loc
Sphg' = IndCoh(Heckea& ).
We endow Sphg’ic with a monoidal structure via *-pull and *-push along the standard convolution
diagram. a

1.6.4. As we let  move along Ran (or X" for a fixed integer n), the resulting prestack is no longer
locally almost of finite type, so the category of ind-coherent sheaves on it is not a priori-defined.

In fact, Heckescvpcc’loc violates the condition of being (locally almost) of finite type so badly, that we
do not really know how to define the corresponding category IndCoh*(HeckeSGPec’loc) algorithmically.

We refer the reader to Sect. E, where the definition is given (and is compared to another working
definition, adopted in [CR]).

Accordingly, the proofs of all the statements that involve Sphg’ec are also delegated to Sect. E. In
the main body of the text, we will supply prototypes of the corresponding proofs for the pointwise
version Sphyy*°.

1.6.5. The pointwise version of the spectral Hecke category Sphy®, i.e., Sph*", is equipped with a

reg )

tautological action on QCoh(LS3®

This construction persists in the factorization setting, i.e., we have an action of the monoidal fac-
torization category Sphiy® on

(1.10) Rep(G) ~ QCoh(LSE#),
viewed as a plain'* factorization category (see Sect. B.13.5 where the equivalence (1.10) is established).
1.6.6. By construction, the category Sphg)ec receives a monoidal functor, denoted
nv : Rep(G) — Sph¥*,
to be thought of'® as the direct image functor along
reg spec,loc
LSs® — Heckey ,

where we now view the categories appearing in (1.10) as (symmetric) monoidal factorization categories.

14p5 opposed to a (symmetric) monoidal factorization category.
15And literally so over a fixed point of Ran.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 25

1.6.7. The flip of two factors defines an anti-involution on Sphy* to be denoted o,
We will use o°P° to pass between left and right Sphi¥*“-module categories.
Note that we have a commutative diagram

Rep(G) ——— Sph*

(1.11) Idl l(,spec
Rep(G) —— SphFe,

where Id makes sense as an anti-involution of Rep(G), since this category is symmetric monoidal.
1.7. Geometric Satake equivalence.

1.7.1. The following is the statement of the factorization version of the derived geometric Satake
equivalence (see [CR]):

Theorem 1.7.2. There exists a unique equivalence of monoidal factorization categories
Satc : Sphg — Sphy*,
compatible with the actions of Sphg on Whit(G) and Sphy* on Rep(G) wia the equivalence
CSe : Whit' (G) ~ Rep(G).
The construction of the functor Satg will be recalled in Sect. E.10.

Remark 1.7.3. In this series of papers we will refer to Satg just as “geometric Satake equivalence”,
omitting the word “derived”. What is more commonly referred to as “geometric Satake” is not an
equivalence, but a functor in one direction, which we will refer to as “naive Satake” and denote by
Sate’, see Sect. 1.7.6.

1.7.4. Ezxample. Unwinding the construction, we obtain that Sate sends the object in Sph. corre-
sponding to the double coset of the point t* (for A € AT) to the object

nv(V W) € SphPee.
The above object in Sph, is what is usually denoted by
ICG?; ,
the intersection cohomology sheaf on the closure of the £%(G)-orbit Gr* of t*.

Remark 1.7.5. As in the case of Theorem 1.4.2, for the validity of Theorem 1.7.2 at the factorization
level, it is crucial that we work with the twisted category

D-mod; (£7(G)\&(G)/£" (@)
rather than with D-mod (£ (G)\&(G)/LT(Q@)).
1.7.6. In what follows, we will denote by Satg” the functor

XN NV spec Sat 1
Rep(G) = Sph 7™ "= Sphg.
Remark 1.7.7. One thing that is naive about the naive Satake functor is its direction. Our conventions
are that functors in geometric Langlands go from the geometric side to the spectral side. However, the
naive Satake functor produces sheaves from representations.

Remark 1.7.8. Note, for example that the functor

—*Vacyw il (@)
—

Rep(@) 4 Sphy, Whit' (@)

is CSE;I.
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The functor

—*Vacwhit, (G)
—

- Sa nv
Rep(G) -8 Sphy, % Sphy Whit. (G)
is FLEg .-
1.8. The curse of ¢ and 7.
1.8.1. The following statement results from the uniqueness assertion in Theorem 1.7.2 combined with
Lemma 1.4.12:

Corollary 1.8.2. The following diagram of anti-equivalences commutes:

Sat
Sphy —% Sphsé?eC

d

Sphy, J/dspec

Tcl
Sphg —C, SphiPec.
1.8.3. Denote by Satq,r the (factorization) equivalence
Sphe 5 Sphg % SphiPee,
Denote by Satg’, the functor
7 o0 Satyy, Rep(G) — Sphy,.
1.8.4. As another corollary of Lemma 1.4.12 we obtain:

Corollary 1.8.5. The equivalence
FLE

Rep(G) ~ ™ Whit.(G)
is compatible with the actions of Sphg and Sphiy* via Satc,r.
1.8.6. Warning. As has been mentioned above, we will use o (resp., o°°°°) to pass between left and
right module categories for Sphe; (resp., Sphy).

Note, however, that due to Corollary 1.8.2, this procedure is compatible with the geometric Satake
equivalence up to the Chevalley involution.

In practice, this will manifest itself as follows. Let C; and Csz (resp., Ci*° and C5F°°) be left module
categories over Sph, (resp., Sphg’ec). Thanks to the above left-right passage, we can form the tensor

products
Ci ® Csand CP* & CF«.

Sphg Sphséfec
Suppose that we have a given a functor
Fy: Cl — Cipec,
which is compatible with the actions via
Satg spe
(1.12) Sph, ~ Sphé’ N

and a functor
Fs . Cz — Czpec7

which is compatible with the actions via

Sata,r spec
(1.13) Sphg =~ Sphy™.
In this case, we obtain a functor
(1.14) FileF:Ci ® C,~CP* ® CPF*~.

Sphg SphSGPCC
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1.8.7. Warning. Similarly, let C and C’ be left module categories over Sph, and Sph¥*°, respectively.
Let us view C (resp., C'V) again as a left module, using o (resp., o°°°°).

Let C ~ C’ be an equivalence compatible with the actions via (1.12). Then the induced equivalence
c’~c"
is compatible with the actions via (1.13).
2. KAC-MOODY MODULES AND THE KAZHDAN-LUSZTIG CATEGORY

In this section we study the local representation-theoretic category on the geometric side, which we
will later connect to the global category D-mod% (Bung) by a local-to-global procedure.

The category in question is the Kazhdan-Lusztig category at the critical level,

KL(G)erit := ﬁ—mod2+<c).

crit
We will need the following aspects of the theory associated with KL(G)cris:

e Self-duality;
e The functor of Drinfeld-Sokolov reduction.

2.1. Definition and basic properties.

2.1.1. Let k be a level for g. We consider
g-mod,,

the category of Kac-Moody modules at level k. This category carries a natural action of £(G) at level
K.

The definition of this category at a fixed point € Ran is given in [Ra5]. The factorization version
is defined in Sect. B.14.

2.1.2. Let .
KL(G)x := g-mods (@,
denote the corresponding category of spherical objects.

We have an adjunction
oblv et (g : KL(G). = g-mod,, : AvE (@),
2.1.3. We have a monadic adjunction

s (3,27 (G)n 5T (G))w
(2.1) 1nd§f’+§zG; Dr Rep(£1(@)) 2 KL(G)x oblvgﬁr(c)( N,

In particular, KL(G), is compactly generated by the image of compact generators of Rep(£*(G)),
where the latter is by definition the ind-completion of the small category consisting of finite-dimensional
representations.

2.1.4. Let Vac(G). denote the factorization unit in KL(G).. By by a slight abuse of notation, we
will denote by the same symbol Vac(G), its image under the (strictly unital) factorization functor

We let Vg . denote the image of Vac(G), under the tautological forgetful functor
g-mod,, — Vect .

The latter is the usual factorization (a.k.a. chiral) algebra attached to the pair (g, ).

2.1.5.  Our primary interest in this paper is the case when k = —% - Kil, where Kil is the Killing form.
We will denote the corresponding level by the symbol crit.

By construction, the category KL(G)crit carries a monoidal action of Sph.

2.2. Duality.
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2.2.1. For a given level x, denote

Kk = —k+2-crit.

(In particular, crit’ = crit.)
2.2.2. It is known that the categories
g-mod,; and g-mod,.

are canonically dual to one another, in a way compatible with the (unital) factorization structure and
the £(G)-action, see [Rab, Sect. 9.16.1].

The counit of the duality is the functor
g-mod,, ® g-mod, Ry g-mod_xj — Vect,
where the second arrow is the functor of semi-infinite cohomology.

By Sect. C.11.5, the above functor pairing has a structure of (lax unital®) factorization functor.

2.2.3. The above duality induces a duality between
(2.2) (KL(G)x)" ~ KL(G),/,
so that
v et (@) etV
(oblv£+(G)) ~ Av; and (Av* ) ~ oblvet -

The unit of the duality (2.2) is the object
COO(G)y,r € KL(G)r @ KL(G) .

Under this duality and the canonical self-duality of Rep(£1(G)), we have

ind @t @Ne)" o .27 (@))x §.ct @)k L i@t @)x
(md;ﬂc)( ) ) _oblv(ngr(G)( % and (oblv(;ﬂr(c)( ) ) _1nd£g+<G)( .

2.2.4. Specializing to the critical level, we obtain a canonical self-duality
(2.3) (g-moderit) " ~ §-moderit,
compatible with the £(G)-actions, and

(2.4) (KL(G)erit)" =~ KL(Q)exit,

compatible with the Sph-actions.
2.3. The functor of Drinfeld-Sokolov reduction.

2.3.1. The duality in Sect. 2.2.2 is applicable to any finite-dimensional Lie algebra (where the role
of the level 2 - crit is played by the Tate extension). In particular, for a unipotent Lie algebra n’, the
corresponding category £(n’) is canonically self-dual, in a way compatible with the £(N')-action.

This construction is functorial. Hence, if a group H acts on n’, and Py is an H-torsor on X, we
obtain a canonical self-duality on £(n’)p,, -mod.

In the particular case N' = N, H =T and Py = p(wx), we obtain a canonical duality on

S(n)p(wx)—mod.

165ee Sect. C.11.3 for what “lax unital” means.
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2.3.2. The character x (see Sect. 1.3.2) on the group £(N),w ) gives rise to a chracter (denoted by
the same symbol)

L) pwx) = k-
We can regard this character as an object
ky € S(n)p(wx)—mod.

The factorization property of x equips k, with a structure of factorization algebra in £(n), . )-mod,
where the latter is regarded as a lax factorization category.

The fact that x| )t = 0 implies that this factorization algebra is naturally unital.
plwx)

2.3.3.  We define the functor
(2.5) BRSTE’(");}(W}()*X : Q(H)p(wX)—mOd — Vect
to be given by
£(1) p(w)-mod 118k« L£(1) p(wx)-mod ® £(1) w5 )-mod — Vect,

where the second arrow is the counit of the self-duality on £(n) y-mod.

plwx
By the above, the functor (2.5) has a natural (lax unital) factorization structure.
2.3.4. Precomposing with
g-mody p(wx) = £(W)p(wx)-mod,
we obtain a functor of Drinfeld-Sokolov reduction, which we denote by
(2.6) DS : g-mod,; p(wy) — Vect.

The functor (2.6) inherits a (lax unital) factorization structure.

2.3.5. It follows from the construction that the functor DS factors as

(2.7) /g\'mOdH,P(wX) — Whit*(/g\—mod,@p(wX)) — Vect,

We denote the resulting functor
Whit, (§-mod,; p(wy)) — Vect
by
(2.8) DS : Whit, (g-mod y) — Vect .

r,p(wx

Remark 2.3.6. The category Whit*(/g\-mod,ﬁyp(u,x)) and the functor DS are canonically independent of
the choice of the character xo of n/[n,n]. This happens by the same mechanism as in Remark 1.3.10:
the action of the center of the derived group of G' on g-mod,, is trivial.

2.3.7. In the sequel, we will use the following assertion (see [FG2, Theorem 3.2.2]):
Lemma 2.3.8. For a fized x € Ran, the functor

KL(G) s, p(wx),e — -m0dk e S Vect
s t-exact.

Remark 2.3.9. One can show that the assertion of Lemma 2.3.8 holds also in the factorization setting:
the proof of [Ra2, Corollary 7.2.2] given at the end of Sect. B.3 of loc. cit. adapts to the factorization
setting.
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3. IND-COHERENT SHEAVES ON MONODROMY-FREE OPERS

In this section we study the local counterpart of the Kazhdan-Lusztig category on the spectral side:
this is the category

IndCoh™ (Opg‘o“’free)

of ind-coherent sheaves on the space of monodromy-free G-opers on the punctured disc. This cate-
gory will be related to the global spectral category (in this case QCoh(LSs(X))) by a local-to-global
procedure.

We study IndCoh*(Opg‘O"'ﬁee) along with its cousins, the factorization categories

IndCoh”(Op*) and IndCoh™ (Opg™).

Since the geometric objects involved are not locally of finite type, the definition of IndCoh(—) on
them is not automatic. However, thankfully, these objects turn out to be (ind)-placid (see Sect. A.9.1
for what this means), so we have well-behaved categories IndCoh*(—) and IndCoh'(—) attached to
them.

3.1. Monodromy-free opers.

3.1.1. Let Y be a D-scheme over X. Recall the notion of G-oper on Y. This is a datum of a triple
(Ps,6,V),
where
e Py is a B-bundle on Y;

e ¢ is the identification between the induced T-bundle P; with p(wx)|y = 2pv(w®%)|y;
e V is a connection along X on the induced G-bundle P.

These data are supposed to satisfy the following compatibility condition:
The incompatibilty of P and V, which is an element
V mod b € (Q/B)% @ wx|y
belongs to
Fil _1(§/b)pg ® wx|y C (§/b)rg @ wx|y
(here Fil_1(§/b) C §/b is the bottom piece of the principal filtration), and its evaluation by means of
every negative simple root —a; of §
—i(V mod b) € —a;(P7) @ wx|y ~ —i(p(wx))|ly @ wxly ~ Oy

is the unit section.

3.1.2. A priori, opers form a D-prestack over X. However, one shows (see, e.g., Sect. 3.1.7) that it is
actually an affine D-scheme over X.

3.1.3. We will denote the D-scheme of G-opers by Opg. Its fiber over a given point z € X is the
scheme Op@('Dx) of G—opers on the formal disc D, around z.

We will denote by the symbol
Opg® := £3(Ope)
the corresponding factorization (affine) scheme (see Sect. B.4.2), i.e., its fiber Ops® over a given

x € Ran is the scheme Opg (D) of G-opers on the formal multi-disc D, around z.
We let
Opg™ = £v(Opg)
denote the factorization ind-scheme of é-opers on the formal punctured disc (see Sect. B.4.6). Its fiber

Opg®: over a given z € Ran is the ind-scheme Opg(Dy ) of G-opers on the punctured multi-disc DX.
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3.1.4.  We recall the following basic fact about opers:

Once the ambient curve X is fixed, we can assume that the G-bundle underlying an oper (on X
itself, a multi-disc in X, or a punctured multi-disc in X) is induced from a fixed B-bundle, to be
denoted ngp (see [BD1, Proposition 3.1.10(iii)]).

In what follows we will denote by Tgp the induced G-bundle.

3.1.5. By construction, we have a map
Opg3g — LSrCf:g7
to be denoted t™°®.
Note now that thanks to Sect. 3.1.4 we also have a map'”
Ope™ — LSE™,
to be denoted t.
We have a commutative but non-Cartesian diagram
mer

Opg*® —— Op2

e E

LS5® ——— LSE™.
3.1.6. We define the factorization ind-scheme of monodromy-free opers as the fiber product

Opgon—free — Lsrgg « Opré]er.

Lsimer
Le., for a fixed z € Ran, the fiber OpZ°™fe¢ ig the fiber product
G,z
mon-free re mer
E =LS8 x 5.
O Gz SG,Q L smer pG’£
G,z
Denote by (monfree and ,FHmen-free the resulting maps

+,mon-free mon-free

Opreg L Opgon—free L _ Oprgper.

3.1.7. Recall also that the D-scheme Opg is acted on simply transitively by the D-scheme Jets(a(§)wy )
(see Sect. B.5.1) of jets into a(g)w, , where a(§) C § is the centralizer of a regular nilpotent element,
and the twist by wx is performed with respect to the canonical G,,-action on a(g) (see, e.g., [BDI,
Sect. 3.1.9]).

mer

From here we obtain that Opgfg (resp., Opg*) is acted on simply-transitively by £ (a()wy ) (vesp.,

£(a(@)wx))-

3.1.8. Recall now the notion of formal smoothness of a prestack (see, e.g., [GaRol, Sect. 8.1]). This
notion has an evident relative variant.
We record the following (well-known) assertion:

m

Lemma 3.1.9. The morphism v : Opg® — LSE® is formally smooth.

Proof. We will show that for any classical affine scheme S and a map o : S — Opg® relative procotan-
gent sheaf
(3.1) T (OpE°/ LSET) € Pro(QCoh(S)=°)

is a Tate vector bundle. This would imply the assertion of the lemma by [GaRol, Proposition 8.2.2].

17We alert the reader to the fact that LS’C{,‘er is not the space of loops into pt /G, see Sect. B.7.9.
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In order to simplify the notation we will assume that S = pt (and in particular, we work over a
fixed point z € Ran). However, we will perform the analysis in such a way that it will be clear that it
works in families.

mer

Let inp be as in Sect. 3.1.4. We can represent the tangent space to Opgx°, at o is

coFib ((ﬁ ® 0% )pop 25 (b @ wyx )Top> ,
El B z B

where:
e O, x is the ring of functions on the punctured multi-disc D5 ;
® w, x is the space of 1-forms on DX,
e The notation (—),o0p indicates the twist by ‘ng, viewed as a B-bundle on DJ;
e V, is the connection defined by o.

er

The tangent space to LSZ

at the image of o is

(3.2) coFib ((g ® 0, )g0n % (@ W )g,gp> .

Hence, the relative tangent space along t is
Fib (@) @ 0, )00 %% (@/5) 9 g )y )
z P z° 7B

Thus, choosing a non-degenerate invariant form on §, we can identify the cotangent space at o again
with!®

(3.3) coFib <(ﬁ ® Oy )gor Y h® W ),ygp) .

Thus, we need to show that (3.3) is indeed a Tate vector bundle (in degree 0). Consider the principal
filtration on §, and the induced filtrations on # and b. The map in (3.3) sends

Fili(R @ O x ) por <5 Filim1 (b ® wyx ) yoo-
7B 2V

X
z

It suffices to show that for every i,
(3.4) coFib (gri ne O x ) pOp Y gr, ,(b® W x )?Qp)
"B 7B

is a Tate vector bundle (in degree 0).

However, the latter is evident. In fact, the maps in (3.4) are independent of o, and the assertion
follows fro the fact that the maps

., ad >
gr,; (1) - gr;_1(b)

are injective (where f is a negative principal nilpotent, fixed as an element in g/ B)

3.1.10. As a corollary of lemmas 3.1.9 and B.7.7, we obtain:
Corollary 3.1.11. The ind-scheme Opgc’;"ﬁee is formally smooth.*®

3.2. The IndCoh™ categories. In this subsection, for expositional purposes, we will work over a fixed
point € Ran. However, the entire discussion works when z forms a family over Ran.

18The fact that the tangent space and the relative cotangent space to opers are isomorphic is no coincidence: it
reflects the interaction of the Poisson structure on Oprge; and the symplectic structure on LS’Z;E;. In fact, the morphism
v is Lagrangian.

195ee Sect. B.1.9 for what formal smoothness means in the factorization setting.
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3.2.1. First, since Opggw (resp., Opg*;, Opgoaf'free) is a scheme (resp., ind-scheme), we have a priori

defined categories IndCoh*(—) and IndCoh'(—) attached to them, see Sects. A.4 and A.5 (the Ran
space version is discussed in Sects. B.13.16 and B.13.22).

3.2.2. Using Sect. 3.1.7, we can write
Opgg’"£ ~ liIr‘n Opgz/L,
where L runs over the filtered poset of lattices in £ (a(g)wy )z, viewed as a Tate vector space.

This exhibits Oprcegz as a limit of smooth schemes with smooth transition maps.

3.2.3. In particular, we obtain that Opgi is placid (see Sect. A.9.1 for what this means), so that the

categories
IndCoh..(Opi® ) and IndCoh' (Ops®)

are well-behaved; in particular, they are both compactly generated and are mutually dual.

Note, however, that since Operegz is pro-smooth, the coarsening functor

Wooree - IndCoh™ (Op® ) — QCoh(Op'<® )

Pea Gz Gz

is an equivalence, as is the functor

Yopres + QUoh(Op?) — IndCoh'(Opjs% ).

3.2.4.  We can identify
Op&s = (OpE% X L(a(@)wx)e) /L7 (a(8)wx )
In particular, we have a pro-smooth projection
Opgs = OpEo /L7 (a(@)wx )z = L(a(@)wx )z/L7 (a(B)wx )e-

This exhibits Opg®, as an ind-placid ind-scheme (see Sect. A.9.8 for what this means).

3.2.5. This ensures that the categories
IndCoh*(Opg®) and IndCoh'(OpE®)

are well-behaved; in particular, they are both compactly generated and are mutually dual.

3.2.6. Note that the map
LSE — LSE
is an ind-closed embedding, locally almost of finite presentation (see Lemma B.7.13).

This implies that
mon-free

mon-free ¢ mer
Op@@ - Opé,z

is also an ind-closed embedding locally almost of finite presentation. In particular, since Opg< is

mon-free

ind-placid, we obtain that Opz°,

is also ind-placid (see Corollary A.9.10).
Hence, we obtain that the categories
IndCoh* (Op°""*°) and IndCoh'(OpE %)

are also well-behaved; in particular, they are both compactly generated and are mutually dual.
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mon-free

3.2.7.  We will now show how one can explicitly exhibit Opz°]

as a colimit of placid schemes.

To simplify the notation, we will assume that x consists of a single point x. Henceforth, we will
omit z from the subscript, so we will write D instead of D.

Recall (see Sect. 3.1.4) that opers can be thought of as connections on a fixed G-bundle Tgp.
Trivializing this bundle on D, we will think of opers as connection forms, to be denoted a.

Thus, we can write OpE°™™°(D*) as

(3.5) {(a € Opg(D*),g € £(G)) |g-a € FRwyx}/L7(G) C Ops(D™) x Grg,

: -6
Therefore, we can write OpE°""*¢(D*) as®

“colim” Opgon’free(ﬂ>< ) X Y,
Y GrG

where Y runs over the filtered poset of closed subschemes of Gr.

Let us show that each Opgo"'ﬁee(DX) X Y is a limit of schemes almost of finite type with smooth
Grg
transition maps.

Let us consider Opx (D) as acted on by £(a(d)wy ). Now, it is clear that for a fixed closed subscheme
Y C Grg, there is an action of any small enough lattice L C £ (a(§)w, ) on

Opré}on—frcc (D X ) N

GrG-
via
(a,9) = (a+ao,g), ao€ L7 (a(@)wy)
3.5

Further, it easy to see that for any such L, the quotient of (3.5) by it is locally almost of finite type.

3.3. Properties of the (;™"re¢)lndCoh fynetor.

3.3.1. The map ™" gives rise to the IndCoh-pushforward functor
(3.6) (ymon-free)IndCoh IndCoh*(Opgz_free) — IndCoh™(Opg?)-

The functor (;mor-free)IndCeh jq ¢ ovact with respect to the natural t-structures.

mon-free

Note that since ¢
jOil’lt (Lmon—frcc)! of (L

compactness, see Sect. A.10.11.

is a closed embedding locally almost of finite presentation, the right ad-
mon-freeyIndCoh 5 ontinuous, in particular, the functor (;mer-free)ndCoh

X preserves
3.3.2. By the same logic, the functor
(ymon-freeyt IndCoh!(OpEZ) — IndCoh!(Opgz"ﬁee)
admit a left adjoint, to be denoted also by
(Lmon—free)indCoh . Indcoh! (Opgzl—free) N Indcoh! (Oprélz)

(We allow ourselves to use the same symbol (;mon-free)IndCoh

to be confused.)

in both instances, as the two are unlikely

201n the next formula, the symbol “colim” (i.e., with quotes) refers to the fact that we are forming an ind-scheme,
rather than taking the colimit in the category of schemes.
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3.3.3. The adjoint pairs

(Lmon—free)indCoh . IIldCOh (Oprélon free) = IIldCOh* (Opgjeﬁr) . (Lmon—free)!
and

(Lmon free)IndCOh Il’ldCOh (Opmon free) = IndCOh (Opmer) . ( monffree)!
are dual to one another with respect to the identifications

IndCoh*(Oprc'v;‘:’;'ﬂee)v ~ IndCoh!(Opgg'ﬂee)
and
IndCoh* (Opg%)" ~ IndCoh' (Opg5,)-

3.3.4. We will prove:

Proposition 3.3.5.
(a) The functor (3.6) is conservative.
(b) An object of IndCoh™(Opg*," freey s compact if (and only if) its image under (;™o-ree)indCoh g

compact.

The rest of this subsection is devoted to the proof of this proposition.

3.3.6. Let
(O IG!le;)r/;On-frcc
denote the formal completion of Opmer along Opmon free,

mon-free i

Since ¢ s (locally) almost of finite presentation, so is the embedding

(Lmon—free) (O rgezr)gon froe < Opmer

In particular, (Op

mer)

mon-free 18 ind-placid, and we have a well-behaved category
IndCoh*((Opmer)mon free)

3.3.7.  The functor
((emer-ree) )9t IndCoh™ ((OPE™) hon-tree) — IndCoh™ (OpE©)
gives rise to an equivalence
IndCoh*((Opmer)mon free) — IndCoh™ (OPE?, ) mon-tree,

where
IndCOh (Opmer)mon free C IndCOh (Opmer)

mon-free

is the full subcategory of objects with set-theoretic support on Op

Furthermore, the functor ((;men-free)/)lndCoh

((Lmon—free)/\ )! so ((Lmon—free ) A )IndCoh
’ *

admits a continuous right adjoint, to be denoted
preserves compactness.

3.3.8. The functor (;mon-freeyindCoh of (3 6) factors as

mon-freeyAyIndCoh
(@ )

IndCoh™(Op&%,” freey IndCoh*((Opmer)mon frec) 4 IndCoh™(Op¢5,),

and in order to prove Proposition 3.3.5, it is enough to establish the corresponding properties for the
above functor

(37) (/Lmon free)lndCOh IndCOh (Opmon free) N IndCoh* ((Opmer)mon free)
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3.3.9. Recall that according to Corollary 3.1.11, the ind-scheme Opgo;'free is formally smooth. Hence,

its embedding into any nilpotent thickening?! admits a retraction. This implies that the embedding
mon-free mer

(38) Opé,g — (Opé’,ﬁ)ﬁlon—free

admits a retraction

(39) (Opré]:;r)r/;lon—free — Oprgzkfree.

3.3.10. The existence of the retraction (3.9) readily implies that (4™orfree)ndCeb ig congervative:

Indeed, the functor of IndCoh-pushforward along (3.9) is a left inverse of (‘ymr-free)ndCoh,

This proves point (a) of Proposition 3.3.5.

Remark 3.3.11. Note that the above argument implies that the functor (4men-free)indCoh of (3.7 jg
co-monadic. Indeed, according to what we just proved, it is conservative, and it admits a right adjoint.
Hence, it remains to check that it preserves totalizations of (’Lmon'free)indCOh—split cosimplicial objects.

However, since ('Lmon’free)indc‘)h admits a left inverse, such cosimplicial objects are themselves split,

and hence their totalizations are preserved by any functor.

3.3.12. Let F € IndCoh*(OpZ°™™°°) be an object, such that (¢™°*"°°)"1°"(F) is compact. Let us
show that F is itself compact.

Since (Lmonffree)indCoh (f}')
such that the map

is compact, it is cohomologically bounded, i.e., there exists an integer n

mon-free\IndCoh mon-free\IndCoh
(v )4 () )4 ()

>
=7=""(
is an isomorphism.

(Lmon»free)lndCoh
*

Since the functor is t-exact, we obtain that

mon-free\IndCo mon-free\IndCo >—n
(¢ )R () )R (=T ()

= (v

is an isomorphism.

(Lmonffree)lndCoh
>k

However, since we already know that is conservative, this implies that

F - 727"(3")
is an isomorphism, i.e., ¥ is itself cohomologically bounded.
Hence, it remains to check that the individual cohomologies H*(F) of F are coherent. However,
(mon-freeyIndCoh ( pri qryy o pyi ((,mon-freeyIndCoh ()

and it is easy to see that an object F° € IndCoh* (Op‘élof'fmc)@ is coherent if and only if

(LmOn—fYCC)indCOh(g{)) c IHdCOh*(Opg‘;z)o

is coherent (this is true for any closed embedding almost of finite presentation between ind-placid
ind-schemes).
O[Proposition 3.3.5]

Remark 3.3.13. The implication «(;mon-free)IndCeh (g ig compact” = “F is compact” can also be proved
using the retraction (3.9): since this map is ind-finite, the functor IndCoh-pushforward along it preserves
compactness.

mon-free

Remark 3.3.14. Note that the existence of a retraction implies that the ind-scheme Op{°) is classi-
cal. Indeed, the ind-scheme Opg,mg'pr is classical, and hence so is its formal completion (Op‘é’?;)fﬂon_free (the

latter follows from [GaRol, Proposition 6.8.2]: we reduce to the Noetherian situation using placidity).

21Assurning all ind-schemes involved are Ng.
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Remark 3.3.15. The contents of this subsection apply “as-is” when z forms family over Ran. In
particular, the functor (;men-free)IndCoh g 4 natural factorization structure.

Moreover, when viewed as a functor between unital factorization categories, (Lmon’free)}k“dCOh has a
natural lax unital factorization structure.

We claim, however, that this unital structure is actually strict. Indeed, this follows from the fact
that (Lmon—free)indCoh sends

reg __ _ reg
OG = 1Indcoh*(oprélon—free) — 1IndCoh*(OpIé‘er) = OG‘ s

see Lemma C.11.23.

3.4. A direct product decomposition.

3.4.1. We will show that we actually have a (non-canonical) isomorphism
(3.10) (OPES ) mon-tree =~ OPGA ™ x (80)", |zl =n
(here §¢ is the formal completion of § at 0), so that (3.8) identifies with the base change of
0— d5.
Remark 3.4.2. The material in this subsection is specific to the situation over a given z € Ran. l.e.,

we do not know what how to even formulate the corresponding statement over Ran (or even X™ for
n>2).

3.4.3.  With no restriction of generality, we can assume that = consists of a single point x. Henceforth
in this proof, we will drop the subscript “x” and simply write D instead of D,.

We have

OPG(D x )r/r\lon—frcc =~ OPC (® X) X LSG(DX );):g7
LS (DX)

where LS&(D*)/tg is the formal completion of LS (D) along LS (D).
Note that we can identify
LSa(D™ )reg = 80/ Ad(G),
so that
Opg™ ™ **(D) = Opa (D Vhontree X Pt/C.

35/ Ad(®)
3.4.4. Note that the G-bundle on Oprgor"ﬁee(DX) corresponding to the map
Opgeee(D*) 5 LS (D) =~ pt /G
can be (non-canonically) trivialized, see Sect. 3.1.4. Le., the map
OpE*™™°(D*) — Opa (D™ )mon-tree — LSa (D )ee =~ 80/ Ad(G) — pt /G
factors though a map
Op[élon—frCC(DX) N pt .
Hence, so does the map
Ope (D™ )mon-tree = LSa(D™)feg = 80/ Ad(G) — pt /C.
Hence, the map
Op@(‘D>< )i\non»free _t> LS@(DX );\eg ~ @Q/Ad(é)
can be (non-canonically) lifted to a map

(311) OpG(DX )rAnon—free — gé\
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3.4.5. Combining the maps (3.9) and (3.11), we obtain a map
(312) OpG(D )mon free —7 O mO“ free(DX) X g6\7

such that if we base change both sides with respect to 0 — §{, we obtain the identity map on
Opgon-free (D X )

Thus, the map (3.12) becomes an isomorphism after a base change by a nil-isomorphism. This
implies that the map (3.12) is itself an isomorphism.

3.5. The action of IndCoh'. As in Sect. 3.2, for expositional purposes, we will work over a fixed point
z € Ran. However, the entire discussion works when z forms a family over Ran.

3.5.1. Recall that the category IndCoh*(Y) of an ind-scheme Y is naturally acted on by IndCoh'(Y). For
a morphism f : Y1 — Yo, the corresponding functor f. : IndCoh* (Y1) — IndCoh*(Y2) is IndCoh'(Y2)-
linear, where IndCoh'(Y2) acts on IndCoh*(Y;) via f' : IndCoh'(Y2) — IndCoh'(Y,), see Sect. A.6.6.

In particular, we obtain that the category IndCoh™(Opg*,) (resp., IndCoh™ (Opg*,” free)) is acted on
by IndCoh' (Opg?,) (resp., IndCoh' (Opg%” free)) ) and the functor

(Lmon—frCC)indCoh . IndCoh (Opgo; fI‘CC) N IndCoh* (Opg?;)

is linear with respect to IndCoh!' (OpES,)-

3.5.2. Being the right adjoint of a IndCoh' (Opmer) linear functor, the functor
(Lmon—free)! . IndCoh* (Oplgz) N Indcoh*(optcp’cz—free)
is right-lax IndCoh' (Opg?,)-linear .

However, it is easy to see that this right-lax IndCoh' (Op
i.e., the adjunction

(313) (Lmon free)IndCoh IndCoh (Opmon free) = IndCOh (Opmer) . ( monffree)!

mer) linearity structure is actually strict,

takes place in the 2-category of IndCoh' (Op module categories.

mer)

3.5.3. Since IndCoh' (Opg?,) (resp., IndCoh'(Op Crom freey) is symmetric monoidal, we can view the
dual categories a

IndCoh™ (Opmer)v and IndCoh™(Opg %" freeyv
as modules over IndCoh' (Opg?,) and IndCoh'(Op Péon freey ' respectively.
Note that the identifications
IndCoh” (Opmer) ~ IndCoh' (Op&?,)

and
IndCoh* (Opmon free) ~ IndCoh (Opmon free)

are compatible with the IndCoh' (Opmcr) and IndCoh' (Opmon free)_actions, respectively.
Recall (see Sect. 3.3.2) that the dual of the adjunction (3.13) identifies with
(314) (Lmon—free)indCoh IndCoh (O mon- free) — IndCoh (Opmel) . (Lmon—free)!

It is easy to see that the resulting IndCoh' (Opg?,)-linear structure on (3.14) arising from the
IndCoh' (Opg%)-linear structure on (3.13) is the natural IndCoh' (Opg?)-linear structure on

(o free) IndCoh' (Opge;) —s IndCoh!' (Op 1;0; free)
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3.5.4. Being a IndCoh' (Opg¢,)-linear, the functor

(L") IndCoh" (Opg®:) — IndCoh* (Opgr )
induces a functor
(3.15) IndCoh' (Opg ™) ® IndCoh* (Op@®) — IndCoh™ (Opg ™).
- IndCoh!(Op‘(‘.;‘Z)
We will prove:
Proposition 3.5.5. The functor (3.15) is an equivalence.
The proof will be given in Sect. 3.7.14.

3.5.6. Note that in addition to the functor (3.15), we have a tautologically defined functor
(3.16) IndCoh* (OpE*?) — Functy,acen! (o mer>(IndCoh (OpE°r-r®), IndCoh* (OpE%)).

We claim:

Lemma 3.5.7. The functor (3.16) is an equivalence.

Proof. Recall that the category IndCoh”(Opg?,) identifies with the dual of IndCoh’ (Opg?), and
this identification is compatible with the IndCoh' (Opmer) module structures. Therefore, for any
IndCoh' (Opmer) module category C, we have

Functi,gcon! (Opxner)(c IndCoh™(Op¢?,)) =~ Funct(C, Vect),

where Funct(—, —) refers to colimit-preserving functors.

Applying this to C = IndCoh' (Opg%r free) "we obtain that the right-hand side on (3.16) identifies
with
IndCoh' (Op&,” free)V' ~ IndCoh* (Op&S,” freey

It is easy to see, however, that the endomorphism of IndCoh*(Ome" free) “induced by (3.16) and

the above identfication, is the identity functor.
O

3.6. Action of the spherical category. The discussion in this subsection will be specific to the
situation when z € Ran is fixed. The generalization in the factorization setting will be discussed in
Sect. E.8.

3.6.1.  Let us write Opg" free o9

(Opg?;)l/;lon—frcc m>§r A LSrG“egw =~ (Opgz)gon-fl‘cc X (pt /G)‘£|
(LSBT ) og = (83 / Ad(G))l=!

From this presentation it is clear that

Sphy o~ IndCoh(LSE¥, x LSE") ~IndCoh(pt /G x  pt/G)*!!
Lsm 8/ Ad(G)
acts on both
Il’ldCOh (Opmon free) and IndCOh (Opmon free).

mer)

Moreover, these actions are IndCoh'((OpZ°)2 . tree )-linear, and hence IndCoh'(Op linear.

mer)

3.6.2. The identification
IndCOh*(Op‘é‘O;‘frcc)V ~ IndCOh!(Opgz"ﬁcc)

is compatible with the structure of (SphSpec IndCoh' (Opg?,))-bimodule on the two sides.
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3.6.3. It follows from the constructions that the functor (3.15) (resp., (3.16)) respects the SphSpec

actions on the two sides, where the action on the left-hand side of (3.15) (resp., right-hand side of
(3.16)) is via the IndCoh'(Op Crn freey_factor.

3.6.4. Furthermore, it again follows from the construction that the functor

mon-free IndCoh
C )

QCoh(LS# ) @ IndCoh” (Opg ) % IndCoh*(Opgr*°) " IndCoh” (OpE ) mon-free
canonically factors via a functor
(3.17) QCoh(LSgE) @ IndCoh"(Opg ™) — IndCoh" (OPE mon-tree-
1= SphSC;’,eﬁc = 1=
We claim:

Proposition 3.6.5. The functor (3.17) is an equivalence.

Proof. Since the monoidal categories Sphi?*® and QCoh(LS,s% ) are rigid, the projection functor

3.18) IndCoh™(Opg% ™) ~ QCoh(LS5® ® IndCoh® (Opo™ee) _y
G G,z
E QCoh(LS®) -

— QCoh(LSE?) 2 IndCoh* (OpgE°re?)
=) spnpes

admits a continuous right adjoint. Moreover, the corresponding adjunction is monadic.
The functor
(7)) g 092 e + 19ACOh” (ODE T monnce > IndCoh” (Op™)

is also monadic.

Hence, we need to show that the functor (3.17) induces an isomorphism between the two monads
acting on IndCoh* (Opmon free) as plain endofunctors.

It is easy to see that the composition of (3.18) with (3.17) is the functor
(ymon-freeyIndCoh . IndCoh*(Opgz_free) — IndCoh™ (Op¢, ) mon-tree-

This gives rise to a map between the two monads. Let us show that this map is indeed an isomor-
phism of the underlying endofunctors.

The monad corresponding to (3.18) is given by the action on IndCoh™(Opg*," freey by the (algebra)

hipec

object in Sp equal to the !-pullback of

¥y gres

Opgies € QUoh(LS[S%) ~"* IndCoh(LSL* )

along the first projection

;LS8 x LS8 — LSSE .
G,z Lsxner G,z G,z

mon-free\IndCoh
(v )+

The monad corresponding to is given by !-pull followed by *-push along

O mon-free O mon-free > pn}on—free O mon-free
G,z
A 'z
(OPE D ) mon-tree

spec
th.
g

However, it is easy to see that this functor is given by the action of the same object in Sp

3.7. Self-duality for IndCoh on opers.
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3.7.1. First, we claim that there is a canonically defined equivalence
(3.19) Oopzer : IndCoh'(Opg) — IndCoh* (Opg?),
compatible with the monoidal action of IndCoh!' (Opg?,) on both sides.

By IndCoh' (Opmer) linearity, the datum of a functor (3.19) is equivalent to a choice of an object in
IndCoh™ (Opg?)-

The corresponding object, to be denoted
*,fake mer
opmcr € IndCoh™(Op Gz),
is constructed as follows.

3.7.2.  Consider Opgz®, as equipped with an action of £7(a(§)wy )z, and note that the quotient
OpgL /L7 (a(8)wx )z
is an ind-scheme of ind-finite type. In particular, we have a well-defined category
IndCoh(Opg5 /£ " (a(8)wx )z),

and an object
Wopmer /8% (a(@)ux e € IndCoh(Opg% /€7 (a(§)wy )x)-

The operation of *-pullback along
O = OPEL/L* (a(@)ur )

is a well-defined functor

(3.20) IndCoh(Opg% /£7 (a(§)wy )z) — IndCoh™ (OpgEs).
*,fake :
We let wg, pmer be the image of Wopmer /24 (a(§ux )z under (3.20).

3.7.3. We claim:

Lemma 3.7.4. The functor @opger of (3.19), defined by wg:::neer, s an equivalence.

Proof. We can write
IndCoh' (Opés,) =~ cohm IndCoh(Op¢5, /L)

(where the transition functors are given by !-pullback) and

IndCoh™(Op¢?,) =~ cohm IndCoh(Op¢?, /L)

(where the transition functors are given by *-pullback), and where the L’s run over the poset of lattices
in £ (a(§)wy )a-
The functor @oprcpcr is given by the compatible family of (endo)functors
IndCoh(Op¢?, /L) — IndCoh(Op?, /L),
each given by tensoring by the graded line

det(£7 (a(§)wx )o/L) [~ dim (€7 (a(§)wy )=/L)]-

Since all these functors are equivalences, so is their colimit.

Remark 3.7.5. We can combine the functor @opnycr of (3.19) with the identification

IndCoh™ (Opmer) ~ IndCoh' (Opé&',)
and thus view it as the datum of self-duality on IndCoh* (Opreg ).
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Remark 3.7.6. By the same token, we can define the functor
A0 pice : IndCoh' (Op'reg ) — IndCoh* (Opreg ) ~ QCoh(Opreg )
and show that it is an equivalence.
Note that the corresponding object
womes € IndCoh™(Opi¥)) ~ QCoh(Opg¥)

Opg
is Ooprggz.

3.7.7. Let
w*,fake . c Indcoh*(opgz—ﬁee)

Opmon-free
pG@

be defined by

*, faki I -fi ! *,fak
wop%%,_free = (Lmon ree) ( Op':é]i).
Let
(3.21) O gppmon-tree IndCoh'(OpE%~"*°) — IndCoh* (OpEr~"*),
be the IndCoh' (Opmon free)_linear functor, corresponding to wgéilffn_ﬁee.

3.7.8. Note that the functor GOpxyon—free is rigged so that it makes the diagram
G

(v mon- free)

IndCoh' (Opgs) —— IndCoh' (Opon-free)
(3.22) @opré!er l lgopgon'ﬁee

mon-freey!
IndCoh* (Op=2) "5 ImdCoh* (OpZor-iree)

G,z

commute.
3.7.9. We claim:

Proposition 3.7.10. The functor ©g mon-tree of (3.21) is an equivalence.
G

Proof. Write
_f .
Opgo e =« cohm 7Y and Opg’, = “colim”Y;,
iz i

mon-free

where Y;? and Y; are schemes, and the map ¢ is given by a compatible family of maps

,mon-free

v Ly,

mer

almost of finite presentation. Moreover, we can choose Y; so that its map to Op 1s almost of finite

presentation. In this case both Y; and Y° are placid.

Set
*,fake |/ mon-free\! *,fake
Wyo = (4 ) (wyi )s
fak . ki
where wy:““" is the l-restriction of wg; foake. along Y; — Opg?,- Let
Péa

Oyo : IndCoh'(¥;”) — IndCoh* (Y;")
be the IndCoh' (Y?)-linear functor, defined by w fake . We will show that each ©y0 is an equivalence.

Write

Y = limYiq,

where Y, are schemes almost of finite type, with smooth transition maps.
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mon-free

Since ¢; is almost of finite presentation (up to truncation)??, we can find an index « such that
Y fits into a Cartesian diagram
mon-free
Li

e

ﬂgl lwa

_free\0
(ymon-freey

0
y;,a Yix‘l'

Furthermore, up to enlarging «, by the construction of wgp?!,f,-, we can assume that
G,z

fake,* *
in ’ Zﬂ—a(wyi,a(g)ﬁiyﬂ)?

where £; o is a (comologically graded) line bundle on Y; . Hence,

Wi = (10) (wyp ® L),
1 !

where
L?’a — ((Lmon-free)g)*(ﬁi7a).
Since the category of indices « is filtered, we can write

0 . 0 0 0
YL =~ }ilgll Y;l,ﬁh Y;,ﬁ = Yi,o: YX )/’i,ﬁﬁ

so that
IndCoh™ (V;") ~ colim IndCoh(Y;5)
under *-pullbacks, and
IndCoh' (V%) ~ colim IndCoh(¥; )
under !-pullbacks.
For each S, let L?’ s be the (canonically defined) line bundle on Yi?,@ so that
wyo, ® L?,g ~ (ﬂgva)*(wyioa ® Lga), ﬂ'g’a : Yi?,B N Yi?a.

We obtain that the functor ©y.0 is given by the compatible system of (endo)functors

£ co—
IndCoh(Y%s) "% IndCoh(Y;s),
which are all equivalences.

O

Remark 3.7.11. One could make the above proof more explicit by using the presentation of Oprg‘:"ﬁee
as in Sect. 3.2.7. B

Remark 3.7.12. Note that combined with the identification
IndCoh” (OpE~"°)" =~ IndCoh'(Opg="*°),
functor O mon-tree of (3.21) can be viewed as the datum of self-duality on IndCoh*(Op'gO;"free).
& .z

3.7.13. As a first consequence, passing to the right adjoint functors along the horizontal arrows in
(3.22), and knowing that the vertical arrows are equivalences, we obtain another commutative diagram

(Lmon-free)indCoh

IndCoh'(Opg % *®) —————— IndCoh'(OpE%)

© mon-free S] mer
non- OpHt
Org Pa

mon-freeyIndCoh
C )

IndCoh* (Op-*?) —————— IndCoh*(Opg<).

22The issue of truncation is taken over by passing to the limit.
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3.7.14. Proof of Proposition 8.5.5. From (3.22) we obtain a commutative diagram

mon-free
IndCoh' (OpZer-ree) ® IndCoh' (OpZ) ) ndCoh! (Opgorree)
IndCoh! (OpgE)

Id ®@Oprgcr l leopg}on-free

(v mon- free

IHdCOh (O mo;l free) ® Indcoh*(opmer) —> IndCOh (O goxn-free).
= IndCoh' (Oper) jrd

The vertical arrows in this diagram are equivalences by Lemma 3.7.4 and Proposition 3.7.10, re-
spectively. Since the top horizontal arrow is an equivalence, we obtain that so is the bottom horizontal
arrow.

O[Proposition 3.5.5]

3.7.15. Let us observe now that once we know Proposition 3.5.5, we could view the construction of
O gpmon-tree differently:
G

We start with the equivalence

IndCoh' (OpZ°™-free) ® IndCoh”(Opg®) ~ IndCoh™ (OpEa~*)
= IndCoh! (Opizer) Z

and pass to dual categories. We obtain
(3.23) Functy,qcon! (Opmer)(IndCOh (Opg&- free) IndCoh' (Op¢g?)) =~ IndCoh!(Opgz'ﬁee).
Applying @opger, we replace the left-hand side in (3.23) by

Funct,qcon! (o mu>(IndCoh (Op&y” freey IndCoh* (OpPE))s

and applying Lemma 3.5.7, we rewrite it further as IndCoh* (Op’é”;'free),
Thus, we can interpret (3.23) as an equivalence
(3.24) IndCoh” (Opg°r~"°) =~ IndCoh' (OpE™*°).

prd

It is easy to see, however, that (3.24) equals the (inverse of the) equivalence © g mon-tree constructed
G

above.

3.7.16. The following results from the definition of the Sphyy*“-action on IndCoh* (OpE°r-™*°) and
IndCoh* (Opg %" freey in Sect. 3.6.1:

Lemma 3.7.17. The equivalence (3.24) is compatible with the SphsPeC—actwns
3.7.18. All the preceding discussion in this subsection applies also in the factorization setting.

3.8. Relation to quasi-coherent sheaves. We now consider the relationship between ind-coherent
and quasi-coherent sheaves on Opg™ free We observe two pleasant categorical properties over a point
and ask if they extend to the factorlzation setting.

3.8.1. For any prestack Y we have a canonically defined (symmetric monoidal) functor

Ty : QCoh(Y) — IndCoh'(Y).

It is known that if Y is a formally smooth ind-scheme locally almost of finite type, then Ty is an
equivalence (see [GaRol, Theorem 10.1.1])?3

23This result was originally proved by J. Lurie.
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3.8.2. Consider the functors

(3.25) To piger QCoh(Opmer) — IndCoh' (Op&'L)

and

(3.26) T opmon-tree : QCoh(OpE%~"°) — IndCoh' (Opgr"),
respectively. -

3.8.3. First, we claim:
Lemma 3.8.4. The functor Topgcr is an equivalence.

Proof. Repeats that of Lemma 3.7.4.
O

Remark 3.8.5. Both the statement and the proof of Lemma 3.8.4 carry over to the factorization setting.
3.8.6. We now claim:

Proposition 3.8.7. For a fized z € Ran, the functor Yo mon-trec s an equivalence.
G,z

Proof. We will use the direct product decomposition of Sect. 3.4.

First, it is easy to see that the fact that Topger is an equivalence implies that the functor

Y (opgen)s : QCoh((OPE™) mon-tree) — IndCoh' ((OPE™) Mon-free)

mon-free
is also an equivalence.

Since the category QCoh(g)/ Ad(G)) is dualizable, the X functor

QCoh(g / Ad(G)) ® QCoh(Opg%"**) — QCoh(gy / Ad(G) x Opg*?)

is an equivalence.

The X functor

IndCoh(g) / Ad(G)) ® IndCoh' (OpE ™) — IndCoh'(§5 / Ad(G) x OpEa™°)

is an equivalence tautologically.

Since the functor

Tip/ ad@) : QCoh(g§y / Ad(G)) — IndCoh(gy / Ad(G))

is an equivalence, in order to prove that Topngon-free is an equivalence, it suffices to show that
G,z
T3/ Ad(G)xopgen-ires : QCoh(dy / Ad(G) x OpE"*?) — IndCoh' (g / Ad(G) x OpEre°)

is an equivalence.
However, this follows from the fact that T(Opmer A is an equivalence, combined with the exis-

tence of an isomorphism
30/ Ad(G) x Opgo ™™ ~ (OPE%) mon-tree-
d
3.8.8. The proof of Proposition 3.8.7 given above is specific to the situation when z € Ran is fixed.
Yet, we propose:
Question 3.8.9. Is the functor
m n-fr mon-fr
Topréjonffrcc : QCoh(OpE°™*®) — IndCoh' (OpE™e°)

a factorization equivalence?



46 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

3.8.10. Note that we can write

on-free eryA reg
~ v LSG s
Op ~ (OpG,x)mon—free (LS’“>e<‘ A e

reg
Hence, the functor of !-pullback along
-f
OPE,CZ ree — (Opg,e;)r/r\]on—free
gives rise to a functor

(327) QCOh(LSre’gz) QCOh“L(%mer)/\ ) Indcoh (( mer)r/ilon free) N IndCOh (O mon- free).
Gv£ reg

We claim:
Proposition 3.8.11. The functor (3.27) is an equivalence.

Proof. Given that the functors

TO mon free and T(opmer)

mon-free ’
as well as
@Opré]on-free and @Oprger
are equivalences, in order to prove Proposition 3.8.7, it suffices to show that the functor

QCOh( SrGegz) ®m r QCOh((Opmer)mon—ﬁree) - QCOh(Opmon free)
QCah((Lsc.z)?e )

is an equivalence.
However, this follows from the fact that the prestack
(L Ige;)reg — gO/Ad( )
is passable (see [GaRo3, Chapter 3, Proposition 3.5.3]).
O

3.8.12. Asin the case of Proposition 3.8.7, the assertion of Proposition 3.8.11 is specific to the situation
when z € Ran is fixed. Parallel to Question 3.8.9, we propose:

Question 3.8.13. Is the functor

QCoh(LS¢) ® IndCoh" (OpE*) hon-tree — IndCoh™ (OpE™" %)
QCoh((LSE"){vg)

a factorization equivalence?

4. DIGRESSION: IndCoh* VIA FACTORIZATION ALGEBRAS

In this section we discuss the approach to factorization categories arising in the local Langlands
theory, on both the geometric and spectral sides, as factorization modules over factorization algebras®*

This approach is most efficient when we want to cross the Langlands bridge, i.e., map a category on
the geometric side and a category on the spectral side to one another. Indeed, it is often possible to
compare the corresponding factorization algebras directly (a prominent example of this is the Feigin-
Frenkel isomorphism, see Theorem 5.1.2).

However, this approach comes with a caveat: typically, the given representation-theoretic or algebro-
geometric category will not be exactly equivalent to the corresponding category of factorization mod-
ules. Rather, the two will be related by a renormalization procedure. Most often, this will be manifested
by the fact that both sides will be endowed with t-structures, and the corresponding eventually cocon-
nective subcategories will be equivalent on the nose.

24The factorization algebras in question may be either plain ones (i.e., in Vect) or in some simpler or better
understood factorization categories.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 47

We apply these ideas to construct a categorical action of the Feigin-Frenkel center on Kac-Moody
modules at the critical level; see Sect. 4.6.

4.1. Factorization algebras and modules.

4.1.1. Let A be a unital factorization algebra. To it we can attach a laz factorization category
A_modfact
of unital A-factorization modules (see Sect. B.11.12).
It comes equipped with a conservative forgetful functor

oblv, : A-mod™* — Vect .

4.1.2. By definition, the value of A-mod™< over a given z € Ran is the category
A—modgiCt
of factorization A-modules at x.

In general, we cannot say much about homological properties of the category .A—modgm‘ In partic-
ular, we do not know whether it is compactly generated.

4.1.3. This is also reflected by the following phenomenon:

d?<t recovers the

For a pair of disjoint points z,; and z,, the lax factorization structure on A-mo
naturally defined functor
./l—modgdlCt ® A-modf;zCt — .A—modgdfi,b.
However, it is not clear whether this functor is an equivalence. (If it were, and if this were true in
families over z,, z, moving over Ran, this would mean that the lax factorization structure on A-modfact

is strict.)

4.1.4. Assume for a moment that A is connective, i.e., oblv!(Ax) € QCoh(X) is connective. Then
the category A-mod™® carries a (uniquely defined) t-structure (see Sect. B.11.11 for what this means
in the factorization setting), for which the functor oblvy is t-exact, see Sect. B.11.15.

In addition, it follows from the definition that A-mod™ is left-complete in its t-structure.

Remark 4.1.5. The left-completeness of ‘A—modgiCt is an indication of its failure of compact generation:

Let C be a category, equipped with a t-structure, in which it is left-complete. Then every object
c € C° is of bounded projective dimension, i.e., the functor Homc(c, —) is of bounded cohomologi-
cal amplitude. However, typically, the category A—mod;aCt does not contain any objects of bounded
projective dimension.

4.1.6. Here is how factorization algebras and modules will typically arise in this paper. Let A be a
(unital) factorization category equipped with a (lax unital) factorization functor

F: A — Vect.

Then F(14a) is a factorization algebra (in Vect). Moreover, the functor F' naturally upgrades to a
(factorization) functor, denoted
F™™ : A — F(1a)-mod™*,
see Lemma C.15.3.

Remark 4.1.7. The factorization structure on F°"" means for example that for disjoint points Ti,Ty €
Ran, the diagram

~

A£1 ® A£2 ? Azl Uzg
Fl1®Fl2l lpilulz

F(1a)-mod® @ F(1a)-modf* ——— F(1a)-modf,,

commutes (even though the bottom horizontal arrow is not in general an equivalence).
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4.1.8. If in the situation of Sect. 4.1.6, the category C is equipped with a t-structure so that 1¢ lies
in the heart, and the functor F is t-exact, we obtain that F/(1¢) is a classical factorization algebra, so
that the category F(1c)-mod™<* carries a t-structure.

In this case, the functor F*! is obviously t-exact.

4.1.9. More generally, if F': C; — Cx is a lax unital factorization functor between unital factorization
categories, the object

F(lcl) € Cy

has a natural structure of factorization algebra, and the functor F' upgrades to a functor

F™ . Cy — F(1g,)-mod™* (Cy).

4.2. Kac-Moody modules as factorization modules. Here is a typical example of the paradigm
described in Sects. 4.1.6-4.1.8.

4.2.1. Consider the tautological forgetful functor
oblv; : g-mod,. — Vect.

Recall that Vg . denotes the factorization algebra oblvg(Vac(G)x), so that oblvg upgrades to a
(t-exact) functor:

(4.1) oblv%nh : g-mod,, — Vg,n—modfa“.

4.2.2.  'We have the following basic observation:

Lemma 4.2.3.

(a) The functor oblvgnh of (4.1) induces an equivalence between the eventually coconnective subcate-
gories of the two sides.

enh

(b) The essential image of the subcategory of compact objects of g-mod,, under is oblvg™ is contained

in (Vg n-modfct)> =,

4.2.4. The rest of this subsection is devoted to the proof of Lemma 4.2.3. We will prove a pointwise
version for x = x € Ran. The factorization version is just a variant of this in families.

Let Vﬁf‘m be the chiral algebra corresponding to Vg .. Le., as a D-module on X,
VZ?,@ = Vg,e.x[—1].
First, by [BD1, Proposition 3.4.19] (see [FraG] for the derived version), we have an equivalence
Vg x-mod ~ Vgl’“ﬁ-mod;h,
which commutes with the forgetful functors of both sides into Vect, and hence preserves the t-structures

on the two sides.

4.2.5. Let Lg . be the Lie-* algebra
wx ® (g ®Dx)
of [BD1, Sect. 2.5.9]. Then by [BD1, Proposition 3.7.17] (which applies as-is in the derived setting),
we have
V‘;‘K—mod;h ~ Lg x-mod",
which commutes with the forgetful functors of both sides into Vect, and hence preserves the t-structures
on the two sides.
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4.2.6. By the construction of g-mod,,, in [Ra5] (or, equivalently, in [FG6, Sect. 23.1]), we have an
embedding

(4.2) (G-mod,. 2)¢ = (Lg,x-mod)” ™,
which satisfies the conditions of [FG6, Sect. 22.1.4] (see Sect. D.3.6 for an explanation of why this
happens).

Hence,

(G-mods, )" " = (Lg,x-modS")” >
is an equivalence by [FG6, Proposition 22.1.5 and 22.2.1].
O[Lemma 4.2.3]

4.3. The case of commutative factorization algebras.
4.3.1. Let Y be an affine D-scheme over X, i.e., Y = Specy(A), where A € ComAlg(D-mod(X)) with
oblv!(A4) € QCoh(X)=°.

Let A € ComAlg(FactAlg"™ (X)) denote the corresponding commutative factorization algebra, i.e.,
A := Fact(A), see Sect. B.10.2.
4.3.2. Let £5(Y) denote the affine factorization scheme corresponding to Y (see Sect. B.4.2), i.e., the
fiber £5(Y)z of £5(Y) at z € Ran is the space
(4.3) Sectv (Dgz, Y).

According to Sect. C.8.11, for Z — Ran,

£3(Y)z = Specy (Az).
In particular, for z = {1, ..., zn }, we have

Qé(y)gzizlﬂ n‘jzi, z=A{x1,....,Tn}

.....

(Note that this is compatible with (4.3), since for a singleton z = {z}, we have Sectv (D, Y) ~ Ya,
in agreement with (4.3)).

4.3.3. Consider the corresponding factorization category QCoh(£%(Y)) (see Sect. B.13.2), so that for
x € Ran, we have

QCoh(£y (Y))a := QCoh(LY (Y)a)-
The factorization category QCoh(£E(Y)) is unital, with the structure sheaf O

torization unit.

et (Y) being the fac-
~v

4.3.4. The functor of global sections I'(£% (Y), —) sends

Osé(‘d) A

and induces an equivalence
QCoh(£%(Y)) ~ A-mod®™.
4.3.5. Let £v(Y) denote the factorization D-ind-scheme that attaches to a point € Ran the space

Lv(Y)e = Sectv(Dg,‘j),
see Sect. B.4.6.

We consider the corresponding lax factorization category QCoh(£v(Y)) (see Sect. B.13.2), so that
for z € Ran, we have

QCoh(£v(Y))z := QCoh(Lv (¥)z)-
For a general Y, this category may be quite ill-behaved (basically, because the category of quasi-

coherent sheaves on an ind-scheme may be quite unwieldy); in particular, it is not clear whether
QCoh(£v(Y)) is unital.
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4.3.6. Recall now that we can also consider the factorization category
QCoh,,(£v(Y)),
see Sect. B.13.8.

Its factorization unit is the direct image of the structure sheaf on £$ (Y) along the tautological
closed embedding ,Q; (Y) % £v(Y). By a slight abuse of notation, we will denote it by the same symbol
Os@(%)'

4.3.7. The operation of taking global sections is a (t-exact?®) factorization functor
I'Lv(Y),—) : QCoh,,(£v(Y)) — Vect.

Hence, by Sects. 4.1.6-4.1.8, the functor I'(£v(Y), —) upgrades to a (t-exact) lax unital factorization
functor

(4.4) ['(Lv(Y), =)™ : QCoh,,(Lv(Y)) — A-mod™*.
4.3.8.  'We have the following basic assertion:

Theorem 4.3.9. Assume that Y is almost finitely presented in the D-sense®S. Then the functor (4.4)
induces an equivalence between the eventually coconnective subcategories of the two sides.

The proof of this theorem will be given in Sect. D.5. We note that the assertion of the theorem
would be false without the finite presentation hypothesis, see Sect. D.6.

4.3.10. Recall that if Z is an ind-scheme, we have a well-defined (t-exact) functor
Uy : IndCoh™(Z) — QCoh,,(2),
which induces an equivalence
IndCoh*(Z)” > 5 QCoh,,(2)” ™%,
see Lemma A.8.10.

Furthermore, if Z is ind-placid, Uz gives rise to an equivalence between IndCoh*(2)¢ and the sub-
category of almost compact objects in QCoh,(Z)”~°.

Note also that the composition
I(Z,—) o ¥y : IndCoh™(Z) — Vect
is the functor I"*4°°h (27 —) of IndCoh-global sections.

4.3.11. Assume for a moment that £v(Y) is ind-placid. Applying Sect. 4.3.10, we obtain a factorization
functor

M (20 (Y), —) 2 T(Lv(Y), =) 0 Teg(y), IndCoh™(Lv(Y)) — Vect

and its enhancement
(4.5) e (go (yY), —)°™ : IndCoh* (£v (Y)) — Oy-mod™".
Combining with Theorem 4.3.9 we obtain:

Corollary 4.3.12.

(a) The functor T™IC°N (25 (Y), =)™ of (4.5) is t-ezact and induces an equivalence between the even-
tually coconnective subcategories of the two sides.

(b) The essential image of the subcategory of compact objects in IndCoh™(Lv(Y)) under the functor
indCohac (yY), —)emh is contained in (Oy-modct)>=°,

2536e Sect. A.2.8 for the definition of the t-structure on QCoh,, of an ind-scheme.
26366 Sect. B.6.3 for what this means.
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Remark 4.3.13. Point (b) in Corollary 4.3.12 can be strengthened as follows: the essential image
of IndCoh*(£v(Y))¢ under TP (2g (Y), —)°"" equals the category of almost compact objects®” in
(Oy-mOdfaCt)>7oo.

Note that from Corollary 4.3.12 allows us to recover the (factorization) category IndCoh*(£v (Y))

from Oy-mod™®° equipped with its t-structure:

Namely, we can identify IndCoh*(£v(Y)) with the ind-completion of the category of almost compact
objects in (Oy-mod<*)==°,
4.4. Recovering IndCoh* of opers as factorization modules.
4.4.1. The setup of Sect. 4.3.11 is directly applicable to the case when Y = Opg (the D-afp assumption
is satisfied by Sect. 3.1.7), so that
£3(Y) = Opi® and Lv(Y) = Opg*.

By a slight abuse of notation, we will denote by OOPrc“Cg (rather than I'(Opg®, Ooprcpg)) the corre-
sponding factorization algebra in Vect.
In particular, we obtain that the functor
e (Oper ) : ITndCoh* (Op®") — Vect
upgrades to a (t-exact) functor
(4.6) naCer (Opmer )™ IndCoh* (OpE®") — Oopréeg—modfa“,
and we have:

Corollary 4.4.2.

(a) The functor (4.6) induces an equivalence between the corresponding eventually coconnective (a.k.a.
bounded below) subcategories.

mer

(b) The essential image of the subcategory of compact objects in IndCoh™(Opg) under the functor

(4.6) is contained in (Ooprgg—modfza“)>_°°.
e z

We now consider the case of monodromy-free opers.

4.4.3. Direct image along the projection
reg reg reg
v Opy® — LS,

defines a t-exact (lax unital factorization) functor

o8 re, ~
(4.7) IndCoh™ (Ops¥) ~ QCoh(Op's) 5 QCoh(LSLE) ~ Rep(G).
Denote
(4.8) RG‘,Op = tng(OOpgg).

This is naturally a commutative factorization algebra in Rep((?).

4.4.4. Explicitly,
R op = (D(Opg®, —) @ 1d) o ((¢"**)" @ 1d)) (Re),
where
R¢ € Rep(G) ® Rep(G)

is the regular representation.

27Recall that an object ¢ in a DG category C equipped with a t-structure (assumed compatible with filtered colimits)
is said to be almost compact if the functor Homc(c, —) commutes with filtered colimits on CZ~™ for all n.
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4.4.5. Consider now the factorization functor

(4.9) " IndCoh™ (Opg®™ ) — QCoh(LSS®) ~ Rep(().
Note that we can interpret R¢ o, also as
tindCoh(ooprc?g)’

where by a slight abuse of notation we view Ogres as an object of IndCoh* (Op°*~™*°) using
G

‘I’Opr_eg +,mon-freeyIndCoh
@ )

QCOh(Opgg) ’:G IndCOh* (Opgg) — IndCOh* (Oplgon»free).
4.4.6. The functor (4.9) naturally upgrades to a t-exact factorization functor

(4.10) (¢4 IndCoh™ (Opg™™ ™) — R, op-mod ™ (Rep(G)).

We will prove:

Proposition 4.4.7.

(a) The functor (4.10) induces an equivalence between the eventually coconnective subcategories of the

two sides.

(b) The essential image of the subcategory IndCoh*(OpE®* ™) under (4.10) is contained in

(R 0p-mod™ (Rep(G)))” .

4.5. Proof of Proposition 4.4.7. We will provide a general framework, of which Proposition 4.4.7

is a particular case. The assertion is local, so we can assume that X is affine.

4.5.1. Let Y be an affine D-scheme, and consider £5(Y) := T* as a factorization space. Let T be a

factorization space, equipped with a map
LT =T
that extends to a unital-in-correspondences structure on T relative to 71 (see Sect. C.10.6).

Consider the factorization category

QCoh,,(7),
see Sect. B.13.8.
Note its factorization unit is given by
Ly (Og—+ )
We will assume:

e (i) T is an ind-placid ind-scheme.?®

4.5.2. Let us be given a D-prestack Yo, equipped with a map

f:9— Yo,
and an extension of the map
et (r
T = eb ) " b (o) = 7
to a map
g L0 gt

We will assume:
e (i) T4 has an affine diagonal.

Note that assumptions (i) and (ii) imply in particular that the map £(f) is ind-schematic.

2836e Sect. B.1.9 for what this means.
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4.5.3. Consider the functor

Q.4+
(4.11) QCoh,,(T) *%* QCoh,, (75) "B QCon(Td),

where Q o) is as in (A.8). By a slight abuse of notation, we will denote the composite functor in
v
(4.11) by the same symbol £(f)..

The functor £(f)« of (4.11) upgrades to a (factorization) functor

(4.12)  (£())™™ : QCoh,,(T) —
— £(f)« © 14 (034 )-mod™*(QCOh(TF)) = £F(f)«(0g+)-mod™** (QCoh(Ty))..

4.5.4. We now make an additional assumptions:

e (iii) The prestack Yo admits a map
g: Y0 = Yo,
where 90 is an affine D-scheme, such that the map
~ ~ et
To = £5(0) ) £5(%0) = 77

is an fpqc cover.??

e (iv) For 9 =Y x 90, the resulting map
Yo

identifies with

Note that assumption (iii) implies, in particular, that the category QCoh(J7) has a well-behaved
t-structure: it is characterized uniquely by the property that the functor

(£7(9))" : QCoh(T{) — QCoh(Ty)
is t-exact.

It follows from assumption (iv) and base change that the functor £(f). of (4.11) is t-exact (see
Sect. B.13.8, where the t-structure on the left-hand side is defined). Hence, (£(f).)™" is also t-exact.

4.5.5. Finally, we make the following assumption:
e (v) The map

Ji=Y x Jo & T

X
Yo

is D-afp (see Sect. B.6 for what this means).

295ee Sect. B.1.9 for what this means.
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4.5.6. We claim:

Corollary 4.5.7. Under the above assumptions, the functor (4.12) induces an equivalence between the
eventually coconnective subcategories of the two sides.

Proof. Let 93 be the Cech nerve of the map g. Denote
Yo=Y x Yp
Yo
and

Tot = b @), T =T x B0~ eb(0)

and

Consider the resulting maps:
Fo 0 5 and Fr0 ST T,
First, by fpqc descent we have a t-exact equivalence
QCoh(T7) ~ Tot(QCoh(T{*)),
from which we obtain a t-exact equivalence
€5 )+ (O+)-mod ™ (QCoh(T)) == Tot (£7(f*). (05+.4)-mod ™ (QCoh(T; *)))
and hence

£7()+(0+)-mod ™ (QCoh(TF )™~ = Tot (£7(f*)(05+.4)-mod ™ (QCoh(T;*)” ™).

Next, by assumption (i) in Sect. 4.5.1 and Proposition A.3.3, the functor
QCoh,, (7)” 7 = Tot (QCoh,(7%)> )
is also an equivalence.

Finally, by assumption (v) and a relative version of Theorem 4.3.9, the functor

£y (Y8)

— &1 (*)u(054.0)-mod™ " (QCoh (T *))” ™ =~ £+ (f*).(0

QCoh,, (T*)” > ~ QCoh,, <£v(9") x 2@(%)) 7T

ot (ioy)-mod™ (QCoh (L3, (98))”
is a term-wise equivalence.

Combining, we obtain that (4.12) is also an equivalence, as required.

4.5.8. Precomposing the equivalence (4.12) with the equivalence
IndCoh*(7)” > 2% QCoh, (T)> ™
of Lemma A.8.10, we obtain that under assumptions (i)-(iv) above, the functor

(ST = (£()e) ™ 0 W

induces an equivalence

(4.13) IndCoh™(T)” ™ — ((£(f)) 49" mod ™t (QCoh(Tg )™ ™.
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4.5.9. We apply the above to

Y =Opg, Yo=pt/G and T:= OpE™ " := OpZ* x LSIE.
LSI]VIGI‘
G

Hence, in order to deduce the assertion of Proposition 4.4.7, we have to show that conditions (i)-v)
above hold.

4.5.10. Condition (i) says that Op’é‘""'free is placid; this has been established in Sect. 3.2.6.

We take Yo = pt with the tautological map pt — LSg®.

Condition (iii) is the content of Lemma B.7.4. Condition (ii) also follows from Lemma B.7.4, since
the property of a map being affine can be checked fpqc-locally, and

LSE* X (pt x pt) ~pt x pt~ L£L(Q).
LSEE x Lsig® Lsg®

Condition (iv) is automatic from the construction. Finally, condition (v) is the content of the next
lemma:

Lemma 4.5.11. The affine D-scheme Ops X pt is D-afp.
pt /G

Proof. We have:

Ops X pt=~Ope X Jets(@),
pt /G Jets(§@wx)

where:
e The map Ops — Jets(§ ® wx) is well-defined (Zariski-locally on X) thanks to Sect. 3.1.4;

e The map Jets(G) — Jets(§ ® wx) is given by the gauge action on the trivial connection.

This makes the assertion of the lemma manifest, as
Opg, Jets(§ ® wx) and Jets(G)

are all D-afp.
d

O[Proposition 4.4.7]
4.6. Action of the center on Kac-Moody modules.

4.6.1. Let 34 be the (classical) center of Vg crit, viewed as a plain factorization (chiral) algebra (i.e., a
factorization algebra in Vect).

By construction, 34 is a commutative factorization algebra. It acts as such on Vac(G)crit € KL(G)crit-
In particular, we obtain a map of factorization algebras in KL(G):

(4.14) 30 ® Vac(@)eit = Vac(Q)erit-
4.6.2. We will denote by the symbols Spec(34) and “Spec”(34) the corresponding factorization scheme
and ind-scheme, respectively, see Sect. 4.3.

In this subsection we will construct the an action of IndCoh'(“Spec”(34)) on g-moderi¢, compatible

with factorization.

Remark 4.6.3. The existence of such an action at the level of abelian categories is essentially evident:
the topological algebra of global functions on “Spec”(34) maps to the center of the completed universal
enveloping algebra of U (gerit)-

At the derived level (for a fixed point € Ran) the construction of such an action was carried out
in [FG6, Sect. 23.2-23.4] and [Rab, Sect. 11] in the language of topological associative algebras.

The methods of loc. cit. could be adapted to the factorization setting. However, below we present a
different construction. Even though it looks more complicated (at least more abstract), its advantage
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is that it is compatible with the construction of Sect. 5.3, where we do not know how to make other
methods work.

The construction of the action presented below has another advantage in that it is manifestly
compatible with the action of £(G), see Sect. 4.7 below.

4.6.4. Let Z be an ind-placid ind-scheme. The categories IndCoh'(Z) and IndCoh*(Z) are each mu-
tually dual, with the pairing given by

!

IndCol'(2) ® IndCoh*(2) % IndCoh*(2)

FIndCOh(Z,—)

Vect .

Hence, we can view IndCoh*(Z) as a comonoidal category. Moreover, the datum of an action of
IndCoh'(2) on a (factorization) category C is is equivalent to the datum of a coaction of IndCoh*(2)
on C.

4.6.5. As we shall see shortly (see Theorem 5.1.2 and Sect. 3.2.4), the factorization ind-scheme
“Spec”(3g) is ind-placid.

In particular, the category IndCoh* (“Spec”(3y)) is well-defined (see Sect. B.13.22). Moreover, it is
compactly generated and identifies with the dual of IndCoh'(“Spec”(3,)).

The contents of Sect. 4.6.4 apply also in the factorization context. Hence, our task will be to define
a coaction of IndCoh*(“Spec”(34)), viewed as a comonoidal category, on g-modecrit.

4.6.6. We will first explain how to construct the coaction functor

(4.15) coact : g-moderiy — IndCoh™(“Spec”(34)) ® g-moderis-

Since Vac(G)crit is the factorization unit in g-modcit, we can write
F-modeit ~ Vac(@)erit-mod ™ (§-moderit )
and
(3g ® Vac(G)erit)-mod ™ (G-modeit) ~ 35-mod™ (§-modcrit ).
Now, restriction along the map (4.14) gives rise to a t-exact functor
Vauc(G)Crit—modf‘“t (g-moderit) — (34 ® Vac(G)Crit)—modfaCt (g-moderit),

i.e., a functor
g-modcriy — ;,g—modfaCt (g-moderit)-

In particular, since the compact generators of g-modet are eventually coconnective, we obtain a
functor

>—00
(4.16) (g-modcyit)© — (3g—m0dfaLCt (ﬁ—modcrit)) .

4.6.7. Note now that by combining Corollary C.16.12 and Corollary 4.4.2(a), we obtain:
Corollary 4.6.8. The functor
(4.17) IndCoh™ (“Spec”(34)) ® g-moderit — 3g-modfact (g-mod.crit)

is t-exact and induces an equivalence between the eventually coconnective subcategories of the two sides.

Hence, (4.16) can be thought of as a functor
(4.18) (g-moderit)® — (IndCoh™(“Spec” (34)) ® g-moderis)” ™ < IndCoh™ (“Spec” (34)) @g-moderis.
Ind-extending, from (4.18), we obtain the desired functor (4.15).
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4.6.9. Our next task is to extend the functor (4.15) to a coaction of IndCoh™*(“Spec” (34)) on g-modcrit.
In doing so we will have to overcome two hurdles:

(i) Homological-algebraic, which has to do with inverting the functor (4.15) on the eventually cocon-
nective subcategories.

(ii) Homotopic-algebraic, which has to do with equipping the functor (4.15) with a homotopy-coherent
associativity datum.

We will deal with (i) in the rest of this subsection, and with (ii) in Sect. J.

4.6.10. First, proceeding as in Sect. 4.6.6, for an integer n, we define an n-ry operation
(4.19) coacty, : -moderis — IndCoh™ (“Spec” (34))%" ® g-moderi,

so that the composition with

(4.20) IndCoh*(“Spec”(34))%" ® g-moderis — ;,?"—modfac‘E (g-modcrit)

is the restriction functor along the action map

(4.21) 30" ® Vac(G)erit — Vac(G)erit.

4.6.11. We claim:

Lemma 4.6.12. The functor (4.19) is t-ezact.

Proof. By construction, the composition of (4.19) with (4.20) is t-exact. Since the functor (4.20)
induces an equivalence on eventually eventually coconnective subcategories (see Corollary 4.6.8), it
suffices to show that (4.19) has a bounded cohomological amplitude (over each X'). By factorization,
this reduces to the case when I is a singleton, and by evaluating at field-valued points of X, we reduce
to the pointwise case. The latter was established in [Ra5, Sect. 11.13].

O

4.6.13. From Lemma 4.6.12 we obtain:
Corollary 4.6.14. The functor (4.15) satisfies associativity at the homotopy level.

Proof. We need to show:
e For every n = ni + ng, the diagram

coact ng

g-modcrit IndCoh* (“Spec”(34))®™? ® g-modcyit

ooaotnl lld ® coactp |

IndCoh* (“Spec”(34))®™ ® g-modeyit ——— IndCoh*(“Spec”(34))®"2 ® IndCoh* (“Spec”(34))®™ ® g-moderit
commutes;

e For any n, the diagram
-modesit 22, IndCoh*(“Spec”(34)) @ §-moderit
coactnl l@ comult,, ® Id

IndCoh*(“Spec”(34))®" ® g-moderiy ——— IndCoh*(“Spec”(3,))®" ® g-moderit
commutes.

In both cases, it suffices to show that the natural transformation in question is an isomorphism
when evaluated on compact objects. In particular, it suffices to show that it is an isomorphism when
evaluated on eventually coconnected subcategories.

We know that the natural transformation becomes an isomorphism after composing with the functor
(4.20). Since the functor (4.20) is an equivalence on eventually coconnected subcategories (see Corol-

lary 4.6.8), it suffices to show that all the functors involved have cohomological amplitude bounded on
the left. However, this follows from Lemma 4.6.12 (for coact, ), while the functor

comult,, : IndCoh™ (“Spec” (3,)) — IndCoh™(“Spec”(34))®" ~ IndCoh*(“Spec”(34)")
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is t-exact (see Corollary A.8.8).

4.7. Action of the center and the loop group action.

4.7.1. Our current goal is to show that the IndCoh'(“Spec”(3,))-module structure on g-modesis is
compatible with the action of £(G) on g-moderit.

By the construction of the module structure, we need to show that the each of the categories

(5?" ® Vac(G)Crit)—modf‘"‘Ct(g—modcm)

carries an action of £(G), such that:

e [t is compatible with the functor

IndCoh'(“Spec”(34))®" @ g-moderis @29

g-moderic) =~ (35" ® Vac(@)erit)-mod ™ (

— 5?"—modfa°t( g-moderit);

where the £(G) on the left-hand side is via the g-mode.it-factor;

e The restriction functors

o~

(35™ © Vac(G)ern)-mod ™ Gmodes) = (57 ® Vac(G)erse)}mod™ G-moderi)

along the maps
322 ® Vac(Q)erit — 32 ® Vac(G)erit

that encode the 3g-action on Vac(G)eit carry a natural £(G)-equivariant structure.

4.7.2. 1In order to do so, it suffices to show that for any factorization algebra A € KL(G)eris, the lax
factorization category

A-mod™* (§-mod.it)
carries an action of £(G), compatible with the forgetful functor
oblv : A-mod™* (g-moderit) — §-moderit,
and this construction is functorial with respect to the functors
Resg : Aa-mod™ (g-modeit) — A1-mod™* (g-moderit ),

corresponding to homomorphisms
q25 : .Al — AQ

of factorization algebras in KL(G)crit-

4.7.3. Let oblvgy gy denote the forgetful functor. For Z — Ran, consider

(4.22) ReSOblszr(G) (ﬁ-modfactz) c KL(G)Crit—mOd%Ct,

crit
By Lemma C.14.18, for A € FactAlg“““(X, KL(G)erit), we have

Ob1V£+(G) (A)_modfact (a'mOdcrit)Z ~ .A-Il’lOdfaCt (Resoblv£+(c) (a—modf&ctz )) N .

crit

Hence, it suffices to show that (4.22) carries an action of £(G)z. We will show this in the following
general framework.
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4.7.4. Let A be a factorization category, and let C be a factorization module category over A at
Z — Ran. We assume that A and C carry compatible actions of £(G) at some level &.

Set Ap := AE+(G); denote by oblvg ) the forgetful functor

Ao—)A.

Consider

Resoblv (C) € Ao—modgfm.

£t (@)

We claim that Res"b"’sﬂc) (C), viewed as a factorization module category over Ao, carries an action

of £(G)z, such that the induced action on

Resoblv (C)z ~Cy

£+ (@)
is the original £(G)z-action on Cy.

We sketch the construction of this action below; a more detailed exposition will be given in [CFGY].

4.7.5. Let GrrlcevelZ be the factorization Grg-module space from Sect. B.2.7. It is equipped with a
compatible action of £(G) in the left and a commuting £(G)z-action on the right.

Let £(G)™°*2 be the vacuum factorization module space over £(G) at Z (see Sect. B.2.6); it carries
a compatible action of £(G) x £(G).

We have a naturally defined projection
Ty £(G)faCtZ — G-lrlgvelz7
(see Sect. B.4.10) which gives rise to the pullback functor
7% : D-mod(Grg"®'*) — D-mod(£(G)™"*),
compatible3® with the factorization functor
7 : D-mod(Grg) — D-mod(£(G)),
given by pullback along the projection

m: £(G) = Grg.

In particular, 73 gives rise to a functor
(4.23) D-mod(Gri5 %) — Res+ (D-mod (£(G)™'2),

as factorization module categories over D-mod(Grg), see Sect. B.12.11.

4.7.6. We claim:

Lemma 4.7.7. The functor (4.23) is an equivalence.

Proof. Follows from Lemma B.15.9.

30Gee Sect. B.12.10 for what this means.
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4.7.8. We now return to the setting of Sect. 4.7.4. Note that
C ~ D-mod(£(G)™**) @ C
£(G)

as factorization module categories over

A ~D-mod(£(G)) @ A
)

at Z, where we use the action of £(G) on itself on the left to form the tensor product.

Note that the functor 7z and hence the equivalence (4.23) are compatible with the actions of £(G)
on the left. Hence, from Lemma 4.7.7 we obtain:

Corollary 4.7.9. There is a canonical equivalence

(C) ~ D-mod(Grg™'*) ® C,
£(G)

Resoblv£+ (@

as factorization categories over

Ao ~ D-mod(Grg) ® A.
£(G)

4.7.10. Now, the action of £(G)z-action on Grg'®'* on the right gives rise to an action of £(G)z on
D—mod(GrlGevelz) ® C, commuting with the factorization module structure over D-mod(Gra) ® A.
£(@) £(G)

Applying Corollary 4.7.9, we produce the sought-for £(G)z-action on Resobiv (C).

et (@)

4.7.11. As a consequence of the compatibility of the IndCoh'(“Spec”(34)) and £(G)-actions, we
obtain:

Corollary 4.7.12.

(a) The category KL(Q)erit carries an action of IndCoh'(“Spec”(34)) compatible with the action of
IndCoh'(“Spec”(34)) on g-moderis and the forgetful functor

KL(G)Crit — ﬁ-modcrit.
(b) The action of IndCoh'(“Spec”(34)) on KL(G)eric is compatible with the action of Sphy,.

Remark 4.7.13. Note that we could have equivalently defined the action of IndCoh'(“Spec”(34)) on
KL(G)erit directly, by repeating the procedure in Sect. 4.6, replacing g-modcrit by KL(G)crit. An analog
of Lemma 4.6.12 follows from the original variant of this lemma, since the corresponding functors

IndCoh* (“Spec”(34))®" ® KL(@)erit — IndCoh™(“Spec”(34))%" ® g-moderit
are conservative.

4.7.14. Note that since 33 C Vg it is invariant under the adjoint action, we can view it also as the
(classical) center of the twisted version Vg crit,p(wy)-

In particular, we can regard 34 as acting on Vac(G)erit,p(wy) 85 an object of ﬁ—modcrmp(c‘,x) (or
KL(G)erit, p(wx))-

In particular, we obtain an action of IndCoh'(“Spec”(34)) on g-modesis, p(w), compatible with the
action of £(G),(wy)- The conclusion of Lemma 4.7.12 renders automatically to the present twisted
context.

In addition, we have:
Corollary 4.7.15.

(a) The category Whit. (§-modesic, p(w)) carries a unique action of IndCoh'(“Spec”(3g)), compatible
with the action of IndCoh!(“ Spec”(3q)) on g-modeyis,p(w) and the projection

/g\-modcrit,p(w) — Whit, (/g\-modcrit,p(w)).
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(b) The category Whit'(§-moderis, p(w)) carries a unique action of IndCoh'(“Spec”(3g)), compatible
with the action of IndCoh'(“Spec” (34)) 0on §-moderis, () and the embedding

Whitl(a—modcrit,p(w)) — ﬁ—modcrit’p(m.
(¢) The functor

@Whit(ﬁ—modcrit,p(w)) : Whit. (/g\_mOdCrit,p(w) ) — Whltl (ﬁ'mOdcrit,p(w))

carries a natural IndCoh'(“Spec” (34))-linear structure.

4.8. The enhanced functor of Drinfeld-Sokolov reduction at the critical level. In this sub-
section we will study the functor

(4.24) DS : g-moderit, p(wy ) — Vect
of (2.6).
4.8.1. Consider the factorization unit
Vac(@) arit, p(wy) € 8-MOderit, p(wy)-
The functor (4.24) has a natural lax unital factorization structure (see Sect. 2.3.4). In particular,

the object
DS(VaC(G)crit,p(WX ) )

is naturally a factorization algebra (in Vect).
4.8.2. The action map
39 @ Vac(G)erit p(wx) = Vac(G)erit,p(wx)
gives rise to a map
30 ® DS(Vac(G)erit,p(wx)) — DS(Vac(G)erit, p(wx )

as factorization algebras.

Pre-composing with the unit for DS(Vac(G)crit,p(wy)), We obtain a map of factorization algebras
(4.25) 35 = DS(Vac(Gerit p(wx))-

We have the following fundamental result, see [FF]:

Theorem 4.8.3. The map (4.25) is an isomorphism.
4.8.4. By Sect. 4.1.6, the functor DS of (4.24) naturally lifts to a functor

fact

8-moderit, p(wy) — DS(Vac(G)ait, p(w y ) )-mod
Restricting along (4.25), we can view it as a functor, to be denoted
DSt 0-moderit, p(wy) — 3g—modfa“.
4.8.5. Consider the functor
rindeeh (“Qpec” (3,), —) : IndCoh™ (“Spec”(34)) — 3g-mod ™",
We claim:
Proposition 4.8.6. There exists a uniquely defined (continuous) functor
DS Gmod s p(wy ) — IndCoh™(“Spec” (34)),
satisfying
o There exists an isomorphism

(426) DSenh ~ FIndCoh(“ Spec 9 (39)7 _)enh ° DSenh,rfnd;

o DSerbrind gonds compact objects in ﬁ—modcrmp(w{) to eventually coconnective (i.e., bounded
below) objects in IndCoh™(“Spec”(3)).
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Furthermore, DS®™™ ™9 corries a uniquely defined factorization structure, so that (4.26) is an iso-
morphism of factorization functors.

Senh

Proof. 1t is enough to show that the restriction of D to the subcategory

(@-moderis, p(wy))” C F-mModeric, p(w )
can be uniquely lifted to a functor
(§-modeit, p(wy )¢ — IndCoh™(“Spec”(34))” .
However, this follows from Corollary 4.3.12(a), using the fact that the initial functor DS sends

(-modarit, p(wy)) — Vect™ ™.

4.8.7. Recall now that the functor DS factors via a functor
DS : Whit. (0-modeyit, p(wy)) — Vect.

It follows formally that the functor DS®™" also factors via a functor, denoted

~genh

DS™" : Whit (§-moderic p(uy)) — sg-mod ™.

We now quote the following fundamental result of [Ra2]:

Theorem 4.8.8. The functor DS factors via a functor

—enh,rfnd

(4.27) DS : Whit, (§-mod.yis, p(wy)) — IndCoh™ (“Spec”(34)),

. —enh,rfnd . . . . .
and the resulting functor DS is an equivalence of factorization categories.

Note that by construction
[indeeh («gpec” (34), —) o DS

enh,rfnd ——=enh
~ .

~ DS

4.8.9. According to Sect. 4.6 (applied to the twist g-modesis p(wy) instead of the original g-moderit),
the category g-modeit,p(wy) Carries an action of the monoidal category IndCoh'(“Spec” (3,)).

By construction, the functor DS®™ ™4 intertwines the above IndCoh'(“Spec”(34))-action on
§-mOdrit, p(wy) and the natural IndCoh'(“Spec” (34))-action on IndCoh* (“Spec”(3g)).

According to Corollary 4.7.15(a), the IndCoh'(“Spec” (34))-action on g-modei, p(wy) descends to
an (a priori, uniquely defined) action on Whit. (§-modcyic, p(wy))-

—=enh,rfnd .

It follows formally that the functor DS intertwines this action and the IndCoh'(“Spec” (34))-
action on IndCoh™(“Spec”(3y)).
5. THE FEIGIN-FRENKEL ISOMORPHISM AND ITS APPLICATIONS

In this section we review the Feigin-Frenkel isomorphism, which provides a bridge between Kac-
Moody representations and opers.

Using the Feigin-Frenkel isomorphism, we construct an action of IndCoh!(Opg‘O"'ﬁee) on KL(G)erit,
which is a key ingredient of the critical FLE functor, studied in the next section.

5.1. The Feigin-Frenkel isomorphism.
5.1.1.  We quote the following fundamental result of Feigin and Frenkel ([FF]):

Theorem 5.1.2. There exists a canonically defined isomorphism of factorization algebras
FFg
g X Ooprccg.
Below we will complement Theorem 5.1.2 by an assertion that describes how it interacts with
geometric Satake, see Theorem 5.2.5.
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5.1.3. As in Remark 1.4.5, one has a choice in the normalization of the functor FF¢; the two different
choices differ by the Chevalley involution.

However, the choices for the normalizations of CS¢ and FF¢ force one another via the compatibility
in Theorem 6.4.5. So, once CS¢ is fixed, FF¢ is unambiguous.

5.1.4. Ezample. Let G = T be a torus. Then 3,4 is the commutative factorization algebra associated
with the commutative algebra object

Sym'(t® Dx[1]) € ComAlg(D-mod(X)),
ie.,
30 = Fact(Sym' (t® Dx[1])),
see Sect. B.10.2 for the notation.

When we think of D-mod(X) as “left D-modules”, the above object is
Symg, (t® Dx @wl ') € ComAlg(D-mod'(X)).

The affine D-scheme Opy; identifies with the scheme of jets Jets(t ® wx) (see Sect. B.5.1). Under
our normalization, the isomorphism FFr is the tautological identification

(5.1) Specx (Sym  (t®Dx @w{ 1)) ~ J(E® wx).
At the level of fibers at a given point z € X, the identification (5.1) is the isomorphism
Spec(Sym(t ® X, /0,)) ~ t®@wn,,
corresponding to the canonical identification of pro-finite dimensional vector spaces

(t®K:/0.) 2 1@ wop,.

5.1.5. For a general G, the isomorphism FF¢ is normalized so that the resulting isomorphism at the
associated graded level

< FFa c <
Jets(a(8)wx ) = Specy (gr(3a,x)) = Opg = Jets(a(@)wy ),
is the identity map, where OpCC%v denotes the D-scheme of classical G-opers.

5.2. The “birth” of opers. In this subsection we will formulate Theorem 5.2.5, which in [BD1, Sect.
5.3] was called “the birth of opers”, that explains how the isomorphism FF¢ interacts with geometric
Satake.

5.2.1. Consider the (symmetric monoidal) functor
(5.2) Rep(G) 5 QCoh(Op3*) =~ Ooprcsg—modcom e 3g-mod ™.

In particular, the functor (5.2) allows us to view 35-mod®™ as a Rep(G)-module category, in a way
compatible with factorization.

5.2.2. Let us view KL(G)eis as a module category over Rep(G) via

Rep(G) Seteg Sphe

and the Sph-action on KL(G)cri¢. This structure is also compatible with factorization.

5.2.3. Finally, note that the action of 33 on Vac(G)arit gives rise to a factorization functor

(5.3) 3g-mod™™ — KL(GQ)erit, — ® Vac(G)erit-
dg
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5.2.4. We claim (see [BD1, Theorem 5.5.3]):

Theorem 5.2.5. The functor (5.3) admits a lift to a functor between Rep(é)-module categories. This
structure is compatible with factorization.

Remark 5.2.6. Concretely, Theorem 5.2.5 says that the object Vac(G)arit satisfies the Hecke property

with respect to the action of Rep(G) on KL(G)erit: i.e., we have
Sat® (V) x Vac(@)eriv ~ Vac(@)air @ (FFg o(t™8)*(V)), V € Rep(G),
dg

where in the right-hand side we denoted by FF¢ the equivalence
3g-mod ™ ~ (‘)Opréeg-modcom = QCoh(Opi®),
induced by the isomorphism of algebras FFq.
The above isomorphisms are compatible with tensor products of the V’s in the natural sense.

5.2.7. From now on we will identify

Opg® =~ Spec(3q) and Opg™ ~ “Spec”(34)

using FFq.
5.2.8. In particular, we will view the category g-modc;t as acted on by IndCoh!(Opg‘cr) Simi-
larly, we will view the functors pgenrid (resp., DSenbrind) ag IndCoh!(Opgcr)—linear functors from

Whit. (g-moderit, p(wy)) (TeSP., F-mOoderit, p(wy)) to IndCoh* (OpE®).

5.2.9. Here is one particular application of Theorem 5.2.5 that will be used in the sequel. Recall the
commutative algebra (factorization) object

RG,Op € Rep(é)a
Sect. 4.8.

We claim that it acts on Vac(G)erit € KL(G)crit, when we consider KL(G)erit as a Rep(é)-module
category as in Sect. 5.2.2.

Indeed, by Theorem 5.2.5, in order to construct this structure, it suffices to construct an action of
R(;’Op on
Oopréeg € QCoh(Opgg),

when we consider QCoh(Op5*®) as a Rep(G)-module category via (v"*)". However, the latter structure
comes from the map of commutative algebras in QCoh(Op;®)

(treg)*(Ré,Op) - OOpgg7

« 8)-adjunction.

given by the counit of the ((¢v"°8)*, t}

5.3. The Kazhdan-Lusztig category at the critical level and monodromy-free opers. In this
subsection we will show that the IndCoh!(Opger)—action on KL(G)ait factors through an action of
IndCoh' (OpZe™ree).

The construction will emulate the construction of the IndCoh!(Opg‘er)-action on g-modciy in

Sect. 4.6, with a “decoration” by Rep(G).

Remark 5.3.1. The construction of such an action (along with its properties discussed in Sect. 5.4) at
fixed z € Ran was the subject of the paper [FG5]. However, we do not know how to adapt the methods
of loc. cit. to the factorization setting.
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5.3.2. Using the duality between IndCoh' (OpZ°™°°) and IndCoh* (Op°*™*®), it suffices to construct
a coaction of IndCoh* (Op‘é—“’“’ﬁee), viewed as a comonoidal factorization category, on KL(G)crit.

As in Sect. 4.6.6, we first explain how to construct the coaction functor
(5.4) KL(G)erit — IndCoh™ (OpZ°™ ™) @ KL(G) erit.

We will then upgrade this to the datum of coaction.

5.3.3.  We start with the monoidal action of Rep(G) on KL(G)eris as in Sect. 5.2.2. Since Rep(G) is
rigid, the right adjoint to the action is a (lax unital) factorization functor

(5.5) C0ACtRep (@) KL(G)pyy * KL(Gerit — Rep(G) ® KL(G)eris-
This functor upgrades to a factorization functor
enh
(5.6)  coactiun ) KL(G)orsy  KL(G)erit =
— COACtR () KL(G) eri (Vac(Q)exit)-mod™* (Rep(G) @ KL(G)exit ).

5.3.4. Recall now (see Sect. 5.2.9) that R ,, viewed as an associative algebra object in Rep(G) acts
on Vac(G)erit, compatibly with factorization. By adjunction, we obtain a map of factorization algebras
R 0p @ Vac(@)erit — COACtR o () KL (@) ory, (VAC(G)erit)-

Restriction along the above map defines a functor
(5.7)  COACtRep(G) KL(G) e (Vac(@)exit)-mod ™ (Rep(G) @ KL(GQ)erit) —
— (Ré.op ® Vac(G)erit)-mod™ (Rep(G) @ KL(G)arie) = R, op-mod™ (Rep(G) @ KL(G)erit)
Composing (5.6) and (5.7) we obtain a functor
(5.8) KL(G)erit = Rz op-mod™ (Rep(G) ® KL(G)erit).
The functor (5.5) is left t-exact. Hence, since the compact generators of KL(G)erit are eventually
coconnective, the functor (5.8) gives rise to a functor
(5.9) (KL(G)exit)® = (Rez 0p-mod™ " (Rep(G) @ KL(G)erit))” ™.
5.3.5. Consider the functor
(5.10) IndCoh™(Opg°™ ™) ® KL(G)erit — Re,0p-mod™* (Rep(G)) @ KL(G)erit —
— Rg op-mod™ (Rep(G) ® KL(G)exit)
As in Corollary 4.6.8, by combining Corollary C.16.12 and Proposition 4.4.7(a), we obtain:
Lemma 5.3.6. The functor (5.10) induces an equivalence between the eventually coconnective subcat-

egories of the two sides.

Hence, we can view (5.9) as a functor
>—00
(5.11) (KL(G)exit)® — (IndCoh*(opgon'free) ® KL(G)CM) < IndCoh” (OpZ°" ™) @ KL(G) erit.
Ind-extending (5.11) we obtain the sought-for functor (5.4).

5.3.7. Our next goal is upgrade (5.4) to a datum of coaction of IndCoh*(OpE°*™*°) on KL(G)crit.
We do so by mimicking the strategy in Sects. 4.6.10-4.6.13.

First, we generalize the construction in Sects. 5.3.3-5.3.5 above and define the n-ry operation

(5.12) KL(G)erit — IndCoh™ (OpZ°™ ™) ®" @ KL(G) erit.



66 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

5.3.8.  We have the following analog of Lemma 4.6.12:
Lemma 5.3.9. The functor (5.12) is t-ezact.

Proof. Note that the functor

(Lm‘m’ffee)l*“dc‘)h®oblv£+(G>

(5.13) IndCoh*(OpE°™™*)®™ @ KL(G)exis

is t-exact and conservative.

In dCOh (O mcr) " ®§‘m0dcrit

Hence, it is enough to show that the composition of (5.12) with (5.13) is t-exact.

Note, however, that by construction, we have a commutative diagram

KL(G)erit —2L5 TndCoh” (OpZe™ )™ @ KL(G)exss

oblv£+ (@) l l(Lmon—free)indCoh®ob1vs+ @

Gmodes ——22,  IndCoh* (OpZ°)®" & g-moderit.

Since oblv e+t (¢ is t-exact, the assertion follows from that of Lemma 4.6.12.
O

5.3.10. As in Corollary 4.6.14, from Lemma 5.3.9, we obtain that the coaction functor (5.4) is asso-
ciative at the homotopy level. We will equip it with a structure of coherent homotopy in Sect. J.5.

5.4. Properties of the IndCoh'(O monfree)_action on KL(G)erit. In this subsection we will discuss
those properties of the IndCoh' (Opmon free) action on KL(G)erit that will be used in the sequel.

5.4.1. First, unwinding the construction, we obtain:

Lemma 5.4.2. The action of Rep(é) on KL(G)arit given by

—®W45 mon-free

(514) Rep( ) QCOh(LSreg) _) Qcoh(opmon free) _G> IndCoh (Opmon free)

and the above action of IndCoh' (Opmon f'FCC) on KL(G)eit tdentifies canonically with the action given
by
<. Satg’
Rep(G) — Sphg
and the Sphg-action on KL(G)crit -

5.4.3. Further, comparing with the construction of the action of IndCoh'(“Spec” (34)) on KL(G)erit
given by Corollary 4.7.12, we obtain that this action coincides with the precomposition of the above
action of IndCoh’ (Opmon'fmc) on KL(G)eriy with

: IndCoh' (Op") — IndCoh' (OpE°"e°).
5.4.4. We now claim:

Corollary 5.4.5. For a fized x € Ran, the action functor of Rep(G)z on KL(G)erit,e via Saty and
the Sthﬁ-action on KL(GQ)crit,a 15 t-exact.

Proof. By Lemma 5.4.2, we need to show that for V' &€ Rep(é)f, the functor
KL(@eritz 5 Rep(@)z © KL(G)erit,z — IndCoh' (OpE" ™)) @ KL(G)erit,e — KL(G)erit
is t-exact, where Rep(G) — IndCoh' (Opg%” freey is the functor (5.14).

Hence, it suffices to show that if gmen-free ¢ QCoh(Opg*,” free) is a vector bundle, then its action on
KL(GQ)crit,z via

—®wWq mon-free

QCOh mon free Gz IndCOh! Oprpon—free
G,z
and the IndCoh'(Op Com freey_action on KL(G)CM& is t-exact.
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8mon—free

is the restriction of a vector bundle

mer mer '
&M on OpG 2

With no restriction of generality, we can assume that
&M over Opmer Hence, by Sect. 5.4.3, it suffices to show that for a vector bundle
action on KL(G)CM& via

7®w0 Iner
QCoh(Opg*,) * IndCoh' (Op&?,)
and the action of IndCoh' (Opmer) given by Corollary 4.7.12 is t-exact.

Since the forgetful functor
KL(G)crit,g — /g\'mOdcrit,g

is t-exact and conservative, it suffices to show that the action of £™¢*

on g-moderit,z is t-exact.
Unwinding the construction, it suffices to show that the composition

9-moderit,z — §-moderit,z @ IndCoh™ (Op mer) MeET o)

o 1 ®FIndCol]<Opxéle; =)
= m N ~
— g-modcrit,z ® IndCoh™ (Opg ) — g-modecrit,o

is t-exact.

In the above composition, the first and the third arrows are t-exact. Hence, it suffices to show that
the functor

Id ®(E™T ®—) ~
—

9-moderit,z ® IndCoh™ (OpE) g-moderit,z ® IndCoh™(Opg?,)

Gz
is t-exact.
However, this easily follows from the fact that the functor

IndCoh” (Op¢?,) 79 mdcon® (Op&S)

is t-exact.

6. THE crITICAL FLE

In this section we prove the main result of Part I, namely, the critical FLE, Theorem 6.1.4, which
says that there exists a canonical equivalence of factorization categories

(6.1) FLEG crit : KL(G)cnt X IndCoh* (O mon- frm)7

The functor in one direction in (6.1) is a variation on the theme of the functor DS from
Sect. 4.8. Essentially FLEq qrit is obtained by base changing pgerind along the map from Opg

to Opg®.

mon-free

1. Construction of the critical FLE functor.

6.1.1. Let C be a category equipped with a £(G) (. )-action at the critical level, in a way compatible
with factorization. Consider the functor

et
(6.2) Sph(C) == C*Vrex) 5 C = Copmy, ) x =t Whita (C).
We apply this to C = g-mod,i, p(wx)- Consider the resulting (factorization) functor
(6.3) KL(G)Crmp(wX) — Whit. (’g\-modcrityp(wx))

Composing, we obtain a functor

ﬁsenll.rfnd

(6.4) KL(G)erit, p(wx) — Whits (-moderit p(wy))  —  IndCoh™(Opg™).
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6.1.2. We regard IndCoh™(Opgz®) as equipped with a natural action of IndCoh!(Opger). We regard

KL(G)erit,p(wy) @ acted on by IndCoh'(OpE™ree).

By Sects. 5.4.3 and 4.8.9 and Corollary 4.7.12(a), the functor (6.4) is compatible with the
IndCoh' (OpZeT)-actions on the two sides. Furthermore, by Sect. 5.4.3, the IndCoh'(Op2®")-action on

G G
KL(G)arit,p(wy) factors through an action of IndCoh!(Oprgon'ﬁee).
Hence, the functor (6.4) gives rise to a (factorization) functor

(6.5) KL(G)erit,p(wx) = Functiyacon opmer) (IndCoh’ (Opg*™™**), IndCoh” (Opg™)).

Finally, recall that by Lemma 3.5.7, we have a canonical identification

IndCoh” (Opg™ ™) = Functiacont opmer) (IndCoh' (Opg™™ ™), IndCoh™ (Op™)).

Thus, we can interpret (6.5) as a IndCoh' (Op}5®*~™*°)-linear functor

(6.6) KL(G)exit, p(wy) — IndCoh™ (Opgo™e°)
Ap(wy),tau

6.1.3. Precomposing (6.6) with KL(G)erit "t X KL(G)arit,p(wy )» We obtain a functor
(6.7) FLEG crit : KL(G)erie — IndCoh* (Op°™°°)

The functor (6.7) is the critical FLE functor. The main result of Part I of this paper reads:
Theorem 6.1.4. The functor FLEG it s an equivalence of factorization categories.

This theorem will be proved in the course of this and the next two sections.

Remark 6.1.5. A pointwise version of Theorem 6.1.4, formulated below as Theorem 6.2.2, was originally
proved in [FG2].

The proof of the factorization version requires substantially new ideas.

Progress towards Theorem 6.1.4 has been made earlier in the papers [FLMM1, FLMM2].

6.1.6. Unwinding the definitions, we observe that the functor FLEq crit carries a natural lax unital
structure (as a functor between unital factorization categories). In particular, we obtain a canonical
homomorphism

(6.8) Oopgg = 1Indcoh*(op20n—free) — FLEG crit (LKL(G)oriy) = VAC(G)erit
as factorization algebras in IndCoh*(OpEe™e°).

However, we claim:
Lemma 6.1.7. The map (6.8) is an isomorphism.

Proof. By Proposition 3.3.5(a), it suffices to show that the map (6.8) becomes an isomorphism after
applying the functor (;mem-free)IndCoh gince the latter is also a strict unital factorization functor, the
resulting homomorphism identifies with a homomorphism of factorization algebras

9o

nh,rfnd
pEt T 11ndCoh*(0p‘GFg) — DS* (VaC(G)crit,p(wx))v

corresponding to the lax unital functor

Dgenh,rfnd

KL(G)Crit,p(wX) d a_modcrit,p(wx) N IndCoh* (Opger).

However, the latter isomorphism is the content of Theorem 4.8.3.

6.1.8. Combining Lemmas 6.1.7 and C.11.23, we obtain:
Corollary 6.1.9. The functor FLEG crit is strictly unital.

6.2. Reduction to the pointwise version.
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6.2.1. Fix a point x € X. The pointwise version of Theorem 6.1.4 reads:

Theorem 6.2.2. The functor FLEq it induces an equivalence
KL(G)erit,e — IndCoh™ (Opg ™).

Obviously, Theorem 6.1.4 implies Theorem 6.2.2. However, in this subsection we will show that the
coverse implication also takes place.

In its turn, Theorem 6.2.2 is known: it is the main result of the paper [FG2]. We will, however,
supply a different proof, in which we deduce it from Theorem 4.8.8, see Sect. 7.2.

6.2.3. A key step in proving the implication Theorem 6.2.2 = Theorem 6.1.4 is the following:

Proposition 6.2.4. The functor FLEG crit preserves compactness.31

Proof. By Proposition 3.3.5(b), it suffices to show that the composite functor
FLEG cri . Jon-fr ,mon-free indCoh . lor
KL(G)erie 2™ IndCoh” (OpZo™ree) 1 [ndcoh” (Op2e)
preserves compactness.

. . =genh,rfnd . . .
Le., it suffices to show that (6.4) preserves compactness. Since DS™"™ is an equivalence, it

suffices to show that the functor (6.3) preserves compactness. However, we claim that this is true more
generally.

Namely, we claim that the functor (6.2) admits a continuous right adjoint (and hence, preserves
compactness). Indeed, the right adjoint in question is given by>? convolution with the vacuum object
(i-e., the factorization unit)

Vacwpiet () € Whit'(G) = D_mod%(s(G)p(WX))@W)p(wX>7x>,£+(G>p<wx>,
O
6.2.5. Given Proposition 6.2.4 and Theorem 6.2.2, we will deduce Theorem 6.1.4 using the following
principle:

Let F : C' — C? be a factorization functor between factorization categories. Assume that C! is
compactly generated, and assume that F' preserves compactness.

Proposition 6.2.6. If the induced functor Fy : CL — C2 is an equivalence for any field-valued point
x, then the original functor F is also an equivalence.

Proof. The assumption that F preserves compactness implies that its right adjoint F'¥* is also equipped
with a factorization structure. We need to show that the unit and the counit of the (F, F%)-adjunction
are isomorphisms.

The latter assertion can be checked strata-wise on Ran. I.e., we have to show that for every n, the
corresponding functor
F, 1 Ch 3
x(n) Cx(n) - Cx(n)
is an equivalence.
By factorization, the latter statement reduces to the case n = 1, i.e., we have to show that
Fx :Cx — C%
is an equivalence.

The latter fact can be also checked after base-changing to field-valued points.
O

O[Theorem 6.1.4]

3lGee Sect. B.11.10 for what it means for a factorization functor to preserve compactness.
32In Lemma 6.3.2 we will give another description of this right adjoint.
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6.3. The inverse of the critical FLE functor. In this subsection we will assume the statement of
Theorem 6.1.4, which was proved modulo Theorem 6.2.2.

6.3.1. Let C be a category, acted on by £(G) ). Note that in addition to the functor
(6.9) Sph(C) — C — Whit.(C),
one can consider the functor

£ pwx)

(6.10) Whit'(C) » ¢ " - Sph(C).
We have the following elementary assertion:

Lemma 6.3.2. The composite

OWhi | .
(6.11) Whit.(C) "5 whit'(C) ©¥ sph(C)
identifies canonically with the right adjoint of (6.9).

Remark 6.3.3. This lemma is embedded into the machinery developed in [Ra2]. We supply a proof for
completeness.

Proof. We need to check that for Fspn € Sph(C) and F € C, we have
Homwnit, () (Fspn, F) = Home (Fspn, Ownis(c) (F)),
where Fspn, F denotes the image of Fspn and F along C — Whit..(C).

Unwinding the definitions, we reduce the assertion to the case when C := D—mod% (Grg,p(wy)) and

Fsph = 01,Grg p(uy)-
Applying the definition of Whit.(G), we calculate
(6.12) g‘COmWhit*(G)(Sl,GrGYMWX) F) = COlllim fH:OmD-mod% (GrG, play ) N x (01,61, pwry ) T,

where:

e N is a filtered family of group subschemes that comprise £(N)(w);
) (617GrG,p(wx) )* and F* denote the projections of the corresponding objects along

D-mod% (Gre,pwx)) = D-mod% (Gre,plwx)) N x-
We have
fHomD_mOd% (GrG, p(wy)) N ((51,Grcyp(wX))a7 rf&) =~ j‘fomD-mod%(GrG,p(wX))(AVivu’X(dl,Grc,p(wX) ), F)s
which we further rewrite as

C (GerP(WX%D (Aviva’x(dl’GrG,p(wx))) ® SF) = CA(GI‘G»P(“X)’ AV!NOL’X((Sl’GYG‘p(wx)) ® EF)

Hence, we can rewrite (6.12) as
a !
(6.13) C (GrG’p(wX),co}lim (AV!N 'X(él,GrG’p(wx))) ®?> ~

. S(N) p(wx ) !
~C (Grg,p(wX),AV! plox) X((Sl,Ger(WX)) ®?> .

Now, the cleanness property from Sect. 1.3.15 implies that the natural map

E(N) p(wyx )X E(N) p(wy )X
AV! e (617GrG,p(wX)) - AV*,rcnp X ((SlaGrG,p(wX))
. . . L(N) p(wx )X . . . ren
is an isomorphism, where Av, yen is the functor of x-convolution with wg N (o) oX
)7
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Hence, we further rewrite (6.13) as

. S(N) p(wx )X !
C (GrG,p(wX)7AV*,renp< x) (51,Grcﬁp(wX)) ®:T> =~

1

. ! L(N) p(wx )X
~C (Grcvp(wx)7617GrG,p(WX) ®AV*,renp( x) (?)) ~

~ HomMD-mod 1 (Grg, p(u ) (01,616 pru ) OWnita) (F)),
2

as desired.
O

6.3.4. We will now use Lemma 6.3.2 to give an explicit description of the inverse of the functor
FLEG,crit-

Consider the functor (6.11) for g-modeyic, p(wy )
(6.14) Whit*(/g\—modcrityp(w){)) — KL(G)crit,p(wX)'
By the same logic as in Sect. 6.1.2, the functor (6.14) gives rise to a functor

(6.15) IndCoh' (OpZ°™e?) ® Whit (g-m0deric, p(wsy)) —+ KL(G)erit,p(wx)-

IndCoh! (OpZer)

.. . . —enh,rfnd .
Combining with the equivalence DS*"" ", we obtain a functor

(6.16) IndCoh' (OpZ°™ree) ® IndCoh* (OpE®) — KL(G)erit p(ws ) -
IndCoh! (oprcgcr)

Combining with the equivalence (3.15), from (6.16) we obtain a functor
(6.17) IndCoh™ (OpE ™) — KL(GQ)exit p(wy ) -
We will prove:
Proposition 6.3.5. The functor (6.17) is the inverse of (6.6).
The rest of this subsection is devoted to the proof of Proposition 6.3.5.

6.3.6. We need to show that the composition

=aenh,rfnd
(6.18) IHdCOh! (Opgon_frcc) (|X) Whit. (/g\'mOdcrit,p(wx)) i ®DS—>
IndCoh' (OpiZer)
— IndCoh' (Opg®™ ) ® IndCoh*(Opg®) — IndCoh™ (OpgE®™ )

IndCoh! (Op°T)
is isomorphic to
(6.16)

(6.19) IndCoh'(OpZ°™e) ® Whit (g-moderit, p(wy)) —>
IndCoh! (OpZer)

— KL(G)exit p(oy) =3 IndCoh™ (Opo™e).

Both functors are IndCoh!(Opré“)“'fmc)—linear. Hence, by the

IndCoh' (Ope)-mod = IndCoh' (Op’é‘on’free)_mod

adjunction, it suffices to show that the functors

Fsenh,rfnd (Lmon-free)!

(6.20) Whit (§-moderit p(wy))  — IndCoh™(OpE™) " — ’ IndCoh™(OpZ°™ ™)

and

Whit.. (g-modeit, p(wx)) 1 KL(G)erit, p(wx) €9 IndCoh”* (Opgon’free)
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mer

are isomorphic as IndCoh!(Opé )-linear functors, i.e., that the diagram

Lo~ (6.15)
Whit, (g'mOdcrihﬂ(wx)) KL(G)Crit,P(wX)

Disenh,rfnd J/ l<6.6>

Llnon—free !
IHdCOh* (Opger) #} IHdCOh* (Oprélon—free)

mer)

commutes, in a way compatible with the IndCoh!(OpG -actions.

—enh,rfnd

6.3.7. Since DS and (6.6) are both equivalences, it suffices to show that the diagram obtained
by passing to left adjoints along the horizontal arrows, i.e.,

Whit,, (§-m0derit, p(wy)) <o KL(G)erit p(wx)

Disenh,rfndJ/ l(G'G)

(Lmon-free)IndCoh
IndCoh* (Opger) 7  TIndCoh* (Oprgon_ﬁee),

commutes, in a way compatible with the IndCoh' (OpZ°”

&°")-actions.

6.3.8. However, according to Lemma 6.3.2, the top vertical arrow in the latter diagram is the functor
(6.3), and the corresponding diagram commutes by construction.

O[Proposition 6.3.5]
6.4. Compatibility of FLE¢ it and FLE@OO.

6.4.1. Note that by construction, the functor FLE¢g it makes the following diagram commute

Xp(wx ), taut ) R
KL(G)erit p+> KL(G)erit,p(wy) — Whitu (g-moderit, p(wy )
FLEG’CTMJ’ lDiSenh,rfnd
* mon-free (Lmon—free)in(lCoh . o
IndCoh* (Opg°™e°) —_— IndCoh* (Op2°).

6.4.2. Note that the functor (6.2) can be expanded to a functor

(6.21) Whit.(G) ® Sph(C) — Whit.(C).
Sphg

Applying this to C = g-mod.,i¢, p(w ), We obtain a functor

(6.22) Whit*(G) S(% KL(G)Crit,p(wX) — Whit*(ﬁ-modcrit’p(wx)).
phg
. . Xp(wx),taut —enh,rfnd . . .
Composing with KL(G)erit ~ KL(G)erit, p(wy) and DS , we obtain a (factorization)
functor
(6.23) Whit, (GQ) s(% KL(G)erie = IndCoh™ (Opg®).
phg

6.4.3. Similarly, the functor
(gmontree)ndCoh : IndCoh ™ (OpgE®™ ™) — IndCoh* (OpE®™)
can be expanded to a (factorization) functor

6.24 Rep(G) ® IndCoh*(OpZ°™f°®) 5 IndCoh*(OpZE®),
el G

spec
Sth
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6.4.4. We claim:

Theorem 6.4.5.

(a) The functor FLEG crit can be canonically endowed with the datum of compatibility with the Sph,-
action on KL(G)eric and the Sphy**-action on IndCoh* (OpE°™™¢°), where we identify

Sphg =~ Sphy?*
via Satg.
(b) Under the identification of point (a), the diagram

(6.23)

Whit. (G) ® KL(G)erit =, IndCoh*(Ope)
Sphg
(6.25) PLBG' © FLEG o | ~ i
Rep(é) & IndCoh*(Opgo“'ﬁ"ee) (6_?4)) Indcoh*(opréler)
Sph’gec

canonically commutes.

This theorem will be proved in the factorization setting in Sect. E.10.

6.4.6. Let us denote by Plgc’enh‘rf"d the precomposition of (6.23) with the projection
Whit. (G) ® KL(G)ers = Whit.(G) & KL(G)ern-
phg

Explicitly, it is given by

Ild®ap(w ), taut

(6.26)  Whit.(G) @ KL(G)erit Whit. (G) @ KL(G)erit, p(wx) =

Hgenh.rnd

2 Whit. (§-m0deric py)) > = IndCoh*(OpE).

—>Whit*(G) (04 KL(G)Crit,p(wX)

Sphg

Let PS¢ and Pj5“"" denote the compositions of Plc‘-;c’e"}"rf"d with the forgetful functors

(6.27) I (OpEer) - : IndCoh™ (OpE™) — Vect
and
(6.28) aCe (OpEer )" IndCoh™ (OpE™) — Oopg\g—modf“t,

—genh

respectively. (These two functors are obtained by replacing the last arrow in (6.26) by DS and DS,
respectively.)

6.4.7. Let us denote by Plc?c’enh’rf"d the precomposition of (6.24) with the projection

Rep(G) ® IndCoh* (OpE®™™*°) — Rep(G) ® IndCoh*(Opg°™ ).

SphiPe
Explicitly, it is given by

(6.29) Rep(G) ® IndCoh* (OpE°™"°) v gld

(Lmon-free)indCoh

— QCoh(OpE°™ ™) © IndCoh™ (OpE°™™°*) & IndCoh™ (OpZ°e°)
— IndCoh™(Opg®").

Let Pi2° and Plgc’e“h denote the compositions of Plgc’e"h’rf“d with the forgetful functors (6.27) and
(6.28), respectively.
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6.4.8. From Theorem 6.4.5 we immediately obtain:
Corollary 6.4.9. The functors P5°™™ and Plcv;oc’enh"rfnd match under the equivalences

FLEG,Crit

. FLEg
KL(G)aie  ~ " IndCoh™(OpZ°™) and Rep(G) ~ ~ Whit,(G).
And hence:

Corollary 6.4.10. The functors PS¢ and Plé’c (resp., Plgc’enh and Plgc’enh) match under the equiva-

lences
FLEG ,crit

. FLEg
KL(G)erit  ~"" IndCoh” (OpZ°™ ™) and Rep(G) ~ = Whit.(G).
6.5. The functor pre-FLE; ;-

6.5.1. By the construction of the functor FLEqG crit we have the following explicit descriptions of its
compositions with various forgetful functors out of IndCoh* (Op}s°*-™*°):
e The composition with the functor
(LmonffrCC)indCDh

IndCoh* (OpEe-ree) — IndCoh™* (OpE®)

is the functor
Dgenh,rfnd

KL(Gerit 25" KL(G)exit o) — Gm0derit piy) - IndCoh” (OpE™);

e The composition with the functor

(Lmon—f'rcc >I*ndCoh rIndCoh (Opn_\er - )enh

IndCoh* (Opg°™") — IndCoh” (OpZE™) 2P Oopres-mod ™"
€]
is the functor
Ap(wx ), tau ~ enh
KL(G)Crit o( ﬁ}t ‘ KL(G)crit,p(wx) — g_mOdcrit,p(wX) DS—) Oopr§g—modfaCt;
G

e The composition with the functor
FIndCoh(Oprgon»free’ _) . IndCoh* (Opréxon»free) —s Vect
is the functor

(6.30) KL(G)erte 25" KL(G) eritpwx ) — G-m0deris pwy) 25 Vect;

In this subsection we will describe explicitly the composition of FLEg crit with the functor

24" : IndCoh™ (OpE*™™*°) — Rep(G).
6.5.2. Define the (factorization) functor
(6.31) pre-FLE¢ o5y  KL(G)exit — Rep(G)
as the composition
(6.32)  KL(Gerit 25 KL(G)erit p(uy) — Whit'(G) ® Whit, (§-moderie pwy)) 25

— Rep(G) ® Whit (§-moderit,p(wy)) LoRs Rep(G),
where the second arrow is obtained by duality from the pairing
Whit.(G) @ KL(G)erit, p(wy) — Whits (§-moderic, pwy))-

6.5.3. We claim:
Proposition 6.5.4. The functor pre-FLE ., identifies canonically with tindCoh o FLEG it

The rest of this subsection is devoted to the proof of this proposition.
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6.5.5. The next assertion results from the construction of the functor FLEgG, crit and Lemma 5.4.2:

Lemma 6.5.6. The functor ti“dco}‘ o FLEG, criv tdentifies with the composition

~ Id ®C“p(w ),taut
o

(6.33)  KL(G)ert — Rep(() @ KL(G)enit
- Rep(é) ® KL(G)crit,p(wX) — Rep(é) ®§_m0dcrit,p(wx) i %DS Rep(é)7

where the first arrow is the functor, right adjoint to the action of Rep(G) on KL(G)eit, given by

Rep(G) Sty Sphg
and the Sphg-action on KL(G)crit -

75

Hence, in order to prove Proposition 6.5.4, it suffices to establish an isomorphism between (6.32)

and (6.33).
6.5.7. We rewrite the functor in (6.33) as

KL(G)crit f’(“X_)gta“t KL(G)CYU%P(WX> -

® Whitu (§-m0desie p(wy)) s Rep(Q).

— Rep(G) ® KL(G) erit, p(wy ) — Rep(G
6.

Hence, in order to prove an isomorphism between (
functors

KL(G)erit, pwy) — Rep(G) @ KL(G)cxie p(wy) — Rep(G) ® Whit, (§-moderie, pw )
and
KL(G)erit,pox) — Whit'(G) ® Whits (§-moderic,pwy)) © o Rep(G) © Whits (§-modesic,p(wy))
are canonically isomorphic.
6.5.8. By duality, this amounts to showing that the functors

v Sat® @ Id
Rep(G) @ KL(G)erit,plwn)

— Sth %) KL(G)crit,p(wX) — KL(G)“H",(WX) — Whit*(ﬁ—modcrit,p(wx))

and
. FLEg __ ®1

Rep(G) © KL(@asitpion) | 25 Whits(G) © KL(G)erie p(eox ) — Whita (§-m0deric (s ))
are canonically identified.
6.5.9. This follows by combining the following observations:
e The functor Whit.(G) ® KL(G)crit, p(wy) — Whits (§-modesis, p(wy)) factors as
Whit. (G) ® KL(G)erit, p(wx) — Whit.(G) ngc KL(G) crit, p(wy) — Whit (§-moderie, p(w))s

e The functor KL(G)erit, p(wyx) — Whits (g-moderit, p(wy)) identifies with

Vac it ® Id 3 . ~
KL(G)Crit,p(wX) WhAG) Whlt*(G) ® KL(G)crit,p(wX) — Whit. (g'mOdcrit,p(wX))7
where lwhnis, (@) € Whit«(G) is the vacuum object;
e The functor FLE4 ., identifies with

Satly Vacwhit, (G) *—
—

Rep(G) —$§ Sphg Whit. (G)

(see Remark 1.7.8).

)
32) and (6.33), it suffices to show that the

O[Proposition 6.5.4]

6.6. An alternative construction of the critical FLE functor.
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6.6.1. We start by observing:

Lemma 6.6.2. There exists a canonical identification of factorization algebras in Rep(é)

(6.34) pre-FLEG oy (Vac(G)erit) ~ Rg op-

Proof. Follows from Proposition 6.5.4 and the fact that the functor FLEg cri¢ is unital (see Corol-

lary 6.1.9).
d

Remark 6.6.3. One can establish the isomorphism (6.34) directly, i.e., without appealing to the functor
FLEG,Crit-

6.6.4. By Sect. 4.1.9 and Lemma 6.6.2, the functor pre-FLE; ,;; upgrades to a functor
pre—FLE(E;“Erit : KL(Q)erit — RG’Op-modfaCt (Rep(®)).
Note that by construction we have a canonical isomorphism
pre_FLEeGn,}c)rit ~ FIndCoh(Opgon-free7 _)*™ 6 PLEG cris -
Because of this isomorphism we will also use the notation
FLEZ%S = pre- FLEG by,
6.6.5. We claim now that the functor FLEG it can be uniquely recovered from FLEZ S5
Namely, by Proposition 4.4.7(a), it suffices to show that the functor FLEZ %5 sends compact objects
in KL(G)eit to eventually coconnective objects in Rg o,-mod™**(Rep(G)).
6.6.6. Since the forgetful functor
RG’Op—modfaCt(Rep(G')) — Rep(G)

is t-exact and conservative, it suffices to show that the functor pre-FLE, ,;, sends compact objects in

KL(G)arit to eventually coconnective objects in Rep(G).

Since the compact generators of KL(G)crit are eventually coconnective, it suffices to prove the
following:

Lemma 6.6.7. For a fivred x € Ran, the functor
pre-FLE¢ iy : KL(G)erit,z — Rep(G)a
18 t-ezact.
Proof. We rewrite the functor pre-FLE ;; as (6.33), or equivalently
(6.35)
R ®ld . .
KL(G)ait = Rep(G) @ Rep(G) @ KL(G)crit

< ld®ap(wy),taut
X

— Rep(G) @ KL(G)erit

Id®(—*—)

188G O R () © Sphg © KL(G)ar 25

Rep(G) @ KL(Qerit plwy) 2> Rep(@)

In this composition, the first arrow is tautologically exact, and the second arrow is t-exact by
Corollary 5.4.5. Hence, the assertion follows from Lemma 2.3.8.
O

6.6.8. Note that as a corollary of Lemma 6.6.7 and Proposition 6.5.4, we obtain:
Corollary 6.6.9. For a fized z € Ran, the functor
FLEG crit ¢ KL(G)erit.2 — IndCoh™(Opgore%)

is t-exact.
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7. PROOF OF THE POINTWISE VERSION OF THE CRITICAL FLE

In this section we will give a proof of the pointwise version of the critical FLE by deducing it from
Theorem 4.8.8.

The idea of the proof is the that the critical FLE is essentially the base change of the equivalence
of Theorem 4.8.8 along LSYC‘;iC — LSICI;C; In fact, such an equivalence is a general phenomenon for
categories acted on by £(G)., given a temperedness condition (see Proposition 7.5.5 for a precise
statement).

The reason this proof only works for the pointwise version is that it is only in this case that we have
a good grip on the base change operation alluded to above.

We note that a completely different proof of the pointwise FLE was given in the paper [FG2].
7.1. Temperedness.

7.1.1. Let
(7.1) SphiP™ <y SphiPee

G,temp,z G,z

be the tempered subcategory.
By definition, this is the essential image of

= . spec,loc spec,loc
'_‘Heckesc.?e:’loc . QCOh(HECkeG’x ) — IHdCOh(HeCkeé’x )

The embedding (7.1) admits a right adjoint, namely,

v eciloc : IndCoh(Heckeg’ic’loc) — QCoh(Heckesg;C’loc),

sp
HCCkCG,

whose kernel is a monoidal ideal.

hspec

This allows us to view Sp G temp,z

as a monoidal colocalization of Sphiy*".

Remark 7.1.2. The definition of Sphg’izmp ,, is specific to the pointwise version. We do not know how

to define it in the factorization setting. The reason for this is the following:

spec
hG,temp
have the (2, ¥)-adjunction. The latter is a feature of a locally of finite type situation, which we are in
at a fixed x € Ran, but not when we are allowed to vary over Ran in families.

Although we can define Sp := IndCoh* (Heckeg’cc’loc) in the factorization setting, we do not

7.1.3. Let us regard
QCoh(LSg”gx) ~ Rep(G)

as a bimodule with respect to QCoh((LSE?)s) and Sph®r.

Note, however, that the Sphg’;c-action on QCoh(LSgi) factors via Sphsép,ctzmpyz: indeed, the action

is given by t-exact functors and the t-structure on Rep(G) is separared.

7.1.4. Consider the corresponding functor

(7.2) SphPee — Functqeon((usmeny,,) (QCoh(LS 5% ), QCoh(LSEE))).

G,temp,z

The following results from the definitions:

Lemma 7.1.5. The functor (7.2) is an equivalence.
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7.1.6. Let C be a module category over Sph*". Denote
Ctemp = Sphi¥*° ® C.

G,temp,x Sp}]sPec
Gz

The adjunction

spec — spec
Sth‘,tcmp,z - Sth,z

gives rise to an adjunction
(7.3) Ciemp = C,
making Ciemp into a colocalization of C.

We let tempe denote the comonad on C corresponding to the adjunction (7.3)

7.1.7. Let us regard the two sides of (7.2) as right modules with respect to Sph}°, where:

e SphY*" acts on Sphsc?,:mp,m

. Sphsc.vf”ec acts on Functhoh((Lsréer)rAcg)(QCoh(LSg’gx), QCoh(LSZ®)) via the target.

x

by right multiplication;
Tensoring (7.2) over Sph?** with C we obtain a functor

(7.4) Ciemp — FunCtQCOh((LSrG??;%\cg) QCOh(LSrG«ei), QCOh(LSgi) ® C

From Lemma 7.1.5 and the fact that Sphi¥* is rigid we obtain:

Corollary 7.1.8. The functor (7.4) is an equivalence.

7.1.9. We will say that C is tempered if the action of Sph*" on C factors via Sphg’i:mp e

This is equivalent to the condition that the functors (7.3) are mutually inverse equivalences.

Remark 7.1.10. Note that Corollary 7.1.8 says that if C is tempered, then it can be recovered from
the QCoh((LSE?)1eq)-module category
QCoh(LSrgg ) ® C
R Sphsc.?e:

by applying the functor

FunCtQCoh((Lsgf’;)é\cg) (QCOh(LSrgi), *) :

QCoh((Lng)ﬁ\eg)-mod — Sphg’etcemp ,-mod = Sph’**-mod.

7.1.11. From Corollary 7.1.8 we obtain:
Corollary 7.1.12. The functor
C— QCoh(LSEg.) ® C, SphsG«pe.C-mod — DGCat
»T SphSPec y T
G
is conservative, when restricted to the subcategory

Sphg’i‘;nlp ,-mod C Sph¥**-mod.

7.1.13. Let
(75) Sthﬂ: — Sth,temp,x
be the colocalization corresponding to the colocalization

spec spec
Sph@,:c - Sph(’;‘,temp,x

(we can use either Satg or Satg,, to identify Sph, with Sphscfec; the resulting colocalizations are the
same).

The definitions and results from this subsection render automatically to the setting of Sph ,-module
categories.
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7.2. Proof of Theorem 6.2.2. We are now ready to prove the pointwise version of the FLE.

7.2.1. Recall (see Theorem 6.4.5) that the functor
(7.6) FLEG crit : KL(G)erit,= — IndCoh™ (Opgor*%)

intertwines the actions of Sphg , on the left-hand side with the Sph¢y’’-action on the right-hand side
(via Sate), and makes the diagram

1

FLEE; o ® FLEG crit .
Whit, (G)e  ®  KL(G)ait,e : Rep(G) © IndCoh*(OpZ°re)
Sphg . Sphg)ezc >
7.7
( ) (6.23)1 1(6.24)
IHdCOh*(Opgezr) L} IndCoh*(Op‘é‘ezr)

commute.

Note that Proposition 3.6.5 says that the right vertical arrow in (7.7) is fully faithful with essential
image equal to

IndCoh™(Op¢?, )mon-free C IndCoh™(Opg?,)-
We will prove:
Proposition 7.2.2. The left vertical arrow in (7.7) is fully faithful with essential image equal to
IndCoh™ (Op§?, Jmon-tree C IndCoh™ (Opg?)-
7.2.3. We now claim:

Proposition 7.2.4. The Sph*°-module category IndCoh* (Op‘é’c’;"fmc) is tempered.

Proof. Recall the functor

7.8 QCoh LSs® ® IndCoh* Op'”f'er i\ﬂon—free IndCoh* Oprpon-free )
el G,z G,z
%7 QCoh((LSZ){k,) Z iz

It intertwines the actions of Sphg’ic, where the action on the left-hand side is via the first factor.

Now, according to Proposition 3.8.11, the functor (7.8) is an equivalence. Hence, it is enough to

show that the action of Sphi?®* on the left-hand side of (7.8) factors through Sphscpizmp e

hspec

However, this follows from the fact that the action of Sp C tomp.z

on

QCoh(LSg’z) ~ Rep(G)

hspec )
GL,temp,x

factors through Sp

7.2.5. Finally, we claim:

Proposition 7.2.6. The Sphg ,-module category KL(G)x,. is tempered.

We now observe that the combination of Propositions 7.2.2, 7.2.4 and 7.2.6, together with Corol-
lary 7.1.12, implies that (7.6) is an equivalence.
O[Pointwise FLE]

The rest of this section is devoted to the proof of Propositions 7.2.2 and 7.2.6.

7.3. Proof of Proposition 7.2.2.
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7.3.1. Let C be a category equipped with a £(G)s-action at the critical level. Consider now the
category

Sph(C) := ¢ (D=,

Interpreting CM (@ g

Functe(q), (D—mod% (Grg,z), C),

we obtain that Sph(C) carries a natural action of

Sphg , ~ Endeq, (D-mod%(Grgyl.)) .

7.3.2. Denote
CSM&" . Domod s (Grg.) ®  Sph(C).
2 Sphg
We have a tautological functor
(7.9) crieen ¢

commuting with the £(G)z-action.

The following is a standard result that results from the ind-properness of the affine Grassmannian:
Lemma 7.3.3. The functor (7.9) is fully faithful and admits a continuous right adjoint.>3
7.3.4. We shall say that C is spherically generated if the functor (7.9) is an equivalence.

This is equivalent to requiring that C is generated, as a category acted on by £(G)z, by the essential
image of the forgetful functor

Sph(C) — C.
7.3.5. The above definitions apply when we replace £(G). by £(G)(wy),«- Applying to both sides of
(7.9) the functor Whit,(—), we obtain a functor

(7.10) Whit.(G) ® Sph(C) — Whit.(C),

Sphg,
i.e., the functor (6.21).
From Lemma 7.3.3 we obtain:
Corollary 7.3.6. The functor (7.10) is fully fasithful.
7.3.7.  We apply Corollary 7.3.6 to
C := g-mod.it, p(wy ) o

Hence, we obtain that the left vertical arrow in (7.7) is fully faithful. Thus, to complete the proof
of Proposition 7.2.2, it suffices to show that the essential image of (6.23) is contained in and generates

IHdCOh* (Opg’e;)mon»free C IndCOh* (Opréljazr)

33This right adjoint automatically commutes with the £(G).-action, essentially because £(G), is a group.
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7.3.8. Note that the essential image of

Lwhit, () ®Id
iy

KL(G)Crit@ Whlt* (G)x ® KL(G)crit,:c

SthTI
generates the target.

Indeed, this follows by interpreting the above functor as

B FLEg ,, ®Id
KL(G)erit,» =~ Rep(G) ® KL(G)erit,» ~

Rep(G),Satgy
>~ Whlt* (G)z & . KL(G)crit,x — Whlt*(G)z & KL(G)crit,;t >~
Satgy ,Rep(G),Satgy’ Satg !, ,Sph®Pec Sat '
~ Whit.(G)s ® KL(G)crit,-

Sth,z

Since the essential image of FLEg ; is contained in IndCoh* (Opge;)mon_free, we obtain that so is the
essential image of (6.23).

7.3.9. Hence, it remains to prove the following:

Lemma 7.3.10. The essential image KL(G)erit, p(wy ), under

Dgenh,rfnd

KL(G)crit,p(wX),z — ﬁ—modcrit’p(w{)’z — IndCoh* (Oprg?;-frm)

generates IndCoh* (OpE® ) mon-frec-

Proof. We prove the lemma by matching the generators.

The compact generators of KL(G)crit,p(wy ),« are the Weyl modules

. a + ~ri \
(7.11) Vi = ind (e (V),

where V* € Rep(@) is the irreducible representation of highest weight .

According to [FG3], the image of V2, under DS°""™4 ig the structure sheaf Ogpr-res of the sub-

scheme o
Opy; = C Opgs
of M-opers.
We have

red mon-freey __ A—reg
(OpG,z ) - leopéyz ’

from which it is clear that the objects

O ez € IndCoh™ (Opg?)

OpG,m

are the (compact) generators of IndCoh* (Op‘éle;)mon_free.

7.4. Proof of Proposition 7.2.6.
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7.4.1. We need to show that the functor
(7.12) KL(GQ)erit,» := Sph(g-modcrit, ») — Sph(g-moderit, o )temp =: (KL(G)crit,z )temp
is an equivalence.
First, note that by combining Corollary 7.1.8 with Propositions 7.2.2 and 7.2.4 we obtain that the
functor FLEg cris factors as
KL(G)eritse (5 (KL(Gerit om0 =57™ IndCoh* (Opioe°),
where FLEG crit,temp 1S an equivalence.

Combined with Proposition 6.2.4, we obtain that the functor (7.12) preserves compactness. Since
(7.12) is a colocalization, we obtain that (7.12) restricts to a colocalization on compacts. Hence, it is
sufficient to prove that (7.12) is conservative on (KL(G)erit,z)€.

To prove the latter, it is sufficient to prove that the functor FLEg it is conservative on
(KL(G)Crit,a:)c~
7.4.2. Since (KL(G)erit,x)¢ C (KL(G)Cm,z)b and since FLEG ot is t-exact (by Corollary 6.6.9), its
suffices to show that FLEg,crit is conservative on (KL(G)Crit,I)O

Using the fact that FLEG crit,temp 1S an equivalence, we obtain that it is enough to show that the
functor (7.12) is conservative on (KL(G)erit,z)”

7.4.3. Let tempyy g, ., . denote the temperization functor (see Sect. 7.1.6). We will prove:
Lemma 7.4.4. The functor tempyy,qy_.,, , 5 right t-ezact, and the counit map
EeMPKL(G) g, — 1

induces an isomorphism on H® when applied to objects in (KL(G)CHWC)QQ

The lemma immediately implies the conservativity of (7.12) on (KL(G)Cm,x)O‘
O[Proposition 7.2.6]

7.4.5. Proof of Lemma 7.4.4. The assertion of the lemma holds more generally for a Sphg’e:-module
category, equipped with a t-structure, such that the action functor is t-exact. The corresponding
property for KL(GQ)crit,e ~ KL(G)eit,» is guaranteed by Corollary 5.4.5.

Consider the temperization functor tempgyspec on SphF*" itself, i.e., the composition of
Gz »

\IIHeckescfec‘lOC
spec __ spec,loc T
Sphy = IndCoh(HeckeG,z )
= X s'pec,loc
— QCoh(Hecke'°%) X IndCoh(HeckeP°*'?) = SphPe
G,z G,z =P G,z

It suffices to show that the object
tempsphsc}’f; (]'Sphg”? )
lives in cohomological degrees < 0 and that its Oth cohomology maps isomorphically to 1g,pspec.
G,z

However, this is a general property of the composition Zy o ¥y on an eventually coconnective stack
locally almost of finite type. Namely, for every F € IndCoh(Y), the counit of the adjuction
2y o Uy (9:) —F

induces an isomorphism on the truncation 7=~" for any n.
O[Lemma 7.4.4]
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7.5. Spherical vs Whittaker. This subsection is not logically necessary for the sequel, but it carries

an ideological significance. Here we explain how to realize the pointwise FLEg cri¢ functor as the base

change of the functor pgerhrind along LSE® — LSE.

7.5.1. Let C be a category equipped with a £(G),wy)«-action, and assume that C is spherically
generated.
Consider the corresponding category
Whlt*(c) = Cg(N)p(wX),zvX'

We claim that Whit.(C) has a natural structure of module category over QCoh((LSE ) eg)-

reg
7.5.2. Indeed, we have
(7.13) Whit, (C) ~ Whit.(G), & Sph(C),

Sphg .

so it is enough to show that Whit. (&), carries a structure of QCoh((LSES )/se)-module category in a
way that commutes with the Sph, ,-action.

We identify
FLEg . ;
Whit.(G). =~ Rep(G) ~ QCoh(LS5® ),
where the Sph; ,-action on Whit.(G), corresponds to the natural Sphiy*“-action on QCoh(LS5® ) via
Sata,- (see Corollary 1.8.5).
The desired QCoh((LSE)fes)-module structure on Whit(G), comes from the natural action of
QCoh((LSE® )feg)-action on QCoh(LS%® ), which naturally commutes with the Sph}* -action.

7.5.3. For C as above, consider the category
(7.14) FunCtQCOh((LSE?;)Qg) (QCOh(LSgi), Whit. (C)).
Recall the functor (6.2)
(7.15) Sph(C) — Whit.(C).
7.5.4. We claim:
Proposition 7.5.5. The functor (7.15) lifts to a functor
(716) Sph(C) — FuHCtQCOh((LSrcgz)ng)(QCOh(LSgi),Whit*(C)).
Moreover, the functor (7.16) factors as
(717) Sph(C) — Sph(C)temp i FunCtQCoh((LS‘CI;‘:);\eg)(QCOh(LSgi)7Whit*(c))v
where the second arrow is an equivalence.

Proof. By (7.13), we have

(7.18) FunCthoh((Lsg?;)ﬁeg) (QCOh(LSere’gx), Whit* (C)) ~

FLEG oo
~ Functacon s, (QCoh(LSEE), Whit. (G):) _ ®  Sph(C) <
e ’ phg o

Sph(C) ~ SphiPe ® Sph(C).

~ mer ree ree
~ FunCthoh((Lsc:z);\eg) (QCOh(LSGm)7 QCOh(LSGﬂm)) Sp](?;vr & tomp .z Soe

O
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7.5.6. Take C:= ﬁ—modfﬁ?'f(eix) .- S0 we can regard

Whit, (§-mod>P™&e" = )

crit,p(wx )@

as acted on by QCoh((LSré‘?;)rAcg) via the recipe of Sect. 7.5.1.

Let us regard
IndCOh* (Opgicr)mon—free ~ IndCOh*(Oprg?;);\non—free
as acted on by QCoh((LS%E%) ) via pullback along

v (Opg,cgi)glon—free — (Lsg}?;)ﬁeg

Recall now that according to Proposition 7.2.2, the functor pgerid gives rise to an equivalence
~aenh,rfnd
(7.19) Whit. (§-modZhy 2 | ) P*—5 " IndCoh" (OpE ) mon-tree-

We claim:

Proposition 7.5.7. The equivalence (7.19) is compatible with the above actions of QCoh((LSg:)ng).

Proof. Follows from the fact that the functor (7.19) can be recovered from FLEg it by applying to
both sides the functor

QCoh(LSKE) @ —.

d
Remark 7.5.8. The above proof of Proposition 7.5.7 relies relies on Theorem 6.4.5 as an essential
ingredient.

In Sect. G we will give a different proof of Proposition 7.5.7, by showing that the functor (7.19) is

compatible with the structure of factorization module category over Rep(G).
7.5.9. From Proposition 7.5.7 we obtain that we can regard the FLE functor
FLEG crit : KL(G)erit,e — IndCoh™(Opgr ™)

as obtained from the functor (7.16) for

Sph-gen
o i
erit,p(wx ),

C :=g-mo
by precomposing with
Ap(wyx ), taut ~
KL(G)Crit,w g L KL(G)crit,p(wx),z = Sph(g_mOdcrit,p(wX),z)

and post-composing with

(720) FunctQCOh( (LS‘é‘e; )rAeg) (QCOh(LSgi ) 5 Whit, (/g\—modsph—gen

Proposition 7.5.7
) ) ~
crit,p(wx ),

~ Functhoh((Lsg?;)gg) (QCoh(LSg}i)7 IndCoh*(Op'g?;),,,on,free) ~ IndCoh*(Opg?;l'free),

where the last equivalence is obtained as follows:

FunCtQCoh((LS’é]e;)ﬁeg) (QCOh(LSrgi), IndCoh* (Opg’e;)mon_free) >~

IndCoh' (OpE) mon-free ® Coh(LS’3® ), IndCoh™ (Op&® ) mon-free
( ( pG’,z) f QCOh((LSIé’e;)/\ ) Q ( G,z) ( pG’,z) f >

reg

Functy,gcon! (OPEST Jmon-tree

T

Proposition 3.8.11 1 mon-free * mer
~ FunctlndCoh!(Oprgcr)mon_ﬁee (IndCoh (Op¢g>, %), IndCoh (Opc,x)mon_free) ~

x

Lemma 3.5.7

~ Functygcon opzer) (IndCoh' (OpE2™), ndCoh” (Opg?) ) "™ ** " IndCoh” (Opg~"*).
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Remark 7.5.10. The proof of the pointwise FLE given in Sect. 7.2 relied on Proposition 7.5.7, and
hence on Theorem 6.4.5 ingredient.

As was mentioned in Remark 7.5.8, we will supply a different proof of Proposition 7.5.7.
This allows us to give a proof of the pointwise FLE, avoiding Theorem 6.4.5:

Then one interprets the pointwise FLEqG crit functor as in Sect. 7.5.9 above. The assertion of the
pointwise FLE follows now by combining Propositions 7.2.6 and 7.5.5.

7.5.11. We remark also that one can deduce the pointwise version of Theorem 6.4.5 from Proposi-
tion 7.5.7 by the following argument:

First, we note that in the context of Sect. 7.5.3, the functor
Sph(C) — F‘uncthOh((LSné?;)rAeg)(QCoh(LSrG?i), Whit. (C))
intertwines the action of Sph, , on Sph(C) and the action of Sphscvv,p,ezC on
FunCtQCoh((LS‘é"e;)(.\eg) (QCoh(LSggz), Whit, (C))
via the source.

Unwinding the construction, we obtain that the following diagram commutes

Whit.(G) ® Sph(C) T19) . Whit.(C)
Sphg ~
FLEE;OO ®(7‘16)J lld

QCOh(LSrG?g ) ® FunCtQCoh((LSrcf‘e;)ﬁjg)(QCOh(LSrgi)a Whlt*(c)) E— Whlt*(c),

»T spec
Sphe .
where the bottom horizontal arrow is the natural evaluation functor.

This proves the desired compatibility, since the functor (7.20) is compatible with the Sphg’ic-actions.

8. COMPATIBILITY OF THE CRITICAL FLE WITH DUALITY
In this section we show that the FLE equivalence is compatible with the natural self-dualities of the

two sides.

The proof proceeds along the following steps:

(1) We show that the self-duality on g-modeyi is compatible with the IndCoh'(“Spec” (34))-action.
This boils down to a particular property of the factorization algebra CDO(G)crit,crit, given by

Lemma 8.3.3;
(2) We show that the equivalence pgerrnd Whit. (§-moderit, p(w)) — IndCoh™ (OpF*T) is com-
patible with the self-dualities of the two sides. We deduce this from the IndCoh'(OpZ)-

linearity (guaranteed by the previous point), combined with a general uniqueness statement;

(3) Finally, we establish the compatibility of FLEg crit with the self-dualities by essentially base-

mon-free mer

changing it from the previous point along Opj — Opg
As we highlight below, our methods are robust enough to show that established compatibility is
automatically compatible with the actions of

Sphg ~ Sphsc.ffec
on the two sides.

8.1. Statement of the compatibility theorem.

8.1.1. Recall that according to (2.4), we have a canonical identification
(8.1) (KL(Q)erit) " = KL(G) erit.-

By construction, the equivalence (8.1) respects the actions of Sph..
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8.1.2. In addition, we have an equivalence

@Oplpon»free

(8.2) IndCoh” (OpE°™*®)¥ ~ IndCoh'(OpZ°™ ™) A IndCoh*(OpZ°™ ).
This equivalence respects the actions of Sph¥** (see Sects. 3.6.2, 3.7.15 and Lemma 3.7.17).

8.1.3. The goal of this section is to prove the following:
Theorem 8.1.4. With respect to the identifications (8.1) and (8.2), the (factorization) functor
(FLEG cxis)"” : IndCoh* (OpE™™ ™) — KL(G)erit
identifies with
76 o (FLEG,crit) '
Moreover, this identification of functors respects the compatibility with the actions of

atg,r
S

S
Sphg SphiFee.

One can rephrase Theorem 8.1.4 as a commutative diagram of factorization categories

(8.2)

IndCoh* (Opjgor-free)V IndCoh* (Opfger-free)

~

(8.3) (FLEG e |~ ~Treert

(KL(G)crit)v '(8%)*% KL(G)crit .

Remark 8.1.5. Note the similarity between the statement of Theorem 8.1.4 and Lemma 1.4.12: in both
cases a non-tautological self-equivalence of the Whittaker side makes the FLE inverse to its dual, up
to the Chevalley involution.

Remark 8.1.6. Note again that the appearance of the Chevalley involution in Theorem 8.1.4 is in line
with the curse in Sect. 1.8.7.

8.1.7. The following assertion will not be needed in the sequel, but it provides a concrete perspective
on what Theorem 8.1.4 really says.

Recall that the unit of the self-duality (8.1) is the object
Q::DDcrit,crit S KL(G)crit ® KL(G)crit-
The unit of the self-duality of IndCoh* (Op‘é’on'fmc) is

IndCoh / x*,fake
(A free ) (wg) )
Opteon-free Jx mon-free /7
P& OpZ
where
*,fake * mon-free
w € IndCoh™ (Opg )

mon-free
Opc.;

mon-free

is as in Sect. 3.7.7, and Ag mon-ree is the diagonal map of Opg
G
Thus, from Theorem 8.1.4, we obtain:

Corollary 8.1.8. We have a canonical isomorphism (of factorization algebra objects)

(FLEG,crit & FLEG,crit)(Q:QDcrit,crit) =~ (Id ®TG) o (Aopxc{;mn-free)indCOh (Wg;?::fn_free).
G
Remark 8.1.9. Note that, on the one hand, the statement of Corollary 8.1.8 is actually equivalent to
Theorem 8.1.4 (without the Sphg ~ Sphiy®® compatibility).

One the other hand, the two factorization algebras appearing in Corollary 8.1.8 are classical (i.e.,
the corresponding chiral algebras lie in D-mod(X)"), and one can actually prove the existence of an
isomorphism between them directly.
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8.1.10. Applying the forgetful functor to Vect, from Corollary 8.1.8 we obtain:
Corollary 8.1.11. We have a canonical isomorphism of factorization algebras

(84) (DS ® DS) © (ap(wx),taut ® ap(wx),taut)(Q:@Dcrit,crit) >~ FI“dCOh(Opgon_ﬁee w*,fake )

1 Wopmon-ree
Remark 8.1.12. We note that the factorization algebra

B = (DS®DS) o (atpwy),taut @ Up(wy) taut ) (EDDerit,crit)
was studied in [FG2].

One can view (8.4) as an extension of the Feigin-Frenkel isomorphism FFq: indeed according to
Lemma 8.3.3 below, the factorization algebra By receives a homomorphism from

(DS & DS)(Vg,crit,p(wX) ;@ Vg,crit,p(wx)) =~ 3a,
g

while
BSé)ec — FIndCoh(Opgon—free7 gégfr,,free)
receives a homomorphism from
F(Opgg7 Oopgg) = Oopgg.

8.2. Feigin-Frenkel center and self-duality.

8.2.1. Recall the duality identification
(8.5) (g-moderit)” =~ §-moderis.
of (2.3).

Recall also that g-modes; carries a canonical action of IndCoh'(“Spec”(3,)), see Sect. 4.6.
Since the category IndCoh'(“Spec”(3,4)) is symmetric monoidal, this action induces an action of
IndCoh'(“Spec”(34)) on (g-moderit)".

8.2.2. The goal of this subsection is to prove the following:

Theorem-Construction 8.2.3. The identification (8.5) carries a canonical structure of compatibility
with the IndCoh' (“Spec” (34))-actions, up to the automorphism of “Spec” (34) induced by the Chevalley
involution T¢.

The rest of this subsection is devoted to the proof of this theorem.

8.2.4. Let
Ug-modeye,g-modeyyy € §-MOderis @ g-moderi

be the unit of the self-duality. The statement of Theorem 8.2.3 is equivalent to the assertion that
Ug-mod,ys;,g-modey, Call be lifted to an object of the category

L o~ =~
Functingcon! («spec” (34))®IndCoh! (“ Spec ,,(39))(IndCoh (“Spec”(3g)), g-moderit ® g-moderit)

where IndCoh'(“Spec”(3,)) ® IndCoh'(“Spec”(34)) acts on IndCoh'(“Spec”(3,)) via 7¢ on one of
the factors.
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8.2.5. Consider the (factorization) category
D-mod(£(G))erit,crit
of critically twisted D-modules on the loop group. We have a naturally defined (factorization) functor
(8.6) el (9(@), =) : D-mod(L(G))erit,erit — §-mOoderic @ §-moderis.
We have:

IndCoh
UG-modgyit,§-modeyis — r (2(0)7 61,2(G))7

where 81 ¢(g) € D-mod(£(G))crit,criv is the d-function at the origin.

The required property of Ug.mod,,;,,5-modey, [0llows from the next general assertion:

crit
Proposition 8.2.6. The functor (8.6) factors as
D-mod(£(G))erit,crit —
— Functy,acon! (“Spec” (3 4))®IndCoh! (“Spec *’(39))(Ind00h!(“ Spec”(3g)), g-moderit ® g-moderit) —
— g-moderit ® g-moderit .
O[Theorem 8.2.3]
8.3. Proof of Proposition 8.2.6.

8.3.1. First, we record the initial input, from which we will deduce Proposition 8.2.6. Recall the
(factorization algebra) object

QQD(G)crit,crit S KL(G)crit ® KL(G)crit~

By a slight abuse of notation we will denote by the same symbol the image of €DO(G)erit,crit under
the forgetful functor

KL(G)crit ® KL(G)crit — a‘mOdcrit & a‘mOdctit-
Let us denote by CDO(G)crit,crit the image of €DO(G)erit,crit along the further forgetful functor

oblvg g : g-moderit ® g-moderic — Vect .

8.3.2. The unit of €DO(G)erit,crit as a factorization algebra in KL(G)erit @ KL(G)erit is a map (of
factorization algebras)

(8.7) Vac(G)ait ® Vac(G)erit = €O (G)erit,crit
which gives rise to a map
(8.8) Vg,crit @ Vg erit = CDO(G)erit,crit -
The following was established in [FG1, Theorem 5.4]:
Lemma 8.3.3. The map (8.8) factors as
Vg,crit @ Vg, erie = Vg, erit ;@ Vg,erit = CDO(G)cris,crit
o

where the 3q-action on one of the tensor factors is twisted by 7.

Since the factorization algebras involved lie in the heart of the t-structure, from Lemma 8.3.3 we
obtain:

Corollary 8.3.4. The map (8.7) factors as
VaC(G)crit ® VaC(G)crit — VaC(G)crit ® VaC(G)crit — Q:QD(G)crit,crity

dg

where the 34-action on the right tensor factor is twisted by ¢ .

We will now show how to use Corollary 8.3.4 to prove Proposition 8.2.6.
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8.3.5. Note that D-mod(£(G))erit,crit 18 equipped with a t-structure (see Sect. B.11.11 for what this
means in the factorization setting), so that the object 52+(G)¢£(G> € D-mod(£(G))erit,crit lies in the
heart.

The category D-mod(£(G))erit,crit is compactly generated by objects that lie in D-mod(S(G))>_°°

crit,crit*

Hence, in order to prove Proposition 8.2.6, it suffices to show that the restriction of the functor
Aot (g(@), —) to D-mod(&(G))Z i factors as
D-mod(&(G))Gireric =

Vrw ” i~ -~
- FunCtIndCoh! (“Spec”(34))®IndCoh! (“Spec”(34)) (IndCOh ( Spec ’ (39))7 g_mOdCFit ® g_mOdCrit) -
— a‘mOdcrit & a‘mOdcrit~

8.3.6. Consider the (factorization) functor I"™™“°"(£(@3), —). It sends the factorization unit

lD‘mOd(S(GDcrit,crit = 6£+(G)C£(G) € FII]dCOh(’S(G)’ _)
to
Q:@D(G)crit,crit S a'mOdcrit ® /g\'mOdcrih
In particular, by Sect. 4.1.9, it upgrades to a functor
et g(@), =)™ : D-mod(L(G))erit,crit = €DO-Mod™* (F-moderis @ G-modeit ).
8.3.7. Applying Corollary 8.3.4, we obtain that the functor I'™I°°*(£(@), —) factors as
D-mod(£(G))erit,crit —
— (Vac(@)erit @ Vac(G)erit )-mod ™ (
dg

g‘mOdcrit & /g\‘mOdcrit) — a‘mOdcrit ® /g\‘mOdcri(’n

In particular, the restriction of the functor '™ (£(@), —) to D-mod(£(G)) 55 5 factors via the
forgetful functor

>—00
(8.9) ((VaC(G)crit @ Vac(Q)exit )-mod ™ (§-modexit ®§—modcm)) —
dg

>—o00
— (/g\'mOdcrit & a‘mOdcrit> .

8.3.8. However, unwinding the construction of the IndCoh'(“Spec” (3,))-action on g-modcris, we ob-
tain that the functor (8.9) factors as

>—00
<(Vac(G)cm ® Vac(Q)erit )—modfaCt (g-moderit ® ﬁ—modcm)) —
dg

[ ”» i~ i~
- FunCtIndCOh! (“Spec”(34))®IndCoh'(“Spec”(34)) (IndCOh ( SpeC (39))7 g_mOdCTit ® g_mOdCTit) -
— a‘mOdcrit & /g\‘mOdcrib
O[Proposition 8.2.6]
8.4. Self-duality on opers via Kac-Moody.

8.4.1. Recall the identification (1.5). Applying this to the category g-modei¢, p(.) and using the iden-
tification (8.5), we obtain an identification

8.10 Whit, (§-moderic ()" =~ Whit' (§-moderic. p(w) ),
p(w) (@)

which fits into the commutative diagram

Whit*(ﬁ—modcrmp(w))v ﬂ) Whit!(ﬁ—modcrit,p(w))

! l

~ (8.5) ~
(g_mOdcrit,p(w))v —_— g_mOdcrit,p(w) )
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where the left vertical arrow is the dual of the projection
/g\—modcrit,p(w) — Whit*(ﬁ—modcrit,p(w)).

Since the vertical arrows in the above diagram are fully faithful, from Theorem 8.2.33* (combined
with Corollary 4.7.15(a,b)), we obtain:

Corollary 8.4.2. The functor (8.10) is equipped with a natural IndCoh'(“Spec” (3,))-linear structure,
up to the automorphism of “Spec”(3g4), induced by the Chevalley involution 1q.

8.4.3. Recall now identification of Theorem 1.3.7. Applying this to the category g-modc,it p(w), We
obtain an identification

(811) eWhit(ﬁ'mOdcrit.p(u)> : Whit*(ﬁ-modcrit’p(w)) >~ Whit!(ﬁ-modcrityp(w)).
Concatenating (8.10) with (8.11) we obtain an identification
(8.12) Whit, (§-moderic,p(e))” = Whit, (g-moderis, p(w) )-

Combining with Corollaries 8.4.2 and 4.7.15(c), we obtain that the functor (8.12) is also endowed
with an IndCoh'(“Spec”(34))-linear structure, up to the automorphism of “Spec”(3,) induced by the
Chevalley involution 7¢.

8.4.4. Recall now that we have an identification

O©ppmer

(8.13) IndCoh* (OpE°)" ~ IndCoh'(Op®) = IndCoh*(OpZ®™).
We will prove:

Theorem 8.4.5. With respect to the identifications (8.12) and (8.13), the functor dual to

DS ™ Whit., (§-modesis,p(w)) = IndCoh™ (Op2°")

identifies with Tg o (Disenh'rfnd)fl, compatibly with the actions of

IndCoh'(“Spec”(34)) FLs IndCoh' (OpE™).

One can rephrase Theorem 8.1.4 as a commutative diagram

(8.13)

IndCoh*(OpEe)Y IndCoh™ (Opg®)
(8.14) (ﬁenh,rfnd)\/l,\, Nchoﬁmh,rfﬂd

Whit.. (§-moderi, p(e)) (8—:2)> Whit.. (§-moderit, p(w))-

Remark 8.4.6. As we shall see below, Theorem 8.4.5 is actually easy. However, it can be seen as a
particular case of a conjecture, proposed by G. Dhillon, which says that at any level x, the self-dualities
of the (renormalized) categories of factorization modules

W, x-mod™®* ~ Wy r-mod™*
that come from the identifications
W, e-mod™®* = Whit. (§-mod,.) and W z-mod™* = Whit, (§-modx)
and Theorem 1.3.7, respectively, agree.

For non-critical x, this conjecture is completely open. What makes it tractable at the critical level
is precisely the interpretation of Wy it as the Feigin-Frenkel center.

8.5. Proof of Theorem 8.4.5.

34Here we apply Theorem 8.2.3 in the twisted setting, i.e., to ﬁ-modcrityp(w) instead of g-modcyit-
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8.5.1. Consider the IndCoh!(Op’ger)—linear self-equivalence of IndCoh™(Opg™) obtained by going
clockwise along the edges of (8.14). We need to show that this functor is isomorphic to the identity.

Using the equivalence GOprcgner, and further, the equivalence

Topger : QCoh(Opg™) — IndCoh' (Opg™)
of Proposition 3.8.7, we can transform the above IndCOh!(Opger)-linear self-equivalence of the category

IndCoh™(Opg®) into a QCoh(OpE™)-linear self-equivalence of QCoh(OpgE).

GCY
the equivalences in sight are compatible with factorization, this line bundle has a natural factorization
structure.

Such a self-equivalence is given by a (graded) line bundle, to be denoted Lopmer, on OpE®'. Since all

We will now show that any such (graded) line bundle is automatically trivial.

8.5.2. The question is local, so let us choose a G-oper o on X.

The datum of o gives rise to a section

reg mer

ORan : Ran — Op@,l’{an — Opf}’,Ram7

compatible with factorization.

Set LRran,o = (URan)*(Loprgxer). This is a factorization line bundle on Ran. We claim that it is
automatically trivial.

8.5.3. Indeed, write

Ran ~ colIirn X({R,
where the index I runs over the category of non-empty finite sets and surjective maps.

Set LXjR,c = LR&Y‘,U|X£R' The collection of local systems

(8.15) I Lyr

is compatible with the factorization structure.

In particular,
®I
>~ (Lxqr0) |

o

LXéR’UI)O(I x1

where X € X7 is the complement of the diagonal divisor.

Hence,

(8.16) Lyr o~ (Lxyno)™,

dR’
compatibly with the factorization structure.
Consider (8.16) for I = {1,2}. Restricting to the diagonal X — X x X, we obtain
)®?

LXdRaO' = (LXdRJ

Hence, Lx,p,0 is trivial. By (8.16), this trivializes the system (8.15).
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8.5.4. For a fixed I, consider the fiber products

e

mer I mer mer I mer
Opeg'xr = Xaqr X OpgRan and Opgxr := X7 X OpPERan
A 4R Ran ’ ’ Ran ’
and the line bundles

L opmer = Lopmer reg and Logmer 1= Lopmer reg .
OpG’XéR OpG,Raﬂlol)G,XéR OPG,XI Opc,Ranlol’g,XI

mer

G, x1

Since X7 is smooth, we obtain that Lopres E descends to a canonically defined line bundle £ yr on X'.
&,x

The map Op — X! is a Zariski-locally trivial fibration with ind-pro-affine spaces as fibers.

Moreover, the collection
I~ Lxr

has a natural factorization structure.

Furthermore, by construction, we have

Lxr [‘XéR,AXI,

compatibly with factorization.

Hence, by Sect. 8.5.2, we obtain that the system
(8.17) I— Lopg?)rd
is canonically trivial, compatibly with factorization.

It remains to show that this trivialization descends to a trivialization of the system

(8.18) I— Lopg?;l

dR

8.5.5. Note a priori, the obstruction to triviality is given by a function on Loprge)rd with values in the

pullback of the sheaf of 1-forms on X’; denote this function by axr.

Note that by factorization,
RI
! XI\)O(I ~ay .

Hence, it is enough to show that ax = 0.

8.5.6. We will first show that ax|opr€egx is trivial.

g

Recall that the factorization scheme Op® is counital (see Sect. C.6.15 for what this means). In

particular, there exist canonical projections
pi Opgff”‘x2 — Oprée’gx, i=1,2
covering the two projections p; : X% — X.
We claim that

ax2 = pi(ax) + ps(ax).

o
Indeed, the equality takes place over X2, by factorization, and hence over the entire X2 by density.
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8.5.7. Recall now that Opg™ has a unital-in-correspondences structure relative to Opg® (see

Sect. C.10.6 for what this means). We claim that the connection forms a; are compatible w1th this
structure in the following sense:

For an injection of finite sets ¢ : I; — 12, let
Ovfr, " o T o
be the correspondence covering
n A¢ I, id
X x2S xl2
We claim that
(0} * Op\ *
(8.19) (Proman)” (@xn) = (Prbil;) (axr).
Indeed, write I = I; U J, and let
(X" x XMy € X x X7
j
be the corresponding open subset.
It suffices that the equality (8.19) takes place over

I J
O perres X (X Ix X )disj-
x12

G xX¢
We have
(8.20) Opgys ® X (X x XT)aig = (Opgxn X OPgh,)  x (X x X )aig
xI xTixxJ
and

OpExr X (X x X7)aig) = (OPExn x OpExs) % (X" x X7 )ais,
’ x12 ’ ’ xTixxJ
where the map pr | identifies with projection on the first factor in (8.20), and the map prboifg’ is the

inclusion

smal

mer

OpG s OPG’XJ
along the second factor.

By factorization, we obtain that

o
(prbf;) “(ax) |opgf‘;;r°g xxfz (XTEx X T) i

equals the sum of (proP )*(ayr, ) and the pullback of axr|opres , along the projection of (8.20) on
a.x
the second factor.

However, the latter is zero by Sect. 8.5.6.

8.5.8. We are now ready to show that ax = 0. In doing so we will mimic the argument in [BD2,
Proposition 3.4.7].

Write Q% as
wx XOx ®0x Kwx.

We will show that the restriction of ax2 to

mer mer

OpGX_X >< OpGx27

mer

viewed as a function on Opx®; with values in the pullback of Q} Y2, takes values both in the pullback
of wx X Ox and in the pullback of Ox Kwx. This would implies that this restriction is 0, and hence
also that ax = 0.

We will in fact show that the restriction of ay2 to

(8:21) (X*)" x Opgika
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is 0, where (X?)" is the formal completion of the diagonal in X?.

8.5.9.
wx & OX.

Consider the inclusion I; := {1} & {1,2} := I, and the corresponding map

Op
prbA
mer~sreg 1 mer
Opc‘;,x¢ — Opé xe2-
This map is an isomorphism over X C X2, and hence, induces an isomorphism

2\ A mer~»reg ™~ 2\A mer
(X7) % Opgye = = (X7) % Opg x2-

By symmetry, it suffices to show that the restriction of ax2 to takes values in the pullback of

Hence, it is enough to prove that the pullback of ax2 along target takes values in the pullback of

wx W Ox. However, this has been established in Sect. 8.5.7.

O[Theorem 8.4.5]

8.6. Proof of Theorem 8.1.4. By a slight abuse of notation we will use the symbol FLEg crit for the

functor (6.6).

8.6.1. Consider the following diagram

TGo(FLEG crit)
\2 5
(KL(Ferit, p(w ) —_—

lN

®
IndCoh!' (oprcger)

lN

] - P
(1ndCon' (Opigon-free) Whit! (§-m0derit p(wy)))

(1d @7 oDSOnbrEnd )V

! £ SN
(IndCoh’ (Op’é’on free) Whit s (Q'mO(lcrit,p(wX ) Nnv

®

IndCoh! (Opfer
ndCoh! (Opier)
(IndCoh' (Opgon-“ee), Whit 4 (§-mod

(IndCoh' (o;%‘or'-ffee), Whit! (§-mod

¢yo(DSenh xind )V
\%
FunCtIndCOh! (Oprcf‘cr) crit,p(wx )) ) Funct

Funct Funct

IndCoh!(Opg‘er) crit,p(wx)))

~]OWhit(G-modyyiy p(w )

Dgenh,rfnd
_

Funct mer) (IndCoh' (o;fé?omfmc), Whit (§-mod Funct
G

~]

KL(Gerit,p(wx )

IndCoh' (Op crit,p(wx))) IndCoh'(Op
FLEG crit
—_—T

in which the upper vertical arrows are the duals of

IdCo' (OpE™ ™) @ Whit!Gmoda pan) 2 KL(Gatpto)
IndCoh!(Opgcr)
and
IndCoh' (OpZ°™ree) ® IndCoh* (OpE°) — IndCoh™ (OpZ°™ ),
IndCoh! (OpeT)
respectively.

We will show:

o The left vertical composition is the identification (8.1);
e The right vertical composition is the identification (8.2);
e All inner squares commute.

(IndCon! (Opgon-free)

IndCoh! (opzer)

IndCoh! (opger)

IndCoh* (Opfgon-free)V

lN

® 1ndCoh*(0pger))V
Indcoh!(oprczlef)

(IndCoh' (Op‘gon-fme), IndCoh™ (0p°")Y)
(IndCoh! (oPg‘O“-fme), IndCoh! (0pZeT))

Sopmer |~

mer) (IndCoh' (OPEOH’“CC), IndCohy (Op™ReT))
el

TN

IndCohy (Opg‘m’frCC ),
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This will establish the commutativity of (8.3). The compatibility of this isomorphism with the

actions of
atg,
~

S )
Sphg =~ SphZ™.
is automatic from the construction.

8.6.2. The left vertical composition. We need to establish the commutativity of the following diagram

(KL(G)erit p(wy))’ —  (IndCoh'(Opgen-iree) ® Whit' (§-moderis, p(wy))) "
IndCoh! (OpZ°)

(8.1) l Functy,gcon! (Opmer) (IndCoh' (Op’éwn'fmc)7 Whit' (g-moderic,p(wy)) )
KL(G)Crit,P(wx) I FunCtIndCOh! (OprGf‘CT) (IndCOh! (Opgon_frcc)v Whlt* (ﬁ_mOdcrit,p(wX )))

However, this is just the fact that in the context of Sect. 6.3.1, the dual of the functor (6.9) for C
is the functor (6.10) for C".

8.6.3. The right vertical composition. The identification of the right vertical composition follows from
Sect. 3.7.15.

8.6.4. The top square. Passing to the dual functors, we need to establish the commutativity of

FLEG crit
_

* —free
KL(@)erit, p(w ) IndCoh* (Opgon-free)

TN

Indcm’(opg“‘-“ee) ® Whit! (§-mod
IndCoh! (opzer)

TN

IndCoh! (Opré‘on’fwc) ® Whits (§-moderie p(wy)) IndCoh' (Opgm’frw) ® IndCoh* (OpZ°)).
IndCoh! (Opizer) IndCoh! (Opi2er)

crit,p(wx)) T~
I1d @Dgenh,rind
_1d @Dsen g,

However, this is the content of Proposition 6.3.5.
8.6.5. The 2nd square from the top. This square commutes tautologically.
8.6.6. The bottom square. The commutation follows from the definition of the functor FLEg crit.

8.6.7. TFinally, it remains to show that the 3rd square from the top commutes.?®

However, the required commutation is given by Theorem 8.4.5.
O[Theorem 8.1.4]

35This is the only non-tautological point in the proof.
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Part II: Local-to-global constructions

9. THE COEFFICIENT AND POINCARE FUNCTOR(S)

This section begins by introducing our main object of study: the critically twisted category of
D-modules on Bung. In this section we will mostly think of its incarnation as D—mod%(Bung), see
Remark 1.1.13, as the main characters in this section are sheaf-theoretic in nature.

The focus of this section is Poincaré and Whattaker coefficient functors. In fact, there are two
Poincaré functors

Poincg, : VVhit!(G)R.C,m — D—mod%(Bunc) and Poincg,« : Whit. (G)ran — D—mod%m(Bung)7

where D-mod 1 (Bung) is the dual category of D-mod 1 (Bung). These two functors are Verdier-

,Co
conjugate: the dual functor of Poincg,. is isomorphic to the right adjoint of Poincg,; this is the
functor

coeffg : D—mod% (Bung) — Whit'(G)ran.
One can also give a global interpretation of the above functors, where instead of the affine Grass-
mannian, one uses the twisted Drinfeld compactification
Buny ywy) — Bung .

This is how the global geometric Whittaker model had been mostly approached so far (see, e.g., [Gal]).
The two approaches are, however, equivalent (see [Ga6]).

For the purposes of this paper, we will only explicitly need the global interpretation of the vacuum
cases of the above functors, see Sect. 9.6.

9.1. Twisted D-modules on Bung.

9.1.1. Let detpun, be the determinant line bundle on Bung, normalized so that it sends a G-bundle
Pa to

®—1
det (N(X, g7¢)) @ det (T(X,30p))

where P is the trivial bundle.

9.1.2. Note that we have

71'* (detBunG) ~ detGl‘G,Ran ’

where 7 denotes the projection

(9.1) GrG,Ran — Bung .

9.1.3. Note also that up to the (constant) line det (F(X7 99»%))7 the line bundle detpun, identifies

with the canonical line bundle on Bung.
9.1.4. Let crit be half of the de Rham twisting defined by detpun,, i.e.,
1
crit = 3 dlog(detBung)-

We will denote by
D-moderit (Bung)

the corresponding category of twisted D-modules.

Note that by Sect. 9.1.3, the critical twisting on Bung is canonically isomorphic to the half-canonical
twisting.
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9.1.5. As in Sect. 1.1.11, we obtain a canonical identification
(9.2) D—mod% (Bung) 5 D-moderis (Bung),
where D—mod% (Bung) is the short-hand for

D-mod 4 (Gre),

detgung

cf. Sect. 1.1.6.

1
Remark 9.1.6. According to [BD1, Sect. 4], the choice of w?z gives rise to a choice of the square root of
detBung as a line bundle. This allows us to identify D-modcis(Bung) (or equivalently D-mod 1 (Bung))

with the untwisted category D-mod(Bung).
However, we will avoid using this identification.
9.1.7. Pullback along 7« defines functors
T D-moderit (Bung) — D-moderis (Gre,ran)

and
o D—mod% (Bung) — D—mod% (Grg,ran),

so that the diagram
D-mod%(GrG,Ran) ——— D-modcrit (Gra,ran)

! !
™ ™

D—mod% (Bung) ——— D-modeit(Bung)

commutes.
9.2. Restricting to (twists of) Buny.

9.2.1. Let Pr be any T-bundle. Consider the stack
(9.3) Buny,p, ~ Bung X pt,

Bunp
where pt — Bunr is the point Pr.

Denote by p the map
Buny,p, — Bung.
Note that the pullback of detsun, along this map is canonically constant. Denote the resulting line by
[GaN’.PT I

see [GLC1, Sect. 1.3.1].

9.2.2. Note that on the one hand, we obtain an identification

(9.4) D_mOd%-dlog( y(Bunw,»r.) = D-mod(Buny,»,),

G.Np,.
since the dlog map over pt is trivial.

On the other hand, recall (see [GLC1, Proposition 1.3.3]) that the line bundle lg n,,  admits a
canonical square root, to be denoted [g%nyT' Hence, we obtain another identification

(1.2)
(9.5) D—modédlog([c Ny )(BunN;yT) ~ D—mod[% (Bunn,p,) ~ D-mod(Buny,p;.).
T G.\Ny,,

1
The discrepancy between the two trivializations is given by tensoring by the line [g ZNP .
’ T
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9.2.3. We will denote by pLy;;, the functor

D-modcrit (Bung) — D—mod%‘dlog@etmnc ‘BunN,UvT>(BunN’TT) = D-mOd%'dlog([G,NTT)(BunN’(PT) —
6y D-mod(Buny,p,.).

We will denote by p' the functor

D-moderit (Bung) — D—mod%‘dlog(detBunG ‘BunN,ng)(BunN’TT) = D_mOd%»dlog(lcnypT)(BunN,:PT) —
(9.5

©3) D-mod(Buny,p,.).

Thus, we obtain a commutative diagram

1
®1G 3y
D-mod(Buny,p,.) -7 D-mod(Buny,p,.)

(96) p!T Tpérit

D-mod% (Bung) &) D-moderit (Bung).

9.2.4. In this section we will take Pr := p(wx). Consider the corresponding line

o1
(9.7) len

plwx)’

In this case, (9.6) reads as

T
G N,
D-mod(Buny, (wy)) LX), D-mod(Buny, p(uy))

(9.8) "!T Tpi:rit

D-mod% (Bung) 8.2) D-moderit (Bung).

9.3. The coefficient functor. In this subsection we will recall the definition of the functor of Whit-
taker coefficient(s).

9.3.1. Consider the p(wx )-twisted version of the map (9.1)

Gra,p(wx),Ran — Bung.

1
Due to the trivialization of the uz-gerbe [ (wxy? W have
Nowx

)
*(Jet2 3
7 (detf ) detGrc,p<wX)
as pa-gerbes on Grg, p(wy),Ran-
Hence, 7 gives rise to a well-defined functor

!
T D-mod% (Bung) — D-mod% (Gre,p(wx),Ran)-
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9.3.2. In this subsection we will the functor of Whittaker coefficient(s), denoted coeff, which maps
D-mod (Bung) — Whit' (G)ran-
and is defined as follows.
To simplify the notation, we will work over a fixed point £ € Ran. So we need to define the functor
coeffg 5 : D—mod% (Bung) — Whit'(GQ)s.

Denote by
e+ GIG,p(wy),z — Bung

the restriction of 7 along
(9.9) Gre,pwx)e — Gra,p(wy),Ran-
9.3.3. Write £(IV) (wy),z s a filtered union of subschemes N. For every «, consider the functor
AvIVT) D—mod% (Gra,pwyx)z) — D—mod% (GrG,p(wX)&)NQ’X — D-mod% (Gre,pwx),e)-
For N C N a/, we have a canonically defined natural transformation
(9.10) AvﬁNa/’X) — Ay
We have the following (elementary) observation:
Lemma 9.3.4. The natural transformation
AvﬁNa/’X) o, — AvﬁNa’X) omh,
induced by (9.10), is an isomorphism when N¢ is large enough.

Proof. Let
Sect(X — 2, Ny(wy)) C Sect(X — z,Gpwy))
be the group ind-schemes of sections of
Nowx) C Go(wx)
over X — z. Laurent expansion defines maps

Sect(X -z, NP(WX)) — Q(N)P(wx)& and Sect(X —x, GP(WX)) — Q(G)p(wX)@,

Note that the restriction of x to Sect(X — z, N, ) is trivial.
For F € D-mod% (Bung), the pullback
() € D-mod 3 (Cre, () z)
is Sect(X — z, Gp(wy))-equivariant, and hence Sect(X — z, N,(w))-equivariant.
Hence, the map in the lemma is an isomorphism any time

(9.11) N Sect(X —z, NP(“JX)) = £(N)P(WX)7£‘

9.3.5. By Lemma 9.10, for N® large enough, the functor
(9.12) AvVT0 071';
does not depend on the choice of N*. In particular, its essential image is contained in

Ar]l D-mod%(GrG,p(wX)i)Na’X = D-mod%(Grap(wx)&)E(N)p(wx)@’x = Whit'(@),.

Thus, we let coeffe , be the functor (9.12) for N* large enough.
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9.3.6. By construction, the functor coeff¢,, is compatible with the action of Sphg, , .
When working over the Ran space, we consider the functor, to be denoted coeff¢ ran,
coeff¢ ® Id

D-mod% (Bung xRan) ~ D-mod% (Bung) ® D-mod(Ran) =

!

s Whit(G)ran @ D-mod(Ran) % Whit' (@) ran.
This functor is compatible with the natural action of Sphg r,, on the two sides.
9.3.7. We let
coeffg : D—mod% (Bung) — Whit' (G)ran

denote the composition

w coeff an o
D—mod% (Bung) 14 @egan D-mod% (Bung xRan)  —"" Whit'(G)ran.

9.3.8. The functors coeff ; have the following property:
For z C z’ consider the natural embedding
inclycar : Gra pwx).e = Gra,pwx).a’-

The functor (incl,c,s)' maps Whit(G),» — Whit(G)., and we have

(9.13) coeffg o ~ ind;gy ocoeffg 4 .

The isomorphism (9.13) expresses the unital structure on the functor coeffg, to be discussed in
Sect. 11.

9.3.9. Let
coeff & D-mod (Bung) — Vect

denote the composition of coeff¢ , with the functor
Whit' (G), < D-mod 1 (Gra p(uy),z) = Vect,
where the second arrow is the functor of !-fiber at the unit point.
By (9.13), the above definition of coeff*® is canonically independent of the choice of z.

Equivalently, coeff* is the unique functor D-mod 1 (Bung) — Vect so that the diagram commutes

<1GrG,p(wX),Ran).

Whit'(@)ran — D-mod%(GrG,p(wX)Ran) —— " D-mod(Ran)

Vac
coeff &

D—mod% (Bung) Vect .

(In the above diagram the right vertical arrow is the !-pullback along Ran — pt, which is fully faithful
by the contractibility of the Ran space.)

9.3.10. As in Remark 1.3.10, both the category Whit!(G)Ran and the functor coeffg are canonically
independent of the choice of a non-degenerate character xo : N — G,.

9.4. The !-Poincaré functor.
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9.4.1. We start again by working with a fixed x € Ran. We claim:
Proposition 9.4.2. The functor coeffq o admits a left adjoint, to be denoted Poincg, z.

Remark 9.4.3. In fact, as we work over a fixed point £ € Ran, all objects in VVhit!(G)£ are ind-
holonomic, which implies the assertion of the proposition. Below we give a different argument, which
works also when z is allowed to move in families over Ran, see Sect. 9.4.6.

Proof of Proposition 9.4.2. Consider the partially defined>® functor

(mz)r : D-mod1 (Gra p(wy),z) — D-mod%(Bung),

1
3
left adjoint to 77[£ .

The assertion of the proposition is equivalent to the fact that (mz): is defined on V\/hit!(G)R-(m —
D—mod% (GrG,p(wX),g)-

First, it is easy to see that if (7 ): is defined on some object F € D-mod% (Gre,p(wy),z) and 8 is an
object of Sphg, ,, then (72): is defined on 8§ x F, and in fact

(o) (8% F) = 8% (o) ().

This follows from the properness of the convolution diagram that defines the Sphg ,-action on
D—mod% (GrG,p(wX)yg) and D—mod% (Bung).

Next, we observe that (7z): is defined on the vacuum object

Vacwhit!(6),z € VVhit!(G)£ C D—mod% (Gra,p(wx).m)-

Indeed, this follows from the fact that Vacypit(g),, i ind-holonomic, and the !-direct image functor is
defined on holonomic D-modules.

Finally, we claim that any object of VVhit!(G)£ can be obtained as a convolution of an object of
Sphg , with Vacywpiy(gy,.- In fact, by Remark 1.7.8, the functor

—* Vi

Sat™v aCWhit! (G),z

Rep(G)s —— Sph, Whit' (G),

is an equivalence.
d

9.4.4. The above proof shows that the functor Poincg, ;. is also compatible with the action of Sphg, .
Note, however, that this also follows a priori from the compatibility of coeff¢ . with Sphg ,-actions
and the observation that Sph, , is rigid as a monoidal category.?”
9.4.5. For a pair of points z,z’ of Ran with & C 2/, let
ins. vacycy @ Whit(G)z — Whit(G),/
be the functor left adjoint to
(inclycyr)' s Whit(G),r — Whit(G),.
Explicitly, if 2’ = z U 2", so that
Whit(G), >~ Whit(G), ® Whit(G),,
then
ins. vacycyr > Id ® Vacwh! ¢,z -

By adjunction, from (9.13), we obtain:

9.14 Poincg 1 .7 oins. vac,c, ~ Poincg.i o .
G,z zCx’ 4

36The issue here is that the “lower-1” functors are not necessarily defined on non-holonomic objects.

37In fact, this was implicitly used in the proof of Proposition 9.4.2: the properness of the convolution diagram is
the reason for the rigidity of Sphg .
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In Sect. 11.3.7 we will formulate a version of this isomorphism when the points 2 and z’ move in
families over the Ran space.

9.4.6. By the same token, the functor
coeff¢ Rran : D—mod% (Bung xRan) — Whit'(@)ran
admits a left adjoint, to be denoted
Poince,i ran : Whit' (G)ran — D-mod; (Bung xRan).

The functor Poincg,,ran is compatible with the actions of Sphg g,, on the two sides.
9.4.7. The functor
coeffg : D—mod% (Bung) — Whit' (G)Ran
admits a left adjoint, to be denoted
Poincg,i : Whit' (G)ran — D-mod (Bung),
and given by restricting the partially defined functor

(

Tz
D—mod% (GYG,p(wX),Ran) — D—mod% (Bunc)

to
Whit!(G)Ran — D—mod% (GrG,p(wX),Ran)~

Explicitly, the Poince, identifies with the composition

Poin I, Ran
Whit' (G)ran oniGLR D—mod% (Bung xRan) — D—mod% (Bung),
where the second arrow is the functor of !-direct image.

The functor Poincg,,z is obtained from Poincg, by restriction along (9.9).

9.4.8. It follows formally from Sect. 9.3.9 that the object
Poince, e (Lwhit! (6),0) € D-mod% (Bung)

is canonically independent of the choice of x.

We will denote it by

Poincgf € D-mod (Bung).
We also have
Poincg = Poinca, (Vacyy,! (G),Ran)>
where
Vacwuit! (¢),Ran € Whit'(G)ran

is the factorization unit spread over the Ran space.

9.4.9. As we saw in the proof of Proposition 9.4.2, we can recover the functor Poincg,, from the

object Poinc‘éﬁ’f using the Hecke action.

By adjunction, we obtain that the functor coeff¢ , can be uniquely recovered from the knowledge
of coeff> and the action of Rep(G). on D—mod% (Bung) via

Rep(G)e Sin%v Sphg -

The same applies to the functors (Poincg gan, coeff& fan).-

9.5. The *-Poincaré functor.
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9.5.1. Recall that along with the category D-mod(Bung), one can consider its version D-modc,(Bung),
and similarly for gerbe-twisted versions D-modg(Bung).

In the untwisted case, we have the identification
(D-mod(Bung))" ~ D-modco(Bung).
In the twisted case, this becomes

(9.15) (D-modg(Bung))” ~ D-modge-1 ., (Bung).

1
For § = detg,, ., the identification (9.15) becomes a self-duality
(9.16) (D—mod% (Bung))" ~ D-mod (Bung).

9.5.2. Let
Poincg,« : Whit (G)ran — D—mod%YCO(Bunc)
be the functor dual to coeffq.

Let
Poincg,«,z : Whits(G)g — D—mod%’co(Bunc)

be the functor dual to coeffg . It is easy to see that the functor Poincg « 4 is obtained from Poincg, «
by restriction along (9.9).

The functor Poincg, s is also compatible with the action of Sphg .

9.5.3. Let

Poincgs € D-mod; ,(Bung)

be the image under Poincg,« z of the factorization unit
Twhit, (¢),c € Whits (G)z
at some/any z € Ran or, equivalently, of
Lwhit, (¢),Ran € Whit.(G)Ran
under Poincg, .
Vac

By definition, the pairing with Poincg?, viewed as a functor
D-mod% (Bung) — Vect,
is the functor coeff&*.
9.5.4. The functor Poincg,«,, can be explicitly described as follows. For N as in Sect. 9.3.3, consider
the composition

AviNa’X) (7g)*

D—mod%(Grgyp(wX),i) — D-mod%(GrG’p(wX)&) = D-mod%,O(Bung).

C
For N* C N 0‘/, we have a canonically defined natural transformation

(9.17) ()« 0 AV ) 5 (,)u 0 AvINT
and it follows from Lemma 9.3.4 that the maps (9.17) are isomorphisms for N large enough.

It follows formally that the resulting functor (7g)« o Av (VT

D—mod% (Grgyp(wx)@) — D—mod%’co(Bung),

for some/any « that is large enough, factors via the projection

D-mod (Gre,pwx)m) — (D—mod% (Grg’p(u,x%g)) — D—mod%,CO(BunG).

LN p(wx)zoX

The resulting functor

Whit, (G)e = (D—mod% (Grc,p(wx),;)) — D—modéwo(Bung)

LN p(wx)@X
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is the functor Poincg, ..
9.6. Coefficient and Poincaré functors: global interpretation.

9.6.1. Consider the stack Buny ;) and the map
p: Buny ,wy) — Bung.
Recall the functor
(9.18) p! : D—mod% (Bung) — D-mod(Buny, pwy)),
see Sect. 9.2.4.

9.6.2. The character x has a global counterpart, which is a map
yEoP Buny pwy) = Ga-
Namely, it is the composition
Buny (wy) = Buny/vx]pwy) = I Bung,), 11 H' (X, wx) ~ 11 Ga 2 G,

where:
e (Ga)wy is the twist of the constant group-scheme with fiber G, using the G,-action on G,
and the line bundle wx, viewed as a Gm—torsor38;

e Bung, — H'(X,wx) is the map that records the class of a torsor.

Jox

9.6.3. We let
coeff ;2P D—mod%(BunG) — Vect

denote the functor

Car (Buny p(ey)s—)
=4

! _ &/ globyx <
D—mod% (Bung) % D-mod(Buny ,(.)) SO (o) D-mod(Buny p(wy)) Vect .
9.6.4. Let
Poinc\G/‘""f’gIOb € D-mod (Bung)
be the object
pro (X¥°°)* (exp).
L.e., the functor
Vect — D-mod (Bung), k— Poinc\G/‘f‘f’gIOb
is the left adjoint of coeff ;2P
Let
Poinc/ 0" € D-mod} ., (Bung)

be the object
ps o (X*°")" (exp).

9.6.5. Denote
6Np(wx) = dim(Buny,pwy))-
We have
pVerdier (Poinc\éa!f’gbb) = Poinc\éa’:’gl‘)b [26Nﬂ(wx St
where DVer4eT i the usual Verdier dualization functor

(D—mod% (Bung)“)? — (D—mod%’CO(Bung))c.
In other words, the object Poinc‘éﬁ‘:’gbb 20N, )], viewed as a functor

Vect — D—mod%m(Bung)7
is the dual of coeff\éac’gk’b.

38Le., it is the total space of wx as a line bundle.
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9.6.6. We claim:
Lemma 9.6.7.

(i) coeff P8P ~ coeff ¥ 20N, )]

.. . Vac.glob .
(ii) Poincg'y®*” =~ Poinc [—20n

p(Wx)]’.

Vac

Vacglob  Poinee.
,

(iii) Poincg’;
Proof. The three statements are logically equivalent. We will prove point (iii).
Pick z € Ran, and consider the map
Na/gjL (N)P(‘UX)7£ - ’Q(N)p(u-)x),&/’SJr (N)p(WX),z
for N* D £7(N) p(wy) e as in Sect. 9.3.3.

Vac,glob .

act on the unit
—

By definition, the object Poinc™; is the direct image along this map of (XD\T‘)‘/S*(N) o)
s plwx),z

where:

e By a slight abuse of notation, we regard x as a map £(N)pwy).z/L" (V) pwx)z = Gas

e The index « is taken to be large enough so that (9.11) holds.
Note that, however, the map
Q(N)p(wx),£/£+ (V) pwx),z

act on the unit
—

GIG, p(wy ),z — Bung
factors as
SN )z/ LT (N)purs )z = Buny,p(uy) — Bung .
Hence, it suffices to show that if (9.11) holds, then
globyx(

(9.19) (ﬂ-N,/J(wx)|NQ/2+(N)9(MX)’£)* © (X|7\rQ/2+(N),,(uX)’I(eXP) =~ (x exp).

Note that the map
X: S(N)p(wx),z/SJr(N)p(wx)@ — Ga
identifies with
n TN p(wx) yslob
L(N)pwx)z/L (Npwxre = Bunpwy) "= Ga.
This implies (9.19) by the projection formula, since if (9.11) holds, the map
TN p(wx) [No /84 (V) oy N/ (N) plux)e = BUNN ooy
is smooth with homologically contractible fibers; in fact, fibers are isomorphic to

N® N Sect(X — z, Np(wx))-

10. THE LOCALIZATION FUNCTOR

A fundamental insight of Beilinson-Drinfeld in [BD1] is that the localization functor
(10.1) Locg,x : KL(G)k,Ran — D-mod, (Bung).

may be used as a key local-to-global tool in geometric Langlands theory.

There are multiple (equivalent) ways to set this up, and in this section we will describe one of them.?

Grg,p(wx),z = Bung

(exp),

9

For the sake of completeness we will define Locg, . for any level k. We will specialize to the critical

value of k starting from Sect. 14.

10.1. The de Rham twisting on Bung corresponding to a level. In this subsection we will show

how a level k gives rise to a de Rham twisting 78'°® on Bung.

39The reader who is willing to take the existence of Locg, . and its basic properties of faith may choose to skip

directly to Sect. 12.
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10.1.1. TLet £(G)" denote the formal completion of £(G) along £ (G), viewed as a factorization group
ind-scheme.

Note that a level x may be thought of as a central extension of £(G)" equipped with a splitting

over £7(@). Equivalently, we can think of it as a factorization line bundle L£1°¢ on the groupoid

—
loc,A ploc:A

n o loc, A n
pt /£7(G) "<+ Heckeg - pt/L£7(G),
compatible with the groupoid structure, where:
e Heckel is the local Hecke stack, i.e., £7(G)\L(G)/£T(Q), viewed as a groupoid on pt /£1(G);

loc

e Hecke®” is the formal completion of Heckel2® along the unit section pt /£ (G) — Heckel2®.

10.1.2. Let
4 glob lob 7, glob
Bung xRan "« Heckeé,Ran — Bung xRan
be the global Hecke groupoid, and let Hecke‘g?Rb;}?) denote its formal completion along the unit section

glob
Bung xRan — Hecke¢ g, -

Note that we have a map of groupoids

% glob lob Zglob
Bung xRan  <——— HeckegR,, —— Bung xRan

(102) CVRanJ/ CVRanl lCVRan

<Eloc 7:100
(pt /£+(G))Ran — HeCkelg,CRan I (pt /£+(G))Ran7
in which both squares are Cartesian, where we denote by evgran the “global-to-local” map given by
retsriction to the parameterized multi-disc.
Taking the formal completion along the unit sections yields the diagram

Zglob,/\ lob.A ﬁglob,/\
Bung xRan <——— Hecke}, ) ——— Bung xRan

(10.3) eVR.dnl eVR.‘ml leVRan

(}:loc,/\ oc 7{100,/\
(pt /&1 (@))Ran ——— Heckelcyl"gn ——— (pt /L1 (@))ran-
10.1.3. The pullback of the line bundle L}f"ﬁan on Heckegfﬁgn along evgan gives rise to a line bundle,
to be denoted Li{ﬁ;n, on Heckegf}?;ﬁ) that is multiplicative with respect to the groupoid structure.

Consider the prestack quotient

(Bung xRan)/ Heckelcoff{gn .

The datum of Li{%};n is equivalent to that of a O*-gerbe on (Bung xRan)/ Heckelcofégn, to be denoted
Séie;:e, equipped with a trivialization of its pullback to Bung xRan.

10.1.4. Note now that we have a tautological map
(Bung XRan)/HeckeIGO,Cﬁgn — (Bung)ar X Ran.
Consider the composite map
(10.4) (Bung XRan)/Heckelg}’{gn — (Bung)ar
We have the following fundamental assertion (see [Ro2, Theorem 4.5.3)):
Theorem 10.1.5. The functor of pullback along (10.4) on IndCoh(—) is fully faithful.
Corollary 10.1.6. The functor of pullback along (10.4) is fully faithful on*® Perf(—).

40For a prestack Y, we denote by Perf(Y) the category of dualizable objects in QCoh(Y), i.e., the objects whose
pullback to any affine scheme is perfect.
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10.1.7. The construction of the twising T, on Bung corresponding to x is provided by the following
assertion:

Corollary 10.1.8. There exists a uniquely defined de Rham twisting T8°® on Bung, such that:

o The pullback of the underlying 0> -gerbe G&8°° on (Bung)ar along (10.4) identifies with g/ Hecke,

x,Ran 7
L. . glob . . . T . / Hecke
o The trivialization of 38°°|Bung is compatible with the trivialization of G/ 5., |Bung xRan-

Proof. According to [GaRo2, Sect. 6.3], using the exponential isomorphism
(Ga)" =F (Gm)",

we can think of a twisting on a prestack Y as a point in Maps(Qy,p, Oy, [2]) equipped with a trivial-
ization of its pullback to Y.

/ Hecke

x.Ran s a point of

By the same logic, we can think of §

Maps(O loc,n [2])

(Bung xRan)/ Heckel9%/ O(Bung xRan)/ Hecke %,

G,Ran

equipped with a trivialization of its pullback to Bung xRan.

The assertion of the corollary follows now from Corollary 10.1.6, combined with the fact that the
functor
Vect — QCoh(Ran), k& Oran

is fully faithful.

10.1.9. In what follows we will denote the category of T8°P-twisted D-modules on Bung by
D-mod. (Bung).
10.1.10. Take k = 2 - crit. We claim:
Proposition 10.1.11. The resulting twisting Ta.c;it on Bung identifies canonically with dlog(detsung )-

Remark 10.1.12. This proposition implies that our notations for D-modcrit(Bung) (see Sect. 9.1.4) are
consistent.

glob
LQ-Cfit,Ran
loc

Heckelé’f};fan identifies with the restriction of the multiplicative line bundle on Heckeg R,y given by

Proof. Unwinding the construction, we need to show that the multiplicative line bundle on

—

<« 1
h*(detBunG) [024] h*(detBung)®7 .

Recall that that the multiplicative line bundle £X¢.;, on Heckeléc’A is itself obtained as the restriction
of the inverse of the Tate line bundle £XS . on Heckel®, constructed as follows:

The line bundle £, associates to a pair of G-bundles P& and P% on D, equipped with an identi-
fication
the relative determinant of the two lattices

F(‘D£7 g’J’é) C F(‘D;ag?é) = F('D;, g(PZG) ) F(D£7 gT?;)7

ie.,
(10.5) det(D(Da, gy )/L) @ det(T(Dsr, gy, ) /L)~
for some/any lattice L contained in both.

Given a pair of G-bundles P% and P% on X equipped with an identification

fPlGl—X*E s Té‘X*£7
— «— .

the fiber of h*(detBung) ® h*(detBung)® " at the corresponding point of HeckeRay is given by
(10.6) det(D(X, gg2,)) © det(I'(X, g1, ) ¥ 7"
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We claim that the lines (10.5) and (10.6) are indeed canonically inverse to one another.

Indeed, we can rewrite (10.5) as

det (Fib (F(Dg, g51) ® g™ — gmer)) ® det (Fib (F(Dg, gg2) ® g™ — gm”))®_1 ,
where:
o I(Dg,gp) = g™ :=T(Dg, 052, );
o I(X —z,g5,) = g°" :=T(X — 2,952 ).
However,
Fib (1(Dz, g) © 8 = 8™ = T(X, g5y
O
10.2. The functor I'¢. Our approach to the construction of the localization functor is by defining it
as the left adjoint of the functor I'¢ of global sections (not quite literally, though, see Sect. 10.3).
In this subsection we introduce the functor I'g.
To simplify the notation, for most of this subsection we fix a point z € Ran.

10.2.1. For an integer n, consider the stack Bunlg’eﬂ"'E of G-bundles with structure of level n at x.

Consider the corresponding category

leve1".£)
)

D-modg,co (Bung
see [Rab, Sect. 1.4.25].
We endow it with the forgetful functor
(10.7) obIvy™ : D-mod, o (Bung, *'" %) — QCoh,, (Bung *"%),

which is the composition with the usual left forgetful functor

levely. o levely. o

oblv!, : D-modxk,co(Bung ) = QCoh,, (Bun )
(see Corollary A.1.16), followed by the cohomological shift [2n dim(g)].

Note that for n1 < n2, we have a commutative diagram

l,ren
levelng .z oblv

D-mody,co(Bung ) QCoh,, (Bunlg;vel"2 “)

I I

levely .o Oblvkmn levely, .o
D-modg,co (Bung “) QCoh,, (Bung “),
where:

e The left vertical arrow is the functor of *-pullback on twisted D-modules;
e The right vertical arrow is the functor of *-pullback on QCoh,.

Note that by definition, for n = 0, we have oblvi™® = oblv’.

10.2.2. Consider the stack (in fact, a scheme)

levely levely. .o

Bung = lim Bung
of G-bundles with full level structure at z.

Define
levely levely. .z
),

D-modg,co(Bung  *) := colim D-modx,co(Bung

where the colimit is formed using the *-pullback functors

levelnl.£ leveln2.£)
)

D-mod, (Bung ) = D-mod, (Bung na > ni.
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The functors (10.7) combine to a functor
levely levely

oblvy™ : D-mody co(Bung **) — QCoh,, (Bung; “=).

1 1
el ),

Consider the composite functor, to be denoted I';"™" (Bung,

0b1vf€“‘

—  QCoh,, (Bunlceveli)

levely
levely F(BUT‘G =)

10.8 D-mods co(Bun Vect;
( ) ) G 9

level,

10.2.3.  According to [Rab, Sect. 1.4.25], the category D-mods,co(Bun, *) carries a strong action of

levely

£(G), at level k. Furthermore, the functor I';"(Bung, =, —) of (10.8) is weakly £(G)z-equivariant.

level,
eve £’ 7)

Hence, by the universal property of g-mody . (see [Rab, Sect. 1.4.25]), the functor '™ (Bung
upgrades to a functor
F,rf"(Bunlévelﬁ, —)enh D—mod&co(Bunlg’elg) — g-mod,; 4,
strongly compatible with the £(G)z-actions.

levely, 7)cnh

10.2.4. In particular, the functor I';’" (Bun, =, gives rise to a functor, to be denoted I'g x z:

level, \ ST (@ 2+ (G)s
D-mods,co(Bung) ~ (D—mod,ﬁyco(BunG *)) — (g-mods,z) 2 = KL(G)r,z-

10.2.5. By a similar token, letting z vary over the Ran space, we obtain a functor
T'g,x : D-mody co(Bung) — KL(G)x,Ran-
Furthermore, we can consider a D-mod(Ran)-linear functor
¢,k Ran : D-mody co(Bung) ® D-mod(Ran) — KL(G)x,Ran,
so that I'g,. is the composition

I'G,x,Ran

D-mods,co (Bung) 1 Eewgan D-mods co(Bung) ® D-mod(Ran) =" KL(G)x,Ran-
10.2.6. Let us specialize for a moment to the case when x = crit. In this case, both sides of
PG,CI‘it,l : D'mOdcrit,co(BunG) — KL(G)crit,g

are acted on by Sphg ., and it follows from the construction that the functor I'g crit,z is compatible
with these actions.

Similarly, the functor I'g,x,ran is compatible with the action of SthRan.

10.2.7. Note that by construction, we have a commutative diagram

TGk,
D-mody co(Bung) —2%  KL(G)r.e

(10.9) obleJr l"bl"(saﬁ;(c))n
QCoh,(Bung) ——— Rep(£"(G)a),
Téme

where Fg(ff;‘ is the functor of pushforward along

ev, : Bung — pt /£7(G)..
Remark 10.2.8. Note that Rep(£7(G);) is the renormalized version of QCoh(pt/£1(G)s) (see
Sect. B.14.1); however, this difference is immaterial for the definition of the functongio’}l‘:

We have:
QCoh,, (Bung) ~ CO[l]im QCoh(U),
where:

e The index U runs over the filtered posets of quasi-compact open substacks of Bung;

o For U; <% Us, the transition functor QCoh(U;) — QCoh(U2) is given by (j1,2)«.
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A functor out of QCoh,,(Bung) amounts to a compatible collection of functors out of QCoh(U).
Thus, in order to define

rgel . QCoh,, (Bung) — Rep(£¥(G).),

we need to define the functors

oot . QCoh(U) — Rep(£7(G)y).

Gk,

The sought-for functor Fgc;’ZU are defined as the ind-extension of the functor

QCoh(T)¢ — QCoh(T)” > 25" QCoh(pt /£ (G),)" = =~
=~ Rep(£7(G)a)” > <= Rep(£7(G)a),
where ev,,u denotes the restriction of ev, to U.

10.2.9. Similarly, we have a commutative diagram

F K Lan
D-mody,co(Bung) ® D-mod(Ran) G R KL(G)x Ran
-
(10.10) oblvﬁl °b1"(§+’L<c)(G))”
QCoh,, (Bung) ® D-mod(Ran) v— Rep(£7(G))Ran.
TS, Ran

10.2.10. Let now z and z’ be two points of Ran with £ C 2’. Consider the functor

ins. vacycy  KL(G)r,e = KL(G)x 2/

s L

obtained by inserting the vacuum objects at the points z’ — .
Consider its right adjoint, (ins. vaclgg/)R. Explicitly, the functor (ins. vaclggz)R is given by

1d ®ob1v(?f+<c>)ﬁ
KL(GQ)pp ~ KL(Q)nw @ KL(G) ra/—o 2@

AN (c MW
Id ® inv -z
) —

— KL(G) s,z ® Rep(£1(G)pr_» KL(GQ)r,z-

It follows from the commutation of (10.9) that we have a canonical isomorphism
(10.11) D re = (ins. vacycp ) 0 Tg poar-
This isomorphism expresses the unital structure on the assignment
z ~ g erit,z,

to be discussed in Sect. 11.

10.2.11. In particular, for any z, the functor

@
—  Vect

in

TGk,
D-mod, co(Bung) <5* KL(G) sz

identifies with I'(Bung, oblv}, (-)).

10.3. Localization functor as a left adjoint. As was mentioned previously, we construct the lo-
calization functor Locg . to be essentially the left adjoint of I'¢. However, there is a caveat: this
adjunction takes place over quasi-compact open substacks U C Bung, and we obtain the correspond-
ing functors Locg,.,uv. We then obtain the sought-for functor Locg,. by passing to the limit.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 111

10.3.1. Let
(10.12) U & Bung
be a quasi-compact open substack. Consider the corresponding functor

Jx,co : D-mod, (U) — D-mody, co(Bung).

Denote
I¢rzv =G ke 0 jico, D-mode(U)— KL(G)k,z-
10.3.2. We claim:

Lemma 10.3.3. The functor I'g,.x,z,u admits a left adjoint.

Proof. Since the essential image of

ind &2 (9 Rep(£+(G)) = KL(G) e

generates the target category, it suffices to show that the composite functor
ot
oblv & {0 T mr,  Demodu(U) = Rep(€¥(G)a)
admits a left adjoint.

The above functor identifies with
(evz 0j)« 0 oblv.

In this composition, both arrows admit left adjoints: the left adjoint of oblv!, is ind’, and the left
adjoint of (evg 0j)« is (evg 0j)™.

O

10.3.4. Let us denote the left adjoint in Lemma 10.3.3 by Locg,x,z,U-

For an inclusion between quasi-compact open substacks

J1,2

U1 — Uz,

we have
(jQ)*,co o (jl,Q)* =~ (jl)*,co~

Hence, we obtain a canonical identification
3k
Locg,k,z,uy = J1,2 © LOCG,k,2,U5 -

Therefore, the system of functors
U ~ {Locg,k,z,u

gives rise to a functor
(10.13) Locg, ke : KL(G)x,e — D-mod,.(Bung),
so that for every (10.12), we have

j" oLocg ke ~ Locg,ue,U -

The functor (10.13) is the sought-for localization functor.
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10.3.5. The entire preceding discussion generalizes to the case when z is allowed to move in families
over Ran. In particular, we obtain a functor

Locg,k,Ran : KL(G)k,Ran — D-mod, (Bung xRan).

Let Locg, . denote the composition

LOCG 1, Ran

KL(G)H,Ran

where the second arrow is the functor of !-pushforward.

D-mod, (Bung xRan) — D-mod, (Bung),

Remark 10.3.6. The above construction of the localization functor is essentially equivalent to the one
from [CF, Sect. 4.1].

10.3.7.  Properties of the functor I'¢ ./ ran induce corresponding properties of the functor Locg, «,Ran-
We will now list some of them.

10.3.8. By adjunction, for every quasi-compact open as in (10.12), from diagram (10.9) we obtain a
commutative diagram:
ind!

QCoh(U) — D-mod,(U)

(10.14) i OLOCQC;’“T TLocc,M,u
Rep(£7(G)e) —————— KL(G)ra,

ina(@ et (@Nk
et (@)
where:

LocQCOh Rep(£7(G).) — QCoh(Bung)
is the functor of pullback along ev, : Bung — pt /£ (G),.

Remark 10.3.9. As in Remark 10.2.8, the difference between Rep(£'(G),) and QCoh(pt /£1(G).)

does not play a role in the definition of the functor Locgi"h.

QCoh

Namely, Locg is defined as the ind-extension of

Rep(£+(G)a)° <> QCoh(pt /&7 (G),) 25 QCoh(Bung).

Note also that for a quasi-compact U, the functor

QCoh

Locg .y :=34"o LocQCOh

is the left adjoint of the functor Fgcmoz U

10.3.10. Passing to the limit over (10.12), we obtain a commutative diagram
ind!,
QCoh(Bung) — D-mod. (Bung)

(10.15) Locgi"ﬁ TLOCGM
Rep(£(G)s) —————  KL(G)xa-

ina®; 2 (@) .
et (@)

Similarly, we have
QCoh(Bung) ® D-mod(Ran) & D-mod, (Bung) ® D-mod(Ran)
(10.16) Loe@5et, | [occ.nman
Rep(£7(G))Ran —_— KL(G)x,Ran

ing (@ LT @)k
1nd£+(G)
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and
ind!
QCoh(Bung) d D-mod. (Bung)
(1017) LochOhT TLOCG’K
md(af*(c))n
Rep(£(G))ran ———— KL(G)r,Ran,
where Loc2“°" is the functor of pull-push along

Bung < Bung xRan — (pt /£7(G))ran.
10.3.11. Let now z and z’ be two points of Ran with £ C 2’. Recall the functor

(10.18) ins. vaczca : KL(G)r,e = KL(G) o

For every (10.12), from (10.11) we obtain a canonical isomorphism
(10.19) Locg,n,a’,u 0108, vacycy =~ Loca r,z,U -

Passing to the limit over (10.12), we obtain a canonical isomorphism
(10.20) Locg, e ©1IN8. Vacycyr =~ Loca w,z -

In Sect. 11.3.7 we will formulate a version of (10.20) when the points z and z’ move in families over
the Ran space.

10.3.12. It follows from (10.15) that for any z, we have
Loca,k,z(Vac(G)r,z) = indL(OBu,]G).

Equivalently,
(10.21) Loca,,ran(Vac(G) s ran) = ind’ (Opung ) B wran.
Note that
indfﬁ(OBunG) =~ DBUHG,Hy
where

DBunc,n S D-mod,c (BUHG)
is the D-module of differential operators, viewed a twisted left D-module.
10.3.13. Let us specialize for a moment to the case when k = crit. Then from Sect. 10.2.6 we obtain

that for every U, the functor Locg,xz,u is compatible with the action of Sph ,. Hence, so is the
functor Locg k.

Similarly, the functor Locg, . ran is compatible with the action of SPhG,R,an~

10.3.14. For future reference we note that the entire discussion in this subsection applies to to the
case of an infinite level structure at a given z, € Ran. Le., for a given quasi-compact U C Bung and

UleveIEO =U x Bunlevelgo’
Bung

we can consider the left adjoint

~ level,
Locg,r,zy,u : §-mody z, = D-mod, co(Ug %)

of
leveliO

D(U''20 )™ . Dmody, o (Ug ) = g-mods g, -
The functors Locg,x,z,,u glue to a functor

~ levely
LocG,r,zy,U : 8-mody o, — D-modg,co(Bung “°).

For the Ran space version, one should consider

Rang, := {z,} X Ran®,
Ran
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where:

e Ran® is as in Sect. 11.2.2;

e The fiber product is formed using the map pr : Ran© — Ran.

small

10.4. The fiber of the localization functor.

10.4.1. Fix a k-point P¢ € Bung. The goal of this subsection is to describe the functor

Locg, o,z !-fiberat Pg

(10.22) Locg,k,e —> D-mod(Bung) Vect .

10.4.2. Consider the Lie algebra I'(X — z, gp. ). Laurent expansion defines a map
DX —z,075) = £(976 )z
and recall that the Kac-Moody extension
0=k = Grrae = L(@rs)e = 0
admits a canonical splitting over I'(X — z, gp, ). Hence, we have a well-defined restriction functor
(10.23) g-mody,», .2 — (X — 2, gp, )-mod.

10.4.3. Composing with

KL(G)rx E5™ KL(G)npge — §-mods pe o
we obtain a functor
(10.24) KL(G)ns — T'(X — z, g5, )-mod.

10.4.4. We claim:
Proposition 10.4.5. The functor (10.22) identifies canonically with the composition of (10.24) and

the functor of I'(X — z, gy, )-coinvariants
I'X — z,gp, )-mod — Vect .
Remark 10.4.6. An analog of Proposition 10.4.5 for the localization functor in the finite-dimensional

situation is obvious:

Let b be a (discrete*!) Lie algebra and let Y be a smooth variety equipped with an action of b by
vector fields. Then the corresponding localization functor

Locy,y : h-mod — D-mod(Y),
left adjoint to
I'(Y, oblv!(=))™" : D-mod(Y) — h-mod,
is given by

(10.25) Dy @ —.
U(bh)

If y € Y is a point for which the action map h — T, (Y) is surjective, the composition

| -fiber at y

Loc
hb-mod —'? D-mod(Y) 5" Y Vect
identifies with the functor of coinvariants with respect to
Staby(h) C b.

This follows from the fact that the *-fiber at y of Dy (as an object of QCoh(Y) via left multiplication)
identifies, as a h-module, with

: b
1ndStaby ®) (k).

415 opposed to Tate.
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10.4.7.  One can prove Proposition 10.4.5 directly by emulating the argument in Remark 10.4.6.

In fact, such an assertion is valid for Bunlévelﬁ replaced by a pro-scheme Y equipped with an action

of £(G)2 (the formal completion of £(G), along £1(G),), such that Y/£T(G), is locally of finite type,
and a point y € Y at which the action is infinitesimally transitive, i.e.,

£(g)z = Ty(Y)
is surjective.

We will, however, supply a different argument, specific to the case of Bung, see Sect. 12.2.

10.4.8. As an immediate corollary of Proposition 10.4.5 we obtain:
Corollary 10.4.9. The functor
Locg ke : KL(G)k,2 — D-mod,(Bung)

is right t-ezact, when D-mod, (Bung) is equipped with the left t-structure, i.e., one for which the functor
oblv!, is t-ezact.

Proof. We need to show that the composite functor

Locg k.2 oblv!
KL(G)r,a e D-mod, (Bung) 2Ly QCoh(Bung)

is right t-exact.

In order to prove that, it suffices to show that the composition of the above functor with the functor
of *-fiber at any field-valued point of Bung is right t-exact.

By base change, we can assume that the point in question is rational. In this case, the corresponding
functor identifies with the functor (10.22).
d

Corollary 10.4.10. The functor Locg,x,s annihilates infinitely connective objects (i.e., objects that
belong to (KL(G)k,z)<~" for any n).

Proof. Follows from the fact that the t-structure on D-mod,(Bung) is separated.

10.5. Localization functor as the dual.

10.5.1. Let &’ be the reflected level, i.e.,
Kk = —k+ 2 crit.
We claim that that we have a canonical duality
(10.26) (D-mod, co(Bung))" ~ D-mod, (Bung)
for which the dual of the functor
oblv}, : D-mod, ¢, (Bunc) — QCoh,, (Bunc)

is the functor
ind, : QCoh(Bung) — D-mod, (Bung),

with respect to the identification??

Functeont (QCoh,, (Bung), Vect) ~ QCoh(Bung).

42We warn the reader that the category QCoh(Bung) is not dualizable.
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10.5.2. Indeed, we start with the identification
(D-mod, co(Bung))" ~ D-mod_ ./ (Bung),
given by Verdier duality, and compose it with the functor

®KBun
(10.27) D-mod_, (Bung) —3¢ D-mod_ ./ { diog(Kp ) (BUnG) = D-mod_ 1 5.crit (Bung) =

= D-mod, (Bung) [dimﬂnc)] D-mod, (Bung),

where:

e KBung is the canonical line bundle on Bung, so that Kpung [dim(Bung)] ~ wung;

e We have used the identification dlog(KBung,) = dlog(detBung) = 2 - crit from Sect. 9.1.3.
10.5.3.  We have the following assertion:
Proposition 10.5.4. With respect to the identifications (10.26) and
(10.28) (KL(@)rz)" ~ KL(G) s 2
of (2.2), the functor

Locg ke : KL(G)x,z — D-mod.(Bung)
identifies canonically with the dual of
Ia.wz : D-mod,s co(Bung) — KL(G) ./ 4.

The induced identification

~ + ] + ’
@2 (D o (1,0 0)Y o (oblv &S (O)w)V o

. l * .
ind; o (evz)" ~ Locg,r,z oind 7 £+ (@)

~ a4 \%
~ (oblv;gﬁcgc))“' o FG’EI&) ~ ((evy)« 0 oblvh,)Y ~ (oblvi,)" o ((evy).)" ~

~ ind, o ((evy).)" ~ ind, o (ev,)”
is the identity map.
This assertion is proved in [CF, Theorem 4.0.5(2)].*3

Remark 10.5.5. The proof of Proposition 10.5.4 in [CF] essentially emulates the following finite-
dimensional phenomenon.

Let Y and b be as in Remark 10.4.6. On the one hand, we can consider the adjoint pair
Locy.y : h-mod < D-mod(Y) : I'(Y, oblv'(—=))™".

On the other hand, consider the canonical line bundle Ky as a line bundle acted on by b, and
consider the corresponding functor

I'(Y, Ky ® oblv!(—))*™ : D-mod(Y) — h-mod.
Let
Locy,y,ky : h-mod — D-mod(Y)
denote the left adjoint of I'(Y, Ky ® oblv!(—))°"".

Then the functors Locy y, k,, [dim(Y)] and T'(Y, oblv!(=))*"" are mutually dual in terms of the Verdier
duality identification
D-mod (Y)Y ~ D-mod(Y).
This follows from the expression for Locyy given by formula (10.25), and a similar formula for
LOCh,y Ky -

4314 loc. cit. the dual functor to Locg, is denoted Locc,.
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10.5.6. The assertion of Proposition 10.5.4 admits an immediate generalization when z moves in
families over the Ran space:

Proposition 10.5.7. With respect to the identifications (10.26) and
(KL(G)x,Ran) " ~ KL(G)x ran
(a) The functor
Loca k,Ran : KL(G)k,Ran — D-mod, (Bung) ® D-mod(Ran)
identifies canonically with the dual of
LG, x/ Ran : D-mod,/ ¢o(Bung) ® D-mod(Ran) — KL(G) ./ ran-
The induced identification

. * . g,et r 9, R(e ’
1ndf< o (eVRan)" =~ Loca,x,Ran omdgﬁcgcn ~ (FG,K/,Ran)\/ o (oblvigfzcg N )V ~

~ ot , Vv
s <0blv§:g+’?G§G))“ o FG’K,’RM,) ~ ((evRan)« 0 0blv./)Y ~ (0blvi)Y o ((evRran)«)" ~

~ indfi o ((eVRan)x)" =~ indfi o (evRan)”
is the tdentity map.
(b) The functor
Loca,r : KL(G)«,Ran — D-mod, (Bung) ® D-mod(Ran)
identifies canonically with the dual of
g, : D-mod,/ o (Bung) — KL(G) ./ Ran-
For the proof, see [CF, Theorem 4.0.5(2)].

10.5.8. Note that by combining Sect. 10.2.11 and Proposition 10.5.7 with the fact that the functors

KL(G)w 59 Vect and Vect ™ 249" KL(@).0

and

I'(Bung, —)ooblv'l%
D-mod,’ o — Vect and Vect

are mutually dual, we obtain an identification
(10.29) LoCG x,Ran(VACG Ran) = indk (OBung ) B Wran-
However, it follows formally that the identification (10.29) is the same as that in (10.21).

k—indl, (OBun )
—

D-mod. (Bung)

11. DIGRESSION: LOCAL-TO-GLOBAL FUNCTORS AND UNITALITY

In this section we will introduce a general framework that formalizes the unital property of the
functors

Poincg,i,Ran, Poincg « ran and Locg,x,Ran -

The unital property says, roughly speaking, that the insertion of the vacuum®* does not change the
value of the functor (see Sect. 11.3.3).

A key phenomenon that we will observe is the following: insertion of the vacuum along the entire
Ran space improves the unital property of the functor, see Sect. 11.4. The functor of factorization
homology and its generalizations are particular cases of this construction, see Sect. 11.9.

11.0. What is this section about? As this section deals with some abstract material, a general
introduction is in order.

441n the main body of this section, we use the word “unit” instead of “vacuum”.
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11.0.1. In this section, we study the general formalism of local-to-global functors. The (local) source
of such a functor is a crystal of categories C'°° over the Ran space, while its (global) target is a single
category C&°P. Roughly, for a space Z equipped with a map & : Z — Ran, the value of C'°° on Z is a

category C¥° = lzocy and a local-to-global functor F is a compatible collection of functors

Fz = Fz, : C¥S — C#°” @ D-mod(2)

for every Z and z. (Here and below, the words “compatible collection” mean “collection equipped with
higher coherence data”.)

11.0.2. Next, we introduce the notion of a unital crystal of categories over the Ran space (see
Sect. 11.2). Informally, a unital structure on a sheaf C'°¢ is a compatible collection of functors

. . loc loc
ins. units, cz, 1 Cz.z, = Czg,

for every space Z and two maps z,,Z, : Z — Ran such that x; C z,. Here we view Z-points of the Ran
space as Z-families of finite subsets of X.

11.0.3. Suppose now that C!°° is a unital crystal of categories, and F is a local-to-global functor from
C'°° to a category C#°P. We then introduce the notion of a unital structure on F; informally, it is a
compatible collection of natural transformations

(11.1) Fz,2, = Fz,z, 0 ins. unity, ¢z, -
for every Z, z,, and z, as above.

In fact, we have two notions: a (strict) unital structure, where the transformations (11.1) are required
to be isomorphisms, and a laz unital structure, where (11.1) can be arbitrary transformations.

Accordingly, we obtain two categories of unital local-to-global functors: the category of (strictly)
unital local-to-global functors, and the category of lax unital local-to-global functors; the former is a
full subcategory of the latter. We denote the categories by

(112) Functloc%glob,untl(gloc’ Cglob) c Functloc%glob,lax—untl(gloc’ Cglob)'

11.0.4. The main subject of this section is a construction on local-to-global functors, which we call
the integrated insertion of the unit. It can be defined as the left adjoint of the embedding (11.2):

. . 1 lob, lax-untl ; ~1 lob 1 lob,untl / 1 lob
/ms.umt : Funct oc78or axuntl(gioc (C8o) s Funct °° &> (C0°, C8°P).

However, the functor admits a geometric description. Remarkably, the description makes sense for all
(i.e., not necessarily lax unital ) local-to-global functors.

11.0.5. We will use this formalism in Sect. 12 in the context of compatibility between certain nat-
ural constructions and local-to-global functors. We will see that, in three different situations, the
compatibility is only lax at the start, but composition with the functor f ins. unit makes it strict.

11.1. Setup for local-to-global functors.

11.1.1. Let C'° be a crystal of categories over Ran (see Sect. B.8). Let C8'°" be a DG category, and
let us be given a functor

F:C"° - C#°" @ D-mod(Ran),
where D-mod(Ran) is the unit crystal of categories over Ran.

Thus, for every space Z mapping to Ran, we have a category CX°, tensored over D-mod(Z) and a
functor

(11.3) Fz : C¥° — C#°" @ D-mod(Z).

Remark 11.1.2. In the above procedure, we associate to Z — Ran the category of cristalline sections
of C!°¢ over Z, i.e., the category of sections of C°° over Zgr, cf. Sect. C.2.10.
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11.1.3. Assume for a moment that Z is pseudo-proper, so that the functor
C.(Z,—) : D-mod(Z) — Vect
left adjoint to k — wg is defined (see Sect. C.4.12). In this case we will denote by F.[Z the composition

C° 53 Dmod(z) @ o> “e 2 gler,

loc

11.1.4. In particular, for Z = Ran and the identity map, we obtain the category Cgs, and a functor
Fran : Clven — C#°° @ D-mod(Ran).
We will also use the symbol F : CX¢, — C8"°P for the functor F_[Ran.
11.1.5. Note that the datum of F recovers that of F. Namely, the functor Fz identifies with
Cle 5 ClSL . » ~ CR°. ® D-mod(2) 28 C#'°P @ D-mod(2),
where:

e Ran X Z is viewed as a space over Ran via the projection on the first factor;

e The arrow C¥°¢ — CX° . . is the -pushforward along the graph Z — Ran x Z of the original
map Z — Ran.

11.1.6. For a general pseudo-proper Z, the functor Ffz factors as
CE° — CiS, & C#eP
Lan b
where the first arrow is the functor of !-puhsforward (see Corollary C.4.10).

For Z = pt and the map Z — Ran given by € Ran, we obtain the category denoted Cg’c and a
functor
F. - Cloc N Cglob
11.1.7. The main examples of the above are when C'°° is one of the factorization categories
Whit' (@), Whit.(G), KL(G)..
In each of these cases, the corresponding global category is
D-mod%(Bunc), D-mod%!CD(Bung), and D-mod(Bung),

and the functor Fran is
Poincg,1,Ran, Poincg,«ran and Locg x,Ran,

respectively.

11.1.8. For given C'° and C8&"°P, we can consider the totality of functors F as above as a category,
denoted
F\unctlocﬁglob (Qloc7 Cglob).

By Sect. 11.1.5, this is the same as just the category

Functeont (Clyen, C5°P).
11.2. The local unital structure.

11.2.1.  Let C'°° be a crystal of categories over Ran. By a local unital structure on C'°°: we mean an
extension C'°¢" of C!°° to a crystal of categories over Ran"™ (see Sect. C.2 for what this means).

An example of such a structure is provided by a unital lax factorization category.

Let us explain what the unital structure means in concrete terms.
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11.2.2. Let Ran® be the moduli space of pairs
(z,2' |z C ),
see Sect. B.2.1.
We have the maps
Plsmalls Plhig Ran“ = Ran
that remember z and z’, respectively.
Let diag denote the diagonal map
Ran — Ran®.
Note that

Pleman © diag > Id =~ pry;, . o diag.

11.2.3. Denote

c? c c
Ran= := Ran~= X Ran=.
Prsmall,Ran,pryg

In addition to the two projections
2
PTamali2s Plpig2 RanS = Ran<,
we have a map
c? c
Preomp : Ran= — Ran

that sends

11.2.4. Note that RanS is the prestack of morphisms of Ran""!. Hence, at the level of 1-morphisms,
an extension of C°° to C°¢"* amounts to a functor

1 1
(prsmall)* (g OC) - (prbig)* (g OC)
as crystals of categories over Ran, or equivalently, to a functor

loc * loc
(114) g - (prsmall)* © (prbig) (g )
as crystals of categories over Ran.

In the above formula:
® (DPryig)" (resp., (Pryan)”) is the functor of pullback along pry, (resp., Pryy,.y) from crystals of
categories over Ran to crystals of categories over Ran®;

o (pry,. )+ is the functor of pushforward along pr,,.; from sheaves of categories over Ran< to
crystals of categories over Ran.

We refer the reader to Sect. C.3, where the operation of pushforward for crystals of categories is
reviewed.

11.2.5. Denote the functor (11.4) by*S

ins. unit : C%° = (Prypyan)s © (Prygg) (C°).

The functor ins. unit has an associativity structure explained in Sect. 11.2.9. The full datum of the
upgrade
Cloc — Cloc,untl

is encoded by ins. unit, together with the associativity structure satisfying a homotopy-coherent system
of compatibilities.

We will now explain the concrete meaning of the functor ins. unit.

45Ty the formula below ins. unit is the abbreviation of “insert unit”.
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11.2.6. For Z — Ran, denote
25 :=2 x RanS,

Ran

where in the formation of the fiber product the map RanS — Ran is pr see Sect. B.2.2.

smalls
Denote by pry,.n 2 the map
25 > 2,
and by pry;, the projection
2€ — Ran® ¥ Ran.

We view 2 as mapping to Ran via pry;,. The map diag induces a map
diag, : 2 — 25.
11.2.7. The map diagz, gives rise to a functor
(diag,)' : CkE — C¥°.

Since diagz is pseudo-proper, the functor (diagz)! admits a left adjoint, to be denoted (diag,): (see
Corollary C.4.10). Thus, we have an adjoint pair:

(11.5) (diagy )i : CK° = CKE : (diag,)'.
11.2.8. The functor ins. unit assigns to Z a D-mod(Z)-linear functor
(11.6) ins. unity, : C¥° — CRE.

Note also that
(11.7) (diag,)' o ins. unity, ~ Id

as endofunctors of C¥°.

11.2.9. Denote
2 2
25 =(25~2 x  Ran® ~25 x  Ran®.

Ran,prsmallg Ran,prg a1

2 2
We view 25~ as mapping to Ran via Prpig2. The map pr :RanS — RanS gives rise to a map

comp

c? C
Pleomp,2 = — Z=

as Spaces over Ran.

The associativity property of the functor ins. unit is encoded by the following diagram

ins.unitg

loc loc
CZ ng

. . !
1ns.un1tzl errcotnp,z

loc loc
—_— .
Clog clee,

ins.unit
ins.unit, ¢

11.2.10. Ezample. At the pointwise level, the datum of (11.6) is a system of functors
. . 1 1
ins. unity, cz, : C4, — Cq, for z; C x,.
When
z, =z, Uz,
and C'°° is a unital lax factorization category C, the above functor is

d®1lg
Cyy, —7 Gy ®Cy = Cyy,

where the last arrow is given by the lax factorization structure.
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11.2.11. Assume for a moment that Z is pseudo-proper. In this case the map Plhig ° 25 — Ran is
pseudo-proper, and hence the functor

loc

(Prpig)t - Cre — Crom
left adjoint to (prbig)! is defined (see Corollary C.4.10).
We will consider the functor
/ ins. unit : C¥° — CRS,
2z
equal to the composition
Cloe mente gloe (g gloe
11.2.12. In particular, we obtain an endofunctor
(11.8) / ins. unit : CRS, — CRS..
Ran
Note that the adjunction (11.6) and the identification (11.7) give rise to a natural transformation

(11.9) Id — ins. unit
Ran

loc

as endofunctors of Cfy,. Indeed, (11.9) is given by

Id =~ (pryig)r o (diagg,, )t = (Pryig) © (diagg,,)r © (diagg,,,)' © ins. unitgan —

— (Prpig)t © ins. Unitran = / ins. unit.
Ran

11.2.13. Inventory of notation. We briefly summarize the notation related to insertion of the unit.

We denote by ins. unity, the functor

loc

. . 1
ins. unity : Cz° — C4¢

For Z pseudo-proper, we denote by
/ ins. unit : C¥° — CRS,
2

the composition of ins. unity, with (pry, )i

In particular, for Z = Ran, we have fRan ins. unit, which is an endofunctor of CR¢, .

11.2.14.  Yet, in (11.15) we will introduce yet another symbol: just [ ins. unit. It will be an endofunctor
of the category

Funct®e =t (gloe c8loP) oy F/ ins.unit.
(see Sect. 11.1.8), defined when C'°° is equipped with a local unital structure.
We will have
FfZg o ins. unity ~ F.//'z,

glob

as functors C¥°¢ — C8"°P where:

. E/ — Ffinsunit c ]:—gunctloc—>glob(Qloc7 Cglob);

e The notation F/fz is as in Sect. 11.1.3.

11.3. A (lax) unital structure on a local-to-global functor.
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11.3.1. Let (C'°, C8"°" F) be as in Sect. 11.1.1. Assume now that C'°° is equipped with a local unital
structure.

A lax unital structure on F is its upgrade to a right-lax functor
(1110) Euntl . Qloc,untl N Cglob ® D_mod(Ranuntl)

untl

between crystals of categories over Ran""",| see Sect. C.2.8 for what this means.

11.3.2. Concretely, a lax unital structure on F means the following. Let Z be a space, and let
T, Sz,
be a morphism in the category Maps(Z, Ran""").
The maps z,; give rise to categories CIZOCL tensored over D-mod(Z), ¢ = 1,2. The datum of F gives
rise to D-mod(Z)-linear functors

Fre, 1 C25 — C¥° @ D-mod(Z).
The local unital structure on C'°° gives rise to a D-mod(Z)-linear functor
ocC CIDC ocC
Ccr, S C2s.
Then the datum of F'"* gives rise to a natural transformation
(11.11) Fza, — Fzz, o CL°
as functors
C25, — C¥°” ® D-mod(2).
11.3.3. Bzample. Set Z = pt, so that x; = x, corresponds to an inclusion
z, C zy.
Then F'"! gives rise to a natural transformation
Fz, — Fz, oins.unity g, -
11.3.4. We can rewrite the datum of natural transformations (11.11) as follows:

Let F be as in Sect. 11.1. Evaluating F on 25, we obtain a D-mod(Z)-linear functor

Foc : C2¢ — C#°" @ D-mod(Z5).

The datum of F'™" gives rise to a natural transformation
(11.12) (Id ®(prsman’z)!) o Fz — Fyc oins. unity,

as functors
C¥° — C*°" @ D-mod(Z5).

The natural transformation (11.12) encodes the datum of F*™* at the level of 1-morphisms. One

can recover the full datum of F'™™ by imposing a datum of associativity that (11.12) is supposed to
satisfy.

11.3.5.  We shall say that a lax unital structure on F is strict if F" ig a strict functor between crystals
of categories over Ran"™"!, see Sect. C.2.8 for what this means.

By definition, this means that the natural transformations (11.11) are isomorphisms.

In this case we will call F'"! a wunital structure on F.

11.3.6. Equivalently, a lax unital structure on F is strict if the natural transformation (11.12) is an
isomorphism for any Z.

11.3.7. Each of the examples from Sect. 11.1.7 has a natural unital structure.
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11.3.8.  We can consider the categories
(1113) F\unctloc~>glob,unt1(gloc7 Cglob) c F\unctlocg>glob,lauc—untl(gloc7 Cglob)

of local-to-global functors equipped with a unital or lax unital structures, respectively, with the former
being a full subcategory of the latter.

Note that we have a forgetful functor
(1114) F\unctloc~>glob,lax—untl(gloc7 Cglob) N F\unctlocﬁglob (gloc7 Cglob)’
where Funct'©c78°P(C!°¢ C#°P) is as in Sect. 11.1.8.

Remark 11.3.9. In [HR, Sect. 1.2.6], axioms for an algebro-geometric avatar of [1,2]-extended 3d
quantum field theories on X were considered, although a detailed definition was not provided. In the
present setting, we can easily spell out the complete axioms:

We should have the data of a unital factorization category C (viewed as a crystal of categories over
Ran‘m“)7 a local-to-global functor F : Cran — Vect, and a unital structure on F.

We refer to loc. cit. for a discussion of why these axiomatics can be geometrically interpreted in
terms of 3d QFTs.

Moreover, the discussion from [HR, Sect. 1.2.13-15] suggests that local-to-global functors valued in
more general global categories C8'°P should generally be interpreted in terms of boundary conditions
for 4d QFTs; this applies for all the examples we consider here.

11.4. Integrated insertion of the unit. The main construction in this subsection (i.e., the operation
J ins. unit) may be viewed as an abstraction of the definition of chiral (a.k.a. factorization) homology
in [BD2, Sect. 4.2].

As we shall see, the framework introduced above allows us to reproduce this construction automat-
ically: it amounts to the left of adjoint to the embedding

— Funct

loc—glob,untl 1 lob loc—glob,lax-untl 1 lob
Functoc glob,un (goc’CgO) oc—glob,lax-un (goc7cgo )

See also Sect. 11.9, where the specific example of the functor of factorization homology is considered.

11.4.1. Let C° and C#°" be as in Sect. 11.1. Let
Functlocaglob(cloc Cglob)
be the corresponding category of local-to-global functors.

Assume now that C°° is equipped with a local unital structure.

11.4.2. We define an endofunctor

(11.15) /ins. unit : Funct'*“7&°"(C'°¢, C&'°) — Funct'* &P (o0, C&°P)

E — Ef ins.unit

by

Féins'umt = (Id ®(Preman,z)1) © Fzc o ins. unity, .

In other words,

FL ™™ g the composition

ins.uni F Id ®(Prsmai, 2 )1 o
Cloe itz gloe T28 qlob @ gz S) P gElob @ Dmod(2).
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11.4.3. Note that we have a natural transformation

(11.16) Id — /ins. unit

so that for a given Z the corresponding map
(11.17) Fyp — Ffmeunit
is given by

11.7
(11.18)  Fz =~ (I ®(pryp 2)t) o (1d ®(diagy)1) 0 Fz & (Id B(promu 2 )t) © Frc o (diagy) ("

~ (Id @ (proman,z)t) © Frc o (diagy )i o (diagy)' o ins. unity, —

— (Id ®(prsma“,z)g) o Fyc oins. unity = E£ins‘llt‘it.

11.4.4. Assume for a moment that Z is pseudo-proper. Applying C.(Z, —)®1d to both sides of (11.17),
we obtain a natural transformation

(11.19) Fr, — Fo/ins.unit,
: z

where fz ins. unit is as in Sect. 11.2.11.

Take Z = Ran. In this case, the resulting natural transformation (11.19) is
(11.20) F—F o/ ins. unit,
Ran

where fRan ins. unit is as in Sect. 11.2.12.

It is easy to see, however, that (11.20) equals the natural transformation obtained by applying F to
the natural transformation (11.9).

11.4.5. Suppose for a moment that F is equipped with a unital structure, i.e., it is the image under
the forgetful functor (11.14) of an object F'™* € Funct'ocsleb-untl(Cloc Celob),

We claim that in this case the map (11.17) is an isomorphism. Indeed, in this case, the isomorphism
(11.12) identifies

ins.unit !
(11.21) Fé = (Prsmau,z)! © (prsmall,Z) oFz,

and the map (11.16) is the map

. . ! ! !
(11.22) Fz > (Proman,z)! © (diagy)r o (diagz)" © (Preman,z) © Fz = (Preman,z)! © (Praman,z) © Fz.
Now, the contractibility of the Ran space implies that the counit of the ((Pryman.z)ts (Praman.z) )-
adjunction is an isomorphism. Hence, the right-hand side of (11.22) maps isomorphically to Fz, and
the composition

11.22
FZ (—>) (prsmall,Z)! © (prsmall,z)! © FZ - FZ

is the identity map.

In particular, in this case the natural transformation (11.20) is an isomorphism.
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11.4.6. Our next goal, carried out in Sects. 11.5-11.6, is to perform similar constructions with the
same input, but in the unital context, i.e., working over Ran"""! rather than over Ran. Namely, we will
show that, parallel to (11.15), there exists an endofunctor

(1123) /il’lS. unit : Functloc—)glob,lax—untl(gloc, Cglob) N Functloc—)glob,lax—untl(gloc, Cglob)

Funtl — Funtl,fins.unit

that makes the diagram

loc%glob,lax»untl(cloc Cglob) J ins.unit 10c~>g10b,1ax—unt1(cloc Cglob)
— b — b

Funct Funct

(11.24) l l

- [ ins.unit
Functlocaglob (gloc , Cglob) Functloc%glob (gloc7 Cglob)

commute.

11.4.7. In addition, the functor (11.23) will be equipped with a natural transformation
(11.25) Id — /ins. unit,

which is compatible with (11.16) via (11.24).

We will also show:
e The essential image of (11.23) belongs to Funct'ec—glebuntl(qloc globy

e The natural transformation (11.25) evaluates to an isomorphism on objects that belong to
Functloc—»glob,untl(gloc, Cglob);

e The two natural transformations

(11.26) /ins.unit = /ins.unito/ins. unit,

arising from (11.25) coincide (it follows that they are isomorphisms).

11.4.8. The above properties combined imply that the functor (11.23) is the left adjoint of the em-
bedding

Functlocaglob,untl(gloc, Cglob) N Functlocgw;lob,laux—untl(gloc7 Cglob).

Remark 11.4.9. The reason for discussing both versions of [ ins. unit, i.e., (11.23) and (11.15), is that
the former has a clear categorical meaning (i.e., it is the left adjoint of the forgetful functor), while the
latter is easily computable (a priori, the functor (11.23) involves taking cohomology over categorical
prestacks).

However, the commutation of (11.24) implies that (11.23) is computable as well.

11.5. Construction of the integrated functor. This and the next subsection are devoted to the
construction of the functor (11.23) and the verification of its properties. The reader who is willing to
take this on faith may choose to skip these two subsections.

We are going to present the construction of the functor (11.23) in a hands-on manner. See, however,
Sect. C.3.10 for its abstract interpretation.
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11.5.1. Let Y be a categorical prestack and let Y~ be the categorical prestack of 1-morphisms in Y.
Le., for an affine scheme S, objects of Maps(S,Y™) are

Yy1,y2 € Maps(5,Y), y1 = 2,
and morphisms are commutative diagrams

Yyi — Y2

! !

yi —— 1.
We have the projections
Prsources Pltarget Y7 =Y,
with pr, being a Cartesian fibration.

source

Let C be a crystal of categories on Y. Tautologically, we have a (strict) functor

(1127) (prsource)* (Q) - (prtarget)*(

as crystals of categories on Y.

©),

Recall the construction of the direct image of a crystal of categories , reviewed in Sect. C.3. According
to Sect. C.3.8, we have a (strict) functor

Q - (prsource)"‘vsnict © (prsource)* (Q)

Composing with (11.27) we obtain a (strict) functor

(1128) g — (prsource)*aS”iCt © (prtarget)*(g)-

11.5.2. We apply the construction in Sect. 11.5.1 to Y = Ran""!. Denote

untl,— __| C,untl
Ran™™" =: Ran=""

viewed as a categorical prestacks.

Note that the prestack in groupoids underlying RanS"™" is the prestack RanS introduced in
Sect. 11.2.2. We will use the symbols pr’2 and prE{‘g“ for the corresponding maps pry,,c. and

prtarget'
Thus, for C'°©""* a5 in Sect. 11.2, the functor (11.28) is a functor

(11.29) € (prihy) s © (i) (€,

11.5.3. Let now F""" be an object of Funct'e¢&loblaxuntl(gloc gelob) " Applying pullback along prgi“;l,
we obtain a laz functor

untly* (cuntl

ntly * oc,un PThbig — untly * glo unt
untl loc,untly (Phig )" (E) 1 lob 1
(prig )" (C ) (P )" (C**” ® D-mod(Ran""™"))

: c
as crystals of categories on Ran& 1!,

Using Sect. C.3.7 we obtain a lax functor of crystal of categories on Ran"™"!

untl untlyx (puntl
(Prgmai)«o(Priig ) E™) g

(pr::r]ltalll ) *,lax O (prﬁ?gtl)* (QIOC,UUH) (prsmall) *,lax O (prﬁlngﬂ))k (CglOb ®7D_m0d(Ranuntl ) ) .

Combining, we obtain a functor
(11.30) €™ = (priman) sserice © (Prigy ) (™) = (proman)=tax © (progy )" (C°"™) —

= (Prih) o © (prif)" (€ @ Domod(Ran™™) 2 C¥* @ (prithy ) iue (D-mod (Ran "),
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11.5.4. Consider the (strict) functor

(1131) M(Ranunﬂ) (0—99 (pruml )*,strict (M(Rang’untl)) — (Pr;‘::,;ln)*,lax(M(Rang’untl)).

small
Lemma 11.5.5. The functor (11.31) admits a value-wise left adjoint, to be denoted (pr™,)i. More-

small
over, this value-wise left adjoint, which is a priori a left-lax functor, is strict.

The proof will be given in Sect. 11.7.2.

11.5.6. Thus, composing the lax functor (11.30) with (pr'2%);, we obtain a lax functor

small

Id @(primar)1

(11.32) cloommtl , CEP @ (pri ), jax (D-mod (RanS""™)) — C#°"* ® D-mod(Ran).

11.5.7.  The functor (11.32) is the sought-for object

Funtl,f ins.unit

11.6. Properties of the integrated functor. We now proceed to establish the properties of the
functor (11.23).

11.6.1. Note that the construction in Sect. 11.5.1 is functorial in the following sense:

1 t1 loc,untl . . )
If @ : CYO"™ — CY"™ is a strict functor between sheaves of categories on Ran"""

Euntl . gl;c,untl N D_mod(Ranuntl)

, and

is a lax unital functor, then we have a (tautological) isomorphism

(Euntl ° (p)fms.umt ~ Euntl,flns.unlt o®d.

11.6.2. We first show that [ ins. unit acts as identity on objects Furtl ¢ Functloe—slobuntl(gloc Csloby,
Indeed, if the functor
Euntl . gloc,untl N Cglob ® D_mod(Ranuntl)
is strict, then by Sect. 11.6.1 above, the functor (11.30) identifies with the composition of Furtl with
the tensor product of the identity endofunctor of C&"°P with

11.28
( ) ( untl

(11.33)  D-mod(Ran"") PIomall),strict © (prﬁfgﬂ)* (D-mod(Ran"™™")) =

runtl ,
= (prlslrl:g]l)*,strict (M(Rang’u“”)) (e m“) M(Ranuntl).

We claim that (11.33) is the identity endofunctor of D-mod(Ran"™"). Indeed, observe that for
C = D-mod(Ran"™), the functor (11.27) is the identity endofunctor of D-mod(Ran&"") so the
composition

11.28 un untly * un
2 (et ). strice © (pri)* (D-mod(Ran"™™)) =

= (Prun“ ) strict (M(Rang"m“))

small

D-mod(Ran"™")

is the functor

1 1 28 un un * un’
2 (et ). strice © (pri2th)* (D-mod(Ran"™)) =

= (pri2)). seriet(D-mod (Ran =",

D-mod(Ran""")

The assertion follows now from the next lemma:
Lemma 11.6.3. The functor (11.31) is fully faithful A

The proof will be given in Sect. 11.7.1.

465ee Sect. C.2.7 for what this means.
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11.6.4. Next we show that the essential image of the functor (11.23) lies in the subcategory
Functloc~>glob,untl(glocyCglob)7 i.e., Euntl,f ins.unit is strict.

Let S be an affine scheme and let £, = z, be a I-morphism in Maps(S, Ran""). Consider the fiber
products

C,untl Cintl
S =8 x  Ran=""", i=1,2,

%)
z; ,Ran“““

and the resulting map

(1134) Sgﬂlnﬂ a_*) Sg,untl.

Ty Zq

Consider the diagram

loc,untl lax ( @C,untl (~loc,untl Euet ;lob C.untl

750,;1 ————————— Tix(sg gloennt) C#°" @ D-mod(Sz ")
Id ®(a*)

oc,un ax un’ oc,un Euntl o un

Q{sﬁg tl - Fl (S£§2, tl’gl s tl) Cgl b ® D-mod(Sé’ tl)’
where:

e The left vertical arrow is given by the structure of crystal of categories on C'o¢unt!,

e The middle vertical arrow is (C.8);

e Both left horizontal arrows are (11.28);

e The left square commutes because the functor (C.9) is strict;

e The natural transformation in the right square is given by the lax functor structure on F"'*l,

Given Lemma 11.5.5, it suffices to show that the above natural transformation is an isomorphism.

Note, however, that the middle vertical arrow in the above diagram is the functor (C.7) corresponding
to the morphism a* of (11.34). This makes the assertion manifest.

11.6.5. We now construct the natural transformation (11.25). This is done in the same way as in
(11.18) using the map

. _untl tl C,untl
diag"™™" : Ran"™™ — Ran="""

untl

corresponding to the identity morphisms in Ran as a categorical prestack.

11.6.6. 'We now show that the two maps in (11.26) coincide. This amounts to the following assertion.

untl

Let S be an affine scheme equipped with a map to Ran"™"". Consider

C,untl C,intl C2,untl C,untl C,intl
S=ut.= g X Ran=""" and §= """ .= §="" X Ran=""".
Rann!,print)) Prggl’Ran‘m“’Pr;‘;ﬁ;u

We have the naturally defined maps

C,intl

tl C?,untl
— Ran="" and prima2.g:5= """

untl | ng ,untl

C,untl
prbig2 . .

-5

. untl 3 untl C,untl C2,untl
dlags big and dlags small? S = S

so that
untl di untl 1d untl di untl —di untl untl
prsmallz,s ° 1ag5',big - ) prsmaHQ,S’ © la‘gS,small = diagg Oprsmall,S
and

untl di untl _ untl untl di untl untl
PTrpig2 O Alagg small = Plpig 3 Plpig2 © A1a8g pig = Plpig -
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11.6.7. Let us explain explicitly what these maps are when S = pt, and the map S — Ran"™!
corresponds to a point z € Ran.
The categorical prestacks classify <™ and S €2 untl
(zx Czy) and (z Czy Cz,)
respectively, with the morphisms given by inclusions of the z,’s and z,.
The map pr;rr‘f;llz’ < sends

untl

the map Pry;,2 sends

the map diagi™®! | sends

the map diag‘é“ﬁ}g sends

11.6.8. We obtain the natural transformations

ntl ntly! ntl 1tl ntly!
(11.35) (pr:mtall sho (pri‘,;g ) =~ (pr;lmtall,s)! © (pré‘&;nz,s)! © (dlaggnglg)' © (pr?,ig“ ) =~

tl t1 un . untl ! untl\! untl t1 untly!
= (prsmall s)to (prsma112 s)ro(diagg glg)' © (dlags,gig) ° (prbigt2) — (Prsmtan,s)! © (prsmall2 s)! o(prblgt )
and
untl untly! untl untl untl untl
(11.36) (Prsmtan,s)! ° (Prbig;t ) ~ (prsmtall,S)‘ o (diagg™) o (prsmtall,s)! ° (Prbigt I

1 1 . 1 . 1 1 14!
= (prs::‘all,s)!O(pr;rtlltallz,S)!O(dla’gg?stmall)!o(dlags,small) (Prg?gtﬁ — (Pr:rlr].;u,s)!o(p smalﬂ s)'O(Prglng%)

as functors
D-mod(Ran""") — D-mod(S).
We need to show that the natural transformations (11.35) and (11.36) coincide.

This follows from the following observation: there exists a 1-morphism between the maps

untl

. t1 .
dlaggr,]small ﬁ> dlagS,biy
so that the induced map
1 1. 1 T 1 1
Pl = Prijg2 o diagginan = Prijg o diagliyi, =~ prijy
is the identity map.
11.6.9. Finally, we prove the commutativity of (11.24).

Let F'"*! be an object of Funct!'e¢~sloblax-untl gloc eloby “5n( Jet F be the corresponding object of
Functloc78leb(Cloc C#loP) We need to establish an isomorphism between F/ 850t and

Euntl,fins.unit‘gloc :Qloc N Cglob ® D—mod(Ran).

Let S be an affine scheme and let us be given an S-point of Ran. Denote

C,untl C,intl c c
S="":=6 x Ran="" and S=:= 85 x Ran~=,

Ranuntl Ran
so that S< is the prestack in groupoids underlying S<",
The value of E“““’fins'““i°|gloc at the above S-point of Ran is given by the composition

puntl

(1137) Cloc g};c,untl (11_2>8) FlaX(Sg,untl’gloc,untl) N

(prs, ﬁmdu sh

— C#°* @ D-mod(S< ™) C#°" @ D-mod(S)
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The value of F/ ™5 4t the above S-point of Ran is given by

Funtl
—

(1138) Cg)c — g?c,untl (11_2>8) FlaX(Sg,untl7gloc,untl)

Prsmall,S)!

— C#°P @ D-mod(S=""") — C&'°" ® D-mod(S) (Promaty st ygiob D-mod(S).

Let t denote the tautological map S — S<U" We have a natural transformation

] un ! un
(11.39) (Proman,s)t ot = (prsm':ll,s)! oot — (prsmtalll,S)!

as functors
D-mod(S<"™) — D-mod(S).
Thus, to establish an isomorphism between (11.37) and (11.38), it suffices to prove that the natural
transformation (11.39) is an isomorphism. However, this is a variant of Lemma C.5.12 (with the same
proof).

11.6.10. The compatibility of (11.16) and (11.25) follows from the commutativity of the diagram
(diags)! © t! % (prsmall,S)! o (diags)! © (diags)! © t! e (prsmall,S)! © t!

! |

untl )
small,S !y

untl

(diagg™!)’ —— (Prsuy?gn,s)! o (diagi™™), o (diagi™™)! ———  (pr
as functors D-mod(S< ") — D-mod(S), where
diagg : S — S< and diagi™' : § — =
are the corresponding maps.

11.7. Proofs of Lemmas 11.5.5, Lemma 11.6.3 and C.5.13.

11.7.1. Proof of Lemma 11.6.3. We need to show that, for any affine scheme S equipped with a map
S — Ran""" the functor

1
(Prsmaly,s)’

D-mod(S)  — D-mod(Sg’un“)StriCt s D—mod(Sg’unﬂ)la",
is fully faithful.

It suffices to show that the first arrow, i.e., (Pryp., ) is fully faithful. However, this follows from
the fact that morphism prg, . ¢ admits a left adjoint. Namely, it is given by diagg.
O[Lemma 11.6.3]

11.7.2. Proof of Lemma 11.5.5. Let S be an affine scheme and let z be an S-point of Ran"™"'. Consider
the map
gSumtl._ g o RapCoumtl Pr?ﬁilll;s,z S
= §7Ramunt,l

The first assertion of the lemma, is that the functor
untl

( Tsma ‘z>! untlystric un
D-mod(S) Plamal, 5. D-mod(Sgg‘ st t—>D-mod($’§’ )

untl
small, S,z

admits a left adjoint, to be denoted (pr, )1. This is a particular case of Corollary C.4.12.

The second assertion of the lemma is that for a 1-morphism z, Bt z, in Maps(S, Ran“““) and the

corresponding map

C,untl @? &C,untl
Sizv Silv ,

the natural transformation

1 ! 1 ! 1
(pr:r?;;n,s,gz)! o(a") ~ (pr:;tall,s,gl)! o(a)io(a”) — (pr;lr?ltall,s,gl)!

is an isomorphism.
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This follows from the fact that the map a* admits a value-wise left adjoint. Namely, the left adjoint
in question attaches to an affine scheme S’ with a map g1 : " — Sgl’“““ the map g2 : S’ — Sé’“““
defined as follows: the corresponding map

untl

g C,untl P'bi 1

S/ i Siz,unt j Ranunt

is obtained by applying the map
union : Ran"™ x Ran"™" — Ran"""
to
) C,untl prgintl untl

s 4 Sil’ —% Ran

and

pruntl11
/g C,untl © small,S,z; z. t1
§" & g RS g 8 Ran ™

O[Lemma 11.5.5]

11.8. Unitality as a property. A somewhat surprising fact is that, given a local unital structure on
C'°°, a unital” structure on (a non-unital local-to-global functor) F is actually a property, and not an
additional piece of structure, as we shall presently explain.

The contents of this subsection are not necessary for the sequel.

11.8.1. Let F be as in Sect. 11.1. Recall the morphism (11.18)
(11.40) Fz — (Id ®(Proman,z)t) © Fyc o ins. unity,
as functors C¥°¢ — C&"°" @ D-mod(Z).

Definition 11.8.2. We shall say that F satisfies Global Unitality Axiom 1 if the natural transformation
(11.18) is an isomorphism (for any Z — Ran).

11.8.3. Assume that F satisfies Global Unitality Axiom 1. Then inverting (11.40) and applying the
((prsmall,Z)!7 (prsmall,Z)!)_adjunCtionv we obtain a map

(11.41) F.c oins. unity — (Id ®(prsman’z)!> (Fz2)

as functors C¥° — C#°" ® D-mod(Z5).

Definition 11.8.4. We shall say that E satisfies Global Unitality Aziom 2 if the natural transformation
(11.41) is an isomorphism (for any Z — Ran).

Definition 11.8.5. We shall say that E has a global unital property if it satisfies Axioms 1 and 2.
11.8.6. It is clear that if F is the image under
Functloc%glob,untl(cloc Cglob) N F\unctloc%glob(cloc Cglob)

of

tl 1 lob,untl 1 lob
Eun € Funct oc—rglob,un (g oc7 Cgo )7

then F has a global unitality property, see Sect. 11.4.5.

4775 opposed to lax unital.
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11.8.7. Vice versa, suppose that
F € Funct®elob(gloc, gelob)
has a global unitality property.
Then the inverse of the isomorphism (11.41) provides an isomorphism as in (11.12).

More generally, one can show that in this case F comes from a uniquely defined object FU"*! e
Functloc%glob,untl (gloc7 Cglob).

In other words, we claim:
Proposition 11.8.8. The composite functor

Functloc%glob,untl(gloc7 CHI°P) _y Functloc—eloblaxuntl gloe yeloby Functlocaglob(gloc7 Cglob)
is fully faithful, and its essential image consists of objects that have a global unitality property.

We will give two, rather different in spirit, proofs of Proposition 11.8.8: one in Sect. H.3.3, and
another in Sect. I.

11.9. Factorization homology.

11.9.1. In this section we will assume that C°®""! comes from a unital lax factorization category A,

ie., Cloeuntl — A in the notations of Sect. B.11.1. Let F be a functor
A — C#°® @ D-mod(Ran),
equipped with a lax unital structure.

Let now A be a unital factorization algebra in A. We will regard A-mod™*(A) as a lax factorization
category (see Sect. C.11.9), and consider the corresponding crystal of categories A-mod™°*(A) on Ran,
which naturally extends to a crystal of categories over Ran"™" (see Sect. C.11.13).

In the particular case of factorization algebras, we will denote the functor ins. unity, of Sect. 11.6 by
ins. vacz : A-mod™*(A)y — A-mod™(A),c, 2 — Ran.

This notation is meant to emphasize that the unit in A-mod™*(A) is the “vacuum module”, i.e.,
A, viewed as a factorization module over itself.

11.9.2. Let
oblv, : A-mod™*(A) —» A

be the tautological forgetful functor, viewed as a functor between crystals of categories over Ran.

Note that the unital structure on A defines on oblv , a structure of laz functor between crystals of
categories over Ran"", see Sect. C.11.14.

In particular
Fooblv, : A-mod™*(A) — C#°® @ D-mod(Ran)

also acquires a lax unital structure.
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11.9.3. The functor of factorization homology
CP(X, A, —)F 1 A-mod™(A) - C#"°" @ D-mod(Ran)
is by definition
(Foobly,)/ ",

see (11.15).

For Z — Ran we will denote the corresponding functor

A-mod™*(A)y, — C#°° @ D-mod(Z)

by CPt(X, A, —)%.

For Z pseudo-proper, we will denote the composition of C™°*(X, A, —)% with Id® C.(Z,—) by
Cfaet (X, A, —)jz.

For Z = Ran and the identity map we will denote the resulting functor

A_modfact(A)Ran _, qslob

by Cfect(x, A, —)F.
11.9.4. Recall the natural transformation (11.16). In our case, this is a map
(11.42) Fooblv, — C™" (X, A, -)F,
which we will denote by Cltr , and refer to as the “correlator” map.

For a given Z — Ran, this is a map

Cltra,z : Fooblv, , — CP(X, A, -)k.
11.9.5. Ezample. Let A = Vect, C8'°" = Vect and F = Id. In this case,
CRt(X A, =) = CPY (X, A, —)F, A-mod™*(A) — D-mod(Ran)

is the usual functor of factorization homology.

11.9.6. A key fact for us is that according to Sect. 11.4.6, the functor Cfact (X, A, —)F acquires a natural
lax unital structure. Moreover, by Sect. 11.4.7, this lax unital structure is actually strict.

11.9.7. Let us apply the functor C™(X A, —)%.. to the object
(1 Amodtact (a))Ran = Afen € A-mod™* (A)Ran
(see Sect. C.11.15) i.e., to Aran, viewed as a factorization module over itself at Ran.
By unitality, the above object is of the form
CP (X, A) ® WRan,
for a canonically defined object
(11.43) Clet (X, A) e CE°P,
The object (11.43) is called the vacuum factorization homology of A.
Explicitly,
CP*(X,A) ~ (Id® C,(Ran, —)) o F(ARan).
11.9.8. Note that again by the unitality (Sect. 11.9.6) of the functor C™*(X, A, —), for any Z — Ran

and _ _
A2 € A-modE,
(see Sects. B.9.7 and B.11.16 for the notation), we have
(11.44) Cet (X, A, AR2), ~ CPY X A) @ we.
In particular, for any € Ran,
(11.45) (X, A, AT2), ~ OBt (X, A).
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11.9.9. Let us write out explicitly the proof of the fact that the functor C™*(X, A, —)F is unital (we
will essentially repeat the argument from Sect. 11.6.4).

Fix Z — Ran and consider an object M € A-mod™°*(A)z. From it we produce an object
ins. unitz (M) € A-mod™*(A),c,
and further
ins. unit, ¢ (ins. unitz (M)) € A—modf‘m(A)Zgz ,
where )
25 = (29)5.
Consider the object
M :=F,czo0 oblv, 2 (ins. unitzc (ins. unitz (M))) € cEt @ D-mod(Zgz).
Consider now the map
. c c?
diagy pig : 25 — 27

(see Sect. 11.6.6).

It gives rise to a map

(11.46)  (PTeman,z)! © (diagz,big)A(M/) > (Praman,z)! © (Praman,z< )1 © (diagy pig)r o (dia‘gz,big)!(Ml) -
— (Prsman,z)! 0 (PTamal,zC (M),
and we wish to show that this map is an isomorphism.
Now, the lax unital structure on F implies that M’ is the pullback of an object in
M” € C¥°" @ D-mod(2E" ™).
As in Lemma C.5.13, one shows that one can replace both sides in (11.46) by their unital versions,
i.e., it is sufficient to show that the corresponding map
(Pr:rl:;t;u,z)! ° (diaglzl,r,ﬂg)!(mu) = (pr:rl:xtalll,z)! o (Pr::;:u,zg)! o (diag;?&g)! o (diag‘;&g)!(M”) —
- (pr;’ﬂn,z)! o (pr;l:gn,zg )(M”)
is an isomorphism.

However, the latter follows from the fact that the map

. _untl C,untl g2 untl
diagy pig : 277 — 277

is value-wise cofinal.

11.9.10. In what follows we will need the following variant of the isomorphism we just proved:
The natural transformation F — Ef ins.unit jp quces a natural transformation
(11.47) (X, A, —)F = O (XA, o)
We claim:
Lemma 11.9.11. The natural transformation (11.47) is an tsomorphism.
Proof. By the construction of (11.15), the unit in A gives rise to a natural transformation
(11.48) F/ insunit o obly , — (F o oblv )/ ™ umit — cfect(x 4, )F,

Applying f ins. unit we obtain a natural transformation

cfet(x, A, —)F / ins. unit(C™ (X, 4, —)F),
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so that the diagram

Chet (X, A, —)Ff e w) J ins. unit o [ ins. unit(F o oblv ,)
T NTIins.unit(%)
cfeet(x, A, —)F —_— J ins. unit(F o oblv ;)

commutes.

Hence, it suffices to check that the map (11.48) is an isomorphism. However, this is done by the

same argument as in Sect. 11.9.9.
g

11.9.12. Here is a particular case of Lemma 11.9.11 that we will need:
Let A; and A2 be a pair of unital factorization algebras in a unital lax factorization category Ay,
and let ¢ : A1 — A2 be a unital homomorphism. Denote by res® the resulting functor
Az-mod(Ag) — Ai-mod(Ay).
Let us be given a lax unital functor
F,: Ag — C#°® @ D-mod(Ran).

For a given Z — Ran we have a natural transformation

(11.49)  CR(X; Ay, —)F0 = (Preman,z )t ©OblV 4, o c oins. vacg a, ~

~ % 5ing ~
~ (Prypan,z)t ©Oblv, oc ores” oins. vacz a, ~

? oins. vacy, A,

@

= (prsman,z)! o (Prsman,zg )i o (diagyc)i o oblv,, ,c ores

~ (Prsmau,z)! 0 (PTgpan,zC )1 © oblv, cyco (diagyc )1 o res? oins. vacg, a4, ~

. . 1. 6 -
=~ (Pryman,z)! © (Ploman,2c )1 00blv 4 o c)c o(diag,c )i o (diagyc) oins. vacyc 4, ores” oins. vacz 4, —
= (Plaman,2)! © (Ploman,zc )1 ©0blv 4, (2cyc oins.vacyc 4, ores” oins. vacz a, =~

fact F [
> (Pryman,z )t © C*7 (X5 Ar, —)) % ores” oins. vacz 4,,

We claim:
Corollary 11.9.13. The natural transformation (11.49) is an isomorphism.

Proof. Take A := A;-mod(Ap) and A = A,, viewed as a unital factorization algebra in A;-mod(Ay).
Take F = Fpooblv, .

Then the assertion follows from Lemma 11.9.11, where we note that the natural transformation
(11.49) is (11.47).
d

11.9.14. Here is another application of Lemma 11.9.11. Let ® : A; — A be a lax unital factorization
functor between lax factorization categories. Denote by ® the corresponding right-lax functor

A — A
as crystals of categories on Ran""!.
Let us be given a lax unital local-to-global functor
F: A — C*°" © D-mod(Ran).
Note that F; := Fo® also acquires a lax unital structure. By functoriality, the natural transformation
Fi=Fod s F/™mitog
gives rise to a natural transformation

(1150) E'{ ins.unit N (Ef ins.unit OQ){ ins4unit'
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Corollary 11.9.15. The natural transformation (11.50) is an isomorphism.

Proof. By Sect. 4.1.6, the functor ® factors as

penh oblv
Ay T A-mod™*t(A) TS A,

where A = ®(14,).
Since the functor ®*™ is strictly unital, the assertion of the corollary reduces to the case when

A; = A-mod(A) and ® = oblv,. However, in the latter case, the map (11.50) is the map (11.47).
g

12. PROPERTIES OF THE LOCALIZATION FUNCTOR
In this section we study the composition of the localization functors with three constructions of
global nature:
e The forgetful functor D-mod.(Bung) — QCoh(Bung);

e The pullback functor D-mod, (Bung) — D-mod, (Bung/) corresponding to a group homomor-
phism G’ — G;
e For a unipotent group-scheme N’, the functor of de Rham cohomology D-mod(Buny-) — Vect.

The pattern in the three composite functors mentioned above is that they can all be expressed via
a local operation, followed by another localization functor:

e Restriction KL(G)x,ran — Rep(£7(G)), followed by O-module localization Rep(£1(G))ran —
QCoh(Bung);

e Restriction KL(G) . ran — KL(G')x Ran, followed by
LOCG/,H : KL(GI)N,RBH — D-modn(BunG,);
e The functor of BRST reduction KL(N')gan — Vect.

However, there is a caveat, common to all three of these situations: in order for the local operation
to reproduce the global one, we need to precompose the former with an endofunctor of the source given
by ins.vacy ., see (11.8).

12.1. Localization and the forgetful functor.

12.1.1. Note that by adjunction, the commutative diagram (10.17) gives rise to a natural transforma-
tion

1
oblv,

(12.1) QCoh(Bung) D-mod, (Bung)
Locgcoh Locg,x
Rep(£1(G))Rran KL(G)x.Ran-

5ot
obly(E 2T (@

The natural transformation in (12.1) is not an isomorphism (unless G = 1): namely, evaluate both
circuits on
Vac(G) ko € KL(G)k,» = KL(G)x,Ran
for some r € X.

We will now draw another diagram, in which a natural transformation will be an isomorphism,
which encodes another basic property of the localization functor.
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12.1.2. Being unital factorization categories, both KL(G). and Rep(£'(G)), viewed as crystals of
categories over Ran, carry local unital structures (see Sect. 11.2.1 for what this means). Furthermore,
the local-to-global functors*®

(12.2) Locg . : KL(G) s — D-mod,;(Bung) ® D-mod(Ran)
and
(12.3) Loc2®" : Rep(£¥(G)) — QCoh(Bung) ® D-mod(Ran)

both carry naturally defined (strict) unital structures (see Sect. 11.3.1 for what this means).

Note, however, that the restriction functor

oblv &5 (@ KL(G)x — Rep(£¥(G))

is merely right-lax, (as is the case for any factorization functor that is lax unital as opposed to strictly
unital).

12.1.3. The natural transformation

= ot
Locgc"h ooblv(ng’rE(G)(G))” — oble o Loca,x

from diagram (12.1) can be viewed as a natural transformation

(12.4) @300}’ o oblvgﬁgc))” — oblvl o Locg .

between functors
KL(G), = QCoh(Bung) ® D-mod(Ran)
between crystals of categories over Ran (see Sect. 11.1.5).

The two sides in (12.4) are lax unital local-to-global functors, and the map (12.4) is compatible with
the lax unital structures.

12.1.4. Note now that the right-hand side in (12.4) is strictly unital (because Loc, , is unital). Hence
by Sect. 11.4.8, the map (12.4) gives rise to a map*®

l
£+ (G) %oblvmo@an.

(125) (LOCgCoh o Oblv(ﬁy‘ng(G))m)finsAvac

We claim:
Theorem 12.1.5. The natural transformation (12.5) is an isomorphism.

Remark 12.1.6. One can interpret Theorem 12.1.5 as follows: the natural transformation (12.4) fails
to be an isomorphism because the right-hand side is unital (i.e., insertion of vacuum does not change
the value of the functor), but the left-hand side is only lax unital. But once we correct this by applying
[ ins. vac, the corresponding map becomes an isomorphism.

12.1.7. We will now reformulate Theorem 12.1.5 is concrete terms, which do not explicitly involve
categorical prestacks:
Let fins. vac be the endofunctor of KL(G)«,Ran from Sect. 11.2.12. We have:

Theorem 12.1.8. The natural transformation in (12.1) becomes an isomorphism after precomposing
with [ ins. vac.

Note that Theorems 12.1.5 and 12.1.8 are logically equivalent. This follows from Sect. 11.1.5 and
the commutativity of (11.24).

Theorem 12.1.8 will be proved in Sect. 13.3%C.
4811 the formulas below, the underline has the meaning from Sect. 11.1.1.

4In the formula below, for the factorization category KL(G), we use the notation ins. vac instead of ins. unit.
50Wwe supply a proof for completness. An equivalent statement appears in [CF, Lemma 4.4.16 and Variant 4.4.17]
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12.1.9. Note that since LOCG,H is strictly unital, the map

Locg,x — Loca,x 0/ ins. vac
Ran

is an isomorphism (see Sect. 11.4.5). Hence, Theorem 12.1.8 implies:

Corollary 12.1.10. We have a commutative diagram

oble

D-mod, (Bung) QCoh(Bung)
Locg, x T TLOC%CO]l
i oblv(‘ﬁerJr(G))"
KL(G)rxRan % KL(G)x Ran =@ Rep(£1(G))ran-

12.1.11. Consider the functor

QC
LOCG

Rep(£7(@)) —>°h QCoh(Bung) ® D-mod(Ran).

By Sect. 11.9.3, for a factorization algebra A € Rep(£'(G)), we can consider the local-to-global
functor

et (X, A, )" L Amod™ ! (Rep(£7 (@) — QCoh(Bung) ® D-mod(Ran).
Moreover, by Sect. 11.9.6, the functor (X, A, —)L‘)Cchh is strictly unital.
12.1.12. Denote

Ve, = oblvff(;(m)" (Vac(G)x),

viewed as a factorization algebra in Rep(£"(G)).

ot
The functor oblvfgg;)?(;)(G))“ upgrades to a strictly unital factorization functor

(oblvgf;@%)e“h : KL(G), — Vg, .-mod™"*(Rep(£¥(Q))).

5ot
Note that whereas ObIVE,ger(G)(G»K was right-lax, when viewed as a functor between sheaves of cate-
G0t
gories over Ran"™", the functor (oblvg‘ﬁG;G))”)C“h is strict.

12.1.13.  With these notations, from Theorem 12.1.5, we obtain:

Corollary 12.1.14. We have a commutative diagram

o Vl,
D-mod, (Bung) ® D-mod(Ran) oblv,81d, QCoh(Bung) ® D-mod(Ran)
(12.6) EGWT Tgfact(ch,m_)mcgc“h
KL(G)x Va,x-mod™* (Rep(£1(Q@))).

G.et
(oblvi)gJ’r‘?G)(G))N)enh
Integrating over Ran, we obtain:

Corollary 12.1.15. We have a commutative diagram

oblva

D-mod, (Bung) QCoh(Bung)
(12.7) tocae | [t x,vg oo™
KL(G)x,Ran Vg,n-mod™ (Rep(£7(G)))ran-

(Oblv(g%’f;;;c))ﬁ' yenh
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12.2. Proof of Proposition 10.4.5. In this subsection we will use Theorem 12.1.8 (or rather Corol-
lary 12.1.15) to deduce Proposition 10.4.5.

Let Pg be a k-point of Bung. Applying Corollary 12.1.15, we need to construct an isomorphism
between

Oblvi:ar(:;)(c))ﬁ CfﬂCt(XvVG a*)iDCgCOh *-fiber at P
(12.8)  KL(G)yz — Rep(£T(G))z o QCoh(Bung) ~ — ¢ Vect
and

4 au ~ . COinVF(X -z, )
(12.9) KL(G)rp  E5" KL(G)r.p g0 — G-modupge ) T(X —2, g3, )-mod 2576 Vet

12.2.1. First, we note that the functor

QCoh

Rep(£(G)) kese, QCoh(Bung) ® D-mod(Ran) (x-fiber at F)@1d

D-mod(Ran)

is a Pe-twisted version of the forgeftul functor. Denote it by oblves gy p,. We can view it as a
factorization functor

oblvet gy 9, Rep(£7(G)) — Vect.

Denote

-
Voo = ObIVes () g 0 0bIVE (D (Vac(G).0).

This is a factorization algebra in Vect, which is a Pg-twisted version of the vacuum representation
Vg,x. We can rewrite the functor

QCoh

Loc
¢ QCoh(Bung) ® D-mod(Ran) wfiber 2t Pa®d

cfet (X Vg 0, —)
—

Rep(£7(G))

D-mod(Ran)

as

oot (e),7g

clet(x,v
D-mod(Ran).

9,5, Pqg »*)
T

Rep(£7(G))

12.2.2. Consider the forgetful (factorization) functor
oblvg ., : g-mods pg,e — Vect.
Note that

(CHaN(e)M

oblvg p, 00blver (g) 0 apg taut = OblVet (@) 9, © oblvgﬂc)

as factorization functors

KL(G)x — Vect.
In particular,
Oblvﬁ,ﬂ’c (VaC(G)m’PG) = VQ;KVU’(W
and we obtain that the functor oblvg ¢, enhances to a functor
(12.10) oblv%%};lc s g-mode v,z — Vg,,@yc—modfa“,

see Sect. 4.1.6.
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12.2.3.  We obtain that we can rewrite (12.8) as

enh

oblv oblv?

QP tau e+ (G) ~ P
(1211) KL(@rz 3 KL(@npge  —  Fmodepgs —+°
CRN XYy o pgi)
— Vg,,05-mode e’ L8 TG Vect
Thus, we obtain that it suffices to show that the composition
. oblve'y fact SN XV e p )
(12.12) g-mode pse —  Vgkpg-mody — Vect
identifies with
10.23 oV (X —z,g5p )
( ) "% Vect .

(12.13) g-mods, v,z I'X — z, gy, )-mod

We will relate (12.12) to the functor of I'(X — z, gy, )-coinvariants using the calculation of factor-
ization homology of (twisted) chiral envelopes of Lie-* algebras performed in [BD2].

12.2.4. Observe that the chiral algebra corresponding to the factorization algebra Vg . ». identifies
with (k-twisted) the chiral envelope

UCh(LQ,'J’G )"vv
where Lg . 7. is the Pg-twist of the Lie-algebra

wx ® (g® Dx).

Moreover, we have a canonical equivalence

ch ch ch fact
Ly x,pq-modg’ >~ U (Lg,p.)x-mody’ ~ Vg . p,-mod,

and a functor

(12.14) Ly npe-mods” — T(X — z, g9, )-mod.
Under these identifications, the functor

-~ oblv%‘},ﬁ‘,c fact ch (12.14)

g-mode,pne — Vg pe-mod, " =~ Lg . p,-mody, — I'(X — z, gy )-mod

identifies with the functor (10.23).

12.2.5. Thus, it remains to show that the functor

ch fact Cf’act <X’V9”‘7TG S
Ly« p-mody, ~ Vg . p,-mody — Vect
identifies canonically with

coinv
h (12.14) NX-z,09,
dg' —

)
Lyg, i, p5-mo0 I'X — z, gy, )-mod Vect .

However, the latter is the assertion of [BD2, Proposition 4.8.2]

Remark 12.2.6. An alternative proof of the latter assertion can be found in [FraG, Corollary 6.4.4] in
the special case when the coefficient module is the vacuum representation.

However, the method from [FraG] easily adapts to the present setting and can also be used to reprove
[BD2, Proposition 4.8.2] in the generality in which we are using it.

O[Proposition 10.4.5]

12.3. Localization and restriction.
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12.3.1. Let ¢ : G’ — G be a group homomorphism. We restrict the level x to G’ and consider the
corresponding Kazhdan-Lusztig category

KL(G')» := §'-mod2" (€
and the localization functor

LOCG’,n : KL(G/)N,RZE]’] — D—mod,{(BunG/).
12.3.2. The map ¢ gives rise to (factorization) restriction functors

Rep(£7 (@) % Rep(£+(G")) and KL(G),. “=5 KL(G').
so that the diagram
KL(G). —<"% KL(G).

(@, et @) (@,et ("))
oblv£+(c) "l J'oblvg_*_(cl) It

res¢
Rep(£7(G)) —— Rep(£7(G"))
commutes.

In addition, the map ¢ gives rise to a map
¢%'°" : Bungs — Bung,
which is compatible with the twistings and thus gives rise to a functor
(¢%'°")L, : D-mod,, (Bung) — D-mod,, (Bung),
which makes the diagram

globy
QCoh(Bung) HUAREPMN QCoh(Bung/)

oble T Toblvf{c

globy!
D-mod, (Bung) u D-mod,, (Bung/)

commute.

12.3.3. Let U C Bung and U’ C Bung be a pair of quasi-compact substacks so that ¢5°® maps
U —U.

Consider the corresponding functors
TG.wu : D-mod,(U) = KL(G)« ran and T'g . ¢ : D-mod.(U’") — KL(G") s« ran-
By construction, we have a natural transformation

(¢8R,

(12.15) D-mod,(U) —————=— D-mod, (U")
LG,w,U Parwu

KL(G)N,Ran ﬁ' KL(G/)N,Ran-

res

By adjunction, we obtain a natural transformation
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(¢81°P)),
(12.16) D-mod, (U) —————— D-mod,(U’)

Locg x,U Locgr Ut

KL(G)K,Ran ﬁ KL(GI)N,Ran-

res

Passing to the limit over U, from (12.16), we obtain a natural transformation

(e8P

(12.17) D-mod (Bung) —— = D-mod (Bung)

Locg,k LocG/,N

KL(G)N,R'@H %lﬁ KL(G,)K,Ran-

12.3.4. The natural transformation in (12.17) is not an isomorphism (unless ¢ itself is). We will now
draw another diagram, in which the natural transformation is an isomorphism, and which expresses
the composition
(¢*")sc o Locg x
via Locgr .
This will be completely parallel to Sects. 12.1.2-12.1.4.
12.3.5.  The natural transformation
Locgr s © res® — (q&glc’b)i€ o Locg,x
in (12.17) can be viewed as a natural transformation
(12.18) Locg, , ores® — (¢¥°°) o Locg, ,

between functors
KL(G)x = D-mod,(Bungs) ® D-mod(Ran)
between crystals of categories over Ran (see Sect. 11.1.5).

The two sides in (12.18) are lax unital local-to-global functors, and the map (12.4) is compatible
with the lax unital structures.

Note now that the right-hand side in (12.18) is strictly unital. Hence by Sect. 11.4.8, the map (12.18)

gives rise to a map

— (¢glob)!n o @Gﬁ

[ ins.vac
(12.19) (@G/,H 0@‘1’)

as unital local-to-global functors.
We claim:
Proposition 12.3.6. The natural transformation (12.19) is an isomorphism.

Parallel to Sect. 12.3.6, we will now reformulate Proposition 12.3.6 is several (equivalent) ways.
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Proposition 12.3.7. The natural transformation in (12.17) becomes an isomorphism after precom-
posing with [ ins. vac.

Corollary 12.3.8. We have a commutative diagram

globy!
D-mod, (Bung) L, D-mod, (Bung)

LOCGYNT TLOCG’,»{

KL(G)rman 2% KL(G)mman —=  KL(G ) han
12.3.9. Consider the factorization algebra
Vac(Glar)w := res® (Vac(G)x) € KL(G')s.
The functor res® upgrades to a factorization functor

(res?)™™ : KL(G)x — Vac(G|ar)e-mod™* (KL(G') ).

Consider the functor
CP(X, Vac(Glar ), —)"¢" = : Vae(G|ar ) w-mod™* (KL(G') ) — D-mod, (Bung),
see Sect. 11.9.3.

Corollary 12.3.10. We have a commutative diagram

globn!
D-mod. (Bung) ® D-mod(Ran) RPN D-mod, (Bung/) ® D-mod(Ran)
(12.20) LLGT Tgfacwx,\/ac(c\c,>K,7)L°CG',~
KL(G)x pe— Vac(G|gr) w-mod™* (KL(G").).

Integrating over Ran, we obtain:

Corollary 12.3.11. We have a commutative diagram

(¢Blob)!
D-mod,(Bung) —= D-mod, (Bung/)

(12.21) LOCG,HT TQ?aCt(X,Vac(Glcf)m—)

KL(G)xRan —— Vac(G|ar)w-mod™*(KL(G')x)Ran.

(res®)enh
12.4. Proof of Proposition 12.3.6.
12.4.1. Since the functor
(12.22) oblvfﬁyg/ : D-mod, (Bungs) — QCoh(Bung/)

is conservative, it is sufficient to prove that the natural transformation in (12.19) becomes an isomor-
phism after composing with

OblVL’G/ ®Id : ])-II]Od,.€ (BunG/) (039 D-mod(Ranuml) — QCOh(Bungl) ® D-mOd(Ranuntl),
Remark 12.4.2. The idea of the proof is the following: the diagram

loby *
QCoh(Bung) HCARIPAN QCoh(Bung/)
LochOhT TLochOh

Rep(£F(G))ran —=" Rep(£+(G'))ran

commutes tautologically.
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Combining this observation with Corollary 12.1.10, we can express both

oblv’, o (¢#'°"),. o Loca,, and oblv, o Locgs . ores?

in terms of
QCoh @21 ()
Locg, £g+ @) .
The two sides will not match on the nose, but the difference will be accounted for by Corol-
lary 11.9.15.

ores® coblv

12.4.3. By construction, we have a commutative diagram of lax unital local-to global functors

. (oblvl _,®1d)(12.18)
(oblvg, , ®1d) o Locg , © res? :

(oblvy, , ®1d) o (¢#°")), 0 Locg .

(12.4)0®¢T
nt
LOC%?Oh o oblv;ng(LG,)(G Nr o res?
Locg?oh ores® o oblv/(ggﬁc)(c»‘
SN globy*
(d)glob)* OMgCoh OOblV‘(Qg_;_L(g§G))N (¢ )*(12.4) (¢g10b)* OOblVlG’N ° LOCG,K

By adjunction, we obtain a diagram

(oblvfﬁyc,®1d)(12,19)

oblvl,  ®1d)o (Locy, . ores?)! ™V oblvl, . ®1d) o (¢8°").. o Loc
G’k G’k G,k B N

NT T=
[ ins.vac

oblvl, . ®1d)oLoc., . ores®) —_— oblvl,  ®1d) o (¢%"°P)!. o Loc
G’k G’k G’k =Gk

<<12.4)orcs¢)fin5-vaﬁ

=~/ a4+ ’
(LOCQCoh o oblv)(39+’(LG,§G Ne o @(ﬁ)

(E»E (G))ﬁ)fins.vac
——21t(G)

f ins.vac

(Locg,COh ores? o oblv

dl

[ ins.vac

((6°%)" 0 LocZ®™" o ably 325 - (@#40)" 0 obivL o Locg,,
[ ins.vac globyx . X

(¢5°P)* o (LOCQC oh § oblv égf(@(@) ) (eF77)"(25), (¢#°*)* 0 oblvl; , o Loc .,

where the bottom arrow is an isomorphism by Theorem 12.1.5 (for G).
12.4.4. Hence, to prove that (oblvfi’G, ® 1d)(12.19) is an isomorphism, it suffices to show that the

map

’ f ins.vac 4)ores® [ins.vac
(12.23) (Mg?oh o oblv£+(§,§c Nk o@aﬁ) ((12.4)0res®)

[ ins.vac
- ((oblvg,,n 1d) o Locg, . O@Q*)
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induced by

5 et (G, 12.4 4
Locg,COh 0 oblv{® < (E))x o res? ( l)&

1
o+ (@ (oblvgs , ®1d) o Locg, , © res?,
is an isomorphism.

Note that the map

ot [ ins.vac 4/ ins.vac
(@g/&m ° oblvg’;(sc/)(G ))K) 2y ((oblle/‘,i ®1Id) o Locy .

) [ ins.vac

)
induced by
~1 at .
Loc2™" o oblv ¥ %, (9" 9 (oblvky . @1d) o Locg .,
is an isomorphism, by Theorem 12.1.5 (for G’).

This implies that (12.23) is an isomorphism by Corollary 11.9.15.
O[Proposition 12.3.6]

12.5. Localization for unipotent group-schemes. Let N’ be a unipotent group-scheme over X.
We will make the following technical assumption: N’ admits a filtration by normal group-schemes with
abelian subquotients.

12.5.1. Consider the factorization category
KL(N') := £(n')-mod® .
Note that the critical level for N’ is zero. In particular, we have the self-dualites

(12.24) (£(n")-mod)" =~ £(n")-mod.

(12.25) KL(N")Y ~ KL(N).

Both dualities take place in the sense of unital factorization categories, see Sect. C.11.5.

12.5.2. Note that since £1(N’) is pro-unipotent, the forgetful functor
oblvgi (ysy : KL(N') — £(n')-mod

is fully faithful.

Recall also that the right adjoint

AvETND g(')-mod — KL(N')
of oblv g+ /) identifies also with the dual of oblv ¢+ (/) With respect to the self-dualities (12.24) and
(12.25).
12.5.3. Consider the (factorization) functor of semi-infinite cohomology with respect to £(n'):
BRST, : £(n')-mod — Vect.
In terms of the duality (12.24), the functor BRST,, is given by
(ky, =) £(n’)-mod,

where:

e k€ KLy/ C £(n)-mod is the trivial representation;
® (—,—)e(n)-moa denotes the pairing £(n’)-mod @ £(n")-mod — Vect, corresponding to (12.24).

Since k upgrades to an object of FactAlg"™ (X, £(n’)-mod), the functor BRST,s has a natural lax
unital factorization structure.
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12.5.4. The value of BRST,s on Vac(N') is

(12.26)  (k, Vac(N"))e(w)moa ~ (AvE N (&), Vac(N'))xpnr ~
~ (k, Vac(N'))kL(n7) = (K, Lrep(e+ (N7))) Rep(e+ (N1))»

where:

e (—, —)kr(n7) is the pairing KL(N') ® KL(N') — Vect corresponding to (12.25);

® lgepet(nty) € Rep(£T(N")) is the trivial representation;

® (—, —)Rep(e+(n’)) denotes pairing Rep(£7(N')) ® Rep(£7(N’)) — Vect, corresponding to the

natural self-duality of Rep(£t(N")), i.e.,
(V1, Vo) Rep(et+ (n7)) = HoMpepa+(n7)) (Lrep(at vy, Vi @ V2).
Denote

Q(ﬂ,) = inV2+(N/)(1RCp(S+(N/>)) ~ C(£+(ﬂ/)) c Fa,CtAlguntl(X).

Remark 12.5.5. Note also that Q(n’) is the commutative factorization algebra canonically isomorphic
to

Fact(Cepev (L)),
where:
e L. is the Lie-* algebra n’ ® Dx;

e For a Lie-* algebra L, we denote by C,., (L) € ComAlg(D-mod(X)) its cohomological Cheval-
ley complex, see [BD2, Sect. 1.4.10].

12.5.6. Hence, from (12.26), we obtain
(12.27) BRST,(Vac(N')) ~ Q(n'),
as factorization algebras (in Vect).
In particular, the functor BRST,/ enhances to a functor
BRSTS™ : £(n')-mod — Q(n’)-mod ™",

By a slight abuse of notation, we will denote by the same symbols BRST,, and BRSTf,?h the
restrictions of the above functors along

KL(N') — £(n")-mod.
12.5.7. Let dx/ denote the integer dim(Bunyy).
Note that the canonical line bundle KBunN, of Bunyy, i.e.,
det(T* (Buny-)),
is canonically constant. Let [/ denote the corresponding (ungraded) line.

The material in Sect. 10 applies as-is to the group scheme N’ over X, so we can consider the
localization functor
Locys : KL(N")ran — D-mod(Buny).

Note also that since N’ is unipotent, the stack Bunys is quasi-compact. In particular, there is
no difference between D-mod(Buny/) and D-modc,(Buny/). Moreover, Buny/ is safe in the sense of
[DG1, Sect. 10.2] so the “constant sheaf”

k € D-mod(Buny-)
is compact, and the functor
C.dR(BunNU _) = %OmD—mod(BunN/)(Ea _)

is continuous.
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12.5.8.  Our next goal is to construct a natural transformation from the composition

(12.28) KL(N")Ran i O D-mod(Ran) CeBal ) Voer ~ NN Voot
to

(12.29) KL(N)ran % D-mod(Bunys) “* 257 vieet,

ie.,

(12.30) (Ce(Ran, —) o BRST,) ® [y/[0n/] = Cyr(Buny, —) o Locy .

12.5.9. Let us interpret C g (Buny/,—) o Locys as
(12.31) (WBun ./, Locns (=) Bun y 5
where
(=, =)Bun,, : D-mod(Buny/) ® D-mod(Buny/) — Vect
is the Verdier duality pairing.
Using Proposition 10.5.7, we rewrite (12.31) as
(12.32) (T N7 Ran(WBun . )s =) KL(N ) gan @ In7[On7],
where
(= =KLV Ran

is the self-duality on KLy’ gan induced by (12.25).

12.5.10. Note now that for any x € Ran

levely

I"*"(Buny, *,wWBuny/)
(see Equation (10.8) for the definition of Frcn(BunI:,\,'61£, —)) receives a map from

['(Bunyy, oblv' (WBuny,)) ~ L'(Buny/, OBuny )s

and hence from
k — T'(Bunn, OBun,yy, )-

Furthermore, it is easy to see that the resulting map

ren levely,
k— I""(Buny, “,wWBuny,)
in Vect upgrades to a map
ren level enh
E—T""(Buny, *,wBuny, )" = I'nte(WBuny, )

in KL(N").
Making x move in families over Ran, we obtain a map
kran — I'n/ Ran(WBun , )-
12.5.11. Thus, we obtain a map
(12.33) (kRran, —)KL(N"),Ran ® In'[0n7] = Car (Bunys, —) o Locy: .

Finally, we note that the functor
(kRan, —)KL(N’),Ran KL(N")Ran — Vect
identifies with
KL(N )ran 25" Domod(Ran) “* 55 ™ Vect .
Combining with (12.33) we obtain the desired map (12.30).
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12.5.12. We will prove:®!

Theorem 12.5.13. The natural transformation (12.30) becomes an isomorphism after precomposing
with the endofunctor

/ins. vac : KL(N')ran — KL(N")ran.
12.5.14. Let us reformulate Theorem 12.5.13 in more concrete terms. Note that we can rewrite the
precomposition of (12.28) with [ ins. vac as

BRSTS}! cfact (x,0n'),— — @/ [6 57
(12.34) KL(N)ran o8 Q()-modfet & A7) oo ~Or Pl yoet

Further, since the functor Locy- has a unital structure, the precomposition of (12.29) with f ins. vac
is canonically isomorphic to (12.29) itself.

Hence, Theorem 12.5.13 implies:
Corollary 12.5.15. There ezists a canonical isomorphism between (12.34) and the functor (12.29).

12.5.16. Variant. Consider the Lie algebra I'(X,n’), and let x™° be its character. The datum of x™*°
gives rise to a factorization character
X : £(n') = Ga,

trivial in £7(n’), and a map

XgIOb : Buny: — Gg.

Let BRST,/ , be the x-twisted version of the semi-infinite cohomology functor, i.e.
BRST, (=) = BRSTw (— ® ).
Note that
Vac(N') ® x ~ Vac(N').
Hence,
BRST. , (Vac(N')) ~ BRSTw (Vac(N')) ~ Q(n')

as factorization algebras.

Let BRST?}‘}; be the enhancement of BRST,/

BRST™" : £(n')-mod — Q(n')-mod™".

12.5.17. As in (12.30) one constructs a natural transformation
(12.35) (C.(Ran, —) 0o BRSTy ) ® [y [0x+] — Cir(Bunys, — ® X" (exp)) o Locy .

And parallel to Theorem 12.5.13, we have:

Theorem 12.5.18. The map (12.35) becomes an isomorphism after precomposing with
/ins. vac : KL(N')Ran — KL(N')Ran.

Corollary 12.5.19. There exists a canonical isomorphism between

BRST}" cfact (x,0(n'), — — @l (87
(12.36) KL(NM)ran 3 Q(0)-modfzet & M) yroep ~#r Pl yrocq
and
, oy % C: un s, —
(12.37) KL(N )ran =¥ D-mod(Buny+) ~ 25 Domod(Buny:) % ™) Ve,

12.6. Proof of Theorem 12.5.13.

51This result is established in [CF, Theorem 4.0.5(4)]. We will provide proof for completeness.
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12.6.1. Since £7(N') is pro-unipotent, the category Rep(£*(G)) is generated by Lge,(e+(n))- And
hence the category KL(N') is generated by Vac(N'). Therefore, KL(N')Rran is generated by Vac(N')ran
as a D-mod(Ran)-module category.

By unitality, for both sides in Theorem 12.5.13, tensoring the source by an object ¥ € D-mod(Ran)
has the effect of tensoring the target by C.(Ran,J). Hence, it is enough to show that the map in
Theorem 12.5.13 evaluates to an isomorphism on Vac(N’)Ran.

12.6.2. By construction, the left-hand side is
CRY(X;Q(n')
(see Sect. 11.9.7 for the notation).
By (10.29), we have
Locn (Vac(N)ran) = ind' (OBun,, )-
We rewrite

ind'(OBuny,) ~ ind" (WBun,, ) =~ ind" (OBun,y, ) @ [n/[On7].

Hence, the map in Theorem 12.5.13 becomes a map
(12.38) CPX;Q(n')) — D(Bunys, OBuny, )-

The fact that (12.38) is an isomorphism is well-known. For completeness, we will supply a proof in
the next subsection.
12.6.3. The material in the rest of this subsection is not logically necessary, except for the example
considered in Sect. 12.6.7.

According to Remark 12.5.5, the factorization algebra Q(n’) can be thought of as the factoriza-
tion algebra associated to the cohomological Chevalley complex of a Lie-* algebra. Let us consider
Cfet(X; Q(n')) in this paradigm.

Let L be a Lie-* algebra, whose underlying D-module is classical, finitely generated and projective
(as a D-module). Consider its cohomological Chevalley complex

Cihev (L) € ComAlg(D-mod(X)).
Denote
Q(L) := Fact(Cypev (L)) € ComAlg(FactAlg(X)),

and consider
C™ (X, Q(L)) € ComAlg(Vect).
Unfortunately, we do not have a good grip on what C™*(X, Q(L)) looks like.
12.6.4. Note that C,., (L) is naturally written as
(1239) C;:hev (L) =~ lim C;:hev(L)n,
where C., (L) € ComAlg(D-mod (X)) is the n-step cohomological Chevalley complex.
Note, however, that the assumptions on L imply that for every n, the composite map
T="(C(L)) = C (L) = C(L)n

is an isomorphism (here 757 refers to the left D-module structure, i.e., one for which oblv! is t-exact).

So, in the formation C, (L) no “actual completion” is involved.
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12.6.5. Denote
Q(L)rn := Fact(Cepey (L)n) € ComAlg(FactAlg(X)).
Set:

C(X, QL))" = Tim O™ (X, (L))

Unlike C™°(X, Q(L)), the algebra C™*(X, Q(L))" can be described explicitly. Namely, according
to [BD2, Proposition 7.4.1],

C™ (X, QL))" ~ Crpev (Car (X, L)) = Cenev.. (Car (X, L))",

where:
e Cygr(X, L) is considered as a Lie algebra (in Vect);

e Cihov(—) and Cghev,.(—) are the cohomological and homological Chevalley complexes of a Lie
algebra, respectively.

12.6.6. The map — in (12.39) gives rise to a map
(12.40) CP(X, QL)) — CP (X, QL))"

but this map is in general not an isomorphism.

12.6.7. Example. Let L be abelian. Denote L := D(L)[—1]. Then
Conev (L) = Sym'(D(L)),
and hence
CPH(X, (L)) ~ Sym(Can (X, D(L))) = Sym(Cqr (X, L) [-1]).
By contrast,
Conev(Car (X, L)) =~ Sym(Car (X, L)[-1])".

So the difference between the two sides in (12.40) in this case is that between a polynomial algebra
and its completion.

12.6.8. The map (12.40) is the best approximation to C™*(X,Q(L)) that we have in general. In
certain situations, it allows us to recover C°*(X, Q(L)) completely.

This happens, for example, if L carries a strictly positive grading. In this case, the map (12.40)
defines an isomorphism on each graded component. l.e., we have

(X, QL)) ~ (CPNX, QL)) ~ Copey (Car (X, L) ~ (Cene, (Car (X, L))", dez~°.
Note, however, that C?*(X, Q(L))" is not the direct sum of its graded pieces. Rather,
(CP (X, QL)) = lim C (X, QL))"
Remark 12.6.9. Using cohomological truncations on powers of X one can show:

(i) Cfet(X, QL)) is coconnective.
(ii) Suppose that L is such that H°(Cyr(X, L)) = 0. Then C®*(X, Q(L)) is classical.

12.7. Global functions on the moduli space of bundles for a unipotent group-scheme.
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12.7.1. Let Y be a D-prestack over X. Let A € ComAlg(D-mod(X)) be the algebra of global functions
on Y, and let A = Fact(A) € ComAlg(FactAlg(X)) be the corresponding factorization algebra (see
Sect. B.10.2).

Recall that by (F.3), the evaluation map
Sectv (X, Y) x X =Y
gives rise to a map
(12.41) CP(X, A) = T(Secty (X, Y), Osecto (X,9))s

Unwinding the construction, it is easy to see that the map (12.38) is the map (12.41) for Y =

Jets(pt /N'), where
, (C.44)
Q) = Op yet(vy = Fact(Ogers(pt /n7))

and
Secty (X, Jets(pt /N')) ~ Sect(X,pt /N') ~ Buny- .

Thus, we need to show that (12.41) is an isomorphism in this case.

Remark 12.7.2. Recall that (12.41) is an isomorphism for Y that is affine over X, see Proposition F.1.4.
So we want to prove that Y = Jets(pt /N’) is not too different from the affine case.

The proof below follows closely that of Proposition F.1.4.
12.7.3. First, we will show that the map (12.41) induces an isomorphism
(12.42) Maps(Spec(R), Sectv (X, Jets(pt /N'))) —
— Mapscomatg(veet) (L'(Secty (X, Jets(pt /N)), Osecty (x,5ets(0t /N7)) ) B) =
— Mapscomaig(vect) (CP(X, Opy o+ (vry)s R)
for R € ComAlg(Vect=").

This essentially follows from the fact that Jets(N') is pro-unipotent, and hence Jets(pt /N') is as
good as affine®? (see Sect. 12.7.5 below for what this means), i.e., for R € ComAlg(D-mod(X)=°), the
map

(12.43) Maps y v (Specy (R), Jets(pt /N”)) — Mapscomalg(D-mod(x)) (Odets(pt /N7), R)

is an isomorphism.
12.7.4. In more detail, for R € ComAlg(Vect=") we have:

(12.43)

(12.44)  Maps(Spec(R), Sectv (X, Jets(pt /N'))) = Mapsx ¢ (Spec(R) x X, Jets(pt /N")))
> Mapsgomalg(D-mod(x)) (Odets(pt /N7y, B ® Ox).
Using Corollary C.9.5, we rewrite the expression in the right-hand side in (12.44) as
(12.45) MapSComAlg(Vect)(C'faCt(X7 Opt s2+(n7y)s RR)-
Combining (12.44) and (12.45), we obtain an isomorphism
Maps(Spec(R), Sectv (X, Jets(pt /N'))) ~ MapscomAlg(Vect>(CAfaCt (X, 004 /04 (vy)s R)s
and unwinding the definitions we obtain that this isomorphism equals the map in (12.42).

12.7.5. Let us call a prestack Z as good as affine if the functor
I'(Z,—) : QCoh(Z) — Oz-mod

is an equivalence.

52Up to issues of renormalization, which are irrelevant here.
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12.7.6. Let R be an object of ComAlg(Vect). Define the prestack “Spec(R)” by
Maps(Spec(R'), “Spec(R)”) := Mapscomaig(veer) (R B), R’ € ComAlg(Vect=?).
Note the formation of “Spec(R)” is functorial in R. In particular, we obtain a map
(1246) R~ MapsComAIg(Vect) (k[t]v R) - Ma’ps(“ SpeC(R)”7 Spec(k[t])) =
~ Maps(*Spec(R)”, A') ~ T(“Spec(R)”, Oxspec(ry*)-

We shall say that R is “as good as connective” if:

e The prestack “Spec(R)” is as good as affine;
e The map (12.46) is an isomorphism.

12.7.7.  Thus, given that (12.42) is an isomorphism, we need to show that C™(X, Q(n’)) is as good
as connective.

We will now use the assumption that N’ admits a filtration by normal subgroups with abelian
quotients. We will argue by induction on the length of such a filtration.

12.7.8. We first consider the base of the induction, i.e., case when N’ is a vector group-scheme, i.e.,
is the total space of a vector bundle & on X. In this case, the computation of C°*(X, Q(n’)) has been
performed in Sect. 12.6.7.

We obtain that C™*(X, Q(n)) is (non-canonically) isomorphic to the tensor product
Sym(V1) ®@ Sym(Vz[-1]),
where V1 and V4 are classical finite-dimensional vector spaces.

It is clear that the tensor product of two algebras both of which are as good as connective is itself
as good as connective. Hence, it remains to see that algebras of the form Sym(V[—1]), where V is a
classical finite-dimensional vector space, are as good as connective.

However, this is well-known: in this case
“Spec(Sym(V[-1]))” = pt /V”
and the assertion is manifest.
12.7.9. We now perform the induction step. Thus, we fix a short exact sequence
1—- Ny —> N — Ny =1,
where N} is a vector group-scheme.
We observe:

Lemma 12.7.10. Let R1 — R be a map of commutative algebras in Vect. Assume that:
e Ry is as good as connective;
e For any homomorphism R1 — R’ with R’ connective, the base change R’ @ R is as good as
Ry
connective.

Then R is as good as connective.

We apply this lemma to
R:=C™"(X, Q1)) and R, := C™"(X,Q(n})).
By the induction hypothesis, C™*(X, Q(n})) is as good as connective. Hence, it remains to show
that for any connective R’ and a homomorphism
CPUX, Q) — R,

the algebra
R ® (X, Q)

Clact(X,Q(n}))
is as good as connective.
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12.7.11. 'We now apply Lemma C.9.14, and hence we can rewrite

R/ Cfact(}?g( ’ )) C%‘aCt(X’ Q(nl)) =~ C.faCt (X7 (2(1'1’)}2/)7
P se2(ny

where

Qg = Q") Q?’) (R’ ® wran) € ComAlg(FactAlg(X) ® R'-mod).
"1

12.7.12. Recall that
Q(n') ~ Fact(Clpey (L)) and Q(n}) ~ Fact(Chevi e, (Lw)),
where
Ly :‘(‘II(X)DX7 L“i:nll(X)Dx.

Hence, we can rewrite

Q(n/)R/ ~ Fact | Cipey (L) ® (R/ ® 0Ox)
Conev (Eay)
12.7.13.  We can interpret the datum of C***(X,Q(n})) — R’ as a map
/
Spec(R') — Buny; .
The adjoint action of Ni on Nj gives rise to an R'-family of twisted forms of N3, denoted Ny p/.
Consider the corresponding R'-family of Lie-* algebras

Ly

2,R’

/
=Ny Ry ®Dx .

We have
C;:hev(Ln/) } & (R/ ® OX) =~ C;:hev(Ln/

e (Eap) b
Thus, we can consider
Qny r/) € ComAlg(FactAlg(X) ® R'-mod)
and we obtain:
QW) = O™ (X, n )):
12.7.14. It remains to show that Cft(X, Q(nj /) is as good as connective.

Recall that n) is abelian. Hence, Néy g is R'-family of vector group-schemes. Hence, the required

assertion is a relative (over Spec(R’)) version of the case considered in Sect. 12.7.8.
O[Theorem 12.5.13]

12.8. Application: integration over (twists of) Buny via BRST.

12.8.1. Let Pr be a T-bundle on X. Consider the unipotent group-scheme Np,.. Denote the corre-
sponding moduli stack Buny,, ; note that it identifies with Buny ;. (see (9.3)).

The resulting map
Buny,, ~ Buny,p; 2 Bung
can be thought of as

—1
XP o taut
Buny,, — Bung,,, — Bung.

12.8.2. Since the restriction of k to n is trivial, we obtain that the restriction of the twisting T, along
p is canonically trivial. In particular, we have a well-defined functor

(12.47) pi. : D-mod,, (Bung) — D-mod(Buny 5.,.).
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12.8.3. Note that the embedding
Ny, — Gy,
gives rise to a map
L(pL) = Br,Pr
and this map lifts to the Kac-Moody extension.
In particular, we obtain a well-defined restriction functor

apq ,<taut

KL(G)x KL(G) .2y — KL(Nyp,).

Denote
Q(npr, 9)x = BRSTw,  (Vac(G)r,2,)-
This is a factorization algebra, which receives a homomorphism from Q(ng,.).
Thus, the composition

enh
BRSTS®

KL(G)x,p; — KL(Np,) — 7 Q(ng,.)-mod™"*

app staut
—

KL(G)x
further enhances to a (factorization) functor
BRSTE;™ : KL(G)x — Q(ngy, 8)x-mod ™",
12.8.4. We are going to prove:

Theorem 12.8.5. The composition

L " ! Cyr(Buny p,.,—)
(12.48) KL(G)«,Ran 2%* D-mod, (Bung) By D-mod(Buny 5,.) 5T Vet
identifies with the functor
BRST-enh cfact (x. _ —®! 5 ]
n ANXQMp 1 8) ko) N N
(12.49) KL(G)x,Ran T Q(np.,., g)-modficy —37 Vect LT Vet

where the notations dny, . and Ny, —are as in Sect. 12.5.7.

12.8.6. Proof of Theorem 12.8.5. First, we rewrite the functor

Locg, k. !

KL(G)k,Ran — D-mod.(Bung) By D-mod(Buny,p,.)
using (a Pr-twisted version) of Corollary 12.3.11.

We obtain that it identifies with

P ,taut

KL(G)N,Ran — KL(G)HaTT,Ran

[ ins.vac

KL(G)N,TT,Ran —

Locn,
— KL(Np, )ran — " D-mod(Buny.p,.).

By Theorem 12.5.13, the functor

Locp,

f Cyr(Buny »..,—)
KL(NTT)Ran —];T D-mod(BunNJaT) dr —N) Pr

Vect
identifies with

h
BRSTYS cfaet (X;Q(ng,.),—)

—®Ing, [N, ]
KL(Np, )ran — © Q(np,.)-modict — Vect PN

Vect .

The assertion of the theorem follows now by applying Corollary 11.9.13.
O[Theorem 12.8.5]
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12.8.7. Note that the same proof applies in the situation twisted by a character. Namely, ¢ be a
character of I'(X, np,.) as in Sect. 12.5.16.

Denote
Q(npyr, X, 8)r = BRSTw;  x(Vac(G)r,2r).

Consider the corresponding functor

BRST,%;;;‘jX (KL(G) = Qnp,., X, §)x-mod ™"

Then:

Theorem 12.8.8. The composition

Locg ! - ox
KL(G)x,Ran G D—modK(Bung)gD—mod(BunN,gaT) ®ﬁ 2
Cyr(Buny, p.,—)
— D-mod(Buny,p,.) TR Vect
identifies with the functor
BRSTE:°nh fact _
R ox oot (X (np 1 x08) s —) BNy, Ny, ]
KL(G)x,Ran 37 Q(np,, X, g)-modfsy =7 Vect 0T Vect

13. LOCALIZATION VIA THE INFINITESIMAL HECKE GROUPOID

This goal of this section is to prove Theorem 12.1.8. This will be based on the approach to the
localization functor via the infinitesimal Hecke groupoid, which was developed in the unpublished part
of the thesis of the eighth author of this paper.

We will then use these ideas to prove that the functor Locg . is almost a localization (i.e., its right
adjoint is fully faithful). Namely, it becomes a localization when we compose it with restriction to any
quasi-compact open substack, see Theorem 13.4.2.

13.1. Another take on the functor I'g.
13.1.1. Recall the local Hecke stack completed along the diagonal, viewed as a groupoid acting on
pt /&1 (G):
+ 4}:loc,/\ loc. A 7:100,/\ +
pt /£7(G) "<+ HeckeZ®" "— pt/L7(G).

Recall also that the datum of a level & gives rise to a multiplicative line bundle £°° on HeckeIGOC‘A7

see Sect. 10.1.1.

According to [CF, Sect. 3.3], we can identify the category KL(G), with the category

loc,A ,loc
7’L’€oc

Rep(£+ (G))HeckeG
of LI°°-twisted Heckey“"-equivariant objects in Rep(£*(G)).
Le., this is the category of M € Rep(£1(G)) equipped with an isomorphism

(13.1) (ZIOC»A)*(M) ~ L}?c ® (ZIOC,A)*(M)

(the isomorphism taking place in QCoh(Heckelgc’A)), equipped with a homotopy-coherent system of

compatibilities.
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13.1.2. Let inf(Bung) denote the infinitesimal groupoid of Bung, i.e.,
inf(Bung) := (Bung x Bung)”,
where (—)” means formal completion along the diagonal. Consider the corresponding diagram

. —.
inf inf

Bung b inf(Bung) LN Bung .
Note that the datum of the de Rham twisting T, gives rise to a multiplicative line bundle, to be
denoted £ on inf(Bung).

Let Z be a prestack mapping to Ran. Since Bung is eventually coconnective, it follows from [GaRo2,
Proposition 3.4.3] that we have a canonical equivalence

D-mod (Bung) ® D-mod(2) ~ (QCoh(Bung) ® D—rnod(Z.))inf(BunG)XZ’LE‘Hf
that intertwines the functor

(oblv!, ® 1d) : D-mod, (Bung) ® D-mod(2) — QCoh(Bung) ® D-mod(Z)
with the tautological forgetful functor

(QCoh(Bung) ® D-mod(2)) ™ Bume)* 2L Goh(Bung) ® D-mod(2).

The same applies when we replace Bung by its open substack U.

13.1.3. Note now that we have a tautological map of groupoids
(13.2) Heckef,%,"" — inf(Bung) x %
over Z.

By construction, the pullback of Linf along (13.2) identifies canonically with L8P a5 a multiplicative
line bundle.

From here we obtain that *-pullback along (13.2) defines a functor
(13.3) D-mod,.(Bung) ® D-mod(Z) ~ (QCoh(Bung) ® D-mod(Z))™ (Bume) <242

— (QCoh(Bung) ® D-mod(Z))Heeke&’z " 8"
that intertwines the forgetful functor
(oblvl, ® Id) : D-mod, (Bung) ® D-mod(Z) — QCoh(Bung) ® D-mod(Z)
with the tautological forgetful functor
(QCoh(Bung) ® D-mod(2))1e*&’2 " £5*" _, QCoh(Bung) ® D-mod(2).
Denote the functor (13.3) by

Oblvinf—yHeckeA pa

13.1.4. Let U C Bung be a quasi-compact open substack. Note that it makes sense to restrict
Heckegclf’;’/\ to U:

— —
(h®°PM)"HU x 2) =: Hecke& %y =: (R®°"") "1 (U x 2).
The contents of Sect. 13.1.3 apply over U as well, and we obtain a functor, denoted
Oblvinf—yHeckeA,Z,U
that maps
(13.4) D-mod,.(U) ® D-mod(Z) ~ (QCoh(U) @ D-mod(Z)) ™ Burv)x 2L

lob, ~glo
— (QCoh(U) ® D-mod(2))e™ e 20 48"
and that intertwines the forgetful functor
(oblv, ® Id) : D-mod,,(U) ® D-mod(Z) — QCoh(U) ® D-mod(Z)
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with the tautological forgetful functor

ob,A glob
Lh",

(QCoh(U) ® D-mod(2))=**&20 8" _y QCoh(U) ® D-mod(2).

13.1.5. Assume now that U is quasi-compact. Let j denote its embedding into Bung. Consider the
diagram:

— —
7, glob, A glob,n R EOPA
Ux2 & HeckeP) 0 Uxz

(13.5) evz,,Ul l leVZ,U

<;mc,A Zloc A

(bt /£5(@))z ——— Heckegy" ——— (pt/LH(G))z,
where evy i := evy 0.
Since both squares in (13.5) are Cartesian, we obtain that the functor®®
(evz,v)+ : QCoh(U) ® D-mod(Z) — Rep(pt /£ (G))z
gives rise to a functor

lob, o ec eloc,A loc ect. 1.
(13.6) (QCoh(U) ® D-mod(2))1°HEZ 045" _ (Rep(27(G))z) 02 44" St B k@), 2.

We will denote the functor (13.6) by

(eVZ U)Hecke/\ -enh
2, U ) * .

13.1.6. Composing, we obtain that the functor
(evz,u)« 0 (oblvh ® Id) : D-mod,, (U) ® D-mod(Z) — Rep(£T(G))=
lifts to a functor

Hecke” -enh
(evz,u)y 00blv; ¢, HeckeN,2,U
—

(13.7) D-mod, (U) ® D-mod(Z) KL(G)w,z-

s

13.1.7. It follows from the construction of the identification

loc, A loc
HeckeG,Z ;L0

(13.8) (Rep(£7(G))2) ~ KL(GQ)x.2
that the functor
(eVZ,U)Ia:IECkeA o oblviu Hecker ,2,U

of (13.7) identifies canonically with the functor
Ta k2,0 :=Ta k2 0 Jxco

so that the diagram

g8t ~ 5ot
Oblv’(gg;lzc)(c))x o (eVZ,U)I;IeCkeA -enh ° 0b1vinf—>Hcckc/\,Z,U _~ Oblv’(ggi}zc)(c))m ° FG,N,Z,U
(evz.u)« o (oblvh ® Id) — 5 (eva.u)s o (oblV. ®1d)

commutes.

13.2. The functor Locg,, and the infinitesimal Hecke groupoid.

53Note that as in Remark 10.2.8, the difference between Rep(£+(G) and QCoh(pt /£T (G)) is immaterial here.
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13.2.1. Let U C Bung be a quasi-compact open substack, and let Z be a space mapping to Ran.
By the same logic as in Sect. 13.1.5, the functor
(eva,u)* : (pt /£ (G))Ran — QCoh(U) ® D-mod(Z)

lifts to a functor
loc,A

~loc ob, glo
(139)  KL(G)uz = (Rep(£7(G))2) ™55 " 5 (QCoh(U) ® D-mod (%)) eee& =048

to be denoted
*,Hcckc/\ -enh
(eVz,}U) .

)*,HeckeA -enh Hecke” -enh

Furthermore, the functors (evg,u and (evz,u)s are adjoint.

13.2.2. Denote by MI° the (factorization) monad

@LeT(G)e s GGk
0b1v£+(c;) olndﬂﬂc)

acting on Rep(£1(Q)).
Denote by MilyoztjU the monad acting on QCoh(U)®D-mod(Z), corresponding to the forgetful functor
lob, z1o
(QCoh(U) ® D-mod(2))***& .04 — QCoh(U) © D-mod (%)
and its left adjoint.

By adjunction, we obtain that the functor ev} ;; intertwines the monads M€ and Mi{OZb,U, i.e., we

have a commutative diagram
Rep(£(G))z —=%s QCoh(U) ® D-mod(2)
(13.10) e Tz,

Rep(£+(G))z — Y5 QCoh(U) ® D-mod(Z).

13.2.3. The diagrams (13.10) are compatible under inclusions U; C Us. Passing to the limit over U,
we obtain a commutative diagram

¢

Rep(£1(G))z —=2— QCoh(Bung) ® D-mod(2)
(13.11) ML?CT TMi{oZb
Rep(£(Q))2 BRI QCoh(Bung) ® D-mod(2),
where Mil’ozb = MillejU fot U = Bung.
13.2.4. Let M}{“fz denote the monad
(oblv!, o ind®) ® 1d
acting on QCoh(Bung) ® D-mod(2).
The map of groupoids (13.2) gives rise to a map of monads
MEP — M.
In particular, we obtain a diagram

(13.12) QCoh(Bung) ® D-mod(2) —2—> QCoh(Bung) ® D-mod(2)
Mslozl') Miﬁnfz,

QCoh(Bung) ® D-mod(Z) — QCoh(Bung) ® D-mod(Z)
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Concatenating diagrams (13.11) and (13.12) we obtain a diagram

(LocZ°M),

(13.13) Rep(£T(Q)) — QCoh(Bung) ® D-mod(Z)
Mo Mt
Rep(£7(@))= QCoh(Bung) ® D-mod(Z)
(Locgco}l)z

It follows from Sect. 13.1.7 that diagram (13.13) identifies with the outer diagram in

(LOC(Q;COh>

(13.14) Rep(£7(G))z  ~ QCoh(Bung) ® D-mod(2)
oblvgj:(:g)(c))“ oblvl,
KL(G)x,2 — D-mod, (Bung) ® D-mod(2)
indgﬁ(‘;(c;))n indl.
Rep(£7(Q))z (oo QCoh(Bung) ® D-mod(2),

in which the lower square is (the base change along Z — Ran) of (10.16), and the upper square is
obtained from the lower square by passing to adjoints along the vertical arrows.

13.3. Proof of Theorem 12.1.8. We are now ready to prove Theorem 12.1.8.

13.3.1. We wish to show that the natural transformation in

(LoeG ™™ panc
Rep(£7(G))ranc QCoh(Bung) ® D-mod(Ran®)
oblvg’jr?;)(c))“ oblvi ®Id

KL(G)

N

k,Ran

D-mod,, (Bung) ® D-mod(Ran€<)

(LOCG*"')Rang

becomes an isomorphism, after we:

e We precompose with ins. vacran : KL(G)x,Ran = KL(G),; ganc;
e Postcompose with Id ® C.(Ran<, —).

Since the essential image of

o 1327 (@)k
ind {7 " : Rep(£1(G))ran — KL(G)x Ran

generates the target, it is sufficient to show that the natural transformation becomes an isomorphism
when we further precompose with this functor.
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Thus, we obtain the diagram

(13.15)

(LOC%COh)

Ran&

Rep(£7(G))ranc

oblv (@ @)k
et (@)

QCoh(Bung) ® D-mod(Ran<)

oblv! ®Id

KL(G)A,Rang

ins.vacran

(Locg,k)ganC

D-mod, (Bung) ® D-mod(Ran®)

1
Id ®(Premalt)’

KL(G)x,Ran D-mod, (Bung) ® D-mod(Ran)
(LOCG,K,)R.B,I]
indilﬂ+"((:g)(c))“ ind!, ®Id
Rep(£(G))ran (Loaa%om QCoh(Bung) ® D-mod(Ran),
Locg °")Ran

which we then compose with

Id ® C.(Ran<, —) : QCoh(Bung) ® D-mod(Ran<) — QCoh(Bung),

and we need to show that the resulting natural transformation commutes.

13.3.2.

Consider the commutative diagram obtained by concatenating the lower two squares in (13.15).

It is easy to see that it identifies with the outer diagram in

KL(G)H,Rang
ind;aﬁ;(cm
Rep(2 (e oottt
Rep(£7(G))ran (Locd™ ) ran

(LOCG”"’)Rang
— 1 Tans

D-mod, (Bung) ® D-mod(Ran<)
Tindg@d
QCoh(Bung) ® D-mod(Ran®)
Tld ®(Preman)’

QCoh(Bung) ® D-mod(Ran).
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Hence, instead of (13.15), we can consider the diagram

(LOCgCoh)

ang
(13.16) Rep(£7(G))ranc = QCoh(Bung) ® D-mod(Ran<)
oblv?_;f();)(c))“ oblvl ®1d
KL(G),. ranc D-mod, (Bung) ® D-mod(Ran®)
(LocG k) gans
ina@ ST (@) ;
1nd£g L(g) G 1ndf€®1d
Rep(£7(G))ranc S QCoh(Bung) ® D-mod(Ran®)
<L0CG D])Rang
ins.vacran Id ®(prsmall)!
Rep(£(G))ran qcem, QCoh(Bung) ® D-mod(Ran).
(Locg™ " )Ran

13.3.3.  Using Sect. 13.2.4, we can replace (13.16) by the diagram

(LOCQCoh) .
(13.17) Rep(£7(G))panc 9 RS . QCoh(Bung) ® D-mod(Ran®)
Mo M anC
Rep(L£1(G))ranc aoon QCoh(Bung) ® D-mod(Ran®)
(LOCG ° )Rang
ins.vacran 1d ®(prsmall)!
Rep(£1(G))ran Looa0en QCoh(Bung) ® D-mod(Ran).
LDCG ° )Ran

We further rewrite (13.17) as the outer diagram in

(13.18)
QCoh
4 (Loeg ™ DRanc 1d
Rep(£T (G, < QCoh(Bung) ® D-mod(RanS) ————————> QCoh(Bung) ® D-mod(RanS)
loc mslob minf
M rc,Rang x,RanS
. 1d
Rep(et (@) o Yo QCoh(Bung) ® D-mod(RanS) ———————— QCoh(Bung) ® D-mod(Ran<)
(LocG )Rang
. 1
ins.vacRan 1d ®(Praman)’ 14 ® (Prgman)’
1d
Rep(g+(c))Ran QCoh(Bung) ® D-mod(Ran) —————— > QCoh(Bung) ® D-mod(Ran).

Cot
(LOCCQ; “"Ran
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13.3.4. The left portion of (13.18) commutes. Hence, it is enough to show that the outer diagram in

Id

QCoh(Bung) QCoh(Bung)
1d® C,(Ran<,—) Id ® C,(Ran<,—)
(13.19) QCoh(Bung) ® D-mod(Ran<) Hd QCoh(Bung) ® D-mod(Ran)
M M RS

Id

QCoh(Bung) ® D-mod(Ran) QCoh(Bung) ® D-mod(Ran)

1 1
Id ®(Preman)’ Id ®(Prsmal)’

QCoh(Bung) ® D-mod(Ran) Id

QCoh(Bung) ® D-mod(Ran).

commutes.

We will show that already the diagram

Id

QCoh(Bung) ® D-mod(Ran) QCoh(Bung) ® D-mod(Ran)

Id ®(Prsman)t Id @ (Prsman)t
(13.20) QCoh(Bung) ® D-mod(Ran&) M QCoh(Bung) ® D-mod(Ran&)
MG M anC

1d

QCoh(Bung) ® D-mod(Ran) QCoh(Bung) ® D-mod(Ran)

1 1
Id ®(Preman)’ Id @(Prsmar)’

QCoh(Bung) ® D-mod(Ran) d

QCoh(Bung) ® D-mod(Ran).

commutes.

This is a particular case of the next assertion:
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Theorem 13.3.5. For any Z — Ran, the natural transformation in the diagram

QCoh(Bung) ® D-mod(Z) M QCoh(Bung) ® D-mod(Z)
Id ® (Prsman)t Id ® (Prsman)t
QCoh(Bung) ® D-mod(Z5) “ QCoh(Bung) ® D-mod(Z5)
QCoh(Bung) ® D-mod(ZS) H QCoh(Bung) ® D-mod(25)
1d ®(Proma, z)' 1d @ (Proma, z)'
QCoh(Bung) ® D-mod(2) M QCoh(Bung) ® D-mod(Z).

induced by the map of monads
Mil,ozbg - ML“,‘;Q,
is an isomorphism.
This theorem is a particular case of [Ro2, Theorem 4.3.6], combined with Remark 4.5.6 in loc. cit.
O[Theorem 12.1.8]

13.4. Localization is (almost) a localization.

13.4.1. The goal of the next few subsections is prove the following assertion:

Theorem 13.4.2. Let U < Bung be a quasi-compact open substack. Then the functor
Locg,w,u :=j oLoca,k, KL(G)kRan — D-mod, (V)
is a localization.?*

13.4.3. We first consider a version of Theorem 13.4.2 when instead of D-mod,.(Bung), we take
QCoh(Bung).

Consider the local-to-global functor

Loc2°" Rep(£"(G)) — QCoh(Bung) ® D-mod(Ran).

For an open substack U C Bung, denote

LOCQCoh

e == j" o Locg®",  Rep(£7(G))ran — QCoh(U).

We will prove:®®

Theorem 13.4.4. If U is quasi-compact, then the functor Locg%)h is a localization.

54I.e., its right adjoint is fully faithful.
55A more general assertion, of which Theorem 13.4.4 is a particular case, appears in [GLC4, Proposition C.1.7].
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13.4.5. Consider the following general paradigm: let
F C1 — C2

be a continuous functor between compactly generated categories. Assume that F' preserves compact-
ness.

Let
pfekeor . oV oY

be the conjugate functor, i.e.,
Ffakefop _ (FR)V.
In other words, Ff P is the ind-extension of
c Cc\ O °p Cc\O (&
(CY)e =~ (C5H™ £5 (C5)™ ~ (Cy)°.
Let uc, € C; ® Civ be the unit of the duality. Note that we have a canonically defined map
(13.21) (F ®@ F™P)(ug,) — uc, -
Namely,
(F @ F™P)(ug,) = (F @ 1d) o [d@F™P)(uc,) = (F @1d) o (Id @(F")")(uc, ) ~
~ (F®Id)o (FE®1d)(uc,) = (Fo F*) @ 1d)(uc,) — uc, .
13.4.6. The following is elementary:
Lemma 13.4.7. The functor F is a localization if and only if (13.21) is an isomorphism.

13.4.8. We will prove Theorem 13.4.4 by applying Lemma 13.4.7 to C; := Rep(£"(G))ran, C2 =
QCoh(U) and F := Locg G

. .. Coh
First, it is easy to see that LocQ % preserves compactness.
) G, U

13.4.9. We have a canonical self-duality
(13.22) Rep(£7(G))Y ~ Rep(£7(G))
as a factorization category. Its unit object ugey(e+(e)) is the regular representation
Ret(g) € Rep(£7(G)) ® Rep(£7(Q)),

which has a natural structure of (commutative) factorization algebra.

From (13.22) we obtain a self-duality
(13.23) (Rep(£7(G))Ran)" =~ Rep(£1(G))Ran.

The unit Ugep(s+ (), ©F (13:23) is given by the image of

Rt (6).ran € (Rep(£7(G)) ® Rep(£7(G)))ran

under

(Rep(£7(G)) @ Rep(£7(G)))ran =

= (Rep(£+(G))Ran @ Rep(2+ (G))ran) & D-mod(Ran) t ®ﬁ§a“)]
D-mod(RanXxRan)
— (Rep(£7(G))ran ® Rep(£7(G))ran) ® (D-mod(Ran) ® D-mod(Ran)) =

D-mod(RanxRan)

= Rep(£"(G))ran ® Rep(£" (G))Ran-
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13.4.10. With respect to the canonical self-duality
QCoh(U)" ~ QCoh(U),
we have
(LOCQCJh)fakc—op ~ Locgclfh .

From here we obtain

fake-op

Co Co Co Co
(LOCQ h®(L0CQ ) (URep(e+(6))pan) = (LOCQ h®L0CQ h) 0 (ARan)1(Re+(G),Ran) =

N QCoh
~ Locgiaux U(R£+(G),Ran)v

see Sect. C.5.15 for the latter isomorphism.
Thus, the map (13.21) is a map

Co
(13.24) Locg % v (Ret (@) ran) = (DBung )« (OBung)-
13.4.11. Hence, by Lemma 13.4.7, in order to prove Theorem 13.4.4, we have to show that the map

(13.24) is an isomorphism.

The latter is obtained by repeating verbatim the proof of [AGKRRV, Theorem 12.6.3], see also
Remark 12.6.6 in loc. cit.
O[Theorem 13.4.4]

13.4.12. 'We are now ready to prove Theorem 13.4.2. We will give two proofs: one in Sect. 13.5 and
another in Sect. 13.6.

13.5. First proof of Theorem 13.4.2.

13.5.1. We need to show that the functor
Tgk,u : D-mod.(U) = KL(G)x,Ran
is fully faithful.
For Z — Ran, we interpret the category KL(G),,z as
ec eloc,/\ loc
(Rep(£F(@))z) "0 on
We interpret the functor I'g,.,v as a composition

oblvi, ¢ HeckeN Ran,U
—

(13.25)  D-mod,(U) " 225*" D-mod, (U) ® D-mod(Z)

Lglob (EVRan U)He(‘ke -enh
s

—+ (QCoh(U) ® D-mod(Ran))"***& Km0

Heckel9%:" L loc

— (Rep(£+(G))Ran) G.Ran'™x
where:
® 0blvins ,Hecker Ran,u 1S the functor (13.4);
e (eVRan, U)H“ke -enh is the functor (13.6).
We will show that (13.25) is a retract of a fully faithful functor®® and is therefore itself fully faithful.
Remark 13.5.2. Here is the reason the retraction appears:

There are two copies of the Ran space that play a role: one is in Theorem 13.4.4, and the other is
Theorem 10.1.5. To achieve fully faithfulness of (13.25), we need both of these copies, and that is how
that Ran space becomes “doubled” in the guise of Ran®.

We then pass from RanS to just Ran, but at the expense of replacing the original fully faithful
functor (13.27) by its retract.

56\we say that a functor F': C — D is a retract of a functor F; : C — D; if there exists a retraction D i> D, ﬁ) D
so that Fi ~ ¢ o F and F ~ Fy o).
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13.5.3. Note that the pullbacks of Heckelco’cr’{;n along prg,.; and pry,;, give rise to a well-defined
groupoids on (pt /£ (G))ganc; we will denote them by

loc,A loc,A
HeCkeG,Rang,small and HeCkeG,Rang,big’

respectively.

. loc,A . .
The unital structure on Heckeg g, gives rise to a map

loc,A loc,A
(13.26) Hecke [ 1 ¢ cman — Hecke Sl e i

Similar definitions apply to Heckegflgégﬂ.

13.5.4. Consider the functor

0b1vinf~>HeckeA ,Ran,U
) —

(13.27)  D-mod.(U) [d@wgan D-mod, (U) ® D-mod(Z
— (QCoh(U) ® D-mod (Ran)) &R0 48"

glob, A glob
(pr )! c Hecke e L8
small QCOh(U) ® D—mod(Ran—) G,Ran>= ,small,U -
Hecke/\ -enh
(evRang )= small Heekelo® A toc
| (Rep(£* () ane ) CEman oman

Hecke?
where (evga,c p)x o

evyc y, cf. formula (13.4).

17" is the enhancement for the corresponding groupoids of the functor

13.5.5.  We claim that the functor (13.27) is fully faithful. In fact, we claim that it is a composition
of two fully faithful functors.

Namely, the functor

d Oblvin — Hecke an
D-mod, (U) " 22%5*" D-mod,(U) ® D-mod(Z) £ Hecke Ran,U
— (QCoh(U) ® D-mod (Ran)) <& Ran,v- 45"
is fully faithful thanks to [Ro2, Theorem 4.5.3] (c¢f. Theorem 10.1.5).

The fact that

(1328) (QCOh(U) ® D—mOd(Ran))HeCkeg?;;l/‘\‘vU’L%CIOb (Prsmal)’

A
cglob (ev )HeCkesmall -enh
A

glob, A
Hecke C RanC ,U’*

— (QCoh(U) ® D-mod(Ran< G RanC small,U’
©

Hecke!® " gloe

— (Rep(£+(G))Rang) G,RanS ,small’” # ,
is fully faithful is a formal consequence of the fact that

®VRanC small,U
=

(13.29) QCoh(U) ® D-mod(Ran) (Pramayn) QCoh(U) ® D-mod(Ran<) Rep(£7(G))ganc
is fully faithful, which is a parameterized version of Theorem 13.4.4:

Indeed, each side of (13.28) is obtained from the corresponding side of (13.29) as modules for the
corresponding monad, and the functor (13.29) intertwines the actions of these monads.
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13.5.6. 'We now claim that the functor (13.25) is a retract of (13.27).

Indeed, the corresponding functor

Heckel9%"  gloc Hecke!®®/ gloe

(Rep(£F(G))Ran) @R — (Rep(£7(G))panc)  GRanSoman’™"
is

loc, A ~loc
Hecl«eG’Ra",L,N

(13.30)  (Rep(£7(G))ran) -

Heckeloc’/\ loc

!
) G.RanS big’ ® 3

“’E (Rep(£+ (G))Rang )

Heckeloc,/\ rloc

— (Rep(£+(G))Rang) G,RanS ;small”” ® ,
where the second arrow is given by restriction along (13.26).

The functor

Hcckcloc’/\ ,Lloc loc, A , loc
(Rep(£%(G))ranc ) G Ran& small "y (Rep(iﬁ'(G))Ran)HeCkeG’Ram o
is given by
k loc, N ,/CIOC ia 1 ec! ClOC,/\ loc
(13.31) (Rep(£7(G))panc ) o menS cman ™ 128 (Rep(8%(@) oy ) oG Ran En

It is a straightforward verification that
(13.30) o (13.25) ~ (13.27) and (13.31) o (13.27) ~ (13.25).
O[First proof of Theorem 13.4.2]

13.6. Second proof of Theorem 13.4.2. In this subsection we will apply Lemma 13.4.7 directly to
the functor Locg,«,v to deduce the assertion of Theorem 13.4.2.

13.6.1. Let s’ := 2 - crit — x. Recall that the unit ukr(@), of the duality
(KL(G)x)" ~ KL(G) ./
is the (factorization algebra) object €DO(G), .7, see Sect. 2.2.3.

The dual of KL(G)k,ran identifies with KL(G),/ ran with the unit UKL(G), pan Of the duality being
the image of
(€DO(G),w JRan € (KL(G)x @ KL(G)x/ )Ran

under
(KL(G) @ KL(G) ) ran 2 (KL(G) ran @ KL(G) o7 o) ®  D-mod(Ran) " “25)
D-mod(Ranx Ran)
— (KL(G),Ran @ KL(G)/ Ran) ® (D-mod(Ran) ® D-mod(Ran)) =

D-mod(RanxRan)

= KL(G)N,R&[] & KL(G)»{’,Ran-

13.6.2.  We identify the category dual to D-mod,(U) with D-mod,(U) by means of the functor

%27 Demod, (U),

(D-mod,(U))" ~ D-mod_(U)
where we apply (10.27) to U instead of Bung and k instead of &'.
In terms of this identification, the unit up_mea, vy of the duality is given by
(jU X jU)*((ABunG )*(wBunG )/)7
where
(ABung )« (WBung ) € D-mod,;(Bung) ® D-mod,/ (Bung)
is the image of
(ABung )+ (WBung ) € D-mod, (Bung) ® D-mod_, (Bung)

under Id ®(10.27).



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 169

13.6.3. According to Proposition 10.5.7, with respect to the above dualities, the functor conjugate to
Locg,x,u identifies with Locg ./ -

We obtain

(Locg,r,ur ®(LOCG,,@,U)fake_Op)(uKL(G)N,Ran) ~ (Locg,k,u @ Locg ) © (ARan )1 ((EDO(G) s, v/ )Ran) =
=~ (ju x ju)" (Locaxa,(rn) (€DO(G)x,nr)) 5
see Sect. C.5.15 for the latter isomorphism.
Thus, the map (13.21) is a map
(13.32) (v % ju)" (Loca xG,(nx) (EDD(G) i, JRan)) = (Ju X ju) " (ABung )+ (WBung )')-

Hence, by Lemma 13.4.7, in order to prove Theorem 13.4.2, we need to show that the map (13.32)
is an isomorphism.

Remark 13.6.4. The maps (13.32) are compatible under U C U’. Hence, once we establish the isomor-
phism (13.32), we will have established an isomorphism

(13.33) Locgxa,(m,n) (EDD(G) 4,0 )Ran) =~ (ABung )+ (WBung ) -
13.6.5. We will show that the map
(13.34) (Id ®oblv,) o (Locg,x,v ® Locg w.v) (EDO(G) . n )Ran) — (Id @0bIvE ) (ABung )+ (WBung)')
in D-mod,.(U) ® QCoh(U), induced by the map (13.21), is an isomorphism.

This would prove that the map (13.21) is an isomorphism, since the fuctor Id ®oblvf£/ is conservative.
Remark 13.6.6. The idea of the proof that (13.34) is an equivalence is that we will identify this map
with the map obtained by applying ind}, ® Id to the map (13.24).

This is not completely automatic, since the functor the natural transformation

et (G
Loc2%" ooblv(;ﬂc)( Vel s oblvl, o Locg, /U

is mot an isomorphism.
However, the map in question will become an isomorphism when evaluated on €9O(G), ./, since
the latter is a unital factorization algebra.

13.6.7. Consider the functor

§.27(G)),./
oblvi:gﬂc> ) : KL(G) . — Rep(£1(@))

and the corresponding functor
KL(G)x,Ran — Rep(£7(G))ran,

. @ (@)
which we denote by the same character oblv, (@) .
Consider the object

@eT (@),
(Id ®oblv2+(G) )(uKL(G)N,Ran) ~

o
~ (Anan): © (1 @0blv % ) (€DD(G)w v )an) € KL(G) o @ Rep(€7(G))Ran-

Consider the object
(Id @0bIvE/ ) (Upmod, (7)) = (Id ®0blvi,) o (ju X ju)* ((ABung )+ (WBung)") € D-mod, (U) @ QCoh(U).

We claim that there is a canonically defined map

s,
(13.35)  (Locg,x,u ®Locg (™) o (Id ®oblvgj(c)<0>u YUKL(G) ) — (Id ®ObIVI) (U mod,. (1))-

Namely, the map (13.35) is the composition
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o A,£+ QG))..r
(Loc e, ®Loc@G™) o (Id@oblv &1 o\ ) (ukn(6),. )

@2£7(G)) ./

~ (Locg,s,u ®1d) o (Id® Locg’cl})h) o(Id ®0b1v2+<G> )(UKL(G) e ran) =

~ (Id® Locg ™) o (Id ®ob1vf+vf(~;§c;>>; ) o (Locgx,v ®Id) (UKL(G) . jran) =
~ (1d® Loc23") o (Id@oblv &5 (%) o (1d & (Loce 1)) (Up-mod, ) =
~ (Id® Locg ™) o (Id ®ob1v<j+f;)<c>>; ) o (Id®(Locg,wr, 7)) (UD-mod, (1)) =
— (Id ®(Locg%)h ooblvfﬁgc))“' o (LocG,,{/,U)R')> (UD-mod,. (1)) =
= (Id ®(oblvks o Locg. v v o(LocGYN,YU)R)) (UD-mod, (1)) — (Id ®ODIVL,) (Up-mod,. (1))

where the next-to-last arrow is induced by the natural transformation (12.5).

13.6.8. Note that by construction, the map (13.35) can reinterpreted as

et En. s
(13.36)  (Locg.x,u ® Locdy") o (Id ®0blv§:g+’L(G§G))ﬁ )(UKL(G) s pran) =
@£7(G)) o/

=~ (Locg,x,u ® Locd ") o (Id @oblv; )

)((QQD(G)N,R’)Ran) —

(13_<3;1)

— (Id ®oblvl,)) o (Loca v @ Loca wr .0) (EDO(G) x.x )Ran)
5 (1 20bIVL ) (Aung )+ (@Bung)') = (14 @ObIVL) (4D mod,. 1),
where the second arrow is induced by (12.5).

Note, however, that the fact that €DO(G),; v is a unital factorization algebra, we obtain that the
second arrow in (13.36) is an isomorphism, see Lemma 11.9.11.

Hence, we obtain that in order to show that (13.34) is an isomorphism, it suffices to show that
(13.35) is an isomorphism.

13.6.9. Consider now the functor

. A, + ™
1nd;’3+?c)(c)) : Rep(£1(@)) — KL(G)x,

and the corresponding functor
Rep(2+ (G))Ran — KL(G)N,Rarn

4@t @

which we denote by the same character ind (@)

Consider the object

. a + 3
(ind &S @ 1) (Unep(et (@) pan)
. g8t
=~ (ARan)l o (lnd,(ggitg)<c))ﬁ ® Id)(R2+(G),Ran) € KL(G)N,Ran ® Rep(2+ (G))Ran

Consider the object
(ind}, ® 1d)(uqeonw)) =~ (indk ®@ 1d) o (ju X ju)* © (ABung )+ (OBung ) € D-mod,(U) ® QCoh(U).
We claim that there is a canonically defined map

o 3 ] + K .
(13.37)  (Locgu ® Locd ") o (ind 579" @ 1d) (pep(e+ (6))nan) = (ind); @ 1d) (Uqeon())-
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Namely, the map (13.37) is the composition

Co (@)
(13.38)  (Loce.x,u ® Locgy™) o (in dg’;@ D5 @ 1d) (Upep(et (@) )

=~ (Locg.x,u ®1d) o (Id ® Locg%") o (i di”fia D 2 1d) (Upep (et (@) pan) ~

eH @)y
~ (Locg,s,u ®1d) o (1nd£:g+(c)( % @ 1d) o (Id(X)LocQCO ) (URep(2+ () ran) =

~ (Locg.,u @1d) o (ind 4D @ 14)(LocT™) ¥ @ 1) (uqconw) ~

~ (Locg,ev ®1d) o (i d;afG;GW®1d)o((LocQC°h) ®1d) (uqeon(v)) ~

~ (ind, ® Id) o (Locg " ®1d) o ((Locai™) ™ & Id) (uqeon(w)) — (ind}, @ Id)(uqconw))-
Note that the last arrow in (13.38) is an isomorphism by Theorem 13.4.4. Hence, the map (13.37)
is an isomorphism.

13.6.10. Note now that we have canonical isomorphisms

@27(6) o/ (@)
(Id®oblv£”+(G) J(UKL(G) , pan) = (mdiﬁ G)( ) ® Id) (Urep(e+ (@) gan )

and hence

) Lt (@)
(Locg v ®Locg ") o (Id @oblv (ff(g)( ) (K1) )

Co LT(G))k
~ (Loca,s,u @ Locd%") o (ind &5 (D" @ 1d) (Ugep(s+ (6))nan)
and

(Id ®0b1VL’)(uD»mod,€(U)) ~ (ll’ldiﬁ %) Id) (uQCOh(w).

Now, unwinding and using Proposition 10.5.7(a), we obtain that under these identifications, the
map (13.35) equals the map (13.37).

Hence, we obtain that the map (13.35) is an isomorphism, as required.
O[Second proof of Theorem 13.4.2]

14. THE COMPOSITION OF LOCALIZATION AND COEFFICIENT FUNCTORS
The goal of this section is to give an expression for the composition

Locg,crit coeff

(14.1) KL(G)crit,Ran D-modcrit (Bung) =~ D—mod% (Bung) — Whit' (G)ran

in terms of factorization homology.

This expression (combined with the compatibility of FLEg it and FLEGV’OO expressed by Corol-
lary 6.4.10) will be used in Sect. 18 in order to show that the Langlands functor is compatible with the
critical localization and the spectral Poincaré series functors via the critical FLE.

14.1. The vacuum case.

14.1.1. Let us specialize the setting of Theorem 12.8.8 to the case k = crit and Pr = p(wx). In this
case, the integer that we denoted ¢ Ny, is 6 Np(ox) - Denote the corresponding line [NiT’T by

(14.2) v

plwx)”
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14.1.2. We obtain:

Theorem 14.1.3. The composition

L cri Lri 7* *(ex
KL(G)crit,Ran OLG griv D-moderit (Bung) Pert D-mod(Buny ,(.)) ®ﬁ P)

CHR(BunN,p(wX) =)
—

— D-mod(Buny, (wy)) Vect
identifies with the functor
Ap(wx ), taut pgenh
KL(G)crit,Ran ° L KL(G)crit,p(wX),Ran —
Cfact Xi3g,— QN w [‘;N w ]
— 3g-modiet 55907 yeet LX) X0 Y
14.1.4. Denote by Locg the functor
Locg cri .
(14.3) KL(G)crit,Ran G grie D-moderit (Bung) (gig D—mod%(Bung).
From (9.8) we obtain a commutative diagram
Vect 1 Vect
. - ®%
Car (Buny ,(wy ) —)o(—®x" (exp)) _®[G,Np(wx)
D-mod(Buny ,(.y)) Vect
pi:rit T Tcoeﬂ\G/acyglOb
(9.2)

D-moderit(Bung) ———— D—mod% (Bung)

LOCG,critT TLOCG

KL(G)Crit’Ran L) KL(G)crit,Ran.
Recall also that
Vac,glob &
coeff 8" ~~ coeff § C[25Np(wx>]'

14.1.5. Hence, Theorem 14.1.3 can be restated as:

Theorem 14.1.6. The composition

1
Loc coeffYac _®[2’21Vp(w ) %;(L )[5Np(wx>]
KL(G)crit,Ran %G D—mod%(Bung) —8 Vect XX Vect
identifies with the functor
A, tau genh CfaCt Xi3g,—
KL(G)crit,Ran ot X—); ’ KL(G)Crit,p(wx),Ran D—) Zg‘mOd%aC; <_>39 : VeCt .

14.2. Composition of coefficient and localization functors: the general case. We are now
ready to state the general theorem, describing the composition of the functors

®F ®-1
—®I [l
G Npwx) ” Np(w

]
D—mod% (Bung)

x) [6NP(“’X>

KL(G)eritian ——% D-mod 3 (Bun)

and
coeff¢ : D-mod% (Bung) — Whit' (G)Rran-
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14.2.1. Recall that the category Whit'(G)gran is the dual of Whit.(G)ran. Hence, the description of
the above composition is equivalent to describing the pairing

(14.4)  KL(G)erit,ran ® Whits (G)ran <5

®L 1
(-®1 > 1§ [ DHeld
G Np(wx) = No(wy)  Ve(wx)

— D—mod% (Bung) ® Whit.(G)ran
— D-mod; (Bung) ® Whit. (G)ran “*““5 ™ Whit' (G)ran ® Whit..(G)ran — Vect .

14.2.2. Recall the factorization functor Plgc’enh, see Sect. 6.4.6. We will think of it as the functor

1d ® (0 ) bau
Whit. () @ KL(G)erie 3" Whits(G) @ KL(G)eritp(ux) —

ﬁcnh

— Whit. (g-mod.rit, p(w . )) S 3g-mod™et,

Let P¢ be the composition of Plgc’e"h with

dfact

oblv;, : 35-mo — Vect.

14.2.3. We will prove:

Theorem 14.2.4. The functor (14.4) identifies canonically with

(14.5)  KL(G)erit,Ran @ Whitu(@)ran "R E5 0 KT(G) L rane © Whits (G)pane —
ploc,enh

. G
- (KL(G)CTit @ Whlt*(G))Rang x RanS —
Ran

fact .
p C (X’Z’U’_)RangRX Ran& c c

act an
— 3g-MOdRsC « RanC — D-mod(Ran= X Ran=) —

Ran
C;(Ramg X Rang,f)

an

Vect,

where the fiber product RanS x RanS is formed using the projections Plpig : RanS — Ran.
Ran

Remark 14.2.5. Note that the functor (14.5), appearing in Theorem 14.2.4 can also be rewritten as

14.6)  KL(G)erie.ran © Whit, (G)gan 2 Ren @S uithan gy () - @ Whit, (G)ganc —
crit,Ra Ra.

ploc C,(RanS x Ran€)
— (KL(G)erit © Whits () panc » ranc —> D-mod(RanS x Ran) R Vet
Ran Ran

. . fact .
i.e., instead of C***(X;3g, —)RanC x manC W€ can use the functor Oblvgg,Rang % RanC-

an Ran

Indeed, since the functor P5°™ is strictly unital, a priori, by Theorem 14.2.4, the pairing (14.5) is

(14.7)  KL(G)erit,Ran ® Whit, (G)gap = CRen @S unitian gy gy

ins.unit
R

c ® Whit, (G)Rang —

crit,Ran

anS x RanC
— (KL(G)crit ® Whit*(G))Rang « RanC —>R.an

loc

= (KL(G)erit ® Whits (G)) ranc x ranc)e -2 D-mod((Ran® x Ran<)<) -
Ran

Ran
C'C((R'cmg X Rang)g)
R
= Vect .
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However, the composition of the first three lines in (14.7) lies in the essential image of the functor

t' : D-mod((Ran® x Ran®)S"™') - D-mod((Ran® x Ran<)S).
Ran Ran

Hence, by the same mechanism as in Sect. 11.9.9, the expression in (14.7) is isomorphic to that in
(14.6).

14.3. Proof of Theorem 14.2.4.

14.3.1. We rewrite the functor

(14.8)  KL(G)erie.ran © Whits (G)pan €5 D-mod; (Bung) © Whit. (G)ran

— Whlt‘ (G)R,an (29 \A]hlt);< (G)Ran — Vect .

coeff¢ ® Id
—

as

Locg ® Poincg «
—

(14.9)  KL(G)erit,Ran ® Whit. (G)Rran

— D—mod% (Bung) ® D—mod%’co(BunG) (—7—2;\11@ Vect,

where the last arrow is the canonical pairing

D—mod% (Bung) ® D—mod%’CO(Bunc) — Vect .

14.3.2. By the unital property of Loce and Poincg,«, we can rewrite the functor

Locg ® Poincg «
—

KL(G)crit,Ran @ Whit. (G)ran D-mod% (Bung) ® D-mod%YCO(Bung)

as

ins.vacran @ ins.unitray

(14.10)  KL(G)erit,Ran ® Whit. (G)ran

(LOCG)Rang ®(Poincg )Rang

- KL(G)crit,Rang ® Whit*(G)Rang
— D—mod% (Bung) ® D-mod: _(Bung) ® D-mod(Ran<) ® D-mod(Ran<) —

5€0

Id®Id ® C.(RanS Rang,f
@ C<—> . ) D—mod% (Bung) ® D—mod%’CO(Bung).

14.3.3. In this subsection we will use an analog of Sect. C.5.15, which will allow us to replace

C C C C
Ran= x Ran= ~» Ran= x Ran~=.
Ran

We note that the composition in the first three lines in (14.10) actually factors via the tensor product
of D—mod% (Bung) ® D—mod%YCO(Bung) with

D-mod(Ran X Ran="""") @ D-mod(Ran X Ran=""") Meldgrer

Ran,prg Ran,pr,

small small

— D-mod(Ran<) ® D-mod(Ran<)

Hence, by the same principle as in Sect. C.5.15, its further composition with

D-mod (Bung) ® D-mod; .(Bung) ® D-mod(Ran<) ® D-mod(Ran<) —

C

Id®1d ® C,(RanS xRanS,—
©1d®C, (Ran=xRa )D-mod% (Bung)®D—m0d%7co(Bunc)
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is isomorphic to its composition with

c c, d@E®A o
D—mod% (Bung) ® D—mod%m(Bung) ® D-mod(Ran™) ® D-mod(Ran=) —
Id®Id® C'C(RanQRg RanS,—)

— D-mod% (Bung) ® D—mod% «(Bung) ® D-mod(RanS x Ran®)
’ Ran

— D—mod% (Bung) ® D—mod%,CO (Bung).
Hence, we can rewrite (14.10) as

ins.vacRan @ ins.unitray
—

KL(G)crit,Ran ® Whlt* (G)Ran

(LocG)Rang ®(Poincg )Rang

- KL(G)orit,Rang ® Whit*(G)Rang
— D—mod% (Bung) ® D-mod 1 _(Bung) ® D-mod(Ran<) ® D-mod(Ran<) —

3€0

1@ 14D (Bran) D—mod% (Bung) ® D-mod: __(Bung) ® D-mod(RanS x RanS) —

5 ,CO
2 Ran

Id®1d ® C,(RanS, x Ran&,—)
B Ran

D—mod% (Bung) ® D—mod%’CO (Bung),

which is the same as

ins.vacrap ® ins.unitgay

KL(G)crit,Ran ® Whlt* (G) Ran
- KL(G)crit,Rang & Whit*(G)Rang — (KL(G)crit ® Whit*(G))Rang % RanC —

an
(Locg ® Poineg ), C « RanC
R; c c
— - D-mod: (Bung) ® D-mod: ., (Bung) ® D-mod(Ran= x Ran=) —
2 27 Ran
Id®1d ® C,(RanE x Ran®,—)
B R

an

D—mod% (Bung) ® D—rnod%’CO (Bung).
14.3.4. Thus, we obtain that we can rewrite (14.9) as

(14.11)  KL(G)erie.an @ Whits (@ ran 25" KL(G) ie ranc ® Whits (@) panc —
— (KL(G)crit ®Whit*(G))Rang % RanC —

(Locg ®POinch*)Ran§ « RanC
— D-mod (Bung) ® D-mod; ,(Bung) ® D-mod(Ran x Ran®) —
’ Ran
Id®1d®caR(Ranng Ran<,—) (= —)B
= D—mod% (Bung) ® D-mod%,CO (Bung) — ¢ Vect.

Hence, in order to prove the theorem, it is enough to identify the composition

(1412) (KL(G)crit ®Wh1t*(G))Rang % RanC —

Ran

(Locg ®PoincG,«)ganC « RanS

an

— — D—mod% (Bung) ® D—mod%, (Bung) ® D-mod(RanS x Ran<) —

co
Ran

Id®1d ® C, (RanS x RanS&,—)

an <777>B\1n
D-mod (Bung) ® D—mod%’CO(Bunc) ="
@5 -1
ey R ICIP
— Vect plox) _glex) " Vect
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with
Plé)c,enh
(1413) (KL(G)crit ®Wh1t*(G))Rang « RanC —
Ran
C-faCt(X“F’_)RanQ x RanC
— jg-modpete Lo o — R D-mod(RanS x Ran) —
Ran Ran
caR(RanER_x Ran&,-)
- Vect .

14.3.5.  Applying the functor (pry,):, we obtain that it suffices to identify

(Locg ® Poincg «)Ran
—

(14.14)  (KL(G)erit ® Whit (G)) g,

Id®1d® C, (Ran,—)
—5

— D—mod% (Bung) ® D-mod% o (Bung) ® D-mod(Ran)

C
Qi 1
(—®12 © B

G N w) E Ny P Np(wx)

]

(=)
Vect

— D—mod% (Bung) ® D—modéy . (Bung) —3"C Vect

C

with

loc,enh

fact
fact craet (X330~

(14.15) (KL(G@)erit ® Whits (G)) g,y & 3g-modpam B0 Vet

14.3.6. Note that both functors (14.14) and (14.15) factor naturally via

(KL(G)Crit ® Whlt* (G))Ran — (KL(G)crit ® Whit*(G))Raru

Sphg

and in particular via
(KL(G)crit ® Whit*(G))Ran — (KL(G)crit & _ Whit*(G))Ran7
Rep(G)

where Rep(G) maps to Sph, via Satg’.

Hence, using the fact that the action of Rep(G) on Vacwuit, () defines an equivalence

Rep(G) — Whit. (G),
we are reduced to establishing an identification between

Id® VaCWhit* (@)
—

(14.16)  KL(G)erit,Ran (KL(G)erit ® Whits (G))ran —

Id®Id ® C_.(Ran,—)

Locg ® Poincg. .« ) Ran
(Loca e I D—mod% (Bung) ® D—mod%,co(Bung) ® D-mod(Ran) —5
(= =)Bun <7®[§»%N (w >®%7<1w >)[6Np<wx>]
— D—mod%(Bung) ® D—mod%’co(Bung) "% Vect R S Vect
and
loc,enh

Id ® Vacwhit, (G)
—

(14.17)  KL(G)erit,Ran (KL(®)erit ® White(G))Ran

cfoct(Xi5q,-)
%@—mod{iﬁg X0 Vect .
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14.3.7. Using the unital property of Poincg,« we can identify (14.16) with

(Loca)Ran ®Poincd?S

(1418) KL(G)crit,Ran

1d ® C, (Ran,—)®Id
— D-mod% (Bung) ® D-mod(Ran) ® D—mod%’co(Bung)  Ceflap,0)®
- (—oi3 S BN, )]
—»~)Bun G Np(w No(w (wx)
— D—mod%(Bung) ® D—mod%YCO(Bung) —3"C Vect plox) __glux) o rex
By definition, we can identify (14.17) with
Ap(wy),tau enh cfact x5
(14.19) KL(G)eritran 2™ KL(G)eritp(ox)ran oy 3g-modfst & E89 7 voe
So, it remains to identify (14.18) and (14.19).
14.3.8.  We rewrite (14.18) as
L coeff g (_®[2%N 30 ® Vg0 o)
(14.20) KL(G) crit Ran —% D-mod (Bung) —S Vect Xt __gex Vect .

Now the isomorphism between (14.20) and (14.19) is the assertion of Theorem 14.1.6.
O[Theorem 14.2.4]

15. THE HECKE EIGEN-PROPERTY OF CRITICAL LOCALIZATION

Vec

t.

177

The goal of this section is to establish the Hecke eigenproprety of the functor Loca,crit, which lies
in the heart of the manuscript [BD1]. What we do will essentially amount to a souped-up version of

the construction in loc. cit.

The contents of this (and the next) section are not logically necessary either for this paper, nor for
the other papers in the GLC series. However, here we fill the gap in the literature: we supply a proof
of a [Gal, Theorem 10.3.4], which is used in [Gal, Corollary 4.5.5], while the latter is essential for the

GLC series.
15.1. Statement of the result.

15.1.1. Consider the prestacks

mer,glob mer,glob
LSG’,Ran and OpG,Ran

that attach to z € Ran the spaces
LS4 (X — z) and Opg (X — z),

respectively (see Sect. B.7.14 for what we mean by local systems on an open curve).

Set
mon-free,glob | __ _ mer,glob
OPg Ron := (LSx xRan) X Opg g
i LSI{ler,glob ’
&,Ran
Thus, we have a Cartesian diagram
_free,glob
mon-free,glob ™" mer,glob
v N v
OpG,Ran OpG,Ran
tglobJ{ tglobl
. mer,glob
LS xRan —  LSgha -

All of the spaces and maps in the above diagram have natural unital structures (see Sect. C.6.1 for

what this means).

mon-free,glob

As we shall see shortly, Op ;5"

is a relative ind-affine ind-scheme over Ran.
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15.1.2. Restriction to the formal disc gives rise to the maps

mer,glob mer mon-free,glob mon free
Opc‘:,Ran — OpG,Ran and OpG Ron — OP¢& Ran 5

we will denote both by evgran-

Note that the following commutative square is Cartesian

mon-free,glob  €VRan mon-free
Opé,Ran E— OpG Ran
(151) Lmon-free,globJr ermon-free
mer,glob €VRan mer
O G Ran OpGYRaﬂ

15.1.3. For a given Z — Ran, we will change the subscript
Ran ~ Z
for the corresponding base-changed spaces and maps.®”
We can consider the assignment
2+ QCoh(Op™™ free, glob) — QCoh(Op™™ free glob)

as a crystal of categories over Ran, see Sect, B.13.8.

15.1.4. Fix Z — Ran, and recall that according to Sect. 5.3, we have a canonically defined action of
the (symmetric) monoidal category IndCoh' (OpZ°™ ™)z on KL(G)eit,z. Composing with

T opgopiee QCoh(OpE°™™e°), — IndCoh'(OpE° ),

we obtain an action of QCoh(Opmon free)z on KL(G)erit, .-

Consider the category
fe) gilob
(15.2) KL(G)ory = KL(G)eriv.z ® QCoh(Oporee!o),

crit,Z
QCoh(Opg‘on'ﬁee ) 2

Denote by Id ®(evz)™ the resulting functor
Op&lob
KL(G)exit,z = KL(G)erit.z ® QCoh(Op2™ &), = KL(G) 1o -
Qcoh(oprgon—frcc)z

Note that the assignment
o gvlob

(15.3) 2 KL(G) &

crit, 2

is naturally a crystal of categories over Ran.
15.1.5. We define an action of Rep(G)z on the category (15.2) as follows.

Recall that we have a symmetric monoidal functor

LocSpec Rep(G)z — QCoh(LS5) ® D-mod(2),

see Sect. 17.6.1.

Composing with

(t¥°")* : QCoh(LS) ® D-mod(Z) — QCoh(OpEo™reesloby,
we obtain a symmetric monoidal functor
(e81°P)* o Locspec Rep(()z — QCoh(Opmomireesslob)

We let Rep(G)z, act on (15.2) by (v5°°)* o Locsé’ez‘f via the second factor.

57We remind that, according to our conventions in Sect. B.8.17, when discussing crystals over Ran, given Z — Ran,
by default we base change to Z4qr rather than too Z.
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15.1.6. The main result of this section is the following:

Theorem-Construction 15.1.7. There exists a canonically defined functor

Locgf’cm,Z : KL(G)Opglob — D-mode:it (Bung) @ D-mod(Z)

crit, Z
such that:
(a) The functor

Locg,eit,z : KL(G)erit,z = D-moderit (Bung) ® D-mod(Z)

factors as

Op
opslob 1o°q orig 2

(15.4) KL(Geriez 2% KL(G)O27" "S5 Domoderic (Bung) ® D-mod(2).

(b) The functor Locgf’crityz intertwines the above action of Rep(G)z on (15.2) and the action of Rep(G)z
on D-moderit (Bung) ® D-mod(Z2) obtained from Satg’ and the action of Sth,z on D-modeit (Bung) ®
D-mod(2).

Remark 15.1.8. The Hecke eigen-property of the functor Locgf’Crit ,. formulated in point (b) of Theo-
rem 15.1.7 is not quite the full Hecke property one wants:

For example, when Z = pt and Z — Ran corresponds to x € Ran, the compatibility assertion in
point (b) only talks about the Hecke action at z, whereas one wants the compatibility with Hecke
action over the entire Ran space.

See Corollary 15.5.9 for a stronger assertion, which we will deduce from Proposition 15.3.6 below.

15.2. The key local construction. In this subsection we will formulate Theorem 15.2.8, which is a
local counterpart of Theorem 15.1.7.

15.2.1. Let

mon-free~>reg C
Op & RanC — Ran

be the relative indscheme that attaches to

(zCz)e Ran®

the space
Op2orfree=xes .— Op s (Dy — ) X LS¢(Dar).

e ’
G,zCx LSG(D£/ —z)

Remark 15.2.2. Note that Opgc’}r{‘:;gewreg is exactly the geometric object that encodes the unital-in-

correspondences structure on Opgon'free, see Sect. C.10.12.

15.2.3.  We have the projections

Op +OP
mon-free PTsmall mon-free~reg p bi§ mon-free
(155) Opé,Ran OpcyRang Opé,Ran

given by restrictions along
respectively.
15.2.4. Ezample. For ' = z LU z", we have

Opp™ ™15 (D,, — z) = Oplg*™ (D — z) X Opg (D).
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15.2.5. For Z — Ran, let us denote by Oprf‘o“'gfreewreg the base-change

G,Z
mon-free~sre
Z X Opg e 8.
Ran,prypman ’ B

The assignment
2 (Qcoh(()p[cli‘)on—f1fcc~~>rcg)Zg

is a crystal of symmetric monoidal categories over Ran, which we will denote by

Qcoh(opgon—frccwrcg ) .

The map prgrrﬁ’a“ gives rise to a symmetric monoidal functor

(prsorsan)* . Qcoh(opgon—free) N QCOh(Oprénon—freewreg).

15.2.6. Denote

o 19C mon-iree~-re,
(15.6) KL(G)o® = KL(G)eris ® QCoh(Opg™ ™ 7"*).

crit _
Qcoh(opxélon-fx ee)

We will regard it as a crystal of categories over Ran. Denote by Id ®(prop )* the functor

small
~rTe Oplge
KL(G)erit — KL(G)erit ® QCoh(Op™ee™r8) — KI(G) &
QCOh(OpIGE‘OH’free)
15.2.7. Recall that ins. vac. is a functor between crystals of categories over Ran
(15.7) KL(G)erit = (Prgman)s © (prbig)*(KL(G)Crit)v
and actually a (strict) functor between crystals of categories over Ran"»"
KL(G)erit = (Pryman)wstrict © (Prigy )" (KL(G)erit).
The key construction that we will need says the following:
Theorem-Construction 15.2.8. There exists a canonically defined functor
OPIS’C ins.vacmon-free~sreg %
(15.8) KL(G) cyie” — (Proman)+ © (Pryig) " (KL(G)erit),
such that ins. vac. factors as
A @(proP )" Oplo® ing. vacmon-free~sreg .
KL(G)CTit — ! KL(G)crli)tG e — (prsmall)* © (prbig) (KL(G)Crit)'

Furthermore, the functor ins. vac™™ e8¢ Linear with respect to

(prsmall)* © (prbig)*(QCOh(Opgoniﬁee)%
where:
o (Progan)s© (prbig)*(QCoh(OpEO“'ﬁee)) acts on the left-hand side via (prgfg’)*;

o (Proan)s © (prbig)*(QCOh(Opgon’ﬁee)) acts on the right-hand side by applying the functor

(Preman)= © (Pryig)™ to the QCoh(OpE®™ ") -action on KL(G)erit.
The proof of Theorem 15.2.8 will be given in Sect. 16.

Remark 15.2.9. Note that Theorem 15.2.8 sounds semantically close to Theorem 15.1.7. And indeed,
Theorem 15.1.7 will be deduced from Theorem 15.2.8 by a manipulation that involves factorization
homology.

Yet, Theorem 15.2.8 is purely local, while Theorem 15.1.7 is “local-to-global”.

That said, we will need Theorem 15.2.8 not only for the proof of Theorem 15.1.7. In the next
subsection, we will use it to extract a stronger Hecke property for the functor Locgypcmyz.
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15.2.10. Let us explain what Theorem 15.2.8 says at the pointwise level, i.e., for a fixed (z C z') €
Ran€.
Write
&l =zU QN.
The corresponding functor
ins.vac£§£/ : KL(G)Crit’g — KL(G)crit,g’ ~ KL(G)crit,g ® KL(G)crit,g”

acts as
M—>M® VaC(G)Crit&// .
The pointwise statement of Theorem 15.2.8 is that this functor can be factored as

KL(G)Crit’E — KL(G)Crit,g ® QCOh(Opgi”) — KL(G)crit,g ® KL(G)crit,g”7

mon-free

Gone®)-linear.

where the second arrow is QCoh(Op

In other words, we are saying that the object Vac(G)crit,or € KL(G)crit,z naturally lifts to an
object of the category

Funct e opmon:tree) (QCoh(OpE® ), KL(G)erit,z)-

N
Ga Gz’

This lift is the basic feature of the vacuum object: it says that the structure of factorization 3g-module
on Vac(G)erit as an object of KL(G)erit is obtained by restriction from a structure of commutative 34-
module.

The proof of Theorem 15.2.8 will amount to spelling out the above construction in the factorization
setting.

Remark 15.2.11. In the proof of Theorem 15.2.8 that we will give, we will avoid using the FLE. We do
this for aesthetical reasons: the construction of the functor Theorem 15.2.8 is more or less tautological
if one says the right words.

However, if we use the FLE, there would be almost nothing to prove: the FLE, combined with the
equivalence © g mon-free, allows us to identity the two sides in (15.8) with
G
IndCoh' (OpZ°™ ™) and (pr,yu)- © (Pryy)" (IndCob' (OpEr°2)),
respectively, and the functor in question is obtained by taking direct image along

Op
pr.
mon-free~sreg * bi C mon-free
OP¢ Ranc — Ran X OPGRan -
’ prbig,Ran

mon-fre

That said, the functor ins. vac ©771¢8 that we will construct does reproduce the above functor,

by the nature of the FLE.

Remark 15.2.12. Note that the space OprG'f‘oR"::e;Wreg, equipped with the maps (15.5), has a structure

of groupoid®® acting on OpgoRn;gee, with the composition given by
mon-free~-re, mon-free~sre
Opj 8(Dy — ) X Opj E(Dyr — ') ~
Oplé10n> ree('Dil _L/)
~ (Opa(Dy — ) X Opg(Dyrr — ') X LS&(Dyrr) —
- OpG(Dﬁ/fzi’) - (LSG(Di/fg) , LSG(DE//*Q’)) -

X
LSG (Dil —z’)

= Opa(Dyr —2)  x  LSg(Dyn) = Opg™ " (Dyr —g),

LS5 (D —2)

where the middle arrow is given by gluing along

58This groupoid structure is part of the structure of being unital-in-correspondences, see Sect. C.10.
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. . . -fi
Note that one can interpret Theorem 15.2.8 as saying that the above action of Op%°r &8 on

G,Ran&
Op’é‘f’é‘;ﬁcc can be lifted to an action on KL(G)cris at the level of 1-morphisms.

In fact, Theorem 15.2.8 has a natural upgrade to a statement that we have a full datum of action

of O goRnaf;eewreg on KL(G)eit. This is again an automatic if we allow ourselves to use the FLE.

15.3. The expanded Hecke eigen-property. In this subsection we will assume Theorem 15.1.7 and
explain that the Hecke property of the functor Locgirmz stated in point (b) of the theorem implies a

stronger property (the difference between the two versions of the Hecke property is what was alluded
to in Remark 15.1.8).

15.3.1. Let Z — Ran be as above. Consider the space
(159) o) mon- freewreg,glob _ O mon-free,glob % Zg

p c
G,2& G z Z,Prgmall, 2

Denote by pr° > the projection

small Z

mon-free~reg,glob mon—frcc,glob
OpG z2< — Op P& 2
Note that we have a naturally defined ind-closed embedding

Opsleb mon-free~sreg,glob mon- free glob
(15.10) Priig 2+ OPG e = Opg

ob
Denote by prblg the composition of (15.10) with the projection

id X pry;
mon-free,glob ! big mon- free,glob
O G,2S 0 G,Ran

15.3.2. Ezample. Let us explain what the map (15.10) looks like for Z = pt so that Z — Ran corre-
sponds to z € Ran (in which case 2¢ = Rang, so a point on it corresponds to z C z’).

Then a point of the left-hand (resp., right-hand) side in (15.10) is a local system on X with an oper
structure away from z (resp., z'), and the map (15.10) is given by restriction along

X—-2z CX -z
15.3.3.  Consider the map

- - C 8o >< d
Opré}o; free~~reg,glob __ Opgo; free,glob % 7S T i (LSG XZ) >< 27 _ LSG XZ*
’ Z,Prsmall, 2

to be denoted "v&'°P.

Thus, we can consider the symmetric monoidal functor

(/tglob) o LOCSC?EZ(':C Rep(é)zg — (;2001,1(()pICIVY'lonffreewﬁreg,glob)Zg

15.3.4. We can view Opgf’;grccwmg’gbb as mapping to Opg%” free by

O mon- freewreg glob __ O mon-free,glob

-free,glob €V mon-free
Opnen-freesglob €'¢
G pas G Z :

- )
x Z= = Opg, P&z
Z,Prsmall, 2 ’

Hence, we can form the category

(1511) KL(G)crit,Z, X QCOh( mon- freewreg’glob)zg
QCoh(opgon—free)

Since
QCOh( mon- free, glob)z ® D-mod( ) N Qcoh(opmon free~~reg, glob)ZC

D-mod(Z) B
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is an equivalence, we can rewrite (15.11) as

(15.12)  KL(G)erit,2 ® QCoh(OpZo™™eeslob), @  D-mod(2S) =
Qcoh(oplélon-free)Z D-mod(Z)
Opg}()b c
= KL(G) ;% ®  D-mod(Z=).
’ D-mod(2)

Thus, we obtain that the category

Opg}Ob c
KL(G) i ®  D-mod(Z=)
D-mod(Z)

carries a monoidal action of Rep(G)yc.
15.3.5. Consider the functor

glob LocOP .. » ®1d
(15.13) KL(G)..%  ® D-mod(zS) “ob®

" D-mod(2)

— (D-modeit (Bung) ® D-mod(Z))  ®  D-mod(Z5) ~ D-moderit (Bung) ® D-mod(25).

D-mod(Z)
We claim:

Proposition 15.3.6. The functor (15.13) intertwines the actions of Rep(G)yc on the two sides, where
the action of Rep(G),c on the left-hand sides is the one specified in Sect. 15.3.4, and on the right-hand
side it is obtained from Saty and the action of SthYZg on D-modeit (Bung) ® D-mod(Zg).

15.4. Proof of Proposition 15.3.6.

15.4.1. Note that we have a Cartesian square

Op8lob
0 mon-free~~reg,glob Plhig,z 0 mon-free,glob
G,2& G,2&

vac | [ oves

mon-free~reg mon-free
Opg 2c 5 Opgze

P
Plyig, 2

Op . . .
where pry; . is the map whose composition with

mon-free C mon-free mon-free
O G,2< ~Z X Op@,Ran — Op@,Ran
Prpig,Ran
is the map
prot
mon-free mon-free i§ mon-free
OpG,ZQ - OpG,Rang OpG,Ran .
We claim:

Lemma 15.4.2. The functor

(Q(joh(()pgorkfre(%z»reg)Zg ® (choh(()pICI;‘lonffree,glob)Zg N (choh(()pgorkfree~~>reg,',glob)Zg
Qcoh(Opgon—frcc)Zg

is an equivalence.

The lemma will be proved in Sect. 15.10.
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15.4.3. Consider the category

glob
(15.14) KL(G)oi,  © D-mod(2S) =
D-mod(Z)
= KL(G)crit,Z X QCOh(Oprélon—freewreg,glob)Z ® D-mod(Zg) ~
Qcoh(Oplé\on-free)Z D-mod(2)
~ KL(G)erit,z ® Qcoh(Oplélon-freewreg,glob)zg

Qcoh(opxéon—free)z
By Lemma 15.4.2, we can rewrite it as

KL(G)crit,Z ® QCOh(Oprglon—freewreg)ZC ® QCOh(OngH»free’glOb)Zg ’

Qcoh(opgon-ﬁ"ee)z G - Qcoh(opgon-free)Zg

ie.,
opg* free,glob
pel mon-free,glo
KLcrit,Z X QCOh(OpG‘ )Zg ’
Qcoh(Oprngon—frcc)Zg

where
oplec
G
Z = KLcrit,Z

is the factorization category (15.6).

Using the functor ins. vac™o™freee8 e obtain a functor

glob

P~ -
(15.15)  KL(G) ;% ® D-mod(Z=) ~
" D-mod(2)
loc
~ KLgi?Z ® (Qcoh(Opgon-frcc,glob)Zg N

Qcoh(opgon—frcc) 2 C

ins_vacxgon»freewreg ®1Id

KL(G)CrmZg ® . (;Zcoh(Opgon—flree,glob)Z'g ~
Qcoh(opgon-ﬁee)zg

glob
Opé
crit,2E "

~ KL(G)

Remark 15.4.4. In the spirit of Remark 15.2.12, one can show that the functors (15.15) upgrade to a
local unital structure (see Sect. 11.2.1 for what this means) on the crystal of categories over Ran given
by (15.3).

15.4.5. The following property will be embedded into the construction of the assignment
(15.16) Z— Locg s, » ¢

The composition

0p&°P 14 @ pr! Opglob -
(1517) KL@ e "I KLGONE @ Dmod(zS)
D-mod(Z)
Opg.k’b Locgpmrit 2 C c
= KL(G) 5 c """ D-modeit (Bung) ® D-mod(Z=)

identifies with the functor

; O
Opgc-,;lOb Locg
crit,Z

P
,crit, Z

(15.18) KL(G)

— D-moderit (Bung) ® D-mod(2) " “XT* D_modesi (Bung) ® D-mod(ZS).

Remark 15.4.6. In the spirit of Remark 15.4.4 one can show that the isomorphism between (15.17) and
(15.18) upgrades to a unital structure (see Sect. 11.3.5 for what this means) on the assignment (15.16).
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15.4.7. Since the functors

g}ob
(15.19) KL(G)cOriGZ D-mod(Z<) (151
™ D-mod(Z)
opg°" Locgpcrit 2 < c
- KL(G)CritGZQ : o D-mOdcm(Bunc) X D_mod(Z—)

and (15.13) are D-mod(ZS)-linear, and the isomorphism between (15.17) and (15.18) is D-mod(Z)-
linear, we obtain that the functor (15.19) identifies with (15.13).

Thus, in order to prove Proposition 15.3.6, it suffices to construct the datum of compatibility with

the Rep(G),c-action for the functor (15.19).

15.4.8. We will show that each of the two arrows in (15.19) is compatible with the Rep(G),c-action.

For the second arrow, this follows from Theorem 15.1.7(b).

15.4.9. For the first arrow, unwinding the definition of the functor (15.15), we have to show that the
functor

Qcoh(opgon—ﬁ"ee«'»reg)zg (4 QCOh(OpIéIOH—free,glob)ZC N
QCoh(Oprcx_;On-free) 2 C

N QCOh(Opgonffreewreg,glob ) 2C

is Rep(G) zc-linear, where:

e Rep(G),c acts on the right-hand side via Loc

spec
G,2<

(1520) /tglob . Opgo;-gfreewreg,glob N LSG XZQ,

followed by pullback along

e Rep(G),c acts on the left-hand side on the second factor via LocZc followed by pullback
along

glob | mon-free,glob _ C
T : Ova’Zg — LS xZ=.

The required compatibility follows from the fact that

glob Ops&lob

/. glob
e = © Plpig,z

v
as maps

mon-free~~reg,glob _ -
Opg e = LSg xZ=.

15.5. The integrated Hecke eigen-property. In this subsection we will apply the paradigm of
Sect. H.7, and deduce an ultimate form of compatibility of the functor Locgf’crit,z with the Hecke
action.

15.5.1. Consider Rep(G) as a unital monoidal factorization category. Note that we consider the Hecke
action as a local Ran-unital action of Rep(G) on D-modeit (Bung) (see Sect. H.6.1 for what this means),
ie.,

D-modeit (Bung) € Rep(G)'°°-mod.

In particular, the action of Rep(G)ran, endowed with the convolution monoidal structure (i.e., the

monoidal category (Rep(G)Rran)*, see Sect. H.5.2), on D-mod.ri;(Bung) factors via

(Rep(G)Ran)* - R‘ep(G)Ran“"“,indep'
For any Z — Ran, we will consider
D-moderit (Bung) ® D-mod(2)

as a module over
Rep(é)Ran“““,indep @ D'mOd(Z)
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15.5.2.  Note also that the spectral localization functor can be viewed as a (strictly) unital (symmetric)
monoidal functor

Mg)ec . @(G) — QCOh(LSG) [ M(Ranuntl)’

where Rep(G) is the crystal of categories over Ran
tion category.

untl corresponding to Rep(é), viewed as a factoriza-

In particular, the functor

LOCSC?EC : Rep(é)Ran — QCOh(LS@)

factors as

Rep(G)ran — Rep(G)ranuntt jndep — QCoh(LSs).
Given Z — Ran, we will consider the category

KLOOE —KL(Gawz  ®  QCoh(Opmom-ieesion),
’ QCoh(Opizon-iree) »
as acted on by
Rep(é)Ranunﬂ,indep ® D-mod(Z)
via the projection
Opgf);free,glob s LSg xZ
and the action on the second factor.

15.5.3. We claim:

Corollary 15.5.4. The functor

glob

Locgf’mt,Z CKL(G)OP . — D-moderit (Bung) @ D-mod(2)

crit,

is compatible with the action of Rep(é)Ranuntl’indep ® D-mod(Z).

Proof. First, it is easy to see that we can assume that Z is an affine scheme S. By Corollary H.7.8, we
can consider both sides, i.e.,

Opglob

D-moderis(Bung) ® D-mod(S) and KL(G)_,C

crit,S
as objects of

Rep(G)ISOC’“““—mod

(see Sect. H.7.3 for the notation), and we have to show that Locgf’mtys extends to a map inside this
category (see Corollary H.7.8).

Now, Proposition 15.3.6 implies that the functor Locgf’crit’s gives rise to a functor between the
images of these two objects under the forgetful functor

(15.21) Rep(G) 9™ -mod — Rep(G)$°-mod.

Now, the assertion follows from the fact that the functor (15.21) is fully faithful, see Sect. H.7.3.
O

Corollary 15.5.5. The functor

Locgim,z : KL(G)OPg]Ob — D-modcrit (Bung) ® D-mod(2)

crit,Z

is compatible with the action of (Rep(G)Ran)*.
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15.5.6. Let now Z be pseudo-proper, and consider the functor
(Id®C.(Z,—)) : D-modeit (Bung) ® D-mod(Z) — D-modeis (Bung).

This functor is obviously compatible with the action of (Rep(G)ran)*.

Denote
Locg? . p. = (1@ C(Z, =) 0 Loy, 2, KL(G)R = D-moders(Bung).
Hence, from Corollary 15.5.5 we obtain:
Corollary 15.5.7. The functor Locgf’cm,fZ is compatible with the action of (Rep(é)Ran)* on the two
sides.

15.5.8. Finally, we take Z = Ran. Denote the corresponding functor
: KL(G)Opglob — D-modecrit (Bung)

o
Loc crit,Ran

p
G,crit,fnan
Op
by Locacm.
We obtain:

Corollary 15.5.9. The the functor Locgffcrit is compatible with the action of (Rep(G)Rran)* (with the
convolution monoidal structure) on the two sides.

This corollary is the ultimate form of the compatibility between the (globalized) critical localization
functor and the (non-derived) Hecke action.

15.5.10. A variant of Corollary 15.5.5 was at the core of the construction of Hecke eigensheaves in
[BD1]. In our language, this construction can be reformulated as follows.

Take Z = pt, so that Z — Ran corresponds to z € Ran.
Recall that according to Theorem 6.1.4, Proposition 3.8.7 and Proposition 3.7.10, we can identify

FLEG,crit N monfreo @ngon—free
(15.22) KL(@)erit,z ~ IndCoh (Opé& ) o

T
~ IndCoh'(Opga™°) & QCoh(Opga ™)

as QCoh(OpZ°™*°)-module categories.

lob
Hence, we can identify the category KL(G)Sfi’jZ with QCoh(Opgon’free(X —x)), as a module cate-
mon-free

gory over QCoh(Opg (X —z)). Since Op’é‘on’free(ng) is locally almost of finite type and formally
smooth, by [GaRol, Theorem 10.1.1], the functor

Y opmon-tree(x ) QCoh(OpE°™ ™ (X — z)) — IndCoh(OpZ°™ (X — z))

is an equivalence. Hence, we can further identify I(L(G)Sf;tg’l;b with IndCoh(OpE°*™**(X — z)) as a
QCoh(OpE°*™**(X — z))-module category.

. Op
Hence, we can view Locgl, ;. , as a functor

IndCoh(OpE® (X — z)) — D-modesit (Bung)

that intertwines the action of (Rep(G)ran)* on IndCoh(OpE°™*°(X — z)), given by

(t7%)" 0 Locg™ : (Rep(G)ran)” — QCoh(OpE™ (X — x))
and the action of QCoh(OpE°*™**(X —z)) on IndCoh(OpE®*™**(X —z)), and the (Rep(G)ran)*-action
on D-modcrit (Bung).

mon-free

In particular, for a k-point o € Opg (X — z) and the corresponding sky-scraper sheaf
ko € IndCoh(OpE°™ (X — z)),
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the object

2 (ko) € D-modasit(Bung)

is a Hecke eigensheaf with eigenvalue t8'°° (o) € LS 5.

Remark 15.5.11. The case that is actually considered in [BD1] is when o is a regular oper. In our

language, this corresponds replacing KL(G)g‘i’jib with
KL(G)ei 2 ® (QCoh(Opg (X)) ® D-mod(2)),

QCoh(Opg®) 2
where
KL(G)Zii,Z = FunCthoh(Oprcx_;mn-free)Z (QCOh(Operg)Z, KL(G)Crit,Z)-

15.6. Proof of Theorem 15.1.7.

15.6.1. 1In the proof of Theorem 15.1.7, for expositional purposes we will assume that Z = pt, so its
map to Ran corresponds to z € Ran. We will denote the corresponding space Z< by Ran,.

15.6.2. Before we launch the proof, let us explain the idea that lies behind it. Let A be a factorization
algebra, and let A" be the corresponding chiral algebra, see Sect. D.1.1. Let 3 be a commutative
factorization algebra, such that 3" maps to the center of A,

Let M be an object of

fl—modgCt = ACh—mod;h
equipped with a commutative action of 3, which is compatible with the action of A,

We claim that in this case C™*(X, A, M), carries an action of C™°*(X,3). Let us construct the
action morphism.

We can interpret the given structure on M as a map of modules
(15.23) 32 M—=-M
compatible with a map of the chiral algebras

5P @A 5 Ak,
By the functoriality of factorization homology, we obtain a map
CPY(X,3) @ CP (X, A, Mg ~ C(X,5,50) @ CI (X, A, M) 5
— O (X, 30 A, 30 @ M), — CP (X, A,M),,

which is the required action map.

The resulting action of C?°*(X,3) on C®(X, A, M), has the following property:

The action of 3, on C™*(X, A, M), obtained from the homomorphism

30 — CP(X 3,52) ~ CPY(X3)

equals the action obtained from the j;-action on M by endomorphisms of the chiral A“"-module struc-
ture.

It is a souped-up version of this construction that will be used in Sect. 15.6.8 below. See also Remark
15.6.15.
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15.6.3. Write
Op’é‘z“ﬂee ~ co}%m ” Spec(R),
where Y := Spec(R) — Opgz"ﬁee are closed embeddings almost of finite presentation.
We claim:
Lemma 15.6.4. For any IndCoh!(Op’é‘g"ﬁee)-module category C, the naturally defined functor
co}%m FunctlndCth(Opné?;fmc)(IndCoh[(Y), C)—C
is an equivalence.
This lemma will be proved in Sect. 15.10.
15.6.5. For every Y = Spec(R) as above, denote
KL(G)erit,z,y = Funct,goont (opmon-ree) (IndCoh' (Y), KL(G) exit. )-
We consider it as a QCoh(Y)-linear category via
Ty : QCoh(Y) — IndCoh'(Y).

15.6.6. Denote
Yglob =Y % Oprgon—free(X _ @)

Optgo;\—free
Denote by
(15.24) ovg : YE Ly
the evaluation map.
Denote
Opg}ob lob
KL(G)crith Yy ‘& KL(G)Crlt z,Y ® CO]’I(Yg )
= QCoh(Y)
Denote by
* (@] glob
Id@evh : KL(G)eritey — KL(G) iy y

the corresponding functor.

15.6.7. By Lemma 15.6.4, in order to construct the functor Locgﬁ:rmy it suffices to construct a
compatible family of functors

Opg;lob

Locg? i »y : KL(G) v — D-modit (Bung),

crit,x,

such that:

(a) The functor

Locg k.2
(15.25) KL(Q)eritzy — KL(Qerite  —3 " D-moderit (Bung)
factors as
Id®ev; O %lOb LocOpcri =
15.26 KL(Qeritey — = KL(G) 8 Y D moden: (Bung );
Xy crit,z,Y

(b) The functor Locgirit&y is Rep(G),-linear.
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15.6.8. Let R5°" denote the algebra of functions on the (affine) scheme Y&°". The closed embedding
(15.24) gives rise to a homomorphism

(15.27) R — RE'°P,

The datum of Locgf’crit@y together with the factorization in point (a) above is equivalent to the

datum of action of R#°® on the functor (15.25), such that the action of R obtained by precomposing
with (15.27) is identified with the action coming from the action of R on the identity endofunctor of
KL(G)crityLY-

15.6.9. By unitality, we can rewrite (15.25) as

ins.vacy

(15.28) KL(G)Crit,LYﬁKL(G)Crit@ — I(L(Crv)crit,Ran£

(Locg,k)Rang
-

Id® C_(Rang,—)
—

— D-modeit (Bung) ® D-mod(Rany) D-moderit (Bung).

Let O rez,v be the object in ComAlg(Ooprpg—modfmaCt) from Sect. F.2.6. Let (oopreg,Y)Ranm be the
e e e “
underlying object in ComAlg(D-mod(Ran,)).

Let us view KL(G)crit,Ran, as a category tensored over D-mod(Rang). In particular, it makes sense
to talk about algebras in D-mod(Ran,) acting on objects in KL(G)ecrit,Ran, Or on functors with values
in KL(G)crit,Ran£~

We will show that ((‘_)Opreg,Y)Ranm acts on the functor
e .

ins.vacg

(15.29) KL(G)erityz,y = KL(G)erit,e — KL(G)erit,Rany, -
Moreover, when we evaluate the natural transformation
(diag, ) ~ (diag, ) o (diagi)! o ins. vacg — ins. vacg
on KL(G)erit,,v, the action of (Ooprcf,g,y )Ran, on the right-hand side will be compatible with the action
of
(15.30) R ~ (diag,)' ((oopréeg,y )Rany )
on the left-hand side.

15.6.10. Assume for a moment the existence of such an action of (O reg.v )Ran, on (15.29), and let

OpG
us produce from it an action of R&'°® on (15.25).

First, by functoriality, we obtain an action of (Oopmg,y)Ranz on the functor
e =

ins.vacg

(1531) KL(G)crit,g,Y — KL(G)Crit,g — KL(G)crit,Ran£

(Locg,k)Rang
Y
— D-moderit (Bung) ® D-mod(Rang).

15.6.11. Note that (Oopgg,y)Ran£ € D-mod(Ran,) belongs to the essential image of the restriction
functor
t' : D-mod(Ran2™") — D-mod(Ran,).
In particular, it belongs to the subcategory
D-mod(Ran,)*™*"** ¢ D-mod(Ran,)
(see Sect. C.5.15).

In particular, C,(Rang, (O res,v )Ran, ) acquires a structure of (commutative) algebra.
o .

Op
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15.6.12. The essential image of

ins.vacg

KL(G)erit,y — KL(G)erit,Rang,
belongs to the essential image of
t: KL(G)erit, rangntt = KL(G)crit,Ran,, -
Hence, the essential image of (15.31) belongs to the essential image of
(Id @t') : D-moderis (Bung) ® D-mod(Ran2™") — D-modeit (Bung) ® D-mod(Ran,).
In particular, it belongs to the subcategory
D-moderis (Bung) ® D—mod(R:>,Ln£)almc’5t_untl C D-moderit (Bung) ® D-mod(Rang).

15.6.13. Hence, by Sect. C.5.15, the action of (Ooprfg,Y)Ranm on (15.31) gives rise to an action of the
e ES

commutative algebra
C.(Rang, (O, ree.v )Rany
c( T ( Op's8 ) )

on the functor (15.28).

15.6.14. Finally, by Lemmas F.2.8 and F.3.5, we identify
C.(Rang, (Ooprfg,y)Ranﬁ) ~ OB (X, Oppres, R) ~ REP
G

as (commutative) algebras.

This gives the sought-for action of R%'°® on (15.25). The compatbility with the R-action on the
identity endofunctor of KL(G)crit,z,y follows from the fact that the (iso)morphism

Locg,k,z = Locg,x,Ran, o(diag, ) ~
~ Locg,x,Ran, o(diagg)! o (diagg)! oins. vacy — Locg,x,Ran, ©ins. vacy
intertwines the R-action on the left-hand side and the C™*(X, Ogpres, R)-action on the right-hand side.
Remark 15.6.15. A simplified version of the above argument proves the following statement:

Let A be a commutative factorization algebra. Consider the factorization category A-mod ™

unital sheaf of categories on Ran. Consider the local-to-global functor

as a

A-mod®™ — D-mod(Ran""")

given by
(Z — Ran) ~ CP (X, A, —).

Then:

(a) The above functor is acted on by C™*(X,A); in particular, upgrades to a (strictly unital) local-to-
global functor

(15.32) A-mod®™ — C***(X, A)-mod ® D-mod(Ran""").
(b) The functor (15.32) is universal among strictly unital local-to-global functors.
In the language of Sect. H.1, point (b) can reformulated as saying that (15.32) induces an equivalence
A-mod§m naep — CHR(X, A)-mod.

15.7. Construction of the algebra action. In this subsection we will construct the sought-for action
of (Oopreg‘Y)Ranm on the functor (15.29).
e z
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15.7.1. By Theorem 15.2.8, the functor (15.29) factors as
1d ®(prgpa11)*

(1533) KL(G)crit,g,Y — KL(G)crit,g —

ins.vacmon-free~reg

— KL(Q)erit ® QCoh(Oponfreevres) i KL(G)erit,Rang »

7R
Qcoh(opgf};—free) G, ang

while the functor

Id ®( Tc,)p, )* mon-free~sre;
KL(GQ)erit oy — KL(Qerite  —3" KL(G)erit e ® QCoh(Opont ®)
QCoh(Opmon-frce) e

which appears in (15.33), factors naturally as

KL(Q)erit.zy — KL(Q) erit z,y ® QCoh(Opmon-freexres) _y

G,Ran
mon-free ’ 'z
QCoh(Opé’£ )

— KL(G)Crit,g X QCOh(Ong;::eewreg).
QCoh(Op‘é".);’me) ) x

15.7.2.  We rewrite KL(QG)crit,z,v ® QCOh(OpgoFr{‘:rfeewreg) tautologically as
QCoh(Op’é‘o‘:'f‘”ee) ’ xZ

KL(G)erit,z, v & (QCOh(Y) ® QCOh(OpgoRn'freewreg)).
QCoh(Y) QCOh(Ong;'free) sRang

We now claim:

Lemma 15.7.3. The naturally defined functor

QCOh(Y) X Qcoh(opmon—freewreg) N QCOh (Y % Opmon-freewreg)
o

Qcoh<opxélo;—free) G, Rang prénon-free G, Rang

s
is an equivalence.

The lemma will be proved in Sect. 15.10.
15.7.4. Applying Lemma 15.7.3, we obtain that the functor (15.29) can be factored as

(1534) KL(G)crit,z,Y — KL(G)Crit’z’y X QCOh (Y X Oprgoflz»freewreg) s
a ~ QCoh(Y) Op‘él:kfree yalg
mon-free~reg

ll"AS<Va,C£

SKL@ee  ®  QUoh(OpE o) ML KL (Gt man,
QCoh(Opréﬂzl-free) , -

Hence, it is enough to construct an action of (Oopreg,Y)Ranm on the composition
e z

(15.35)  KL(G)erit,e,y @  QCoh (Y X Opg‘og'freewreg) N
QCoh(Y) OpnG)o;\—free shang
ins.vacmon-freereg
- KL(G)Crit& ® QCOh(OpgoRn:;CCN"ng) S KL(G)Crit,Rang.
QCOh(Opg‘c’:’fmc) s iz



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 193

15.7.5.  Consider the category

(15.36) KL(Glaritzy  ® QCoh(Y  x  Oppipheees)
QCoh(Y) Opzréxo;;»free yRalg

as tensored over

(1537) QCOh(Y X Oprgog;f;eewreg)
O > yRang

and hence over D-mod(Ran,).
We note that, according to Lemma F.3.5,

-free~sreg

Y X Op2er ~ Spec O res,y )Ran, ).

Op'é‘o“'f"ee G,Rang Rani(( Op(’; ) ni)
pra

Hence, (O reg,y )Ran, maps (isomorphically) to endomorphisms of the monoidal unit
e @

Op

0 mon-ieacres € QUOR (Y x  Oplptree=e),

v x o G,Rang Opgon-free G,Rang
- z

Opmon-free
pG,£

Hence, it acts by endomorphisms of the identity functor on (15.36).

15.7.6. The functors in the composition (15.35) are D-mod(Ran, )-linear. This produces the sought-for
action of (O, resv )Ran, on (15.35).
e I

The compatibility of this action with (15.30) follows from the construction.
15.8. Verification of the Hecke property: reduction to a local statement. The goal of this
and the next subsections is to verify property (b) from Sect. 15.6.7.

For expositional reasons, we will fix an object V' € Rep(G); and show that the functor Locgf’mtmy
intertwines the actions of V' on the two sides.

We will reduce the local-to-global assertion we are after to a purely local one, namely, (15.42).

15.8.1. Let V denote the object of QCOh(Op‘é‘O;'fmc) equal to (¢"°®)*(V), where we identify
Rep(G)x ~ QCoh(LS®).
Let
Vglob — (tglob)* ° LOCZDE: (V) c Qcoh(opgon—free (X 7 g))
Note that we have
VEIP ~ evi(V),
where

evy Opgon-free (X _ g) N Opg:}gﬂ—free.

Denote by
Vy and V%}Ob
the restrictions of V and V&'°" to
Y < Oprg:}gm—ftee and Yglob N Oprgon»free(X _ g)’
respectively.

By a slight abuse of notation, we will denote by the same symbols Vy and V%}Ob global sections of
the corresponding vector bundles, viewed as modules over R and R8'°®, respectively.
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15.8.2. Let M be an object of KL(G),,z,v, and consider the object
Locg,k,e (M) € D-moderit (Bung).
The construction in Sects. 15.6.10-15.6.14 endows Locg, . (M) with an action of R#°.
Let
Hy : D-moderit (Bung) — D-moderis (Bung)

be the Hecke endofunctor corresponding to V.

On the one hand, by functoriality, the object

Hv (Locg,k,(M)) € D-moderit(Bung)

acquires an action of R&°P.

On the other hand, we can consider

V%}Ob ® Locg,r,s(M) € RglOb—mod(D-modcrit (Bung)).

Rslob
15.8.3. The statement of (b) in Sect. 15.6.7 is that we have a canonical isomorphism

(15.38) Hy (Locg, .z (M)) ~ V&P ® Locgxa(M)
Relo

as objects of RglOb—mod(D—modcrit (Bung)).
Thus, our goal is to establish (15.38).
15.8.4. First, we rewrite the right-hand side in (15.38). Namely,
V%}Ob ® Locg,k,e(M) ~ Loca, ke (Vy % M),

Relob
where:
e We regard Vy ® M as an object KL(G)x,z,v;
R

e Locg,x,z(—) acquires an action of R&"°P via the construction in Sects. 15.6.10-15.6.14.
15.8.5.  We will now rewrite the left-hand side in (15.38).

Consider the category KL(G)x, Rran,- It carries an action of Sphg g,, . We will denote the action
functor by
FM = F-M.

The unital structure on Sph gives rise to a (monoidal) functor

ins. unity : Sphg , — Spthanz
(see Sect. H.5.5 for the notation).

In particular, we obtain a monoidal action of Sphy , on KL(G)x,Ran, -

15.8.6. Recall that the object
ins. vacg (M) € KL(G)x,Ran,

carries an action of the algebra object ((‘)Opr?g,y JRan, € D-mod(Rang). By functoriality, we obtain that
e =
(15.39) ins. unit, (Sate (V) - ins. vacy (M) € KL(G)x,Ran,
also carries an action of (OO reg,Y )Rang -
P z
Further, the object
(15.40)  Locg crit,Ran, (ins. unitg (Satg (V)) - ins. Vacg(M)) € D-modcrit (Bung) ® D-mod(Ran,)

also carries an action of (OO reg,Y )Ran, -
Py z
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15.8.7.  The object (15.39) belongs to the essential image of the restriction functor
t': KL(G),, ganuntt = KL(G)x,Ran, -
Hence, the object (15.40) belongs to the essential image of
(Id @t') : D-moderic (Bung) ® D-mod(Ran2™") — D-modei; (Bung) ® D-mod(Ran,).
In particular, it belongs to

D-moderit (Bung) ® D-mod(Ran, )™ ™% "™ ¢ D-modei (Bung) ® D-mod(Ran,).

Hence, by Sect. C.5.15, we obtain that the object
(15.41) (Id® C.(Rang, —)) o Loca, crit,Ran, (ins. unit, (Sate (V) - ins. vacﬂM))

acquires an action of

Ci(Rang, (O reey JRan,) = (X, Oopres, R) ~ RE.
re i

15.8.8. Recall now that the functor
Locg,crit,Ran, 1 KL(G)x Ran, — D-moderit (Bung) ® D-mod(Rang)

1

is Spthanm—linear.

Note also that the functor

Id ® C.(Rang, —) : D-modcrit (Bung) ® D-mod(Rang) — D-modeis (Bung)

is Sphg ,-linear, where Sph , acts on the left-hand side via ins. unity.

Combining, we obtain that the functor

(Id® C.(Rang, —)) o Locg crit,Ran,, KL(G)x,Ran, — D-moderit(Bung)
is Sphg ,-linear.
15.8.9. Combining Sects. 15.8.6-15.8.7 with Sect. 15.8.8, we obtain that
Hy (Loca,n,z(M)) € R&°P-mod(D-modcrit(Bung))

identifies with the object (15.41), with the R&°P-action specified in 15.8.6-15.8.7.

15.8.10. Hence, we obtain that in order to prove (15.38), it suffices to establish an isomorphism

(15.42) ins. unit, (Satg (V)) - ins. vacg (M) =~ ins. vace (Vy @ M)
R

as (O reg,v )Ran,-modules in KL(G)x,Ran,, where:

OpG

e We regard Vy ® M as an object KL(G)x 2,v;
R
e ins.vacg(—) on each side acquires an action of (oopreg,Y)Ranx via the construction in Sect.
e o
15.7.

Remark 15.8.11. As was mentioned in the preamble to this subsection, we fixed objects M € KL(G)x v

and V € Rep(G), for expositional reasons. The actual assertion behind (15.42), and one that we
actually prove in Sect. 15.9, is that that ins. vac,, viewed as a functor

KL(G)K,LY — ((Ooprgg,y )Ranﬁ)-mOd(KL(G)n,Rar@),
e

is Rep(G)z-linear.

15.9. Verification of the Hecke property at the local level. In this subsection we will construct
the identification (15.42) and thereby complete the verification of point (b) in Sect. 15.6.7.
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15.9.1. Let us apply Lemma 5.4.2. It implies that we can rewrite the left-hand side in (15.42) as
(15.43) t™(ins. unit, (V)) ® ins. vacg (M),

where:

e ins.unit, : Rep(G)z — Rep(G)Ran, is the unital structure on Rep(G);

e We identify Rep(G)ran, =~ QCoh(LSZ%, . );

e t denotes the map Opmon-free _, 1, greg

G,Rani G,Rani;
e ® refers to the action of QCoh(Op‘é‘f’é‘ﬁ;‘e) on KL(G)x, Ran, -

The action of (O

opreEY )Ran, on (15.43) is obtained by functoriality from the (Oopreg,Y)Ranw'aCtiOn
G “ fe] -
on ins. vacg (M).

15.9.2.  We now note that the linearity with respect to

(PLamant)+ © (Prysg) (QCoh(OpE™ <))

in Theorem 15.2.8 implies that the functor

(15.44)  KL(Gerita,y @ QCoh(Y X Op“}"“’free”reg) N

G Ranz
Igon»free ’
QCoh(Y) OpG,

ins'vacmon-freewreg

— KL(Q)erit ®  QCoh(OpZouireeree) _ KL(G)erit,Ran,
QCOh(Opgfz'iree) ) T

of (15.35) is linear with respect to QCoh(Op‘émf{:;ie), which acts on

KL(Q)aritey © QCoh(Y x opgog-freewreg)
QCoh(Y) Opmon-free ;Rang

X2

via the pullback along

Op
Pryio o+
mon-free~>reg P mon-free~sreg = big,z mon-free
vy oox . OPcrun * OPg R * OPG Ran, -
Opmon-free > . ’ z z
G,z

where prboil;£ is the map from Sect. 15.4.1.

15.9.3. Hence, we can rewrite (15.43) as the value on M € KL(G)x,z,v of the functor

(15.45)  KL(Gaite,y = KL(G)aitey @ QCoh(Y X OpgoRn’free“reg) —
B ~ QCoh(Y) Opgomn—free yRang

Id ®(—®(toprboi[;z op2)* (ins.unity (V)))
—

KL(G)crit,g,Y ® QCOh (Y X OpgoRn—freewreg) —
QCoh(Y) opgor/)-free yRang

x

15.35
) KL(G) e an, -

In terms of this identification, the action of (O res.v )Ran, on (15.43) is obtained from the action
e @

of (OOPrggy)Ranl on the functor (15.44) (which is the same as (15.35)) from Sect. 15.7.6.
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15.9.4. Thus, we obtain that in order to prove (15.42), it suffices to establish an isomorphism between
the value on M of the functor

(15.46)  KL(G)erit,z,y = KL(Glexitiey & QCoh(Y xifnoprg’ORn;frf:ewreg)H
IndCoh'(Y) Op‘g"“ Tee z

X2

1d ®(—®(voprof | ops)* (ins.unity (V)))
b g__)z KL(G)crit,LY ® QCOh (Y % Opmon—freewreg)

QCoh(Y) Opmon-free G,Rang
G,z

and the value on Vy @ M of the functor
R

(15.47) KL(G)erit,z,y — KL(G)arit,z,y @ QCoh (Y X 0 goRn'free“reg).
- - QCoh(Y) Opgomn—free yang

15.9.5. In order to do that, it suffices to establish an isomorphism between the following vector bundles
on

-free~~re
Y x  Oppeneess,
Opmon-free vaRan£

G,z

e The pullback of ins. unity (V') € Rep(G)ran, ~ QCoh(LSz5,,,, ) along

Op
pry
Y mon-free~~reg Pg] mon-free~sreg = big,z mon-free T, reg .
o m(>><n»free G,Rang OpG,RanI OpG»Rang LSG,RanI7
p z T T
G,z

e The pullback of Vy along

Y % Opmon—freewreg Y.
Opmon-free G Rang ’
G,z

15.9.6. Note that for (z C z’) € Ran,, restriction along

Dy — Dy
gives rise to a map
reg reg
(15.48) LS¢ Ran, — LSepr

so that
ins. unitg ~ (15.48)".

The required isomorphism of vector bundles follows from the commutative diagram

-f id xp1 i
Y >< Op[{]ol’) ree~»reg % Y OpIéIO; free
Opxixuxx-free G,R,anl x
G,z

.|

mon-free~>reg
()pC’v',Ran£ J/r
Op
prbig,ﬂl
mon-free v reg (15.48) reg
OpG,Ran£ E— LSGV,Ran£ - LSG»&

15.10. Proofs of Lemmas 15.6.4 and 15.7.3.
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15.10.1. We first prove Lemma 15.6.4. In fact, the assertion holds for Opg™ free(D;) replaced by an
arbitrary ind-placid ind-scheme Z.

Namely, for Y7 &8 Y5, the functor

Functp,acoent (z)(IndCoh' (Y1), C) — Functy,qcon! (2 (IndCoh' (Y2), C)

admits a right adjoint, given by precomposition with (i1, Q)Indcc’h

Hence, we can rewrite the colimit

co}l/im Functy,gcon! (2) (IndCoh'(Y), C)

as a limit with respect to the above right adjoint functors.
The latter limit is the same as
Functygcon! (2) (co}lfim IndCoh'(Y), c) .
We now use the fact that the functor

colim IndCoh'(Y) — IndCoh(Z)

is an equivalence.
O[Lemma 15.6.4]

15.10.2. The rest of this subsection is devoted to the proof of Lemma 15.7.3. Consider the Cartesian
diagram
O mon-free~>reg O mer~>reg

G Rang G ,Rang
Op Op
prsmall.gl lprsmall,g
mon-free ymon-free mer
[N L
O G T OpG,x’

where Opmerwreg is as in Sect. F.3.3.

15.10.3. We will prove:

Lemma 15.10.4.
(a) The category QCoh(Opmerwmg) is dualizable as a QCoh(Opg?,)-module.

(b) For any affine Y — Opg5,, the functor

QCOh( ) @ QCOh(OpmerWreg) — QCOh(Y >< o) Eeyr{wreg
QCoh(Opgf’r) z er ang

T

is an equivalence.
It is easy to see that Lemma 15.10.4 implies (15.7.3) by passage to the limit.
Thus, the rest of this subsection is devoted to the proof of Lemma 15.10.4.

15.10.5. First, a standard limit-colimit procedure reduces the assertion to the case when we replace
Ran, by
2 := (X1)ar,

where:

e We think of z as a point of X7 for some finite set .J;

e [ is a finite set with a map J — I;

o XI.=X! x pt

z X7 g
Further, we can assume that X is affine and admits an étale map to A’.

Second, we can replace the D-scheme Opx by Jets(€), where € is the total space of a vector bundle
on X (see Sect. 3.1.7).
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15.10.6. Note that for X as above, we have (non-canonical) isomorphisms
SR = 87 (8)z X (£(8)2/L7(€)a)

and
£(8)z ~ £7(E)z X (£(8)2/L7(E)a),

so that the projection

SR s £(),
corresponds to the projection
£ &)z = £7 (&)

We can therefore identify
QCoh(£7°™%) = QCoh(£7(€)2) ® QCOh(£(€)s/LT (€))

and
QCoh(£(€).) ~ QCoh(L™(€)z) ® QCoh(L£(€)2/L7 (€)2)-

15.10.7. To prove point (a), it suffices to show that QCoh(£%(€)z) is dualizable as a module over
QCoh(£(€),). However, this is obvious, since both geometric objects are afline schemes.

15.10.8. To prove point (b), it is sufficient to do so for a cofinal family of Y’s. Hence, we can assume
that Y is invariant under translations with respect to £ (€),. Hence, we can identify

Y ox o SRR o g7 (€), x (Y/LT(E)).
£(&)z

We have

QUoh(Y x £°7"°%) ~ QUOh(L" (€)z) & QOh(Y/£*(£)q),
L&)z

which makes the assertion of point (b) manifest.
O[Lemma 15.10.4]

16. PROOF OF THEOREM 15.2.8

16.1. Reformulation and strategy.

16.1.1. For expositional purposes we will let Z = pt, so that Z — Ran corresponds to z € Ran.

Hence, our goal is to construct a functor

ins.vac:‘on'ﬁeewreg

QCOh(Opgolg:;ee“’*reg) ® KL(G)crit,g — KL(G)mRang
JRang. QCOh(Opgz_ﬁee)

such that
ins. vacg : KL(G)erit,e = KL(G)x Ran,

factors as

(prsonl?au L) @l £
(16.1) KL(G)eriee % 77 QCoh(Opmon-free=res) ® KL(G)erie.e —

G’,Ran£ mon-free
QCoh(Opgon-ree)

mon-free~sreg
o

— KL(G)K,Rani,

ins.vac

and such that the functor ins. vacmon-freexree ig QCoh(OpgoRn;ﬁee)—linear via
@ Ran,

(Pri.2)” : QCoh(OPERans") — QCoh(OPG T 1),
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16.1.2. Precomposing with the functor
(16.2) T, mon-treewreg : QCOh(OpReniree=resy _y IndCoh' (Opmen-ree-res)

OPCJ Rang G,Rani Cv;,Ran£
we obtain that it suffices to carry out the construction in Sect. 16.1.1 above for QCoh(—) replaced®®
by IndCoh'(—).

Le., from now on our goal will be to construct a functor

ins'vacmon-f:'eewreg

(16.3) IndCoh' (Qpmen-free~ree) ® KL(G)erit 2 — KL(G)x Ran,

G,R3«U£ ! mon-free
IndCoh! (Opggon-free)

such that ins. vac, factors as

(PriRan g)'®1d -
(164) KL(G)erite 3% IndCoh'(OpZoniree—res) ® KL(Q)erit.e —
’ 'z IndCoh!(Op‘Gf‘o;'free)
ins_vachon—freeWreg
— KL(G)K,Rani,
and such that the functor ins. vaciior-free=res jg IndCoh!(Op’é‘?&‘;‘:;e)—linear via

(prgifg’&)! : IndCoh!(Opgf’R";;r:e) — IndCoh!(Opg‘O;:;eewreg).

16.1.3. Consider the factorization functor
Vac(G)erit : QCoh(Op®) =~ 3mod” — KL(G).,

given by
F = F ® Vac(G)erit-
3

16.1.4. Recall that according to the conventions in Sect. B.12.4, for a factorization category A, we
denote by APtz the vacuum object of A-modg“, i.e., the object whose underlying category is A..

Thus, we can consider
(KL(G),)"" € KL(G)-mod®".
Consider the object

Resvac(@)o (KL(G)x)™2) € QCoh(Opj¥)-mod;".

16.1.5. Ezample. For z Uz" =z’ € Ran,, the fiber of Resvac(c)crit((KL(G)K)faC@) at 2’ is

KL(G) .z ® QCoh(OpEE,).

16.1.6. Consider the assignment

(2 = Ran,) — IndCoh' (Opg e ™"* X Zar)

as a crystal of (symmetric) monoidal categories over Rang, denote it by IndCoh!(Opgon"&eewreg)f&“#

Note that it extends naturally to a crystal of (symmetric) monoidal categories over Ran;““, in which

the monoidal structure is given by strict functors between sheaves of categories.

16.1.7. The key step will be to construct an action of
IndCoh! (Oprgon—freewreg)fact£

on
Resvac(@)o (KL(G)x)™)

(as crystals of categories over Rang). Furthermore, we will show this action extends to a strict action

as crystals of categories over Rani™!

590ne can show (using Lemma 15.10.4 combined with a parallel statement for IndCoh') that the functor (16.2) is
actually an equivalence.
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16.1.8. The above strict compatibility means in particular that the functor
ins. vacg : KL(G)re — ReSvac(@)o, (KL(G) k)™= )Ran,

intertwines the IndCoh' (OpE%” freey_action on KL(G), and the IndCoh!(Opr?on'fre‘tewreg)—action on

G,Rang
ReSvae(G) o, (KL(G) k)™= )ran, via the functor

ins. unit, : IndCoh'(Opg%~"**) — IndCoh'(Op gOg;f;;C“*TCg),

while the latter is the functor of !-pullback along

mon-free~-re; mon-free

Op . g
Plsmalz * VP& Ran, = Opgy

Hence, we obtain a functor

(16.5)  IndCoh'(OQpmor-free-res) ® KL(G) e — Resvac(@)on (KL(G) )™ )Ran, -

G,Rang 1 mon-free
IndCoh! (OpZ°n )

16.1.9. Composing with the tautological functor
ReSVac(G)Crit ((KL(G) )faCtI )Ran»p — KL(G)K,Ran£7
we obtain the sought-for functor

ins. vacy """ ; IndCoh' (Op(E oy ™"°*) ® KL(GQ)n,e — KL(G)s Ran,

— IndCoh! (OpBon-free)

of (16.3).

mon—freewreg)
)

16.2. The acting agents. In this subsection we will interpret the category IndCoh'(Op & Rom

in terms of factorization restriction.

16.2.1. Recall the map of factorization spaces

L+,mon—t'ree Opreg N O mon free.

Consider the corresponding factorization functors

+,mon-free\IndCoh
@ )

(16.6) QCoh(Ops®) ~ IndCoh" (Opjs¥) IndCoh* (OpEe™ee)

and

+,mon-free\IndCoh
@ )

(16.7) IndCoh' (Opreg) IndCoh' (Opze™ free).

16.2.2. We start with
IndCOh (O mon- free)factJC c IIldCOh (Opmon free) modfact

and
IHdCOh (Opmon free)factl c IndCOh (Opmon free) modfdct

and consider the resulting objects

(16.8) Res(, + mon-tree)macon (IndCoh ™ (Opg )2 ) € QCoh(Op/5¥)-mod;""
and
(16.9) Res(, + mon-free)mdcon (IndCoh’ (Opg™ %) **2) € IndCoh'(Op’s®)-mod}*".

Since the factorization functors (16.6) and (16.7) are unital, the module categories (16.8) and (16.9)
have natural unital structures, see Sect. C.14.15.
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16.2.3. Let us consider the assignments

(Z — Ran,) — IndCoh* (OpZorfree=res o 7.1r)

G,Rang Rang
and
(Z — Rang) — IndCoh'(OpZer-free=res o 7ir)

G,Rang Rang

as crystals of categories over Ran, (the latter is the crystal of categories that we have introduced in
Sect. 16.1.6).

They have natural structures of unital module categories (at z) over
IndCoh”(Op*) and IndCoh' (Ops®),
respectively. We will denote them by
IndCoh" (Opi2e™ freewregyfacts o1 TndCoh' (Op gon—freewreg)facti,

respectively.

16.2.4.  We will regard IndCoh™(Op3°™ freeregyfacts (pegp., IndCoh' (Ops™ free=regyfacts ) a5 equipped
with a comonoidal (resp., monoidal) structure given by IndCoh*- pushforward (resp., -pullback) along
the diagonal morphism.

We note that when we view IndCoh™(Opj;™" freeregyfacts a9 a crystal of categories over Rani™| its
comonoidal structure is given by right-lax functors
By contrast, when we view IndCoh' (Opg™ freewregyfacts a5 a crystal of categories over Rani™ | its

monoidal structure is given by strict functors

16.2.5. The map ™% gives rise to a map

+,mon-free—reg | mon-free~reg mon-free
L OGRan %OGRanl.

(Note that ;F™enfree js the same as the map prbig,x).

We obtain functors of (unital) module categories

(1610) (L—O—,mon—frcc—)rcg)ind(]oh . IHdCOh* (Oprélon—t'rccv~>rcg;)fact£ N IndCoh»«(Oplcl:;on—frcc)fact£
and
(1611) (L+,mon-free—>reg)£ndCoh IHdCOh (O mon- freewreg)factT N IHdCOh (O rélon—free)fact£7

compatible with the functors (16.6) and (16.7), respectively.
16.2.6. By Sect. B.12.11, the functors (16.10) and (16.11) give rise to maps

16.12 L+,mon»free indCOh . IndCOh* Opl?on—freewreg facty _>
G
Res(L+,Inon-free)£ndCoh (IndCOh* (Opgon'f‘fee)f&“g)

and

(16.13) (L+’m°n—free)£ndCoh IHdCOh (O mon- freewreg)fact, N
— R,eS(L+,nlon-free)LndCoh (IndCoh! (Oplgonffree)facti)
in
QCoh(Op®)-mod;** and IndCoh'(Ops®)-mod;*,

respectively. Moreover, the maps (16.12) and (16.13) are compatible with the unital structures, see
Lemma C.14.16.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 203

16.2.7. The following is a variant of Lemma F.5.7:

Lemma 16.2.8. The functors (16.12) and (16.13) are equivalences.

Proof. We prove the assertion for IndCoh*. The case of IndCoh' is analogous.

By Lemma B.15.9, it suffices to check that:
(i) The functor (16.6) admits a right adjoint (as a functor between sheaves of categories);
(ii) The functor (16.10) admits a right adjoint (as a functor between sheaves of categories);

(iii) The functor (16.10) induces an equivalence between the fibers of the two sides at z € Ran,.
We note that point (iii) holds tautologically.

Points (i) and (ii) are also automatic: the right adjoints in question are given by the funtors
(L+,mon—free)! and (L+,rnon-free—nreg)!7 respectively.
O

16.3. Construction of the action.

16.3.1. Recall the object
Resvac(@)en (KL(G)x) ™) € QCoh(OpgsF)-mod;™".

We claim that Resvac(a),,;, (KL(G)x)™"=), viewed as a sheaf of categories over Rang, carries a

canonically defined action of Res,+,mon-rec)macon (IndCoh!(Op‘élo“'frcc)f“tl).

16.3.2. By duality, a datum of such an action is equivalent to the datum of a coaction of the sheaf of

; : —free fact
comonoidal categories ReS(L+,111on-free)£ndcoh (IndCoh* (OpgOn reeyfacty )

We will construct the corresponding coaction functor
(16.14)  ReSvac(@)eme (KL(G)w) ™) —
— Res(L+,mon-free)£ndCoh (IndCOh* (Opgon-erE)faCtﬁ) ® Resvuc(g)cm ((KL(G)N)faCtl)

The full datum of coaction is defined similar to Sect. 5.3, using the device from Sect. J.

16.3.3.  We interpret the right-hand side in (16.14) as the restriction of
(IndCoh™ (OpE®™™**) ® KL(G),) ™" € (IndCoh™ (OpE*™**) ® KL(G),)-mod**
along the factorization functor

((Hmontree)ndCOh @ Vac(G)erit) : QCoh(Opi?) ® QCoh(Op?) — IndCoh™ (Opg® ) @ KL(G)x.

The functor (16.14) is given by the procedure of restriction from Sect. B.12.15 along the diagram
KL(G). =~ —— IndCoh*(OpZE™™ ™) @ KL(G)x
VC"C(G)CritT T(L+,mon-free)£ndcoh®VCLC<G)Crit

QCoh(Op®) ——— QCoh(Opy*) ® QCoh(Opy®),

where:
e The top horizontal arrow is the coaction of IndCoh™ (Opgon'fmc) on KL(G)y;

e The bottom horizontal arrow is the comonoidal operation, i.e., the functor of direct image
along the diagonal map.
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16.3.4. Ezample. Here is what the above action (resp., coaction) does at the pointwise level. Write

/ 1
r =zUzx,

so that

Resvac(@)ons (KL(G) ) %) =~ KL(G)w,e ® QCoh(OpgE,)),

Res(, + mon-tree)macon (IndCoh™ (Opg”" ) %) , ~ IndCoh” (Opg ") ® QCoh(Op%E ),

Res(,+ mon-tree)macon (IndCoh' (Ope™ freeyfactz) , ~ IndCoh' (Opmon_ﬁee) ® IndCoh!(Operegz,,).

The coaction of Res(,+ mon-frecjinacon (IndCoh*(Opgo"'ﬁee)f‘mi)g on Resvac(c)crit((KL(G)K)‘C"‘C‘“E)Q/
acts as the tensor product of
e The coaction of IndCoh™(Opg?," freey on KL(G) 2, and
e The functor of direct image along the diagonal map QCoh(Ops®,) — QCoh(Op™s® ) ®

G,z G,z
QCoh(OpiE%,,).

The action of Res(, + mon-tree)mdcon (IndCoh' (Opg°™ )= ./ on Resvac(@)en, (KL(G))™"2),r acts
as the tensor product of
e The action of IndCoh' (Op}5°*™*°) on KL(G)x,¢, and

e The canonical action of IndCoh’(OprG?i ,) on IndCoh”(Op% ) = QCoh(Opg?, ).

16.4. The unital structure on the action functor.

16.4.1. Let us regard
KL(G), and IndCoh” (Op°™ee)

as crystals of categories on Ran, equipped with a unital structure (see Sect. 11.2.1 for what this means).

The coaction of IndCoh* (OpE°"™*°) on KL(G), has the following feature: it extends to a coaction

untl

in the 2-category of crystals of categories on Ran"™" with right-laz functors.

This follows from the construction of this coaction in Sect. 5.3, using the following observation:

For a map of factorization algebras A1 — A2 in a given factorization category A, the restriction
functor
Az-mod(A) — Ai-mod(A),
viewed as a functor between crystals of categories on Ran, admits a natural extension to a right-lax
functor between crystals of categories on Ran"™.

16.4.2. Tt follows from the construction in Sect. 16.3.3 and Sect. C.14.20 that the functor (16.14)

extends to a right-lax functor between crystals of categories on Ran“ml

By a similar token, we obtain that the full datum of coaction of the comonoidal category

Res(, +,mon-tree)macon (IndCoh™ (OpZeree)2ete) on Resvae(@) oy ((KL(G)x)™') extends to a coaction

untl

in the 2-category of crystals of categories on Ran;™" with right-lax functors.

16.4.3. Combining with Lemma 16.2.8, we obtain that ReSvac(@)op ((KL(G)K)facti) carries a coaction
of IHdCOh*(O mon- free“’"reg)factr

untl

Furthermore, this coaction extends to a coaction in the 2-category of crystals of categories on Rany
with right-lax functors.

16.4.4. We note now that the unital structures on
IHdCOh (O mon- frccwrcg)fact:, and IndCoh (O rcrvvlon-frccv»rcg)fact£
have the following feature:
The counit of the duality
IHdCOh (O mon- frccwrcg)fact., ® IndCoh (Opr?on—frccwrcg)factT S D- mod(Ranz)

extends to a right-lax functor between crystals of categories on Ran‘mtl
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16.4.5. The coaction of IndCoh* (Opgon'ﬁeewmg)faCtl on Resvae(a)., (KL(G)x)™"2) gives rise to an
action of IndCoh!(OpICI;,lon’freewreg)facci on Resvae(q)., (KL(G),) ™).

Moreover, by Sect. 16.4.4, this action extends to an action in the 2-category of sheaves of categories
on Ran""! with right-laxz functors.

16.4.6. We now claim:
Lemma 16.4.7. The right-lax functors that define the action of IndCohl(Oprgor"ﬁeewreg)fa“i on

untl

Resvac(@)o, (KL(G))™"2) as crystals of categories on Ran"™" are strict.

Proof. We need to show the following: for x C z; C z,, the natural transformation from
(16.15)  IndCoh' (OpZ"*""%) © Resyae(q).me (KL(G)) %) s,
2Czy cri zCx

ins.unit£1 Cay

— Resvac(@) e ((KL(G)n)faCti)zggl — Resvac(G) e ((KL(G)H)faCt£)§§§2

to
ins.unit 2o, @ ins.unit, =
(16.16) IndCoh! (Opg:;;clcwmg) ® ReSVac(G)Crit ((KL(G)K)faCt£)£g£1 zq 272_> z1Czo
! mon-free~-re facty action
— IndCoh’ (Opg =) @ Resvac(6)eris (KL(G)x) )aCa,

— ReSVaC(G)crit ((KL(G)“)faCtL)£g£2
is an isomorphism.

The question of a functor between crystals of categories (in this case, over Ran,) being an isomor-
phism can be checked strata-wise. So we can assume that

z, =z, Uz
We identify
(16.17)  Resvac(@)en (KL(G)w) ™) zcs, = ReSvac(@) e, (KL(G)x) ™) ca, ® QCoh(OPEE,,)
and
(16.18) Indcoh!(opgz‘g;jmg) @ Resvae(@)on, (KL(G)) %) p ey, =~
~ IndCoh' (OPE*"5) © Resvae(a)ow, (KL(G)w) ™) ace, Q)

G,zCx;
(X) IndCoh'(Opis® ,,) ® QCoh(Ops% ),

G,z Gz

crit

so that the functor

ins.unit

z1 Cx: .
Resvac(@)en ((KL(G)K)faCt£)£§£1 S Resvac(G)enit ((KL(G)N)%C@EQQQ
identifies with
I re
d ®OOPGZ//
and the functor
insAunit£1 Cay & insAunit£1 Cay

IndCoh' (0P ") @ Resvae(6)eps, (KL(G) ) ™) acs,

G,zCz,

— IndCoh' (Op"""*8) @ Resvac(G)ers, (KL(G)x) %) zca,

G,zCax,
identifies with
Id ®WOPZ§ZN [024] Ooprgil .

’

In terms of (16.17) and (16.18), the functor

Indcoh! (Opmon—freewreg) ® Resqu(G)Crit ((KL(G)K)faCt£)1C12 ac_li:m Resvac(mcm ((KL(G)K)facti)zczz

G,zCxy =L
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is the tensor product of

IndCoh' (Op2°* "8} @ Resyae(a)on (KL(G) ) ™) nce, 5" Resvac(@)on, (KL(G)) ™) pca,

G.zCz,
along the first factor and

TndCoh! (Opi<% ) ® QCoh(Op™% ) ~ IndCoh' (Op** ) @ IndCoh™ (Op's* ) 3

é’ln é7£11 é,g” G,g”
— IndCoh™(Op® ,,) =~ QCoh(Ops5® )

along the second factor.

Hence, we obtain that, in terms of (16.17) and (16.18), both functors (16.15) and (16.16) are
identified with

crit

(1619) Indcoh!(oprélonffreewreg) ® ReSVaC(G)

2Cxy

fact, action
(KL(G)x) " )cs, "=

Id ®woprf3g .
(¥
— ReSVac(G)Crit ((KL(G)H)faCt£)£§£1 -

— Resvac(@)ers (KL(G)x)™"%)2ce, ® IndCoh'(OpE ).

Unwinding the construction, we obtain that the endomorphism of (16.19) defined by the structure

of right-lax functor on the action map is the identity map.
d

16.5. End of the construction.

16.5.1. Thus, we have carried out the construction announced in Sect. 16.1.7. In particular, we obtain
a functor

(16.20) IndCoh'(Qpmer-free-res) ® KL(G)eritye — ReSvae(a)on (KL(G)w) ™" )Ran, ,

G,Rani ! mon-free
IndCoh! (Opg°» )

and its composition of the functor (16.5) with

(16.21) Resvac(@)on (KL(G) )" )Ran, — KL(G)x,Ran,
produces the sought-for functor
(16.22)  ins. vacgon"frccwmg : IndCoh!(Opgf’g;izcwrcg) ® KL(G)r,z = KL(G)x,Ran, -

! mon-free
IndCoh (Ova’£ )

16.5.2. It remains to show that the functor (16.22) is IndCoh!(Oprén(’;;féewreg)—linear.

The functor (16.20) is IndCoh!(OpgoRn'af;mWrcg)-linear by construction. So it remains to show that
the functor (16.21) is also IndCOh!(Opgog;f;eewreg)—linear.

16.5.3. Unwinding the construction of the coaction of Res,+ mon-free)mdcon (IndCoh* (OpZen-ree)facte)
on Resvae(a),,, ((KL(G)x)™") in Sect. 16.3.3, we obtain that the functor (16.21) intertwines the

coaction of Res(,+ mon-treeymacon (IndCoh” (Opgon’ﬁee)f&“ﬁ) on the left-hand side with the coaction of
IndCoh* (OpgoRn;ifeewreg) on the right hand side via the tautological forgetful functor

Res(,+ mon-treeymacon (IndCoh* (Op’é‘on’ﬂee)mti) — IndCoh™ (Opgofl;‘:;eewreg).

Hence, the functor (16.21) intertwines the coaction of IndCoh*(OpgoRn;frfje) on the left-hand side of

(16.21) with the action of IndCoh* (Opgj)Rn;i:ewreg) on the right-hand side of (16.21) via (prboigg)i“dcc’h.

Passing to the dual of the acting agents, we obtain that functor (16.21) intertwines the action of

IndCoh'(OpE o) on the left-hand side of (16.21) with the action of IndCoh'(OpZ%i %) on the

right-hand side of (16.21) via (prboifg”g)!, as desired.
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O[Theorem 15.2.8]

16.5.4. The next assertion is not needed for the sequel; we mention it for the sake of completeness:
Proposition 16.5.5. The functor

(16.23) QCoh(OprgoRn;geewreg) ® ) KL(G)crit,g — ReSVaC(G>cric ((KL(G)n)faCtﬁ)Ranl7
s T QCOh(Opg:gl-free)

induced by (16.20), is an equivalence.

The rest of this subsection is devoted to the proof of this proposition.

16.5.6. The functor (16.23) comes from a morphism in the 2-category QCoh(OprG?g)—modf;Ct:

(16.24)  QCoh(Opg™™eees)ncte ®  KL(G)eritia = ReSvac(@)on, (KL(G)r) ™)
Qcoh<opg?£-free)
Hence, by Lemma B.15.9, in order to check that (16.23) is an equivalence, it suffices to check that:
(i) The composition of (16.24) with the tautological functor
RS vae(6)e (KL(G))012) = (KL(G)) =
admits a right adjoint (as a functor between sheaves of categories);
(ii) The functor Vac(G)crit admits a right adjoint (as a functor between sheaves of categories);

(iii) The functor (16.24) induces an equivalence between the fibers of the two sides at z € Ran,.

16.5.7. Point (iii) above is immediate. Point (ii) follows from the fact that the functor Vac(G)erit
preserves compactness.

Hence, it remains to show that the composition in point (i) preserves compactness (and the left-hand
side is compactly generated).

16.5.8. Let Y be as in Sect. 15.6.3.

It is easy to see that the corresponding category KL(G)crit,e,v is compactly generated. By
Lemma 15.6.4, it suffices to show that the composition

(16.25) QCoh(Oponreeres)facts ® KL(G)cxit,z,y —
QCoh(Oprg?g'free)
N Qcoh(opgon—freewreg)factm ® KL(G)crit,g N

QCoh(Opgon-iree)
= Resvac(@)o, (KL(G)x) ™) — (KL(G),) "=
preserves compactness.

We rewrite the left-hand side in (16.25) as

Qcoh(Opgon—freewreg)factm ® QCOh(Y) ® KL(G)Crit,g,Y7
QCoh(Opg?mn-free) QCoh(Y)

and further, by Lemma 15.7.3 as

(16.26) QCoh(Oppemfeees — x  y)*te @  KL(Gerit,y-
Oprgon—frcc QCoh(Y)

G,z
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. -f s . . .
16.5.9. Now, since Opg°" "7 X Y is a relative affine scheme (as opposed to ind-scheme)
Opmon-tree
G,z

over Rang, the category (16.26) is comp;ctly generated by the essential image of compact objects along
the functor

KL(G)Crit@’Y — Qcoh(opgon-freewwg m(>)<n_free Y)fadm C@; KL(G)Crit,g,Yz
Opcy£ > QCoh(Y)

given by tensoring with the structure sheaf along the first factor.

Hence, it suffices to show that the functor

(16.27)  KL(G)erit,e,y — QCOh(Oprgon—freewreg)factx ® KL(G)erit oy —
Qcoh(oprélf);-free)
N QCOh(Oprgon»freeWreg)factz ® KL(G)Crit,g N

mon-free
QCoh(Opé’£ )

— Resvac(G)Crit((KL(G)K)faCtE) — (I{L((;v)ﬁ)fact£
preserves compactness.

16.5.10. The forgetful functor
KL(G)Crit,£7Y — KL(G)Crit7£

preserves compactness (indeed, it admits a continuous right adjoint). Hence, it suffices to show that
the functor

KL(G)Crit,g N Qcoh(opgon»freeWreg)fact,; o h(o® ) ) KL(G)Cl‘it,£ N (KL(G)H)f'dCt£
o plél?;)’ ree

preserves compactness.
However, by construction, the latter functor is
ins. vacg : KL(G)erite — (KL(G), )™,

and the assertion follows.
O[Proposition 16.5.5]

17. SPECTRAL POINCARE FUNCTOR(S)

In this section we start dealing with the local-to-global constructions on the spectral side, i.e., when
the recipient category is IndCoh(LSs).

We introduce two versions of the spectral Poincaré functor:

B spec
Poinc .I"

IndCoh' (OpZ°™ ™) gan  —3" IndCohnirp (LS (X))

and
Poinc5P°¢

IndCoh* (Op2°™ ™) g —3" IndCohninp (LS (X))
However, we show (Theorem 17.4.7) that they are intertwined by the “self-duality” functor

eopréwn—free . Indcoh!(oplgon—free) N IHdCOh* (()pgon—free)7

up to tensoring by a graded line.
Next we recall the definition of the spectral localization and global sections functors

LocP®® : Rep(G)ran = IndCohii (LSg) : [Eec a0k,
Finally, we give the expression for the composition

PoincPeC FSPQC,II)dCo]) B

IndCoh™ (Op%°" ™) gan  —5"" IndCohniip(LS) ¢ —  Rep(G)Ran

via factorization homology, which exactly matches the composition (14.1) under FLEg crit and FLEQOO.
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17.1. Ind-coherent sheaves on local vs. global opers.

17.1.1. For Z — Ran consider the morphism

mer,glob €V mer
Opc‘;,z = P& 2

Note that the prestack Opgcé’glc’b is locally almost of finite type, so we have a well-defined category

IndCoh(Op*"#'°") := IndCoh(Opj 3 #'*).

Consider the pair of mutually dual functors

(17.1) (evz)'" : IndCoh(OpZ#'°")z — IndCoh* (OpE™)z
and
(17.2) (evz,)! : IndCoh!(Opger)z — IndCoh(Opger’gIOb)Z.

17.1.2. We claim:
Lemma 17.1.3. The functor (17.2) preserves compactness.

17.1.4. Before we prove Lemma 17.1.3, we need to introduce some notation. For expositional purposes,
we will assume that Z = pt, so that Z — Ran corresponds to x € Ran.

Let V denote the Tate vector space
I(D;, a(8)wx)-
Let Lo C V denote the standard lattice, i.e.,
Lo :=T'(Dx, a(§)wx )-

Recall that, according to Sect. 3.1.7, we have a simply-transitive action of Ly on Oprgi, so that

For a lattice L D Lo denote

L% Op® = Opk, C Op
pé,z =:UP¢g PGz
Denote

VP = DX — 2, a(@)uy)-

mer,glob

G , compatible with the embedding ev, via

We have a simply-transitive action of V&°P on Op

veleh oy v,

For L D Lo set
OpIG:,glob — Opt{ler,glob % Opéyﬁ

s L G,z Oprcg’c;
17.1.5. Proof of Lemma 17.1.3. We have
(17.3) IndCoh' (OpE™)z, =~ colim IndCoh' (Op&)z,
0

where the colimit is taken with respect to the IndCoh-pushforward functors.

Hence, it is enough to show that the composition

IndCoh'(Op)z — TndCoh'(Opg™)z — TndCoh(OpZ*")

preserves compactness.
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The Cartesian diagram

L,glob eV L
OpG Opé,z

L

(17.4) | |

mer,glob mer
Opé7£ evy OpG’E

gives rise to a commutative diagram

L Lgloby | (eva)' "(Opk
IndCoh’(Op®°”) +——— IndCoh'(Op¢ )

pushforwardJ/ lpushforward

Indcoh!(opgz,glob) ﬁ IndCOh!(Opgz):

see Sect. A.10.12.
Hence, it suffices to show that the functor
(eve)" : TndCoh'(Opg; ,) — IndCoh' (Opg &)

preserves compactness.

Write
IndCoh'(Op§ ,) = colim IndCoh(Op§ , /L),

& L/CLg

where the colimit is taken with respect to the !-pullback functors.
Hence, it suffices to show that the !-pullback functors along
L L,glob L
Opé , — Opéi0 — OpG,Z/L'
preserve compactness.

However, the latter is obvious, since the above morphism goes between two smooth schemes.
O[Lemma 17.1.3]

17.1.6. As an immediate corollary of Lemma 17.1.3, we obtain:

Corollary 17.1.7. The functor (17.1) admits a left adjoint, to be denoted ev*Z’IndCOh.

17.1.8. Note that we have a tautological commutative diagram

ev IndCoh
IndCoh(OplereioP), =) IndCoh* (Op°)-,
(17.5) Yorgrzer | [rorz:

QCoh,, (OpE ")z ———  QCoh,, (OpE™)z,

(evz )«

see Sect. A.7.3.
Since the morphism evg is schematic, the functor

(evz)s : QCohg, (Opg™ ")z — QCoh,(OPE™)z

admits a left adjoint, denoted (evz)™, see Sect. A.1.4.
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Passing to left adjoints along the horizontal arrows in (17.5), we obtain a diagram

(EVz)* ,IndCoh

(17.6) IndCoh(Opj*#'°?) <——————— IndCoh*(OpE®)z
\I/Opgle;,glob \I/oprgfg

QCOhCO (Opger,glob)z - QCOhco (Oprnger)Z.

(evg)™
We claim:

Lemma 17.1.9. The natural transformation in (17.6) is an isomorphism.

Proof. With no restriction of generality, we can assume that Z = X7; in particular, it is smooth.
We claim that the vertical arrows in (17.5) are in fact equivalences. Indeed, we write

IndCoh™ (Opg™)z =~ colim IndCoh™ (OpLé) 2
LCLo

and
mer,glob ~ . L,glob
IndCoh(Opg™ &)z =~ %OctholIndCoh(Op &)z

where both colimits are formed with respect to the pushforward functors.
Hence it enough to show that the functors
VoL IndCoh™(Opg)z — QCoh(Opg)z
G,z

and

Vo son IndCoh(Opg#*")z — QCoh(Opg#*")z

are equivalences.

L,glob

However, this follows from the fact that Op 5% (resp., Oprg; ») is smooth (resp., pro-smooth).

O
17.2. Interaction with self-duality.

17.2.1. Recall now the functor
Oopuer : IndCoh' (OpE™)z — IndCoh”™ (OpE™)z,

G,z

see Sect. 3.7.1.

17.2.2.  Denote by Ik, () the (non-graded) line
det((X, a(g)wx))-
Set
d¢ = dim(Bung) = (g — 1) - dim(G).
17.2.3. We claim:

Proposition 17.2.4. There exists a commutative diagram

©pmer
PG,z

IndCoh' (OpZ™)z IndCoh*(Op2®)2,

G
(eVZ)!J( l(evZ)*,IndCoh

IndCoh Opr{ler,glob gy —_ IndCoh Opr{ler,glob 2.
( “ ) —®lkost(e)[—9c] ( G )

The rest of this subsection is devoted to proof of Proposition 17.2.4.
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17.2.5. For expositional purposes, we will assume that Z = pt, so that Z — Ran corresponds to
x € Ran. We will use the notation from Sect. 17.1.4.

17.2.6. By the definition of the functor @opg}em we need to establish an isomorphism of the following
two objects in IndCoh(Opg‘e;’gIOb):

(ev )*,IndCoh( *,fake)

w mer,glob ® [ ~ 5G mer
Opé,z Kost(G)[ ] OvayE ’

where
wé);?rlffr € IndCoh™(Op¢5,)
is as in Sect. 3.7.2.

17.2.7. In terms of the presentation
N osk:

IndCoh” (Opg;) = colim IndCoh*(Opg ) =~ QCoh(Opg.,),
: z P

the object wgfilffr is, by construction, the colimit of the images of

Oopr, ® det(L/Lo)® ™ ![dim(L/Lo)].
In terms of the presentation

v
IndCoh(Op%?)) =~ cohmIndCoh (Opg &™)

L
opk
pG,E
~

QCoh(Opg &™),
the object Wopelob is, tautologically, the colimit of the images of
G,z

WU _ L glob (w L glob).
Op@,i Op@:ﬁ

17.2.8. The Cartesian diagram (17.4) gives rise to a commutative diagram

(evy )IndCoh

IndCoh(Opg8®") —=—— IndCoh"(Opg )
!—pullbackT T!»pullback

IndCoh(Op%°)) ————— IndCoh"(Opg7),

(evﬁ){{nd(}oh
see Sect. A.10.12.

Passing to the left adjoints, we obtain a commutative diagram

*,IndCoh

IndCoh(Op5 =) <= ndCoh*(Op}; )
(177) *—pushforwardl l*—pushforward
IndCoh(Op%°)) «————— IndCoh"(OpF%).

(evz)*,IndCoh

As in Lemma 17.1.9, we also have a commutative diagram

QCoh(Op5e™) (2 QCoh(O )

¥ L.glob
OPg 2

Ovg o
IndCoh(Opg&®") +———— IndCoh"(Opg ).

(ev£)*>1ndcoh
Hence, it is enough to construct a compatible collection of identifications

\I'Op’g;“’b (wOpLé’i“b) & lkost(c [—0c] = OOpIé’ZlOb ® det(L/Lo)® ' [dim(L/Lo)],
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taking place in QCoh(OpLG’iIOb).

17.2.9. Note now that OpI‘G’g’"IOb is an affine space with respect to

ra
L& = V& N L.

Hence,

\I/och,glob (wOpIé,glob) ~ Ooplé,glob ® det(Lglob)®fl[dim(Lglob)].

17.2.10. Thus, it remains to establish a compatible collection of isomorphisms between the lines
(17.8) det (L&) ™1 @ g oy [dim (L") — 6] =~ det(L/Lo)® ™' [dim(L/Lo)].
However, this follows from the fact that
(kose(y = det(VE” N Lo) and d¢ = dim(D(X, a(§)wy ) = dim(VE® 0 Ly).
17.3. Ind-coherent sheaves on local vs. global monodromy-free opers.

17.3.1. For Z — Ran recall the (relative ind-scheme) Opgc’;ﬁee’gk’b, which fits into the Cartesian
square

Opmon—free,glob evy Opn)on—free

G2 G2
(17.9) Lmon—free‘globl leon_&ee
lob mer
opZerst ., Op
Pez ova Pz

Consider the morphism:
mon-free,glob €V mon-free
Op = Opé’Z

G,z
and the resulting pair of mutually dual functors
(17.10) (evy)indoen IndCoh(Opgon_ﬁee‘glOb)z — IndCoh* (OpZ°™ ),
and
(17.11) (evz)' : IndCoh'(OpE™ ™)z — IndCoh(Opp" &) 5

17.3.2.  We claim:
Lemma 17.3.3. The functor (17.11) preserves compactness.

Proof. From (17.9) we obtain a commutative square

IndCoh(Open-free:sloby, == ndCoh! (OpZo™°),,

G
(17.12) (Ln)on-free,glub)indCuhJV l(Lmun-free)indCoh
IndCoh(Op%™#°")z  «——  IndCoh'(OpE™)z,
ev*Z

see Sect. A.10.12.

As in Proposition 3.3.5(b), one shows that an object in IndCoh(Opgon'free’gIOb)Z is compact if and

mer,glob glob)IndCOh
*

only if its image in IndCoh(Opg )z under (¢) is compact.

Hence, it suffices to show that the clockwise circuit in (17.12) preserves compactness.

mon»free)lndCoh mon-free
*

For the functor (¢ this is evident (since the morphism ¢
For the bottom horizontal arrow in (17.12) this follows from Lemma 17.1.3.

is of finite presentation).

O
17.3.4. As a corollary of Lemma 17.3.3 we obtain:
Corollary 17.3.5. The functor (17.10) admits a left adjoint, to be denoted ev;’I“dCOh.
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17.3.6. The fact that (17.9) is Cartesian implies that the diagram

., yIndCoh
Indcoh(opgon-freeygbb)z L} IndCoh* ( 1é1t:>11»free)Z

(17.13) (,mon-free,glob)! T T“mon.free)!
IndCoh(Op*#**");  ————  IndCoh"(OpE™)z

(evz_)i“dco}]
commutes, see Sect. A.10.12.

By passing to left adjoints along all arrows in (17.13) we obtain that the diagram

mon-free,glob (eVZ)*’IndCOh £
IndCoh(Opp, )z +———— IndCoh™(OpE°" ")z
(1714) (LmonffrCC.,glOb)indCOhJ/ J/(LmonffrCC)indCoh
mer,glob * mer
. «— 1
IndCoh(Opy, )z P IndCoh™ (Opg™)z

commutes as well.

However, passing left adjoints only along the horizontal arrows in (17.13) we obtain a diagram

v #,IndCoh
(1715) IHdCOh(O mon- free, glob) (L IndCoh (O mon- free)z
(ymon-free glob ! (ymon-freey!
IndCoh(Opg™ ™)z <— e IndCoh” (Opg™)z.
evy )™

We claim:

Lemma 17.3.7. The natural transformation in (17.15) is an isomorphism.

Proof. For expositional purposes we will assume that Z = pt, so that Z — Ran corresponds to z € Ran.
We will use the notations from Sect. 17.1.4.

For L D Lo denote

Lf‘lmon free mon-free L
Opé . = Opg X OPg
Opmer
G,z
O LNmon-free glob O mon-free,glob % OPL(;
G T G T mer ,x)?
OPE?

Using (17.7) and a similar diagram for “mer” replaced my “mon-free”, it suffices to show that the
natural transformation in the diagram

(evgy)™ TndCon

Indcoh(OpLﬁmon free, glob)

IndCoh* (OpLé?im()n»free)

(ymon-free globy! (umon-freey!

IndCoh(Op%&°") IndCoh* (Op§, ).

(evg)™ TndCon )T

is an isomorphism.

According to Sect. 3.2.7, for a small enough lattice L’ C L, we have a well-defined action of L’ on
Omemon free 1y translations, and the quotient Omemon free /L' is a prestack locally almost of finite

type.
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We have a commutative diagram

IndCoh* (Opljﬁmonffree) M Indcoh(opéf;nonffree/];/)

Gz
(Lmon—free>! T T(Lmon—free/L/)!
IndCoh*(Opk ) <22 1ndCoh* (Opk /1)
Hence, it suffices to show that the natural transformation in the diagram
Indcoh(Opgﬁzmon-frcc,glob) * -pullback IndCoh* (Opgmzmon'free /L/)
(Lmon—free,glob>! (Lmon—free/L/)!
IndCoh(Opg&”) ST IndCoh*(Opg, /L)

is an isomorphism.

However, this follows from the fact that the diagram

LNmon-free,glob LNmon-free /
Opg .z Op¢ o /L
L,glob L /
Opé, —  Opé./L

is Cartesian, combined with the fact that Opé /L’ is a smooth scheme.

17.3.8. Recall the functor
O ppmon-ree : IndCoh' (OpE™""*)z — IndCoh™ (Opg™™ ")z,
G,Z

see Sect. 3.7.7.
We claim:

Proposition 17.3.9. There exists a commutative diagram

© 5, mon-free
Op™
IndCoh'(OpZ°> ),  —=*—  IndCoh*(OpZ™=)

(evZ>!l l(evZ)*,IndCoh

mon-free,glob mon-free,glob
B e A

Proof. Both circuits of the diagram are IndCohI(Opgon'ﬁee)z—linear functors. Hence, it suffices to
identify the objects that correspond to the image of the unit.

Le., we wish to identify

*,IndCoh( *,fake )
mon-free /*
Opg?z

(17.16) W pmeon-free glob ® lkost(c) [—dc] =~ (evz)

G,z

We start with
*,IndCoh / *,fake
wopgl?;=g1°b ® [Kosc(é)[*‘SG} =~ (evz) ( Oprcf‘?;)7
given by Proposition 17.2.4 and apply the functor (;men-free.glob)!,

The left-hand side gives the left-hand side of (17.16). The right-hand side gives the right-hand side

of (17.16) thanks to Lemma 17.3.7.
g
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17.4. Two versions of the spectral Poincaré functor.

17.4.1. For Z — Ran, we define the spectral !-Poincaré functor

Poincsé),'ffz : IndCoh' (Op°™ %), — IndCoh(LS¢) ® D-mod(Z)

as

o (v8lob)IndCoh

IndCoh' (OpE°™**); ™% IndCoh(OpZeree#oP), IndCoh(LS¢) ® D-mod(Z).

17.4.2. We define the spectral *-Poincaré functor
Poinc?*° : ITndCoh* (OpE°*™*°)s — IndCoh(LS¢) ® D-mod(Z)

G,*,2
as
. evz,lndCoh . lop.  (£EloP)IndCoh
IndCoh™ (OpgE™ ™)z "~ IndCoh(Opg*""*"*”)y = IndCoh(LSx) ® D-mod(2).
17.4.3. Both
(17.17) Z ~ Poincscfyc!,cZ and Z ~ PoincSvaj: .

are naturally local-to-global functors in the sense of Sect. 11.1.1, to be denoted

. _spec . _spec
Pomcé’! and Pomc(;’* R

respectively.

17.4.4. Furthermore, the assignments (17.17) have natural wunital structures, in the sense of
Sect. 11.3.5. Let us spell it out explicitly for the *-version (l-version is analogous).

The local unital structure on the source crystal of categories , i.e., IndCoh*(Opgon'ﬁee) assigns to
(z Cz') € Ran
the functor
IndCoh* (Op@°~"*°) — IndCoh* (Op°s ™)
given by *-pull followed by *-push along the diagram
Op@('Dz/ — g) X LSG' (@I/)
- LS (D, —z) B
Ops (D, — X LSx (D Ops(Dyr — 2’ X LS (D,
(17.18) pe(De — z) LS (D, —2) &(De) pe(Dy — ') LS (D —a?) a(Dar)
Opgf;n—free Oprc}(;l’o&n,—free7

in which the slanted arrows are given by restriction along the inclusions
(De —z) = (D — z) ¢ (Do — ),

respectively.
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17.4.5. Consider the diagram
o (&lob
mon-free z’ mon-free,glob x!
Op PG «——— Op Pe & LS
[ | [
rglob
OpG( o — E) % LS@(DZ) Opmon free,glob LSG
SG“(IDQ*£> a
Opgo; free Opmon flree7
in which the square
V! mon-free,glo
Opg?;/_free z OPG.&, free,glob
OpG(Dg’ 7@) % LSG(DQ) - Opmon—free,glob
LS (Dy—)
is Cartesian.
By Sect. A.10.12, we have a commutative diagram
IndCoh* (Opis; ree) PR, IndCoh (Op ™ #'°)
! fpullbackl J'! -pullback
IndCoh™(Opa(Dyr — ) X LSs (D)) _*-pushforward IndCoh(OpZ™ free,globy
- LS (D —x) N Gz
Passing to left adjoints, we obtain a commutative diagram
IndCoh*(Opmon'fmC) _r-pullback, IndCoh(Opmon free’glOb)
* fpushforward/[ T* -pushforward
IndCoh™(Opg(Dyr —2)  x  LSa(Dy)) — 2% IndCoh(Oporfreesleb).
- LS (Dp—x) N Gz
Now, the unital structure on Pomc?ic is encoded by the following diagram
ev* IudCoh (rglob)lndCoh
IndCoh* (Opg %) —2 4 IndCoh(Op oy frecsslob) = IndCoh(LS)
* —pushforwardT * —pushforwardT Tid
* -pullback ("ilob)indcoh
IndCoh* (Opg (D, — ) X LSg(Dyr)) ——— IndCoh(Opgaeesor) —= IndCoh(LSs)
- LS&(Dyr —z) - =
*—pullback/[ Tev;
IndCoh* (Oper-free) =M
17.4.6.

IndCoh* (Opgor-e?)
Note that from Proposition 17.3.9 we obtain

Theorem 17.4.7. There is an isomorphism of local-to-global functors

~ PoincPee _
Poinc? 1 @ lyoge (e [—0a] = Poinc 7" o @Opgon—ires
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Remark 17.4.8. The reason that we discuss both Poinczf)?c and Poincf,;f’ic (despite the fact that, thanks
to Theorem 17.4.7, they are easily expressible one thro{lgh another) is that the l-version is naturally
compatible with Eisenstein series (which we will exploit in the sequel to this paper), and the *-version
is naturally compatible with the functor

AN (LS5, —) : IndCoh(LS ) — Vect,
which we will use in the next section.

17.5. Action of the spectral spherical category and temperedness. In this subsection we will

work with Poinc’, but a parallel discussion is applicable to Poincy?\®

G,!

17.5.1. For a fixed z € Ran we have a naturally defined action of Sphiy** on IndCoh(LS;). Namely,

it is given by *-pull followed by *-push along the following diagram

LSg +— HeckesPeoelob LS
G,z

v | ove| [ove

LS Hecke®*o*" — [
G,z G,z G,z

in which both squares are Cartesian.

Remark 17.5.2. In Sect. 18.2.1 we will consider a Ran version of this action. This involves some
technical difficulties, inherent to the definition of Sphg’eC as a factorization category, see Sect. 1.6.4.

17.5.3. We have a natural action of Sphg’z on IndCoh* (Opgoﬁaﬁf) given by pull-push along the

following diagram
mon-free

spec,OpG- o

Opgon/—free Hecke Oprponl-free

,z G,z G,z
LS's® — Hecke®P°¢ —— LS'® R
Gz Gz G,z

in which both squares are Cartesian, where:

oz Cua;
Hocke " *"OP8w ™" _ gpmer LgeE LS );

® ec eG‘,g T pG‘aEI Lséer ( G,z 1ne>r<->reg G,g’)’
ner, LSY
G,z G,zCz'

. Lngg;g =LSs(Dy — ).

17.5.4. Consider the functor
. S * -1
PomcEiiRanL : IndCoh (Opgf’Rnarf;e) — IndCoh(LSx) ® D-mod(Ran,).

The following results by unwinding the constructions:

Lemma 17.5.5. The functor Poincg ", intertwines the actions of SphZ* on the two sides.

Remark 17.5.6. One can define an action of Sph¥** on IndCoh* (Op}5°*™*°) as a factorization cat-

egory. Furthermore, one can show that that the functor Poinc® is compatible with the action of

IndCoh* (Opgon'frcc), where the latter is thought of as a crystal of monoidal categories over Ran.

Moreover, the above action and compatibility are in turn compatible with the unital structures.
This will be performed in Sect. E.8.
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17.5.7. Recall (see [AG, Sect. 12.8.2]) that the subcategory
QCoh(LSs) C IndCoh(LSx)
can be singled out by the temperedness condition:
Namely, it is the maximal subcategory on which for some/any z € Ran, the action of Sphgzc on

IndCoh(LSs) factors via
Sphsé)eC Sphspec

G,temp,z’
see Sect. 7.1.1.

17.5.8. A basic property of the spectral Poincaré functor is the following;:
Proposition 17.5.9. The essential image of the functor
Poinc* : IndCoh™ (Opg™ ™**)ran — IndCoh(LSs;)
lies in
QCoh(LSs) C IndCoh(LSx).
Proof. Choose some/any z € Ran. By the unital property of Pomcwec7 it suffices to show that the
functor
Pomcscfe:R any : IndCoh™ (OpanoRnafr:e) — IndCoh(LS ) ® D-mod(Rang)
takes values in
QCoh(LSs) ® D-mod(Rang) C IndCoh(LSs) ® D-mod(Rany).

By Sect. 17.5.7 and Lemma 17.5.5, it suffices to show that the Sphy*“-action on IndCoh™(Op rg‘}r{‘:{fze)
hspcc -

factors via Sp & tomp.z

The latter assertion can be checked strata-wise, so it is enough to show that for a fixed z C 2/, the

action of Sphzzc on IndCoh* (Opgogafrfj) factors via Sphg’etcempy

Write ' = z U z”. In terms of the factorization
IndCoh™ (Opgol;‘af;ef) ~ IndCoh* (Opg.‘ol;‘afrf:e) ® IndCoh™ (Opg:’é‘;;ef/ ),
the action of Sphwj on IndCoh™(OpE%. f’fee) is via the first factor.

The required assertion follows now from Proposition 7.2.4.
O

Remark 17.5.10. Note that thanks to Theorem 17.4.7, we obtain that an assertion parallel to Propo-
sition 17.5.9 holds for the functor Pomcsc{,’f’c. (Alternatively, one can prove it by the same argument.)
17.6. The spectral localization and global sections functors.

spec

17.6.1. The spectral localization functor Loc , i.e., the collectiion functors

LocZ : Rep(G )z — QCoh(LSs5) ® D-mod(2)
for Z — Ran, is defined as pullback along
(17.19) LSy xXZ — LSrGegZ,
where we identify

Rep(G)z =~ QCoh(LS5®)z.

The functor Locg’ec possesses a natural unital structure (see Sect. 11.3.5 for what this means).
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17.6.2. The functor

LocZ® : Rep(G)ran — QCoh(LSg)

admits a right adjoint, denoted
I : QCoh(LSs) — Rep(G)Rran-
Explicitly, for a given z € Ran, the corresponding functor
I'Z% : QCoh(LSg) — Rep(G)s
is given by *-direct image along
LSs — LSrgi.

17.6.3. Note also that the categories QCoh(LSy) and Rep(G)ran are both canonically self-dual, and
with respect to these dualities, we have

(Lociee)" o [P,

spec

17.6.4. By a slight abuse of notation we will denote by the same symbol Loc;™ the composite functor

spec

. Loc®! ELS -
Rep(G)ran —% QCoh(LSgs) < IndCoh(LSy).
We will denote by Fg’ec’l"dc‘)h the functor

4 pspec

LS 5 o
IndCoh(LS;) —~ QCoh(LSg) <= Rep(G)ran.
The functors
Lo : Rep(G)Rran = IndCoh(LSy) : Fg’ec’lndCOh

also form an adjoint pair.

17.6.5. Note that the category IndCoh(LSx) is also self-dual by means of Serre duality. Under this
duality and the standard self-duality of QCoh(LSs), we have

\II}J/SG ~ TLSG .
However, note that LS is quasi-smooth and Calabi-Yau:
wrLs,, = OLs,, ® det(Lie(Zc))®*)[26].

Hence, we have

TLSG ~ ELSG ® det(Lie(Zg))®(2_2g) [25@].

17.6.6. Hence, we obtain that with respect to the self-duality of Rep(Gv)Ran and the Serre duality of
IndCoh(LSx), we have

(Loc*)Y o [pectndCoh @ det(Lie(Za)) 2 [206].

17.7. Composing spectral Poincaré and global sections functors.
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17.7.1. Our current goal is to study the composite functor

PoincSP° spee .
(17.20) IndCoh”* (OpZ™ ™) g, —S" QCoh(LSs) <= Rep(G)ran.

Applying the canonical self-duality of Rep(G)ran, the datum of the functor (17.20) is equivalent to
the datum of the pairing

IndCoh* (OpE™™**)ran ® Rep(G)ran — Vect,

given by
. . PoincSGPC: 1d .
(17.21) IndCoh™(Opg” " *“)rRan ® Rep(G)Ran  —>  QCoh(LSx) @ Rep(G)ran —

reeed . .
— Rep(G)Ran ® Rep(G)Ran — Vect .

We will prove (cf. Theorem 14.2.4):
Theorem 17.7.2. The functor (17.21) identifies canonically with

ins.unitR,y, @ ins.unitray
—

(17.22)  IndCoh™(OpZ°™™**)gan ® Rep(G)ran
— IndCoh™ (Opgon’ﬁee)Rang ® Rep(G)ganc —

ploc,enh
— (IndCoh* (Oprgon’free) ® Rep(G)) <
Ran& Xx Ran&
Ran
fact ( y.
CHHXi00pre8 IRant x RanC
fact Ran C C
— OOpgg_mOdRang « RanC — D—mod(Ran* R>;n Ran*) —

an
C, (Ran& x RanS,—)

an

Vect,
where Plgc’enh 18 the functor introduced in Sect. 6.4.7.

Remark 17.7.3. Note that the functor (17.22), appearing in Theorem 17.7.2 can also be rewritten as

ins.unitR,, ® ins.unityay
=

IndCoh” (OpE°" )R an @ Rep(G)ran
— IndCoh™ (OpZ°™ ™) c @ Rep(G)ganc —

loc C'C(Rang X Rang)
R

(IndCoh* (OpEefree) @ Rep(G‘))Ranc B -5 D-mod(Ran® X Ran®) 3"

an

Vect,

. . fact . s
i.e., instead of C**'(X; Ooprceg, —)RanS x RanC We can use the functor Oblvoopmg,RanE « Ranc - This
an a Ran

follows by the same manipulation as in Remark 14.2.5

17.7.4. The rest of this subsection is devoted to the proof of Theorem 17.7.2.
First, using the (non-derived) Satake action, as in the proof of Theorem 14.2.4, we obtain that the

assertion of the theorem is equivalent to that of the following:

Theorem 17.7.5. The functor

. spec
Poinc’; F(LSG,—)

IndCoh™ (OpE™ ™) ran  —5" QCoh(LSg) —%  Vect
identifies canonically with

mon-freeyIndCoh ndCoh mer nh
* mon-free (¢ f )i dCot * mer rf (OpEer,—)°
(17.23) IndCoh*(Op% )Ran — IndCoh™ (Opg™ )ran
cfoct (X0, res,—)
fact el
- OOpr,eg_mOdRan > Vect .
G
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17.7.6. For expositional purposes, will replace the situation over Ran by one with a fixed z € Ran.
So, we want to show that the composition

. spec
Poinc®!

. D(LSg,—
(17.24) IndCoh* (OpE™)  —5"* QCoh(LSg) | =%~ Vect
identifies canonically with
‘ (smon-freeyIndCoh plndCoh (gpmer _yenh
(17.25) IndCoh™(Opg?, ") - IndCoh™(Op¢?)

CM(X,0( reg,—)a
fact el B
— Ogpres-mod, — Vect .
& £

17.7.7.  The functor (17.24) can be tautologically rewritten as the composition

. oy * TndCoh . o FIndCoh(Oplgon—free,glob77>
IndCoh™(Opg?, ™ "™°) "—  IndCoh (Opg‘;n reesiony . Vect,
and further as
£ ev i IndCoh freo.aloh. ((mon-free.globymadon
(1726) TadCon” (Opr™) "5 TndCio* (Opie-tewsiob) (7 "%
. b FIndCoh(Opge;,globyi)
— IndCoh™(Opy;°#7) —" Vect .
Applying (17.14), we rewrite (17.26) as
£ (Lmon—free)IndCoh ev;,IndCoh
(17.27)  IndCoh™(Opg", ") — IndCoh"(Opg5) —

pIndCoh (Oprfltir,glob )

— IndCoh”* (Opge;’gbb) 5= Vect .

Thus, it suffices to establish an isomorphism between

ev;,lndCoh FIndCoh(Opge;,glob77>
(17.28) IndCoh™(Opg%,) ~—  IndCoh” (Oprge;’gk’b) —" Vect
and
ch
plndCoh (pmer _yenh CN(X, 04 reg,— )z
(17.29) IndCoh” (Op) ¢ Oppres-modet 59 Vect.
x = £

17.7.8. By Lemma 17.1.9, we can rewrite (17.28) as

Yopmer F(Opge;’gbbv*)

(17.30)  IndCoh"(Op) —S* QCoh,, (Op&™) 5 QCoh,, (Opersedy 2, " Ve,
while (17.29) is by definition

\I/Opréle; I (Opmer _jenh ; C?h(X»Ooprsg’*)i
(17.31) IndCoh™(Opg5,) — QCoh,,(Opg?) [ (Doprgg-modgaCt —¢ Vect .
Hence, it suffices to establish an isomorphism between

mer,glob
(Opper Bt )

(17.32) QCoh,,(Opg5,) T QCohCO(Opge;’gIOb) Vect
and

F(Opgcryi)cnh

(17.33) QCoh,, (OpZ™) 9= oopgg-mod;a“' 56 Vect.

However, the latter is the statement of Proposition F.4.4.
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18. THE LANGLANDS FUNCTOR

In this section we recall the construction of the Langlands functor, and establish the following of its
properties:
e Compatibility with the functors coeffc and T35
e Compatibility with the actions of Sph, and Sph®*°

a o
e Compatibility with the functors Loce and Poinc®°

G "

18.1. Recollections on the Langlands functor—the coarse version. In this and the next subsec-
tions we recall the construction of the coarse version of the Langlands functor

(18.1) Lé,coarse : D—mod% (Bung) — QCoh(LSg).

18.1.1.  We consider (Rep(G)Rran)* as a monoidal category (see Sect. H.5.2), and

(18.2) LocZ® : (Rep(G)Ran)" — QCoh(LSy)
as a monoidal functor. Recall that Loct* is a localization, i.e., its right adjoint is fully faithful (the

fe)
proof is given, e.g., in [GLC4, Corollary C.1.8 and Sect. C.1.9]).

18.1.2. We consider D-mod 1 (Bung) as acted on by (Rep(G)ran)* via the action of (Sphg g,,)* on
D—mod% (Bung) (see Sect. H.6.8) and

Sa'trév : (Rep(G)Ran)* - (Sth,Ran)*'

According to [Gal, Corollary 4.5.5], the action of (Rep(G)ran)* on D-mod% (Bung) factors through
(18.2), so we obtain an action on D—mod% (Bung) of QCoh(LSx).

18.1.3. The coarse Langlands functor
LG’,coarse : D‘mOd% (BUHG) — QCOh(LSG),
as constructed in [GLC1, Sect. 1.4], is uniquely characterized by the following two properties:

e The functor Lg, coarse is QCoh(LS)-linear;
e The diagram

Vect _— Vect
(18.3) Coeff\cjac’gh)bT TF(LSG—,—)
D-mod y (Bung) ~2*"* QCoh(LS)
commutes.
18.1.4. Note that since Loc’P* is a localization, the second property can be equivalently formulated

e}
as linearity with respect to (Rep(G)Rran)*-

By Corollary H.6.11, we obtain that the functor
L¢ coarse @ Id : D-mod 1 (Bung) ® D-mod(Ran) — QCoh(LSx) ® D-mod(Ran)

!

intertwines the actions of (Rep(G)ran)® on both sides.
In fact, Corollary H.6.11 implies that the functor
L6, coarse ® Id : D-mod 1 (Bung) ® D-mod(Ran""") — QCoh(LS ) ® D-mod(Ran""")

intertwines the actions of Rep(G), viewed as a crystal of monoidal categories over Ran"™".
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18.1.5. We now claim:

Proposition 18.1.6. The following diagram commutes:

Whit' (G)ran —%3  Rep(G)ran
(184) CoeffG[Z(SNP(WX)]T Fsépcc

LG coarse
D-mod%(Bunc) ———— QCoh(LSg),

where 6Np(wx) is as in Sect. 9.6.5.

Proof. 1t suffices to construct the datum of commutativity for the diagram

Whit!(G)Ran _%Se Rep(G)Ran

(18.5) COCHGYR&“ [QSN‘](L“'X ) ] T )[Fsc}jy(i;ﬂn

]LG,coarse ®I1d
S

D-mod% (Bung) ® D-mod(Ran) QCoh(LSx) ® D-mod(Ran).

Consider the categories appearing in (18.5) as equipped with an action of (Rep(@)Ran)®. We will

construct a datum of commutativity of (18.5) as (Rep(G)Ran)®—m0dule categories.

Note, however, that the upper right corner, i.e.,

!

Rep(G)Rran = (Rep(G)Rran)?,

is co-free, when viewed as a module over itself. Hence, the datum of commutativity of (18.5) as

(Rep(é)Ran)@)—module categories, is equivalent to the datum of commutativity of the outer diagram in

Id

D-mod(Ran) — D-mod(Ran)
o ! CSg ~
(18.6) Whit' (G)ran Rep(G)ran

]LG,coarse ®I1d
—

D—mod% (Bung) ® D-mod(Ran) QCoh(LSx) ® D-mod(Ran),

as D-mod(Ran)-linear categories, where:
e The upper right vertical arrow is the factorization functor inv : Rep(G‘) — Vect;

e The upper left vertical arrow is the factorization functor
Whit' (G)ran — D-mod (Gre, pwy)) — Vect,

where the second arrow is the functor of !-fiber at the unit.
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In its turn, the datum of commutativity of the outer diagram in (18.6) is equivalent to the datum
of commutativity of
1d

D-mod(Ran) D-mod(Ran)
I I
Whit'(G)Ran Rep(G)Rran
(18.7) coeﬁ”G,Ran[26Np(WX)]T Trg’_y;ﬁan
D-mod, (Bung) ® D-mod(Ran) QCoh(LSs) ® D-mod(Ran)
Id ®WRanT Tld ®WRan
D-mod% (Bung) LG coarse, QCoh(LSx)

just as DG categories.
Note, however, that the composite left vertical arrow in (18.7) is the functor

cocff\éa“C [26

w ] w
D—mod%(Bung) — "X Vet e D-mod(Ran)

and the composite right vertical arrow in (18.7) is the functor
(

LS, — w
QCoh(LSy) =  Vect “Rag D-mod(Ran).
Now, the required commutativity is supplied by (18.3), combined with Lemma 9.6.7.

18.2. Compatibility with the full spherical action.

18.2.1. As was mentioned in Sect. 17.5.1, for a fixed z € Ran, the category IndCoh(LS) carries an
action of Sphi?*°.

In Sect. E.7.1 we will extend this to an action of (Sphg’el;m)® on IndCoh(LSs) ® D-mod(Ran).
untl

In fact, we have an action of Sphiy*’, viewed as a crystal of monoidal categories over Ran on
IndCoh(LS ) ® D-mod(Ran"").
By Sect. H.6.8, this gives rise to an action of
spec * spec
(Sth,Ran) - Sph@,Ran“““,indep

on IndCoh(LS).

18.2.2. A basic feature of the above action is that the functor
Fg‘;ﬁ‘dco}' : IndCoh(LSs) ® D-mod(Ran) — Rep(G)Rran

is compatible with the actions of (Sphsgepfan)® on the two sides.

18.2.3. We claim:
Lemma 18.2.4.

(a) The action of (Sphsépf;an)g’ on IndCoh(LSx) ® D-mod(Ran) preserves the subcategory

ELs . ®Id
QCoh(LSs) ® D-mod(Ran) <% IndCoh(LSy) ® D-mod(Ran).

(b) The resulting action of (Sphg’i‘;&n)(@ on QCoh(LSx)®D-mod(Ran) is compatible with the projection

Vs - ®Id
IndCoh(LSg) ® D-mod(Ran)  ~»  QCoh(LSg) ® D-mod(Ran).
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sPe¢ )® preserve the subcate-

G,Ran
gory QCoh(LSxs)®D-mod(Ran). We take these generators to be the essential image of the factorization
functor

Proof. To prove point (a), it suffices to show that the generators of (Sph

nv : Rep(G) — Sph*.

1

This makes the assertion evident: the resulting action is the natural action of (Rep(G)ran)® on
QCoh(LSs) ® D-mod(Ran).
Point (b) of the lemma follows similarly.
g

Remark 18.2.5. Note that for a fixed z € Ran, the action of Sphi?*® on QCoh(LS¢) factors through
the quotient a

spec spec
Sph@,g - Sph@,temp,z’

see Sect. 7.1.1. This follows from the fact that the action of Sphst’;’eIC on QCoh(LSy) is given by t-exact
functors, combined with the fact that the t-structure on QCoh(LS};) is separated.

We do not know how to formulate a parallel property for the action of (Sphzim)@ on the category
QCoh(LSx) ® D-mod(Ran), see Remark 7.1.2.

18.2.6. We now claim:
Proposition 18.2.7. The functor
La,coarse ® Id : D—mod% (Bung) ® D-mod(Ran) — QCoh(LSx) ® D-mod(Ran)

intertwines the (Sphg r.,) action on the left-hand side with the (Sphg’;:an)‘g’—action on the right-hand

side via the functor
é spec é
(Sth,Ran) - (Sth'p’Ran) ’

induced by the factorization functor
Satg : Sphg — SphZ*.
The rest of this subsection is devoted to the proof of Proposition 18.2.7.

18.2.8. By Corollaries H.6.4 and H.6.7, we can reformulate the assertion of the proposition as follows:
the functor

La,coarse : D-mod (Bung) — QCoh(LSx)
intertwines the actions of
SPhG,Ranuntl,indcp
on the left-hand side with the action of

SphsPee
G,Ranunt! indep

on the right-hand side via the functor

spec
Sth,Ran“"“,indep - Sth,Ran““tl,indep’
induced by the factorization functor

Satg : Sphg — SphZ*.
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18.2.9. We start with the commutative diagram (18.4)
Whit'(G)ran ~ ——%—  Rep(G)Ran
(18.8) coefla [26NP(WX)]T re
D—mod% (Bung) Guconrse, QCoh(LSs),
and note that the vertical arrows factor as
D-mod (Bung) — Whit'(G) ganunt indep < Whit'(G)ran

and
QCOh(LSG) — Rep(é)Ran“r‘“,indep — Rep(é)RaH7

respectively, so that we obtain a commutative diagram

! CSa .
Whit (G)Ran‘-‘““,indep ? Rep(G)Ranu““,indep

(18.9) Coeﬂc,Ranunﬂ,indep[zaNp(wX)]T Trsép,il::anu““,indep
La,coarse
D—mod% (Bung) ———— QCoh(LSg).

18.2.10. Since the functor
coeff g ran : D-mod (Bung) ® D-mod(Ran) — Whit'(G)ran

is compatible with the action of (Sth,Ran)®7 from Corollaries H.6.4 and H.6.7 we obtain that the
functor

—®wp, quntl
~

(18.10) D—mod% (Bung)

coeff; untl

=~ D-mod (Bung) ® D-mod(Ran™")indep Whit' (G)Rranunt! indeps

appearing as the left vertical arrow in (18.9), is compatible with the action of Sth,Ranuml,indep-

Similarly, since the functor

I fan  QCoh(LSg) ® D-mod(Ran) — Rep(G)Rran

is compatible with the actions of (Sph}, )®, we obtain that the functor
—®wpg, quntl untl Fg)j;anuncl -
(18.11)  QCoh(LS#) ~ QCoh(LSx) ® D-mod(Ran™" )indep

Rep(G) Ranuntl indep»

. . . . . . . . spec
appearing as the right vertical arrow in (18.9), is compatible with the action of Sph & Ranunt! indep”
18.2.11. Recall now that the functor

e : QCoh(LS¢;) — Rep(G)ran

is fully faithful. By Proposition H.3.2, this implies that the functor Fsg‘;canun“ indep is fully faithful.

Hence, in order to equip Lg, coarse With a datum of compatibility with respect to

Satg s
pec
SthqRanuml,inep = Sphé,Ran““tl,indep

it suffices to do so for the counter-clockwise composition in (18.9).

By the commutativity of (18.9), this is equivalent to endowing the clockwise composition in (18.9)
with a datum of compatibility with the above action.

However, this follows from the compatibility for (18.10) mentioned above, combined with the com-
patibility of CSg with Satg.
O[Proposition 18.2.7]
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18.3. The actual Langlands functor.

18.3.1. We now quote the following result established in [GLC1, Corollary 1.6.5]:
Theorem 18.3.2. There exists a uniquely defined functor
Le : D—mod% (Bung) — IndCohniip (LSx),

subject to the following conditions:

o \I/LSG olLg ~ ]L'G,coarse;

e The functor Lg sends compact objects in D-mod% (Bung) to

IndCOhNilp(LSé)>7oo C IndCOhNilp(LSé).
18.3.3. Let
EO,Nilp : QCOh(LSé) = IndCOhNilp(LSG) : \IINHP’O
and
ENilp,all . IndCOhNup(LSG) = IndCOh(LSG) . \I’lall,Nilp

denote the resulting pairs of adjoint functors.

the functor

By a slight abuse of notation we will denote by Fst)ec’IndCOh

ENilo all pspec,IndCoh
=Nilp,a. =

IndCohnip(LSs) < IndCoh(LSs) ¢ —  Rep(G)ran,

which is the same as

spec
¥Nilp,0

IndCohnip (LSs) —  QCoh(LSs) <+ Rep(G)Ran-
18.3.4. From Proposition 18.1.6 we formally obtain:

Corollary 18.3.5. The following diagram commutes:

Whit' (@ ran —%5  Rep(G)ran
(18.12) coefig [zaNp(WX)]T Trsépec,lndcoh

D-mod s (Bung) —5% , IndCohnip(LSe).

18.3.6. Consider again the action of (Sphsé’e],im)® on IndCoh(LSx) ® D-mod(Ran). By the same
mechanism as in Lemma 18.2.4, this action gives rise to an action of (Sph}<¢ )®

& ran) oD the category
IndCohyilp (LSx) ® D-mod(Ran), which is compatible with the functors

(Zo,Nilp, UNilp,0) and (Enilp,atl; Yail,Nilp)-
In particular, we obtain an action of

spec * spec
(Sth,Ran) - Sth‘,Ran““tl ,indep

on IndCOhNilp (LSG ) .

18.3.7. 'We now claim:

Proposition 18.3.8. The functor Lg intertwines the action of (Sphg ga.,)* on the lefi-hand side and

the action of (Sph¥'y )" on the right-hand side via

Satg : Sphg — SphF*.
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Proof. Note that (Sphg g,,)" is compactly generated, and the subcategory
((Sth,Ran)*)c C (Sth,Ran)*

is closed under the monoidal operation, and its action on D-mod 1 (Bung) preserves the subcategory

D—mod% (Bung)‘ C D—mod% (Bung).

Hence, in order to prove the proposition, it suffices to equip the functor

]L’G|D-mod% (Bung)© ° D—mod% (Bung)® — IndCohniip (LS¢)

with a datum of compatibility with respect to the action of ((Sphg ga,)*)"

By the definition of the functor Lg, the restriction La|p-mod , (Bung)e factors as
3

D-mod (Bung)” “$ IndCohnitp(LS¢)” > < IndCohyitp (LS¢).
where
IndCohniip (LS5)” > € IndCohninp (LS 5)
is also preserved by the action of
((Sphg ran)™)® ~ ((SPhE R, ) ")
Hence, it suffices to endow the functor
D-mod s (Bung)® -§ IndCohnip(LS)” >
with a datum of compatibility with respect to the action of ((Sphg gan)*)¢
Next, we note that the functor
‘I’Nilp,o|IndCohNi1p(LsG)>—m : IndCOhNilp(LSG)>_OO — QCoh(LSy)
is compatible with the action of ((Sph;;eRCan)*)C and is fully faithful.
Hence, it suffices to endow the composition
D-mod y (Bung)* “§ IndCohnip(LS)” ™™ 4" QCoh(LS ;)
with a datum of compatibility with respect to the action of ((Sphg ga,)”)"
However, the latter composition is the functor

]LG,coarse|D—modl (Bung)¢>
2

and the required datum is supplied by Proposition 18.2.7.

18.3.9. Combining Proposition 18.3.8 with Corollaries H.6.4, H.6.7 and H.6.11, we obtain:
Corollary 18.3.10.

(a) The functor Lg intertwines the action of Sphg gap indep 0N the left-hand side and the action of
Sph®Pee on the right-hand side.

G,Ranuntl indep
(b) The functor
Lg ®1d : D-mod (Bung) ® D-mod(Ran) — IndCohniip (LSs) ® D-mod(Ran)

intertwines the action of (SphcyRan)‘g’ on the left-hand side and the action of (Sphsc{fel;n)® on the
right-hand side.

(c) The functor
Lo ®1d : D-mod; (Bung) ® D-mod(Ran"™") — IndCohwiip (LS¢) ® D-mod(Ran™™")

intertwines the actions of Sphy and Sphsé’ec, viewed as crystals of monoidal categores over Ran""™,
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18.4. Critical localization and temperedness.

18.4.1. Choose x € Ran, and let

D-mod 1 (Bung)temp,z := Sphg temp. & D-mod: (Bung).
2 ’ = Sphc,g 2

The pair of adjoint functors
Sth,temp@ = Sth,z

allows us to view D—mod% (Bung)temp,z as a colocalization of D—mod% (Bung).

According to [FR, Sect. 2.6.2], this colocalization is actually independent of the choice of z.
So from now on we will omit the subscript and denote the corresponding sub/quotient category by
D-mod% (Bung)temp. Denote by

u: D—mod% (Bung)temp = D—mod% (Bung) : u®
the corresponding pair of adjoint functors.
18.4.2. From Proposition 18.3.8 we obtain:
Corollary 18.4.3. There exists a uniquely defined functor
L temp : D—mod% (Bung)temp — QCoh(LSx),
which makes both squares in the next diagram commute:
D-mod, (Bung) ~ —2— IndCohxip(LS¢)

uRl J/\I’Nilp,()

LG, temp QCOh(LSG)

ul lEO,Nilp

D-mod; (Bung)  —<— IndCohxip(LS).

D—mod% (Bung)temp

Furthermore,

]LG,temp ~ ]L'G,Coarse ou.

18.4.4. Let
Locg : KL(G)crit,Ran — D—mod% (Bung)

be as in Sect. 14.1.4.
The following assertion is a counterpart of Proposition 17.5.9:
Proposition 18.4.5. The essential image of the functor
Locg : KL(G)crit,Ran — D-mod% (Bung)
lies in
D—mod% (Bung)temp C D—mod% (Bung).

Proof. Repeats the proof of Proposition 17.5.9 using Proposition 7.2.6.

18.5. Compatibility of the Langlands functor with critical localization.
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18.5.1. The following theorem expresses the compatibility of the Langlands functor with critical lo-

calization:

Theorem 18.5.2. The diagram

L
D-mod; (Bung) —— IndCohniip (LSg)
2
®l N . spec
Locg ®[G’2NP(“’X)®[%p(LX)[76Np(wx)]T TPOIHCGP,*
FLEG,crit )
KL(G)Crit,Ran ° IndCoh* (Oplélon free)Ran

. ®3
commutes, where the lines [ % (o) and [Np(wx)
Nowx

The rest of the subsection is devoted to the proof of Theorem 18.5.2.

are as in (14.2) and (9.7), respectively.

18.5.3. First, by Propositions 18.4.5 and 17.5.9, the commutativity of the diagram in Theorem 18.5.2

is equivalent to the commutativity of the following one:

LG, temp

QCoh(LSs)

. _spec
T TPomcG.’*

FLEG crit
KL(G)Crit,Ran —_—

D—mod% (Bung)temp

and is further equivalent to the commutativity of

]L coarse
D-mod (Bunc) —Grcoaree, QCoh(LSy)
(18.13) T Tpoincsé’,?
FLE crit
KL(G)erit Ran “o, IndCoh* (OpZo™ ) pan.

IndCoh* (Opté\on—free)Ran ,

18.5.4. Since the right vertical arrow in (18.4) is fully faithful, it suffices to show that the two circuits

in (18.13) become isomorphic after composing with the functor 'Y

Since the diagram (18.4) is commutative, we obtain that it suffices to establish the commutativity

of the diagram

Whlt‘ (G)Ran &) Rep(é)Ran
Coe{:fG[Qtsz(wX)]T Fs@pcc
D-mod% (Bung) QCoh(LSx)
®3 ®—1 o0inc P
106 16N, ) N ) H”p(wmﬂ TP G
FLEG crit * mon-free
KL(G)crit,Ran IndCoh (Opc )Ran,
or which is the same
Whit' (G)ran  ——% Rep(G)Ran
coeffgw TFG})
(18.14) D-mod (Bung) QCoh(LSgx)
1 . spec
Locg ®I§’2Np(wx)®[%;(tjx)T[ISN"(“’X)] Tpomcép’*
FLEG crit

KL(G)crit,Ran IndCoh* (OpE°* ™) Ran.
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18.5.5. Applying duality, we obtain that it suffices to show that the pairing

(18.15)  KL(G)erit ran ® Whit, (G)gan <5 D-mod (Bung) ® Whit. (G)ran

coeff¢ ® Id
—

oL 1
Colgh %l Oy, )
— Whit(G)kan ® Whit, (G)ran — Vect Plex) _glex) N Vet
agrees under the FLE equivalences

FLEG crit FLEgy
~

KL(Q)aritRan =~ IndCoh*(OpZ°™ ™ )ran and Rep(G)ran =~ Whit.(G)
with
. . PoincSGPic®Id -
(18.16) IndCoh™(Opg”" " *“)Ran ® Rep(G)ran  —+  QCoh(LSs) ® Rep(G)ran —
Fg“@m N N
— Rep(G)Ran ® Rep(G)Ran — Vect .

18.5.6. By Theorem 14.2.4, the functor (18.15) identifies canonically with (14.5). By Theorem 17.7.2,
the functor (18.16) identifies canonically with (17.22).

The desired assertion follows now from Corollary 6.4.10.
O[Theorem 18.5.2]
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Part III: Appendix
By J. Campbell, L. Chen, D. Gaitsgory, K. Lin, S. Raskin and N. Rozenblyum

The main body of the paper relies on a lot of foundational material, which is developed in this
Appendix. The main points are:

e Ind-coherent sheaves on algebrao-geometric objects of infinite type (our main, but by far, not
only example is Opg‘)“'&ee). This is developed out in Sect. A;

e The notion of factorization category, and associated objects (factorization module categories,
factorization algebras within a factorization category, etc.). This is developed in Sect. B.

e The notion unitality in the factorization setting. This is developed in C;
e A result connecting the (pre dual of the) category of quasi-coherent sheaves on the loop space
and the category of factorization modules over the corresponding factorization algebra D;

e The definition of the spectral spherical category in the factorization setting (the underlying
algebro-geometric object is so unwieldy that one cannot algorithmically apply a procedure
from Sect. A). This is developed in Sect. E.

The majority of this material is of local nature, i.e., it is needed to set up the local Langlands
theory. That said, some sections in this Appendix (notably, Sects. F , H and I) consider local-to-global
constructions.

APPENDIX A. IND-COHERENT SHEAVES IN INFINITE TYPE

This section is devoted to the development of the theory of ind-coherent sheaves on algebro-geometric
objects of infinite-type.

Prior to doing so, we introduce another player, which in some sense lies in between QCoh(—) and
IndCoh(—). This object is denoted by

Y € PreStk ~ QCoh,,(Y),

and it is defined by a colimit procedure (unlike QCoh(Y), which is defined as a limit). The category
QCoh,,(Y) is a predual of QCoh(Y).

We now turn to the IndCoh theory. A priori, IndCoh(—) is defined for affine schemes almost of finite
type, and by the process of right Kan extension on all prestacks that are locally almost of finite type.
When S is an affine scheme that is not of finite type, one can approximate it by affine schemes of finite
type Sa, but then one faces a choice: one can define IndCoh(S) either as the colimit of IndCoh(S,)
with respect to !-pullbacks and as a limit of IndCoh(S.) with respect to *-pullbacks. This leads to
two different categories, denoted IndCoh'(S) and IndCoh*(S), respectively. In good cases (technically,
when S is placid), the Serre duality in finite type gives rise to a duality between IndCoh'(S) and
IndCoh*(S5).

The majority of this section is devoted to developing the IndCoh'(—) and IndCoh*(—) theories, and
their interactions with other actors.

A.1. The category QCoh_, (—).

A.1.1. In section we will work with all affine schemes (i.e., ones not necessarily almost of finite type).
We denote the corresponding category by Sch®®. We denote by PreStk the category of all functors

(Sch™™)°P — Spe.
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A.1.2. Consider the functor
(A.1) Sch®™ — DGCat, S+~ QCoh(S), (81 % S5) ~ QCoh(S1) &5 QCoh(Ss).
Consider the left Kan extension of (A.1) along the fully faithful embedding

Sch*® < PreStk;

this yields a functor

(A.2) PreStk — DGCat .
We will denote the value of (A.2) on a given prestack Y by
QCoh,, (4).
Explicitly,
(A.3) QCoh,,(Y) ~  colim  QCoh(S),

S—Y,S€Schaff
where the colimit is formed using the pushforward functors.
Remark A.1.3. The above definition turns out to be useful in many contexts, but in the present paper
its main application is the following (see Sect. A.2):
Let Y be and ind-affine ind-scheme
Y=« colz_im 7 Spec(R;).

Let R denote the topological ring lim R;.

Then
QCoh,,(Y) ~ colim R;-mod,

i.e., this formalizes the notion of “the category of discrete R-modules”.

Note that the above definition is close, but not the same, as IndCoh(Y). The difference is two-fold:
e IndCoh(Y) is a priori defined only when Y is locally almost of finite type (however, we will
generalize that in Sect. A.5.6 below), while QCoh,,(Y) does not require this assumption;

e When Y is an affine scheme Y, we have QCoh_ (Y) = QCoh(Y), i.e., there is no renormalization
procedure involved. (The price we will have to pay for this is that, even for ind-schemes locally
almost of finite type, the category QCoh_,(Y) is not necessarily dualizable.)

A.1.4. By construction, the assignment
Y — QCoh,,(Y)

has a functoriality with respect to pushforwards, i.e., for a map Y1 — Y2 we have the functor
S« : QCoh,, (Y1) — QCoh_,(Y2).

A.1.5. The construction

Y ~» QCoh,,(Y)
has a natural multiplicativity property. Namely, for a pair of prestacks Y; and Y2, we have a naturally
defined equivalence

(A4) QCohg, (Y1) ® QCoh,,(Y2) ~ QCoh, (Y1 x Y2).

Namely, we have, by definition:

QCoh,, (Y1) ® QCoh,,(Y2) ~ colim QCoh(S1) ® QCoh(S2) ~
S esal‘;fyfl ,So esC}17§jz
~ colim QCoh(S1 x S2),

- aff aff
S ESch/y1 ,SQGSch/‘d2
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and

QCoh,, (Y1 x Y2) ~  colim  QCoh(S).
SeSchatf
/Y1 xY2
Now, the functor
Schyy, x Schi, — Schi}, .y,, S1,52+> S1 x S

is cofinal.

A.1.6. Note that there is no reason for the category QCoh,,(Y) to be dualizable. However, we claim
that QCoh,,(Y) is a pre-dual of QCoh(Y), i.e., we have a canonical identification

(A.5) Functeont (QCoh,, (Y), Vect) =: QCoh,(Y)" =~ QCoh(Y).
Indeed, using (A.3), we have

QCoh,,(Y)" ~ ( colim Qcoh(S))v ~

S—Y,SeSchatf

~ lim  QCoh(S)" ~ lim  QCoh(S) =: QCoh(Y),
S—Y,SeSchaff S—Y,SeSchaff

where we recall that for f :.S1 — S2, with respect to the self-dualities
QCoh(S;)" ~ QCoh(S:), i =1,2,
the dual of f. is f*.
A.1.7. We claim that there is a natural action of QCoh(Y) on QCoh,,(Y). Namely, in terms of (A.3),
an object F € QCoh(Y) gives rise to a compatible family of endofunctors of QCoh(S) for y : S — Y,

namely
S~y (F) @ ().

This action is compatible with the identification (A.5).
Furthermore, it satisfies the projection formula: for f: Y1 — Y2 we have
[(f7(F2) @ F1) = F2 @ fu(F1), F1 € QCoho (Y1), Fa € QCoh(Y2).
A.1.8. We can rewrite the canonical pairing
(A.6) QCoh(Y) ® QCoh,,(Y) — Vect
in terms of the above action of QCoh(Y) on QCoh_,(Y).

Namely, it is given by

QCoh(Y) ® QCoh, (Y) ™ QCoh, (¥) "5 Vect.

A.1.9. Let f:Y1 — Yo be affine. In this case we claim that the functor
f+: QCoh,(¥1) — QCoh,,(Y2)
admits a left adjoint, to be denoted f*.

Indeed, the functor

Schyy, — Schyy,, S+ S x Y1
Y2

is cofinal, so the functor

colim  QCoh(S \éX Y1) — QCoh,, (Y1)

5€Ya,SeSchatf
is an equivalence.

*

In terms of this identification, the functor f* is given by the compatible family of the pullback
functors

QCoh(S) — QCoh(S x ).
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A.1.10. Let Y be a prestack over an affine scheme S. Let f : S" — S be a map between affine schemes;
set Y := 8" x Y. By a slight abuse of notation we will denote by the same character f the resulting
s

map ¥ — Y.

The category QCoh,,(Y) (resp., QCoh,_,(Y")) is naturally tensored over QCoh(S) (resp., QCoh(S"),
and the functor f. : QCoh,,(Y) — QCoh.,(Y) is QCoh(S)-linear. Hence, so is its right adjoint f*.
From here we obtain a functor

(A7) QCoh(S") ® QCoh.(Y) — QCoh_ (Y.
QCoh(S)

We claim:

Lemma A.1.11. The functor (A.7) is an equivalence.

Proof. Follows from the fact that the functor
S € Schiff — &' X S € Schil,

is cofinal.
O

A.1.12. Let Y have an affine diagonal. In this case we claim that there is a naturally defined functor
(A.8) Qy : QCoh,,(Y) — QCoh(Y).

Namely, in terms of (A.3), the functor (A.8) is given by the (compatible family) of direct image
functors

QCoh(S) — QCoh(Y),
which are well-defined, since the morphisms S — Y are affine.

Let f:Y1 — Y2 be a schematic map. Note that, by construction, the following diagram commutes:

QCoh,, (Y1) —L— QCoh,,(Y2)

o, | o,

QCoh(Y1) —— QCoh(Yy).

A.1.13. The following assertion is established in [Gab, Theorems 2.2.4 or 2.2.6 and Proposition 6.3.8]:

Theorem A.1.14. Let Y be an quasi-compact algebraic stack with an affine diagonal. Suppose that
one of the following conditions holds:

(1) Y can be realized as a quotient of an algebraic space by an action of a (finite-dimensional) algebraic
group;

(ii) Y is eventually coconnective algebraic stack almost of finite type.
Then the functor Qy of (A.8) is an equivalence.
A.1.15. Let Y be a (not necessarily quasi-compact) algebraic stack. Suppose that Y can be written as

a union of quasi-compact open substacks Y; that satisfy one of the conditions in Theorem A.1.14.

Corollary A.1.16. Under the above circumstances, we have a canonical equivalence
QCoh,,(Y) ~ colim QCoh(Y;),

where the colimit is taken with respect to the pushforward functors.
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Proof. Note that the map
colimY;, =Y
is an isomorphism in PreStk.
Hence, the functor
colim QCoh,_,(Y;) — QCoh_,(Y)
is an equivalence.

Now the assertion follows from Theorem A.1.14.

A.2. The category QCoh_, on ind-schemes.
A.2.1. Let Y be an ind-affine ind-scheme (see [GaRol]). According to Corollary 1.6.6 in loc. cit., the

map

coim S—Y
Sclosed inY

is an isomorphism in PreStk, where the index category is that of affine schemes, equipped with a closed
embedding to Y.

Hence, in this case, we have

(A.9) QCoh,,(Y) ~ colim QCoh(S).

S closed inY

A.2.2. Recall the following general paradigm:
Let
i—C;, i€l
be a diagram in DGCat. Denote
C := colim C;,
iel
where, per our conventions, the colimit is taken in DGCat (i.e., the category of cocomplete DG cate-
gories and continuous functors).
Let ins; : C; — C denote the tautological functors.
A.2.3. Suppose that each C; is equipped with a t-structure, compatible with filtered colimits, i.e.,
C?O is closed under filtered colimits. And suppose that the transition functors
Fyj
C;, & C;
are t-exact.

We equip with C with a t-structure by declaring that C=° is generated under colimits by the essential
images of ins; (C=7).

So by construction, the functors ins; are right t-exact.

A.2.4. We claim:

Lemma A.2.5. Assume that I is filtered. Then:
(a) The t-structure on C is compatible with filtered colimits.

(b) The functors ins; are t-exact.

(c) The category C=° is generated under filtered colimits by the essential images of C?O along the
functors ins;.
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Proof. The first two points are proved in [Lu3, Proposition C.3.3.5].

Namely, in the notation of loc. cit., the category Groth!®® is equivalent to the category of presentable
stable oco-categories with right-complete t-structures and colimit preserving functors which are t-exact.
The first two points are equivalent to the assertion that Groth!®® admits filtered colimits and the
forgetful functor

Groth'™* — Pr”
given by (C,C=%) —» C preserves filtered colimits. By [Lu3, Proposition C.3.3.5], Groth'™* admits
filtered colimits and the functor (C, C=%) — C=° preserves filtered colimits. The result now follows
from the fact that for any (C, C=°) € Groth!**, we have

C ~ Stab(C=")
is given by the stabilization, and the functor Stab : Pr — Pr" preserves colimits.
To prove the third point we note that any ¢ € C is canonically isomorphic to
C(i)éi}n ins; oins; (c).

If ¢ € C2°, then so are all insZR(c) (since the functors ins? are left t-exact, being right adjoints of
(right) t-exact functors.

O
Remark A.2.6. Note that in the situation of Lemma A.2.5, we have
C ~ lim Ci7

iiI°P
where:

e The limit is taken in the category of co-categories;
e The functor — is given by the (compatible collection of) the functors ins’.

Since the functors ins? send CZ° to Cizo, we obtain they also induce an equivalence

(A.10) C=° ~ lim C=°.

iirop

Corollary A.2.7. Let ® : C — D be a continuous functor, where D is also equipped with a t-structure.
(a) The functor ® is right t-exact if and only if each ® oins; =: ®; : C; — D is right t-ezact.
(b) If @ is left t-exact, then so is each ;.
(b’) Suppose that the t-structure on D is compatible with filtered colimits. Then the assertion in (b) is
“f and only if”.
A.2.8. Let Y be an ind-affine ind-scheme. We use the presentation (A.9) and the construction in
Sect. A.2.3 to equip the category QCoh,,(Y) with a t-structure:

By definition, QCoh,,(Y)=° is generated under colimits by the essential images of QCoh(S)=" for
S e Schig.
A.2.9. From Lemma A.2.5, we obtain:
Corollary A.2.10.
(a) The t-structure on QCoh, (Y) is compatible with filtered colimits.
(b) For every S € Sch?fj, the direct image functor QCoh(S) — QCoh.,(Y) is t-ezact.

A.2.11. Let f:Y1 — Y2 be a map between ind-affine ind-schemes. It follows by definition that the
functor

f+ : QCoh,, (Y1) — QCoh,, (Y2)
is right t-exact.

However, from Corollaries A.2.10(b) and A.2.7 we obtain:
Corollary A.2.12. The functor f. is t-exact.
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A.2.13. Assume that f is affine, in which case we have a well-defined functor

f* : QCOhco(QQ) — QCOhCO(Hl).

From Corollary A.2.12 we obtain:
Corollary A.2.14. The functor f* is right t-exact.

Finally, assume that f is flat. In this case, unwinding the construction of f* in Sect. A.1.9 and using
Corollaries A.2.10(b) and A.2.7, we obtain:

Lemma A.2.15. For a flat map f between ind-affine ind-schemes, the functor f* : QCoh,, (Y2) —
QCoh,, (Y1) is t-ezact.

A.3. A descent property of QCoh, (—). In this subsection we will prove a certain technical assertion
used in the main body of the text.

A.3.1. Let Y be an ind-affine ind-scheme. Let g : 9 — Y be a map of prestacks that is an affine fpqc
cover, and let Y* denote its Cech nerve.

Consider QCohCO(g') as a cosimplicial category, equipped with an augmentation by QCoh,(Y) using
*_pullbacks (they are well-defined since the maps involved are affine, see Sect. A.1.9).

Thus, we obtain a functor

(A.11) QCoh,,(Y) — Tot(QCoh,,(¥*)).

A.3.2. From now on we will perceive QCoh,,(Y*) as a semi-cosimplicial category, so that transition
functors involved are t-exact (by the flatness assumption on g, see Lemma A.2.15). Hence, the functor
(A.11) induces a functor

(A.12) QCoh,(Y)” ™ — Tot(QCoh,, (Y*)> ).

We will prove:

Proposition A.3.3. Suppose that 'y can be exhibited as a filtered colimit in PreStk of affine schemes
with transition maps that are almost finitely presented.®® Then the functor (A.12) is an equivalence.

The rest of this subsection is devoted to the proof of this proposition.

A.3.4. It suffices to show that
(A.13) QCoh,, (¥)=° — Tot(QCoh,,(Y*)=°)

is an equivalence.

A.3.5. Let
Y =colimY;
iel
be the presentation of Y as in the statement of the proposition. Denote the map Y; — Yj for (i — j) € I
by fi.;-
Set

Y =Y x Y.
Y

Then for every m, we also have
Y™ ~ colim Y;™.
K3

Denote the corresponding maps )N/im — XN/J-’” by fi.

GOI‘e‘, finitely presented after each coconnective truncation.
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A.3.6. We have
QCoh_,(Y) ~ coéi}n QCoh(Y;)

and
QCohe, (Y™) = colim QCoh(Y;™),

where in both cases the colimit is taken with respect to the pushforward functors (recall that by default,
colimits are taken in DGCat, i.e., in the oco-category of cocomplete DG categories and continuous
functors).

We can rewrite the above colimits as limits (in the category of DG categories with not necessarily
continuous functors)

QCoh,,(Y) ~ lel}lolp QCoh(Y;)

and
QCoh,,(§™) = lim QCoh(¥;"),

where the transition functors are fi; := (fi,;)% and (f%)" := (f")E, respectively (note that these
right adjoints are indeed in general discontinuous).

From here we obtain:
QCoh_,(4)=° ~ lim QCoh(Y;)="

i€ I°oP
and
QCohy,(Y™)=" ~ lim QCoh(Y{")=",

where limits are taken in the category of co-categories and all functors, see (A.10).

A.3.7. For every ¢ : [m'] = [m”] in®" A denote by g the corresponding map

ym ‘> gm .
For every index i, let gf’ denote the resulting map )N/im” — ?’im/.
For every arrow (¢ — j) € I, we have a Cartesian diagram of schemes

m
1"

~ i ~

¢ ¢
9i l lgj
i
£

~ ! ~ !
A R

’

which gives rise to a commutative diagram

~. f{”'” * ~ 1
QCoh(¥:"") L2 QCon(¥;™")

(g?)*T T(gf)*

)
s

QCoh(Y;™") QCoh(Y;™).

From here we obtain a natural transformation
(A.14) (99) o (F%) — (f15 ) o (D).

Now, the assumption that the maps f; ; are almost of finite presentation and the maps g% are flat

implies that the natural transformations (A.14) are isomorphisms when evaluated on QCoh(}N/jm,)zo.

61\We remind that we only consider injective maps ¢.
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Hence, we obtain a family of commutative diagrams

urm!
<—

QCOh(i};n /)ZO Qcoh(i}jrn )20

(g?)*T T(gj-’)*

!
<—

QCoh(¥;™)=° QCoh(Y;™)=".

A.3.8. Thus, we obtain a well-defined functor from A x I to the category of co-categories
m, i = QCoh(Y")=",

and we can rewrite

Ue\>0y . 1 . v m\ >0
Tot(QCoh, . (Y*)=") = WlllénAilEl}“{)lp QCoh(Y;™)
as

lim  QCoh(Y;™)=°

(m,i)€AXIOP
and further as _
lim lim QCoh(Y;™)=°.

i€EIP mEA
Unwinding the construction, we obtain that the following diagram commutes

Tot(QCoh,, (Y*)2°) —=— lim lim QCoh(Y;™)=°

1€I°P me

(A.15) | |

QCoh,,(#)*  —~—  lim QCoh(Y;)>",
7 O
where the right vertical arrow is comprised of the functors
(A.16) QCoh(Y;)=® — Tot(QCoh,, (¥;")=").
Now, the functors (A.16) are equivalences by the usual fpqc descent. Hence, the right vertical arrow
in (A.15) is an equivalence.

Hence, the left vertical arrow is also an equivalence, as required.
O[Proposition A.3.3]

A.4. The category IndCoh'(—).

A.4.1. Let ="Sch* denote the category of n-coconnective affine schemes, i.e.,

sngepft — (ComAlg(Vethin‘SO))op.

We have
Sch*™ ~ lim (5" Sch™™).
A42. Let
="Schi’ C ="Sch™"
be the full subcategory consisting of n-coconnective affine schemes of finite type (see [GaRo3, Chapter
1, Sect. 1.5]).

Note that _
=nSch™ ~ Pro(="Schi).

Let Sch2f denote the full subcategory of Sch*® consisting of affine schemes almost of finite type,
which is by definition
lim (S"Schi™).
Let PreStk,s C PreStk the full subcategory consisting of prestacks locally almost of finite type. We
have
PreStkas ~ 117131 (S"PreStkm),
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where
<n <n affyop
PreStkis ~ Funct((="Schg )P, co-Grpd).
A.4.3. We define the functor
<"IndCoh' : (5"Sch**)°? — DGCat,
to be the left Kan extension of the functor
IndCoh : (5"Schi)°P — DGCat
along
(S"Schi)°P s (S"Sch™T)°P,
Explicitly, for S € ="Sch*¥, we have

(A.17) IndCoh'(S) = colim IndCoh(Sy),

S—80,S0€=<"Schaff

where the transition functors are given by
o fooan N /
(S — SO — So) ~ IndCOh(So) — IndCOh(So)

A.4.4. Tt is easy to see that the natural transformation from

<n !
(SnSch?h)or ~ASON G Cat

to

<n aff yop <n+1 aff yop SntlindCoh!

(="Sch™ )P — (=" Sch™") — DGCat
is an isomorphism. Hence, we obtain a well-defined functor
(A.18) IndCoh' : (*°Sch**)°" — DGCat,
where

. <
<°Gch® = colim <"Sch*f .
n

A.4.5. We define the functor
IndCoh' : (PreStk)°® — DGCat

to be the right Kan extension of (A.18) along the embedding
(<°Sch™)°P s (PreStk)°®.
Explicitly, for Y € PreStk, we have
IndCoh' (Y) = lim IndCoh' (S),

S—Y,Se<ooSchaff

where the transition functors are given by
(8" L §" = 1Y) ~ IndCoh'(5”) L> TndCoh'(S").
A.4.6. Thus, by definition, for a map f : Y1 — Y2 in PreStk, we have a well-defined functor
f': IndCoh' (Y2) — IndCoh'(Y).
In particular, taking the projection Y — pt, we obtain that for any Y, we have a well-defined object

wy € IndCoh' (Y).
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A.4.7. Tt follows from the convergence property of the usual IndCoh functor
IndCoh : (PreStkias)°? — DGCat
(see [GaRo3, Chapter 4, Prop. 6.4.3]) that the natural transformation
IndCoh' [prestiy,;, — IndCoh
is an isomorphism.
Le., the value of IndCoh'(Y) on a prestack locally almost of finite type recovers the usual IndCoh(Y).

Remark A.4.8. The above construction gives a definition of the functor IndCoh'(Y) for a general
prestack Y. But unless some conditions on Y are imposed, we will not be able to say much about the
properties of this category.

For example, it is not even clear (and, probably, not true) whether for S € Sch*®, the category
IndCoh(S) is dualizable.

A condition on Y that makes IndCoh!(H) manageable is called “placidity”, to be discussed in
Sect. A.9.

A.4.9. In the sequel we will need the following property of IndCoh':

Let Y be a prestack mapping to a smooth affine scheme S of finite type. Let f : S’ — S be a map,
where S’ € Sch*. Denote

Y .=8 xY.
s
By a slight abuse of notation, we will denote by the same symbol f the resulting map Y’ — Y.
The functor f' : IndCoh'(Y) — IndCoh'(Y’) extends to a functor

(A.19) QCoh(S") ® IndCoh'(Y) — IndCoh'(Y").
QCoh(S)

We claim:

Lemma A.4.10. The functor (A.19) is fully faithful. If f is smooth, it is an equivalence.

Proof. Follows from [Ga7, Propositions 4.4.2 and 7.5.7].

A.4.11. In the sequel we will need the following assertion about the behavior of IndCoh'(—). Let

H1~£—%‘32

l !

Sl fs 52

be a fiber square, where S; are affine schemes almost of finite type, and fs is a closed embedding of
finite Tor-dimension. Unwinding the definitions, we obtain:

Lemma A.4.12. Under the above circumstances, the functor fi- : IndCoh'(Y2) — IndCoh' (Y1) admits
a left adjoint, to be denoted (fy ). Furthermore, the functor (fy)"4°°" satisfies base change for
any fiber square

f/
Y —— Y

! l

Y1 LGN Ya.



244 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

A.4.13. Let S be an affine scheme almost of finite type, and let S’ C S we a Zariski-closed subset.
Let S” denote the formal completion of S along S’. Let Y be a prestack over S, and set Y" := S x Y:
s

yr Y,y

! !

sh s,
We now claim:
Proposition A.4.14. Under the above circumstances, the functor iy : IndCoh'(Y) — IndCoh'(Y") is

a colocalization, i.e., it admits a fully faithful left adjoint. The essential image of this left adjoint is
the full subcategory of IndCoh'(Y) consisting of objects with set-theoretic support on'Yy =S’ x Y. The
s

formation of the left adjoint satisfies base change for any fiber square
9 —— Y

| !

y —— Y.
Proof. By [GaRol, Proposition 6.7.4], we can write S™ as “colim” S;, where S; are closed subschemes
of S, and the maps S; — S are of finite Tor-dimension.

Unwinding the definition of IndCoh'(—), we reduce the assertion to the case when Y is an eventually
connective affine scheme S, so that

SN~ “colim” S;, S =8 x S,
s

k2
note that all §1 are eventually coconnective.

Unwinding further, we reduce the assertion to the case when S is of finite type; in this case the

assertion follows from [GaRol, Proposition 7.4.5].
O

A.5. The category IndCoh™(—).
A.5.1. We define the functor
="IndCoh” : ="Sch®" — DGCat,
to be
<ngehafl C"AGE (1(Cat)P s DGCat,
where:

e The first arrow is the opposite of the functor

S+ IndCoh'(S), (81 % Ss) ~ (IndCoh'(Ss) L5 IndCoh'(S1));

e The second arrow is
D— DY .= Functeont (D, Vect)

(note that in the above formula, the DG category D is not assumed dualizable).

A.5.2. Explicitly, for S € ="Sch®¥, we have:
(A.20) <"IndCoh*(S) = lim IndCoh(So),

S—80,S0€ <" Schiff
where the transition functors are given by

findCOh

(S — Sy L S¢) ~ IndCoh(S}) =  IndCoh(S).
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A.5.3. Asin Sect. A.4.4, it is easy to see that the collection
n ~ <"IndCoh*
gives rise to a well-defined functor

(A.21) IndCoh* : <*Sch™® — DGCat .

A.5.4. Note that, by construction, for S € <*Sch*?, the category IndCoh'(S) is naturally a pre-dual
of IndCoh*(S).

This will be a perfect duality if S is placid, see Sect. A.10.2 below.

A.5.5. Let f:S1 — S2 be a morphism between eventually coconnective affine schemes. Unwinding
the definitions, we obtain that with respect to the identifications

IndCoh'(S;)" ~ IndCoh*(S;), i=1,2,
we have

(f!)\/ ~ IndCoh.

— J*

A.5.6. Unlike IndCoh', we do not even attempt to define IndCoh* on all prestacks. Rather, we define
it on ind-affine ind-schemes (see [GaRo4, Chap. 3.1]).

Namely, we let the functor
IndCoh™ : indSch — DGCat

to be the left Kan extension of (A.21) along the embedding

<°Gch®f <y indSch*d-2f |

A.5.7. Explicitly, for Y € indSch¥*# we have
(A.22) IndCoh™(Y) = Co}qim IndCoh™ (),
where:
e The index category is that of S € <*°Sch*® equipped with a closed embedding S — Y;

e The transition functors are given by

fil)dcoh

(S' 5 8" = Y) ~ IndCoh*(S") "=  IndCoh*(S").

A.5.8. Thus, by definition, for a map f : Y1 — Y2 in indSch™4-2% we have a well-defined functor

fimdCoh . 1ndCoh* (Y1) — IndCoh* (Yz).

hind—aff

In particular, taking the projection Y — pt, we obtain that for any Y € indSc there is a

well-defined functor
ey .y IndCoh*(Y) — Vect .

A.5.9. It follows from [GaRol, Sect. 2.4.2] that if Y € indSchi®&*# | the naturally defined functor
IndCoh(Y) — IndCoh™(Y)

is an equivalence.

A.6. The multiplicative structure.
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A.6.1. Note that since the index category in (A.17) is filtered (and, in particular, sifted), for S €
<nSch®?| the category IndCoh!(S) carries a naturally defined monoidal structure.

Explicitly, the corresponding binary operation is given by
IndCoh'(S) ® IndCoh'(S) — IndCoh'(S x §) 2§ IndCoh'(S).

In other words, the functor
IndCoh' : (F*°Sch®™)°P — DGCat
lifts to a functor
(<*°Sch*™)°P — ComAlg(DGCat) = DGCat®™Me
A.6.2. By construction, we obtain that the functor
IndCoh' : (PreStk)°® — DGCat

also lifts to a functor
(PreStk)°® — ComAlg(DGCat) = DGCat5™Me

i.e., for every Y € PreStk, the category IndCoh'(Y) has a naturally defined symmetric monoidal struc-
ture.

Namely, the corresponding binary operation is given by

IndCoh'(Y) ® IndCoh'(Y) — IndCoh' (Y x Y) 2y IndCoh' (Y).

The unit for this symmetric monoidal structure is the object wy.

A.6.3. Let Y1 and Y2 be a pair of prestacks. The operation of pullback and tensor product gives rise
to a functor

(A.23) IndCoh' (Y1) ® IndCoh'(Y2) — IndCoh' (Y1 x Ya).

For general prestacks there is no reason for (A.23) to be an equivalence.

A.6.4. Let S; and Sz be a pair of eventually coconnective schemes. Given an eventually coconnective
scheme S of finite type and a map S7 x Sz — S, the category of factorizations of this map as

S1 X Sz _>Sl,0 X Szyo — S

is contractible, where:

e S; o are eventually coconnective;
e The first arrow comes from a pair of maps S; — S; 0.

This implies that we have a well-defined functor
IndCoh™(S1) ® IndCoh™(Sz) — IndCoh(S).
Passing to the limit over S, we obtain a functor
(A.24) IndCoh™ (S1) ® IndCoh™(S2) — IndCoh* (S1 x S2).
Ind-extending, we obtain a functor
(A.25) IndCoh* (Y1) ® IndCoh™ (Y2) — IndCoh™ (Y1 x Y2),
where Y1 and Y5 are ind-schemes.

For general ind-schemes there is no reason for (A.25) to be an equivalence.

A.6.5. By a similar principle, we obtain a symmetric monoidal functor

Ty : QCoh(Y) — IndCoh'(Y).
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A.6.6. Note also that by the definition of IndCoh*, for S € <*°Sch®! we have a naturally defined
action of IndCoh'(S) on IndCoh*(S).

For a map f: S1 — S2, this action satisfies the projection formula

Fop @ frdCon(F)) o fIndOh(flFy @ Fy),  Fy € IndCoh™(S1), Fa € IndCoh' (S2).

This implies that for Y € indSchi2d>#, we also have a natural action of IndCoh'(Y) on IndCoh*(Y),
and the projection formula holds.

A.6.7. For an ind-scheme Y we have a canonically defined pairing;:

rindCoh(y _)

(A.26) IndCoh* (Y) ® IndCoh'(Y) **¥" IndCoh*(Y) = —"" Vect.

Note, however, that unlike the case of schemes, we do not claim that the above pairing realizes
IndCoh'(Y) as the predual of IndCoh*(Y). (It will, however, be a perfect duality, under the placidity
assumption.)

A.7. Further properties of IndCoh*.

A.7.1. The functor ¥. Let S be an eventually coconnective scheme. The presentation in (A.20) shows
that we have a canonically defined functor

Us : IndCoh™(S) — QCoh(S).
Indeed, it is given by the compatible family of functors
Ug, : IndCoh(So) — QCoh(Sy),
where we use the fact that for any affine scheme S, written as a limit of other affine schemes
S ~ liin Sa,
the functor
QCoh(S) — lign QCoh(Sa),
given by taking direct images along S — S, is an equivalence.

For a map f: S1 — S2, we have a commutative diagram

IndCoh*(51) —21s QCoh(S:)

findCoh J' Jrf*

w
IndCoh*(S3) ——2— QCoh(Sb).

A.7.2. Unwinding, we obtain that with respect to the identification
IndCoh*(S) ~ IndCoh'(S)"
of Sect. A.5.4 and the canonical self-duality on QCoh(S), we have

\I/s ~ (Ts)v
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A.7.3. For an ind-affine ind-scheme Y, we have the functor
Uy : IndCoh™(Y) — QCoh,, (Y)
defined in terms of the presentation (A.22) by

IndCoh* (Y) ~ colim IndCoh*(S) 3/ colim QCoh(S) — QCoh, (Y),
S—Y S—Y

where the colimits are taken over the index category of eventually coconnective affine schemes equipped
with a closed embedding into Y.

Note that the functors Wy and Ty are mutually dual in the sense that the following diagram
commutes

IndCoh*(Y) ® QCoh(Y) =¥ IndCoh*(Y) ® IndCoh'(Y)
\p%,@ldl J(A.%)
QCoh,, (Y) ® QCoh(y) —2Y Vect

A.74. Let f:S1 — S2 be a map between eventually connective affine schemes. Assume that S; is
finitely presented over Sa (inside the category of n-coconnective schemes for some n) and that f is of
finite Tor-dimension.
We claim that in this case the functor
firdOoh . 1ndCoh* (S1) — IndCoh™ (Ss)
admits a left adjoint, to be denoted f*mdCon,

By Noetherian approximation (see [Lu3, Sect. 4.4.1]), the assumption on f implies that we can write
So as lim S o, where Sa o € S"Sch®®, so that there exists a compatible family of Cartesian diagrams

S1-L—>SQ

! l

Sl,a L> SZ,a
with S1.o € ="Sch®® and S; ~ lim S} .

In this case we have
IndCoh* (S2) ~ lim IndCoh(S2,o) and IndCoh™(S1) ~ lim IndCoh(S1,4),

and the functor f*™4C°N i given by the compatible family of functors

fxIndCoh

IndCoh(S2,) "“— IndCoh(S1,q),
which exists thanks to [Ga7, Lemma 3.5.8].

A.7.5. Let

’
s I s

n| o

51%52

be a Cartesian diagram of eventually connective affine schemes, where the horizontal arrows are of
finite presentation and finite Tor-dimension.

We have the tautological isomorphism

(92)£ndC0h ° f/indCOh ~ findCoh ° (gl)indooh’

from which we obtain a natural transformation

f*,IndCoh ° (92)I*ndCoh _ (gl)indCoh ° f/*,IndCoh.
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However, it is easy to see that the above natural transformation is an isomorphism, see [Ga7, Lemma
3.6.9].

A.7.6. Let f:Y1 — Y2 be a a map between ind-affine ind-schemes, and assume that f is (i) affine,
(ii) of finite presentation, (iii) of finite Tor-dimension (i.e., the above properties hold after base change
of f by an affine scheme).

We claim that in this case the functor
ndCoh : TndCoh* (Y1) — IndCoh* (Ya)
admits a left adjoint (to be denoted f*dCoh),

Indeed, write
IndCoh*(Y2) ~ colim IndCoh™(S2,4),

Sa,a—92
where the index category is that of Sz, € <oogchaff equipped with a closed embedding S2, — Y2.
For S5 o as above, set
St,a = Y1 X S2.a.
Y2
Then the family
St,a = Y1
is cofinal in the category of eventually coconnective affine schemes mapping to Y1, and hence we have
IndCoh* (Y1) ~ colim IndCoh™(S1).
S1,a—Y1

*IndCoh s oiven by the (compatible) family of functors

In terms of this presentation, the functor f
foAndCeh . 1ndCoh* (Ss.6) — IndCoh™ (S .4,
see Sect. A.7.4.

A.7.7. The following is a counterpart of Sect. A.4.9 for IndCoh*. Let us be in the situation of loc.
cit., but let us assume that Y is an ind-scheme.

Since f is finite Tor-dimension, we can consider the functor f*™4<° : [ndCoh*(Y) — IndCoh*(Y’),
and it extends to a functor

(A.27) QCoh(S") ® IndCoh*(Y) — IndCoh™(Y").
QCoh(S)

We have:
Lemma A.7.8. The functor (A.27) is fully faithful. If f is smooth, it is an equivalence.
A.8. The t-structure on IndCoh*.

A.8.1. Let S be an eventually coconnective affine scheme. The presentation in (A.20) endows the
category IndCoh*(S) with a t-structure. It is uniquely characterized by the property that for a map

f:8— S0, Soe <Schi
the functor
f+ : IndCoh™(S) — IndCoh(Sp)
is t-exact.
This t-structure is compatible with filtered colimits, by construction.
A.8.2. For amap S1 — S2 between eventually coconnective affine schemes, the corresponding functor
fnd@oh . ndCoh* (S1) — IndCoh™ (S2)
is t-exact.
A.8.3. By construction, the functor ¥g is t-exact and induces an equivalence
IndCoh*(S)” > = QCoh(S)” .
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A.8.4. Let Y be an ind-affine ind-scheme. We use the presentation (A.22) and the construction in
Sect. A.2.3 to equip IndCoh™(Y) with a t-structure:

By definition, IndCoh*(Y)=° is generated under colimits by the essential images of IndCoh*(S)<°
for S € <*°Sch*? equipped with a closed embedding S — Y.

A.8.5. From Lemma A.2.5, we obtain:
Corollary A.8.6.

(a) The t-structure on IndCoh*(Y) is compatible with filtered colimits.

(b) For every S € <°°Sch®® equipped with a closed embedding S — Y, the direct image functor
IndCoh*(S) — IndCoh*(Y) is t-ezact.

A.8.7. Let f:Y1 — Y2 be a map between ind-affine ind-schemes. As in Corollary A.2.12, we have:
Corollary A.8.8. The functor

firdCeh . 1ndCoh* (Y1) — IndCoh™ (Ys)
18 t-exact.

A.8.9. Recall the functor
Uy : IndCoh™(Y) — QCoh,,(Y),
see Sect. A.7.3. We claim:

Lemma A.8.10. The functor ¥y is t-exact and induces an equivalence:

IndCoh*(Y)” > — QCoh,, (Y)” ™.

Proof. The fact that W is t-exact follows from from Corollaries A.2.10(b) and A.2.7.
To prove the equivalence statement, it suffices to show that for any n, the corresponding functor
IndCoh* (¥)=%=" — QCoh,, (4)="="
is an equivalence.
As in the proof of Lemma A.2.5, we can write

QCoh,,(4)="=" ~ colim QCoh(5)="="
S—Y

and

IndCoh* (¥)=%=" ~ colim IndCoh* (§")="=",
S'—Y

where:

e The index S runs over the category affine schemes equipped with a closed embedding into Y;

e The index S’ runs over the category of eventually coconnective affine schemes equipped with
a closed embedding into Y.

e Both colimits are taken in the oo-category of categories closed under filtered colimits and
functors that preserve filtered colimits.

Now, the assertion follows from the fact that that for m > n, the direct image functor
QCoh(=™S) — QCoh(S)

induces an equivalence
QCoh(="8)Z"=" — QCoh(S)="=".

A.9. Placidity.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 251

A.9.1. An affine scheme S is said to be placid if it can be written as a limit
(A.28) S ~ lim S,
acA

where:

e S, € Schif:
e The transition maps f3,o : Sg = Sa are flat.
e The category A of indices is co-filtered (i.e., the opposite category is filtered).

Remark A.9.2. There are in fact two variants of the definition of placidity. The less restricted one is
what we just gave above. In the more restrictive one, one requires that the maps fz,o be smooth.

The flatness condition is sufficient for our purposes, which are to ensure the compact generation of
the categories IndCoh* and IndCoh' (see Sect. A.10.1). One needs smoothness when one works with
D-modules.

That said, in most examples of placid schemes that we will encounter, the smoothness condition is
satisfied as well.

A.9.3. Note that if S is placid, then so is any of its truncations: for a presentation (A.28), we have

< . o<
=18 ~ lim ="S,,
«

and the truncated maps <"Ss — ="S,, are also flat; in fact the flatness of fs . implies that

<G5 ~ Sp xS,
Sa

A.9.4. Fix an integer n. Let R — R’ be a map in ComAlg(Vect=*=""). Recall that R’ is said to be
finitely presented as an R-algebra if R’ is compact as an object of ComAlg((R-mod)<%2~").

Let R — R’ be a map in ComAlg(Vect=?). We shall say that R’ almost finitely presented as an

R-algebra if for every n, the map 72~ "(R) — 72" "(R') realizes 7=~ "(R’) as a finitely presented

727" (R)-algebra.

We shall say that a morphism of n-coconnective affine schemes (resp., affine schemes) Spec(R') =
S’ — 8 = Spec(R) is of finite presentation (resp., almost of finite presentation) if R’ is finitely presented
(resp., almost finitely presented) as an R-algbera.

A.9.5. Let Y be an ind-affine ind-scheme mapping to an affine scheme S. We shall say that Y is locally
almost of finite presentation over S if for every n, the truncation

="y ¢ <"PreStk
can be exhibited as a filtered colimit
S"Y ~ocolim Si, i € S"Sch™,
il
such that the maps S; — S are of finite presentation.

Let Y1 — Y2 be a map between ind-affine ind-schemes. We shall say that f is locally almost of
finite presentation if the base change of f by any affine scheme S yields an ind-affine ind-scheme locally
almost of finite presentation over S.

A.9.6. We have the following hereditary property of placidity:

Lemma A.9.7. Let 8" — S be a map almost of finite presentation between affine schemes. Suppose
that every coconnective truncation of S is placid. Then the same is true for S’.
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Proof. Fix n and consider the corresponding map ="S’ — ="S. Write "5 as
lim So,  Sa € ="Schi’
as in (A.28).
Then for some index «, we have an affine scheme S’, € ="Sch&f and a Cartesian square

Snsl SnS

! !

S, —— S..
Consider the category A,,. Since A is cofiltered, the category A, is also cofiltered and the opposite
of the inclusion functor A, — A is cofinal.

For any 8 € A, denote

Sy =S, S><a Sg.
Then we have

S8’ ~ lim Sh,

BEA /4
and the maps Sz, — Sp, are flat.
O

A.9.8. LetY be an ind-affine ind-scheme. We shall say that Y is ind-placid if for every n, the truncation

S"Y € S"PreStk
can be exhibited as a filtered colimit

(A.29) Y~ CQliIIIl Si,  S; € ="Sch™
1€

where:

e The affine schemes S; are placid;
e The transition maps S; — S; are of finite presentation.

A.9.9. From Lemma A.9.7 we obtain:

Corollary A.9.10. Let Y be an ind-placid ind-scheme and let f : Y — Y be a map locally almost of
finite presentation. Then Y is also an ind-placid ind-scheme.

Proof. Fix an integer n and a presentation of <™Y as in (A.29). For every index i, set
Y=Y < Sy).
Y

By assumption, this is an ind-affine ind-scheme of ind-finite presentation over S;. Consider the

category
losed emb
F, := {S] € ="Sch™™, ] “E Pyl

By assumption, this subcategory contains a full cofinal subcategory, denoted F; consisting of those
objects for which the map S; — S; is of finite presentation.

The assignment i — F; extends to a co-Cartesian fibration

F— 1

The assumption that the maps S; — S; are of finite presentation implies that the assignment i — F;
corresponds to a full cofinal subcategory F' C F, and

FoT
is also a co-Cartesian fibration. By cofinality, we obtain that the map

(A.30) colim S; — Y’
(4,8})€eF
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is an isomorphism in ="PreStk. Moreover, for a map (i, S;) — (4, S}) in F’, the corresponding map
Si — S} is of finite presentation (because its composition with S} — S; is).
Since I is filtered and each F} is filtered, we obtain that F’ is filtered.

Finally, by Lemma A.9.7, the affine schemes S; are placid. Hence, (A.30) gives the desired presen-
tation of Y'.
O

A.10. The categories IndCoh'(—) and IndCoh*(—) in the (ind)-placid case.
A.10.1. Let S € ="Sch*® be placid. We claim that in this case, the category IndCoh'(S) is compactly
generated.

Indeed, write S as in (A.28). Since the maps fs,, are flat, the functors fé’a preserves coherence,
and hence compactness. We obtain

IndCoh'(S) ~ colim IndCoh(S.,),

where the terms are compactly generated, and the transition functors preserve compactness.
Hence, the images of Coh(S) C IndCoh(S,) under the !-pullback functors
IndCoh(S,) — IndCoh'(S)
provide a set of compact generators of IndCoh'(S).

A.10.2. From the identification
(A.31) IndCoh*(S) ~ IndCoh'(S)"

of Sect. A.5.4, we obtain that IndCoh*(S) is also compactly generated, and (A.31) is a duality in
DGCat.

A.10.3. Explicitly, the presentation
IndCoh*(S) ~ lim IndCoh(Sy)

(with respect to the *-pushforward functors) implies that

IndCoh™(S) ~ colim IndCoh(S,),

with respect to the *-pullback functors (which are well-defined, due to the flatness assumption).

Thus, the compact generators of IndCoh*(S) are the images of Coh(Ss) C IndCoh(S,) along the
*_pullback functors
IndCoh(S4) — IndCoh™(S).

A.104. Let f : S1 — S be a morphism almost of finite presentation between placid eventually
coconnective affine schemes. Assume now that f is a closed embedding. We claim that in this case the

functor
£ IndCoh™ (S1) — IndCoh™ (Ss)

admits a continuous right adjoint (to be denoted f').

Indeed, we claim that fi“dc‘)h preserves compactness. This follows from the manipulation in the
proof of Lemma A.9.7 using the fact that for a Cartesian diagram of affine schemes almost of finite

type

SR A

al |o2

Sil f” Sél
with the maps g1, g2 flat, the natural transformation

IndCoh,* 11IndCoh /IndCoh IndCoh,*
9a © f * — f * ° g '
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is an isomorphism.

A.10.5. Moreover, in the above situation, for a Cartesian diagram
S —L 5

o | o2

Sl ! ? 527
where:

e All affine schemes involved are eventually coconnective and placid;
e The maps f and f are closed embeddings of finite presentation,

the natural transformation
(91)299 o ' 5 1o (g2)i™°°" ) IndCoh*(S) = IndCoh* (S)),

obtained by adjunction from

IndCoh IndCoh IndCoh _ FIndCoh
. 0 (g1)s )x of

* )

g1) = (g2

is an isomorphism.
A.10.6. Recall (see Sect. A.5.5) that that with respect to the dualities
IndCoh*(S;) ~ IndCoh'(S;)¥, i=1,2,
we have
IndCoh  (¢1yV
Hence, the existence of a continuous right adjoint of
FrdOoh . 1ndCoh™ (S1) — IndCoh™ (Ss)
implies the existence of a left adjoint of the functor
f': IndCoh'(S2) — IndCoh' (S1).
We will denote this left adjoint by
fimdCeh . IndCoh'(S1) — IndCoh'(Ss).

A.10.7. Let now Y be an ind-placid ind-scheme. We claim that in this case the category IndCoh™(Y)
is compactly generated.

Indeed, writing
IndCoh* (Y) ~ colim IndCoh™(.S;),

where S; are eventually coconnective placid affine schemes and the transition maps S; f%J S; are closed
embeddings almost of finite presentation, we obtain that the transition functors

IndCoh™(S;) — IndCoh™(S;)
preserve compactness (see Sect. A.10.4 above).
Similarly, the category IndCoh'(Y) can be written as
(:oliim IndCoh'(S;),
where the transition functors are (f;,;)2*4“°". This implies that IndCoh'(Y) is also compactly generated
by the essential images of IndCoh'(S;)°.
A.10.8. Note also that it follows that if Y is placid, the pairing (A.26) is a perfect duality.
A.10.9. By a similar logic we obtain:

Lemma A.10.10. Let Y1 and Yo be a pair of ind-placid ind-schemes. Then the functors (A.23) and
(A.25) are equivalences.
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A.10.11. Let f: Y1 — Y2 be a morphism between ind-placid ind-affine ind-schemes that is locally
almost of finite presentation. Assume that f is an ind-closed embedding (i.e., for every closed embedding
S — Y4, the composite map S — Y1 — Yo is also a closed embedding).

Similarly to the above, we obtain that in this case, the functor
frdeeh IndCoh* (Y1) — IndCoh* (Ya)
preserves compactness, and hence admits a continuous right adjoint, to be denoted f*.

By duality, the functor
f': IndCoh'(Y2) — IndCoh' (Y1)
admits a left adjoint, to be denoted

IndCoh IndCoh!(‘él) — IndCoh!(Hz)-

A10.12. Let )
Y1 AN Y2

o | |2

Y —L 5 Y,
be a Cartesian diagram, where:

e All objects are inv~olved are ind-placid affine ind-schemes;
e The maps f and f are ind-closed embeddings of finite presentation.

Unwinding, it follows from Sect. A.10.5 that in this case, the natural transformation
(g9, 0 f1 = f1 o (gh"99°M),,  IndCoh*(Y2) = IndCoh* (Y1), IndCoh*(Y2) = IndCoh*(Y:),

obtained by adjunction from

IndCoh IndCoh IndCoh 7IndCoh
* © (91 2 )* O Jx

)* - (g ’
is an isomorphism.

By duality, the natural transformation

fndCoh o gt 5 gh o IR IndCoh* (Y1) = IndCoh* (Y2),
obtained by adjunction from
P R R
grof =~ fog,

is also an isomorphism.
A.10.13. Let now f : Y1 — Y2 be a morphism between ind-placid ind-schemes. Assume that f is affine
and of finite Tor-dimension (but we are not assuming that f be of finite presentation).

We claim, generalizing Sect. A.7.4, that in this case the functor

frmaCh  IndCoh* (Y2) — IndCoh™ (Y,),

left adjoint to fR4C°h exists, and satisfies base change against functors ¢gi*4°°" for ¢ : Y5 — Y1, where

g is another ind-placid ind-scheme.

Indeed, by Sect. A.10.11, the question reduces to the case when Y2 is an eventually coconnective
affine scheme, to be denoted S5. In this case, Y1 is also an eventually coconnective affine scheme, to be
denoted S;.

Furthermore, in this case we can further reduce to the case when S is of finite type. Since S; is
placid, we can factor the morphism f as
R
where:

e Si, is an eventually coconnective scheme of finite type,
e The morphism h is flat;
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e The morphism fj is of finite Tor-dimension.

This reduces the assertion to the case of eventually coconnective affine schemes of finite type, where
it follows from [Ga7, Lemma 3.5.8].

APPENDIX B. FACTORIZATION PATTERNS

The local Langlands theory considers various representation-theoretic categories A, attached to the
group G (or its dual G) and the formal disc D, attached to a point z € X. More generally, one is
led to consider the multi-disc Dy, = x1, ..., T»; moreover the points 1, ..., z, are allowed to move in
families over X and collide. In this case, we shall say that z is a (scheme-theoretic) point of the Ran
space of X.

The datum of a factorization category attached to such z a category A, such that if z; and z, are
disjoint, we are given an isomorphism

Ap i, @Ay ®A,,.
We develop the theory of factorization categories in this section, along with various adjoining notions
(factorization spaces, factorization algebras). Can can view this section as a natural development of
the theory of chiral algebras, initiated in [BD2]. The main difference with loc. cit. is that all our

constructions take place in the world of co-categories, whereas in [BD2] one mainly worked at the
abelian level.

In order to produce examples of factorization categories one often uses geometric objects associated
to the formal (resp., formal punctured) disc, such as arcs and loop spaces. Some of the work in this
section is devoted to the study of the relevant geometries.

B.1. Factorization spaces.

B.1.1. The Ran space of X, denoted Ran, is the prestack that assigns to an affine test scheme S the
set of finite-non-empty subsets of Hom(Sred, X).

Note that, by definition, the map Ran — Ranggr is an isomorphism.

We denote k-points of Ran by z. By definition, these are finite non-empty collections
(B.1) z={z1,....,xn}
of k-points of X.

B.1.2. In what follows we will use the following notations. Let  : § — Ran be a map corresponding
to I C Hom(Srea, X).

e For ¢ € I, we will denote by x; the corresponding map Syeq — X;

e We will denote by Graph, C .S x X the graph of x; (viewed as a closed subset, i.e., we ignore
its scheme-theoretic structure);

o We will denote by Graph, the Zariski-closed subset of S x X equal to LZJ Graph,, .

B.1.3. One can exhibit Ran explicitly as a colimit of de Rham spaces of schemes. Namely,

. I
Ran~  colim Xjg,
Te(fSetsuri)op

where fSet™™ is the category of non-empty finite sets and surjective maps (see [Ro2, Sect. 2] for a
detailed discussion).

B.1.4. The presentation (B.1.3) implies, in particular, that Xqr is locally almost of finite type as a
prestack. Hence, it is sufficient to probe it by eventually connective affine schemes of finite type.

Hence, in the discussion below, we will be tacitly assuming that schemes and prestacks mapping to
Ran are laft (locally almost of finite type).
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B.1.5. Here are the two basic features of Ran that will be used in the sequel:
(i) There is a canonically defined map
union : Ran X Ran — Ran,
given by the operation of union of finite subsets.
(ii) There exists an open subspace
(Ran x Ran)aisj C Ran x Ran,

corresponding to the condition that the two subsets are disjoint. Namely, for a affine test scheme S, a
pair of S-points z,,z, of Ran maps to (Ran x Ran)qjs; if

Graph, N Graph, = 0.

Note that the restriction of the map union to (Ran X Ran)ais; is étale.

B.1.6. By a factorization space T over X we will mean a prestack
TRan — Ran,
equipped with a factorization structure, which is by definition the datum of an isomorphism

(B.2) TRan X (Ran x Ran)aisj ~ (Tran X TRan) X (Ran x Ran)adisj,
R

an,union an X Ran

equipped with a homotopy-coherent data of associativity and commutativity (see [Ra6, Sect. 6], where
this is spelled out in detail).

B.1.7. Given a map Z — Ran, we will denote by Tz the base change

Z X ‘J‘RanA
Ran

For Z = pt so that Z — Ran corresponds to z € Ran, we will write T for the corresponding Z. The
factorization structure on T implies that for z as in (B.1), we have

To 2Ty,
B.1.8. A basic example of a factorization space is the affine Grassmannian Grg. Namely, for an affine
test scheme S and a map z : S — Ran, its lift to Grg, ran is a datum of
(TG7 Oé),
where P is a G-bundle on S x X, and « is a trivialization of P¢ over the open

S x X — Graph,, .

B.1.9. Let T be a factorization space. We can talk about its local properties, such as being a scheme,
being an ind-scheme, being (ind)-placid, being formally smooth, etc.

By definition, this means that these properties hold for Ts relatively to S for every S € Sch?fg{an.

In a similar way, we can talk about local properties of a map between factorization spaces (e.g.,
being flat or an fpqc cover).

B.2. Factorization module spaces.

B.2.1. Let RanS be the subfunctor of Ran x Ran, such that Maps(S,Ran<) corresponds to pairs
z C 2, as subsets of Hom(Syea, X).

Denote by prgy,,; and pry;, the two projections Ran~ = Ran that send a pair (z,2z') to z and 2/,
respectively.
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B.2.2. Let Z be a prestack equipped with a map to Ran. Denote
2¢:=2 X RanS.

Ran,pr,

small

For Z = pt, so that Z — Ran corresponds to z € Ran, we will write Ran, for the corresponding
space ZE.
B.2.3. Note that we have a variant of the map union:

union : Ran x 25 — 25, (z,(z,2')) — (z,zUz).

Denote by
(Ran x Z5)aisj C Ran x ZS
the open subfunctor equal to the preimage of (Ran x Ran)dis; under

c c id X pry;
Ran x Z= — Ran x Ran= = 7® Ran x Ran.

B.2.4. Given a factorization space 7, a factorization module space T, over T at Z is a prestack

(Tm)oc — 25,
equipped with a datum of factorization against T:
(B.3) (Tm)zc % (Ran X 29)aisi = (Tran X (Tm)zc) X (Ran X 25)aig,
2. ,union RanxZS

equipped with a homotopy-coherent data of associativity; see [Ra6, Sect. 6] for complete details.

B.2.5. For a factorization module space T,, at Z, denote

(Tm)z =2 X (Tm)zc,

2<
where 2 — Z< is the map diag, of Sect. 11.2.6.

We will refer to (T,n)z as the prestack underlying the factorization module space T,.

B.2.6. A basic example of a factorization module space over T, defined for any Z — Ran, denoted
Jfactz is constructed as follows:

‘J—fact 2

o i=T2g,

where ZS — Ran is the map Plpig,z> With the datum of (B.3) being provided by the factorization
structure on 7 itself.

We refer to T2 ag the vacuum factorization module space over T at Z.

B.2.7. Here is an example of a factorization module space over Grg, also defined for any Z — Ran,
to be denoted

levely
Grgs ~.

For (z,z) : S — Z.g, a lift of this point to GlrléVelZ is a lift of z to a point of Grg ran, and the
trivialization of the restriction of the resulting G-bundle Pg over S X X to D, (see Sect. B.3.1 below).

B.3. Digression: formal discs.
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B.3.1. Fixamapx:S — Ran. Let @1 be the formal scheme equal to the formal completion of S x X
along the closed subset

Graph, C § X X,
ie.,

Dy :=(SxX) x (Graph,)dr,
(SxX)ar -

where (Graphi)dR — (S X X)ar is given by the embedding
(Graphﬁ)red — S x X.

Note that @g is naturally the pullback of a relative formal scheme, denoted @Lv, over S X X4r.
Namely,

@E,v = (S X XdR) X (Graphz)dR.
(SxX)ar -

B.3.2. Let PreStkaisj-ioc C PreStk be the full subcategory of disjoint-union-local prestacks, i.e.,
prestacks Z, for which for a disjoint union of affine schemes

S =518y,
the map
(B.4) Maps(S, Z) — Maps(S1,Z) x Maps(Sz, Z)
is an isomorphism.

Most prestacks that one encounters in practice satisfy this condition. E.g., note that if Z satisfies
Zariski descent, then it is disjoint-union-local.

Note that the Yoneda embedding
SChaﬂr — PreStKaisj-1oc

commutes with coproducts (this would not be true for the original Yoneda embedding into PreStk).

B.3.3. Let z; and z, be a pair of S-points of Ran, such that (z;,z,) lands in (Ran x Ran)aisj. Set
« = union(z,,Z,). In this case we have

(B5) @E ~ @Zl L @ and @LV ~ @Elyv (] ﬁgz,V7

Z2
where U is the coproduct taken in PreStkaisj-1oc-
B.3.4. Note that, when viewed as an ind-scheme, @z is ind-affine, i.e., of the form

“colim” Spec(Ra).

Let D, denote the affine scheme equal to
colim Spec(Ra),

where the colimit is taken in Sch®T. I.e.,

Dy = Spec(R), R =1limR,.

Now, by [Bh, Theorem 1.1], the map
(B.6) D, — X
canonically extends to a map

(B.7) D, - X.
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Remark B.3.5. Here we have used [Bh, Theorem 1.1] in a very elementary situation, in which the
required assertion can be handled explicitly:

The observation is that maps from an affine scheme S to X can be described as symmetric monoidal

functors

Perf(X) — Perf(S),
and hence this is true for S replaced by any prestack.
Now, the required assertion is that the restriction functor
Perf(D,) — Perf(@i)
is an equivalence, so the restriction map
Maps(Dg, X) — Maps(@57 X)
is an isomorphism.
Remark B.3.6. Note that while the assignment
2~ Dy
is compatible with Zariski localization along S, the formation of D, is not.
Le., for an open S’ C S and 2’ := z|g, the square

Dy — D

! !

s — S
is not Cartesian.
B.3.7. We have an ind-closed embedding
@z — D,.
In particular, Graph,, is a Zariski-closed subset of D,. Set

Dy =D, — Graph,, .

Composing with (B.7), we obtain a map
Dy — X.
B.3.8. The following material reproduces [Bogd, Construction A.1.3].

We claim that D, descends to a relative affine scheme D, v over Xqr. In order to construct this
descent, it is enough to construct a version of D, over the Cech nerve of the infinitesimal groupoid

(X x X)"
of X.
I.e., we have to construct a compatible family of affine schemes
D, — X'
over each infinitesimal thickening X’ of the main diagonal in X *™ for all n.
We let R R
D, =X x Dgv,

viewed as an ind-affine ind-scheme, and we let D}, be the colimit of @'y taken in the category of affine
schemes.

The map @’Q — X' extends to a map D) — X’ extends by the same principle as in the case of Dj.
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B.3.9. This material repeats [Bogd, Lemma A.1.5].

In order to establish the compatibility of the above construction, it suffices to show that (with
respect to any of the projections X’ — X), the map

(B.8) D= X' xD,
= X
is an isomorphism.
We note that X’ — X has the form Specy (Ao), where is given by Ay € Perf(X), and hence X' X Dy
X
has the form Specy, (A), where A € Perf(Dy).

In other words, if R is as in Sect. B.3.4, then X' x D, ~ Spec(R’), where R’ is compact as an object
X
of R-mod.

Let R, be as in Sect. B.3.4. Then
D!, = “colim” Spec(R' ® Ra).
@ . >
The assertion that (B.8) is an isomorphism is equivalent to saying that the map
R ~ R ® (limR,) — lim (R’ ® Ra)
R« @ R
is an isomorphism. However, this follows from the fact that R’ is compact as an R-module.

B.3.10. We let D;,v be the open sub-functor of D, v, equal to
Dy,v — Graph, .

It is easy to see that the prestacks
(B.9) Da,v and D} g,

when viewed as relative affine schemes over Xagr, are independent of the choice of X°.
B.3.11. The prestacks (B.9) satisfy a splitting property parallel to (B.5).

B.4. Formation of (horizontal) arc and loop spaces. In this subsection we will discuss two ubig-
uitous sources of examples of factorization spaces.

B.4.1. Let Y = X be a D-prestack® over X, i.e., Y is the pullback along X — Xgr of a prestack
Yv — Xar.

We will assume that Yv is disjoint-union-local (see Sect. B.3.2).

B.4.2. We define the factorization prestack £&(Y) as follows. For an affine test scheme S and a map
z : S — Ran, a lift of this map to L‘; (Y) is an Xqgr-map

Daev = Yv.

The factorization structure on £3(Y) follows from (B.5) and (B.4).

Remark B.4.3. Note that the restriction £F(Y)|x recovers the original Y. In Sect. C.6.10 we will
upgrade the assignment

Y £3(Y)

to an equivalence of categories.

62A.k‘a‘, crystal of prestacks.
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B.4.4. For the rest of this subsection we will assume that Y is affine over X. l.e., Y is an affine
D-scheme.

There is an (obvious) equivalence between the category of D-schemes and that of commutative
algebras A in D-mod(X) so that oblv'(A) is connective.

The plain affine scheme underlying a given affine D-scheme is
Spec y (oblv!(A)).

We will write
Specx (A)

when we want to emphasize the D-structure.

B.4.5. Note that the assumption that Y is affine over X allows us to interpret the datum of a map

Dev — Yv
as
'Dg,v — yV7

where Dg v is an in Sect. B.3.8.

B.4.6. We will now define another factorization space, denoted £v(Y). A lift of this map to £v(Y)ran
is by definition a X4gr map
@;V — yv.

The factorization structure on £v(Y)ran follows from the splitting property in Sect. B.3.11.

B.4.7. Using Sect. B.4.5 and the open embeddings
‘D;,V — D@v
we obtain a map of factorization spaces:
L85 = v (Y).
We claim:
Lemma B.4.8.
(a) £5(Y) is an factorization affine scheme.
(b) £v(Y) is a factorization ind-affine ind-scheme.

(c) The map ¢ is a closed embedding.%3

B.4.9. Proof of Lemma B.J.8. At any level of coconnective truncation, we can write Y as a finite
product of affine D-schemes that are (potentially infinite) products of affine D-schemes of the form

(B.10) Specy(A), A =Sym'(ind'(¢)),
where € is a vector bundle on X.
Since (ind-)affine (ind-)schemes are closed under finite limits and products, and the functors
Yis 25 (Y) and Y — £v(Y)
map products to products, we are reduced to considering Y of the form specified in (B.10).
In the latter case, the assertions of the lemma can be (easily) checked directly (see Sect. B.5.6 below).

O

63By a slight abuse of terminology, we call a map Z — Z from a scheme Z to an ind-scheme Z a “closed embedding”
if the map from Z to some/any of the schemes that comprise Z is a closed embedding. Note that such a map is not a
closed embedding in the DAG sense, but rather an ind-closed embedding.
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B.4.10. Ezample. Recall the factorization space Grg. By Beauville-Laszlo theorem, we can rewrite it
as follows: for z : S — Ran, a lift of this point to a point of Grg, ran is the datum of G-bundle on D,

(which is equivalent to that of a G-bundle on @g) and the trivialization of its restriction to D, .
From this description, we obtain a canonical projection
S(G) — GI‘G.

We claim that this projection identifies Grg with the étale quotient £(G)/£1(G). Indeed, this

follows from the fact that a G-bundle on @g can be trivialized after an étale sheafification along S (see
Sect. B.7.2).

A similar description applies to factorization Grg-module space Grlce;velz, see Sect. B.2.7.
B.5. Digression: the jet construction.

B.5.1. Let Y be a prestack over X. Its jets construction, denoted
Jets(‘é) — XdR
is by definition restriction of scalars a la Weil of Y along the projection

X — XdR~

B.5.2. Explicitly for z : S — Xar, a lift of this map to a map S — Jets(Y) is an X-map
@z — Y.

B.5.3. Suppose for a moment that Y is affine over X, i.e.,
Y = Specy (4o), Ao € ComAlg(QCoh(X)=").
In this case
Jets(Y) = Specy (A),
where A is the D-algebra obtained by applying to Ao the left adjoint of the forgetful functor
oblv' : ComAlg(D-mod(X)) — ComAlg(QCoh(X)).
For example, when
Ao =Sym(€), & € QCoh(X),
the above left adjoint produces

Sym' (ind'(€)).

B.5.4. Denote
£5(Y) := &5 (Jets(Y)).
One can tautologically rewrite the definition of £7(Y) as follows. For z : S — Ran, its lift to
£ (Y)Ran is an X-map
@ﬂ — Y.

B.5.5. Assume again that Y is affine over X. Then Jets(Y) is affine over Xqr (see Sect. B.5.3), and
one can consider

£(Y) := Lv(Jets(Y)).
Explicitly, for an affine test scheme S and z : S — Ran, its lift to a map £(Y)ran is an X-map

Dy — Y.
Note that in this case a lift to £+(H)Ran can also be described as an X-map

Dy — Y.
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B.5.6. Ezample. Let Y = Specy (Sym(€)), where € is a vector bundle on X. Then the spaces
£7(Y) and £(Y)
can be described explicitly as follows.
Fix a map z : S — Ran. Fix lifts of the maps z; : Syea — X to maps Z; : S — X. Let D be the
divisor on S X X equal
Zz_lni - Graphg,
for some/any choice of n; > 1.
Then a lift of = to a point of £1(Y) is a point of
m (S x X, 0x @ €V/0x ® &Y (—n- D)).
A lift of z to a point of £(Y) is a point of
colimimT'(S x X, 0x @ &Y(m-D)/Ox ® &Y (—n- D)).
B.5.7. Example. Let H be a smooth group-scheme over X. On the one hand, we can consider the
algebraic stack®® pt /H over X, and consider the corresponding D-prestack
Jets(pt /H).
On the other hand, we can consider

pt / Jets(H),
i.e., the étale sheafification of B(Jets(H)).

We have a tautological map
(B.11) pt / Jets(H) — Jets(pt /H).
_ We claim that (B.11) is an isomorphism. Indeed, this follows from the fact that if an H-bundle on
D, is such that its restriction to .S is trivial, then it is itself trivial.

B.6. Digression: the notion of (almost) finite presentation in the D-sense.

B.6.1. Fix a natural number n, and consider the category ComAlg(D-mod(X))<%Z~" of connective
n-coconnective commutative algebras in D-mod(X'), which is by definition

ComAlg(D-mod(X)) x  QCoh(X)="=""
QCoh(X)

where the functor ComAlg(D-mod(X)) — QCoh(X) is

oblv!

oblvcom
ComAlg(D-mod(X)) ~ —3""* D-mod(X) °2¥ QCoh(X).
We shall say that A € ComAlg(D-mod(X))<%2~" is n-D-afp if it is compact as an object of this
category.

B.6.2. Suppose that A € ComAlg(D-mod(X))S%Z~" is isomorphic to the geometric realization of a
simplicial object A in ComAlg(D-mod(X))S%Z~" with terms of the form

A" = Sym! (Mn)a M, € D—mod(X), Oblvl(Mn) c D_modv,f.g. )

It is clear that such A is compact.

Furthermore, it easy to see that objects of this form generate ComAlg(D-mod(X))S%=~" under
filtered colimits. Furthermore, for the generation statement, we can take M,, to be locally free, i.e., of
the form indl(En), where &,, is a vector bundle on X.

From here it follows that every n-D-afp algebra can be written as a retract of such |A.|.

64Throughout the paper we write pt /H, where we mean the étale sheafification of B(H), where the latter is the
quotient of the base (in this case, X) by the trivial action of H.
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B.6.3. Consider now the category ComAlg(D-mod(X))S? of connective commutative algebras in
D-mod(X), i.e.,

ComAlg(D-mod(X)) x  QCoh(X)=.
QCoh(X)

We shall say that A is D-afp if for every n, the truncation 72~"(A) € ComAlg(D-mod(X))S%»=""
is n-D-afp.

We shall say that Y = Specy (A) is D-afp if A is.

Here are some examples of D-afp algebras.
B.6.4. Let Yo — X be an affine scheme almost of finite type, and take Y := Jets(Yo). Then Y is D-afp.

Indeed, let Yo = Specy (Ao), where Ag € ComAlg(QCoh(X)=<"). We can write

Ao = |Ao.l, Ao =Symy (En), &n € Perf(X)".
Then Y = Specy (A) for
A=A, A,=Sym'(ind'(&,)).

B.6.5. Let now Y be the constant affine D-scheme with fiber Yo, where Yo is almost of finite type. We
claim that it is D-afp.

Indeed, write Yo = Spec(Ao), where

Ao = |Aoe|, Aoe=Sym(Vy), Vi e Vect”
Then Y = Spec(A) where
A=A, A, =Sym(V,) ®wx[1] = Sym'(V, ® wx|[1])

(recall that according to our conventions in Sect. 1.1.1, the object wx[1] € D-mod(X) is the dualizing
sheaf on X).

B.6.6. Let Y — Yo be a map of affine D-schemes. The notion of being D-afp has a straightforward
analog in this situation:

If Yo = Specyx(Aop) and Y = Specy (A), so that Y — Yo corresponds to a map Ao — A, it makes
sense to talk about A being finitely presented over Ag in the D-sense.

The notion of being D-afp is transitive: if
Y=Y =Y
are maps of affine D-schemes, with Y — Y and Y — Y’ D-afp, then so is Y’ — Y.
B.7. Local systems on the formal (punctured) disc.

B.7.1. Let H be a (finite-dimensional) algebraic group. Consider the algebraic stack pt /H. We regard
it as a constant D-prestack over X, i.e.,

Yy :=pt /H X X4r.
We define the factorization space
LS8 = 25 (pt /H).
B.7.2. Note that the natural map
(B.12) pt /EL(H) — £5(pt /H) =: LS}®

is an isomorphism (as was mentioned earlier, the notation pt /€& (H) means the étale sheafification of
B(£L(H)), the quotient of the base by the trivial action of the corresponding group-scheme).

Indeed, this follows from the fact that for z : S — Ran, the étale topology on S generates the étale
topology on Dy.
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B.7.3. First, we claim:
Lemma B.7.4. The map pt — LSp® is étale-locally surjective and is an fpgc cover.

Proof. The étale surjectivity follows from the isomorphism (B.12).
Hence, to prove the lemma it remains to show that
pt x pt~ &L (H)
Lsy®
is flat. Le., we need to show that for every finite set I, the scheme £& (H) s is flat over X7

The latter is the assertion that for any flat D-algebra A on X, the factorization algebra Fact(A)
(see (C.45)) has the property that for every I, the restriction oblv'(Fact(A) 1) is flat over X7 (this is
essentially [BD2, Lemma 3.4.12]).

O

B.7.5. One of the key facts about LSy*® is that it can be accessed via gauge forms. Namely, consider
the tautological map
pt /H — Jets(pt /H) ~ pt / Jets(H)
Note that the fiber product

pt/H X pt
pt / Jets(H)

identifies with the D-scheme
Jets(h ® wx ) =: Conn(h)
of jets into h ® wx (i.e., the total space of the corresponding vector bundle, viewed as an affine scheme
over X).%% The resulting Jets(H)-action on Conn(h) is called the gauge action.
Hence, we can identify
pt /H ~ Conn(h)/ Jets(H)
as D-prestacks over X.

In particular, we obtain an action of £7(H) on £&(Conn(h)) as factorization spaces, and an iden-
tification:

(B.13) LS8 ~ &8 (Conn(h)) /LT (H).
B.7.6. We note:

Lemma B.7.7. The factorization space LS is fomally smooth.

Proof. This follows from (B.13).

a
Remark B.7.8. Note that the map
pt — LS
is not formally smooth. Indeed, the fiber product
pt X pt
Ls®

is the affine factorization scheme £ (H), associated to the constant D-scheme H (see Sect. 4.3.2), and
one can show that £& (H) x> is not formally smooth over X?.

Namely, the cotangent space to £ (H) x> at the unit section is the object of QCoh(X?) underlying
the left D-module

(B.14) Fib (j.((h" ®5") ® Ox2_a(x)) = Ax(h” ® Ox))
where the map in (B.14) is the composition
Fib (. ((h" € 5") © Oxz_acx)) = Au((07 ®157) © 0x)) = A (h" ® Ox),

65Indeed, the map dlog : Jets(H) — Jets(h ® wx ) identies the target with Jets(H)/H.
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where the second arrow is induced by the addition map h* ® h* — h*.

The object (B.14) of QCoh(X?) is flat, but not projective, implying that £¥(H) is not formally
smooth.

Note that this is not in contradiction with the conclusion of Corollary 3.1.11. Let us see that
%2 (LS®) does satisfy the infinitesimal condition for formal smoothness, i.e., that

Hom (T2 (LS, F) = 0 if F € QCoh(X?)=7".
We have
Ti> (LSY®) = T2 (£3.(H))[-1].
Now, we claim for any flat countably generated object & € QCoh(X?), we have
Hom(&[—1],F) = 0 if F € QCoh(X?)=~".
Indeed, any such £ can be written as a countable filtered colimit of projective modules &;, and
Hom(E[-1],F) = lim. proj. Hom(&;[—1], F).

Here all Hom(&;[—1],F) live in cohomological degrees < —2, while lim. proj. has amplitude 1, due
to the countability assumption.

B.7.9. We now proceed to defining the factorization space LSE®*. Naively, one would want to apply
the functor £v(—) to the constant D-prestack pt /H. But we cannot quite do this, and that is for two
reasons, which already occur for pt / Jets(H):

(i) When considering £v(—), we only allow affine targets.

(ii) Even over a fixed point z = z € Ran (but an arbitrary affine scheme S = Spec(R) of parameters),
the space of maps

DY —pt/H

is the space of étale H-torsors over the affine scheme Spec(R((t))), where ¢ is a local coordinate near
z. However, we do not want to consider the étale topology on Spec(R((t))). Rather, we want to étale-
localize with respect to S = Spec(R) itself, i.e., we only want to consider covers of Spec(R((t))) of the

form Spec(R((t))), where Spec(R) — Spec(R) is étale.
B.7.10. The gauge action of Jets(H) on Conn(h) gives rise to an action of £(H) as a factorization
group ind-scheme on £v(Conn(h)).

We define LSEH®" to be
Lv(Conn(h))/L(H),
the étale sheafification of the non-sheafified quotient of £v(Conn(h)) by the gauge action of £(H).

B.7.11. We can rephrase the definition of LSE®" as follows:

Consider the étale quotient

£v(Conn(h))/LT (H).
It carries an action of the groupoid

ST(H)\L(H)/L" (H).

Then LSE® is the quotient of £v(Conn(h))/LT(H) by £ (H)\&(H)/L1(H), subsequent sheafified
in the étale topology.
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B.7.12. By construction, we have a naturally defined map
(B.15) LSy® — LSE™ .
We claim:

Lemma B.7.13. The map (B.15) is ind-affine locally almost of finite presentation®®.

Proof. By construction, it suffices to show that the fiber product

(B.16) LS® LSﬁQYSV(Conn(h)) — £v(Conn(h))

is ind-schematic locally almost of finite presentation.
The left-hand side in (B.16) is the space
{9 € L(H),a € £v(Conn(h)) | g - a € £3,(Conn(h))}/L* (H).
In other words, we can rewrite it as

(Gry x £v(Conn(h))) x £%(Conn(h)) /L (H)
£y (Conn(h)/ £+ (H)

and its map to the right-hand side of (B.16) is the composition

(B.17) (Gry x £¢(Conn(h))) X £33 (Conn(h))/LT(H) —
£ (Conn(h)/ L+ (H)

— Grg X £v(Conn(h)) — £v(Conn(h)).

Since the map £3(Conn(h)) — £v(Conn(h)) is an ind-closed embedding locally almost of finite
presentation, we obtain that the first arrow in (B.17) has this property.

The second arrow in (B.17) is ind-schematic and locally almost of finite presentation since Grp is
an ind-scheme locally almost of finite type. Hence (B.16) is ind-schematic and locally almost of finite
presentation.

Finally, let us show that (B.15) is ind-affine. Let H' denote the reductive quotient of H. Factor the
map (B.15) as
(B.18) LSy® — LSy x LSEF — LSE™,

Lsmer

and it is enough to show that both arrows in (B.18) are ind-affine.

reg

w7 it suffices to show

For the first arrow in (B.18), after base-changing to the fpqc cover pt — LS
that the map

LS5 — LSH

is ind-affine, where H” is the unipotent radical of H. This follows from the fact that in this case the
second arrow (B.17) is ind-affine, since the affine Grassmannian for a unipotent group is ind-affine.

For the second arrow in (B.18), it suffices to show that the original map (B.15) is ind-affine when

H is reductive. Note that in this case Grpy is ind-proper, so the second arrow in (B.17) is ind-proper.
Hence, the map (B.15) is ind-proper. However, since it is also injective at the level of k-points, we
obtain that it is ind-affine (indeed, a proper map between schemes that is injective at k-points is affine).
a

663ee Sect. A.9.5 for what this means.
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B.7.14. 'We now discuss a global version of the factorization space LSE®".
We define the (non-factorization!) space
LSHRECY — Ran
as follows:
For an affine test scheme S and a map z — Ran, its lift to LS‘;}?QEII]Ob is a datum of a map
(B.19) (S x Xar — Graph,) — pt /H
such that étale-locally on S, the composite map
(S x X — Graph,) — (S X Xar — Graph,) — pt /H
admits an extension to a map
(B.20) SxX —pt/H.
B.7.15. We claim that we have a naturally defined evaluation map
€VRan : LSI;]I,eﬁ’agrllOb — LSHRan -

Indeed, for z : S — Ran, given a map (B.19) and a lift (B.20), the restriction of the connection form
to D, gives rise to a section of

Lv(Conn(h))s/L" (H)s.
A modification of (B.20) results in an action of the groupoid

LY (H)s\&(H)s /" (H)s.
B.8. Sheaves of categories over the Ran space.

B.8.1. Let Y be a prestack. When discussing sheaves of categories over Y, we will assume that Y is
locally almost of finite type. In this context, when considering affine schemes S or general prestacks Z
mapping to Y, we will assume that they are also locally almost of finite type.

B.8.2. A sheaf of categories C on Y is an assignment
(S,y) € Schyj ~ Cs,, € QCoh(S)-mod,
equipped with identifications:

S S, Cgyor ~ QCoL(S) Cs,y,

®
QCoh(S)
satisfying a homotopy-coherent system of compatibilities; we refer the reader to [Ga5] for details.

Let ShvCat(Y) denote the (2-)-category of sheaves of categories over Y. It has a natural symmetric
monoidal structure given by

(C1®Ca)sy:=Ci15y ® Cag,y.
QCoh(S

Coh(S)

B.8.3. A basic example of a sheaf of categories over Y is
S ~~» QCoh(S);
we denote it by QCoh(Y).

This is the unit for the above symmetric monoidal structure on ShvCat(Y).
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B.8.4. Given a sheaf of categories C on Y, the category of its global sections, denoted I'(Y,C) is
defined as

lim Cs,y.
(5,y)€Schily

This category is naturally a module over

lim  QCoh(S) =: QCoh(Y).

ff
(S,y)GScha/‘y

Thus, the functor
I'(Y,—) : ShvCat(Y) — DGCat

upgrades to a functor

I'(Y, )" : ShvCat(Y) — QCoh(Y)-mod.

B.8.5. Example. We have
I'(Y, QCoh(Y)) ~ QCoh(Y),
as a module over itself.
B.8.6. A prestack Y is said to be I-affine if the functor I'(Y, —)°™® is an equivalence.

In the paper [Ga5] a number of results was proved, showing that various classes of prestacks are
1-affine.

The most relevant for us are:

e The stack pt /H, where H is a (finite-dimensional) algebraic group, is 1-affine.
e The stack Zgr, where Z is a scheme of finite type, is 1-affine.

B.8.7. Let f:Y1 — Y2 be a map between prestacks. We define a functor
" : ShvCat(Y2) — ShvCat(Y1)
by sending C € ShvCat(Y2) to f*(C) € ShvCat(Y:) that assigns
(S,y) € Schil, ~ Cs, oy € QCoh(S)-mod.

The above functor f* has a right adjoint, denoted f.. Explicitly, f. sends C € ShvCat(Y1) to
f+(C) € ShvCat(Y2) that assigns

(S,y) € Schil, ~ (S x Ys,"*(C)) € QCoh(S x Ya)-mod L+ QCoh(S)-mod,
Y1 Y1

where 7 denotes the map

S xYs =Yy
Y1

and f’ denotes the map
S x Yy — S
Y1

B.8.8. Let C be a sheaf of categories over Y. We shall say that C is compactly generated if for every
S e Sch?fj, the category Cgs is compactly generated.
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B.8.9. Suppose for a moment that C is pulled back from a sheaf of categories on Y4qr. Hence, for
S e Sch‘}'\;ir we have a well-defined category Cs,;. Note that if Cg is compactly generated, then so is

Csyr:
Indeed, with no restriction of generality we can assume that S is eventually coconnective. By the
1-affineness of Sqr, we have

Cs ~ QCoh(S) ® Csun>
D-mod(S)
and the pair of (D-mod(S)-linear) adjoint functors
ind' : QCoh(S) = D-mod(S) : oblv'
induces an adjoint pair
(ind' ® 1d) : Cs = Cs,y : (oblv' ® 1d),

where the essential image of the left adjoint generates the target category.

B.8.10. Let F': C; — C, be a functor between sheaves of categories. Suppose that C,; is compactly
generated (in the above sense).
We shall say that F' preserves compactness if for every S € Sch*}gan, the corresponding functor
Fs:Ci5 —Csys
preserves compactness.

Then the usual argument (using the fact that for an affine schemes S, the category QCoh(S) is rigid)
shows that in this case the functor F' admits a right adjoint, to be denoted F®, as a functor between
sheaves of categories over Ran.

B.8.11. Let C be a sheaf of categories over Y. A t-structure on C is a collection of t-structures on Cg
for any S € Sch7g such that:

For any f: S’ — S, the functor
f* : CSI — CS

is t-exact.
Note that this condition can be rewritten as saying that with respect to the identification

Css ~ QCoh(S) ® Cs,
QCoh(S)

o

<0
the t-structure on Cg/ is the tensor product t-structure, i.e., (QCOh(S') ® Cs> is generated
QCoh(S)

under colimits by the essential image of

QCoh(8)=° x C5° = QCoh(S") ®
QCoh(S)

B.8.12. Let C be equipped with a t-structure. For S € Sch‘}g, consider the category

IndCoh(S) ® Cs.
QCoh(S)

We equip it with the tensor product t-structure.

Assume now that the t-structure on Cg is right-complete and compatible with filtered colimits.
Then a standard argument shows that the functor

IndCoh(S) ® Cs 2%'QCoh(S) ® Cs~Cs
QCoh(S) QCoh(s)

is t-exact and induces an equivalence of the eventually coconnective subcategories of the two sides (see,
e.g., [Lu3, Proposition C.4.6.1]).
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B.8.13. Suppose again that C is the pull back of a sheaf of categories on Yqr. For S as above consider
the category Cs,,. Note that we can identify

IndCoh(S) ® Cg ~ IndCoh(S) QCoh(S) ® Cs,p ~IndCoh(S) ® Cs,p.
QCoh(S)

QCS%(S) D-mod(S) D-mod(S)
The pair of (D-mod(S)-linear) adjoint functors
ind” : IndCoh(S) 2 D-mod(S) : oblv”
gives rise to an adjucntion

(ind” ® Id) : IndCoh(S) ® Cg = Cgyy, : (oblv” ® Id).
QCoh(S)

We define a t-structure on Cg,y by letting CL%(?R be generated under colimits by the essential image

under (ind” ® Id) of (IndCoh(S) ® Cs)=°.
QCoh(S)

Assume for a moment that S is smooth. In this case the functor ind" is t-exact, and hence the
endofunctor oblv” o ind” of IndCoh(S) is t-exact. This implies that the functor

(oblv" ®1d) : Cs,, — IndCoh(S) ® Cs
QCoh(S)

is t-exact.
B.8.14. We now specialize the case of Y = Ran. We claim:
Lemma B.8.15. The prestack Ran is I-affine.

Proof. The proof that we will give applies to any prestack Y that can be written as a colimit
o (Za)ar,
where Z; are schemes and the transition maps are proper, and for which the diagonal morphism
Y—9xY
is closed (at the reduced level®7).

We can think of an object of ShvCat(Y) as a compatible collection of categories {C;}

Ci € D-mod(Z), (775 Z;) ~ C; =~D-mod(Z) ® Ci.

D-mod(Z;)
The functor I'(Y, —) sends such a collection to
I, @
viewed as a module over
QCoh(Y) = D-mod(Y) ~ 11?1 D-mod(Z;).
Given a D-mod(Y)-module category D, we attach to it an object of ShvCat(Y) by setting
C; := Functp.moa(y) (D-mod(Z;), D).
For (i — j) € I, the corresponding transition functor
Functp_mea(y) (D-mod(Z;), D) — Functp_meq(y)(D-mod(Z;), D)
is given by precomposition with (f; ;).
For (i — j) € I, we have, tautologically,
Functp.mod(z;) (D-mod(Z;), Functp_modcy) (D-mod(Z;), D)) =~ Functp_mod(y) (D-mod(Z;), D).
However, this implies that we also have
D-mod(Z;) ®  Functp.moay)(D-mod(Z;), D) =~ Functp_moa(y) (D-mod(Z;), D),

D-mod(Z;)

671.6., the base change of this morphism by an affine scheme yields a morphism of prestacks, such that the morphism
of the underlying reduced prestacks is a closed embedding.
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since D-mod(Z;) is self-dual as a D-mod(Z;)-module.
Let us establish the equivalence

(B.21) lim Functp.moed(y)(D-mod(Z;), D) ~ D.

ieIop
Indeed, we can rewrite the left-hand side as

Functp_mod(y) (coéilm D-mod(Z;), D),
7

where the colimit is taken with respect to the (f; ;)i-functors.
Now, we can rewrite
colim D-mod(Z;) ~ lim D-mod(Z;),
iel ieIop
where in the right-hand side the limit is taken with respect to the fllj functors. Finally,
qo%ir}l} D-mod(Z;) ~ D-mod(Y),
i€l°

by definition. Hence, the left-hand side in (B.21) identifies with
Functp_modcy) (D-mod(Y), D) ~ D,
as required.

It is easy to see that in order to show that the above two functors are mutually inverse, it remains
to show that for 41,42 € I, and the corresponding maps

fi fi
z, " yie g,

the naturally defined functor
(B.22) D-mod(Z;, X Zi,) — Functp_moay) (D-mod(Z;, ), D-mod(Zs,))
Y

is an equivalence.
We calculate the right-hand side in (B.22) as the totalization of the cosimplicial category with terms
D-mod(Z;, x Y™ X Zi,),
with terms given by !-pushforward functors along the maps in the corresponding cosimplicial prestack.

However, due to the assumption that Y has a closed diagonal, the face maps in this cosimplicial
prestack are closed embeddings, and hence the corresponding !-pushforward functors are fully faithful.
Hence, the above totalization is the equalizer of

D—IIIOd(ZZ'1 X Z’ig) = D-l’nOd(Zi1 XY x Zi2)~
Objects of this equalizer are supported on

(Zil X Zi2) ) X ) (Zil X Zig).
Glraphfi1 X 1d,Zi1 ><‘d><Z,i2 ,id x Graphfi2

However, the above fiber product identifies with
Zi1 X Zi2~
Y
g

Remark B.8.16. Let C be a sheaf of categories over Ran. In the course of the proof of Lemma B.8.15,
we have encountered another way of how one may think of the category I'(Ran, C). Namely,
I'(Ran,C) ~ colim C ,
( 7) IE(fSetsurj)OP X(ﬁR
where the colimit is formed using the !-pushforward functors, i.e., for (I 2 J) € fSet®" and the

corresponding map
Ay: X7 = X7,
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the functor in question is

Ay ) ®Id
Cyy =Dmod(X’)  © Cyr " Dmod(X!) ® O ~Cy.

X X
D-mod(X7T) ar D-mod(X7T) dr

B.8.17. Notational convention. We use the term crystal of categories for sheaves of categories on Yar
and denote

CrystCat(Y) := ShvCat(Yar).

From this perspective, we refer to crystalline objects of C in CrystCat(Y) to mean the objects of the
category of global sections of C as a sheaf of categories on Yqr.

When we use such “crystalline” terminology and are given f : Z — Y, we use the symbol Cz to
denote the crystalline objects of C restricted to Z, that is,

Cyz :=T'(Zar, (far)"(C)).
B.9. Factorization algebras and modules.

B.9.1. A factorization algebra A on X is an object
ARan € D-mod(Ran),
equipped with a datum of factorization
(B.23) union!(-ARan)‘(RanXRan)diSj > ARan X ARan|(RanxRan)qss;
and with a homotopy-coherent data of associativity and commutativity, see [Ra6, Sect. 6] for details.

Let FactAlg(X) denote the category of factorization algebras on X.
For A € FactAlg(X) and Z — A, we will denote by Az € D-mod(Z) the pullback of A to Z.

B.9.2. Example. We let k denote the unit factorization algebra. I.e., the underlying object
kran € D-mod(Ran)

iS WRan, equipped with the natural factorization structure.

B.9.3. Let A be a factorization algebra on X. Let Z be a prestack equipped with a map Z — Ran.
Recall the space ZS, see Sect. B.2.2.

A factorization A-module M at Z is an object
My € QCoh(Z5)

equipped with a datum of factorization against A:
(B.24) Mgzc |(Ran>< 2S) disj = (Aran I M, c )|(Ran>< 2S ) disj
and a homotopy-coherent data of associativity.

We denote the category of factorization A-modules at Z by

A-modft.
This category is naturally tensored over QCoh(Z) via the projection

C Prsmall, 2
2= —" 2.

Remark B.9.4. For Z = X', one can described the category A—modi?cf explicitly as chiral modules, see
[Rol, Sect. 3].
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B.9.5. Let diag, : Z — ZE be the diagonal map (see Sect. 11.2.6). For M € A-mod®* we will denote
by Mz, the object
diagy (M, c) € QCoh(Z).
We will refer to My, as the quasi-coherent sheaf on Z underlying M.
The resulting functor
(B.25) oblv 4 : A-mod¥ — QCoh(Z)

is conservative and compatible with colimits. (Sometimes instead of oblv4 we write oblv, 2 in order
to emphasize the dependence on Z.)

We will think of the datum of M as Mz € QCoh(Z), equipped with an additional datum of factor-
ization against A.

B.9.6. Take A =k from Sect. B.9.2. We claim that there is a naturally defined functor

(B.26) QCoh(Z) — k-mod®*.
Namely, the functor (B.26) is given by pullback along the projection
25 = 2.

In Sect. C.7.7, we will upgrade the functor (B.26) to an equivalence of categories, once we replace
the right-hand side by the category of unital factorization modules.

B.9.7. A basic example of a factorization A-module is the vacuum module, denoted
A2 € A-modE.
Namely, the corresponding object
AZE* € QCoh(25)
is the pullback of Agran along the map
25 "¢ Ran.
Note that
ARz~ sy

For that reason, we will sometimes abuse the notation and write Az, instead of A®*z . (This is similar
to denoting the free object over an associative algebra A by the same symbol A as the underlying vector
space.)

B.9.8. Generalizing the above construction, given Z — Ran and f : Z' — Z<, which we perceive as
mapping to Ran by means of
2 5 2C pgg Ran,
there is a naturally defined functor®®
(B.27) A-mod?* — A-mod%<t
that makes the following diagram commute

ObIVA,Z/

A-mod st QCoh(Z")

I s

A-modf* ——— QCoh(Z2%).

We will denote the functor (B.27) by
M — M|z

683ee Sect. C.11.13 for more details.
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Remark B.9.9. The functor (B.27) reflects the unital structure on the assugnment
Z + A-modg",

see Sect. C.11.13.

B.9.10. Let S be an affine scheme mapping to Ran, and let S’ 4 S be a map of affine schemes.
Pullback along

fg . S’Q N SQ
defines a functor
(B.28) f*: A-mod§®" — A-mod§<".
This functor is QCoh(S)-linear, and hence gives rise to a functor
(B.29) QCoh(S") ® A-mod%® — A-mod%".
QCoh(S)
We claim:

Lemma B.9.11. The functor (B.29) is an equivalence.

Proof. Pushforward along fS gives rise to a functor
fo s A-mod®®t — A-mod®<t,
which is a right adjoint of (B.28). It is easy to see that it is monadic.

The functor (B.29) gives rise to a map of monads, and in order to prove the lemma, it suffices to
show that this map of monads induces an isomorphism of the underlying endofunctors.

However, the latter is obvious: both endofunctors are given by tensoring by f.(OQs/), viewed as an
algebra on QCoh(S).
O
B.9.12. From Lemma B.9.11 we obtain that the assignment
(S — Ran) ~» A-mod %
forms a sheaf of categories over Ran.

dfact

We will denote this sheaf of categories by A-mo . For any f: Z — Ran, we have

A-mod§* ~ 1(Z, f* (A-mod™)).
B.9.13. We shall say that a factorization algebra A is connective if
oblv'(Ax) € QCoh(X)

is connective, where X — Ran is the tautological map.
B.9.14. Recall that for any finite non-empty set, we have a tautological map
XjR — Ran.
We have (by the argument in [BD2, Lemma 3.4.12]):

Lemma B.9.15. Suppose that A is connective in the above sense, and unital (see Sect. C.7.1) for
what this means. Then for any I, the object
oblv!(Axr) € QCoh(X")
18 connective.
Corollary B.9.16. Under the assumptions of Lemma B.9.15, for any scheme Z equipped with a map

to Ran, the object
Az € QCoh(Z)

s connective.
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B.9.17. We now claim:

Proposition B.9.18. Let A be connective.%® Then for any scheme Z mapping to Ran, the category
A-mod2°t carries a t-structure, uniquely characterized by the property that the forgetful functor (B.25)
is t-ezact. Furthermore, A-mod2°t is left-complete in its t-structure.

Proof. This follows by interpreting factorization modules as chiral modules, see [FraG]. The connec-
tivity assumption translates into the fact that the corresponding chiral algebra is connective (for the
right t-structure on D-mod(X)):

Namely, we consider the category QCoh(Z<) as acted on via the map union by D-mod(Ran),
equipped with the chiral symmetric monoidal structure (see [BD2, Sect. 3.4.10] and/or [FraG, Sect
2.2)).

Let

A € D-mod(X) C D-mod(Ran)
be the chiral algebra, corresponding to A (see Sect. D.1.1); it has a structure of Lie algebra, viewed as
an object of D-mod(Ran) in the chiral symmetric monoidal structure.

We can interpret A-mod%°® as the full subcategory of

AP-mod(QCoh(Z%)),
consisting of objects with set-theoretic support on Z diig>z Z< (note that the map diag, identifies Z
with its formal completion inside Z<).

Now the assertion of the proposition follows from Lemma B.9.20 below.
O

B.9.19. Let C be a DG category with a t-structure compatible with filtered colimits, and suppose we
are given an embedding C C C’. Let A be a symmetric monoidal (resp., monoidal) category acting on
C’; denote the action functor by *.

Let L (resp., A) be a Lie algebra (resp., associative) in A with the property that for every ¢; € C=°
and every cz € C~% Maps(L % c1,c2) = 0 (resp., Maps(A * ¢1, ¢c2) = 0).

Lemma B.9.20. Under the above circumstances, the category L-mod(C) := L-mod(C’) x C (resp.,
C/
A-mod(C) := A-mod(C’) x C) admits a unique t-structure for which the forgetful functor to C is
C/
t-exact.

Remark B.9.21. In the terminology of Sect. B.8.11, the assertion of Proposition B.9.18 is that if A
is connective, the sheaf of categories A-mod™°* carries a t-structure, for which the forgetful functor
oblv¢ A is conservative.

Remark B.9.22. An assertion parallel to Proposition B.9.18 holds for the category

fact
A—mOdZdR N

i.e., for crystalline factorization A-modules at Z. In this case, we consider QCoh(Zgr) ~ D-mod(Z)
equipped with the right t-structure, i.e., one for which the functor ind" is t-exact.

Remark B.9.23. Assume for a moment that A is such that oblv!(Ax) belongs to QCoh(X)" and is
flat. Then [BD2, Lemma 3.4.12] implies that the same is true for oblv' (A1) for all finite sets I.

This in turn implies that for any S — Ran with S € Sch®®, the object As € QCoh(S) also belongs
to QCoh(S)” and is flat.

69The unitality assumption on A here is irrelevant, as one can add a unit to it (and then consider the corresponding
category of unital modules).
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B.9.24. Let now ¢ : A1 — A2 be a homomorphism of factorization algebras. Let
M; € A-modE.
There is a natural notion of map M; — Mz, compatible with factorization. Namely, this is a map
Gm My zc = My pc
in QCoh(Z5), which makes the following diagram commute,

My 2¢l(Ranc2S) —— (A1,Ran XMy 2)|(Rancz <)

d’vnl ld)&(ﬁm

Mz,z§|(Rancz§) —— (A2,Rran gMQ,ZQ)l(RanCZQ)’
along with a homotopy-coherent system of higher compatibilities.
Denote the corresponding space of maps by

(B.30) Maps 4, _, 4, (M1, M2).

B.9.25. For a fixed My € Az-modft, we can consider the functor
(A1-mod%)°P — Spe,
given by
(B.31) M1 = Mapsy, _, 4, (M1, M2).
This functor sends colimits to limits, and hence is representable. We denote the representing object
by
Resy(Ms) € Aj-mod 2.
We have a tautologically defined object in Maps 4, , 4, (Resg(Mz), Mz), i.e., a map
(B.32) Resg(Mz) — Mo,
compatible with factorization.

We claim:

Lemma B.9.26. The map (B.32) induces an isomorphism
Resg(M2)z — Ma,z.

Proof. This also follows by interpreting factorization modules as chiral modules. Under this equivalence,

restriction corresponds to restriction of modules along a homomorphism of chiral algebras.
O

Remark B.9.27. Let us emphasize that Lemma B.9.26 says that the operation of restriction acts as
identity on the underlying object QCoh(Z), and its content is that one can restrict the factorization
action on it of Ay to obtain a factorization action of A;.

B.9.28. Ezample. One can describe the object Resy(M2),c explicitly. Let us consider the example of
2 = pt, where Z — Ran corresponds to a singleton = € X, so that Z< = Ran,.

We have a natural map
X — Rang, z acU:c'7

and let us describe the restriction of Ress(Mz) along this map.
Let j denote the embedding X — x < X. Then

RGS¢(M2)X ~ Mo x X Jx Oj*(./ql X\szr),
Jx0j* (A2BM2 5)

where the map
MQ’X — j* Oj*(AQ X MQVI)
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is
adjunction factorization

Mox """ juoj (Mzx)

Using a description of Resy(Mz),c along these lines, one can prove Lemma B.9.26 without resorting
to chiral algebras.

Jjx O ]*(AQ X MQ,x).

B.9.29. Ezample. Let ¢ : A1 — A2 be a map of factorization algebras. For Z — Ran, consider the
resulting map
Prpig (A1,Ran) = P (A2,Ran)
in QCoh(Z5).
It is easy to see that this map is compatible with factorization, i.e., gives rise to a map
o Aflactz N Agactz7
compatible with factorization.

In particular, we obtain a map
APz Resy (AR02)

in A;-modi<*.
B.10. Commutative factorization algebras.

B.10.1. The category FactAlg(X) has an evident (pointwise) symmetric monoidal structure. Consider
the category
ComAlg(FactAlg(X)).

We will refer to its objects as commutative factorization algebras.

We have a tautological forgetful functor

(B.33) ComAlg(FactAlg(X)) — ComAlg(D-mod(Ran))
B.10.2. Restriction along X — Ran defines a functor
(B.34) ComAlg(FactAlg(X)) — ComAlg(D-mod(Ran)) — ComAlg(D-mod(X)).
This functor has a right inverse, to be denoted
A+ Fact(A)

Remark B.10.3. In Sect. C.8 we will upgrade the functor Fact(—) to an equivalence of categories.

B.10.4. The object
Fact(A)ran € D-mod(Ran)

can described by an explicit colimit procedure:
Let TwArr(fSet®) be the twisted arrows category of fSet*"™. Le., its objects are
1457
and morphisms (I 2 J1) = (12 i} J2) are diagrams

IlLJl

(B.35) w,l ]m

IQ 'ﬁ—% JQ.

We define a functor )
Arwar : TwArr(fSet™") — D-mod(Ran)

be sending I % J to the direct image along

J
AX‘],Ran : XdR — Ran
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of

X A®¢71<j)~
JjEJ

For a morphism (B.35), the corresponding map

(A )t B AZUT DY S (AL poy( A9 62))

j1€J1 Jjo€J2

(Do pan)t( B AT O) o (A, )0 (A, (B A% ) ~

J1€J1 J1€J1
~ (AXJz,Ran)! o (ij)! o (ij)!(j;?h A®(¢20¢1)71(j2)) N (AXJZ,Ran)!(j2|§J2 A®(¢20¢I)*1(]'2)) ~
o~ (AXJ27Ran)!(j2§J2i ® ARV G2)y (AX"QvRaD)’(jEJz 8 A=
2€d5  (J2) i2€¢h, ~ (J2)
~ (AXJ21R311)!(J'2§J2 A®(¢2)71(j2))7

where the arrow in the third line is the tensor product of the maps
A®YT ) A,
given by the commutative algebra structure on A.

Then

Fact(A)ran =~ colim  ArwArr.
TwArr(fSetsuri)

B.10.5. Let A be a commutative factorization algebra on X. Let Z be a prestack mapping to Ran.
Denote
A-modz™ := Az-mod(QCoh(2)),
where we regard Az as an object of ComAlg(QCoh(Z)).
We will view the assignment
Z ~~» A-mod3™
as a sheaf of categories over Ran, which we will denote by A-mod ™.

B.10.6. Let A be of the form Fact(A), for A € ComAlg(D-mod(X). We claim that in this case there
is a canonically defined functor of sheaves of categories,

A-mod“™ — A-mod™*",
i.e., a compatible collection of functors
(B.36) A-mod™™ — A-mod 2.

In order to construct (B.36), it suffices to exhibit an object of A-modf<t, equipped with an action
of Az € ComAlg(QCoh(Z)), where we view A-mod?* as tensored over QCoh(Z).

The object in question is the vacuum module A™2 | see Sect. B.9.7. Thus, we need to define an
action of Az on A2, To do so, we can consider the universal case, i.e., Z = Ran.

Thus, we need to define an action of pr{,,,.;; (Aran) on pry;, (Aran), compatible with the factorization.

This map comes from the commutative algebra structure on Aran, and a homomorphism
Priman (ARan) = P (ARan),
given by the unital structure on A, see Sect. C.8.4 below.

Note that since
AL o g,
the functor (B.36) is compatible with the forgetful functors to QCoh(Z).
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B.10.7. Let A be a commutative factorization algebra. Restriction along the binary operation

AQA— A

in the sense of Sect. B.9.24 defines on A-modf<* a structure of (symmetric) pseudo-monoidal category
(see [BD2, Sect. 1.1]) for what this means.

Concretely, for M, Mo, N € A—modfzaCt this means that we know what it means to map
Mi14“®7Ms — N.
Namely, by definition, the space of such maps is

MapsA | (M1 4 Mz, N)

®RA—A

!
in the notation of (B.30), where we regard M; ® My as an object of (A ® A)-mod<t.
In particular, it makes sense to talk about (commutative) algebra objects in A—modff“,

Note that by construction, the functor (B.36) is right-lax (pseudo)-monoidal. In particular, it maps
(commutative) algebras to (commutative) algebras. In addition, the forgetful functor

A-mod2°* — QCoh(Z%)
is also right-lax (pseudo)-monoidal; in particular, it maps (commutative) algebras to (commutative)
algebras.

B.11. Factorization categories.

B.11.1. A factorization category A on X is a sheaf/crystal of categories A over Ran, equipped with
a datum of factorization
(B37) union” (A)l(RanXRan)disj =~ A X A' (RanxRan)qjs;j

(here —|— denotes pullback of sheaves of categories along an open embedding) and with a homotopy-
coherent datum of associativity and commutativity; see [Ra6, Sect. 6], where the definition is written
out in detail.

For f:Z — Ran, we will denote
Az =T(Z, f"(A)).
In particular, we denote
Agan :=T(Ran, A);
this is a category tensored over D-mod(Ran).
Let FactCat(X) denote the (2-)category of factorization categories over X. This category carries a

naturally defined symmetric monoidal structure.

B.11.2. The unit object in this symmetric monoidal category is the sheaf of categories QCoh(Ran).

By a slight abuse of notation, we will denote this factorization category by Vect (i.e., its fiber at
any z € Ran is Vect € DGCat).

B.11.3. Note that since Ran is 1-affine (by Lemma B.8.15), the datum of the sheaf of categories A is
equivalent to that of the category ARgan, equipped with an action of D-mod(Ran).

Furthermore, the datum of factorization is equivalent to

(B.38) Agran ® D-mod((Ran x Ran)aisj) ~

D-mod(Ran),union’

= (ARan ® ARan) & D'mOd((Ran X Ran)disj)7
D-mod(Ran)®D-mod(Ran)

equipped with a homotopy-coherent datum of associativity and commutativity.
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B.11.4. Let A be a factorization category. A factorization algebra A € A is an object Aran € ARan,
equipped with a datum of factorization
.
union (\ARan)|(Raanan)disj =~ (‘ARan X ‘ARan)l(RanXRan)disjv

as objects in the two sides of (B.37), and with a homotopy-coherent datum of associativity and com-
mutativity.

Let FactAlg(X, A) denote the category of factorization algebras in A.
A factorization functor A1 — As induces a functor
FactAlg(X, A1) — FactAlg(X, A»).
B.11.5. Given A € FactAlg(X, A), parallel to Sect. B.9.3, given Z — Ran, one defines the category of
factorization A-modules in A at Z, denoted

A-mod™*(A)s.

The assignment
(B.39) 2 — A-mod™*(A);
forms a sheaf of categories over Ran that we denote by
A Mfact (A).
B.11.6. We will see many examples of factorization categories in the sequel. However, one family of
examples we can produce right away:

Let Ay be a crystal of symmetric monoidal categories over X. To it we attach a (symmetric
monoidal) factorization category, denoted Fact(A ), see [GLys, Sect. 8.1].

Equivalently, let Ax be a symmetric monoidal category tensored over D-mod(X). To it we can
attach a DG category, denoted Fact(A x), tensored over D-mod(Ran) (in fact, a commutative algebra
object in D-mod(Ran)-mod), and equipped with a factorization structure as in Sect. B.11.3.

This can be done by directly mimicking the procedure in Sect. B.10.4.
Similarly, if A € Ax is a commutative algebra object, it gives rise to a commutative algebra object

Fact(A) € FactAlg(X, Fact(Ay)).

B.11.7. Let A be an object in ComAlg(D-mod(X)). Denote A := Fact(A) € FactAlg(X). It is easy
to see that the sheaf of categories A-mod®™ (see Sect. B.10.5) has a natural factorization structure.
We denote the resulting factorization category by A-mod“°™.

Furthermore, we have:

A-mod“™ ~ Fact(A-mod(D-mod(X))).

B.11.8. Notational convention. In the special case when A x is constant, i.e., of the form A®D-mod(X),
where A is a symmetric monoidal category, we will denote the factorization category Fact(A x) simply
by A.

For example, when A = Rep(G), we will use the symbol Rep(G) to denote the corresponding
factorization category.

Note that this is in line with the notation for Vect in Sect. B.11.2.
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B.11.9. Let A be a factorization category over X. We shall say that A is dualizable if for every
S € Sch?%an, the category As is dualizable. This is equivalent to A being a dualizable object in
ShvCat(Ran).

If A is dualizable, then the dual AY of A as a sheaf of categories admits a natural factorization
structure; we will denote the resulting factorization category by AY.

The datum of duality between two factorization categories A; and Az is equivalent to that of
factorization functors

Vect - A1 ® Az and A; ® As — Vect,

satisfying the usual axioms.

B.11.10. Let A be a factorization category over X. We shall say that A is compactly generated if A
is compactly generated as a sheaf of categories over Ran.

Let & : A1 — A be a factorization functor between factorization categories. Suppose that A; is
compactly generated. Suppose also that ® preserves compactness, so that ® admits a right adjoint ®%,
as a functor between sheaves of categories.

It follows automatically that ®F carries a structure of compatibility with factorization.

B.11.11. Let A be a factorization category over X. A t-structure on A is a t-structure on A as a
sheaf of categories that is compatible with factorization in the following sense:

Let us be given a map
(z,,z,) : S — (Ran x Ran)aisj, S € Sch®™.
We need that the factorization equivalence

AS,union o(zq,zq) =~ AS,acl ® AS,CL‘Z
— QCoh(S) -

be t-exact, where the right-hand side is equipped with the tensor product t-structure.

B.11.12. A lax factorization category A is a sheaf of categories Aran over Ran, equipped with functors
(B40) A X A| (Ran x Ran) gjsj — union” (A) | (RanxRan)gjgj »
equipped with a homotopy-coherent datum of associativity and commutativity.

The entire discussion above equally applies to lax factorization categories.

B.11.13. In particular, we can talk about factorization algebras in a lax factorization category:

We require that the corresponding functor

(B.41)  (ARan ® ARan) ® D-mod((Ran x Ran)gisj) —
D-mod(Ran)®D-mod(Ran)

— ARan ® D-mod((Ran x Ran)aisj),

D-mod(Ran),union’
maps the object

(-ARan X ARan)‘(Raanan)disj S (ARan ® ARan) & D‘mOd((Ran X Ran)disj)
D-mod(Ran)®D-mod(Ran)

to the object

union! (-ARan) ‘ (RanxRan)gjsj € ARran ® D'mOd((Ran X Ran)disj ) .

D-mod(Ran),union!
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B.11.14. Ezample. Let A be a factorization algebra on X. Note that the sheaf of categories A-mod™°t
carries a natural lax factorization structure:

Let us be given a pair of maps z, : S; — Ran, ¢ = 1,2 such that

S1 X Sa ﬁizf Ran x Ran
lands in (Ran x Ran)qisj. Let us be given a pair of objects M; € A—mod?ft. We define the corresponding
object
M1 K M; € A-mod€Y s,
as follows.
Consider the prestack
(S1 x S2)¢ = {a’ € Ran, |z, Ca’,z, Ca'}.
For i = 1,2, let U; C (S1 x S2)€ be the open sub-prestack corresponding to the condition that
(z;,z') belongs to (Ran x Ran)aisj. The condition that z; and z, are disjoint implies that
U, UU; = (Sl X Sz)g.
Denote Ui ,2 := Uy N Us.

Let pry (resp., pry) denote the map Uy — Si X 82g (resp., Uz — Slg x S2) whose second (resp.,
first) component remembers the data of z. Let pry 5 denote the map Ui 2 — S1 X S2 X Ran, whose last
component remembers z’.

We let
(M B Mz) (s, xs5)¢ [y 2 pri(Ma,s, BIM, o)

and
(V1 B M) (s, x5 loa 2 Pra(M oo B Ma,s, ).

The factorization structures on M; and M, imply that
(M ’M2) (s, x50 |01 01,5 =2 DTy o(Mi,s; B Mo, s, B ARan) = (Mi B M) (s, x5,)C U507 2

This defines the object
(M1 BIM2) (g, 5,7 € QCoh((S1 x S2)%).
The factorization structure on it against A follows from the construction.
B.11.15. Let us denote the resulting lax factorization category by A-mod®°t. For a map ¢ : A1 — As

between the factorization algebras, the restriction functor

dfact dfact

Resg : A2-mo — A1-mo
upgrades to a factorization functor, denoted
Resy : As-mod™®t — A;-mod et
Denote by oblv the forgetful functor A-mod™* — Vect (see Sect. B.11.8 above for the convention
regarding Vect).

Note that the assignment
7 ‘Afactz

(see Sect. B.9.7) gives rise to a factorization algebra object in A-mod™°*, to be denoted A™*, so that
oblv 4 (A®) = A,
That said, we will sometimes abuse the notation and instead of A" simply write A.

Suppose for moment that A is connective. Then the construction in Sect. B.9.17 equips A-mod
with a t-structure in the sense of Sect. B.11.11.7°

70In the case of lax factorization categories, we require that the functor (B.40) be t-exact.
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B.11.16. The example in Sect. B.11.14 generalizes to the situation when A is a factorization algebra
in a given lax factorization category A. We obtain that the sheaf of categories

A-mod™*(A)
carries a structure of lax factorization category. We denote it by A-mod<t (A).

As in Sect. B.11.15, we can consider A" as an object of FactAlg(X,A-mod®™*(A)). By a slight
abuse of notation, we will sometimes denote this factorization algebra simply by A.

By definition, for any Z — Ran
(.AfaCt)z ~ ‘Afactz
as objects of A-mod™**(A)s.

If A carries a t-structure (in the sense of Sect. B.11.11) and A is connective (i.e., oblv!(Ax) € Ax
is connective), then the construction in Sect. B.9.17 equips A-mod™°*(A) with a t-structure.

B.11.17. Let A be a lax factorization category, and let ¢ : A — A’ be a homomorphism between
factorization algebras in A. Restriction along ¢ denotes a factorization functor

Resg : A'-mod™*(A) — A-mod™*(A).
In particular, we can consider
Resg (A ™) € FactAlg(X, A-mod™*(A)).
We have
oblv 4 (Resg (A ™)) = A’
We will sometimes abuse the notation, and instead of Resy(A'f°%) simply write A’.

B.12. Factorization module categories.

B.12.1. Let A be a factorization category over X. Let Z be a prestack mapping to Ran. A factorization
module category C over A at Z is a sheaf of categories C on Z&, equipped with a factorization structure:

(B42) union* (g) ‘ (Ranx Z< )disj = A X g|(Ran>< 2< )disj
and with a homotopy-coherent datum of associativity; see [Ra6, Sect. 6] for details.

Let A-modf°* denote the (2-)category of factorization module categories over A at Z.

B.12.2. For an object C € A-mod®® and f: Z' — Z<, we denote
Car = T(Z, [*(C)).

Taking Z' = Z and f = diag,, we obtain the category Cz, tensored over QCoh(Z). We will refer to
C. as the category underlying C.

B.12.3. As in Sect. B.9.8, the above category Cgz/ is in fact the category underlying an A-module
category at Z', to be denoted C|z.

B.12.4. Ezample. Repeating the construction in Sect. B.9.7, we obtain that for any Z there exists a
distinguished object
A"z ¢ A-mod§**

whose underlying category is Az.

We will refer to A2 as the vacuum factorization module category at Z.

B.12.5. Example. Take A = Vect, and let C,, be a sheaf of categories over Z. We claim that it gives
rise to a factorization module category over Vect at Z, to be denoted C (cf. Sect. B.9.6).

Namely, the corresponding sheaf of categories C over Z& is the pullback of C, along the projection
c
pr 2= = Z.

small
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B.12.6. Let A be a factorization algebra in A, and let C be an object of A-mod®<t,
A factorization A-module M in C is an object
Myc € Cye,
equipped with an isomorphism
(B.43) union” (Mzc )‘(RanXZg)disj ~ (Aran B Mzc)|(Ranx 29 ) aisj?
where:
e union*(M,c) is an object in

r ((Ran X 25) disj, union™ (Q)I(Ranng)disj) ;
e Aran XM, is an object in
r ((Ran X Zg)disjvégg\(mnng)disj) ;
e The isomorphisms between the two sides is understood in the sense of the identification (B.42).
The isomorphism (B.43) is required to be equipped with a homotopy-coherent datum of associativity.
B.12.7. We denote the category of factorization A-modules in C by
A-mod™°*(C)x.
Note that when C := A"z recover the category (B.39).
B.12.8. Let C, be as in Sect. B.12.5. Denote
Co :=1(Z,C,).

Let A be a factorization algebra (i.e., a factorization algebra in Vect, viewed as a factorization
category). Then it makes sense to consider the category

A-mod™*(C)z.
Note that we have a tautologically defined functor

(B.44) A-mod%  ® Cy— A-mod™(C)s.
QCoh(2)

We claim:

Lemma B.12.9. Assume that Z = S is an affine scheme, and assume that C, dualizable as a sheaf
of categories. Then the functor (B.44) is an equivalence.

Proof. Let C; be the dual sheaf of categories; note that I'(Z, Cy) identifies with the dual of Cp as a
QCoh(S)-linear category, and hence also as a plain DG category.

We have a naturally defined functor

A-mod®*(C)s ® Cy — A-mod™*(C® CY)s,
QCoh(S)

where CY € Vect-mod<® is attached to C_ by the procedure of Sect. B.12.5.
Composing with the evaluation map
A-mod™*(C® CY)s — A-mod™" (VectS™) s ~ A-mod &,
we obtain a functor

(B.45) A-mod™*(C)s ® Cy — A-modE.
QCoh(S)

The sought-for inverse functor to (B.44) is given by

Amod®(C)z " E5 A mod®H(C), ® CF © Cp % A-modE C,.
QCoh(S) QCoh(S) QCoh(S)
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B.12.10. Let ® : A; — Aj be a factorization functor between factorization categories. Let C; and
C: be objects in Aj-mod®°t and As-modt, respectively.
A functor ®,, : C; — C2 compatible with factorization is a functor
®,,:C, - C,
between sheaves of categories on Z& that makes the following diagram commute

.k ~
union (gl)|(Ran>< Zg)disj A1 Xlg1|(Ran>< Zg)disj

éer ldﬂ%m

~

union*(QQ)l(RanXZQ)disj — A, xgﬂ(mnng)disj
along with a homotopy-coherent system of higher compatibilities.

Let
Functa,—-a,(C1,C2)

denote the category of such functors. When an ambiguity is likely to occur, we will use the notation
Functe:.a, —»a,(C1, C2), i.e., we will insert ® in the subscript.

B.12.11. Given C; € Ag—mod‘;‘i“:t, one defines its restriction,
Rese(Ca) € Aj-mod5*
by the universal property as in Sect. B.9.25, i.e.,

FunctAl’modfzéct (C1,Ress(C2)) ~ Functa, »a,(C1, Ca).

One can explicitly describe Ress(C2) by a limit procedure as in Sect. B.9.28. 71
We have a tautologically defined functor
(B.46) Ress (C2) — C2
compatible with factorization.
Parallel to Lemma B.9.26, we have:
Lemma B.12.12. The functor (B.46) induces an equivalence of the underlying categories
Resg(C2)z — Ca,z.

B.12.13. Let ® : A; — A be a factorization functor, and let A; be a factorization algebra in A;.
Note that ®(A1) has a natural structure of factorization algebra in A,.

Let C; and Cs as in Sect. B.12.10. Given a functor ®,, : C; — C2 compatible with factorization,
we obtain a naturally defined functor

(B.47) A1-mod™*(Cy)z — ®(A;)-mod™*(Cy)x.
Parallel with Lemma B.12.12 one proves:
Lemma B.12.14. Assume that the functor ®,, : C1 — Cgz induces an equivalence
C1 — Ress(C2)

as factorization module categories over A1. Then the functor (B.47) is an equivalence.

71This will be written out in detail in [CFGY].
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B.12.15. As in Sect. B.9.29, given a factorization functor ® : A; — A, for any Z — Ran, we have a
canonically defined functor

fact o, fact o,
A — Resa (A, 7).

In particular, given a commutative diagram of factorization categories

Al —— Af

%T T%

A1 _— Az.
we obtain a functor
Resy, (A;™'2) — Resy, (A5™"2),

compatible with factorization.
B.13. Factorization categories of algebro-geometric nature.

B.13.1. Let Zran — Ran be a prestack. We attach to it a sheaf of categories QCoh(Z) over Ran,
namely,

QCoh(2) := 7, (QCoh(Zran)),

where 7 denotes the projection Zran — Ran.
Explicitly, for S € Sch?ﬁan, we have
QCoh(Z)s = QCoh(S X Zran)-
Ran
B.13.2. Let T be a factorization space over X. Consider the corresponding sheaf of categories QCoh(7),

ie.,

QCoh(T)s = QCoh(Ts).

The factorization structure on T equips QCoh(7T) with a lax factorization structure. We denote the
corresponding lax factorization category by QCoh(T).

Remark B.13.3. The reason that T is a priori only lax is that for a pair of prestacks Y1 and Y2, the
naturally defined functor

QCoh(Y1) ® QCoh(Y2) — QCoh(Y1 ® Y2)

is not necessarily an equivalence.

This lax structure is strict, e.g., if QCoh(7) is dualizable (as a sheaf of categories over Ran, which is
equivalent to each QCoh(7)s being dualizable). This happens, e.g., if T is a factorization affine scheme.

B.13.4. Ezxzample. Let Y be an affine D-scheme over X. On the one hand, we can consider the factoriza-
tion scheme £&(Y) and the corresponding factorization category QCoh(£% (Y)). As such, it is equipped
with a symmetric monoidal structure.

On the other hand, we can consider the symmetric monoidal factorization category
Fact(QCoh(Y)).
We claim that there is a canonical equivalence:
Fact(QCoh(Y)) ~ QCoh(£5(Y)).
Indeed, both sides identify, as factorization categories with A-mod®™ (see Sect. B.11.7), where
A = Fact(A), Y = Specy(A),
see (C.44) below.
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B.13.5. Let now T := LS};®. We claim that the lax factorization category QCoh(LS}*) identifies with
Rep(H) (see Sect. B.11.8 for the notational conventions); in particular QCoh(LS5®) is a factorization
category.

Indeed, on the one hand, unwinding the definitions, we obtain that Rep(H), viewed as a factorization
category is the (factorization) category of comodules with respect to Fact(O ), viewed as a factorization
coalgebra.

We can rewrite it as the totalization of the cosimplicial factorization category with terms
Fact(Oge)-mod ™,
where H* is the Cech nerve of pt — pt /H.

On the other hand since pt — LS}*® is an fpqc cover (see Lemma B.7.4), QCoh(LS}®) identifies
with the totalization of the cosimplicial factorization category with terms QCoh(—) of the Cech nerve
of pt — LS®, the latter being £ (H*).

How the desired equivalence follows from the fact that

) ) ~ Fact(Oge),

e (He
see (C.44) below.
Remark B.13.6. For completeness, we remark on the following comparison with [Ra3].

In loc. cit., a different construction of the factorization category associated to a symmetric monoidal
category was used; in particular, Rep(H )ran has an a priori different meaning than how it is used in
this paper. One can directly compare the two constructions, but rather than doing so here, we note
that the above material combined with [Ra4, Lemma 9.8.1] allows us to indirectly deduce that the two
constructions coincide.

B.13.7. Let Zran — Ran be a prestack. We attach to it a sheaf of categories QCohco(Z) over Ran by
setting for S € Schjgan

QCoh,,(2)s := QCoh,, (S X ZRran).
Ran

The sheaf of categories structure holds thanks to Lemma A.1.11.

B.13.8. Let T be factorization space over X. Consider the corresponding sheaf of categories
QCoheo(T), i.e.,

QCoheo(T)s := QCoh,,(Ts).

The factorization structure on T induces a factorization structure on QCoheo(7), see Lemma A.1.5.
We will denote the resulting factorization category by QCoh, (7).

By Sect. A.2.8, if T is a factorization ind-scheme, the factorization category QCoh, (T) carries a
naturally defined t-structure.

B.13.9. Let Zran — Ran be a prestack. We will attach to it a sheaf of categories over Ran, denoted
IndCoh'(2). Unlike the cases of QCoh(—) and QCoh_,(—), this will use some special features of Ran.

Namely, we will use the fact that Ran can be exhibited as a colimit of prestacks So,qar, where S, are
smooth schemes with transition fo. s : So — Sg maps being closed embeddings. In practice, S, = X'
for finite non-empty sets I, see Sect. B.1.3.
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B.13.10. For S as above set
IndCoh'(2)s,, := IndCoh(Zs.,).

For a map S. fﬂﬁ S denote by the same symbol f, g the corresponding map
Zsa — Zsﬂ.
The functor
fes : IndCoh'(2s,) — IndCoh'(Zs,,)

gives rise to a functor

(B.48) QCoh(Sa) ®  IndCoh'(Zs,) — IndCoh'(Zs, ).
QCoh(Sg)

We claim:
Lemma B.13.11. The functor (B.48) is an equivalence.

Proof. The question is Zariski-local, so we can assume that S, and Sp are affine. By Lemma A.4.10,
the functor (B.48) is fully faithful. So we only have to show that it is essentially surjective.

Let S5 be the formal completion of Sg along S,. Consider the corresponding functor

(B.49) QCoh(S5) ®  IndCoh'(Zs,) — IndCoh'(Zgn).
QCoh(Sg) B

We have a commutative diagram

QCoh(S3) ®  IndCoh'(Zs,) — IndCoh'(Zgx)
QCoh(Sg) B

I I

QCoh(Sg) ®  IndCoh'(Zs,) —— IndCoh'(Zs,).
QCoh(Sg)

The left vertical arrow is a colocalization. We claim that the right vertical arrow is also a colocal-
ization: indeed, this follows from Proposition A.4.14. Hence, we obtain that the functor (B.49) is also
a colocalization.” In particular, (B.49) is essentially surjective.

We have a commutative diagram

QCoh(Sa) ®  IndCoh'(Zs;) — IndCoh'(Zs,)
QCoh(Sg)

(B.50) | |

QCoh(S3) ®  IndCoh'(Zs,) — IndCoh'(Zgn),
QCoh(Sp) B

where:
e The right vertical arrow is given by !-pullback along Zs, — ng;

e The left vertical arrows is given by the *-pullback functor along S, — S5 along the QCoh(—)
factors.

We wish to show that the top horizontal arrow in (B.50) is essentially surjective. By the above, the
bottom horizontal arrow is essentially surjective. Hence, it suffices to show that the functor

IndCoh' (Zgy) = IndCoh'(Zs, )
is essentially surjective.

We claim, however, that the map Zs, — ng admits a retraction. Indeed, since S, is smooth, the
embedding
So — S5

"2In fact, the above argument shows that (B.49) is an equivalence.
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admits a retraction, denote it by gg,.. Note that the two maps

A 98«

SﬁA — Ran and S3 = S, — Ran
agree on (S5 )red =~ Sa. Hence, since Ran — Rangr is an isomorphism, we can identify

AN
ZsA ~ Sﬂ X Z-Sa.
B 98,aSa

In terms of this identification, the projection

A
Sﬁ X  Zs, — Zs,
98,a>Sa

provides the sought-for retraction.

B.13.12. Let S be an affine scheme mapping to Ran. This map factors as

S i) Sa — Ran
for some «.

Set

IndCoh'(Z)s,; := QCoh(S) ®  IndCoh'(Zs,).
QCoh(Sq)

In order to show that the assignment
S € Schifan ~ IndCoh'(2)s, s

gives a well-defined sheaf of categories over Ran, it remains to show that for two maps f; and f> as
above, for which fi|s,., ™~ f2|s,.,, we have a canonical identification

IndCoh'(2)s.7, ~ IndCoh'(2)s. 1,
ie.,

(B.51) QCoh(S) ®  IndCoh'(Zs,) ~ QCoh(S) ®  IndCoh'(Zs,).
f1,QCoh(Sa) f3,QCoh(S«)

(In addition, one needs to show that these identifications satisfy a homotopy-coherent system of
compatibilities for multi-fold comparisons fils,., =~ f2|S,eq = -+ = fn|S,eq, but this will be automatic
from the construction explained below.)

B.13.13. Let (Sa X Sa)A be the formal completion of the diagonal in S, X So. Note that we have a
well-defined map
(Sa X S&)”" — Ran,

Consider the corresponding prestack Z(s, xs.)» and the category
IndCoh’ (Z (s, x 5,7 )-
For i =1,2, let
Pi: (Sa X 8a)" = Sa
denote the corresponding projection. We will denote by the same symbol p; the corresponding map
Z(SQXSQ)/\ — Zsa.

The functor
pi : IndCoh'(Zs,, ) — IndCoh'(Z(s, x5.)~)

gives rise to a functor

(B.52) QCoh((Sa x Sa)™) ®  IndCoh'(Zs,) — IndCoh'(Z(s, x 5.7 )-
p;,QCoh(Sqa)

We claim:
Lemma B.13.14. The functor (B.52) is an equivalence.

Proof. Proceeds along the same lines as the proof of Lemma B.13.11. g
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B.13.15. Using Lemma B.13.14, we obtain

QCoh(S) ®  IndCoh'(Zs,) =
fi,QCoh(Sa)

= QCoh(S) ® QCoh((Sa X Sa)™) ® IndCoh'(Zs,, ) ~
(f1xf2)*,QCoh((Sa xSa)™) p;,QCoh(Sq)

~ QCoh(S) ® IndCoh' (Z (s, x 5097 )»
(f1xf2)*,QCoh((Sa xSa)™)

thereby establishing (B.51).

This completes the construction of IndCoh'(Z) as a sheaf of categories over Ran.

B.13.16. Let T be a factorization space over X. The multiplicative structure in Sect. A.6.3 equips
the corresponding sheaf of categories IndCoh' (7) with a structure of lax factorization category; we will
denote it by IndCoh'(T).

Suppose now that T is ind-placid. In this case, from Lemma A.10.10, we obtain that the lax
factorization structure on IndCoh'(T) is a factorization structure.

B.13.17. Let now Zran — Ran be a relative ind-placid ind-scheme. In this case, we are going to define
the sheaf of categories IndCoh*(Z).

We proceed with the same recipe as in the case of IndCoh'(Z). For an index a, set
IndCoh*(2)s,, := IndCoh™(Zs,,).
For a map fa,s, we have a well-defined functor

fomdCeh : IndCoh*(Zs,) — IndCoh™(Zs,,)

o,B
(see Sect. A.7.4). Consider the resulting functor
(B.53) QCoh(Ss) ®  IndCoh*(Zs,) — IndCoh"(Zs,,).
QCoh(Sg)
We claim:

Lemma B.13.18. The functor (B.53) is an equivalence.
Proof. We can reformulate the assertion of the lemma as saying that the right adjoint of f;:lﬁndc‘)h, ie.,
the functor

(fa,8)49°" - IndCoh*(Zs, ) — IndCoh"(Zs,,)

gives rise to an equivalence

(B.54) IndCoh™(Zs,) = (fa,s)«(0s,)-mod(IndCoh™ (Zs,)).

Note that Lemma B.13.11 can be reformulated as saying that the functor
fop : IndCoh'(Zs,,) — IndCoh' (Zs,,)
admits a right adjoint, and this right adjoint identifies
(far8)+ (05, )-mod(IndCoh'(Zs,)) ~ IndCoh'(Zs, ).

Passing to the duals, we obtain that the dual of f;”B identifies
(B.55) (fa,8)+(0s,)-mod(IndCoh'(Zs,)") ~ IndCoh'(Zs,)".

We will now use the identifications

IndCoh™(Zs, ) ~ IndCoh'(Zs, )" and IndCoh"(Zs,) ~ IndCoh'(Zs,)",

see Sect. A.10.8.

Under these identifications
! ndCo
(fop)" 2 (fap) 4.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 293

Unwinding the definitions, it is easy to see that the resulting identification (B.55) is the same as
(B.54).
O

B.13.19. Let S be an affine scheme mapping to Ran. This map factors as

S i) Sa — Ran
for some a.

Set

IndCoh*(Z)s,5 := QCoh(S) ®  IndCoh*(Zs,).
QCoh(Sa)

As in the case of IndCoh', in order to complete the construction of IndCoh*(Z) as a sheaf of categories
over Ran, it suffices to show that for a pair of maps f1 and f2 as above, for which fi|s,., ™~ f2|s,.q, We
have a canonical identification

IndCoh* (Z) S, f1 = Il’ldCOh* (Z) S,fas
ie.,

(B.56) QCoh(S) ® IndCoh*(Zs,, ) ~ QCoh(S) ® IndCoh™ (Zs,,).
£7,QCoh(Sa) £5,QCoh(Sa)

This follows from the following:
Lemma B.13.20. In the notations of Lemma B.13.1}, the functor

QCoh((Sa x Sa)™) ® IndCoh™(Zs, ) — IndCoh™ (Z(s, x5.)n)-
p;,QCoh(Sqa)

is an equivalence.
The lemma follows by duality from Lemma B.13.20.

B.13.21. By construction, the sheaves of categories IndCoh*(Z) and IndCoh'(Z) are mutually dual.
By Sect. A.8, the sheaf of categories IndCoh*(Z) is equipped with a t-structure.
B.13.22. Let T be a factorization ind-placid ind-scheme over X. The multiplicative structure in

Sect. A.6.4 and Lemma A.10.10 imply that in this case the sheaf of categories IndCoh™(T) carries a
factorization structure. Denote the resulting factorization category by IndCoh* (7).

By the construction of IndCoh*(T) in Sect. B.13.17 and Sect. A.8, the factorization category
IndCoh*(7) carries a naturally defined t-structure.

By construction, IndCoh*(T) is dual to IndCoh'(T) as a factorization category.
B.13.23. Let T be a factorization space over X, and let T, be a factorization module space over T at
some Z — Ran.

Suppose that T is such that the categories QCoh(Ts) for S € Sch"/‘gan are dualizable. Then the sheaf
of categories

7 (QCOh((Tim)zc))
on ZS (here 7 denotes the structural map Ty — 2<) admits a natural structure of factorization
module category over QCoh(7) at Z. We will denote it by QCoh(Ty).

For general T and T,,, the assignment
S — 25, ~ QCoh,((Tm)s)

is a sheaf of categories over Zg, to be denoted QCoheo (T ). It has a natural structure of factorization
module category over QCoh_,(T) at Z. We will denote it by QCoh_,(T:.).

Assume now that Ty, is an ind-placid ind-scheme relative to Z<. In this case, we can consider the
sheaves of categories
IndCoh'(7,,) and IndCoh*(T,,)
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and they have natural factorization module structures over IndCoh'(T) and IndCoh*(T), respectively.
We will denote the resulting factorization module categories by IndCoh'(7,,) and IndCoh*(T,,), re-
spectively.

B.14. Modules over Kac-Moody Lie algebras. In this subsection we will show how to adapt the
theory developed in [Rab] to the factorization setting. We start be defining the factorization category
Rep(£7(G)).

In this subsection G can be arbitrary an algebraic group (i.e., not necessarily reductive).

B.14.1. For S € Sch?gan consider the group scheme £1(G)s over S. It is pro-smooth,
£7(GQ)s ~ Jim GS,

where G'g are smooth group-schemes over S of finite type, and the transition maps are smooth and
surjective.

For every a we can consider the algebraic stack pt /Gg. Set

Rep(G) = QCoh(pt /GS).

Set

(B.57) Rep(£7(G))s := colim Rep(G§),
ae

where the transition functors are given by restriction:
G -GS ~ Rep(GS) — Rep(GY).

Note that the above transition functors admit (continuous) right adjoints, given by
inder(GgﬁGg) :
Hence, we can rewrite Rep(£"(G))s also as the limit
Rep(£7(G))s = lim Rep(GS),
with respect to the above right adjoints.

B.14.2. We claim that Rep(£"(G))s is compactly generated. In order to prove that, it suffices to
show that each Rep(G§S) is compactly generated. This can be proved on general grounds (the category
of quasi-coherent sheaves on a smooth algebraic stack is compactly generated). What follows below is
an explicit construction of compact generators.

First, it is easy to see that if an object V € Rep(G) is such that oblvgg (V) € QCoh(S) is compact,
then V itself is compact. Hence, in order prove the compact generation, it suffices to exhibit a generating
collection of compact objects. We do that as follows.

We can assume that the category of indices A has an initial element o for which G¢° is the following
explicit group-scheme:
Let I be a finite set such that the map S — Ran factors as
S — X' - Ran.

Let Graph; C XT x X be the incidence divisor. Let G x: be the group-scheme over X7 equal to the
restriction of scalars & la Weil along
Graph; ¢ X' — X'
of the pullback of the constant group-scheme with fiber G along

Graph, ¢ X' — X.

Note that Graph; receives a map from the disjoint union of I many copies of X I (i-e., the pairwise
diagonals of the ith and the last coordinate in X7 x X). In particular, we obtain a map

(B.58) Gxr — (G x X)"
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as group-schemes over X7,
We take G3° to be the pullback of G x1 along S — X'.
Note that for every «, the kernel of the projection
(B.59) s — G3°

is unipotent (in fact, admits a filtration with subquotients isomorphic to the constant group-scheme
with fiber Ga).

Hence, the essential image of the forgetful functor
Rep(G3°) — Rep(GS)
generates Rep(GS).

The map (B.58) induces a map

5 G

In particular, we obtain a functor
(B.60) Rep(G)®' — Rep(G0).

It is easy to see that the essential image of (B.60) generates Rep(G¢°). Hence, we obtain that the
images of the compact objects in Rep(G)®’ under the composition
(B.61) Rep(G)®" — Rep(G%°) — Rep(G3)
provide a set of compact generators of Rep(GS).

Remark B.14.3. Note that the category Rep(£"(G))s is not the same as representations of the group-
scheme £1(G)s, i.e.,

O+ (@) g-comod =~ QCoh(pt /&H(@)s).
Rather, it is its renormalized version, in which we declare the compacts to be the images of the compacts
in Rep(G¢) under the restriction along £ (G)s — G¢.

In particular, the forgetful functor
oblvgi ), : Rep(£7(G))s — QCoh(S)
is not conservative.

B.14.4. The presentation (B.57) equips Rep(£'(G))s with a t-structure, for which the forgetful func-
tor oblvgy () is t-exact.

B.14.5. Let f:S" — S be a map of affine schemes. Pullback along f gives rise to a functor
f" i Rep(£7(G))s — Rep(£7(G))s,
which in turn gives rise to a functor
(B.62) QCoh(S") ch?,@ Rep(£7(G))s — Rep(£7(Q))s.
We claim that the functor (B.62) is an equivalence. Indeed, this follows from the fact that for every
«, the corresponding functor

QCoh(S") ® Rep(GS%) — Rep(G%))
QCoh(S)

is an equivalence.
This defines on the assignment
S € Schifan ~ Rep(£7(G))s
a structure of sheaf of categories over Ran.

We will denote this sheaf of categories by Rep(£1(Q)).
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B.14.6. Let z, : S; — Ran, ¢ = 1,2 be points such that
51 x S 2% Ran x Ran
lands in (Ran x Ran)ais;.

Note that we have
£+(G)S1 xSy = 2+(G)51 X 2+(G)S2'

Tensor product of representations defines a functor

(B.63) Rep(£7(G)s,) @ Rep(£7(G)s,) — Rep(L7(G)s,xs,)-
We claim that (B.63) is an equivalence.” Indeed, we can write £7(G)s, x5, as
lim G X G,

(a1,a2)EATP x ASP
and for each pair of indices a1, as, the functor
Rep(Ggi) ® Rep(ng) — Rep(Ggi X Gg;)
is an equivalence (e.g., by [Ga7, Cor. 10.3.6]).

This endows the sheaf of categories Rep(£7(G)) with a factorization structure. We denote the
resulting factorization category by Rep(£1(G)).

The t-structures in Sect. B.14.4 define a t-structure on Rep(£*(G)) as a factorization category.
B.14.7. Let S e Sch?ﬁan be as above. Following [Ra5], one defines the (2-)category
£7(@)s-mod™ ™
of QCoh(S)-linear categories equipped with a weak action of £7(G)s to be equivalent to
Rep(£7(G))s-mod.
We consider the forgetful functor
(B.64) oblver gy g weak Rep(£"(G))s-mod — QCoh(S)-mod

given by
C—C ® QCoh(95).

Rep(E+(G))S,ob1v£+<G)s

Remark B.14.8. As in Remark B.14.3, the 2-category Rep(£"(G))s-mod is not the same as QCoh(S)-

linear categories equipped with a co-action of QCoh(£%(G)s). Indeed, for the unit object
Rep(£7(G))s € Rep(£7(G))s-mod,

its category of endofunctors in Rep(£*(G))s-mod is Rep(£"(G))s, while for the unit object
QCoh(S) € QCoh(£1(G)s) - comod,

its category of endofunctors is the non-renormalized category

Og+ (@) g-comod =~ QCoh(pt /&H(@)s).

That said, for each individual «, the stack pt /Gg is 1-affine, and hence the functor
(B.65) Rep(Gs)-mod — QCoh(GS)-comod, C+— C ® QCoh(S)

Rep(Gg),oblng

is an equivalence

73This would not be the case (at least, not obviously so) if instead of Rep(2+(G))5i we used their naive versions,

i.e., the categories of representations of the group-schemes £+ (G)Si .
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B.14.9. Parallel to [Ra5], one defines the (2-)category
£1(@)s-mod
of QCoh(S)-linear categories equipped with a strong action of £7(G)s. Namely, this is the category of
comodules (inside QCoh(S)-mod) for
D-mod,a /5(£7(G)s),
where:
e D-mod,e /s(£1(G)s) := coéign D-mod,1 /5(G3);
e D-mod;e1/5(GS) := QCoh(Gg, S>< S).
dR
One shows that any object
C e £7(G)s-mod
can be canonically written as
Ckcr(£+(G)S~>Gg)’

colim
acA

where
Cker(s+(c)s—>cg) cC

is the full subcategory of strong invariants with resect to the (pro-unipotent) group-scheme
ker(£7(G)s — G3).

B.14.10. We have a forgetful functor

obIlv:ToMe . 0T () 5-mod — £7(G)s-mod™***

weak
that sends an object C to
colim oblv

acA

strong
weak

strong ker(2+(G)S—>G(§
weak (C )7

where in the right-hand side oblv denotes the family of forgetful functors

oblv!

D-mod,e1 /s(GS) - comod "= QCoh(Gs) - comod ES Rep(GS)-mod.
This functor intertwines the natural forgetful functor
oblVet ()¢ weak | £1 (G)s-mod — QCoh(S)-mod
with the functor oblv et (g), wear Of (B.64).

B.14.11. Our next goal is to define the category £ (g)-mod of modules for the arc Lie algebra £ (g).
The definition that we are about to give mimics the following finite-dimensional situation:

Let H be a finite-dimensional algebraic group. Then the category h-mod of modules over its Lie
algebra has the following structures:

e It carries a (strong) action of H;

e It is equipped with a forgetful functor oblvy : h-mod — Vect;

e The functor oblvy is equipped with a structure of compatibility with the induced weak action
of H.

Moreover, the category h-mod is universal with respect to the above pieces of structure. IL.e., for
a category C, equipped with a (strong) action of H, compositing with oblvy defines an equivalence
between:

e Functors C — h-mod, compatible with (strong) actions of H;
e Functors C — Vect, compatible with weak actions of H.

The above universal property can be established by realizing h-mod as follows

(B.66) h-mod ~ D-mod(H )™ ek,
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B.14.12. We define the category
£*(g)-mods

by the universal property as in Sect. B.14.11. lL.e., this is a category, equipped with:

e A (strong) action of £7(G)s;
o A forgetful functor oblvgy () : £%(g)-mods — QCoh(S);
e A datum of compatibility on oblvg+ ) with the weak action of £%(G)s.

Moreover, £'(g)-mods is universal with respect to the above pieces of structure.

As in (B.66),we can explicitly realize £%(g)-mods as follows:
(B67) 2+ (g)—mods ~ D—modrel/5(£+(G)s)s+(G)S —Weak.

Remark B.14.13. A feature of £*(g)-mods that one has to keep in mind, and which distinguishes it
from the finite-dimensional situation, is that the functor
oblvgt g : £7(g)-mods — QCoh(S)

is not conservative.

B.14.14. Note that, by definition, we have

(B.68) 2+(g)—m0d§+(G>S ~ Funct2+(G)S_mod(QC0h(S),2+(g)—m0ds) o~
~ Funct ¢+ () s-moaweak (QCoh(S), QCoh(S)) ~ Rep(£7(G))s.

B.14.15. By the universal property of £*(g)-mods, we have naturally defined restriction functors
Lie(G$)-mod — £7(g)-mods.
Furthermore, the functor

(B.69) coéign Lie(G$)-mod — £7(g)-mods

is an equivalence.
Since the transition functors in the left-hand side of (B.67) preserve compactness, we obtain that

£%(g)-mods is compactly generated.

B.14.16. The presentation of £%(g)-mods as in (B.69) equips it with a t-structure, for which the
forgetful functor oblv g+ () is t-exact.

B.14.17. For S’ — S, the universal property of £%(g)-mods gives rise to a functor

QCoh(S") QC@%(S) £*(g)-mods — £7(g)-mods:.

One shows (e.g., using (B.67)) that the above functor is equivalence.

This endows the assignment
S~ £7(g)-mods

with a structure of sheaf of categories over Ran. We will denote it by £7(g)-mod.

B.14.18. Let 2, : S; — Ran be as in Sect. B.14.6. By the universal property of £ (g)-mods, xs,, we
obtain a functor
£%(g)-mods, ® £ (g)-mods, — £ (g)-mods, xs, .
One shows (e,g., using (B.67)) that this functor is an equivalence. This endows the sheaf of categories
£7(g)-mod with a factorization structure.

We denote the resulting factorization category by £ (g)-mod. The t-structures from Sect. B.14.16
give rise to a t-structure on £ (g)-mod as a factorization category.
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B.14.19. We finally consider representations of Kac-Moody algebras. First, fix S € Sch?ﬁan. Having
the (2-)categories
£7(G)s-mod™*** and £7(G)s-mod,
proceeding as in [Rab, Sect. 7-8], we define the (2-)categories
£(G)s-mod“*** and £(G).,s-mod
of QCoh(S)-linear categories, equipped with weak (resp., strong at level k) actions of £(G)s.
We define the category g-mody,s as the category, equipped with and universal with respect to the
following pieces of structure:

e A strong action of £(G)s at level k;
e A functor to QCoh(S);
e A datum of compatibility on the above functor with respect to the weak action of £(G)s.

We can explicitly realize the category g-mod,, s as
g-mod,, s ~ D—mod,wel/S(S(G)S)S(G)S"Weak.

B.14.20. By the universal property of g-mod, s, it comes equipped with a (conservative) forgetful

functor
Oblviﬁ_(g) :ﬁ—mod,i,s ot (g)-mods.

As in [Rab, §9.12, §11.10], one shows that this functor admits a left adjoint, to be denoted

indi’i(g) : £%(g)-mods — g-mods.s.

In particular, the fact that £ (g)-mods is compactly generated implies that so is g-mod,,s.

B.14.21. We note that the endofunctor of £%(g)-mods underlying the monad

oblvi~

ind®
g ©ndgh

9)

is t-exact.

This allows us to equip g-mod,,s with a t-structure for which both functors oblvi’; () and indg"fF (o)

are t-exact.

B.14.22. As in Sects. Sect. B.14.17 one endows the assignment
S s /g\-modn,s
with a structure of sheaf of categories over Ran. We denote it by g-mod,.

As in Sect. B.14.18, one endows g-mod, with a factorization structure. We denote the resulting
factorization category by g-mod,.

The t-structures in Sect. B.14.21 combine to a t-structure on g-mod,; as a factorization category.

B.14.23. For S € Sch‘"/‘%;an set
KL(G)n,s = (§-mod,.,s)* (s,
The adjoint functors

ﬁh’,

ind® : £7(g)-mods = g-mod, s : oblv£+(g)

£t(g) *
induce a pair of adjoint functors

. @ e (G)) e 52T (G)w
(B.70) 1nd§:”f<‘c)( D5 Rep(£5(@))s = KL(G)r.s : oblv)(ggf(c)( D,

In particular, we obtain that KL(G)x,s is compactly generated.
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B.14.24. Let us describe in concrete terms a set of compact generators of KL(G)x,s. Let I be a finite
set as in Sect. B.14.2.

For a compact object V' € Rep(G)®I , let us denote by a light abuse of notation by the same character
V its image under (B.61).

The objects
s 13,27 (G)k
ind (1" (V) € KL(G)rs
are called Weyl modules, and they compactly generate KL(G)x,s.

Remark B.14.25. Let C be a sheaf of categories on Sqr, where S is an affine scheme of finite type.
There is a stronger notion than compact generation, called ULA generation:

An object ¢ € T'(Sar, C) is said to be ULA if its image in I'(S, C) is compact.

We say that C is ULA-generated if it contains a collection of ULA objects, whose images in I'(S, C)
generate this category.

We will say that a factorization category C is ULA-generated if for every S — Ran, the corresponding
category Cs,y is. This property is enough to check for S = X7

Many factorization categories that appear in geometric representation theory have this property,
e.g., C = Sphg. However, the category KL(G), does not: namely, KL(G), x1 is not ULA-generated
for |I| > 2.

B.14.26. As in Sect. B.14.21, we obtain that KL(G),,s carries a t-structure, for which both functors
(B.70) are t-exact.

B.14.27. For S’ — S, the equivalence

QCoh(S") QC%(S) g-mod,, s — g-mod,, s/

induces a functor

(B.71) QCoh(S") ® KL(G)ws=QCoh(S") ® gmodSy s -

QCoh(S) QCoh(S)
- (QCoh(S") ® KL(G)rs)® @5~ (QCoh(S) ® KL(G)ns)® @5 ~ KL(G),.s-
QCoh(S) QCoh(S)

However, the functor
C - @Ds et (@)s-mod — QCoh(S)-mod

is known to commute with colimits. Hence, the functor (B.71) is an equivalence.

This endows the assignment

S € Schikan, ~ KL(G)u,s
with a structure of sheaf of categories. We denote it by KL(G)..
B.14.28. Similarly, in the situation Sect. B.14.6, the equivalence
g-mod,. s, ® g-mod, s, — g-mod, s, x5,

induces an equivalence
N + " ot
KL(G)r,s5, @ KL(G)r,s, = (g‘mOdel)E (@) ® (g'mOdH,Sl)L (@sy

~ —~ o+ +
= (g_mOdN,Sl ® 9'1110(1&52)L (@5, 327 Dsy = KL(G)K151XS2'

This endows KL(G), with a factorization structure. The resulting factorization category, denoted
KL(G)y is the sought-for factorization incarnation of the Kazhdan-Lusztig category.

The t-structures in Sect. B.14.26 define a t-structure on KL(G), as a factorization category.
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B.15. Restriction of factorization module categories, continued. In this subsection we will
discuss some additional aspects of the operation of restriction of factorization module categories, in-
troduced in Sect. B.12.11.

We will omit most proofs (they are elaborations of the limit construction described in Sect. B.9.28);
a more detailed discussion will appear in [CFGY].

B.15.1. Fix Z — Ran. Consider the totality of pairs (A, C), where A is a factorization category,
and C € A-mod%°*. We view it as a 2-category, to be denoted FactCat-and-Mod(X) with the above
objects, and the categories of morphisms defined as follows:

For a pair of objects (A1, C1) and (As, Cz) of FactCat-and-Mod(X), the category

MapSFactCat—and-Mod(X) ((A1,C1),(A2,C2))
consists of pairs of morphisms (® : A1 — Ag, P, : C1 — Ca2) as in Sect. B.12.11.
Consider the natural projection
(B.72) FactCat-and-Mod(X) — FactCat(X).
The following assertion encodes the functoriality of the assignment
A ~ C € A-mod 2.
Theorem B.15.2. The functor
FactCat-and-Mod(X)?°® — FactCat(X)>™P,
induced by (B.72) is a 2-Cartesian fibration, where:
o The symbol (—)2’0p refers to reversing 2-morphisms in a given 2-category;
e The notion of 2-Cartesian fibration is an in [GaRo3, Chapter 11, Sect. 1.1.].

Remark B.15.3. Note that the situation in Theorem B.15.2 is parallel to the following more familiar
paradigm, when instead of FactCat-and-Mod(X) we consider the category of pairs (A, C), where A is
a monoidal category, and C € A-mod, and where the category of functors

(A1,C1) — (A2,Cy)

consists of right-lax monoidal functors between the monoidal categories and compatible right-lax func-
tors between the module categories.

B.15.4. The concrete meaning of this theorem is the following. It says that:
e For
AL A Ay Big = Bogo B,
and C3 € Ag—modff“, the tautological functor
Resa, , o Resa, ;(C3) — Ress, 5

is an equivalence;

e For ® : Ay — Aq, C; € Ai—modff“, 1 =1,2, &, € Functe:a,—a,(C1,C2) and a natural
transformation ® — ®’, there exists an object ®,, € Functe.a, a,(C1,C2) together with a
compatible natural transformation ®,,, — ®,,, which is universal with respect to this property.

B.15.5. According to [GaRo3, Chapter 11, Theorem 1.1.8], we can interpret Theorem B.15.2 as saying
that the assignment
A — A-modi*

extends to a functor between 2-categories
FactCat(X)' P2 — 2-Cat,
where:
e The symbol (—)'P2-°P refers to reversing both l1-morphisms and 2-morphisms in a given
2-categorys;
e 2-Cat is the totality of (oo, 2)-categories, viewed as a 2-category.
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B.15.6. We will need the following corollary of Theorem B.15.2. Let A; and A; be a pair of factor-
ization categories, and let

DA S Ay 7
be a pair of factorization functors.
We claim:
Corollary B.15.7. For C; € A;-mod®<, i = 1,2 there is a canonical equivalence

FunctAl_mod%ct (Ress(C2),Cq) =~ mnctA2>mod%ct (C2,Resgr(Ch)).

This proposition can be reformulated as saying that the functor Ress is the left adjoint of the functor
Resgr.
Proof. This is a formal corollary of having a 2-Cartesian fibration. To be explicit, let us exhibit the
unit and the counit of the adjunction.
The unit is given by
R
Id = Resg *°25" Resgopr =~ Resgr o Ress .

The counit is given by

Id—o o
Ress oResgr >~ Resgro,e  —  Resia =1d.

O

B.15.8.  We will now use Corollary B.15.7 to prove the following partial converse to Lemma B.12.12:

Lemma B.15.9. Let ® : A1 — A be a factorization functor, and let C1 — Ca be a functor between
objects of A;-modit, i = 1,2, compatible with factorization. Assume that:

(i) The functor ® : A, — A, between sheaves of categories on Ran admits a right adjoint;
(ii) The functor ®,, : C; — C, between sheaves of categories on 2S admits a right adjoint;

(iii) The induced functor ®,, : C1,2 — Ca,z is an equivalence.
Then the resulting functor
(B73) C1 — ReSq>(Cz)

as module categories over A1, is an equivalence.

Proof. We claim that the functor (B.73) admits a right adjoint. Once we prove this, the lemma will
follow, because a functor between sheaves of categories that admits a right adjoint is an equivalence if
and only if it is an equivalence strata-wise.

The right adjoint of ®,, : C, — C, is a functor compatible with factorization against o . A —A,.
Hence, it gives rise to an object

of ¢ Functgr.a, ,a,(C2,C1) =~ FunctAQ_modeact (C2,Resgpr(Ch)).
(In fact, the pair (®F, ®%) is the right adjoint of (®, ®,,) as a 1-morphism in FactCat-and-Mod(X).)
Using Corollary B.15.7, we identify the latter category with
FunctAl_mod%ct (Resa (C2), Ch1).
Unwinding the constructions, we obtain that the resulting functor
Ress(C2) — Cy
is indeed the right adjoint of (B.73).
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APPENDIX C. UNITAL STRUCTURES

In the previous section we introduced the notion of factorization category. In this section we will
describe an extra structure that factorization categories often carry: the unital structure.

The role that the unital structure plays is two-fold. For one thing, it enables various local-to-global
constructions (see Sect. 11). But it also leads to purely local constructions, which play a key role in this
paper: given a lax-unital factorization functor F' : A; — A2 between unital factorization categories,
the image F'(1a,) of the unite 14, € Aj is a factorization algebra in Ay, and the functor F' enhances
to a functor

F™ . Ay — F(1a,)-mod™*(Ay).

Now the functor is often, if not an equivalence, but is close to be such”®, and that allows to understand
the more complicated category A; in terms of Aj.

In order to talk about unitality we have to enlarge our world of algebro-geometric objects. Namely,
we normally work with prestacks (i.e., spaces in algebro-geometric sense, whose functor of points takes
place in (0o)-groupoids). But in in order to talk about unitality, we need to work with categorical
prestacks; whose functors of points take place in (co)-categories. The rudiments of categorical prestacks
(D-modules and sheaves of categories on them) are also developed in this section.

C.1. Categorical prestacks.

C.1.1. When discussing categorical prestacks, we will work in the locally almost of finite type (laft) cat-
egory. Accordingly, when we write Sch®® (resp., PreStk), we will mean affine schemes (resp., prestacks)
locally almost of finite type.

By a categorical prestack we shall mean a functor
(Sch*™)°P — oo -Cat .
Given a categorical prestack Y we will denote by
Y(S) or Maps(s, ¥)
the category of its values on S € Schf.

We let CatPreStk denote the category of categorical prestacks.

C.1.2. Let f:Y1 — Y2 be a map between categorical prestacks. We shall say that some categorical
property of f (such as being Cartesian/co-Cartesian, cofinal, admitting an adjoint) holds value-wise if
this property holds for the corresponding functor

91(5) = Y2(9)
for every S € Sch®f.

C.1.3. Let Y be a categorical prestack. To it we will associate two prestacks in groupoids, by applying
the right and left adjoints to the embedding

o0 -Grpd — oo-Cat,
respectively.

We let Y89 denote the prestack whose value on S € Sch®f is the groupoid underlying the category
Y(9).
We will denote by t the tautological map
YyErd Y.

We will denote by Y**i¢® the prestack in groupoids, whose value on S € Sch®® is the groupoid
obtained from Y(S) by inverting all 1-morphisms.

74E‘g‘, in multiple instances, in the presence of a t-structure, it is an equivalence on the bounded below categories.
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We will denote the tautological projection by

strict : Y — ystrict,

C.1.4. Given a categorical prestack Y, we associate to it several DG categories of algebro-geometric
nature.

Let Ygupate denote the Cartesian fibration over Sch®® that attaches to S € Sch®? the category Y(S).

Let
QCohg part, IndCohgasr and D-modg,yate

denote the Cartesian fibrations over Sch®? that attach to S the categories
(C.1) QCoh(S), IndCoh(S) and D-mod(S),
respectively.

We define the categories
(C.2) QCoh(Y), IndCoh(Y) and D-mod(Y)

as functors from Yg ar to the categories in (C.2) that map arrows that are Cartesian over Sch®? to
arrows with a similar property. See [Ro2, Sect. C.3] for more details.

C.1.5. For a map of prestacks f : Y1 — Yz, precomposition with

(yl)Schaff — (HQ)SChaff

gives rise to a functor
f': D-mod(Y2) — D-mod(Y),
and similarly for IndCoh(Y) and D-mod(Y).

C.1.6. Categorical prestacks form an (oo, 2)-category, so there is a natural notion of adjunction be-
tween morphisms. Explicitly, a morphism

fid1 292
admits a right adjoint, if for every S € Sch®?, the corresponding functor
f:91(8) = Y2(9)
admits a right adjoint, and for every S’ — S, the natural transformation

Y (8) <y (S)

R

Y1(S) <1 Ya(S)

arising by adjunction from the commutative diagram

Y (S') —L> Y2 ()

Y1 () ——Y2(9),
is an isomorphism.

We have the following useful observation:
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Lemma C.1.7. Let
f:9i2Y2:g
be mutually adjoint maps. Then the functors (¢', f') form an adjoint pair.
C.1.8. For a categorical prestack Y, we let Yqr denote the categorical prestack defined by
Yar(S) := Y(Srea)-
A standard manipulation shows that

IndCoh(Y4r) ~ D-mod(Y).

C.1.9. One can describe the categories (C.2) explicitly as follows. We will do this for D-mod(Y), while
the other two cases are similar.

An object F € D-mod(Y) is an assignment;:

e For every y: S — Y of an object Fsy € D-mod(S);

For a map (y1 = y2) € Y(S) of a map Fs, Is Fs,y, in D-mod(S);
For f: S — S and y' = yo f of an isomorphism Fgs , =~ f'(Fs,) in D-mod(S’);
e The datum of commutativity for the diagram

T px
()
Tty Fsr oy

=| |=

YT,
F(Fow) L0 f(Fsu):

e A homotopy-coherent system of compatibilities for compositions.

C.1.10. In addition to the categories (C.2), one can consider their strict versions:
QCoh(Y)*™* := QCoh(Y*™*"), IndCoh(Y)*"** := IndCoh(yY**"*)
and
D-mod(Y)*™*" := D-mod(Y*™"),
respectively.
Unwinding the definitions, we obtain that pullback along
strict : Y — ystrict
is a fully faithful embedding, with essential image described as follows:
It consists of those objects F in Sect. C.1.9, for which the maps
s, 7 S,y2
are isomorphisms.
Note that we can describe D-mod(Y)s™°* also as

D-mod(y)sm“: lim D-mod(S).
aff
SeSchdtf

The same applies also to QCoh(Y)*™°* and IndCoh(Y)>™*.

C.2. Crystals of categories on categorical prestacks.
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C.2.1. Let Y be a categorical prestack. Combining the ideas of Sects. B.8.2 and C.1.4 we obtain the
notion of sheaf of categories over Y.
Thus, a sheaf of categories C over Y is an assignment:
e For every affine scheme S and a map y : S — Y of a category Cgs,y tensored over QCoh(S5);

o . . Cs,a
e For a map y1 5 y2 in Maps(S,Y) of a D-mod(S)-linear functor Cs,y, —5 Cs.yp;

e For ' % S and y' = yo f of an identification Cg/ v ~ QCoh(S’) ® Cgy;
QCoh(S)

e For @' = ao f of a datum of commutativity for

Cs,a
CS,y1 7 CSsyZ

f!l lf!
CS’,O'
CS’,yi —_— CS’,yé .

e A homotopy-coherent system of compatibilities for compositions.

C.2.2. We shall say that C is strict if the functors Cg,o are equivalences. Note that C is strict if it is
the pullback™ along

y N ystrict

of a crystal of categories on Ystrict,

C.2.3. One can assign to C two categories, denoted
FlaX(y7g) and Fstrict (97g)’
respectively, defined as follows, the latter being a full subcategory of the former.

An object of F‘a"(y,g) assigns to every affine scheme S and a map y : S — Y an object cs,y € Cgs,y
together with the following data:

e For a map y1 > y2 in Maps(S,Y) a morphism
(C.3) Cs.a(Csys) = Csys;
e Foramap f: S — S and y = yo f an isomorphism

!
fesy) = ey
as objects in Cg/ /.
e A homotopy-coherent datum of compatibility for the above pieces of data.

The subcategory I'™'°*(Y, C) consists of those assignments for which the maps (C.3) are isomor-
phisms.

Remark C.2.4. We alert the reader to the discrepancy between the notations
l—daX(i7 7) and Fstrict(i’ 7)
introduced above and those used in [Ra6, Sect. 4].

Namely, what we denote I'**(—, —) is denoted I'(—, —) in loc. cit., and what we denote T'S*"i¢*(— —)
is denoted I'™*"¢(—, —) in loc. cit..

Similarly, the notion of functor of sheaves of categories considered in [Ra6] corresponds to the notion
of right-lax functor considered below.

75In the sense of Sect. C.2.17.
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C.2.5. Ezample. Let C be QCoh(Y), the unit crystal of categories, i.e., its value for (S,y) € Sch?fj is
QCoh(S).
Then

I'™(4,C) = QCoh(Y),
see Sect. C.1.4 and _ »
Fstrlct (y7g) — QCOh(%)Sn[Ct ~ Qcoh(ystrlct)
(see Sect. C.1.10).
C.2.6. Let C' and C” be two crystals of categories on Y. In this case there is an (evident) notion of
functor
D g/ N g//.
When an ambiguity is likely to occur, we will call such functors strict.
C.2.7. For future reference, a (strict) functor ® is said to be fully faithful if for every y : S — Y, the
resulting functor
Cs, — Cjs,
is fully faithful.

C.2.8. In addition, there is a notion of right-laz functor. A right-lax functor ® : C' — C” is an
assignment:

P
e For every (S,y) of a functor Cj, Sy %
e For every map y1 — y2 in Maps(S,Y) we have a natural transformation

(0'4) Cg‘,oz 0Pg,y, = Psy, 0 CfS',a'
e For f: S — S and § = yo f of an isomorphism f' o g, ~ 550 I

e A homotopy-coherent system of compatibilities for the above data.

By definition, a right-lax functor is strict if the natural transformations (C.4) are isomorphisms.
We denote the categories of right-lax and strict functors by
FunCtlca;fystCat(‘j) (QI, Qﬁ) and FunCt%trr;CsttCat(‘é) (Ql7 QII),

respectively.

C.2.9. We will denote the (2-)category of sheaves of categories on Y, with 1-morphisms being strict
functors by ShvCat®"*(Y).

We will denote the (2-)category of sheaves of categories on Y, with 1-morphisms being right-lax
functors by ShvCat'®*(Y).

Sometimes we will simply write ShvCat(Y), when the discussion is applicable in both contexts.

Both ShvCats"***(Y) and ShvCat'®*(Y) carry a natural symmetric monoidal structure with the unit
being QCoh(Y).
C.2.10. We set

CrystCat™™ " (Y) := ShvCat™*(Yar ) and CrystCat'™*(Y) := ShvCat'™(Yar)

Terminologically, when we talk about C being a crystal of categories over Y, for (S,y) € Sch?fj, we

will denote by
Cs,y € D-mod(S)-mod

the corresponding category of crystalline sections.

We let D-mod(Y) denote the unit crystal of categories on Y, i.e., its value for (S,y) € Sch‘}féf is
D-mod(S).
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C.2.11. Let C, and C, be two crystals of categories on Y, and let
P g1 — 92
be a strict functor.

Assume that the induced functor

t(c,) e,

admits a right adjoint”®, to be denoted (t'(®))%.
In this case (t'(®))" admits a natural extension, to be denoted ®% to a right-lax functor
QQ — gla
see, e.g., [AMR, Lemma B.5.9].

C.2.12. Let C be a crystal of categories over Y. Assume that t'(C) is dualizable. Assume moreover
that for every (y1 = y2) € Maps(S,Y), the functor

Cs,a
(C.5) Csy 3% Csyp,

admits a right adjoint.

In this case, we can extend the dual (t'(C))Y to a crystal of categories CV over Y by letting

c¥
v CPa
Csﬂyl - CS«QQ

be the dual of the right adjoint of (C.5).

Under the above circumstances we will say that C is dualizable, and we will refer to the above
crystal of categories CV as the dual of C.
Note that we have the natural evaluation and coevaluation that are right-laxz functors

-eval
)CO eva

(C.6) D-mod(Y C®D and D® C 23 D-mod(Y),

i.e., the duality between C and C" takes place in the symmetric monoidal category ShvCat'®*(Y).

C.2.13. Vice versa, let us be given two crystal of categories C and D and right-lax functors as in
(C.6). Suppose that the following conditions hold:

e For every S 5 Y, the functors

D-mod(S) = Csy ® DgyandDs, ® Cg,y — D-mod(S5)
D-mod(S) D-mod(S)

define a perfect pairing;
e The identification of the pullback of the composition

gco—eﬂ@ldg@D@QIdMalg

along t with the identity endofunctor of Ql\égrpd extends to Y;
e The identification of the pullback of the composition

Dld%'cﬂg@g@Dco»eﬂ@IdQ

along t with the identity functor of D|ygpa extends to Y.

Then C is dualizable, and D identifies canonically with the dual of C in the sense of Sect. C.2.12,
see [CF, Remark 11.11.17].

grpd

76 As a functor between sheaves of categories on Y , i.e., it admits a continuous right adjoint value-wise.
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C.2.14. Still equivalently, let us be given a pair of crystals of categories C and D and either a right-lax
functor

D® Qevjal D-mod(Y)

or a right-lax functor
D-mod(Y) “=5* C @ D.
Suppose that:
e The pullback of eval (resp., co-eval) along t' is a perfect pairing;
e For every (y1 = y2) € Maps(S,Y), the resulting natural transformation Id — DY, o Cs,a
(resp., Cs,a 0 DY, — Id) is the unit (resp., counit) of an adjunction.
Then this datum extends uniquely to a datum of duality between C and D as crystals of categories
on Y.

C.2.15. For C' and C" as above, we observe that a right-lax functor ® : C' — C” gives rise to a
functor

P - Fl“x(y,g’) N l—\lax(y7g//).

If ® is strict, then ® induces a functor

Fstrict (97 g/) N Fstrict (ld, g//).

C.2.16. Note that the functors
C — I'(Y,C) and C s I"™™*(Y,C)
can be recovered as adjoints:
For D € DGCat, we have
Functeon (D, T (Y4, €)) = Funct&ysicarcy) (D ® D-mod(Y), C)

and
Functeont (D, T*"*(Y, C)) ~ Functheicar(y) (D ® D-mod(Y), C),

respectively.

C.2.17. Let f:Y1 — Y2 be a map between categorical prestacks. As in Sects. B.8.7 and C.1.5, there
is a naturally defined functor

f* i CrystCat(Y1) — CrystCat(Y2).

C.2.18. For amap f:Yi — Y2 between categorical prestacks and a crystal of categories C on Yo, we
have a naturally defined functor
1

(C.7) f

which induces a functor

: Flax(‘gQ»Q) — Flax(yl7f*(g))7

f! . FStriCt(HQ,Q) N Fs‘crict(y17 f*(g))
C.3. Two notions of direct image of a crystal of categories.

C.3.1. Let f:Y1 — Y2 be a map between categorical prestacks. We shall say that f is a (co)Cartesian
fibration, i.e.:

e f is a value-wise (co)Cartesian fibration;
e For S’ — S, the functor Y1(S) — Y1(S’) sends arrows that are (co)Cartesian over Y2(S5) to
arrows in Y1 (S’) with the same property.

Note that the second condition is automatic if f is a value-wise (co)Cartesian fibration in groupoids.
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C.3.2. Let f:Y1 — Y2 be a Cartesian fibration.
Let C, be a crystal of categories over Yi. In this case one can form two sheaves of categories,
denoted
[+(Cy) and fi1ax(Cy)

on Yo, as follows.
C.3.3. Fory:S — Yy, the value of fi1ax(C;) on (S,y2) is
Flax(s X l31791|S X ‘dl)
Y2 Yo

and the value of fi srict (C;) is
l—\strlct(s x %1,Q1|S « 51)-
Y2 Yo

The data of crystal of categories on fi 1ax(C;) is defined as follows.

C.3.4. For amap y' = 3" in Maps(S, Y2) we have a map

S x Y B8 x Y.
v, Y2 y',Y2
The structure on C; of crystal of categories gives rise to a (strict) functor between crystals of

categories on S X Y;
y'"\Ya

(@4,)"(Cyls x i) = Cils x v~
vy, Yo vy, Yo

Hence, the constructions of Sects. C.2.15 and C.2.18 combine to gives rise to a functor

* !

(af),)
(C8) Jenax(Ci)sy =T"™(S X Y1,Cilsxy,) —>
2

y’, Y2

SIS % Y, (ad,)"(Cls
1 d2

Yy

x w)) = TS X Hl,Qﬂsax y1) =t fe1ax(Cy) s,y
/, //, P L2

vy, Y2 Yy

This functor induces a functor

* !

. (ay )
f*,strict(gl)s,y’ = FStrlCt(S X y17Q1|S X Hl) 42)
vy, Y2 Yo

=S TS X Y1, (09,)" (Chls x ) > TS x Y1, Cyls wyy) =t fesmict(Cy) s,y
vy’ Y2 v/, Y2 Y'Yz Yo
C.3.5. Forg: S — S and y = fog, we have a map
g:8x Y1 =8 xYi,

Y2 Y2

and the construction of Sect. C.2.18 gives rise to a functor

lax ! lax /1 &
f*,laX(g1)S,y =T (S X Hl,gﬂs X %1) 5T (S X 91,21\§X 91) = f*,lax(g1)§,gj~

Y2 Yo Y2 Yo

This functor induces a functor

. ! . ~
f*,strict(gl)s,y = FSt“Ct(S yx yhgl'S X 91) i> FStnCt(S yx %1,Q1|§ X 51) = f*,strict(g1)§,g~
2 92 2 Yo

C.3.6. By construction, we have a strict functor
f*,strict(gl) — f*,lax(gl)y

which is a value-wise fully faithful embedding.
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C.3.7. The above construction is functorial in the following sense: for a lax functor ® : C; — C/

between crystals of categories on Y1 we obtain a lax functor
fe (Q) : f*,laX(gll) - f*,lax(glll)~
If @ is strict, then so is f.(®), and it also induces a strict functor
f*(q)) : f*,strict(gll) — f*,strict (Q/ll)

C.3.8. The operations
Ql — f*,strict(gl) and gl — f*,lax(gl)

can also be realized as right adjoints. Namely, for C, € CrystCat(Y2), we have
Funct@haicary,) (f(Co), C;1) ~ FunctShticasya) (Cas frstrict (Cy))
and
Funct&ysicarcn) (f(Cz), C;) = Functdyaicar(yz) (Cas fx12x(Cy))-
In particular, we have a canonically defined (strict) functor
(C.9) C, = festrict © 1 (Cy).
C.3.9. Consider the forgeful functor
CrystCat™™ " (Y) — CrystCat'™*(Y).
We claim that it admits a right adjoint. Namely, consider the map
Proouree 4 =Y
is a Cartesian fibration.
The above right adjoint is given by
(Poource)# lax © (prtarget)*'
In particular, for C,, C, € CrystCat*"**(Y) we have a canonical identification
(C.10) Funct'™(C;, C,) = Funct™ " (C,, (Prygurce) lax © (PTiarger) (C2)),

with the inclusion
Funct'™(C,, C,) — Funct™"“*(C,, C,)

corresponding to the strict functor
C, — (Pryource) s strict © (prtarget)*(CQ) = (Prsource) lax © (Plgiret) (Ca2),
where the first arrow corresponds by adjunction to the functor
(Prsource) (C2) = (Priarger) (Ca),

of (11.27).

C.3.10. We now explain an abstract framework for the construction in Sect. 11.5.
Let Y be a categorical prestack, and let C,, C, be crystals of categories on it.
Suppose that the functor

(C.11) Cy = (Proguce) s strict (C2) = (Pregyce)« 1ax(Ca)

admits a left adjoint that is a strict functor.

Then the functor
Funct®™°*(C,, C,) — Funct'™(C,, C,)

admits a left adjoint, given, in terms of (C.10), by composing with the left adjoint of (C.11).

C.4. Pseudo-properness.
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C.4.1. We introduce the category of pseudo-proper categorical prestacks as
CatPreStkps-proper := Funct((Sch?**P*)°P oo -Cat).

The embedding
SchP™P¢" s PreStk <+ CatPreStk

uniquely extends to a colimit-preserving functor
(C.12) CatPreStkps-proper — CatPreStk.
Similarly, we define the category
PreStkps-proper := Funct((Sch?* ") oo -Grpd)
and the functor
(C.13) PreStkps-proper — PreStk.

Remark C.4.2. Note that the functors (C.12) and (C.13) are not fully faithful. I.e., with the above
definition, pseudo-properness is not a property, but extra structure.

However, since the functor SchP™°P*" — PreStk preserves fiber products, so do the functors (C.12)
and (C.13).
C.4.3. Concretely, pseudo-properness means the following:
A prestack Y is pseud-proper when it can written as
colim Z;,
iel
where:

e 7, are proper schemes;
o The colimit is taken in PreStk.

As morphisms
colim Z; — colim Z,

el el
we take
lim colim Maps(Z;, Zi:).
i€I°P /e’

A categorical prestack Y is pseudo-proper if the prestacks Mor™(Y) classifying n-fold composition of
morphisms in Y are pseudo-proper, and for the maps [n1] — [n2] in A, the corresponding maps

Morl™2! YY) — Morl™! ©)

take place in PreStkps proper-

C.4.4. Ezample. The prestack Ran and the categorical prestacks Ran""*! and Ran"™"* (see Sect. C.5.6)
are pseudo-proper.

C.4.5. We define the functors D-mod(—) and CrystCat(—) on CatPreStkps-proper precomposing the
same-named functors out of CatPreStk with (C.12).

C.4.6. For Y € CatPreStkps-proper, we can describe D-mod(Y), CrystCat(Y) and
'™(Y,C), C e CrystCat(y)
in terms of proper schemes mapping to Y.
Le., in the appropriate definitions, we can replace
aff T T
Schiy ~ Schl/)yOpe ,

where in the right-hand side the morphisms take place in CatPreStkps proper,
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C.4.7. Let C be a crystal of categories over Y, where Y is pseudo-proper. We claim:

Lemma C.4.8. For Z % Y with Z proper and y taking place in CatPreStkps_proper; the functor of
evaluation
I™(Y,C) = I(Z,y"(C)) =: Cz,

commutes with limits.

Proof. We can describe the category
'™y, C)
as a family of assignments
(Z % Y) € CatPreStkps-proper ~» €zy € Cz,y, Z is proper,

compatible under pullbacks:

For f: Z' — Z we are given an isomorphism

f!(CZ,y) =€zl yof

in Czs yof-

To prove the lemma, it suffices to show that the functors

f:Czy — Curyor

commute with limits. Indeed, this would imply that limits in Flax(ld, C) are computed component-wise
in terms of {cz,,}.

We claim that for any proper map f : Z' — Z and a crystal of categories D on Z, the functor
f:T(Z,D) - T(Z, (D))
commutes with limits.
Indeed, since for a scheme its de Rham space is 1-affine, we can think of D as a D-mod(Z)-linear

category D, so that the functor f' is

(C.14) I(ZD)=D~Dmod(2) ® D’E&'DmodZz) © D=I(Z,f(D)).
D-mod(Z) D-mod(Z)
Now, since f is proper, the functor f' : D-mod(Z) — D-mod(Z’) admits a left adjoint, namely, fi,
which is automatically D-mod(Z)-linear. Hence, the functor (C.14) admits a left adjoint, namely,
Dmod(Z) ® D"3Dmod(z) ® D~D.
D-mod(Z) D-mod(Z2)

This implies that f' commutes with limits.

C.4.9. As a consequence of Lemma C.4.8 we obtain:

Corollary C.4.10. Let f: Y1 — Y2 be a map between pseudo-proper categorical prestacks. Then for
C € CrystCat(Y2), the functor

f! . FlaX(g2’g) N I—\laX(yll’ f*(g))
admits a left adjoint (to be denoted fi).

Proof. Tt suffices to check that the functor f' commutes with limits. The latter follows from
Lemma C.4.8.
d

Remark C.4.11. We warn the reader that although for a map f between pseudo-proper prestacks, the
functor fi exists, it does not in general satisfy base change. (It does, however, if f is a value-wise
co-Cartesian fibration, see Lemma C.4.17 below.)

As a particular case of Corollary C.4.14 we have:
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Corollary C.4.12. Let Y be pseudo-proper. Then the functor
C.(Y,—) : D-mod(Y) — Vect,
left adjoint to
Vect ¥ D-mod(Y)
is well-defined.

C.4.13. Let Y be pseudo-proper. It follows formally that the prestack in groupoids Y**i¢* is also
pseudo-proper. Hence, from Corollary C.4.10 we obtain:

Corollary C.4.14. Let f: Y1 — Y2 be a map between pseudo-proper categorical prestacks. Then for
a strict C, the functor

f! . Fstrict(y27g) N Fstrict (91, f* (g))
admits a left adjoint (to be denoted fi).

Remark C.4.15. We warn the reader that the functors
fi: T (Y, £7(C)) = T'™(Y2,C)

and ) )
f! . FStrlCt(yl, f* (g)) N FSt”Ct(‘ég,Q)

are in general incompatible with the embeddings
l—\strict (yh f*(g)) SN l—dax(y17 f*(g)) and l—\strict (y27g) < l—\lax(y27g),
respectively.

C.4.16. We will now show how to compute the functor fi more explicitly. First, unwinding the
definitions, we obtain:

Lemma C.4.17. Let f : Y1 — Y2 be a map in CatPreStkpsproper that is a co-Cartesian ﬁbmtion.77
Then for C € CrystCat(Y2), the functor fi satisfies base change, i.e., for a pullback diagram in
CatPreStkps-proper

g
Y —— W

2 |7
15/2 L) y27
the natural transformation
flogi = goofi, T™(Y1, f7(C)) = I'™(¥5,95(C)),
obtained by adjunction from
! ! no
giof = f ogs.
is an isomorphism.

Corollary C.4.18. Under the assumptions of Lemma C.4.17, for a proper scheme Z equipped with a
map Z 2N Y1 in CatPreStkpsproper, the composition

viofi: "™ (Y1, f*(C)) = Czy,
identifies canonically with

Flax(%l,f*(g)) (Fz

pullback 1
? Fax(yl,zvgwl,z) — CZ7U17

where:
o Yz := Z; Y1,

2
e f7 is the map Y1,z — Z.

77As in Sect. C.3.1, but in the category Funct((SchP*°P")°P oo -Cat).
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C.4.19. Let now f be an arbitrary map in CatPreStkps proper. Denote Ys ¢, be the (pseudo-proper)
categorical prestack given by the slice construction, i.e.,

Y2,7/(S) = {y1 € Y1(5), y2 € Y2(9), f(y1) = v2}.
Let fand pr; denote the projections
Yo 57 = Y2, (y1,v2, flyr) = y2) = y2, Yo 57 = Y1, (Y192, fy1) = y2) =y,
respectively.

Assume now that C is strict. In this case we have a canonical equivalence
f7(C) ~pryof(C).

We claim:

Lemma C.4.20. Assume that C is strict. Then the functor fi identifies canonically with

T (Yy, £7(C)) 25 T (Ya 4, pr of*(C)) = T (Ya s, F7(C)) 25 T (Y3, ©),

Proof. Note that f factors as
diag of,

where

diagy : Y1 = Ya 7, y1 = (y1, F(y1), f(y1) = f(w1))-

Hence, we obtain

fi~ f, o (diagy):.
Now we claim that

(diag, ) ~ prly, T (Y1, f*(C)) = I (Ya,s/, pr} of*(C)).

Indeed, this follows from the fact that the morphisms (diag 4> DT f) form an adjoint pair, cf. Lemma C.1.7.
|

Corollary C.4.21. In the setting of Lemma C.4.20, for a proper scheme Z equipped with a map
z % Y1 in CatPreStkps-proper, the composition

yio fi : 'Y, f*(C)) = Cz.y,

identifies canonically with

ax . ullback lax (Fz)
Fl (yhf (g))p_> Fl (yQ,f/,Zang’f/yz) i> CZ,?J17

where:

o Yo5)z:=Z X Y55

» Y2

o fz isthe map Yo 5/, 2 — Z.

C.4.22. Ezxzample. Let Y1 — Y2 be the map
t:yePd y

The functor t; is the left adjoint of the forgetful functor, and the formula for it, given by Proposi-
tion C.4.20, coincides with that of [Ga4, Proposition 4.4.2].
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C.4.23. Consider now the commutative square

yerd T,y

(C.15) tOPl Jmmy

strictyop ystrict

We obtain a natural transformation

(C.16) (t°)1 ot — (strictyop)' o (stricty):.

Suppose now that Y has the property that (C.15) is Cartesian. In particular, since the right vertical
arrow is a co-Cartesian fibration, then so is the left vertical arrow. By Lemma C.4.17, we obtain that
in this case (C.16) is an isomorphism.

Applying this in the case Y = Ran"™"!, this gives a conceptual explanation of the commutativity of

(11.24), at least in the particular case when C'°¢ = D-mod(Ran"""), C8°® = Vect.

C.4.24. The above definitions and assertions admit a variant when we consider prestacks over a given
affine base scheme S. In this case, one can talk about pseudo-properness relative to S, and the entire
discussion applies.

C.5. The unital Ran space.

C.5.1. There are two versions of the unital Ran space that we will consider: Ran""*!' and Ran""*h*

For S € Sch*®, the category Ran"™!(S) is that of finite non-empty subsets in Maps(Sar, X), with
the morphisms defined as follows:
{x}if z; Cz,,

MapSMaps(styx)(QDQZ) - { (0 otherwise.

In the above formula, z; denotes the finite subset of Hom(Sred, X) corresponding to the same-named
S — Ran.

In the case of Ran"™"* we allow z to be empty, i.e., we add to Ran""" a point {}}, which is

value-wise initial, corresponding to the empty set.
Remark C.5.2. There is a variant of the above definition, where the morphisms are defined by

{x}if GraphEl - Graphgz,

MapsMapS(SdR’X)@l’EQ) - { 0 otherwise.

where in the formula C means containment as closed subsets of S x X. Denote the resulting categorical
prestack by 'Ran"™*.

The two versions are equivalent for most practical purposes. Namely, we have a naturally defined
map Ran"™ — 'Ran"" and we claim that it induces an equivalence between the corresponding
(2-)categories of crystals of categories.

This follows from the fact that the corresponding map
Mor! (Ran"™™") — Mor' ('Ran"""")

becomes an isomorphism after sheafification in the Grothendieck topology generated by finite surjective
maps, while D-modules satisfy descent for this topology.
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untl untl,

C.5.3. The above two versions of the unital Ran space, i.e., Ran and Ran , are convenient in
slightly different situations: the Ran"™* version is more convenient for discussing factorization, while
the Ran"™! version is more convenient for the discussion of local-to-global functors. Yet, the next
assertion says that we could use Ran"™"* for the latter too.

Proposition C.5.4. Let C be a sheaf of categories over Ran"™™"*. Then for a DG category D, pullback
along Ran"™™! — Ran"™* gives rise to an an equivalence

~

FunCtztrr;;iCat(Ran“““r*) (g7 D ® 7D'm0d(Ranuntly*)) —

~ strict untl
— Functe,ygcarranintt) (Clranunn, D @ D-mod(Ran™")).

Proof. The assertion follows from the fact that the inclusion
Ranuntl N Ranuntl,*
is value-wise cofinal, and the following general claim:

Lemma C.5.5. Let f : Y1 — Y2 be a value-wise cofinal morphism between categorical prestacks. Then
for any pair of crystals of categories C',C” on Yo with C" strict, the functor

Ful’lCt\S;;iCt (g/’ g//) N Flll’lCt?;lriCt (f* (Ql)7 f* (QH))

C.5.6. Note that the presentation of Ran as in Sect. B.1.3 shows that it is pseudo-proper.
We claim that Ran"™ is also pseudo-proper. We can write
Mor? (Ranuml) = ((Ran“ntl)ﬁ)grpd ~ Ran®

as the colimit

. I
colim X bie,
Tsman Clnig

where the colimit is taken over the (opposite of the) category whose objects are pairs of non-empty
finite sets I — I» and whose morphisms are commutative squares

Ismall — Ibig

! l

Ly —— Illaig
with the vertical arrows surjective.
The maps pry,;, and pry,,,; send the term corresponding to Isman C Ibig to
XTMie 5 Ran and XTbis — X Tsman _y Ran,
respectively.

The prestacks of higher-order compositions Mor™(Ran""") are described similarly.

C.5.7. By Corollary C.4.12, the functors
C.(Ran"™"', —) : D-mod(Ran"™™"') — Vect and C,(Ran,—) : D-mod(Ran""") — Vect,
left adjoint to
k — Wrapunet and k — Wran,
respectively, are well-defined.

The same applies to Ran""*h*,
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C.5.8. Being the left adjoint of a symmetric monoidal structure, the functor C‘C(Ran”‘“ﬂ7 —) carries a
naturally defined left-lax symmetric monoidal structure.

We claim:

Lemma C.5.9. The left-lax monoidal structure on C,(Ran"™ —) is strict.

Proof. We need to show that the natural transformation
C.(Ran"™", =) o (Ag,yunt)’ — Cu(Ran"™™"! x Ran"™™"!, —),
induced by the ((Agapunt)1, (Agaquntt)')-adjunction, is an isomorphism.
This follows, however, from the fact that the morphism
Agapuntt : Ran"™ — Ran"™" x Ran"™"

is value-wise cofinal.

C.5.10. We now consider the relation between the functors
C.(Ran™" —) and C_(Ran,—).
We have the natural transformation
(C.17) C.(Ran, —) ot' ~ C,(Ran™™, =)o t; o t' — C.(Ran"™", )

untl)

as functors D-mod(Ran — Vect.

C.5.11. We claim:
Lemma C.5.12. The natural transformation transformation (C.17) is an isomorphism.
This assertion is proved in [Ga4, Theorem 4.6.2]. We include the proof for completeness:

Recall what it means for a morphism between categorical prestacks to be universally homologically
cofinal, see [Ga4d, Sect. 3.5.1]. Using [Gad, Corollary 3.5.12], the assertion of Lemma C.5.12 follows
from the next one:

Lemma C.5.13. The map t is universally homologically cofinal.

Proof of Lemma C.5.13. Let S be an affine scheme and let us be given an S-point z of Ran. Consider
the corresponding prestack

Rang/,

see [Gad, Sect. 3.5.1]. We need to show that it is universally homologically contractible over S (see
[Gad, Sect. 2.5.1] for what this means).

Note, however, that Ran,, is a prestack in groupoids isomorphic to Sig, and its projection to S is
pseudo-proper. Hence, it is enough to show that the fibers of the map

55 =S

have trivial homology. The latter follows by the usual argument for the contractibility of the Ran space.
a

Remark C.5.14. Statements parallel to Lemmas C.5.9 and C.5.12 hold for the Ran"*"* version of the
unital Ran space, see [Ro2, Sect. 2.5].
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C.5.15. An analog of the assertion of Lemma C.5.9 would of course fail for the usual (i.e., non-unital)
Ran space. l.e., the natural transformation

(C.18) C.(Ran, —) o (Aran)' ~ C.(Ran x Ran, —) o (ARan)1 © (ARan)' — C.(Ran x Ran, —)
is not an isomorphism.
However, it admits the following variant:

Let us denote by
D-mod(Ran)*™*** " = D-mod(Ran)

the full subcategory generated by the essential image of the forgetful functor
t': D-mod(Ran""") — D-mod(Ran).
Note this subcategory is preserved by the monoidal operation.

We claim the left-lax monoidal structure on C.(Ran,—), given by (C.18), becomes strict when
restricted to to D-mod(Ran)™s* 2% ndeed, this follows from Lemma C.5.12.

C.5.16. By a similar token, for Z — Ran one defines a unital version

Zg,untl =7 ~ (Ranuntl)H

Ranuntl
of 2.
The (categorical) prestacks 2S and 25" are pseudo-proper relative to Z.
The assertion of Lemma C.5.12 renders to the present context, when instead of the functors
C.(Ran,—) and C,(Ran"™™, —)

we use the functors
(PLaman.2)! - D-mod(25) — D-mod(Z2)
and
(pr;?];ln,z)! : D'mOd(Zg'unﬂ) — D-mod(2),

respectively.
C.6. Unital and counital factorization spaces.

C.6.1. Let Zran — Ran be a prestack. A unital structure on Zgan is its extension to a categorical
prestack

(C.19) Zgapuntl,« — Ran"™*
such that (C.19) is a value-wise co-Cartesian fibration in groupoids.

Let PreStk‘}f{gn denote the category of prestacks over Ran, equipped with a unital structure.

C.6.2. In concrete terms, an upgrade
ZRan ~ ZRanuntl,*

means that for every z C 2’ we give ourselves a map

ins. unitycyr @ Ze — g,
in a way compatible with compositions.

In addition, we give ourselves a space Zy and a system of maps
ins. unitpcg : 29 = 2

equipped with identifications

ins. unit,c,/ o ins. unitgc, =~ ins. unitpc, .
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C.6.3. Here is an example of a prestack equipped with a unital structure (see [Ro2, Sect. 3.3]). Let
Y be an affine D-scheme. Let
Sectv (Xgen7 1j)Ran

be the space over Ran that attaches to z € Ran the space
Secty (X5, Y), := Sectv (X — z,Y).
This prestack has a natural unital structure: namely for  C 2/, the corresponding map
Sectv (X —z,Y) — Sectv (X —z',Y)
is given by restriction.

Note that
Secty (X" Y)g ~ Sectv (X, Y).

C.6.4. Let T be a factorization space over X. A unital structure on it is a unital structure on Tran
(in the sense of Sect. C.6.1) and an extension of (B.2) to an isomorphism

t1 tl
(C.20) Tpapanti, x (Ran"™* x Ran"™"")giy; ~
Ranuntl,* unjon

untl,* untl, *
~ (‘J’Ranuntl,* X TRanuncl,*) X (Ran " x Ran ’ )disj7
Ranuntl,* y Ranuntl, *

equipped with a homotopy-coherent data of associativity and commutativity, where
(Ranuntl,* % Ranuntl,*)disj C Ran"™™"* 5 Ran"™* .
is the corresponding open subfunctor.
In addition, we stipulate that
(C.21) Ty =~ pt,

and this identification behaves (homotopically coherently) as a unit for the isomorphisms (C.20), i.e.,
the map
TRa[‘untl,* — ‘T@ X TRan“““%a

obtained by base-changing (C.20) with respect to
{@} % Ranuntl,* N (Ranuntl,* % Ranuntl,*)disj

identifies via (C.21) with the identity map.

C.6.5. A typical example of a unital factorization space is Grg. Namely, for z C 2’ the corresponding
map
GI‘G’E — GrG!ll

is defined as follows.

Recall (see Sect. B.4.10) that Grg,, can be described as the space of G-bundles on D, equipped
with a trivialization on D, — z. We have:

Lemma C.6.6. The map
Dy U (Dy —z) = Dy

x—T

is an isomorphism when the pushout is taken in the category of affine schemes.

Using this lemma, we can interpret Grg,. as the space of G-bundles on D, with a trivialization on
Dx/ —x.

The desired map
ins. unitycy ¢ Gra,e = Gra o

is given by restricting the trivialization from D, — z to D, — z’.
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C.6.7. Let Zran — Ran be a prestack. A counital structure on Zran is its extension to a categorical
prestack

(C.22) Zapuntt,» — Ran™*
such that (C.22) is a value-wise Cartesian fibration in groupoids.

Let PreStkj%;:ff“ denote the category of prestacks over Ran, equipped with a counital structure.

C.6.8. In concrete terms, an upgrade
ZRan ~* ZRanuntl,«
means that for every z C 2’ we give ourselves a map
proj. counit, v Ly — Za,

in a way compatible with compositions.

In addition, we give ourselves a space Zg and a system of maps

proj. counity,, : Zo — Zy
equipped with identifications
proj. counity -, © proj. counit

+Ca/ = PrOj. counity .

C.6.9. Let Y be a D-prestack over X. Note that the arc space £&(Y)ran has a natural counital
structure:

For z C 2/, the corresponding maps
L5 (W)e = L5 (V)
are given by restriction along @5 — @y.
C.6.10. We claim:
Proposition C.6.11. The functor Y — £$ (Y)Ran s the right adjoint to the functor
(C.23) PreStk{nm” — PreStk/ran — PreStkx .,

where the last arrow is given by pullback along Xqr — Ran.

Proof. Let us construct the unit and counit map for the adjunction. The counit is easy, and it is
actually an isomorphism: we have

sé(H)XdR ~Yv.

co-untl

To construct the unit, for any z : S — Ran and Zran € PreStki%,»", we need to define the map

Zs %Weil—Res?Lv(@g,v X Zx4r)s
Xdar

where Weil-Res is the functor of restriction of scalars a la Weil.
By adjunction, the datum of the latter map is equivalent to that of a map

(0.24) ﬁg’v >§ Zs — ﬁg,v X Zde.
X,

dR

Note that the two sides in (C.24) are the pullbacks of Zran along the following two maps

De, v = Ran.
One is
Dzv — S 2 Ran,
and the other is
Dg,V — Xgr — Ran.
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Now, by the definition of @£7V7 the there is a natural map from latter map to the former map inside
the category
Maps(D, v, Ran"™™"").
Hence, the required map is provided by the unital structure on Zran-
The fact that the unit and counit maps constructed above satisfy the adjunction axioms is a straight-

forward verification.
|

C.6.12. Let Zran be equipped with a counital structure. Note that this structure gives rise to a map

(C.25) ZRan X (Ran x Ran) — Zran X ZRan.

Ran,union

Base changing along
(Ran x Ran)ajsj — Ran x Ran,

we obtain a map

(0.26) Z'Ran X (Ran X Ran)disj — (ZRan X ZRan) X (Ran X Ran)disj.

Ran,union RanXxRan

We shall say that the counital structure is factorizable if (C.26) is an isomorphism and the diagonal
map
Zq) — Z@ X Z@
is also an isomorphism (implying that Zy ~ pt).

Note that the fact that the maps (C.26) are isomorphisms implies that the maps

1 1
(C.27)  Zgapuntl,« X (Ran"™™"* x Ran"™"*) g5 —

Ranuntl,* ynion

untl,* untl, *
— (ZRanuntl,* X Z—Ranuntl,*) X (Ran " x Ran )disj7
Ranuntl,* y Ranuntl, *

are also isomorphisms.

Let
(PreStk %) ™*"  PreStkjgan"!
denote the full subcategory that consists of factorizable objects.
C.6.13. We have the following more precise version of Proposition C.6.11:
Proposition C.6.14. The functor
(028) ‘H = Sé(y)Ran
has an essential image in (PreStk‘}‘;{:r‘)‘“)faCthl. The resulting functor
PreStk,x ., — (PreStk??{;’tl)f&Cthl

is fully faithful and defines an equivalence between the full subcategories consisting of objects that are
affine over Xar in the left-hand side and over Ran in the right-hand side.

Proof. The fact that the essential image of the functor (C.28) lands in (PreStkj‘f’{:;‘“)f“”bl has been
established in Sect. B.4.2.

We have seen that the counit of the adjunction in Proposition C.6.11 is an isomorphism. Hence, the
functor (C.28) is fully faithful.

In order to prove the proposition, it remains to show that the functor (C.23) is conservative on
objects in (PreSt ;‘g;:“)famb‘ that are affine over Ran.

Let ¢ : Z1,Ran — Z2,Ran be a map between two objects in (PreStk{yim) !

, such that the map
Blxar * 21,xan — Z2,Xar

is an isomorphism.
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In order to check that ¢ is an isomorphism, it suffices to show that it is such when restricted to X1
for every finite non-empty set I:

Z 1 =2 I .
I‘XdR 2’XdR

Since both prestacks are affine over X1, the question of a map being an isomorphism can be checked
strata-wise. Using the diagonal stratification of X, it suffices to show that that the further restriction
to

o1 I
Xar C Xar
is an isomorphism. Since Z1 ran and Z2 ran are both factorizable, the latter map is the direct product

of I copies of the map ¢|x,y-
O

C.6.15. As in Sect. C.6.4, given a factorization space, we can talk about a counital structure on it.

It is easy to see, however, that if T is a counital factorization space, then the corresponding prestack
TRanuntl,« is factorizable (in the sense of Sect. C.6.12). Vice versa, given an object

Z—Ranuntl,* c (ljrestk(;cﬁlalrrlltl)factzbl7
the isomorphism (C.27) defines on it a factorization structure.

So the categories of counital factorization spaces and factorizable counital prestacks over Ran are
tautologically equivalent.

C.7. Unital factorization algebras.

C.7.1. Let A be a factorization algebra on X. A unital structure on A is an extension of Agran to an
object
AR apuntl,« € D-mod(Ranu"tL*)7

and an extension of the isomorphism (B.23) to an isomorphism

P,
(029) union (.ARanuml,* ) ‘ (Ranuntl,* x Ranuntl,*) =~ -ARanuml,* X ARanuntl,* |(Ranuntl,* x Ranuntl,*)

disj disj’

equipped with a homotopy-coherent data of associativity and commutativity.
In addition, we stipulate that
(C.30) Ap ~ k

and this isomorphism behaves (homotopically coherently) as a unit for the identifications (C.29), i.e.,
the map
‘ARan“““v* — .Aq) ® .A,Ranuntl‘*y

obtained by restricting (C.29) to
{@} % Ranuntl,* N (Ranuntl,* % Ranuntl,*)disj
identifies via (C.30) with the identity map.
Let FactAlg"™"'(X) denote the category of unital factorization algebras on X.
Remark C.7.2. Pullback along

untl,*

t: Ran — Ran
gives rise to a functor
(C.31) FactAlg"™(X) — FactAlg(X).
This functor is not fully faithful. However, by analogy with the topological situation, we expect
that:

e The functor (C.31) induces a monomorphism on the mapping spaces;
e The functor (C.31) induces an isomorphism on the union of the components of the mapping
spaces that correspond to isomorphisms.
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The second property can be phrased as saying that for a factorization algebra, being unital is a
property and not a structure.

We will not prove this in this paper. However, we will prove a result in this direction, see Proposi-
tion C.7.13.

C.7.3. Let us denote by k the unit factorization algebra, see Sect. B.9.2. Note that it naturally
upgrades to a unital factorization algebra: namely, the corresponding object in D-mod(Ran"™"*) is

WRanuntl, -

Let A be a unital factorization algebra on X. Note that the initial point {#} € Ran""* gives rise
to a map

WRapuntl,* —> -ARanU"“x*

in D-mod(Ran""*). Tt follows from the axioms that this map is compatible with factorization.
I.e., we obtain a map of unital factorization algebras

(C.32) vaca : k — A,

which we will refer to it as the vacuum map for A.

C.7.4. Let Z be a prestack mapping to Ran. Consider the corresponding categorical prestack 21t

see Sect. C.5.16.

Let A be a factorization algebra on X, and let M be a factorization module M over A at Z. Let A
be equipped with a unital structure. A unital structure on M is an extension of M, c to an object

Myc € D-mod(Z&"™)
and an extension of the isomorphism (B.24) to an isomorphism
(C33)  Macoumul mansmtewzoomty gy = (Artagunte BNz (ranonte 2 oty -
In addition, we stipulate that the isomorphism

Myt = Ag @ Mycunel,

obtained by restricting (C.33) along
(0} x 25 s (Ran™h* x 2Swnth)

identifies via (C.30) with the identity map.

The contents of Sect. B.9 apply to unital factorization modules.

C.7.5. Notational convention. When A is a unital factorization algebra, we will denote by
A-modt
the category of unital factorization modules over A at Z.
The category of modules over A as a plain”® factorization algebra will be denoted by

fact-n.u.
A-modz <™,

C.7.6. Example. Let A be a unital factorization algebra. For Z — Ran consider the factorization
module A™*% from Sect. B.9.7.

Unwinding the definitions, we obtain that A2 carries a natural unital structure.

78Le‘, non-unital.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 325

C.7.7. Ezxample. Take A = k from Sect. C.7.3. Note that pullback along

Pr::r],taln,z p2Esmt g
gives rise to a functor
(C.34) D-mod(Z) — k-mod2°",

cf. Sect. B.9.6.
In other words, the functor (C.34) is given by tensoring (over D-mod(Z)) with the object

fact fact
k2 € k-modg .

We claim that the functor (C.34) is an equivalence, with the inverse functor being
M = My, := (diagi™)' (M).

Indeed, the fact that the map

diag;nﬂ N Zg,untl
is initial relative to Z, implies that for any M € k-modf°t, we have a canonically defined map
1 ! . Iz!
(pr‘slrrrllt;ll,z) o (diagy™)" (M) — M.

Now, the factorization condition implies that this map is actually an isomorphism.

C.7.8. Let A be a unital factorization algebra on X.

Restriction along
t: 25 - &

gives rise to a functor

(035) A—mOde'aCt%A—modeaCt'n‘u'.

We have the following assertion, proved in [CR, Proposition 3.8.4]:
Proposition C.7.9. The functor (C.35) is fully faithful with essential image

fact-n.u. fact fact-n.u.
A-modz ™" X k-modz " ~ A-modz "™ X D-mod(Z),
k-modfact-n-u. k-modfact-n-u.

where

fact-n.u. fact-n.u.
A-mod ™" — k-modF "

is the functor of restriction along (C.32).

C.7.10. Let ¢ : A1 — A2 be a unital map between unital factorization algebras. From Proposi-
tion C.7.9 we obtain:

Corollary C.7.11. The restriction functor
Resg :Ag—mod?“'n‘“- BN Al-modf;Ct_n'll‘

sends

fact fact
As-mod3" — A1-mod5 <.
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C.7.12. Let FactAlg® ™ (X) be the category of pairs (A, vac,), where A is a non-unital factorization
algebra, and vacy is a homomorphism k£ — A, such that the object

fact fact-n.u.
Resvac , (A*Ren) € k-modRay,

belongs to

fact-n.u.

D-mod(Ran) ~ k-modfish C k-modfst
We will call objects of FactAlgq'““tl(X ) “quasi-unital factorization algebras”.
We have a tautological functor
(C.36) FactAlg"™ (X) — FactAlg®™(X).
We claim:
Proposition C.7.13. The functor (C.36) is an equivalence.
The proof will be given in Sect. C.11.20.

Note that the second assertion of the proposition says that a quasi-unital factorization algebra

vac 4

k= A

carries a canonical unital structure, for which vac, is the unit.
C.8. Commutative unital factorization algebras.

C.8.1. By the same token as in Sect. B.10.1, one can consider the category
ComAlg(FactAlg"™" (X)).
It is equipped with a tautological forgetful functor
(C.37) ComAlg(FactAlg™" (X)) — ComAlg(D-mod(Ran"™"*))
and also with a functor

(C.38) t' : ComAlg(FactAlg"™ (X)) — ComAlg(FactAlg(X)).

C.8.2. Let Ag,une,» be an object of ComAlg(D-mod(Ran"""*)). Note that the unital structure on
A gives rise to the maps

(i) (Agapuntt,= ) — union' (Agapantt«), & =1,2

untl,* untl,* untl,*

where p1 and p2 are the two projections Ran x Ran — Ran

Since the coproduct in ComAlg is the tensor product, we obtain a map
(C.39) Agapuntts K Agpunet,s — union' (Ag,punet, ).
The map (C.39) gives rise to a map
(040) .ARanuntl,x X .ARanuntl,x ‘(Ranuntl,* XRanuntl‘*>disj — union! (.A.R,dnuntl)x )|(Ranum1,* XRanunt],*)diS.i .

We shall say that Ag,,unt,~ 18 factorizable if the map (C.40) is an isomorphism. Note that this
automatically implies that Ay ~ k.
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C.8.3. Let
ComAlg(D_mod(Ranuntl,*))factzble c ComAlg(D_mOd(Ranuntl,*))

denote the full subcategory consisting of factorizable objects.

It follows from the axioms that the essential image of the functor (C.37) lands in

ComAlg(D—mod(Ran“ntl’*))facmblc.
Vice versa, for an object
Aganuntt.« € ComAlg(D-mod(Ran"™*))factzble

the isomorphism (C.40) defines on Ag,,unu,« a factorization structure.

It is easy to see that the resulting two functors
(C.41) ComAlg(FactAlg"™" (X)) <> ComAlg(D-mod(Ran""""*))fetzble
are mutually inverse.
C.8.4. Recall the functor

A — Fact(A),

see Sect. B.10.2.

Unwinding the construction, we obtain that Fact(—) upgrades to a functor

ComAlg(D-mod(X)) — ComAlg(FactAlg™"(X)).

By a slight abuse of notation, we will use the same symbol Fact(—) to denote the latter functor.

C.8.5. Consider now the functor

(C.42) ComAlg(D-mod(Ran""""*)) — ComAlg(D-mod (X)),

untl,*

given by restriction along A y gajunt« @ Xar — Ran
We claim:

Proposition C.8.6. The functor (C.42) admits a left adjoint. Moreover, this left adjoint is fully
faithful and lands in ComAlg(D-mod(Ran""**))factzble,

Proof. Tt is enough to prove the assertion of the proposition on objects of ComAlg(D-mod(X)) of the
form
Sym' (M), M € D-mod(X).

The value of the left adjoint on such an object is
(C.43) Sym' ((Ax ranuott,« )1 (M)

To prove that this left adjoint is fully faithful, it is enough to show that the unit of the adjunction

M = (Ax ganunt) 0 (Ax gaguntt,= )1 (M)

is an isomorphism. However, this follows from Corollary C.4.21: indeed, the categorical prestack

XdR % (Ranuntl,*)A

Ranantl,« X,Ranuntl,*/

identifies with Xgr.

In order to show that (C.43) belongs to ComAlg(D-mod(Ran""**))factzble it suffices to show that
the canonical map

LA x ranunet« )1 (V) @ P3 (A x gaguner, )1 (M) = union' (A x gagunen )1 (M)

becomes an isomorphism after restricting to (Ran""** x Ran""*)4;. This is the content of [Ro2,
Theorem 2.7.6]. We include the argument for completeness.
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However, this follows again from Corollary C.4.21: we have a canonical isomorphism

untl,* untl,* untl,* untl,
((Ran )AXYRanuutl,*/ x Ran U Ran x (Ran )AX,R.anu“tL*/ x

untl, * untl, *
Ran X Ran

untl,* untl,
X (Ran x Ran )aisj =~
Ranuntl,* x Rapuntl,*

t1 t1 t1
~ (Ran""")a X (Ran"™™"" x Ran"™""" ) gigj.

x untl, =/ .
sRan ’ Ranuntl,* union

Indeed, this is just the fact that for a disjoint pair z,,z, of points of Ran, and a singleton z,

rCzx, Uz, & 2Cx orx C Ty

C.8.7. As a corollary, we obtain:

Corollary C.8.8. The composite functor

!
X,Rauu““:*
—

ComAlg(FactAlg""" (X)) — ComAlg(D-mod(Ran""""*)) ComAlg(D-mod(X))

is an equivalence, with the inverse given by Fact(—).
Proof. Given Proposition C.8.6, we only need to prove that the functor in Corollary C.8.8 is conserva-

tive. But this is immediate from the factorization.
O

Corollary C.8.9. The functor

ComAlg(D-mod(X)) Fact() ComAlg(FactAlg"™" (X)) — ComAlg(D-mod(Ran"""*))
is the left adjoint of

!
X,Ranuntl, x
—

ComAlg(D-mod(Ran"™"*)) ComAlg(D-mod(X)).

C.8.10. Let Y be a D-prestack over X. Suppose that the prestack £$ (Y)ran — Ran is such that the
formation of direct image of the structure sheaf along

£5(M)s — S, S € SchiRan
is compatible with base change, and satisfies Kunneth formula.
This happens, e.g., when Y is affine over X, and hence 2% (Y)Ran is affine over Ran.
Taking the direct image of the structure sheaf along
25 (V) ranuntt, - — Ran™™*",

we obtain an object in ComAlg(D-mod(Ran""*)), which by a slight abuse of notation we denote by

0 ot (¥), Ranuntl.«- By Kunneth formula and factorization, O ot has a natural structure of

factorization algebra.

(‘j),Ran“““»*

Denote the resulting object by

V) € FactAlg(X).

eL )

The value of O+ ,, on X, i.e., the restriction of O 4+ along X — Ran"™* is the direct
v v

(9) (9),Ranuntl,
image of the structure sheaf along Y — X, which by a slight abuse of notation we denote by Oy.

Hence, by the equivalence of Corollary C.8.8, we obtain that

(C.44) Os@(y) ~ FaCt(Og).
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C.8.11. Assume that Y is affine over X, i.e., Y = Specy (A) for A € ComAlg(D-mod(X)) with oblv!(A)
is connective.

Let A := Fact(A). Then (C.44) says that for S — Ran,
(C.45) £3(Y)s ~ Specg(As).
C.8.12. Note that the identification (C.45) is in agreement with Proposition C.6.11.

Namely, let us be given a counital prestack Zran over Ran, such that the direct image of its structure
sheaf satisfies base change. Let

Bganuntl,« € COmA]g(D_mod(Ranuntl,*))
denote the corresponding object. Set Bx := By, puntt,«| X g -

Then the following diagram commutes:
Proposition C.6.11
—_— MastdR(XdR X ZRanuntlx, 9v)

~ Ranuntl, *

<c.4s)l~ lw

Proposition C.8.6
MapSComAIg(D—mod(X)) (Av ‘BX ) .

MapsPreStkc/%.mn (ZRranuntt« £ (Y) Ranuntt )
an

Ma‘pSComAlg(D—mod(Ran“n“) ) (A, Branunti,«)

C.9. Factorization homology of commutative factorization algebras.
C.9.1. Consider the functor

ComAlg(Vect) — ComAlg(D-mod(X)), R+~ R® Ox,
where Ox is perceived as a left D-module.

In this subsection, we will describe, following [BD2, Sect. 4.6.1], its left adjoint.
C.9.2. From Lemma C.5.9 we obtain that the functor C,(Ran"™"!, —) gives rise to a functor
ComAlg(D-mod(Ran""")) — ComAlg(Vect),
left adjoint to
ComAlg(Vect) — ComAlg(D-mod(Ran"™™")), R+ R® wg,yunt-

Remark C.9.3. Note that by Sect. C.5.15, the restriction of C,(Ran,—) to the subcategory

ComAlg(D-mod(Ran)*™****)  ComAlg(D-mod(Ran))
defines a left adjoint to the functor

ComAlg(Vect) — ComAlg(D-mod(Ran)*™**" ™) " R+ R ® wran.

C.9.4. Recall now that according to Corollary C.8.9, the functor

Fact

ComAlg(D-mod (X)) 25" ComAlg(FactAlg"™ (X)) — ComAlg(D-mod(Ran""""*))
provides a left adjoint to the restriction functor
ComAlg(D-mod(Ran"™"*)) — ComAlg(D-mod(X)).
Combined with Sect. C.9.2, we obtain:
Corollary C.9.5. The functor

ComAlg(D-mod(X)) 25" ComAlg(FactAlg"™ (X)) —

(Rapuntl,*
C,(Ran —

— ComAlg(D-mod(Ran"™"")) — >ComAlg(Vect)
is the left adjoint of
R+— R® Ox, ComAlg(Vect) - ComAlg(D-mod(X)).
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C.9.6. For A € FactAlg"™"(X) recall the object
CPY(X, A) = C.(Ran, Aran),
see Sect. 11.9.7.
Note that by Lemma C.5.12, we can rewrite this also as

. t1
Co(Ran"™ | Ap, ).

C.9.7. Thus, Corollary C.9.5 says that the functor
A C""(X, Fact(A)), ComAlg(D-mod(X)) — ComAlg(Vect)
is the left adjoint of
R— R®0x, ComAlg(Vect) — ComAlg(D-mod(X)).

Remark C.9.8. Note that when we think of C™*(X A) as C.(Ran,Aran), the commutative algebra
structure on it follows from Remark C.9.3, since

Aran € D-mod(D-modgan )™,
C.9.9. Let A — B be a map in ComAlg(D-mod(X)). Denote
A := Fact(A), B := Fact(B).
Let R be an object of ComAlg(Vect), and fix a map
A— R®Ox,
or, equivalently by Corollary C.9.5, a map
Ccfet (X, A) — R.
C.9.10. Denote
Br = B®(R® Ox).
We can view Br as an object of
ComAlg(D-mod(X) ® R-mod),
i.e., as an R-linear object in ComAlg(D-mod(X)).

C.9.11. Consider the corresponding object
Br € ComAlg(FactAlg(X) ® R-mod).

We can apply the construction of factorization homology in the R-linear context, and thus form
CP*(X, Br) € ComAlg(R-mod).
C.9.12. We have the naturally defined maps in ComAlg(Vect)
R — CP (X, BR) « CP(X,B),
which fit into the commutative diagram

Clt(X, A) —— R

! !

Ccfect (X, B) ——— CBY(X, Bg).
In particular, we obtain a map

(C.46) R ® C"%X,B)— C"X,Bg).
C_fact(X“A)
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C.9.13. We claim:
Lemma C.9.14. The map (C.46) is an isomorphism.

Proof. Follows immediately from Corollary C.9.5.

C.10. Unitality in correspondenes.

C.10.1. Let ® : C — D be a functor between oo-categories. We shall say that ® is a fibration-in-
correspondences™ if the following two conditions hold:

e For every d € D, the fiber Cq4 is a groupoid;

e For every composable pair of arrows do Ot d; M dy in D, the map

Ca071 X Ca1,2 _>Ca1,200t0,1
Cdl

is an isomorphism, where for an arrow d’ % d”, viewed as a functor [0, 1] — D, we denote by
C. the category of lifts of « : [0,1] — D to a functor [0,1] — C, i.e.,
Funct,p ([0, 1], C).

.. . Bo,: .
Note that the second condition can be reformulated as follows: given an arrow co 02 co in C and

a factorization of its image ®(8o,2) as

(I)(do) = do

«@Q,1 «@1,.2

d1 = d2 = (I)(dQ)
the space of the factorizations

Bo2=PBr20P0,1, P(Bo1) =01, ®(B12) = a1
is contractible.
Remark C.10.2. There is a version of straightening construction that attaches to a fibration-in-
correspondences ® : C — D a functor from D to Corr(Grpd), i.e., the category, whose objects are

groupoids and the morphisms are correspondences between groupoids, see [AF, Theorem 0.8(2) and
Theorem 0.10(1)].

C.10.3. Note that if ® is either a Cartesian or a co-Cartesian fibration in groupoids, then it is a
fibration-in-correspondences.

C.10.4. Let ® : C — D be a fibration-in-correspondences. Suppose for a moment that D contains an
initial object {#}. Let C" denote the category

{C(z) S C{@}, ceC, cy E) C}.
Note the functor
ot . Ct - D, (cp,c,B)— P(c)

is a Cartesian fibration in groupoids.

Indeed, given

cp % cand d — P(c),
we let
B
cg > cCc —>c
be its unique factorization covering the canonical factorization
{0} - d' — ®(c).

Note that if C — D is co-Cartesian fibration in groupoids, then Ct ~ Cy x D. If C — D is
Cartesian fibration in groupoids, then C* — C is an equivalence.

79 Another name for this is “conservative exponentiable fibration”, see [AF].
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C.10.5. Let Zran — Ran be a prestack. A unital-in-correspondences structure on it is an extension of

ZRan to a categorical prestack
untl,*

ZRanunt,« — Ran ,

which is a value-wise fibration-in-correspondences

C.10.6. Note that the construction in Sect. C.10.4 associates to such Zran a prestack Zgan, equipped
with a counital structure.

In what follows we will say that Zran admits a unital-in-correspondences structure relative to 27T,
And we will refer to Zf, ~as the counital prestack underlying Zran-

untl,*

For an arrow in Ran given by z C 2’ we will denote by

Zaller

zCa’

the prestack of its lifts to Zran (see Sect. C.10.1 above). It is equipped with maps

Prinall oall + pr§.§
: — i
Z’£ Sma. Zicwl Z’£/ i

C.10.7. Note that by Sect. C.10.4, a unital structure on Zran gives rise to a unital-in-correspondences
structure, with Z* ~ Zy x Ran.

A counital structure on Zgran gives rise to a unital-in-correspondences structure with Z’Ean — ZRan

being an isomorphism.

C.10.8. Let T be factorization space over X. There is a natural notion of unital-in-correspondences
structure on T (i.e., Tran has a unital-in-correspondences structure, compatible with factorization, and
we stipulate Ty ~ pt).

Let T be the corresponding counital factorization space (see Sect. C.10.4); in this case we will say
that T has a unital-in-correspondences structure relative to T*. We will refer to 7T as the counital
factorization space underlying 7.

C.10.9. Let T be a unital factorization space. Then T acquires a natural unital-in-correspondences
structure, for which 77 — pt is an isomorphism.

According to Sect. C.10.4, if T is counital as a factorization space, it acquires a natural structure of
unitality-in-correspondences with 77 — T being an isomorphism.

C.10.10. Let Y be an affine D-scheme over X. We claim that the factorization space £v(Y) (see
Sect. B.4.6) possesses a natural unital-in-correspondences structure relative to £ (Y).

Namely, let z C 2’ : S — Ran be a pair of S-points of Ran. Consider the corresponding prestack
Dy v It contains Graph, as a closed subset.

By definition, a lift of z C 2’ to an S-point of £y (‘d)zlé:,’" is a Xqr-map

(Dyr v — Graphg) — Yv.

NB: in the particular case of T = £v(Y), we use the notation £5°""(Y),c,/ instead of Lv (Y)>L7F.

In order to define the composition of morphisms, we need to establish an isomorphism

mer~»reg mer~»reg ~ qmer~sreg
'SV (y)il Czy e (i;)mcr ‘SV (y )12 Czg — 'SV (y)§1 Czxg
v (DS

for z; C z, C x5. This follows from the isomorphism

(D@,V —z;) D U (D£3vv —zy) ~ (ngyv —z,),

x5,V L2

cf. Lemma C.6.6.
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C.10.11. We will now define a unital-in-correspondences structure on the factorization space LSE®"
from Sect. B.7.10.

Let z C 2’ : S — Ran be as above. We consider £v(Conn(h)), as acted on by £(H),s. Similarly,

L5 (Conn(h)) e is acted on by

S ()

Let LS} C00% be the prestack equal to the étale sheafification of the (non-sheafified) quotient of

Sgerwreg(con}l(h))igg/ by Emerwreg(H)zgzl.
The composition of morphisms is defined as in Sect. C.10.10.

Note that the underlying counital factorization space of LSE®" is LS.

mon-free

C.10.12. We now define a unital-in-correspondences structure on Opg . This is, however, auto-

matic since

Opxélon—free — Opger % Lsrceg’
Lsmer
G

mon-free
G

m

so the unital-in-correspondences structure on Opg®, LSZ® and LSereg induces one on Op

mon-free

Note that by construction, the underlying counital factorization space of Op{ is Op's¢

s
C.11. Unital factorization categories.
C.11.1. Let A be a factorization category on X. A unital structure on A is an extension of the crystal

of categories A over Ran to a crystal of categories over Ran"™"* in a way compatible with factorization,
i.e., we extend the identifications (B.37) to

(047) union* (A)'(Ran“““v* XRanuutl,*)diSj ~ A X A'(Ran“““v* XRanuntl,*)diSj .

In addition, we stipulate
(C.48) Ay ~ Vect,
so that this identification behaves (homotopically coherently) as a unit for the identifications (C.47),
i.e., the functor

A—Ap®A,
obtained by restricting (C.47) to
{@} % Ranuntl,* N (Ranuntl,* % Ranuntl,*)disj

identifies via (C.48) with the identity functor.

We let ‘

1A c Fstrlct (Ranuntl,*’A)

the canonical object, whose value at any z € Ran""** is
ins. unityc, (k),

where:

e k€ Vect ~ Ay;
e ins. unitgc, is the functor Ay — A, corresponding to the unique morphism {0} — z.

C.11.2. Note that the factorization category Vect from Sect. B.11.2 admits a tautological unital struc-
ture. Namely, the underlying crystal of categories on Ran""*"* is D-mod(Ran"""*).

C.11.3. Given a pair of unital factorization categories, we can talk about lax unital or strictly unital
functors between them, compatible with factorization, see Sect. C.2.8.

We denote the resulting (2-)categories by
Factcatuntl,lax (X) and Factcatuntl,strict (X),

respectively.
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C.11.4. Pointwise tensor product defines a symmetric monoidal structure on the category of unital
factorization categories (for both variants: lax or strictly unital functors).

The unit for the above symmetric monoidal structure is Vect.

C.11.5. Let A be a unital factorization category. We shall say that A is dualizable if it is a dualizable
as an object of the above category, with laz unital functors as morphisms.

In this case, the evaluation and the coevaluation functors
A®AY — Vect and Vect - AV @ A

carry lax unital structures.

C.11.6. Ezample. Let A be as in Sect. B.11.6. The explicit construction of the (symmetric monoidal)
factorization category Fact(A ) shows that it admits a natural unital structure.

We will denote by the same symbol Fact(A y ) the resulting (symmetric monoidal) unital factorization
category.

C.11.7. Given a unital factorization category A, we can talk about unital factorization algebras in it:
by definition, a unital factorization algebra A in A in it a lax unital factorization functor Vect — A.

Explicitly, the datum of A is an object
.ARanuntl,* c FlaX(Ra’nurxtl,*7A)7

which is compatible with factorization in the natural sense (i.e., combine the ideas from Sects. C.7.1
and B.11.4).

We denote by
FactAlg"™ (X, A)

the category of unital factorization algebras in A.

The object 14 has a natural structure of unital factorization algebra in A. Furthermore, for any
A € FactAlg"™ (X, A) we have a canonically defined map

vacy : 1a — A,
which we will refer to as the unit or vacuum for A.
C.11.8. If A is a unital factorization category, it admits a canonically defined (strictly) unital functor
Vaca : Vect = A.
By a slight abuse of notation, we will denote this functor by 1a; the image of
k € FactAlg"™" (X, Vect)
under Vaca is 1a.
C.11.9. Given A € FactAlg"™"(X, A) and Z — Ran, we can talk about unital factorization A-modules

at Z. Denote this category by
A-mod™*(A)s.

When we talk about non-unital factorization A-modules, we will denote the corresponding category
by
A_modfact—n.w(A)Z.
We have a forgetful functor
A_modfact(A)Z N ‘A_modfact—tLuA(A)Z
and Proposition C.7.9 applies in the present context as well.

The assignment
2 ~» A-mod™*(A)y
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is a crystal of categories over Ran that we will denote by A-mod™*(A). This crystal of categories has
a natural lax factorization structure.

We will denote the resulting lax factorization category by A-mod™*(A).

C.11.10. Let & : A; — A be a lax unital functor between unital factorization categories. Then it
naturally gives rise to a functor
® : FactAlg"™" (X, A1) — FactAlg"™™' (X, As).
In particular, ®(1a,) has a natural structure of factorization algebra in A, and we have a map of
factorization algebras
(C.49) 1a, — (I)(lAl).

C.11.11. Let Ay be as in Sect. C.11.6. Let A € Ax be a commutative algebra object. Then the
object

Fact(A) € ComAlg(FactAlg(X, Fact(Ay)))
from Sect. B.11.6 naturally lifts to an object of

ComAlg(FactAlg"™ (X, Fact(A ))).

By a slight abuse of notation, we will denote it by the same symbol Fact(A).

C.11.12. By a similar token, one defines the notion of unital structure on a lax factorization category
(see Sect. B.11.12). The entire preceding discussion equally applies to unital lax factorization categories.

C.11.13. Ezample. Let A be a (not necessarily unital) factorization algebra. Recall the lax factorization
category A-modfct (see Sect. B.11.15). We claim that it acquires a natural unital structure.

In order to define it, we need to provide the following data: for any Z — Ran, we need to define a
functor

(C.50) ins. unitz : A-mod®t — A—modf{‘g,

equipped with an appropriate associativity structure. This construction was already mentioned in
Sect. B.9.8:

fact

s is constructed

Let M be an object of A-mod%<*. The corresponding object ins. unitz (M) € A-mod
as follows.

Note that there is a canonical projection
c2 C\C Pfcomp,z2 ~C

2= = (25)= =725 (z,z; Cxy) = (2,3y).

We let
(il’lS. unitZ(M))Zg2 = (prcomp,Z)! (MZE )
The factorization structure on (ins. unitz (M)), > against A is induced by that on M,c.
The factorization unit in A-mod™<® is the object A®Y from Sect. B.11.15.
Let ¢ : A1 — A2 be a map of (non-unital) factorization algebras. Then the functor
Resy : As-mod™®t —5 A;-mod ™t

carries a natural lax unital structure.
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C.11.14. Let now A be a unital factorization algebra. The above construction applies verbatim to the
category of unital factorization A-modules.

Consider the forgetful functor
oblv, : A-mod®t —s Vect

(see (B.25)) as a factorization functor (where the left-hand side is a lax factorization category). We
claim that it carries a naturally defined lax unital structure.

In order to define it, we need to provide the following data: for any Z — Ran and M € A-mod5<t

we need to define a map
1

Plyman,z (Mz) — (ins. unitz (M) c.

We note, however, that by construction

(ins. unitz (M)) 5 c = Myc.
Now, the sought-for map
!
prémall,Z(MZ) - MZQ

is exactly provided by the structure on M of unital factorization A-module.
C.11.15. By a similar token, given a (non-unital) lax factorization category A and a factorization

algebra A in it, the lax factorization category A-mod™*(A) (see Sect. B.11.16) acquires a naturally
defined unital structure. The object

A" e FactAlg(X, A-mod™(A))

from Sect. B.11.16 extends to an object of FactAlg"™' (X, A-mod™°*(A)), and equals in fact the unit
in A-mod®*(A), i.e., the map
14 ogfact — Afact

is an isomorphism.

For a factorization functor ® : A; — A between non-unital lax factorization categories and A; €
FactAlg(A1, X), the resulting functor

(C.51) ® : A;-mod™(A;) — ®(A;)-mod™(As)
has a natural (stictly) unital structure.

Similarly, if A is unital and A is unital, then the lax factorization category A-mod™*(A) (of unital
A-modules) acquires a naturally defined unital structure. Furthermore, in this case the forgetful functor

oblv, : A-mod™*(A) — A
carries a naturally defined lax unital structure.

For a lax unital functor ® : A; — A2 between unital lax factorization categories and A; €
FactAlg"™ (A, X), the resulting functor

(C.52) ® : A1-mod™(A;) — ®(A1)-mod™*(Ay)
has a natural (stictly) unital structure.

C.11.16. Let A be a (non-unital) lax factorization category, and let ¢ : A — A’ be a homomorphism
between factorization (non-unital) algebras in it.

Since the functor
RGS¢ . A/_modfact (A) N A_modfact (A)
is lax unital and A’ is the factorization unit in A’-mod™°*(A), we obtain that the factorization
algebra Resy(A'™") € FactAlg(X, A-mod™*(A)) acquires a natural unital structure.

Moreover, the functor (C.52) applied to A; = A’-mod™*(A), Az = A-mod™*(A) and & = Resy
gives rise to a unital factorization functor

(C.53) A'-mod™*(A) — Resg (A ™)-mod ™" (A-mod™* (A)).

Unwinding the definitions, we obtain:
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Lemma C.11.17. The functor (C.53) is an equivalence.
C.11.18. Let A be a unital factorization category, and let ¢ : A — A’ be a homomorphism between
unital factorization algebras in A.

Consider the unital lax factorization categories A-mod™°*(A) and A’-mod™°*(A), and the restriction
functor
Resg : A'-mod™*(A) — A-mod™*(A).
This functor carries a natural lax unital structure. In particular, the object
Resg (A ™) € FactAlg(A-mod™*(A))
from Sect. B.11.17 lifts to an object of FactAlg"™* (A-mod™<*(A)).

Note that the forgetful functor oblv : A-mod™*(A) — A sends Resg(A'#) — A’. In particular,
it induces a functor

(C.54) Resg (A ™")-mod ™ (A-mod™*(A)) — A'-mod™*(A).

The following is obtained by unwinding the definitions:
Lemma C.11.19. The functor (C.54) is an equivalence.

In fact, the inverse of the functor (C.54) is given by the functor (C.52) for A; = Jq/_modfact(A)7
Ay = A-mod™t(A), ® = Resy and A; = A",

C.11.20. Proof of Proposition C.7.13. We will explicitly construct an inverse functor.

Let k "=5" A be a quasi-unital factorization algebra. Consider the unital lax factorization category®®
A-modf°tmU Tt is equipped with a lax unital factorization functor

Resvacﬂ :A-modfa“'"‘u‘ N k_modfact—ILuA.
Consider the fiber product

A_modfact—q.u. -— Vect % A_modfact-n4u. C CA_mOdfact—n.u..

k-modfact-n.u.

It has a natural factorization structure, and the fact that

fact fact fact-n.u.
Resvac 4 (A Ran) € k-modRay, C k-modgay

dfact—n.u. dfact—qu.

implies that the unital structure on A-mo induces one on A-mo . The factorization unit

1 odfact-a.u. 0 A-modete1 js A% (gee Sect. C.11.13).
Restricting Resvac,, to A-mod™%" we obtain a lax unital factorization functor
(C.55) A-mod™"" 5 Vect .

The image of the factorization unit 1, . 4fact-an. = A™ under the above functor is a unital
factorization algebra (whose underlying plain factorization algebra is A itself). This defines a functor

(C.56) FactAlg®™"™ (X) — FactAlg™"(X),
which commutes with a forgetful functor to FactAlg(X).

Let us show that the functors (C.36) and (C.56) are mutually inverse. We first show that the
composition (C.56)o(C.36) is isomorphic to the identity functor.

Indeed, when A is unital, by Proposition C.7.9, the unital factorization category A-modf@<t-a-*

identifies with A-mod™°*, and the functor (C.56) identifies with oblv, equipped with its natural lax
unital structure. Hence, in this case, the image of A™* under (C.56) identifies with A as a unital
factorization algebra.

80The appearance of “n.u.” in the superscript in the next formula is meant to emphasize that we are dealing with
non-unital factorization modules, even though since A is non-unital, we cannot even talk about unital modules.
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Vice versa, let us start with a quasi-unital factorization algebra k V25 A. We have a commutative
diagram of unital lax factorization categories and lax unital functors, with the horizontal arrows being
strict:

A_modfact—q,u. A_modfact»n,u.

l |

Vect — k-modfetmu

dfacteru.

Applying each circuit to 1, 4fact-q.u. We obtain a factorization algebra in k-mo , equipped

with a homomorphism from k. For the clockwise circuit, we obtain the original k Y2 A. For the
vac 4

anti-clockwise circuit, we obtain (C.56)(k —" A), equipped with a map from k to it, given by its
unital structure.
O[Proposition C.7.13]

C.11.21. In the rest of this subsection we will focus on strict (i.e., non-lax) factorization categories.

Let A; and A be a pair of unital factorization categories, and let ® : A; — Aj be a strictly unital
functor. Assume that ® admits a right adjoint ®® as a functor between the underlying crystals of
categories on Ran.

Then &%, viewed as a factorization functor between factorization categories admits a natural exten-
sion to a lax unital functor between unital factorization categories, see Sect. C.2.11.

C.11.22. We claim:

Lemma C.11.23. Let ® : A1 — Az be a lax unital factorization functor between unital factorization
categories. Then ® is strictly unital if and only if the map (C.49) is an isomorphism.

Proof. The “only if” direction is tautological. Let us prove the “if” direction, so let us assume that
(C.49) is an isomorphism.

Let £ C 2’ be an arrow in Ran"™*(S) for S € Schjtgan. We need to show that the natural
transformation

(C.57) ins. unita, oz’ 0Pr — ®,v 0 Ins. unita, zca’,
given by the lax unital structure on @, is an isomorphism.

This asssertion can be checked strata-wise, so we can assume that z and z’ are field-valued points.
Write

/ 1
r =zxzUzx .

We have
Ay ~Ai @A, =12
and the natural transformation (C.57) is the tensor product of the identity endomorphism of the functor
Dy A1z — Aog
and the natural transformation (C.57) for § C z.

However, the latter is exactly the map

lase = Pu(lay,z)

C.12. Examples of unital factorization categories arising from algebraic geometry.
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C.12.1. Let T be a counital factorization space. We claim that the lax factorization category QCoh(T)
admits a natural unital structure.

Indeed, for a pair of S-points z C &’ of Ran"""* the corresponding functor
QCoh(Ts,z) = QCoh(Ts,.)
is given by pullback along
(C.58) Tsz — Ts,-

In particular, the unit 1qcon(s) is the structure sheaf
Og € QCOh(T)

C.12.2. By a similar token, using Sect. B.13.16 the (lax) factorization category IndCoh'(T) admits a
natural unital structure.

Assume now that T is affine and placid. Recall that according to Sect. B.13.22, we can consider the
factorization category IndCoh™ (7).

Assume now that the maps
Tsxr2 = g xn1

for inclusions of finite sets Iy < I> are of finite Tor-dimension (e.g., they are flat). In this case, by
Sect. A.10.13, the functors of *-pullback along the maps (C.58) are defined for IndCoh* (—)

IndCoh"(Ts,s) — IndCoh”™ (Ts,e).

Hence, we obtain that in this case, IndCoh*(T) also admits a natural unital structure.

C.12.3. Let now T be a unital factorization space. We claim that in this case the factorization category
QCoh,,(7T) has a natural unital structure.

untl,*

Indeed, for a pair of S-points z C z’ of Ran , the corresponding functor

QCoho(Ts.2) = QCoh o (Ts,a)
is given by pushforward along

(C.59) Tse = Tsar-

Assume now that 7 is an ind-placid factorization ind-scheme, so that we can consider the factoriza-
tion category IndCoh™ (7).

Taking the IndCoh-pushforwards along (C.59) we obtain that IndCoh* (7)) acquires a natural unital
structure.

C.12.4. Ezample. We obtain that the factorization categories QCoh_,(Gr¢) and IndCoh(Grg) acquire
a natural unital structure.

By a similar mechanism, the factorization category D-mod(Gr¢) also acquires a unital structure.

C.12.5. Let us now in addition assume that for an injection of finite sets I; < I3, the corresponding
map

Iz
X x>§1 Txn = Ty,

is an ind-closed embedding locally almost of finite-presentation.
In this case, by Sect. A.10.11, the IndCoh-pushforward functors along (C.59) are defined on
IndCoh'(-):
IndCoh'(Ts,.) — IndCoh' (Tg 4).

Hence, we obtain that in this case, IndCoh!(‘J‘) also acquires a unital structure.
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C.12.6. Let T be a factorization space over X, equipped with a unital-in-correspondences structure.

Assume that for a pair of S-points z C &’ of Ran""*"*, the map
1_‘T
(C.60) Tt Pt g,

is affine.

We claim that in this case, the factorization category QCoh,,(7T) acquires a unital structure, and
the functor

QCoh(T") = QCoh, (TF) — QCoh,(7T),
given by direct image along
LTt T
is strictly unital. In particular, the unit 1qcon,, (7) is the direct image of O5+ along «.

untl,*

Namely, for a pair of S-points z C z’ of Ran , the corresponding functor

QCoh,, (Ts,z) = QCoh . (Ts,z)

is given by pull-push along

T

r‘T.
(C.61) T, Plemall call+ Pbig T

zCax’

C.12.7. Ezample. Thus, we obtain that for an affine D-scheme Y, the factorization category
QCoh,,(£v (1))

acquires a unital structure, with the unit 1qcon,,(ev (y)) being the direct image of Ogr ) along
v
£5(Y) = Lo (Y).

As another example, we can take T = Opgon’ﬁee, and we obtain that QCohCO(Opgc’“'ﬁee) acquires
a unital structure. The unit 150,y (opmon-free) is the direct image of Ogres along
col=Pg €]

+,mon-free

reg t mon-free
Opg — Ope .

C.12.8. Assume now that T is an ind-placid ind-affine factorization ind-scheme. Assume that the
maps

T
all~s+ Plsmall
e Txn

for an injection of finite sets I C I are affine and of finite Tor-dimension.

In this case, by Sect. A.10.13, the functors of *-pullback along the maps (C.60) are well-defined on
IndCoh™(—) and satisfy base change.

We define a unital structure on the factorization category IndCoh™(T) by (IndCoh,*)-pull followed
by IndCoh-pushforward along (C.61).

Note that by construction, the functor of IndCoh-pushforward along ¢
IndCoh*(71) — IndCoh*(T)
is (strictly) unital.

In particular, the unit in IndCoh*(7) is the direct image of Og+ € IndCoh*(T") along &.
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C.12.9. Let us continue to assume that T is an ind-placid ind-affine factorization ind-scheme. Assume
now that for an inclusion of finite sets I; C I3, the map

all~s+ pri;
711212 — Txiy
is an ind-closed embedding locally almost of finite-presentation.

In this case, Sect. A.10.11, the IndCoh-pushforward functors along

T
all~+4 prbi§
{‘Ta:Cx’ (‘TE/

are defined on IndCoh'(—) and satisfy base change.

We define a unital structure on the factorization category IndCoh'(T) by !-pull followed by IndCoh-
pushforward along (C.61).

Note that by construction, the functor of IndCoh-pushforwardforward along ¢
IndCoh'(T") — IndCoh'(7)
is (strictly) unital.
In particular, the unit in IndCoh'(7) is the direct image of wy+ € IndCoh'(T+) along &.
C.12.10. Example. Let Y be an affine D-scheme, such that:
e £v(Y) is ind-placid;
e The maps
Lo (W ncr, Pimg Ly (W) xn
for I1 C I, are flat;
e The maps
S8 Yy T 2o () i

for I; C I are locally almost of finite-presentation.

This happens, e.g., for Y = Jets(H ), where H is a smooth group-scheme over X.

We obtain that the factorization categories IndCoh'(£v(Y)) and IndCoh*(£v(Y)) acquire unital
structures.

C.12.11. By a similar procedure, the factorization category D-mod(£(H)) acquires a unital structure.

C.12.12. As yet another example, we obtain that the categories
IndCoh'(OpZ°™ ) and IndCoh* (Op5°" ™)
acquire unital structures.

C.12.13. Let T be an ind-placid ind-affine factorization ind-scheme. Assume that both additional
conditions in Sects. C.12.8 and C.12.9 are satisfied, so both IndCoh*(T) and IndCoh'(T) acquire unital
structures.

Note that the canonical pairing
(C.62) IndCoh'(T) ® IndCoh* (T) — Vect

(see Sect. A.10.8) as factorization categories, admits a natural lax unital structure as a functor between
unital factorization categories.

Moreover, unwinding the definitions we obtain that the condition from Sect. C.2.14 is satisfied.

Hence, we obtain that (C.62) realizes IndCoh'(T) and IndCoh*(T) as each other duals as unital
factorization categories.

C.13. Unital structure on Kac-Moody representations.
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C.13.1.  Our current goal is to construct a unital structure on the factorization category g-mod.. Let
us be given a pair of S-points z,z’ of Ran with  C 2’. We need to construct a functor

(C.63) g-mody,s,p — gmody 5.4/

The unital-in-correspondences structure on £(G) gives rise to the following diagram of group ind-
schemes over S:

prgmall mer~>reg prsGm 11
2(G)£ — £ g(G)ggz’ Q(G)ﬁ"
Proceeding as in Sect. B.14.19, we consider the corresponding categories
g-mody, s, g-mod, s, and /E\‘mOde&Qz"

The universal properties of these categories give rise to restriction functors

(C.64) oblv%ilC ,:g-mod, 5 0 — §-mody 5 pCa
and
(C.65) oblvg‘%c., : g-mody, s,z — §-mod,. 5 zCar,

both strongly compatible with the forgetful functors to D-mod(S) and the actions of £7 78 (G)cyr
at level k.

C.13.2. One checks directly that the functor oblvi®

SzCa’

admits a left adjoint.

We define the functor
ins. vacycp : g-mode, s — g-mod,; 5 5/
as the composition

(C.66) (oblvi* )" o oblvi®

zCa’/ zCa’/

C.13.3. In order to upgrade the collection of functors ins.vacyc,’ to a unital structure, we need to
construct associativity isomorphisms
(C.67) ins. vacg,cg, 0 ins. vacy, cz, = ins. vacy, ca,
for z; C zy C z4.
Note that the inclusions
(Dz, — ) = (ng — ;) ¢ (ng —z,)

give rise to maps

TG, e, £ (G, — €T (G,

We have the corresponding functors

obly 21522 obly 22523
—~ 9&] Cag ~ Sz Cag ~
g_mOdfﬂySyﬁl Czy g_mOdelel Czxg g_mOdN,SaEQ Czy
and an isomorphism
Baq C [ BooC 3.
oblv-*1=%2 o oblv-*2 ~ oblv-"2=%3 o oblv"2 .
g£1 g3 g£1 Q&g g£1 T3 g£2 §£3
From here we obtain a natural transformation
Oy Cag\L O2,Ca Gz Gz L
(C.68) (oblv_*2=%)" 0 oblv.*1=*2 — oblv_*2 o (oblv_*2 )".
Oz, Cag Oz, 8z5Cag Oz, Czy

We claim that (C.68) is an isomorphism. Indeed, this follows from the fact that the diagram of Lie
algebras
qmer~reg (g)gl Cay qumer~reg (g)gg Cay

! !

grmerres (9)&1 Czy — S(Q)Ez
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is Cartesian.

Now, (C.67) follows by precomposing both sides of (C.68) with oblvggC and post-composing
21 Cay

with (oblva®® )L,
925Czg

C.13.4. Recall that the functor oblvg"lc,/ is compatible with the action of £m"8(G),c,y. In

particular, it is compatible with the action of £%(G),s, which acts on g-mod, s, via £7(G), —
£7(G),. Hence, it induces a functor

~ + . ~ ct(a)
KL(G)k,82 = (g-mod,@,s,l)£ (& _, (g—modmség&/)i‘ (D

Since the functor oblvg\i' , is compatible with the action of £™"8(G) ./, then so is its left

Ja! )Y is compatible with the action of £(G),s, and

T
9z Ca’

adjoint. In particular, we obtain that (oblv

hence induces a functor

))3+ (G)El

. . ),
(g'mOdn,S&Qz’ - (g'mOde@’)E @t = KL(G)x,5,2'-

Hence, we obtain that the functor (C.66) induces a functor
(C.69) ins. vaczca : KL(G)k,5,0 = KL(G)x, 5,27
The functors (C.69) define a unital structure on KL(G).

C.13.5. By construction, the unit object 15 mod, is the vacuum module Vac(G)y, i.e.,

Vac(@)r,e = (0blvig )T o oblviy g (k).

e+ (9)£

Furthermore, Vac(G),. naturally upgrades to an object of KL(G), and coincides with its unit.
C.13.6. Let ' be as in Sect. 2.2.

Recall that according to [Rab, Sect. 9.16.11], we have canonical pairings
g-mods ¢z ® g-mod, , — D-mod(S)
making
g-mod,; and g-mod,/
mutually dual as factorization categories.

We claim that this duality extends to a duality between g-mod,, and g-mod, as unital factorization
categories (see Sect. C.2.12 for what this means).

Namely, imitating the construction in [Rab, Sect. 9.16] we obtain a duality between

g-mody 5.z and g-mod,s 5 pcy-

Under this identification, the dual of the functor oblvi®  of (C.65) is the right adjoint of

9xCa’

oblv:®  :g-mod,s g, — g-mod,/ s scals
OxCa’ = ’

PEASY

and the dual of the functor oblvgﬁ,C , of (C.64) is the left adjoint of the functor
Oblvg\fc' - ﬁ—modn/,s,y — /g\—mod,ﬁ/’S&g&/ .
From here we obtain the desired identification between the dual of

ins. vacycp : g-mode, s — g-mod,; 5 5/

and the right adjoint of
ins. vacyc, : g-mod,s g, — §-mod,.r g 4.
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C.13.7. In a similar fashion we obtain that the duality between
KL(G)x and KL(G),
as factorization categories extends to a duality as unital factorization categories.

C.14. Unital factorization module categories.

C.14.1. Let A be a factorization category. Let Z be a prestack mapping to Ran, and let C be a
factorization module category over A at Z.

Suppose that A is equipped with a unital structure. Combining the ideas of Sects. C.11.1, B.12.1
and C.7.4, we define the notion of unital structure on C.

C.14.2. Concretely, the unital structure on C amounts to the following: given a pair of points (z,z)
and (z,z’) of Z& with z C z’, we must be given a functor

ins. unitycar 1 Crze) — Crzar),
compatible with factorization.
The latter compatibility means the following: for 2’ = x L 2", with respect to the identification
Cia) = Az @ Cz )
the functor ins. unityc, is
1a,, ®1d.
In what follows we will denote by ins. unity the corresponding functor

(C?O) CZ — CZQ,UI]C]A

C.14.3. For a unital factorization category A and any Z — Ran, consider the factorization module
category Atz from Sect. B.12.4.

Unwinding the definitions, we obtain that A% carries a natural unital structure (cf. Sect. C.7.6).

C.14.4. Given a pair of unital factorization module categories C; and C2 over A at Z one can a priori
talk about strictly unital or lax unital functors between them, compatible with factorization. However,
as in Lemma C.11.23 one shows that any lax unital functor between them is automatically strictly
unital.

Thus, we can unambiguously talk about the (2-) category of unital factorization module categories
over A at Z.

C.14.5. Notational convention. When A is unital, we will denote the (2-) category of unital factoriza-
tion module categories over A at Z by
A-mod®<*.

We will denote the category of plain (i.e., non-unital) factorization module categories over A at Z

by
A_modfzact»n.u. .

Remark C.14.6. Unlike the case of modules over factorization algebras, the forgetful functor
(C.71) A-mod2** - A-mod&et ™
is not fully faithful.

Indeed, take A = Vect and Z = pt corresponding to a singleton {z} = z € Ran. Take

C = Vect™** ¢ Vect-mod™".
Then the category of endofunctors of C as an object of Vect-mod£?t is
fact
k-mod,,

(where k is the unit factorization algebra), and the latter identifies with Vect, see Sect. C.7.7.
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fact-n.u. .
d; is

By contrast, the category of endofunctors of C as an object of Vect-mo
fact-n.u.
k-mOd;Ct n.u .

So, at the level of endofunctors of the above object, the forgetful functor (C.71) is the forgetful
functor

— k-mo

fact
k-mod;*¢

dfact—n.u.
which is fully faithful, but not an equivalence.

C.14.7. Ezxzample. Recall the construction from Sect. B.12.5. It is easy to see that the resulting Vect-
factorization module category C is unital.
In Sect. C.16.6 we will show that the functor
CrystCat(Zo) — Vect—modfzaoCt
is fully faithful, and we will characterize its essential image.

Note, however, that one categorical level down, the corresponding functor was an equivalence, see
Sect. C.7.7.

C.14.8. Let A be a unital factorization algebra in a unital factorization category A. Let C be a unital
factorization module category over A at some Z — Ran.

Parallel to Sects. B.12.6 and C.7.4, one defines the notion of unital factorization modules over A in
C.

We will denote the corresponding category by
A-mod™*(C)z.
By contrast, we will denote the category of plain (i.e., non-unital) A-modules in C by
A-modfact-n-u- (C)a.
C.14.9. We claim:
Lemma C.14.10. 1a-mod®™*(C)y ~ Cx.

Proof. The proof essentially repeats the contents of Sect. C.7.7:
Starting from an object M’ € Cg, consider
ins.unitZ(M/) € Cycounn.
This object has a tautological factorization structure against 14.
Vice versa, starting from M &€ lA—modfaCt(C)z, the unital structure on M gives rise to a map
ins. unitz (Mz) = My c unu
in C,c unu, compatible with factorization.

It suffices to show that the latter map is an isomorphism. This can be checked stratawise, in which
case it follows from factorization.
O

C.14.11. Let ®: Ay — A be alax unital factorization functor between unital factorization categories.
Let C; and Csz be unital factorization module categories over A; and Az, respectively, at some Z —
Ran.

Mimicking Sect. B.12.10 we have the notion of lax unital functor
D, : Cl — CQ,
compatible with factorization. Denote the category of such functors

Functa,—a,(C1,Ca2).
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C.14.12. Let (9,P,,) : (A1,C1) — (A2,C2) be as above. Let A1 € A; be a unital factorization
algebra, and consider its image ®(A;) € FactAlg""" (X, Az).

Then the functor ®,, induces a functor
(072) b, : A1—m0dfaCt(C1)z — (I)(A1 )—mOdfaCt(Cz)z.
C.14.13. As in Lemma C.11.23, we have:

Lemma C.14.14. Suppose that ® is strictly unital. Then the functor between crystals of categories
on 2" ynderlying every ®,, € Functa, 5a,(C1, Cz)

C, G,
s strict.

C.14.15. Let ® : Ay — Ay be a strictly unital functor between unital factorization categories. Let
C; be a unital module category over A2 at some Z — Ran.

In this case, it follows from the construction of the restriction functor Ress that Ress (C2) possesses
a natural unital structure, and the tautological functor

(C.73) Ress(C2) — Co
admits a natural lax unital structure compatible with factorization.
Furthermore, the resulting object
Ress(C2) € Aj-mod 2

has a universal property parallel to that in the non-unital case:

Lemma C.14.16. For C; € A;-mod%°t, composition with (C.73) defines an equivalence
Funct p, moatset (C1,Ress(C2)) = Functa,—a,(C1, Ca).
C.14.17. Let A1 € A; be a unital factorization algebra. As in Lemma B.12.14, we have:

Lemma C.14.18. The functor (C.73) induces an equivalence
A1-mod™* (Resg (Cz))z — ®(A1)-mod™* (Cy)z.

Remark C.14.19. The material in Sect. B.15 is applicable in the context of unital factorization categories
and strictly unital factorization functors between them.

C.14.20. Let us place ourselves momentarily in the context of Sect. B.12.15, where the factorization
categories in the diagram

EY
Al —— A

] [

A1 L} A.Q.
are unital, all functors are lax unital, and the vertical arrows are strictly unital.

Unwinding the constructions, one obtains that in this case the resulting functor
Resy, (A]™2) - Resg, (A5™2)

viewed as a functor between unital module categories over A; and Aa, respectively, possesses a natural
lax unital structure compatible with factorization.

C.15. Restriction along lax unital functors. In this subsection we will study the phenomenon of
restriction with respect to a functor
(o} A1 — AQ,

which is only lax unital.
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C.15.1. Consider the (unital) factorization algebra
®(1a,) € FactAlg"™ (X, Az),
see Sect. C.14.11.
Let Z be a prestack mapping to Ran, and let

D, : C1 — Co
be an object of Functa,—a,(C1,Cz2).
Consider the induced functor
(C.74) Dy, :Crz — Coz

between the underlying DG categories.

C.15.2. We claim:
Lemma-Construction C.15.3. The functor (C.74) naturally enhances to a functor
P Cyp — B(1a, )-mod™(Cy)z.
Proof. We rewrite
Ci.z ~ 1a,-mod™*(Cy)z,

and now the required functor is a particular case of (C.72).
O

C.15.4. Variant. Let us return for a moment to the setting of Sect. C.14.20. By Lemma C.15.3 for
every z : S — Ran we obtain that the functor

®' : Resy, (A7) — Resy, (A5™")
gives rise to a functor

Lemma C.14.18
= ~

(C.75) @' A}, — ®(1a,)-mod™* (Resy, (A5"2)), ~
~ (U3 0 ®)(1a, )-mod™ (AL ), .

Note that the left-hand side in (C.75) is the value at z of a unital factorization category, namely,
, s
1 itself.

The right-hand side in (C.75) is the value at z of a unital laz factorization category, namely,
(W3 0 B)(1a,)-mod™" (A}),
see Sect. C.11.15.
Unwinding the constructions, we obtain that (C.75) upgrades to a unital factorization functor
(C.76) '™ Al — (W30 ®)(1a, )-mod™F(AL).
Remark C.15.5. Note that in the setting of Sect. C.15.4, we have
(W20 )(1a,) =~ (B 0 W1)(1a,) = ' (1a).

So, the information contained by the functor (C.76) is completely captured by the case when ¥y
and Wy are the identity functors. L.e., the claim is that the lax unital factorization functor

(O3 A1 — A2
upgrades to a unital factorization functor
q>enh : A1 — Cb(lAl)—mOdfaCt(Az),

with the caveat that the right-hand side is a lax factorization category.
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C.15.6. Let Z and C» be as in Sect. C.15.1. Consider the contravariant functor on Al—modfzaCt that
assigns to C;i the category Functa, »a,(C1,Cz2). One shows that this functor is representable, and let
Resy™ (Cy) € Aj-mod&*

denote the representing object.

By Lemma C.15.3, the tautological functor
(C.77) Resy™ (Ca) — Co
upgrades to a functor

(C.78) Resy™ (Ca)z — ®(1a, )-mod™*(Cy)z.

C.15.7.  We have the following generalization of Lemma B.12.12:

Lemma C.15.8. The functor (C.78) is an equivalence.

Remark C.15.9. Note that when @ is strictly unital, then by Lemma C.14.16
Resi™ (Ca) ~ Resa (C2),

and the assertion of Lemma C.15.8 coincides with that of Lemma B.12.12.

C.15.10. Ezample. Let Z = pt and let Z — Ran correspond to a singleton {x} € Ran. Recall the
notations of Sect. B.9.28. Let us give an explicit description of the category

Res%““ (CQ)X .

Namely,
Res%“tl(CQ)X ~

~ ®(1a,)-mod™*((Ca)|x)x x (ALX,I ® <1>(1A1)-modfa°t(02)m) ,

®(1a,)-modfct((Ca)|x —2)x =

where:

e The notation (C2)|x is as in Sect. B.12.3, i.e., we regard the pullback of C, along X — Ran,
as a module category over As at X;
e The functor

Al x—2 ® ®(1a,)-mod™"(Cz)z — ®(1a,)-mod™"((C2)|x—s)x—a
is the composition

enh
T899 (14,)-mod™ (As) x . ® ®(1a,)-mod™(Cy), —

Aix— ® B(1a,)-mod™*(Cs),
factoriziio)n of Co <I>(1Al )—mOdfaCt((CQ)lx_z)X_I,

where the second arrow is defined as in Sect. B.11.14.

C.15.11.  We have the following analog of Lemma C.14.18
Lemma C.15.12. The functor (C.77) induces an equivalence
A1-mod™* (Res§™ (C2))z — ®(A1)-mod™*(Cy)x.

C.15.13. The material in Sect. B.15 is applicable in the context of unital factorization categories and
lax unital factorization functors between them. We will not need it in the full generality, except for an
analog of Corollary B.15.7, formulated as Lemma C.15.16 below.
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C.15.14. Let
[ A1 — AQ

be a unital functor between unital factorization categories.

Suppose that & admits a right adjoint as a functor between the underlying crystals of categories
over Ran. According to Sect. C.11.21, the right adjoint ® of ® admits a natural extension to a lax
unital functor between unital factorization categories.

Let C; (resp., C2) be a unital module category over Ay (resp., Az) at some Z — Ran.
C.15.15. We claim:
Lemma C.15.16. There is a canonical equivalence

Funct | moqtact (Ress(C2),C) ~ Functp, meatsct (Ca, Resyt' (Ch)).

C.15.17. We will not give a full proof of this lemma; rather we will sketch the construction of the
maps in both directions in the framework of Sect. C.15.10.

Namely, for C; € Az—modfzaCt we will construct a functor

(C.79) Cs — ResiH o Resa (Ca)
and for C; € Al—modfzaCt we will construct a functor
(C.80) Ress o Resii (C1) — Ci.

C.15.18. By the universal property of Resyy', the datum of (C.79) is equivalent to the datum of a
functor

(081) CQ — ReS<1>(CQ)

as module categories over A2 and A1, respectively, compatible with factorization against the functor
o,

We now specialize to the context of Sect. C.15.10 and construct the corresponding functor

(0.82) Cox — Re&p(Cz)X.
We write
(0.83) RES@(CQ)X ~ Cy x o X (AI,X—I ® Czyz),
2,X—x
where

Al,szc ® C?,z — CZ,Xfw

is the functor
fact

o®Id
Al x20Cor = Asx—0e®C2, >~ Cox_g.

We write
(C.84) Cox ~Cox X (Ag,x-2®Cayq),
Cox—x
where

AQ,X—J; ® CQ,J; :> C2,X—x
is the factorization equivalence.
We define the functor (C.82) by sending an object ¢z € Cz2 x to
(C2 X (@ e @10 e), (@ @ Id)(j*(cQ))) ECax X (Aix—®Cay),
Jx0j*(c2 2,X—a

where the map
(@0 @) @1d)(j" (c2)) — j"(c2)

is the counit of the adjunction.
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C.15.19. Write

(C.85) ResgoResy i (Ch)x ~

~ (8" 0 ®)(1a,)-mod™ ((C1)]x) x x
(2Ro®)(14,)-modfet((C1)|x—2)X o
x (ALX,Z ® ((®F o <1>)(1A1)_modfa°t(cl)z)) .

(2Fo®)(1a,)-modfct((C1)|x —2)x =
The sought-for functor
Res<1> e} Resgr}%l((h)x — Cl,X
sends an object (c1,c?) in the right-hand side of (C.85), i.e.,
ch € (8% 0 ®)(1a,)-mod™*((C1)|x)x

and
¢ € Aix—0 @ ((®" 0 ®)(1a,)-mod™(C1).)
to the object

ObIV(CI>Ro<I>)(1A1)(Cl1) X (]* o (Id ®0b1V(¢RO¢)(1A1))(CY)) s

j*oj*OOblv((pRoq,)(lAl ) (e])
where the map
(Id ®0b1V<q>Roq>)<1A1>)(C/1l) — 4o 0b1V<<1>Roq>)<1A1)(C/1)
is obtained by applying the functor oblv gr.q1 Ay to the isomorphism
(8% 0 0)™ @ 1d)(e}) = j°(c}),

precomposed with the unit of the (®, ®%)-adjunction
(Id ®0blV(grop)(1,,))(cT) = ("o ®)® OblV(grop)(14,))(CT) =
~ 0bIV(gramy1a,) (@7 0 ®)™ @ Td)(c)) .
C.16. Tightness.

C.16.1. Let A be a unital factorization category. We will say that A is tight if for every z, 2’ : S — Ran
with 2 C 2/, the corresponding functor

Inszcy t Ase = Ag

admits a continuous right adjoint.

C.16.2. Many of the unital factorization categories we have introduced satisfy this property. This
includes representation-theoretic examples, e.g.,
g-mod,, KL(G).
and algebro-geometric examples:
QCoh(7),
where T is an affine counital factorization space, and

IndCoh*(T) and IndCoh'(T),

where T is a unital-in-correspondences ind-placid factorization ind-schemes, satisfying the conditions
from Sects. C.12.8 and C.12.9, respectively.
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C.16.3. Let A be a tight unital factorization category, and let C be a unital factorization module
category over C at some Z.

We shall say that C is tight if for every (z,z),(z,2') : S — 25 with z C 2, the corresponding
functor

insycy t Csz = Cspr

admits a continuous right adjoint.

C.16.4. The following is immediate:

Lemma C.16.5. Suppose that A is tight. Then for any Z — Ran, the factorization module category
Az s tight.

C.16.6. Take A = Vect, and recall the construction from Sect. C.14.7
(C.86) C, € CrysCat(Zg) ~» C € Vect-mod%*".

It is clear that the essential image of (C.86) is contained in the full subcategory of Vect-modfct
consisting of tight unital factorization module categories.

We claim:

Lemma C.16.7. The functor (C.86) is an equivalence onto the full subcategory of Vect-mod2® con-
sisting of tight objects.

Proof. The functor (C.86) admits a retraction (i.e., a left inverse), given by restricting the crystal of
categories from Z< to Z along diag,. We claim that this left inverse is an actual inverse when applied
to tight objects.

Indeed, let C’ be a tight unital factorization module category at Z. Let C’ be the corresponding
crystal of categories over Z<, and let C; denote the restriction of C’ along diag,.

The unital structure on C’ gives rise to a functor
We have to show that (C.87) is an equivalence.

By the tightness assumption, the functor (C.87) admits a right adjoint. Hence, in order to show
that it is an equivalence, it suffices to show that it is an equivalence strata-wise. However, this follows
from factorization.

d

C.16.8. Consider the following situation. Let A be a tight unital factorization category, and let C be
a tight unital factorization module category over it at some Z.

Consider the (strictly) unital factorization functor
Vaca : Vect — A,

see Sect. C.11.8.

C.16.9. We claim:
Lemma C.16.10. The unital factorization module category
fact

Resvacy (C) € Vect-mody

is tight.
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Proof. Set G := C, be the sheaf of categories on Z underlying C. Let C’ be the (tight, unital)
factorization module over Vect, attached Cj, by the functor (C.86).

The unital structure on C gives to a (strictly unital) functor

Cc' = C,
compatible with factorization (in the sense of Sect. C.14.11). Hence, we obtain a functor
(C.88) C’ — Resvac, (C).

We claim that the functor (C.88) is an equivalence. Indeed, this follows from the assumptions by
applying Lemma B.15.9.
a

C.16.11. We will use Lemma C.16.10 as follows. Let A be a tight unital factorization category, and
let R be a factorization algebra (in Vect).

Using the functor Vaca, we can consider the factorization algebra
Vaca(R) > R®1a
in A, and consider the corresponding lax factorization category

R-mod™*(A) := (R ® 1a)-mod™*(A).

We have a naturally defined functor between lax factorization categories
(C.89) R-mod™" @ A — R-mod™"*(A),
see (B.44).

Combining Lemmas C.16.10 and B.12.9, we obtain:

Corollary C.16.12. Assume that A is dualizable as a factorization category. Then the functor (C.89)
is an equivalence.

APPENDIX D. CHIRAL MODULES

The main purpose of this section is to prove Theorem 4.3.9, which gives a geometric description of
modules over commutative factorization/chiral algebras.

To do so, we first develop a general theory describing modules over chiral algebras in terms of
modules over topological algebras (although we do not write in these exact terms), with an especially
explicit understanding for “nice” Lie-* algebras.

This material largely consists of transporting [BD2, Sect. 3.6] into the derived setting. However, we
will encounter a surprise: a certain equivalence that always takes place at an abelian level, in order to
hold at the derived level requires a finiteness condition (see Sect. D.6).

D.1. A reminder: chiral vs factorization algebras.

D.1.1. Recall that, according to [BD2, Proposition 3.4.19] (see [FraG] for the derived version), fac-
torization algebras are the same as chiral algebras. Given a factorization algebra A, the corresponding
chiral algebra, thought of as a D-module on X, is given by

AP = Ax[-1].

For example, the unit factorization algebra corresponds to the chiral algebra wx (see our conventions
in Sect. 1.1.181).

D.1.2. Generalizing [BD2, Proposition 3.4.19], we have
(D.1) A-mod™* ~ A -mod™",

where modules on both sides can be taken on any space that maps to Ran.

81This was one of the main reasons for this choice of conventions, i.e., in order to be in line with [BD2].
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D.1.3. Let us recall also how the bijection between between chiral and factorization algebras plays
out in the commutative case.

Let A be a commutative algebra object in D-mod(X). Then the corresponding factorization algebra

A := Fact(A) is such that
Ax = A.
And the corresponding chiral algebra A" is A[—1]. Note that
oblv"(A?) = oblv'(A) ® wx.
D.1.4. For example, for the free commutative algebra A = Sym'(M[1]) for M € D-mod(X), we have
AT = Sym' (M1])[-1] = U™ (M),

where:

e In the left-hand side M is considered as an abelian Lie-* algebra;
o U is the functor of chiral envelope.

Note also that in this case.
oblv'(A) = Sym,, _(oblv'(M[1])) ~ Sym, _(oblv" (M) ® wg 1)

So, if M = ind"(€) = € ® Dx for a classical locally free sheaf € on X, then the corresponding
D-scheme
Specx (A)

is the scheme Jets(€Y ® wx) of jets into the vector bundle €Y ® wx.

D.1.5. Convention. In what follows, by a slight abuse of notation, for a given factorization algebra A,
we will use the same symbol A to denote the corresponding chiral algebra (i.e., we will not write .AC}‘).

D.2. The pro-projective generator for chiral modules.

D.2.1. Let A be a unital chiral algebra on X. Let A-mod<" denote the category of wnital chiral
A-modules at z. We let oblv, denote the forgetful functor A-mod<® — Vect.

For M € A-mod<", we will consider the action map
77 (A) © ML (),
as a map of chiral A-modules on X, where:

e j denotes the open embedding X — x — X;
e ¢ denotes the embedding of the point z into X.

D.2.2. We will also use a short-hand notation
M := oblv4 (M), M e A-modS™.
In what follows we will take about “elements” of M:

For V € Vect, by an element v € V we mean a point of the space Mapsy,.;(k, V).

D.2.3. In what follows we will denote by A, is the [1]-shifted !-fiber of A at x (this is the same as the
I-fiber at & € Ran of the factorization algebra corresponding to A), viewed as an object®? of A-mod<.

We let
1A,x S Az

denote the vacuum vector, i.e., the image of 1 € k ~ (wx ), under the unit map

vaca : wx — A.

821 fact, A, should more properly be denoted Afa“z, see Sect. B.9.7.
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D.2.4. Consider the category Modif(A) of unital chiral algebras A’ equipped with an isomorphism
«A/‘Xfa; = AlX*l

This category has fiber products, and hence is cofiltered.

Note that the category A-mod<" only depends on A|x_z, so for any A’ € Modif(A) we have a
canonical identification
A-mod ~ A’-mod".

D.2.5. Consider the functor
Modif(A) — A-mod", A’ — Al € A-mod™ ~ A-mod™.

Set

Par:= “lim” A, € Pro(A-modd).
A’ €Modif(A)

The object
oblv4(Pa,z) € Pro(Vect)

is equipped with a canonical vector 1p , comprised of the vacuum vectors 1,4/, € A’,.
D.2.6. Evaluation on 1p , gives rise to a natural transformation
(D.2) Hom(Pa .z, —) = oblva, A-modd — Vect.

The following assertion is a derived version of [BD2, Proposition 3.6.16]:
Proposition D.2.7. The natural transformation is an isomorphism.

D.2.8. The proof of Proposition D.2.7 is based on the following observation: we claim that the category
Modif(A) is equivalent to the category of pairs

(M € A-modS, m € M).
Namely, in one direction, to A" € Modif(A) we attach the pair (A%, 14/ ).

Vice versa, given (M, m) we let A’ be the fiber of the map
(D.3) a0 57 (A) TR G0 5 (A) @ M 4L ().

We claim that A’ has a natural structure of unital chiral algebra. This fits into the following general
paradigm:

Let L be a Lie algebra in a symmetric pseudo-monoidal monoidal category A, and let M be a
module over it. Consider L & M as a split square-zero extension of M. For an element m € M (i.e.,
a map 1a — M), the action of L on M gives rise to an automorphism ¢,, of L & M. Then we can
identify

Fib(L *“23™ M)
with

L x L,
LM

where the two maps L = L @ M are the compositions of the tautological embedding with: (1) the
identity map, and (2) ¢m,.

We apply this to A := D-mod(X), equipped with the chiral pseudo-monoidal monoidal structure,
so that 14 is the “constant sheaf’ on X. We take L = j, o j*(A) and M = i,(M). This endows A’
with a chiral algebra structure, i.e.,

A =o' (A) X jioji(A).
Fx0j* (A)Bix (M)

In order to show that A’ is unital, by Proposition C.7.13, it is enough to equip it with a quasi-unital
structure (see Sect. C.7.12 for what this means). The above fiber product presentation defines this
structure on the nose.
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Proof of Proposition D.2.7. This is tautological from Sect. D.2.8: the assertion of the proposition is
just the fact that the map
colim )fHom(M,M/) - M

(M, meM
is an isomorphism.

D.2.9. Assume now that j*(A) is connective. Let
(D.4) Modifconn (A) C Modif(A)
be the full subcategory consisting of those A’ that are connective.

Truncation < 0 on chiral algebras defines a right adjoint to the above inclusion. Hence, the opposite
of (D.4) is cofinal.

In particular, the object P4 , maps isomorphically to

“lim” A’ € Pro(A-mod").
A’ eModifconn (A)

D.2.10. For an integer m, let
Modifconn,>-m(A) C Modifconn (A)
be the full subcategory consisting of those objects A’, for which A’ € Vect=~™ =0,

Let Modifconn,ev-c(A) be the full subcategory of Modifconn(A) consisting of those objects A’, for
which A, is eventually coconnective (as an object of Vect). Le.,

Modif conn,ev-c(A) = colim Modif conn,>-m (A).

Note that if j*(A) is itself eventually coconnective, the above condition on A}, is equivalent to A’
being eventually coconnective.

D.2.11. Set

. / h
PA,z,evfc = “lim” Az S Pro(.A—mod; )
A’€Modifconn,ev-c (A)

We have a tautological map
(D5) PA,w — P.A,ac,ev—c
in Pro(A-modZ").
Lemma D.2.12. The map
Hom(Pa,z,ev-c, —) = Hom(Pa,z,—),
defined by (D.5) is an isomorphism, when evaluated on (A-modS*)>~°°.
Proof. Tt suffices to show that if M € (A-mod*)=~™ for some m, then

colim Maps (AL, M) — colim Maps(AL, M)
A’€Modifconn,ev-c (A) A’€Modifconn (A)

is an isomorphism.
However, it is clear that the map

Maps(AL, M) — colim Maps(AL, M)

colim
A’eModif conn, > -m (4) A’ €Modif conn (A)

. . . !
is an isomorphism for every m’ > m.

Corollary D.2.13. The map
Hom(Pa,z,ev-c;, —) = 0Oblvy

is an isomorphism, when evaluated on (A-modS*)>~°°.
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D.3. The case of Lie-* algebras. In this subsection we will assume that the chiral algebra A is the
chiral universal envelope U (L) of a (connective) Lie-* algebra L. Recall that we can identify
A-mod® ~ L-mod.
We will study how the object P4 , looks like in this case.

D.3.1. Consider the categories
Modif (L) and Modifconn (L)

defined as in the case of chiral algebras, i.e., these are Lie-* algebras equipped with an isomorphism
with L over X — x.

We have two pairs of adjoint functors
U™ : Modif(L) = Modif (A) : oblv™ """

and
U™ : Modifconn (L) = Modifeonn(A) : oblv™ 1"

In particular, the corresponding functors
Modif (L)°" — Modif(A)°” and Modifconn (L) — Modif (A)ehun

are cofinal.

D.3.2. In particular, we obtain that we can write

R TIE)) . L-modSh
Pae = L’el\%lcl;fllif(L) L/-modie-* (k)
and when L is connective also as
RTINS . L-modSh
Pa.~ LIEMOI(;{&OM(L) lndL’—modI,I;ie‘* (k),
where
° indL_mOdi'h : L'-mod¥®” = L'-mod<® ~ L-mod" is the left adjoint of the restriction func-

L’-modLie-*
z
tor.

D.3.3. Assume now that j*(L) is classical (i.e., is in cohomological degree 0 as a right D-module), and
let

Modifer fiat (L) C Modifeonn (L)
be the full subcategory, consisting of those modifications L’ that are classical and flat (as O x-modules).
Note that the functor of chiral universal envelope maps
(D.6) Modifai fiat (L) — Modifconn,ev-c(A).

Proposition D.3.4. Assume that j*(L) is finitely generated and locally free as a D-module. Then the
(opposite of the) functor (D.6) is cofinal.

We note that the assertion of the proposition would be false without the finite generation assumption,
see Sect. D.6.

The proposition will be proved in Sect. D.4. We will now consider some applications.

Corollary D.3.5. Under the assumptions of Proposition D.3.4, we have

. . L—mod?h
P.A,:c,ev—c =~ “lim” mn L’ ;Lie-*
L’eModify f1at (L) -mody

(k).
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D.3.6. Take
L=L; =9g®Dx,
where g is a classical finite-dimensional Lie algebra (or a central extension of Lg).
In this case, the category Modifci aat (L)°P contains a cofinal family of objects of the form
g®Ox(fn-:v) ® Dx.
Ox
—mod;h

’_ Lie-*
mod

ind? (k),

Note that the corresponding objects indi (k) are the images under (4.2) of

where g, C g is the nth congruence subalgebra.
Hence, combining Corollaries D.3.5 and D.2.13, we obtain:
Corollary D.3.7. The natural transformation
co}lim f]-(om(indgn (k),—) = oblvy, (L-mod$")” > — Vect
is an isomorphism.

D.3.8. Assume now that M is abelian (and finitely generated and locally fee as a D-module). Note
that in this case

A= U () = Sym' (M[1])[1]
is a commutative chiral algebra (see Sect. D.1.4).

In this case we can talk about commutative chiral A-modules: this is by definition the category of
modules over the commutative algebra Sym(M,), and it has a natural forgetful functor to

A-mod® ~ M-mod<".
Denote
Modifel ats.g. (M) := {M € D-mod(X)7- 28 M|, ~ (M)}
From Corollaries D.3.5 and D.2.13, we obtain:

Corollary D.3.9. The natural transformation

li Hom(Sym(M,), =) = oblvy, (M-modS®)” > — Vect
e 1. 0 O EROG), 7) = oblvac, - Qbmodi?)T = Vee

is an isomorphism, where
Sym(M.,) € Sym(M,,)-mod — M'-mod" ~ M-modS".
D.4. Proof of Proposition D.3.4.

D.4.1. Let L be an eventually coconnective Lie-* algebra on X, and let us be given a map
37(L) = (L)
Consider the category

C; = {L' € Modifagat(L), L' % L|o|x_» = a}.
We will prove:

Proposition D.4.2. Assume that 5*(L) is finitely generated and locally free as a D-module. Then the
category Cj is non-empty.

Let us show how Proposition D.4.2 implies Proposition D.3.4.
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Proof of Proposition D.3.4. By adjunction, it suffices to prove that in the setup of Proposition D.4.2,
the category Cj is contractible. We will show that it is cofiltered.

Let
Ly:1— C;
be a finite diagram. We need to show that it can be extended to a diagram
Lqu Y Cz,
where I is a left cone over I.
Set _
Ly:= 1i}n L,

where the limit is taken in the category of Lie-* algebras over L. Note that L is eventually coconnective.
By construction, we have a map _
ar 2 j*(L) = j"(L1).
The datum of L}« is equivalent to finding L' € Modife1 fas (L) and a map
Oé,I : L, — Z[,
extending ay.

However, the existence of (L', ) is guaranteed by Proposition D.4.2

[Proposition D.3.4]

D.4.3. The rest of this subsection is devoted to the proof of Proposition D.4.2. The starting point is
the following observation ([BD2, Lemma 2.5.13]):

Lemma D.4.4. Assume that j* (L) is classical, and the underlying D-module is finitely generated and
locally free. Then the tautological map

0" (0blviies (L)) =  “lim”  oblvyes (L
Jjroj"(oblviier (L)) renonm” 1y OPIVLe (L)

s an isomorphism in Pro(D-mod(X)), where:

e oblvyri.~ is the forgetful functor from the category of Lie-* algebras to the category of D-modules
on X;
e ji: D-mod(X — z) — Pro(D-mod(X)) is the pro-left adjoint of j*.
D.4.5. Let L be concentrated in degrees [—n, 0]. We will argue by induction on n.
Consider first the case n = 0.
By Lemma D.4.4, we can find L' € Modifcr,aat(L), so that o extends to a map
o L' 5L
as plain D-modules.
The obstruction to o’ being a map of Lie-* algebras is a map
L'RL — A.(L),
which vanishes on (X —z) x (X — z).
The assumption that j*(L) is finitely generated implies that the naturally defined map
(G x 310G x ) (LEL) = jio j* (L) B ji o j*(L)

in Pro(D-mod(X x X)) is an isomorphism. Hence, again by Lemma D.4.4, there exists an arrow
L" — L’ in Modif fat (L) such that the composition

L'RL - LKL — A.(L)

vanishes.
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Hence, L"” — L' — L provides the desired object of C;.

D.4.6. We now perform the induction step. Suppose the assertion is valid for Tznfl(Z), i.e., that can

find an object L' € Modif.1 fiat (L) and a lift of o to a map of Lie-* algebras
L' — =" Y(D).
Fix this map, and consider the fiber product
L X L'=1.
r2n—1(L)

We wish to find an arrow L” — L’ in Modifa,gat (L), so that the map
Dok = B 1
1%
admits a left inverse.
By Lemma D.4.4, after replacing L', the extension
i
is given by an (n + 2)-cocycle, which is a map
(L) — AT(L),
which vanishes on (X — z)", where A™ denotes the main diagonal X — X".

Now, by the same argument as above, using the fact that L is finitely generated, we can find an
arrow L” — L' in Modifc aat (L) such that the composition

(Lll)ﬂn N (L/)lgn N A:L(Z/)
vanishes.

Hence, the extension L” — L' admits a splitting.
O[Proposition D.4.2]

D.5. Proof of Theorem 4.3.9. We will prove the variant of the lemma with a fixed x = x € Ran.
The factorization version is a variant of this in families.

D.5.1. We start with the following observation: let us regard the assignment
(D.7) Y~ QCohe,(9)” 7, (Y1 5 ¥a) -
as a functor from the category of ind-affine ind-schemes to co-categories.

We claim:

Proposition D.5.2. The functor (D.7) commutes with totalizations, in the sense that if Y* is a
cosimplicial ind-affine ind-scheme and

Y ~ Tot(F°*),
where the limit is taken in PreStk, then the functor
QCoh,(Y)” > — Tot(QCoh,,(4%)” ™)
is an equivalence.

The proposition will be proved in Sect. D.8. We now proceed with the proof of Theorem 4.3.9.
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D.5.3. For an affine D-scheme Y, let A denote the corresponding commutative algebra in D-mod(X)
so that oblv!(A) is connective and Y = Specy (4).

Let A denote the corresponding (commutative) chiral algebra, see Sect. D.1.3, so that A corresponds
to the factorization algebra Oy, and

Oy-mod™* ~ A-mod<".

Over the next few subsections we will reduce the statement of Theorem 4.3.9 to the case when
A = Sym'(M[1]) for M a classical locally free finitely generated D-module.

D.5.4. We interpret the functor I'(£v (Y), —)°™" of (4.4) as
QCoh,, (£v(Y)) — A-modZ".

This functor is t-exact and both categories are right complete in their respective t-structures. Hence,
it is in enough to show that the functor I'(£v (Y), —)°*" induces an equivalence

QCoh,, (Lv(Y))="=" — (A-mod<?)Z0-<m
for every m.

Note now that if A; — As is a map in ComAlg(D-mod (X)), such that the induced map 7=~ (A1) —

727™(Ay) is an isomorphism, the corresponding functors

QCoh,,(£v(42)) = QCoh,,(£v (Y1)

and
As-mod® — A;-mod®

. . . >0,<
induces equivalences on the corresponding (—)=%=™

categories.
In particular, we obtain that it is enough to show that the functor
QCoh (£5 ("4))*" =" = ("A-mods") > ="

is an equivalence for ™A := 7'27"’(A)7 and the corresponding ™Y and "A.

D.5.5. By the assumption that A is D-afp, we can find a simplicial object Aq in ComAlg(D-mod(X))=°
with terms A,, = Sym'(M,[1]), where M,, is a classical® locally free finitely generated D-module, such
that ™A is a retract of 727 (|As|), see Sect. B.6.2.

Hence, it is enough to prove that
QCoh,, (Lv(Y))="=" — (A'-mod")="="
is an equivalence for A’ := 727 (|A,|) for A, as above.
Applying Sect. D.5.4 again, we obtain that it is enough to prove that
QCoh,, (Lv(Y")="=" — (A"-modf") =" =™
is an equivalence for A” := | A,| for A. as above.

Hence, we can obtain that it is enough to prove Theorem 4.3.9 for A is of the form |A.| for A. as
above.

83Recall that according to our conventions, this means that oblv”(M,,) is classical, i.e., oblv!(M,)[1] is classical.
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D.5.6. For A, as above set Y" := Specy(Ay), and consider the corresponding simplicial affine D-
scheme Y°, so that
Y ~ Tot(Y*).
It is clear that that the functor
Y= Lo (Y)

preserves limits, so that
Ly (Y) ~ |Ev(¥7)].
Hence, by Proposition D.5.2, the functor
QCoh(£v(Y))” ™ — Tot(QCoh(Lv (Y*)))”
is an equivalence.

The functor
A-modZ — Tot(An-modS™)
is also an equivalence: indeed, this is obvious for non-unital modules (this is a general property of
categories of modules over operad algebras), and this property is inherited by unital modules by [CR,
Proposition 3.8.4].

Hence, it is enough to show that the functors
QCoh,,(Lv(Y")” ™ — (A-mod")”
are equivalences for every n.

This reduces the assertion of Theorem 4.3.9 to the case when A = Sym'(M[1]) for M a classical
locally free finitely generated generated D-module.

D.5.7. Let Y be general an affine D-scheme. Consider the functor
(v (Y), )™ : QCoh,,(L£v(Y)) — A-mod"
and its (a priori discontinuous) right adjoint. Tautologically, we have
[(Lv(Y),—) ~ oblv, o T(Lv (Y), —)™,
hence we obtain a natural transformation
(D.8) L(Lv(Y),—) o (D(Lv(Y), —)™)® = oblvy,.
We claim that it suffices to show that (D.8) is an isomorphism when evaluated on (A-modZ*)>~°.

Indeed, this follows from the fact that both oblv, and I'(£v(Y), —) are conservative on the even-
tually coconnective subcategories (see Sect. D.7.1).

D.5.8. We will now specialize to the case when A = Sym'(M[1]) for M € D-mod'(X)¥loc-freefe and
prove that (D.8) is an isomorphism on (A-modS*)>~° by an explicit calculation.

D.5.9. Let Modifai fiat,f.g. (M) be the category
{M’ € D-mod" (X)) & M| x_, > M|x—_s}.
We claim that the ind-scheme £v(Y) identifies in this case with

“colim” Spec(Sym(M%)).
M eModife) f.g. flat P ( Y ( Z))
Indeed, since the question is local around z, with no restriction of generality we can assume that
X is affine. Let t be a uniformizer at x. Then for a connective commutative algebra R, we have by
definition

Maps(Spec(R), £v(Y)) = Ma‘pSComAlg(D—mod(X))(Symox (M), R((#)) ~ MapSD-mod(X)(Mv R((®))
Since the map
jgroj (M) — “lim” M

M €Modife) flat,f.g.



362 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

is an isomorphism in Pro(D-mod(X)), we have

Ma‘pSD—mod(X) (M? R((t))) = C(zv[h,rn MapSD—mod(X) (M/’ R[[t]]) = C%}[l,rn Ma’pSVect (M;ca R) &

~ c%[i/m MapsCOmAlgwect)(Sym(JV[;), R) = c%[i/m Maps(Spec(R), Spec(Sym(M,))) =
=: Maps (Spec(R)7 « C%}ti/m 7 Spec(Sym(M”)) ,
as desired.

D.5.10. For M’ as above, let us denote by
O(ny,)v € QCoh, (Lv(Y))
the direct images of the structure sheaf along the map,

Spec(Sym(M%)) — £v(Y).

The above description of £v(Y) implies that the functor I'(£v (Y), —) is isomorphic to
C(gv[lilmﬂfom(o(m/m)v ,—)-
The functor
T(£v(Y), —)™™ : QCoh,,(£v(Y)) — A-modS"
sends Oqvr v to

Sym(M,,) € A-modS".

Now, the required isomorphism follows from Corollary D.3.9.
O[Theorem 4.3.9]

D.6. Failure of Theorem 4.3.9 in the non-finitely presented case. In this subsection we will
explain why Theorem 4.3.9 does not hold when Y is not almost finitely presented (in the D-sense).
Remark D.6.1. One can show that the functor
(D.9) QCoh,,(£v(Y))” > — (A-mod")”
induces an equivalence of the abelian categories
QCoh,, (£ (Y))” — (A-mod").
So, the failure of (D.9) to be an equivalence occurs at the derived level.

D.6.2. We will take A = Symg, (M), where M is an infinitely-generated D-module (i.e., the direct
sum of countably many copies of Dx). We will show that (D.9) fails to be an equivalence in this case.

Namely, we will construct two objects F1,F> € (QCoh,,(£v(Y))® with images in (A-modS")?
denoted Mj, Mz, respectively, and an element in Exti_mo qen (M1, M2) that does not come from an

element in EXt?;zCohm(sv ) (F1, T2).

Remark D.6.3. It follows from the description of the category QCoh,,(£v(Y))¥ in Sect. D.7.5 that the
category QCoh,,(£v(Y))? is the bounded derived category of its heart. So the above inequality of the
Ext? spaces means that (A—modfch)’J is not the bounded derived category of its heart.
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D.6.4. Write
M = colim M;,
where M; are finitely generated.

Let us call a modification M’ “quasi-finitely generated” if all the intersections M’ N M; are finitely
generated. As in Sect. D.5.9, we have

Lv(Y) ~ “colim” Spec(Sym(My,)).

- M’ €Modifc) flat,q-f.g.
By the same logic as in Sect. D.5.10, the functor
F colim Hom(Ouryv,—), QCoh,,(£v(Y)) — Vect

M/EMOdifcl,flat,q—f,g,

identifies with I'(£v(Y), —). In particular, it is t-exact.

Hence, if for some M’ and F € QCoh,,(£v(Y))” we have a class

o € Extoon,, (ev (1) (Oou)v, F),
we can find M C M’ such that the image o of o’ in
EXt&00h, (2w (90) Oy v, F)

vanishes.
D.6.5. Asin Sect. D.5.10, the image of Oy )v in A-mod< is Sym(M},) € A-modS".

By adjunction for any M € A-mod<®, we have

%OmA»modgh (Sym(M;), M) = gfom]v[/-mod!;ie’* (k7 M)

D.6.6. Hence, it suffices to find F € QCoh,,(£v(Y))® with image M € (A-mod)¥ and a class
/Bl € EXt?\/[’-mod,I;ie"K (k7 M)
such that for any M’ C M’, the image 8" of 8’ in
Ext0r moavie- (£, M)
is non-zero.

We will take F to be the sky-scraper at the origin of Y, so that M = k, with the trivial chiral action
of M.

D.6.7. We calculate

j{omM’—mod};ie'* (M17 MQ) = li?lgfom(M’ﬁMi)-mod{;ie‘* (Mh MQ)
For M1 = My = k, we obtain
Exti[,_mod%ie_* (k, k) = lim A2V N M;),) ~
~ lim Hom™""*¥™ (M M) B (M NM;), 8z) ~ Hom™ osy™ (M ’IM, 5y.2).

i D-mod(X x X)© D-mod(X x X)?
Now, it is clear that since M’ is infinitely generated, we can find an element

ﬂ, c Homantisym (MI X M,, 6z,z),

D-mod (X x X)?
such that for any M", the restriction 8" of 8’ to
Homantisym (M” X M”, 6171)

D-mod (X x X)?

is non-zero.
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Remark D.6.8. Note that the above counterexample does not work for Ext' instead of Ext? (as must
be the case, since (D.9) is an equivalence at the abelian level). Indeed, for any

'Y/ € HOIanmod(X)Qy (Ml7 53?)7
there exists M” C M’, such that the restriction v of 7' to
HomD—mod(X)v (MN7 51)
vanishes.

D.7. Proof of Proposition D.5.2: preparations.

D.7.1. First, we claim that if Y is an ind-affine ind-scheme, then the functor
I'(Y,—) : QCoh,,(Y) — Vect
is conservative on QCoh,,(Y)” .

Indeed, since I'(Y, —) is t-exact and the t-structure on QCoh,,(Y) is right-complete, it suffices to
show that I'(Y, —) does not annihilate objects from QCoh,,(4)%.

Write Y is a filtered colimit of schemes Y, under closed embeddings
fa,p: Yo = Y3
An object F € QCoh,, (Y)Y amounts to a collection
{Ta € QCO(Ya)”, Fa = H'(fa,5(T))}-

In particular, the maps
F(ycwg:a) — F(yﬁ,?ﬁ)
are injective.

We have
I'(Y,7) ~ colimI'(Ya, Fa)

and the statement is manifest.
D.7.2. We claim:
Proposition D.7.3. The functor
I'(Y,-) : QCoh,, (¥)=° — Vect=°

is comonadic.
Given the conservativity, the assertion of the proposition follows from the next general observation:

Lemma D.7.4. Let C,D be cocomplete DG categories, equipped with t-structures, compatible with
filtered colimits. Assume that D is right-complete in its t-structure. Let F' : C — D be a t-exact
continuous functor. Assume that F is conservative on C”~°°. Then the induced functor

>0 >0
07 — D7
5 COmOnadiC.

Proof. By Barr-Beck-Lurie, suffices to show that F' preserves totalizations of cosimplicial objects in
C2°. Thus, let ¢® be a cosimplicial object in C. We have to show that the map

F(Tot(c*)) — Tot(F(c*))
is an isomorphism.
Since D is right-complete in its t-structure, it suffices to show that for every n,
7<"(F(Tot(c*))) = 7="(Tot(F(c")))

is an isomorphism.
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Let
Tot="(c®) and Tot="(F(c*))
be the totalizations of the corresponding (n + 1)-skeleta.
We have natural maps
Tot(c®) — Tot="(c*) and Tot(F(c*)) — Tot="(F(c")).

Since the terms of ¢® and F(c*) are in C=°, the above maps induce isomorphisms between the 7="
truncations.

Hence, it suffices to show that
F(Tot="(c*)) — Tot="(F(c"))
is an isomorphism.

However, this is obvious, since the limit over A<, is a finite limit.

D.7.5. Note that we have a canonical equivalence
Pro(Vect)? ~ Functaisent (Vect, Vect), 'V — Hom(V,—).

where Functaisent (—, —) denotes the category of exact k-linear functors that are not necessarily contin-
uous.

Under this equivalence, the monoidal structure on Functdisent(—, —) given by composition corre-

sponds to the ® monoidal structure on Pro(Vect) (see [Bei]):

For
V =“lim” V; and W = “lim” W},
el J€I
we have
V®W =lim | colim <(“lim” Vi) ® ij) ,
J€J ‘/ijV]‘ i€l
where:

° ij runs the category of compact objects mapping to Vj;
e In the right-hand side, the outer limit and the inner colimit are taken in Pro(Vect).

N
Thus, comonads on Vect correspond to algebra objects in Pro(Vect) with respect to ®. Comonads
that are left t-exact correspond to algebra objects in Pro(Vect=?).

D.7.6. Let My denote the comonad on Vect corresponding to the functor I'(Y, —), so that
QCoh,,(Y)=° ~ My-comod(Vect=°).
The object of Pro(Vect=") that corresponds to My is described as follows.
Let Oy be the object of Pro(ComAlg(Vect=?)) associated to the ind-affine ind-scheme Y. T.e., if
Y=« coliim” Yi,
then
Oy := “lign” Oy, .

Let
oblveanalg : Pro(ComAlg(Vect)) — Pro(Vect)

be the pro-extension of the functor

0oblvcomalg : ComAlg(Vect) — Vect .

The endofunctor of Vect underlying the comonad My is given by
V = Hom(oblvimmaig(Oy), V).
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D.7.7. The proof of Proposition D.5.2 will be based on the following two observations:

Lemma D.7.8. For every natural number n, the functor oblv(P;’g‘;]Alg : Pro(ComAlg(Vect=%)) —
Pro(Vect=?), followed by the truncation

Pro(Vect=") — Pro(Vect="="")
commutes with geometric realizations.

Lemma D.7.9. For every natural number n and for every natural number m, the functor

V = VO™ Pro(Vect=") = Pro(Vect="),

followed by the truncation
Pro(Vect=") — Pro(Vect="="")

commutes with geometric realizations.

Let us temporarily assume these lemmas and prove Proposition D.5.2.
D.8. Proof of Proposition D.5.2.

D.8.1. It is enough to show that for every n, the functor
(DlO) QCOhCO(E)ZO’S" — Tot(QCOhCO(yQ)ZO,Sn)

is an equivalence.

D.8.2. Note that M is a left-exact endofunctor Vect, we can create its truncation MS" that acts on
VectZ%=" namely,

M="(V) := 75" (M(V)).

This assignment is monoidal, so if M is a comonad, then M=" inherits a natural comonad structure,
and we have

M-comod(Vect=") x_ Vect=*=" ~ M="-comod(Vect="=").
Vect=0

D.8.3. According to Proposition D.7.3, we have:
QCoh,, (Y)=° ~ My-comod(Vect=") and QCoh,,(Y*)=" ~ Myes-comod(Vect=’).
Hence,
QCoh,, (Y)="=" ~ M?"—comod(\/ectzo’g") and QCoh,(Y*)="=" ~ M,?.n—comod(\/ectzo’gn).
D.8.4. We now observe:
Lemma D.8.5. Let I be an index category and let
Mz : I — Comonad(C), i+ M;

be an I-diagram of comonads on a category C. Let M be another comonad, equipped with a compatible
collection of maps M — M;. Suppose that for every natural number m, the map

M*™ = lim M™
7

is an isomorphism, where:

e The notation M*™ means an m-fold composition of M, and similarly for M;;
e The limit in the right-hand side is taken in the category of endofunctors of C (i.e., is computed
value-wise).
Then the induced functor
M-comod(C) — lim (M;-comod(C))

is an equivalence.
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D.8.6. Hence, in order to prove that (D.10) is an equivalence, it suffices to show that for any m, the
map

(D.11) (MF™)™ = Tot (M52)*™)
is an equivalence.

D.8.7. By Sect. D.7.6, we have
My-comod(Vect=") ~ Oy-mod(Vect=")

and
Mye-comod(Vect=?) ~ Oye-mod(Vect=’),

N
where we regard Oy as an algebra object in (Pro(Vect), ®) via the natural forgetful functor

Pro(ComAlg(Vect)) — AssocAlg(Pro(Vect), 5)
Note now that in the situation of Proposition D.5.2, the map
Oy — |Oyn|
is an isomorphism, where the geometric realization is taken in Pro(ComAlg(Vect)).

Hence, D.7.8 and D.7.9 guarantee that the maps (D.11) are isomorphisms, as required.
O[Proposition D.5.2]

D.9. Proof of Lemmas D.7.8 and D.7.9.
D.9.1. The key input is the following:

Lemma D.9.2. Let C be an n-truncated category (i.e., the mapping spaces have homotopy groups mm
vanish for m > n). Then the map

| = |<nt1 = | =], Funct(A°?,C)— C
is an isomorphism, where the left-hand side is the colimit over A%pnﬂ.
D.9.3. Proof Lemma D.7.9. Since A°P is sifted, it suffices to show that the binary operation
(D.12) Pro(Vect="="") x Pro(Vect="="") — Pro(Vect="=""), V,W — V OW
commutes with geometric realizations in each variable.

However, by Lemma D.9.2, the functor of geometric realization in Vect<%=~"

it is clear that (D.12) commutes with finite colimits in each variable.

is a finite colimit, and

O[Lemma D.7.9]

D.9.4. Proof of Lemma D.7.8. By Lemma D.9.2, it suffices to show that the functor
oblvEis Al : Pro(ComAlg(Vect=*="")) — Pro(Vect="="")
commutes with colimits over AZ, .
The rest of the argument essentially reproduces [Lu2, Proposition 6.1.5.3]:
Note that for any finite index category I and a category C, the naturally defined functor
Pro Funct(I, C) — Funct(I, Pro(C))
is an equivalence.
Furthermore, for an object

“lim” (i = ¢4,a) € Pro(Funct(I, C))

o

and the resulting object
i+ “lim” ¢; o € Funct(I,Pro(C)),
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we have
colim (“ lim” ci,a) ~ “lim” ( colimc;,q | -
el @ o el

P

We apply this observation to I = AZ, ., and C being

ComAlg(Vect="="") and Vect="="",

Hence, in order to prove Lemma D.7.8, it suffices to show that the functor

<0,27n) <0,>—n

oblvoomalg : ComAlg(Vect= — Vect

commutes with colimits over AZ, ;.

However, this follows from Lemma D.9.2 combined with the fact that the usual geometric realization
functor commutes with oblvcomalg.
O[Lemma D.7.8]

APPENDIX E. THE SPECTRAL SPHERICAL CATEGORY

Throughout this section we let H be an arbitrary finite-dimensional algebraic group. Our goal is to
define the factorization category
IndCoh* (HeckePe!°%).

When H = G, the category IndCoh* (Heckeg’ec’loc) =: Spcg™ is the spectral counterpart of Sphg,
and it acts by Hecke functors on the global spectral category. This action will play a key role in the
sequel to this paper.

The difficulty we face is that we have not found a way to plug Hecke$*'°¢ into one of the previously

discussed constructions, i.e.,
QCoh(—), QCoh_,(—), or IndCoh™(—)
to obtained the desired category.
Instead, we will define it as bi-coinvariants with respect to £&(H) inside IndCoh*(£v (H)), where

the latter also requires some care, as the factorization scheme £v(H) is not ind-placid.

E.1. A 1l-affineness property of LS}®. Throughout this subsection we fix an affine scheme S and a

map z : S — Ran.

E.1.1. Consider QCoh(£{ (H))s as an QCoh(S)-linear monoidal category with respect to convolution.
Note that we have:

Funct (QCoh(S5), QCoh(S)) ~ QCoh(LSy%)

QCoh(ed (H))s-mod
as monoidal categories.

This gives rise to a pair of adjoint functors
(E.1) QCoh(LS'%)-mod = QCoh(£Y,(H))s-mod,

CC  ®  QCOh(S), C s (C)¥Hs,

QCoh(LSr}?;S)

Remark E.1.2. Throughout this section, the symbols (7)2$(H)5 and (—) indicate weak® in-

5 (H)s
variants/coinvariants of the group-scheme £&(H)s acting on a QCoh(S)-linear category.
E.1.3. We have the following assertion ([Ra4, Lemma 9.8.1]):

Proposition E.1.4. The functors (E.1) are mutually inverse equivalences.

84Here “weak” is as opposed to “strong”. Note that we could not even talk about strong invariants/coinvariants,
because we are talking about weak actions.
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E.1.5. Let C be a module category over QCoh(£% (H))s. The functor of £ (H)s-averaging
AVEVs oy ot ns
naturally factors via a functor
(E.2) C ¥
We claim:

Corollary E.1.6. The functor (E.2) is an equivalence.

Proof. Proposition E.1.4 implies that the functor
C s CSv (s
commutes with colimits.

Hence, both sides in (E.2) commute with colimits. Any object in QCoh(£% (H))s-mod can be
written as a colimit of objects of the form QCoh(£$ (H))s ® D, where the module structure comes
from the first factor. Hence, we obtain that it is sufficient to prove that (E.2) is an equivalence for such
objects.

However, the latter is obvious: the corresponding functor is the identity functor

QCoh(S) ® D = (QCoh(£4(H))s ® D) s (QCoh(£4(H))s ® D)™ ™% ~ QCoh(S) @ D.

% (H)s
O
E.1.7. We now claim:
Corollary E.1.8. The functor
Qugres, : QCoh, (LSpY) — QCoh(LSyY)
is an equivalence.
Proof. The fact that S — LS;‘;%S is an fpqc cover implies that the functor
QCoh(S) ® QCoh(S) — QCoh,, (LS}%)
QCoh(gd (H))s ’
is an equivalence (cf. [Ga5, Proposition 6.2.7]).
Hence, it remains to show that the functor
QCoh(S) ® QCoh(S) — QCoh(LS}%)
QCoh(ed (H))s ’
is an equivalence.
However, the latter functor is the functor (E.2) for C = QCoh(S).
(]

E.2. Definition of Sph};®.
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E.2.1. Recall that the local spectral Hecke stack is by definition

1
Hecke7°°° ;= LS7® x LSpH*.
Lsmer

Our approach to the definition of IndCoh* (Hecke$P*'*°) is based on the following observation:

Lemma E.2.2. The factorization prestack Hecke}?*'°° identifies canonically with the double quotient

L3 (H)\Lv (H)/L% (H).

Proof. By definition, the fiber product LS5® . x LSE® identifies with

mer
SH

L5 (H)\ Stabe g (sees(r)) (0)/£3 (H),
where:

e 0 € £v(Conn(h)) is the trivial connection;
o Stabgy (sets(m)) (0) denotes the stabilizer of 0 with respect to the gauge action of £v (Jets(H)) ~
L(H).

However,
Stabeg (Jets(m)) (0) = £v (Stabjets(ay (0)),
while
Stabjes(my (0) ~ H,

as a group D-scheme.

E.2.3. We also note:

Lemma E.2.4. For S € Sch2fl, the quotient (£v(H)/LE(H))s is locally almost of finite type.

Proof. First, we note that the unit section
S = (Lv(H)/L3(H))s

is an isomorphism at the classical level. (Indeed, for any affine Y, the map £3(Y) — £v(Y) is an
isomorphism at the classical level.)

Hence, by [GaRo4, Chapter 1, Theorem 9.1.2], it suffices to show that the cotangent space to
(Ev(H)/LE(H))s at the unit section is laft (see [GaRo4, Chapter 1, Sect. 3.4.1] for what this means).
However, this cotangent space is the dual of

(Ev(h)/L5(h))s,
which makes the assertion manifest.

O

E.2.5. In what follows we will define the (monoidal) factorization category IndCoh* (£v (H)), equipped
with an action of the monoidal category QCoh(£E (H)) on the two sides. We will then set

(E.3) IndCoh* (Hecke$P°*'°%) := (IndCoh* (£v (H)))

edH)yxed (H)

The caveat here is that £&(H) is not placid (and hence, £v(H) is not ind-placid). Yet, we will
show that the construction of IndCoh*(—) in B.13.17-B.13.22 is applicable in this particular case.
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E.2.6. Let S, be as in Sect. B.13.9. Consider the relative affine scheme 2@ (H)s, and the relative
ind-affine ind-scheme £v (H)s

First, we claim:
Lemma E.2.7. The functor
U

-

: IndCoh™ (2% (H))s, — QCoh(LL (H))s,

ed(H)s,

is an equivalence.

Proof. The assertion holds for any smooth target scheme Y. Indeed, one shows that for S, = X7, the
relative affine scheme £3(Y) xs is isomorphic to the limit of a sequence of affine blow-ups with smooth
centers, starting with Y? — X7, see Sect. E.12.

In particular, £&(Y) x1 is isomorphic to a filtered limit of relative affine schemes Y;, — S, that are
smooth.

We have:
IndCoh™ (£&(Y))s,, =~ lim IndCoh(Y»)
(with respect to push-forwards) and
QCoh(£L(Y))s, ~ lim QCoh(Yy,),
and the functor ¥ ot corresponds to the compatible family of functors
Py, : IndCoh(Y;) — QCoh(Y,),

all of which are equivalences, since Y,, are smooth.

(H)s,

O

E.2.8. According to Sect. A.5, since £v(H)s, is an ind-affine ind-scheme, we have a well-defined

category IndCoh™(£v (H))s,, -

The action of £5(H)s, x £5(H)s, on £v(H)s, defines on IndCoh*(£v(H))s, a structure of
bimodule with respect to IndCoh*(£& (H))s,, -

Hence, thanks to Lemma E.2.7, we can think of IndCoh*(£v(H))s, as a bimodule with respect to
QCoh(£¢(H))s..-

E.2.9. Consider IndCoh*(£v(H))s,
the right.

o

as a module over QCoh (£ (H))s,, with respect to the action on

e% e

Direct image with respect to the projection
(E.4) £v(H)s, — (Lv(H)/L3(H))s
gives rise to a functor

(E5) (IndCoh™(£v(H))s,)

a

— IndCoh™ ((&v (H)/LS(H))s,,) =~

Lemma E.2.4
~

i~ IndCoh((Lv (H)/LE(H))s.,)-

e (H)s,

We claim:

Lemma E.2.10. The functor (E.5) is an equivalence.

Proof. Since So — (£v(H)/LL(H))s,, is an isomorphism at the reduced level, Zariski-locally on Sa,
the map (E.4) splits as a product: indeed, the restriction of the étale £3(H)-torsor (E.4) to Sq is
trivial, and hence over any open affine of S5 C Sa, the £5 (H)-torsor (E.4) itself is trivial.

Hence, by Zariski descent, it suffices to show that for Z, — S, where Z, is an ind-affine ind-scheme
locally almost of finite type, the functor

(Indcoh* (Zo x £5(H)s, )) — IndCoh(Z,)
Sa

e (H)s,
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is an equivalence.
To prove this, it suffices to show that the functor

(E.6) IndCoh(Z,) ®  QCoh(£L(H))s, ~ IndCoh™(Zs x £5(H)s,)
QCoh(Sq) Sa

is an equivalence.

To prove (E.6), we can assume that Z, is an affine scheme. Writing £5(H)s,, as a limit of relative
affine schemes Y, smooth over S, as in the proof of Lemma E.2.7, it suffices to show that each of the
functors

(E.7) IndCoh(Zs) ®  QCoh(Y,) ~ IndCoh*(Z, x Vi)
QCoh(Sq) Sa

is an equivalence.

However, this follows from Lemma A.4.10.
a

E.2.11. We are finally ready to define IndCoh*(£v (H)) as a factorization category. Proceeding as in
B.13.17-B.13.22, we need to show that Lemmas B.13.18 and B.13.20 hold for IndCoh* (£v (H)).

We will prove Lemma B.13.18; Lemma B.13.20 is proved similarly.
We need to show that the functor

(E.8) QCoh(S.) ®  IndCoh*(Ly(H))s, — IndCoh™ (v (H))s, .
QCoh(Sg)

is an equivalence.
We consider both sides as modules over

QCoh(Sa) ®  QCoh(L¥(H))s, ~ QCoh(LE (H))s
QCoh(Sg)

By Proposition E.1.4, it suffices to show that (E.8) becomes an equivalence after taking ,Q; (H)s,-
invariants, or, equivalently, thanks to Lemma E.1.6, £$ (H)s,-coinvariants.

However, by Lemma E.2.10, when we take £&(H)s,-coinvariants in (E.8), the resulting functor
identifies with

(E.9) QCoh(Sa) o ®(S )IndCoh*(I)v(H) /L£3(H))s, — IndCoh™* (&v (H)/LE(H))s
oh 8

o«

Now, (E.9) is an equivalence by Lemma B.13.18, since £v (H)/£3 (H) is locally almost of finite type
(by Lemma E.2.4) and in particular is placid.

E.2.12. By construction, IndCoh*(£v(H)) is equipped, as a factorization category, with an action of
QCoh(L£% (H)) ® QCoh(L3 (H)).

We define IndCoh* (Hecke$>°“'°%) by formula (E.3).

By Proposition E.1.4, we have

IndCoh* (Hecke$P°1°) ® Vect ~ IndCoh*(£v (H))
QCoh(LS%)®QCoh(LS®)
and

IndCoh* (HeckePe*'°%) ® Vect ~ IndCoh(&v (H) /L% (H)).
QCoh(LSE)
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E.2.13. The pair of adjoint functors

!

(E.10) 1249h - IndCoh* (£ (H)) = IndCoh* (Lv (H)) : ¢!
gives rise via

regy Corollary E.1.8 re
QCoh(LS%®) ~ QCoh, (LSF®) =~ Vect):é(H) o~

v
et (H

) *
:QCoh(Sé(H))Q(H)XQ(H) < IndCoh*(£%(H))

z@(mng(m)
to an adjoint pair
!

(E.11) (2R QCoh(LSYE) = IndCoh* (Hecke P ¢ : ',

Since the essential image of the left adjoint in (E.10) generates the essential image, the same is true
for (E.11).

In particular, images of compact objects in QCoh(LS}*) under (IndCoh hrovide compact generators

of Il’ldCoh* (HeCke?CC’loc),
E.3. Unital structure.

E.3.1. We claim that the factorization categories we defined above, namely,
IndCoh*(£v(H)) and IndCoh* (Hecke ')
carry naturally defined unital structures.
Let us carry out the construction for IndCoh* (£v (H)); the case of IndCoh* (HeckeP**'*%) will follow
by taking £& (H) x £& (H)-coinvariants.

E.3.2. By Sect. C.10.10, the factorization space £v(H) carries a natural unital-in-correspondences
structure. (Note, however, that we cannot deduce from there the unital structure on IndCoh*(£v (H))
by applying Sect. C.12.8 directly because we are not in an ind-placid situation.)

For an injection of finite sets Iy C I consider the corresponding diagram

rH e mer~-re, eri 3
(E.12) Lo (H)yr, €2 L85 (H)  cry, —5 Sy (H) 1, -

E.3.3. We claim that the functor

(prf )PACo  IndCoh™ (L2 (H)) 1, c 1, — IndCoh™ (£ (H)) 1,

H )* ,IndCoh
small .

admits a left adjoint, to be denoted (pr,

H
smal

Factor the map prg, ,; as

/o H
Plomall Co(H)xn x X = 8o(H)yn,

xT1

LT (H) ey

and it is sufficient to prove the existence of the left adjoint for the first arrow, i.e., that the functor

(E.13) (pr )" IndCoh™ (£2° ™8 (H) 1, c1,) — IndCoh™ (&5 (H) 1, x X'?)

x11

admits a left adjoint.
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E.3.4. We consider the two sides of (E.13) as acted on by
LY (H) g1, and £5(H) 41, x X",
xT1

respectively. These actions are compatible via the the map

Eé(H)Xlz _>£$(H)X11 >§ X127
X1

corresponding to the counital structure on £ (H).

By Proposition E.1.4, it suffices to show that the functor

k]

(E.14) (IndCoh*(,S@e'rwreg(H)hgh))gg(}{)xl2 — (IndCoh*(Ev(H)Xz1 X>§1 XIQ)) ) .
.QV(H)XI1 x X712
xT1
induced by (E.13), admits a left adjoint.

However, by Lemma E.2.10, the latter functor is the identity endofunctor of

IndCoh ((SV(H) JEE(H)) 1 X XIZ) .

XI
E.3.5. We define the functor
IndCoh* (SV (H))le — IndCoh™ (Sv (H))XIQ y

to be denoted ins. unity, cr,, to be

H \IndCoh H ,IndCoh
(prbig)*n ° ( small)* newe N

E.3.6. In order to promote this to a unital structure on IndCoh™(£v(H)), we need to construct
isomorphisms
ins. units,cr, oins. unity, ¢y, ~ ins. unitr, cr,
fOI‘ Il Q [2 g 13.
Denote the maps in (E.12) by

H d or
Prsmall, 1, 1o, @14 Plyie 1,C1o
to indicate the dependence on the finite sets involved.
Thus, we need to construct an isomorphism

IndCoh

H IndCoh H ,IndCotl H H JIndCoh ~

(E.15) (prbig,lzgg)*n o (Prsman,lzgg)* "o (prbig,hg[g)* © (prsmall,IlgIl)* neer S
~ H IndCoh H ,IndCoh
- (Prbig,11g13)*n ° O(prsmall,llgI:;)* e

E.3.7. Note that we have a commutative diagram,

mer~sreg ( [r /prgg,llglg mer~sreg ( [y prgg,IQQIg, H
Ly Jncr, ———— £y (H)rycry, ———— Lv(H)x1y

’ H H
Prymall, IoCI3 lprstxlall,12§13
prf- I,CI
mer~+reg 18,01 =12
Lo (Hncr, ————  L£v(H)xn
H
Prsmall, 11 C1Iy l
£y (H )Xf 19
in which the inner square is Cartesian.

We rewrite the right-hand side in (E.15) as

IndCoh IndCoh

H /_H r_H ,IndCoh
(Prbig,lzglg)* o( Plyig, 14 gIQ)* o( Prsma11,12g13)

H *,IndCoh
© (prsmall,ll QIZ) .
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The isomorphism

H IndCoh 1 H IndCoh _, H IndCoh ' H IndCoh
(prbig,11g12)* o ( prsmall,]rzg[s)* = (prsma11,12g13)* o ( Prbig,11g12)*

induces a natural transformation
H *,IndCoh H IndCoh ' H IndCoh ' H *,IndCoh
(E.16) (prsmall,lgglg) © (prbig,llglg)* = ( Prbig,zlgfz)* o ( Prsman,IQgg) .

E.3.8. We claim that (E.16) is an isomorphism. Indeed, this follows by the same argument as that
proving the existence of (prf )" in Sects. E.3.3-E.3.4.

E.3.9. Finally, we define the natural isomorphism in (E.15) by precomposing the isomorphism (E.16)

: H *,IndCoh : . H IndCoh
with (Preman, 1, cr,) and post-composing with (prys, 1,cr, ) .

The higher compatibilities are constructed by a similar procedure.

E.3.10. By construction, the functor

\I/E,%(H IndCoh

) .
QCoh(Sé(H)) ~ IndCoh*(Sé(H)) “— IndCoh™(Lv(H))
is unital.

In particular, the object

LIndCoh (o

*

ot (i) € FactAlg(X, IndCoh™(£v (H)))

is the factorization unit in IndCoh™(Lv (H)).

Similarly, the functor
nd

,IndCoh .
QCoh(LS’®) “— IndCoh” (HeckePe'*%)
is unital, and
LindCOh(OLSrgg) € FactAlg(X, IndCoh* (Hecke > *“'°%))

is the factorization unit in IndCoh* (Hecke?*'*%).
E.4. Duality.

E.4.1. Let S, be as in Sect. B.13.9.
Note that the same argument as in Lemma E.2.7 shows that the functor

8 : QCoh(£Y (H))s, — IndCoh' (£ (H))s,,

eL ()5,
is an equivalence.
As a consequence, we obtain that the pairing
IndCoh' (£ (H))s, ® IndCoh* (£ (H))s, — Vect

o

of (A.26) is perfect.

E.4.2. Similarly, an argument parallel to that in Lemma E.2.10 shows that the !-pullback functor
along

IndCoh(Lv (H)/L(H))s, — IndCoh' (v (H))s,,

gives rise to an equivalence

IndCoh(Lv (H) /L% (H))s, =~ (Indcoh;(QV(H))SQ)Q(H)SQ _

Combining with Proposition E.1.4, we obtain that the pairing
IndCoh'(£v (H))s. ® IndCoh*(£v (H))s,., — Vect
of (A.26) is perfect.
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E.4.3. In particular, we obtain that Lemmas B.13.11 and B.13.14 hold for IndCoh'(£v (H)). Le., the
recipe in Sects. B.13.10-B.13.15 gives rise to a well-defined factorization category IndCoh'(£y (H)).
Moreover, we obtain that (A.26) defines a perfect pairing between
IndCoh'(£v (H)) and IndCoh*(£v (H))

as factorization categories.

E.4.4. By a similar logic as in Sect. E.2.12, we obtain that the assignment

S ~» IndCoh' (Hecke$*') 5,

extends to a well-defined factorization category IndCoh' (Hecke P®'*%).
Moreover, we have

IndCoh' (Hecke$?*“'°?) ~ IndCoh' (£ (H)) ¥ () Sv (1)

and

IndCoh' (Hecke?*'*°)  ®  Vect ~ IndCoh'(Lv (H)/£3 (H)).
QCoh(LS®)

We obtain that
IndCoh™ (Heckei‘l)ec’loc) and IndCoh!(Heckeg’eC’loc)

are mutually dual as factorization categories.

E.4.5. Finally, a procedure dual to that in Sect. E.3 defines on
IndCoh'(£v (H)) and IndCoh* (Hecke$P*c°¢)
unital structures, and the identifications
IndCoh'(£v (H))" ~ IndCoh*(£v (H)) and IndCoh' (Hecke?*“'°°)" ~ IndCoh* (HeckeP°*!*%)

extend to identifications of the corresponding unital factorization categories.

E.5. t-structures. In this section we will discuss an alternative approach to the definition of
IndCoh* (HeckePe'°°).

Namely, we can start with (the more elementary) QCoh,,(Hecke$P®'?), and obtain from it
IndCoh* (Hecke$°“'°°) by a renormalization procedure (i.e., ind-completion of a specified small
subcategory), see Sect. E.5.6 below.

E.5.1. As in Sect. B.13.22, the factorization category
IndCoh™ (Lv (H))

carries a naturally defined t-structure.

By construction, the functor

et IhdCoh* (Lv (H)) — Vect

is t-exact, and conservative when restricted to the eventually coconnective subcategory.

Moreover, the functor

124l - QCoh(£3 (H)) — IndCoh™ (£v (H))

is t-exact.
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E.5.2. We now define a t-structure on IndCoh*(Hecke}?*'°°). Namely, by Proposition E.1.4 the
projection

IndCoh*(£v (H)) — IndCoh* (Hecke$s**"'*%)

admits a left adjoint, which is comonadic.

Moreover, the resulting comonad on IndCoh™(£v(H)) is t-exact. This implies that the category
IndCoh* (Hecke$r°*!'°?) acquires a unique t-structure for which both functors

IndCoh* (HeckeP*'°%) = IndCoh* (v (H))

are t-exact.

E.5.3. Consider the untal factorization categories

QCoh,,(Lv (H)), QCoh,(Lv(H)/Ly(H)) and QCoh,,(Hecke™"*°).

The category QCoh,, (v (H)) carries a natural action of QCoh(£%(H)), and it follows formally
that the functors

(B.17) (QCO, (£9 () ot 11wt (1) — QCOh, (Hecke(**)
and
(E.18) (QCohe, (L5 (H))) g (1) — QCoh, (Ev (H)/ L3 (H)),

induced by the direct image functors
QCoh, (£v(H)) — QCoh, (Hecke*'*%) and QCoh,(Lv (H)) — QCoh,(Lv (H)/L3(H)),
respectively, are equivalences.
In addition, we have the unital factorization functors

QCoh(£L(H)) % QCoh,, (Lv(H)) and QCoh(LS}#) ~ QCoh,, (LS'S#) X5 QCoh,, (HeckesP**'°%).

E.5.4. Let S, be as in Sect. B.13.9. Recall (see Lemma A.8.10) that the functor
Veg(m)g, * IndCoh* (£v (H))s, — QCoh,.(L£v(H))s,
is t-exact, and induces an equivalence between the eventually coconnective subcategories on both sides.

It follows from the definition of IndCoh*(Lv(H)) as a factorization category that the functors
\IIQV(H)SQ combine to give rise to a factorization functor

\I/gv (H) - IndCoh* (EV (H)) — QCO]’ICO (SV (H))
Moreover, the functor We_ (f) is t-exact and induces an equivalences between the eventually cocon-
nective subcategories on both sides.

Furthermore, the functor We_ (z) has a naturally defined unital structure.

E.5.5. Note that the contents of Sect. E.5.4 allows us to recover IndCoh*(£v (H)), as a unital factor-
ization category, from QCoh, (£v(H)) with its t-structure.

Namely, for S — Ran, the category IndCoh™(Lv (H))s identifies with the ind-completion of the full
subcategory of QCoh,, (£v(H))s, generated by finite colimits by the essential image of QCoh(£% (H))s
along ¢..
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E.5.6. It follows formally from Sect. E.5.2 that we have a naturally defined t-exact unital factorization
functor

\I/Hecke

wpec toc 1 IndCoh™ (HeckeP°'*) — QCoh,, (Heckeh*"'*%),
H
which induces an equivalences between the eventually coconnective subcategories on both sides.

Furthermore, as in Sect. E.5.5, we can recover IndCoh*(Hecke}?*'°°) (as a unital factorization
category) from QCoh, (Hecke$P*'°?) with its t-structure.

Namely, for § — Ran, the category IndCoh* (Hecke$?*“'°%) s identifies with the ind-completion of the

full subcategory of (QCoh,, (Hecke$?**'°%)s)> = generated by finite colimits by the essential image
of QCoh(LS%*®)s along t..

E.6. The monoidal structure.

E.6.1. Let S, be as in Sect. B.13.9. The group-scheme structure on £v(H)s
IndCoh*(£v(H))s,, a structure of monoidal category (under convolution).

induces on the category

e

By the construction of IndCoh™ (£v (H)) as a factorization category, we obtain that IndCoh* (£v (H))
acquires a structure of monoidal factorization category.

This structure is compatible with the unital structure on IndCoh*(£v(H)) in the sense that the
monoidal operation has a natural lax unital structure. I.e., IndCoh™(£v(H)) is an associative algebra
object in the symmetric monoidal category of unital factorization categories with lax unital functors
as morphisms.

E.6.2. Note that for S, as above, the monoidal operation on IndCoh*(£v (H))s,,, viewed as a functor
IndCoh*(£v(H))s, ® IndCoh*(£v(H))s, — IndCoh™(&v (H))s.,
QCoh(Sqa)
is t-exact.
Hence, the monoidal operation on IndCoh™(£v (H)) is t-exact.

E.6.3. We will now descend the above monoidal structure to one on IndCoh* (Hecke(»*'*%).

Consider the correspondence

A reg
. LS
(E.19) (LS}® x LSE®) x (LS® x LSE®) <«
Lsyer Lsmer
reg reg reg mult reg reg
+— LSy® x LSE* x LSy® — LS;* x LSE°.
LSwmer LSmer Lsyger

Note that by Lemma E.2.2 we can think of this diagram also as

(E:20) (£ (H)\Lv (H)/L3(H)) x (L3 (H)\&v (H)/LE(H)) +

— Lo(H\ | Ev(H) x Lo (H) | /Lo(H)) = Lo (H)\Lv (H)/L3 (H),
e (#)
where:
e £v(H) x £v(H) denotes the quotient with respect to the diagonal action by right multiplica-
et ()
tion along the left factor and the left multiplication along the right factor;

e The arrow — is induced by the product map

Lv(H) x £v(H) = £v(H).

&)
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E.6.4. As in Sect. E.2, we obtain a well-defined factorization category

IndCoh*(LS'® x LS%® x LSi%),
L er

sm Lsmer
equipped with factorization functors

(A qreg )E‘ndCoh

LS

(E.21) IndCoh*(LS'® x LS™%)® IndCoh*(LS'® x LS™®)
Lsmer Lsmer

mu IndCoh
« TndCoh*(LSI* x LS x Lsis) M
Loger

Lswer

IndCoh* (LS5 x  LS™SE).
Lswer

It is easy to see that the functor (ALS;g)i”dCOh admits a left adjoint, to be denoted (ALS;g)*’I“dCOh.

We define the monoidal structure on IndCoh*(LS5® x LSL®) with the binary operation given by
Lsmer
(mult)indCoh ° (ALsﬁg)*,IndCoh.

One defines similarly n-fold compositions, and they form a compatible system thanks to the fact
that the functors (ALsﬁg)*’IndCOh satisfy base change against IndCoh-pushforwards.

This defines on
IndCoh* (LS™® x LS"#) =: IndCoh* (Hecke3?*"'*%)

mer
LSH

a structure of monoidal factorization category.
As in the case of IndCoh*(Lv(H)), it is easy to see that the monoidal operation on the category
IndCoh* (Hecke$P°“'°%) is t-exact.

E.6.5. A similar procedure gives rise to an action of IndCoh* (Hecke>°'°°) on QCoh(LS’%).

E.6.6. By construction, the monoidal structure on IndCoh* (HeckeP°'°%) is compatible with the unital
structure, in the sense that IndCoh* (Hecke$?°“'°°) is an associative algebra object in the symmetric
monoidal category of unital factorization categories with lax unital functors as morphisms.

However, we claim that, unlike IndCoh* (£ (H)), in the case of IndCoh* (Hecke$?**'°®) more is true:
namely, the monoidal operation is strictly unital.

Indeed, this follows from Lemma C.11.23, since the factorization unit for IndCoh* (Heckesé)ec’loc),

IndCoh (O

namely, ¢ sz;g) is also the monoidal unit.

The same observation applies to the action of IndCoh* (Hecke}?*'*°) on QCoh(LSs®). .

E.6.7. A similar procedure defines the monoidal factorization categories
(E.22) QCoh,, (£v(H)) and QCoh,, (Hecke}?*'*%),
with t-exact monoidal operations.
We note that the procedure Sect. E.5.6 allows us to recover
(E.23) IndCoh* (£v(H)) and IndCoh* (Hecke P*'°)
as monoidal factorization categories from those in (E.22).
Namely, these monoidal structures are uniquely determined by the requirement that that the functors
Voo ay : IndCoh™ (Lv (H)) — QCoh,, (£v(H))
and

spec.toc 1 IndCoh” (HeckeP°'°°) — QCoh,, (Hecke$P**'*%)
H

\I/Hecke

are monoidal.
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E.6.8. Note that the functor (mult)}®¥“°®  involved in the definition of the monoidal structure on
IndCoh* (Hecke$P°*'°°) admits a (continuous) right adjoint, to be denoted (mult)'.

To prove this, it suffices to show that the corresponding functor

(mult)iﬂdcoh

IndCoh™ [ £v(H) x £v(H) IndCoh* (Lv (H))
£ (H)
admits a (continuous) right adjoint.
However, we can isomorph the projection

mulg

Lv(H) x &v(H) — Lv(H)
st #)
to the projection
Sy (H) x (Sv(H)/L4(H)) — Lv(H),
and the assertion follows from the fact that £v(H)/L% (H) is ind-proper.

E.6.9. In particular, we obtain that the monoidal operation on IndCoh* (Hecke?ec’loc) admits a con-

tinuous right adjoint, namely,
(Apgres) 49" o (mult).

Furthermore, it easy to see that this right adjoint
IndCoh* (HeckeP°'°°) — IndCoh ™ (Hecke$P**'°?) @ IndCoh* (Hecke %)
is compatible with the IndCoh* (Hecke$>°'°®)-bimodule structure.

Since the monoidal unit in IndCoh* (Hecke$P°*"'°°) is compact, we obtain that IndCoh* (Hecke$?**'¢)
is rigid (see [GaRo3, Chapter 1, Definition 9.1.2] for what this means), i.e., for any S — Ran, the
monoidal category

IndCoh* (Hecke$P*'%)
is rigid.
E.6.10. Passing to duals, the monoidal structure on IndCoh*(Hecke$P**'*°) induces a comonoidal
structure on its dual, i.e., IndCoh'(Hecke(P°'?). Since IndCoh* (Hecke$>°*'°°) is rigid, the comonoidal
operation on IndCoh' (Hecke?*'°°) admits a left adjoint, i.e., IndCoh'(HeckeP**'*°) is naturally a
monoidal category.

spec,loc

Let us describe the monoidal operation on IndCoh'(HeckeS? ) explicitly. In terms of (E.19), it
is given by
(mult)indCoh ° (ALS}?;)!7

where (mult)!4°°" is the left adjoint of
mult' : IndCoh'(LS}®  x  LS)8) — IndCoh' (LS8 x LSWE x LSYE),
Lsger Lsmer Lsmer
or, which is the same as the dual of

(mult)! :IndCoh™(LS5® x LSH®) — IndCoh™(LSH® x LSH® x  LSE®),
LS[’II;QT Lsger Lsger
whose existence was proved above.

E.6.11. Since IndCoh* (Hecke$?°*'°) is rigid, by [GaRo3, Sect. 9.2.1], a choice of “right” or “left”
determines an equivalence

(E.24) IndCoh” (Hecke ') ~ IndCoh' (Heckey*'*)

as monoidal categories.
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E.7. Action on IndCoh(LSg). In this subsection we will define a (local action) of the monoidal
factorization category IndCoh* (Hecke?*'*°) on IndCoh(LS) in the sense of Sect. H.6.1.

]

E.7.1. Our goal is to define an action of the monoidal category (IndCoh*(Hecke(P*'*°))%  (see
Sect. H.5.5 for the notation) on IndCoh(LSy) ® D-mod(Ran). In other words, we need to define
an action of IndCoh* (Hecke(>*'°°)s on IndCoh(LSx) ® QCoh(S) for any S — Ran.

Let Heckesé)e;‘gbb denote the fiber product

(LSu x5) X (LSH x.9),

mer,glob
LSH,S

where

mer,glob | mer,glob
LSy s =S = LSH Ran

for LSIIS?Q’iI)Ob as in Sect. B.7.14.
Restriction to the formal disc gives rise to vertical arrows in the following diagram, see Sect. B.7.15:

4 spec,glob spec.glob 7 spec,glob
LSy xS %" Heckepeo#lor P07 19, « 8

(E.25) evsl evsl levs

. 1 —_ 1
h, spec,loc spec,loc h, spec,loc

reg reg
LSyE  «—— Heckeps'™ ——— LSy,

Lemma E.7.2. Both squares in (E.25) are Cartesian.

Proof. First, we claim that both squares are Cartesian at the classical level. Indeed, classically, the
horizontal arrows in (E.25) are isomorphisms.

Hence, in order to prove the lemma, it remains to check the Cartesian property of the tangent spaces

. . 5 1
on the unit section of Hecke(P% 8",

Let o be a point of LSg. Then for any s € S, the relative tangent space of
Hecke?58'%" — LSy xS
at (the image along the unit section of) (o, s) identifies with
Fib (C' (X, ho)[1] = C (X — z,ho)[1]) =~ coFib (C (X, hs) = C(X — z,b5)),
where z € Ran is the image of s.

The relative tangent space of
Heckeg’fg’loc — LS};gs

at the image of this point identifies with
(£9(h0)/£3 (Bo) )z

The required Cartesian property of the tangent spaces follows from the fact that diagram

C.(Xabﬂ') I C(X7£7h0')

I l

EJvr(ho)g I Lv(bo)z

is Cartesian.
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E.7.3. For S — Ran as above, denote
(LSx x8)"°¥ .= (LSy xS) x S,
LSy
where S — LSj% is the unit point.

By construction, (LSy xS)'*¥ is acted on by £&(H)s, so that
(LSy x8)' /&L (H)s ~ LSy x8S.

Note that Lemma E.7.2 can be reformulated as saying that the above action of £%(H)s on
(LS x5)¥! extends to an action of £(H)s.

E.7.4. Let So be as in Sect. B.13.9. Consider the category
IndCoh* ((LSx xS4)'¥).

The action of £v(H)s, on (LSy xS.)*" gives rise to an action of the monoidal category
IndCoh*(£v(H)s,, ) on IndCoh* ((LSy x.S,)"").

As in Lemma E.2.7, the IndCoh-pushforward functor
IndCoh* ((LSa xS4)'*®") — IndCoh(LS# X Sa)

gives rise to an equivalence

IndCoh* (LSx XSa)v® 2 IndCoh(LSx X Sa).
( (S x2)) - (LSu % Sa)

Then by the same mechanism as in Sect. E.6.4, we obtain an action of the monoidal category
IndCoh* (Hecke$P*“'°) s on IndCoh (LS xSa).

E.7.5. Note that we can explicitly describe the action functor as follows:

(evg Xz’spec,glob)*,mdcm
) —

(E.26) IndCoh*(Hecke*'*“)s, ®  IndCoh(LSy xSa

QCoh(Sa)

(‘gspec,glob)lndcm]
—

— IndCoh((HeckeP*#P) 5 ) IndCoh(LSy X S.),

where the first arrow is obtained by identifying

IndCoh* (Hecke**'*%)s. @  IndCoh(LSy X Sa) ~
QCoh(Sq)

~ (IndCoh*(Sv(H) x (LSH xsa)leve‘))
Sa (SF(H)x e+ (H)x £+ (H)) s,

and

I

IndCoh((Hecke &%) g ) ~ (IndCoh*(Sv(H) x (LSy xSa)le"el))
S (+(H) xS+ (H)s,,

5
and the functor (evg x hSPec:8loPy=IndCoh io the oft adjoint to the projection from (£ (H) x £7(H))s, -
coinvariants to (£ (H) x £¥(H) x £1(H))s,,-coinvariants.

E.7.6. Having defined the action of IndCoh*(Hecke$P*'*?)s., on IndCoh(LSy xS,), the procedure
in Sects. B.13.17-B.13.19 defines an action of IndCoh* (Hecke$P**'*°)s on IndCoh(LSy xS) for any
S — Ran.

Thus, we obtain the sought-for local action of IndCoh* (Hecke$?**'*?) on IndCoh(LSy). Further-
more, unwinding the construction, we obtain that this action has a natural Ran-unital structure (see
Sect. H.6.1 for what this means).
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E.7.7. Recall the functor
Lock Ran * Rep(H)Rran — IndCoh(LSp) ® D-mod(Ran).

We claim:
Proposition E.7.8. The functor LocyR,,, intertwines the actions of IndCoh” (Hecke?ec’loc)gan on the
two sides.

Proof. Unwinding the construction, we need to construct the datum of compatibility for the functor
Locys : Rep(H)s, — IndCoh(LSy) ® QCoh(Sa)
for S, as in Sect. B.13.9.
We identify
Rep(H)s, =~ QCoh(LSﬁ%SO),
so that the functor Loc}ys ~identifies with the functor

y*:IndCoh

IndCoh(LSz ®S4) ~ IndCoh(LSx) ® QCoh(Sa).

(evsa
)

QCoh(LS%%,

Now the assertion of the proposition follows by unwinding the constructions, using the fact that
diagram (E.25) is Cartesian (see Lemma E.7.2).
d

E.7.9. Consider now the functor
IR 5ende : IndCoh (LS ) ® D-mod(Ran) — Rep(H)ran,

spec

right adjoint to LocH’Ran.

Since IndCoh* (Hecke$?*“'°°) is rigid, from Proposition E.7.8, we obtain:

Corollary E.7.10. The functor F?}fgﬁdco}l intertwines the actions of IndCoh* (Hecke(r*'°)%  on
the two sides.

E.7.11. The (local) action of IndCoh* (Hecke?*'*°) on IndCoh(LS ) gives rise to a (local) right action
of IndCoh* (Hecke$P°'°?) on the dual IndCoh(LS)" of IndCoh(LS).

We identify
IndCoh(LSx)" =~ IndCoh(LSg)

by Serre duality. Thus, we obtain a new (local) right action of IndCoh* (Hecke?*'*%) on IndCoh(LS).

Note now that we can pass between right and left modules over IndCoh* (Hecke$r**'°°) using the
anti-involution o°°°; induced by the inversion operation of £v (H).

Unwinding the construction, we obtain that the resulting new (local) action of IndCoh* (Hecke3?**'°%)
on IndCoh(LS#) coincides with the original one.

E.7.12. The (local) action of IndCoh* (Hecke?*'*%) on IndCoh(LSp) gives rise to a (local) coaction
of the factorization comonidal category IndCoh'(Hecke?*'°°) on IndCoh(LSy).

Since IndCoh* (Hecke$?°'°°) is rigid, the coaction functor admits a left adjoint, so we obtain a (local)
action of IndCoh' (Hecke?*'°°), viewed as a factorization monidal category, on IndCoh(LSs).

The corresponding monoidal operation is described explicitly as follows.
For S, as in Sect. B.13.9, the action functor

IndCoh' (Hecke?*'*%)s,  ®  IndCoh(LSy xSa) — IndCoh(LSx xSa)
QCoh(Sa)
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is given by

(E.27) IndCoh(LSy xS,) ®  IndCoh'(HeckeP*'%)g, ~
QCoh(Sa)

o

~ IndCoh! ((LSH XSa) X (Hecke?eC,IOC)s

Sa

< spec,glob !
(hspec.glob oy
—

(Zspec,glob)IndCoh
—

— IndCoh((HeckeP*#P) 5 ) IndCoh(LSy X S).

For an arbitrary S — Ran, this action is extended by the mechanism of Sects. B.13.10-B.13.15.

E.7.13. Recall now that according to (E.24), we can identify IndCoh!(HeckesﬁeC’loc) as a monoidal
category with IndCoh* (HeckeP°*'°%).

It is a formal property of actions of rigid categories that with respect to this identification,
the above action of IndCoh'(Hecke}?*'*°) on IndCoh(LSy) identifies with the right action of
IndCoh* (Hecke$P°'*?) on IndCoh(LSy) from Sect. E.7.11.

E.8. Action on monodromy-free opers. In this subsection we take H = G, the Langlands dual of
a reductive group G. We will construct a factorization version of the action of IndCoh* (Heckeg’ec’loc)

on IndCoh* (OprGfmrkfree)‘

mon-free

spec,OpG

E.8.1. Let Hecke, be the factorization ind-scheme, defined as

spec,Opgon'free

L mer spec,loc
Hecke :=Opg~  x Heckey .

mer
LSG

Note that we have a commutative diagram

. _free —
f, spec,Op S?ec7oprélon ree

mon-free h spec,Op mon-
Opg — HeckeG — Opga

(E.28) l l l

Hspec loc
LSreg h ’
G

free

—
h spec,loc

spec,loc reg
Hecke; LS &

in which both arrows are Cartesian.

From here, by the same mechanism as in Sect. E.6.4, we obtain an action of the monoidal category
IndCoh* (Hecke$P*'°%) on IndCoh* (Opjgo-ree).

We write the action functor symbolically as

N
* spec,loc * mon-freey (tX hSPeeOP)* IndCoh

IndCoh”™ (Hecke7;*"*¢) @ IndCoh™ (Opg ) —

spec,0pizon-iree (Zspec,Op)I*ndCoh

— IndCoh" (Hecke 5 IndCoh* (Opg°"re°),

=
where the functor (t x hPeOP)*IndCoh 4 agsioned a meaning as in Sect. E.7.12.
SpeC,Opgon-free

Remark E.8.2. Note that Hecke, is ind-placid. Indeed, this follows from the fact that

-
Opgon'free is placid, combined with the fact that the map h5P°>!°¢ is locally almost of finite presentation
(see Lemma E.2.4).
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E.8.3. Recall the functor

Poch‘iﬁRan : IndCoh™ (Oprg?ﬁ‘;ﬁee) — IndCoh(LS ) ® D-mod(Ran),

see Sect. 17.4.2.
We claim:

Proposition E.8.4. The functor PomchpeCREm intertwines the actions of IndCoh™ (Heckeg’ec’loc) on the

two sides.

Proof. Unwinding the construction, we need to show that the functor

Pomc?i’fs : IndCoh* (OpE™™™*°)s — IndCoh(LS¢) ® QCoh(Sa)

is compatible with the action of IndCoh* (Heckescfcc’loc)sa for S, as in Sect. B.13.9.

Recall that the functor Poinc}"* is the composition of:

e *-pullback along

evg

fi lob f:
Opmon ree,glo 3 O mon reej

e IndCoh-pushforward along Opmon free,glob £7) LSG X Sq-

Denote
spec,glob, Opmon free lob 1 b
Hecke, o* =0 Z‘e;’g © x  Hecke}y s
Lsmer,glob
G,Sa

The assertion of the proposition holds by unwinding the constructions from the fact that in the
following diagrams both square are Cartesian

— —
Opmon free glob h, spec,Op Heckespcc,glob Opmon free 1, spec,Op O mon-free,glob
— e
Pe G,8a Pa s,
evJ/ evJ/ J/ev
— £ —
o mon-free 1 spec,glob,Op Hecke™ spec, opmor‘ ree h, spec,glob,Op 0 mon-free
PG5, ‘ G,5a PG5,
and
- 1)
Opmon—free,glob ], 5P, OP Hecke spec,glob, OpmOn ree hgpec Op Opmon free,glob
= — _

G,Sa G,Sq

thObJV tglobl lrglub

— —
B spec,loc h spec,loc

LS¢ — HeckePeo#1oP S LSs .

g

E.8.5. The action of IndCoh”(Hecke* °) on IndCoh*(OpE°™re) gives rise to a right action of
IndCoh* (Hecke} 1°¢) on the dual of IndCoh* (Opge™ee). Identifying

IndCoh* (Opmon free) ~ IndCoh (O mon- free)7
we thus obtain a right action of IndCoh™ (HeckeZ* %) on IndCoh' (Opggon-free),

spec

Applying the anti-involution o°P°°, we can turn this right action into a left action.
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E.8.6. Passing to dual functors, from the action of IndCoh* (HeckesGPeC’loc) on IndCoh* (OpZ°™"*°), we
obtain a coaction of IndCoh!(Heckeg’eC’loc) on IndCoh'(Opge-ee).

By rigidity, the above coaction functor admits a left adjoint, i.e., we obtain an action of
IndCoh!(Heckesépec’loc)7 viewed as a monoidal category, on IndCoh'(Op°™°).

The corresponding action functor is explicitly given by

(‘;spcc,opXt)*,Indcoh
—

IndCoh' (Op‘é“’“’free) ® IndCoh' (Heckesg)ec,m(:)

mon-free (ﬁ’spcc,op)mdcoh
*

spec,OpG

— IndCoh'(Hecke,, IndCoh' (OpE®™ ™).
As in Sect. E.7.13, it follows formally that with respect to the identification (E.24), the above action
of IndCoh!(HeckeSG«pec’loc) on IndCoh'(Opf°"-™*°) identifies with the action of IndCoh* (Hecke G*P°*1°°)

on IndCoh!(Opgon’ﬁee) from Sect. E.8.5.

E.8.7. In a way analogous to Proposition E.8.4, one proves:

Proposition E.8.8. The functor PoinciP®®.  intertwines the coactions of IndCoh'(Hecke

G,!,Ran
the two sides.

spec,loc

& ) on

Corollary E.8.9. The functor Poinc}|%,. —intertwines the actions of IndCoh*(HeckeSGPec’loc) on the

two sides, where the action on the left-hand side is as in Sect. E.8.5.
E.8.10. Note that Lemma 3.7.17 adapts to the factorization setting as follows:

Lemma E.8.11. The equivalence

®Optpou—ﬁ'ee

IndCoh' (OpETar*) & IndCoh"(OpESpae)
18 compatible with the actions of IndCoh* (Heckeg’:ﬁc) on the two sides, where: the action on the
left-hand side is one from Sect. E.8.5.
E.8.12. Recall now that according to Theorem 17.4.7, we have a canonical isomorphism:

. spec - . spec
(E.29) Poinc" ko @ lkost(a) [—dc] ~ Poinc " "p., © @Opg)on-free.

Unwinding the constructions, we obtain:

Lemma E.8.13. The commutative diagram

eopnjon—free
! mon-free G * mon-free
v - 0
IndCoh (OpG7Ran ) IndCoh (OpG,Ran )
. _spec i .Spec
PO!DCG',!,Ranl lPOIDCG,*,Raxx

IndCoh(LSg) ® D-mod(Ran) —<—  IndCoh(LSg) ® D-mod(Ran)

upgrades to a commutative diagram of categories equipped with actions of IndCoh™ (Heckeg’cg;:c), where:
e The compatibility for the left vertical arrow is given by Corollary E.8.9;
e The compatibility for the right vertical arrow is given by Proposition E.8.4;
e The compatibility for the top horizontal arrow with (E.24) is given by Lemma E.8.11;

E.9. An approach to Sph}® via factorization modules. In this subsection we will review the
connection between the definition of IndCoh* (Heckeg’}i’algc) developed above, and one given in [CR].
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E.9.1. The projection

spec,loc | __ reg reg [, reg reg
Hecke; = LSy L LSE® = LS,® x LSy,
H

gives rise to a lax unital functor

v
firdCoh  IndCoh ™ (Hecke$P**'°?) — IndCoh* (LS8 x LS))

~ QCoh(LS5® x LS}®) ~ Repyyn ~ Repy ® Repy,

reg reg
LSH ,\>/< LSH

where the first arrow is obtained by applying the functor of £3,(H) x £& (H)-coinvariants to
raCek (o0 (H), —) — Vect .

E.9.2. Note that the image of the factorization unit
llndCoh*(Hecke?OC’loc) = LindCOh(oLs‘Ijg)
identifies with
(ALsgg)*(oLsgg) € QCoh(LS}* X LS®) < Ry € Repyyp»
where Ry denotes the regular representation, viewed as a commutative factorization algebra in Repy o
By Lemma C.15.3, the functor f. enhances to a unital functor

(E.30) (frdCoryenh . IndCoh* (Hecke ') — Ry-mod™* (Rep,; @ Repy ),

where the right-hand side is viewed as a unital lax factorization category.

E.9.3. We claim:

Proposition E.9.4.

(a) The functor (E.30) induces an equivalences between the eventually coconnective subcategories of the
two sides.

(b) The essential image of IndCoh* (Hecke$>°*'°%)¢ € IndCoh* (Hecke$*“'°%) under the functor (E.30)
is contained in (Rp-mod™*(Repy ® RepH))>_OO

Proof. The proof proceeds along the same lines as that of Proposition 4.4.7, with the following differ-
ence:

Instead of appealing to Proposition A.3.3, we claim that QCoh, (Hecke?**'°?) identifies with the
totalization of the cosimplicial category

QCoh,, (HeckePeo'oe X pt*),

LS % x LST®
where pt® is the Cech nerve of the projection
pt — LS5® x LS5,
i.e., we claim that the functor
(E.31) QCoh,, (Hecke %) —» QCoh, (S (H))S¥ H)* v (H)
is an equivalence.
Indeed, the precomposition of (E.31) with (E.17) is the functor
QCoh o (89 (H) ot (sryxet i1y QCoh, (L (H))Sv (H)x L5 (1)

of (E.2), which is an equivalence by Corollary E.1.6.
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E.9.5. Note that we have a commutative diagram

LIndCDh
QCoh(LSy®) R IndCoh* (Hecke?ec’loc)
Rep(H) l(f,l‘ndCOh)e"h

|

Ry-mod®™(Rep(H) ® Rep(H)) ——— Rp-mod™**(Rep(H) ® Rep(H)).

Recall now that IndCoh* (Hecke$?°“'°°)¢ is generated under finite colimits by the essential image of
QCoh(LS5®) along ¢irdCoh,

Hence, from Proposition E.9.4, we obtain that the essential image of IndCoh* (Hecke$P**'°)¢ under
(E.30) is the full subcategory of Rz-mod™*(Rep(H) ® Rep(H)) generated under finite colimits by the
essential image of Rep(H )¢ under the functor

(E.32) Rep(H) ~ Ry-mod®“™ (Rep(H) ® Rep(H)) = Ri-mod™*(Rep(H) @ Rep(H)).

This allows us to recover IndCoh* (Hecke$s**') from Rp-mod™*(Rep(H)® Rep(H)) by an explicit
procedure:

Namely, IndCoh*(Hecke$?**'*°) identifies with the ind-completion of the full subcategory of
Rp-mod™*(Rep(H) ® Rep(H)) generated under finite colimits by the essential image of Rep(H)®
under the functor (E.32).

In the rest of this subsection we will show how to recover various pieces of structure on
IndCoh* (Hecke$>°'°?) from those on Ry-mod™°t(Rep(H) ® Rep(H)).
E.9.6. Note that Rep(H) ® Rep(H) is naturally a factorization monoidal category under convolution,
and Ry is the monoidal unit.

Hence, the monoidal operation
(E.33) (Rep(H) ® Rep(H)) ® (Rep(H) ® Rep(H)) - Rep(H) ® Rep(H)
sends the factorization algebra

Ri @ Ry € FactAlg™" (X, (Rep(H) ® Rep(H)) @ (Rep(H) @ Rep(H)))

to
Ry € FactAlg™ (X, Rep(H) ® Rep(H)).

From here we obtain that the functor (E.33) induces a functor

*

(E.34) (Rg-mod™*(Rep(H) ® Rep(H))) ® (Ra-mod™* (Rep(H) ® Rep(H))) =
— Ry-mod™* (Rep(H) ® Rep(H)),

which naturally extends to a monoidal structure on Rg-mod™°*(Rep(H) ® Rep(H)).

E.9.7. Unwinding the constructions, we obtain that the functor (E.30) is monoidal.

The monoidal operation (E.34) is t-exact. Hence, the procedure of recovering IndCoh* (Hecke?**'°¢)

from Rp-mod™*(Rep(H) ® Rep(H)) described in Sect. E.9.5 allows us also to recover its monoidal
structure.
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E.9.8. Let A be a (unital) factorization category, equipped with a monoidal action of Rep(H) ®
Rep(H). Let A be any (unital) factorization algebra in A.

The action functor
(E.35) (Rep(H) ® Rep(H)) @ A = A
automatically sends the factorization algebra

Ry ® A € FactAlg"™ (X, (Rep(H) ® Rep(H)) ® A)
to
A € FactAlg™™™ (X, Rep(H) ® Rep(H)).

Hence, we obtain that the functor (E.35) gives rise to a functor
(E.36) (Rer-mod™* (Rep(H) ® Rep(H))) ® (A-mod™*-mod(A)) = A-mod™*-mod(A),
which extends to a monoidal action of Ry-mod®°*(Rep(H) ® Rep(H)) on A-mod**-mod(A).
E.9.9. Take A = Rep(H) and A = 1gep(r) = Orep(a), 50 that

A-mod™*-mod(A) = Rep(H).

Hence, we obtain an action of Rg-mod™°*(Rep(H) ® Rep(H)) on Rep(H).

Unwinding the definitions, we obtain that the functor (E.30) intertwines the above action with the
action of IndCoh* (HeckeP°“'°) on QCoh(LSS#) from Sect. E.6.5.

Furthermore, as in Sect. E.9.7, this allows us to recover the latter action from the action of
Rp-mod™*(Rep(H) @ Rep(H)) on Rep(H).

E.9.10. Let us now take H = G. Let us take again A = Rep(G), but let us take A := Rg o, from
(4.8).

We obtain an action of Rs-mod®°*(Rep(G) ® Rep(G)) on RG,OP-modfaCt (Rep(@®)).

Unwinding the constructions, we obtain that the functors (E.30) and (¢}*4C°P)enh jintertwine the

above action with the action of IndCoh* (Hecke$?*“'°°) on IndCoh* (OpgE°™e°) from Sect. E.8.1.
Recall now that according to Proposition 4.4.7 the functor
(tindCoh)enh . Indcoh*(oprélon—free) N Ré7op—m0dfaCt (Rep(é))

induces an equivalence between the eventually coconnective subcategories of the two sides and sends
compact objects to eventually coconnective ones. Combined with Proposition E.9.4, this allows us
to recover the action of IndCoh*(Hecke(>*'*°) on IndCoh* (OpE®*™°°) from the above action of
Rg-mod™* (Rep(G) ® Rep(G)) on RC«;YOp-modf‘"‘Ct (Rep(G)).

E.10. Compatibility of the FLE with (derived) Satake. In this subsection we continue to take

H = @G. Our goal is to prove Theorem 6.4.5 in the factorization setting.

E.10.1. As a first step, we recall the construction of the geometric equivalence functor Sate. Consider
the factorization category

Whit' (@) ® Whit.(G)
and note that it is naturally a bimodule®® for the factorization monoidal category Sph,.

We identify
\ cs .
Whit'(G) ~ Rep(G),
and we identify
FLEs

Whit.(G) ~ Rep(G).

85Recall that according to Sect. 1.5.4 we freely pass between left and right modules for Sphg using the anti-involution
o.
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Thus, we obtain that Rep(G) ® Rep(G) acquires a bimodule structure with respect to Sph. The

action on the factorization algebra object R~ € Rep(G) ® Rep(G) gives rise to a factorization functor

pre-Sat,, : Sphy — Rep(G) ® Rep(G).

Since the monoidal unit §1,cr, € Sphy equals the factorization unit, the functor pre-Sat. sends
Ispn, to Re.

The above operations are compatible with unital structures. Hence, by Lemma C.15.3, the functor
pre-Sat. upgrades to a functor

(pre-Sat;)°™ : Sphy, — Re-mod™ (Rep(G) @ Rep(G)).

Unwinding the constructions, we obtain that the above functor (pre-Sat )"

defined monoidal structure.

carries a naturally

E.10.2. We observe:

Lemma E.10.3. The functor (pre-Sat,)*™" sends the subcategory (Sphy)® C Sphy to the full sub-
category of Rg-mod™*t(Rep(G) @ Rep(G)) generated under finite colimits by the essential image of

Rep(G)¢ under the functor
Rg-mod®™ (Rep(G) ® Rep(G)) — Rg-mod™* (Rep(G) ® Rep(G)).

Thus, combining with Sect. E.9.5, we obtain that the functor (pre-Sat,)°™"

as

can be uniquely factored

Sphg — Sphiy* := IndCoh*(HeckeSGPec’lOC) (=39 Rg-mod™(Repg @ Repg),
where the first arrow preserves compactness.

The resulting functor
Sphg — Sphy*

is the functor Sate, as it was constructed in [CR].

E.10.4. For the proof of Theorem 6.4.5, we will need the following output of the above construction:

Consider the functor

pre-Satg ~ . d® FLECJ,oo

(E.37) Sphy " =9 Rep(G) @ Rep(G) —"~ Rep(G) ® Whit.(G).
By construction, it has the following properties:

e It intertwines the action of Sphy on itself by right multiplication with the natural action of
Sphg on Whit. (G);
e It intertwines the action of Sphg on itself by left multiplication with the action of Sph¥** on

Rep(G) via Sata.

E.10.5. Let A be a factorization category, equipped with a factorization action of £(G),(wy) at the
critical level. We have a naturally defined factorization functor

D—modcrit(GrG,p(wX)) ® Sph(A) — A,
Sphg

which gives rise to a factorization functor

(E.38) Whit,(G) ® Sph(A) — Whit,(A).

Sphg
By duality, the functor (E.38) gives rise to a functor
(E.39) Sph(A) — Whit'(G) ® Whit.(A),

compatible with the action of Sphy;.
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E.10.6. Composing with CS¢ along the first factor, from (E.39) we obtain a functor
(E.40) Sph(A) — Rep(G) ® Whit.(A).
We claim:
Lemma E.10.7. The functor (E.40) intertwines the action of Sphy on Sph(A) with the action of
Sphf*® on Rep(G) via Sate.

Proof. We can interpret the functor (E.40) as follows:

(E.41) Sph(A) = Sphg _© Sph(A) E2D (Rep(() ® Whit.(G)) ® Sph(A) ~
pPhg

Sphg

~ Rep(G) @ (Whit.(G) © Sph(A)) 1EES Rep(G) ® Whit, (A).
phg

Now the assertion follows from the second bullet point in Sect. E.10.4.

E.10.8. Consider the morphism

mon-free

Oprélon—frcc Xt Y Lsgg ><()p[é)cr7
and the corresponding factorization functor

(rx  mon-free )IndCuh
*

(E.42) IndCoh*(Opg°e) IndCoh™ (LSZ® xOpg™) ~ Rep(G) ® IndCoh*(OpE*).
Unwinding the construction, we obtain that (E.42) is compatible with the actions of Sphgjec on the
two sides, where Sph’? acts on the right-hand side via the LSZ®-factor.
Denote
Rgfoy o= (0 om0y (0 e ) € FactAlg™™ (X, Rep(G) @ IndCoh” (Opg™)).
By Lemma C.15.3, the functor (E.42) enhances to a functor
(E43) ((vx momiree)paeem)h : IndCoh™ (Opg™ ™) = R&D -mod™ (Rep(G) ® IndCoh” (Opg*™)).
The functor (E.43) intertwines the Sph¥*“-action on the left-hand side and the action of
Re-mod™*t(Rep(G) ® Rep(@)) from Sect. E.9.8 on the right-hand side via the functor (E.30).
E.10.9. We will prove:

Proposition E.10.10.

(a) The functor (E.43) induces an equivalence between the eventually coconnective subcategories of the
two sides.

mon—free)

(b) The essential image of the subcategory of compact objects in IndCoh™ (Opj
. >—
(E.43) is contained in (RRep -mod"“*(Rep(G) ® IndCoh* (Opger)))

under the functor
G,0p

The proof will be given in Sect. E.11. Let us accept this proposition temporarily and proceed with
the proof of Theorem 6.4.5.

E.10.11. We now launch the proof of Theorem 6.4.5 proper.

Consider the functor
(E.42)

(E.44) KL(G)erit 2™ TndCoh” (OpZ°™ ) %) Rep(() ® IndCoh™ (Ope™).
We consider its enhancement
FLE wcrit * mon-free (E.43) e ac A * mer
(B45)  KL(Gene  —"" IndCoh”(Opg™ ™) ==’ RET -mod™* (Rep(G) ® IndCoh™ (OpE™)).

By Propositions E.9.4 and E.10.10, in order to show that the functor FLEq, crit intertwines the action
of Sphy; on KL(G)cri¢e with the action of Sphsé’ec on IndCoh*(Op‘é‘on’ﬁee), it suffices to show that the
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composite functor in (E.45) intertwines the action of Sph on the left-hand side with the action of
Rg-mod™* (Rep(G) ® Rep(G)) from Sect. E.9.8 on the right-hand side via the functor (pre-Sat)*™".

E.10.12. By the construction of the action of Rs-mod™*(Rep(G) @ Rep(G)) on the right-hand side of
(E.45) in Sect. E.9.8, it suffices to show that the original functor (E.44) intertwines the action of Sph,
on the left-hand side with the action of Rs-mod™*(Rep(G) ® Rep(G)) on the right-hand side via the
functor (pre-Sat)™".

We will show that the functor (E.44) intertwines the action of Sphy, on the left-hand side with the

action of Spc® on the right-hand side via Satc.

E.10.13. We claim that the functor (E.44) identifies canonically with the functor

Xp(wx),taut ~ (E.40)
(E46) KL(G)arit 25" KL(G)erit, pwx) = SPh(G-mO0derit, p(wy)) —

. R 1d @Dge"h rind . . mer
— Rep(G) ® Whit. (g-moderit, p(wy)) — Rep(G) ® IndCoh™ (Opa™).

Indeed, by construction, both functors are Rep(G)-linear. Hence, since Rep((G) is rigid as a monoidal
category, it suffices to identify the compositions of (E.44) and (E.46) with the functor

(inve ®1d) : Rep(G) ® IndCoh™ (Opg®”) — IndCoh™ (Opg™).
The composition involving (E.44) becomes

FLEG crit (mon-freeyIndCoh

KL(G)crit —"" IndCoh™ (Opgon'free) .y IndCoh* (Opréler)7

which is by construction

(BAT)  KL(G)arit " 25" KL(G) exitp(won) — F-m0eric p(ey) —

—=genh,rfnd

— Whit. (§-modesit p(wy)) —  IndCoh”(Opg™).

Unwinding, we obtain that the composition involving (E.46) also identifies with (E.47).

E.10.14. Thus, we have to show that the functor (E.46) intertwines the action of Sph, on the left-hand

side with the action of Spciy* on the right-hand side via Satc.

However, this follows from Lemma E.10.7.

E.10.15. It remains to establish the commutativity of (6.25). This is equivalent to the commutativity
of the diagram

Xp(wx ), taut

KL(Q)erit KL(G)exit,pwy) — Whit'(G) @ Whit, (§-moderis, p(wy))

FLEG crit l J,CSG @Dgenh rfnd

(B.42) =
—_—

IndCoh* (Op5°-e?) Rep(G) ® IndCoh™ (Opg*),

compatibly with the action of Sph on the top row and the action of Sphg’ec on the bottom row via
Satg.

However, this amounts to the identification between (E.44) and (E.46) established above.
O[Theorem 6.4.5]

E.11. Proof of Proposition E.10.10.
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E.11.1. Consider the functor
(E.48) Id @T™I°" (OpZ°", —) : Rep(G) ® IndCoh™ (OpE®) — Rep(G).
It sends Rgegp — Rg.0p and hence induces a functor
(E.49) Rg?gp—modfaCt(Rep(G) ® IndCoh*(Opg®)) — RG,Op—modfaCt (Rep(®))

The composition of the functor (E.43) with (E.49) is the functor (4.10). Hence, by Proposition 4.4.7,
it suffices to show that the functor (E.49) induces an equivalence between the eventually coconnective
subcategories of the two sides.

E.11.2. The functor Id ®FI“dC°h(Op’é‘er, —) enhances to a functor
(E.50) Rep(G) ® IndCoh* (OpE®™) — oopgg-modfa“ (Rep(G))

where Ogree is regarded as a constant (commutative) factorization algebra in Rep(G).
G

The functor (E.50) sends Rg‘jgp € FactAlg"" (X, szp(G) ®IndCoh™ (Opg™)) to Re o), regarded as
a unital factorization algebra in Ooprgg—modfa“(Rep(G)) via the homomorphism Oopréeg — Re op, se€
Sect. C.11.18.

Hence, (E.50) induces a functor

(E.51) Rgegp-modfaCt (Rep(G) ® IndCoh*(OpE*)) — RC‘;’Op-modfaCt (Oopgg-modfaCt (Rep(é))) .

The functor (E.49) is the composition of (E.51) with the forgetful functor
(E.52) ObIVoOpmg : Réyop—modfact (Ooprc‘cg_modfaCt(Rep(G))) = Raop_modfact(Rep(é)).
G
E.11.3. Note now that by (a relative version of) Corollary 4.4.2, the functor (E.50) induces an equiv-
alence

(E.53) (Rep(() @ TndCoh”™ (OpE)) ™~ 5 (oopgg-modfact (Rep(é))) >0,

Note also that Rg o, € FactAlg"™" (X, Rep(G)) belongs to
Rep(G)Y € Rep(G)~ .
Hence, it makes sense to consider the full subcategory

(R@’Op—modfaCt (OOPSg'mOdfaCt (Rep(@))) )

>—o00

C R@’Op—modfaCt (Ooprcfeg—modfaCt (Rep(é))) .
It follows formally from the equivalence (E.53) that the functor (E.51) induces an equivalence
A * mer oo
(E.54) (Rggp-modf *(Rep((?) ® IndCoh* (Op2 ))) -

>—o00

— (R@,Op—modfaCt (Oopgg—modfaCt(Rep(G))))

E.11.4. Hence, it suffices to show that the functor (E.52) induces an equivalence between the eventually
coconnective subcategories of the two sides.

However, we claim that the functor (E.52) it itself an equivalence. Indeed, this is a particular case
of Lemma C.11.19.
O[Proposition E.10.10]

E.12. Arc spaces of smooth D-schemes. In this subsection, we will prove the following result.

Proposition E.12.1. Let Y — X be a smooth affine D-scheme over X. Then for any test scheme S
and a map x : S — Ran, the S-scheme 2@ (Y)z is isomorphic to the limit of a sequence of smooth affine
S-schemes.
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E.12.2. To prove Proposition E.12.1, it is enough to treat the case for the canonical map X — Ran.
So our goal will be to prove the following:

Proposition E.12.3. LetY — X be a smooth D-scheme over X. Then £5(Y)xr is isomorphic to the
limit of a sequence of relative smooth affine schemes over X' .

We will now describe £3(Y)xs as a limit of affine blow-ups £5(Y)’%; (see below) for any Y. When
Y is smooth, we will show that all £5(Y)%; are smooth.

E.12.4. We first give a brief review of the classical theory of affine blow-ups (a.k.a. dilations). From
now on, we only work in classical algebraic geometry, i.e., schemes means classical schemes, and fiber
products of schemes mean non-derived fiber products, etc.

Let S be a smooth scheme and E be an effective Cartier divisor on S. Let Z be a E-regular S-
scheme, i.e., the closed subscheme Zg := Z X E is an effective Cartier divisor on Z. Let V be a closed

s
subscheme of Zg. The affine blow-up of Z with center V' (with respect to E) is defined to be
DilE(Z) := Blv(2) — Zp,

where Bly (Z) is the blow-up of Z with center V, and ZVE is the strict transform of Zg.

E.12.5. More explicitly, let Og(—F) C Og be the ideal sheaf defining F, and 3 C Oz be the ideal sheaf
defining V. Note that Oz(—F) := Oz ® Os(—E) is a subsheaf of J. Consider the inductive colimit
Os
Dily’ (0z) := colim(Oz — I(E) — T*(2E) — ---).

Note that the connecting morphisms are injective because Z is E-regular. This is a quasi-coherent
O z-algebra with multiplication defined in the obvious way. More explicitly, if E is locally cut out by a
function f of Og, then Dil¥(Oz) is obtained from Oz by adding local sections

f"aran, ap €l
We have
Dil{}(Z) ~ Spec,(Dily (0z)).
E.12.6. We observe:

Lemma E.12.7. In the setting of Sect. E.12.4, let Schs _reg be the category of E-regular S-schemes.
Then Dilf(Z) represents the functor

SchPp_ee — Set, Wi {f: W — Z|f(WEg) CV}.

Here f(Wg) CV means the restriction of flwy factors through V.

Proof. Follows by unwinding the definitions.

E.12.8. Let S° C S be an open, whose complement has codimension > 2. Denote Z° := Z x S°.

Observe:

Lemma E.12.9. Assume that Z equals the affine closure of Z°. Assume moreover that V is the closure
of V°:=V x §° in Z. Then DilE(Z) equals the affine closure of
s

Dil{ (Z)° := Dil{(Z) x S°.
S
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E.12.10. We first construct the schemes £&(Y)'; for I = {1,2}.

Let Ax be the diagonal of X2 and consider the divisor Ax,n :=n-Ax. Note that the connection
on Y relative to X provides a closed subscheme Ay ,, of Y?:

(E55) A‘g,n =Yv x Az,n,

Xdr
viewed as a closed subscheme of Y%, x xz, X 2,
Set
£5(Y)x2 == Dilx s> (¥%).
We claim that we have a canonical isomorphism
L3 (¥)x2 = lim £3 (Y) %=
First, by the universal property of Lemma E.12.7, we have a canonically defined map

(E.56) L9 (¥)x2 = lim £ (Y) -

Let us show that this map is an isomorphism. Let A be the commutative algebra in left D-modules
on X corresponding to Y. Choose a local coordinate ¢ on X, so that X2 has coordinates ¢1, to.
By Sect. E.12.5, the algebra of functions on the right-hand side in (E.56) is the submodule of
ju(ARA)
that consists of local sections of the form

(t1 —t2) " -a, aln.a €ker(4 (éX) Alnay = Alnay),
X

where:
e The connection on A allows us to extend it and also A O® A to quasi-coherent sheaves on n-Ax,
denoted A ® Aln.ay and Aln.ay, respectively. ¥
o We identifyoil KApay ~A 58)){ Aln-ay-
However, this description coincides with the description of
Ax2 C j«(AR A), A = Fact(A).

E.12.11. We now construct EJVF (H)}I for an arbitrary finite set I. Let Ax,r be the diagonal divisor in
X7, i.e., the sum of the pairwise diagonals. We define the subscheme

Ay 1n C y’
over n - Ax,; as follows:
Let
x1e 'Ly xf

be the open corresponding to the condition that not more than two coordinates coincide (i.e., we remove
diagonals of codimension > 2). Denote

yho=y" x x"e,
xI

Formula (E.55) defines a subscheme
Ay . CYYe.
We let Ay s, be the closure of Aj ;, in Y’
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E.12.12. Set R
2L (Y% == Dily 1 (y").

A‘(J,I,n
By the the universal property of Lemma E.12.7, we have a map

(E.57) L3 (¥)xr — lim £3 (Y)%r-

We claim that (E.57) is an isomorphism.

Indeed, the fact that (E.57) is an isomorphism over X?-° follows from the case I = {1,2}, considered
above. We now claim that both sides in (E.57) are affine closures of their respective restrictions to
Xte.

Indeed, for the right-hand side, this follows from Lemma E.12.9. For the left-hand side, this follows
from the fact that the map

Axt = (jr0)« 0 (j1,0)" (Ax1)
induces an isomorphism on H°.

E.12.13. We will now show that if Y is smooth, then the schemes 2@ (%)%1 are smooth. Note that the
assertion is invariant under formal isomorphisms. This allows us to replace Y by AF.

To prove the smoothness, we can assume & = 1. Thus, from now on, we will consider the schemes
LL(AY s
E.12.14. Let H; ¢ X! x X be the incidence divisor. Consider the correspospondence
n-H — X

l

X"
For an X-scheme Y, let
Jets7 (Y)

be the scheme of n-truncated jets into Y, i.e., the restriction of scalars 4 la Weil of (n - Hy) ;<{ Y along
the map n - Hy - xI
E.12.15. Consider the schemes
JetsP(A') and Jets] ' ((AM)wy),
where (A'),y is the total space of the line bundle of 1-forms on X.

Both schemes are vector bundles over X’ of ranks |I| - n and |I| - (n — 1), respectively. De Rham
differential defines a map

(E.58) dar : JetsT (A') = Jets} (A )wy ).

Set
/2$(A1)}1 = ker(ddR).
Since dgg is fiber-wise surjective as a map of vector bundles, '£$ (Al)} ; is also a vector bundle. In
particular, it is smooth over X7'.

E.12.16. We are going to prove:
Proposition E.12.17. There exists a canonical isomorphism
"LH (AR = S (AN
E.13. Proof of Proposition E.12.17.
E.13.1. First, we note that when I = {x}, there is an obvious isomorphism
"eE (A% = ker(Jets" (A") = Jets" (A )wy ) & ker(Jets(A') — Jets((A')wy ) =
~ gAYy =A' x X.
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E.13.2. Note that for a map of finite sets I’ — I, there is a canonically defined map
Jets} (Y) = Jets} (4),
covering X' — x".
In particular, we obtain a map
(E.59) LY (ANRr = (LH(ANR) > (A x X)'
over X1, This map is an isomorphism away from the diagonal divisor.
E.13.3. We will show that the map (E.59) lifts to and defines an isomorphism
(E-60) "LE (A% = LH (AN
over XT°.

This would imply Proposition E.12.17, since both schemes in question are affine closures of their
respective restrictions to X°.

E.13.4. In order to prove (E.60), it suffices to consider the case I = {1,2}. The following is obtained
by a straightforward calculation:

Lemma E.13.5. The map
(E.61) oL (AN = (A" x X)?
has the following properties:
(i) Its restriction to n - Ax maps to Apn ,,;
(ii) Its restriction to (n 4 1) - Ax does not map to Ap1 ,41.
E.13.6. From Lemmas E.13.5(i) and (E.12.7), we obtain that (E.61) lifts to a map
(E.62) oL (AN = LH(AY .
It remains to show that (E.62) is an isomorphism.

E.13.7. The map (E.61) respects the vector bundle structures. Hence, so does the map (E.62). It is
an isomorphism away from the diagonal, so it remains to show that it is surjective over the diagonal.

E.13.8. It is clear that the image of
ISJVr (Al)?@ ‘AX - SJVr (A2)7)L(I |AX ~ Al x Al
contains the diagonal copy of A

Furthermore, if the entire image had been contained in the diagonal copy of A', it would have meant
that the map (E.62) lifts further to a map
"LE(AN) k2 = £H (A
However, the latter contradicts point (ii) of Lemma E.13.5.
O[Proposition E.12.17]

APPENDIX F. HORIZONTAL SECTIONS OF AFFINE D-SCHEMES

Let Y be an affine D-prestack over X. Let Sectv (X, Y) denote the prestack of its horizontal sections,
ie.,

Maps(Spec(R), Sectv (X, Y)) := Mapsy ¢ (Spec(R) x X,Y).

In this section we will describe, following [BD2], Sectv (X,Y) explicitly in terms of (vacuum) fac-
torization homology of the algebra of functions Oy of Y. We also describe spaces of sections of quasi-
coherent sheaves on Sectv (X,Y), in terms of factorization homology of Oy with coefficients in corre-
sponding modules.

We then generalize this discussion, when instead of Secty (X, Y) we consider the space Secty (X —z,Y)
of sections, where we allow punctures at x C X.
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F.1. Horizontal sections via factorization homology.
F.1.1. We start with an arbitrary D-prestack Y — X (later on in this section, we will assume that Y
is affine over X).

Let A € ComAlg(D-mod(X)) be the direct image of the structure sheaf of Y, and let A be the
corresponding object in ComAlg(FactAlg(X)), i.e., A = Fact(A).

Consider the evaluation map
Sectv (X,Y) x X = Y.

It gives rise to a map
(F.1) A— OSecty (x,y) ® Ox

in ComAlg(D-mod (X)), where by a slight abuse of notation we denote by Ogecty (x,y) the algebra of
global functions on Sectv (X, Y).

By the adjunction of Corollary C.8.9, from (F.1) we obtain a map

(F2) ‘A — osectv (X,Y) ® wRanuntl,*
in ComAlg(D-mod(Ran"™"*)), and further, by Sect. C.9.2, a map
(F.3) CP(X,A) = OSecty (X,9)

in ComAlg(Vect).
F.1.2. Suppose that the prestack Y satisfies the assumption of Sect. C.8.10 (e.g., Y — X is affine). In
this case, the map (F.2) can also be interpreted as follows:

Consider the map
Sectv (X, Y) x Ran = €8 (Y)ran.
Pullback at the level of functions defines a map

(.4)
(F4) A ~ (9246 (¥),Ran — OSeCtV (X,Y) ® WRan

in ComAlg(D-mod(Ran)).
It follows by unwinding the definition that the map (F.2) is the same as (F.4).

F.1.3. Suppose now that Y — X is affine. In this case we claim:

Proposition F.1.4. The prestack Sectv(X,Y) is an affine scheme, and the map (F.3) is an isomor-
phism.

Proof. The key fact is that for any factorization algebra A such that oblv!(Ax) € QCoh(X)=°, we
have
(X, A) € Vect=°.
This follows from the fact that
(X, A) ~ C,(Ran, Aran)
can be written as a colimit with terms
C (X, Axr)

for (non-empty) finite sets I, while each Ay satisfies oblv!(Ayr) € QCoh(X')<? (see [BD2, Sect.
3.4.11]) and hence C"(X*,Ax1) € Vect=’.

In particular, in our case

(X, A) € ComAlg(Vect=?).
Now, the assertion follows immediately from Corollary C.9.5: for R € ComAlg(Vect=?) we have

affineness of Y
~

(F.5) Maps(Spec(R), Secty (X,Y)) = Mapsy ¢ (Spec(R) x X,Y)
=~ MapSComAlg(D—mod(X)) (A7 R @ OX) = Ma’pSComAlg(Vect) (CFaCt (X7 ‘A)’ R)7
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so Sectv (X, Y) is the affine scheme Spec(C™°*(X,A)), and by construction the map (F.3) is the map
CPH(X, A) = T(Spec(CI (X, A)), Ogpec(ctact (x,4)

resulting from (F.5).

F.1.5. Recall now that the functor
(3 ()2, —) : QCoh(£% (H)a) — Vect
factors via an equivalence
I8 (Y)e, =)™ : QCoh(£5(Y)z) — Ag-mod ~ A-mod§™,
followed by the forgetful functor

oblvy , : A-modg”™ — Vect .

We claim:

Proposition F.1.6. There exists a canonical isomorphism between

(F.6) QUoh(L5(Y)s) =5 QUoh(Secty (X, Y)) " T vy
and

rEed (¥)e, -t ctact (x,4,-)
hS A-modz™ — A-modgct 57 % Vect .

(F.7) QCoh(Ly (¥)a)
Proof. Since
QCoh (£ (Y)z) =~ Ag-mod ~ A-modi™,
the assertion of the proposition amounts to the following:
We have a canonical identification
I(Secty (X, Y), Osecty (x,4)) = C(X, A, Az)e

as Az-modules, where:

e A, acts on the left-hand side via

Az 5 End(0 — End(eV;(Oﬁéw) )) ~ End(Osecty (x,9));

2$<9>£) =

e A, acts on the right-hand side via

.Az :) Endﬂ_mod;.om (.Az) — EndA,mOd&fvact (\Ag) .

However, this follows from the fact that the isomorphism

(F.3) unitality
~ ~

[(Sectw (X, Y), Osecto(x,y)) = CPUX,A) T = CPN (X, A Ap)s
(as commutative algebras) is, by construction, compatible with the homomorphisms
'A£ = F(Sé (y)La Ogé(g)i) — F(SeCtV (X7 y)v OSectv(X,‘d))

and
Az = Ce(Rani™, Agpunr) = C*U(X, A, Ao
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Remark F.1.7. Recall that Remark 15.6.15 says that for a commutative factorization algebra A, we
have a canonical identification

A-modian indep = C (X, A)-mod.
Hence, by Proposition F.1.4 we obtain:
QCoh (L% (Y))Ran,indep =~ QCoh(Sectv (X, Y)).

We can interpret Proposition F.1.6 as saying that under the above equivalence, the corresponding
functor

QCoh(£5(Y)) — QCoh(Sectv (X,Y)) ® D-mod(Ran""")

sends z € Ran to to the functor

QCoh(£%(Y).) S QCoh(Secty (X, Y)).

Remark F.1.8. The above remark applies to D-prestacks that are “as good as affine”, see Sect. 12.7.
For example, for a unipotent group-scheme N’ over X and Y = pt /£ (N’), we obtain an equivalence

(F.8) Rep(pt /&1 (N'))Ran,indep ~ QCoh(Buny),
where the composite functor

Rep(pt /€7 (N'))ran — Rep(pt /€7 (N'))Ran,indep =~ QCoh(Buny-)

. Cot
is Loc%/ o,

Similarly, if N’ is equipped with a connection (e.g., N’ is constant), we have
(F.9) Rep(N/)Ran,indep >~ QCOh(LSN/),
where the composite functor

Rep(N/)Ran — Rep(N/)R.an,indep ~ QCOh(LSN/)

spec

is LocN, .

Remark F.1.9. We warn the reader that the equivalences (F.8) and (F.9) are a feature of unipotent
group schemes. For a reductive G (e.g., for G = G,,), the corresponding functors are far from being
equivalences.

F.2. Variant: allowing poles. Let A and Y be as in the previous subsection. For x € Ran, consider
the prestack

Sectv (X — z,Y).

We will now give an explicit description of Secty (X — z,Y) in terms of factorization homology. In
particular, we will show that it is an ind-affine ind-scheme.

F.2.1. Write

Lv(Y)e = cogm” Spec(R'), R’ € ComAlg(Vect="),
where each
(F.10) Spec(R') — Lv(Y)z

is a closed embedding.
Consider the fiber product

Sectv (X —z,Y)" := Spec(R") x Sectv(X —z,Y).
£(¥)z

We will show that Secty (X —z,Y)’ is a scheme and describe the algebra of functions on it in terms
of factorization homology.
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F.2.2. First, we note that as in Sect. D.2.8 the datum of a closed embedding
(F.11) Spec(R') = Lv(Y)z

is equivalent to the datum of a modification A’ of A at z, i.e., A’ is an object of ComAlg(D-mod(X)=°)
equipped with an isomorphism

Allx—z ~ Alx—s.
Indeed, given A’, set
(F.12) Y’ := Specy (A"),
and we recover R’ as A}, where A’ := Fact(A’), and (F.11) as
Spec(R') ~ &L (Y) = £v(Y) ~ v (¥).
F.2.3. Vice versa, given (F.11), we interpret it as a map of commutative D-algebras
je 0" (A) = R'(®)

(here t is a coordinate on the multidisc D, and j is the open embedding X — z — X), where the
condition that (F.11) is a closed embedding corresponds to the condition that the map of D-modules

(F.13) je0j (A) = R'(#) — R'(#)/R'[1]
is surjective on H°.
We recover A’ as the fiber product

Je 0§ (A) R[t],

X
R/ (1)
and the surjectivity of (F.13) is equivalent to the condition that A’ is connective.

F.2.4. Let R be as in (F.11), and let A’ be the corresponding modification of A. Unwinding the
definitions, we obtain:

Spec(R') x Sectv(X —z,Y) ~ Sectv (X — z,Y).

£(a
Hence, by Proposition F.1.4, we obtain:
Corollary F.2.5. The prestack Spec(R’) x Sectv(X —=x,Y) is affine and the naturally defined map
£y

x

CfaCt(X,-Al)‘)OSPeC(R/)Eé Secty (X —z,Y)

is an isomorphism, where A’ := Fact(A’).
F.2.6. We will now rewrite C™*(X,.A’) in terms of factorization homology of A itself.
We can view R’ as an object of A—mod;aCt via

R € A'-mody”™ — A'-modf* &~ A-modi.

/

A Rapunt! D€ the corresponding object of

When viewed as such, we will denote it by R). Let R
D-mod(Rani™").
Recall (see Sect. B.10.7) that since A is a commutative factorization algebra, the category A—modgwt

has a natural symmetric pseudo-monoidal structure. The commutative algebra structure on R’ endows
R/, with a structure of commutative algebra object in A-mod¥*. In particular, R/, Ranuntl ACQUires a

structure of commutative algebra object in D-mod(Rany™™").
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F.2.7. The assertion of Lemma C.5.9 is valid for Ranzn“, hence
CP(X, A, Riy)e := Cu(Rany™, Ry popunat)
acquires a structure of commutative algebra in Vect.
We claim:
Lemma F.2.8. There is a canonical isomorphism
(F.14) CR (X, A, R)y)e ~ C™(X, A")
as objects of ComAlg(Vect).

Proof. Note that with respect to the (symmetric monoidal) equivalence
A—modgLCt o~ A'—modi“,
the object
R!y € A-mod**
corresponds to the vacuum object
(A)**= € A'-modp,
where we recall that (A')*z denotes the vacuum factorization module at z.

Moreover, this isomorphism respects the structure of commutative algebra object on both sides. In

particular,

/ ~ /
Ry ranuntt >~ Ag,puntt
z xz

as objects of ComAlg(D-mod(Rani™")).
Now, (F.14) follows by concatenating
CPU (X, A, Riy)a ~ CRU (XA (A0,
and

unitality
~

C'fact ()(7 ‘/[l7 (A/)fact£)£ Cfact ()(7 A/)
F.2.9. Thus, Spec(C™Y(X, A, R)).) gives the desired expression for
Spec(R') x Secty(X —z,Y)
£(Y)

z

in terms of factorization homology of A.

F.2.10. Let
Riq’Rani € ComAlg(D-mod(Rang))

be the restriction of R, . unu to the non-unital Ran space.

A,Ra
By construction, it belongs to ComAlg(D-mod(Rang )™ ") Hence, by Sect. C.5.15,
Ce.(Rang, R./A,Rani)
acquires a commutative algebra structure.
By Lemma C.5.12 we have an isomorphism
C.(Rang, R ran, ) ~ Co(Rany™, R popuna) = CP(X, A, R )2
as commutative algebras.

F.3. Factorization with poles. In his subsection we will add a slightly different spin to the discussion
in Sect. F.2.
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F.3.1. Asin [Bogd, Definition A.2.1], let £2°7"8(Y)  c be the factorization ind-scheme over Ran<
that attaches to

N

(zCa')

the space
’Qgerwreg(%)zgz’ = Sectv (Dy — z,Y).

We have the projections

r“'j TU;
(F.15) Sy (y) Temen gmer-res(y) o TV 00 (y)

given by restrictions along

respectively.

F.3.2. Example. When

we have
LT W)ace = L9 (V) X L5 ()
F.3.3. Fix z, and consider the space

Sgerwreg(y)Ranﬁ = 21391“’"1"9% (9)Rang X Ran&'
RanC

It has a natural structure of factorization module space with respect to £$ (Y), with the underlying
space being £v(Y)z.

Moreover, viewed as such, £r§erwreg(5)r{an£ has a natural counital structure (see Sect. C.6.7 for what
this means).

In particular, we have the map
prgmall,g : ‘Srgerwreg(y)Rang — SV (%)ﬁ
F.3.4. Fix a closed embedding Spec(R') — £v(Y)z, and consider the fiber product
Spec R/ % SmerWreg y ang -
pec(R) | x L5 P,

v z

Unwinding the definitions, we obtain:

Lemma F.3.5. We have a canonical isomorphism

Spec(R) o X Lo (Y ran, =~ £3(Y )Ran,

vz

where Y' is as in (F.12).
F.4. Sections of quasi-coherent sheaves, meromorphic version.
F.4.1. Recall (see Sect. 4.3.7) that the functor

I'v(Y)az, —) : QCoh,,(Lv(Y)z) — Vect
admits an an enhancement to a functor

T(8v (Y)a, =) : QCohe,(Lv (Y)) — A-mod;.
F.4.2. Note also that since the morphism
evy : Sectv(X —z,Y) = £v(Y)e

is schematic, we have a well-defined functor

evy : QCoh  (L£v(Y)e) — QCoh,, (Sectv (X — z,Y)).
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F.4.3. The goal of this subsection is to prove the following:

Proposition F.4.4. There exists a canonical isomorphism between

(F.16) QCoh, (£v(Y)s) —5 QCoh, (Secty (X — z,Y)) "2 yroey
and

o _\enh fact o
(F.17) QCoh, (v (¥)s) TP gmedteet ¢TI v

The rest of this subsection is devoted to the proof of Proposition F.4.4.

F.4.5. First, we construct a natural transformation
(F.17) — (F.16).
Note that the functor
ins. unit, : QCoh,,(£v(Y)z) = QCoh . (£v (Y)Rran, )

is given by
¥ Y
(prbig,g)* © (prsmall,g)*v
where

Y
= Plhig,a
£ger rEg(%)Ran£ E} SV (y)Rani'

y
Primall,z

£y (‘j )£

Hence, we obtain that the functor

(v (Y z,*)enh

QCoh_,(£v(Y)2) = A-mod®°* — D-mod(Ran,)
is given by
(pRanﬁ)* © (przmall,g)*7

where
p: L9778 (Y)Ran, — Rang.

From here we obtain a natural transformation from

&y (Y)z,—)"P fact ins.vacg fact oblv 4 Ran,
s

(F.18) QCoh,, (£v(Y)z) — A-mod, A-modrz;,, — = D-mod(Rany)
to

(eVRanz )"

( rgma .z)* mer~-re
(F.19) QCoh,(Sv(¥)a) =~ 5= QCoh,y (L2 (Y)Ran, )

I'(Secty (X —z,Y),—)®Id
(Secty (X —=z,Y),—)

— QCoh,, (Sectv (X — z,Y)) ® D-mod(Ran,) D-mod(Rang).

F.4.6. Note, however, that the map

eVRang Prémall,z

Sectv(X —z,Y) x Rany — £ 7% (Y)ran, — Lv(Y)e
equals

Sectv (X — z,Y) X Rang — Sectv(X — z,Y) = £v(Y)z.
Hence, we obtain that (F.19) can be rewritten as

Id QWRanz
—

(F.20) QCoh,, (S (Y)s) —% QCoh,, (Sects (X — z.Y))

— QCoh,, (Sectv (X — z,Y)) ® D-mod(Ran,) F(Secty (Xg¥), e

which is the same as

D-mod(Rany),

I (Secty (X —-z,Y),—) WRanz

(F.21) QCoh.,(Lv(Y)z) g QCoh,, (Sectv (X — z,Y)) Vect — D-mod(Rang).

Thus, we obtain a natural transformation from (F.18) to (F.21). By adjunction, this gives rise to
the desired natural transformation from (F.17) to (F.16).
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F.4.7. We will now prove that the above natural transformation (F.17) — (F.16) is an isomorphism.
Write
Lv(Y) =« Cogii/m ” Spec(R') = 2@(9')
as in Sect. F.2.1 and Y as an (F.12), so that
Sectv (X —z,Y) =« co;li/m” Secty (X —z,Y").
Thus, we obtain that
QCoh, (Lv(Y)) = colim QCoh(£4(¥)),

and we obtain in order to show that (F.17) — (F.16) is an isomorphism, it suffices to show that it
becomes such if we precompose both functors with

QUoh(£4(Y)) = QUoh, (Lv (Y))
for every R’ as above, where " denotes the corresponding map ¢ : £5(Y') — £v(Y).
F.4.8. Note that for every R’ as above, the functor

C(Ey(Y)a,—)°""
—

(F.22) QCoh(£5(Y')) % QCoh,, (v (4)
identifies with

fact
A-mod;°

A ’ _
(F.23) QCoh(gé(y)) T

and the functor

A/—modg’m — A/—modiCt ~ A—modgm,

(F.24)  QCoh(£4(Y)) 3 QCoh,, (Lv(Y)) —5 QCoh,, (Secty (X — z,Y)) Y ETED T vt
identifies with

(F.25) QCoh(£%(Y)) 25 QCoh,, (Sectw (X, Y')) "H I viet

Composing (F.22) and (F.23) with the functor C*°*(X, A, —)., we obtain that the natural transfor-

mation (F.17) — (F.16), constructed above, gives rise to a natural transformation from

red 4z, )

QC h £+ / .A, dcom A/ dfact ~ A dfact C.faCt(Xﬁ-A,*)z
oh(£v(Y)) — -mod, — A'-mod, = ~ A-mod, —

~ Vect,

which is the same as

At (X, A" =)

T(eg (Y )zs—) cf
" T A mody™ — A'-modgm — " " Vect,

(F.26) QCoh(£4(Y")
to (F.25).
However, unwinding the definitions, we obtain that the resulting natural transformation
(F.26) — (F.25),
coincides with the natural isomorphism of Proposition F.1.6.
O[Proposition F.4.4]

F.5. Interpretation as factorization restriction.

F.5.1. In this section we will assume that £v(Y) is ind-placid, and that the embeddings
e  mer~»reg
02 £5(Y) = Lo(Y) and L7 (D)ran, © — L9 (Y)Ran,
are locally almost of finite presentation, where

mer~»reg __

Y
L = Plpig z -

mer~~reg

This assumption implies that £ (Y) (resp., £5 (Y)Ran, ) is placid (resp., ind-placid).
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F.5.2. Ezample. The above assumptions hold for Y = Jets(€), where & is the total space of a vector
bundle on X.

In particular, they hold for Y = Op.

F.5.3. We can consider the factorization categories
IndCoh* (£¥(Y)) and IndCoh*(£v (Y))
and the factorization functor

(F.27) 1249h - IndCoh™ (£ (Y)) — IndCoh™ (£v (Y)).

F.5.4. Consider the assignment
(Z — Rang) — IndCoh™ (£2°7"*(Y)Ran, * Z)

ani
as a crystal of categories over Ran,.

It has a natural structure of factorization module category with respect to IndCoh*(£3(Y)); when
viewed in this capacity we will denote it by IndCoh* (£5°" "8 (Y))factz,

F.5.5. The map /™78 gives rise to a functor

(F.28) (ymerresymdCob . 1 g Coh™ (L2778 (Y)) ' 5 IndCoh™ (£v (Y))™*=

as factorization module categories, compatible with the factorization functor (F.27).
Hence, by Sect. B.9.25, we obtain a functor

(F.29) IndCoh* (€575 (Y)) "= — Res, macen (IndCoh™ (£ (Y))™"=).

F.5.6. We claim:

Lemma F.5.7. The functor (F.29) is an equivalence.

Proof. Repeats that of Lemma 16.2.8.

APPENDIX G. FROM MODULE CATEGORIES OVER QCoh(LSZ®") TO FACTORIZATION MODULE

CATEGORIES OVER Rep(G)

This section is not logically necessary for the rest of the paper. Here we explain a procedure that

associates to a module category over QCoh(LSE) a factorization module category over Rep((), and
show that this functor is fully faithful (on a certain subcategory).

Using this, we deduce an alternative proof of Proposition 7.5.7.

G.1. Creating factorization modules categories. Throughout this section we will work at a fixed
point x € X. In this subsection we let H be an arbitrary algebraic group.

G.1.1. Consider the space LSF%, and the monoidal category QCoh(LS%%;). Let us recall the construc-
tion of a functor

(G.1) QCoh(LSE)-mod — Rep(H)-mod™™®,  C s CacteRerltD)
G.1.2. Namely, we will construct an object
QCoh(LSy™re8)fcte RepltH) ¢ Rep(H)-mod "
that carries a commuting action of QCoh(LSF;). The functor (G.1) will then be given by

QCOh(LSrIfl]erwreg)factm,Rep(H) ® _
QCoh(LSrgf;)
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G.1.3. The object QCoh (LS} "8 )facte-Rep(H) wil] have the feature that its underlying DG category,
equipped with an action of QCoh(LSF;), identifies with QCoh(LSE;) itself.

This will imply that the functor (G.1) has the feature that for C € QCoh(LS%%;)-mod, the category
underlying Cfet= Rep(H) jdentifies with the original C.
G.1.4. The object QCoh(LS " °8)factz Rep(H) ig constructed as follows.

For our fixed point x € X and a finite subset * €  C X, consider the multi-disc D, and set

(Qcoh(LSrgerwreg)factm,Rep(H) )£ — QCOh(LSE?;E;eg),

see Sect. C.10.11.

Remark G.1.5. The construction above is a cousin of the following construction for affine D-schemes:
starting from a module category over QCoh(£v(Y)) we can associate to it a factorization module
category over QCoh(£E(Y)) by the operation of tensoring with

QCoh, (85775 (4)) ™",
see Sect. F.5.4.

Remark G.1.6. This construction also be viewed as an analog of a construction in [CFGY] that asso-
ciates to a £(G),-module category a factorization module category over D-mod(Grg); in fact a version
of the latter construction has appeared in Sect. 4.7.8.

G.1.7. In what follows we will need a variant of the above construction, when instead of LSE%; we use

its formal completion (LS ) ey around LS3E,.
The corresponding functor
(G.2) QCoh((LSE%) s )-mod — Rep(H)-mod2",  C s Cfcte Rep(H)
is constructed using the prestack
(x C z) ~ (LSE5 s rees
i.e., the formal completion of LS} =7 along (LS'58)facts

G.1.8. Ezample. Consider QCoh(LS%*%) ~ Rep(H) as an object of QCoh((LS¥; ) es)-mod, via the
restriction functor

QCoh((LSHz)reg) — QCoh(LSE,).
We claim that
(G.3) QCoh(LS3E, )t RPtD) ~ Rep(H)™*,
i.e., the vacuum object of Rep(H )-mod®®<t,

Indeed, this follows from [GaRo3, Chapter 3, Proposition 3.5.3] using the fact that

s fact
Lsmer reg\ A % LSYeg ~ Lsreg @
( H,zCaz' Jreg (LSmer )A wo = (LSE")z

H,x/reg

When applying [GaRo3, Chapter 3, Proposition 3.5.3] we use the fact that we can identify

(LS )reg = bo / Ad(H),

so this prestack is passable.
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G.1.9. We claim:
Theorem G.1.10. The functor (G.2) is fully faithful.

This theorem is proved in [Ra4, Theorem 9.13.1]. We will supply a proof for completeness.
Remark G.1.11. We conjecture that the functor (G.1) is itself fully faithful. A partial result in this

direction has recently been established in [Bogd]: the composition (G.1) with the restriction functor
QCoh(LS})-mod — QCoh(LS¥)-mod
is fully faithful, where
LSif C LSy
is the stack of local systems with restricted variation (see [AGKRRV, Sect. 1.4]).
Remark G.1.12. The reason the discussion in this section is for a fixed point in the Ran space is that

we do not know how to prove the analog of Theorem G.1.10 in the factorization setting (and are not
confident in its validity).

G.2. Proof of Theorem G.1.10. The proof is a “baby version” of the argument proving the corre-
sponding assertion in [CFGY], see Remark G.1.6.

G.2.1. Reduction steps. First, we note that the functor (G.2) preserves both limits and colimits.

Second, the (symmetric monoidal) restriction functor
QCoh((LSH:)ieg) — QCoh(LSH,)
is comonadic, and its right adjoint is QCoh((LSH % )reg)-linear.

It follows that the 2-category QCoh((LSH% )ree)-mod is generated under colimits by the essential
image of
(G.4) QCoh(LS%*,)-mod — QCoh((L Hor)reg)-mod,
given by restriction along
Lszgz (Lsme:f:)reg
Moreover, by passing to right adjoints, the 2-category QCoh((LSmer)rcg) -mod is also generated
under limits by the essential image of (G.4).

Third, QCoh(LS}%,)-mod ~ Rep(H)-mod is generated under colimits (and separately, limits) by
objects of the form C® Rep(H), for C € DGCat.

And fourth, since

Rep(H) ~ Vect ®  Vect,
QCoh(H)

we obtain that the object Rep(H) € Rep(H)-mod is a colimit of objects on which the action of Rep(H)
is trivial, i.e., factors via the augmentation functor

Rep(H) — Vect,

corresponding to
pt — LS%, .

mer )

Combining these observations, we obtain that the 2-category QCoh((L feg)-mod is generated
under colimits by trivial modules and under limits by objects of the form Co ® Rep(H) for a DG
category Co with a trivial action of Rep(H).

Hence, it is enough to show that the functor
(G.5) FunCtQCOh((Lsmcr Ay mod(Vect, Co ® Rep(H)) —
— Functge, ()-modtact (VectfaCtl"Rep(H), Co® Rep(H)faCt“')

is an equivalence.
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G.2.2. Recall that for a (unital) factorization functor ® : A; — Ay and an object Cy € As-modt,
we denote by Ress(Cg) its restriction along ®.
Consider the tautological object Vectf*= € Vect-modf°, and the corresponding object
ReSobly; (Vect™) € Rep(H)-mod**,

where oblvy : Rep(H) — Vect is the forgetful functor, viewed as a (strictly unital) factorization
functor.

Pullback along the unit section of (LS“I}e;Z;?g)rAeg gives rise to a functor
(G.6) Vectaeta ReptH) _ yrgcpfacts

compatible with factorization (in the sense of Sect. C.14.11). Hence, we obtain a morphism
(G.7) Vectete Bert) _ Rogopiv ; (Vect ™)

as unital factorization modules over Rep(H).

G.2.3. We claim:

Lemma G.2.4. The functor (G.7) is an equivalence.

Proof. Follows from Lemma B.15.9.
O

G.2.5. Recall now the paradigm of Lemma C.15.16. We apply it to oblvy : Rep(H) — Vect. Com-
bined with Lemma G.2.4 above, we obtain that for C € Rep(H )—modf,:aCt we have a canonical equiva-
lence

(G.8) Functrep(p)-modatact (VectfaCt“”’R6p<H>,C) ~ Ry-mod™*(C,).

G.2.6. Taking C := Rep(H)™* ® Cy in (G.8) and using (G.3), we obtain that (G.5) reduces to
showing that the resulting functor

(G.9) Functqoon((Lsmer ) )-mod (Vect, Rep(H) ® Co) — Rp-mod™*(Rep(H) ® Co)

Howtes
is an equivalence.

It is clear that the functor

FunctQCOh((LSE?;)rAeg)_mod(Vecm Rep(H)) ® Co — FunctQCOh((LSE’e; rAeg),mod(Vect, Rep(H) ® Co)
is an equivalence (since QCoh((LSE% )/ is a semi-rigid monoidal category, see [AGKRRV, Sect. C]).

Now the fact that Ry is holonomic implies that

Rir-mod™* (Rep(H)) ® Co — Ru-mod™*(Rep(H) @ Co)

is also an equivalence (see [Ra4, Theorem 8.13.1]).

Hence, it is enough to show that the functor

(G.10) Functqeon((Lsmer )4 y-mod (Vect, Rep(H)) — Ry-mod™* (Rep(H))

H,xz’reg

is an equivalence.

G.2.7. We rewrite the left-hand side in (G.10) as

QCoh(pt x  LSH%) ~QCoh(pt x LS.
L : Lsper ’

(LSF ) ree
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G.2.8. By Sect. 4.5.4, the category (R-mod™*(Rep(H)))” > identifies with
>—
QCoh,, (pt x LS}‘}i)
LS¥ '

Since Rp-mod™“*(Rep(H)) is left-complete (see Proposition B.9.18), we obtain that it identifies
with the left completion of
QCoh,, (pt x LS;?E‘;E).

LS;“IL;

Since pt x LS® is almost of finite type, we have an equivalence
Lsmer '

re >—00 re >—o00
Voo s :QCohCO(pth LSy%,) —>IndCoh(ptL>< LSy%,)

Lsiper SH e SH e
Hence, the above left-completion identifies with

QCoh(pt L e LS%5%,)-

H,x
G.2.9. Unwinding the constructions, we obtain that the endo-functor of QCoh(pt x LSj®), in-
LSE% '
duced by (G.10) and the above two identifications is the identity.
O[Theorem G.1.10]

G.3. Factorization module categories attached to affine D-schemes.

G.3.1. Let Y be an affine D-scheme over X, equipped with a map
Y — pt/H.
Consider the corresponding factorization spaces
(G.11) LLY) <> Lo (Y)
and the commutative (but not necessarily Cartesian) diagram

LLHY) —— £v(Y)

] E

LSis —— LSH”

G.3.2. On the one hand, we can consider QCoh,,(£v(Y)z) as an object of QCoh(LSE?;)-mod. Con-
sider the resulting object

(G.12) QCoh,, (£v(Y).) == RPH) ¢ Rep(H)-mod™".

G.3.3. On the other hand, consider the QCoh(£(Y))-factorization category
QCOhCO (£I§erwreg (y))faotm ,

defined as in Sect. F.5.4.

Pullback along
o8 el (Y) - LS

defines a (strictly unital) factorizaton functor
Rep(H) ~ QCoh(LS¥) 3" QCoh(£(Y)).

Consider the resulting object

(G.13) Resgres )+ (QCOhCO():'g”Meg(y))f‘“‘z) € Rep(H)-mod™".
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G.3.4. Note that the natural morphism

(G.14) SO (Y)scp — LS X So(Y).
T LSRG
is affine.

Hence, pullback along (G.14) gives rise to a functor
(G15) QCOhCO('EV (y)m)factw,Rep(H) N Qcohco(zgerwreg(y))factm
compatible with factorization.

Hence, we obtain a functor
(G-16) QCoh,, (89 ()a)" M) 5 Resere+ (QCohe, (25 *(¥)) ™)
in Rep(H)-mod™*.
G.3.5. Variant. Let £v(Y)non-tree denote the formal completion of £¢(Y) along

euorfreeyy = oo (Y) x  LSEE = £v(Y),
Lswer
or which is the same
Lv(Y) x (LS’}}er)rAeg.
Lgmer
Similar to the above, we can consider
QCoh e, (L9 (Y)mon-tree)2) = *PH) € Rep(H)-mod ™"

and
QCoh . (LT (Y) Monctree) %,

and we obtain a functor

(GAT) QCOh, (L9 (¥)honiree)s) ™= P 5 Rescares+ (QCOh, (S5 () hon-tree) ™)
in Rep(H)-mod™°*.

G.3.6. Variant. Let us assume now that £v(Y) and also pt x £v(Y) satisfy the assumptions of
Lsimer

Sect. C.12.10.
This implies that the morphism
LSiats X S0 Wece = LSGE, X LSES X Sv(W). =LSHGE, x Lv(¥).
TOLSE Y © LSS, LS%Te T LSHG

is of finite Tor-dimension.

Hence, so is the morphism

AN
(G.18) (gmer=res(y) o) = (LSE?iEfg

X
=Z/mon-free )
mon-free (LSII‘;?; )I.Aeg

(SV (y)?non—free)z .

Hence, by Sect. A.10.13, the (IndCoh, *)-pullback along (G.18) gives rise to a functor
(G.19) IndCoh* (£ (¥)Aon-tree)s) " FPH) 5 IndCoh* ((gmer—res(yy)r it

mon-free

compatible with factorization.

Hence, we obtain a functor

(G:20)  TndCoh” ((Lv () mon-free)s) ™! Res(erer) (IndCoh” (€35 (U)o prec) ™)

mon-free

in Rep(H)-mod®".
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G.3.7. We claim:
Lemma G.3.8. The functor (G.20) is an equivalence.
Proof. Follows from Lemma B.15.9.

G.3.9. Let (7monfree denote the morphism

2"V— (9) — ’Sv (g)r/r\lonffree-

+,mon-free

The operation of IndCoh-pushforward along ¢
functor

gives rise to a (strictly) unital factorization

(¢ Hmen-freeyindCoh . 1h1Coh* (£3 (Y)) — IndCoh™ (£3 (Y) Aon-tree)-
It follows from Lemma F.5.7 that the naturally defined functor

IndCoh” ((Ergel‘wreg (124 ) ) . ) et - Res(fr’m"“’free)indCOh ((IndCOh* (2$ (y)gonffree ))faCtz )

mon-free
is an equivalence.
Hence, combining with Lemma G.3.8, we obtain:

Corollary G.3.10. There is a canonical equivalence

IndCoh™ (€5 (Y)hon-tree)s) ™™ P 2 Res(,t.montee gmacons(eres)« ((I1dCOR" (S5 (H) mon-sree)) ™ )
in Rep(H)-mod™°*,

G.4. Proof of Proposition 7.5.7 via factorization.

G.4.1. Consider the following (strictly unital) factorization functor, to be denoted @,

. FLE& 1d ® Vac(G)erit, p(w
(G21) Rep(G) =~ Whit.(G) e
— Whlt*(G) ® KL(G)orit,p(wX) - Whlt*(/g\_mOdSrIZl;:pg((e;X))

Restricting the vacuum factorization module category

Whit, (g-mod PP yfacts o Whit, (§-mod>?" 5" )-mod ™

crit,p(wx) crit,p(wx)

along (G.21), we obtain an object
(G.22) Resa, (Whit..(g-mod:5, 5 1)) € Rep(G)-mod;*".

crit,p(wx)
G.4.2. We claim:
Lemma G.4.3. The object (G.22) identifies canonically with
. ~ Sph-gen facty ,Rep(G
Whlt*(g-modcr‘;t,iwx)) b Rep(C)

where we regard Whit*(ﬁ—modfﬁtl'f(efx)) as an object of QCoh((LSE?)/es)-mod by the recipe of
Sect. 7.5.1.

Proof. We rewrite ®; as

FLE& Id ® Vac(G)erit, p(w y )
=

(G.23) Rep(G) =~ Whit.(G) Whit. (G) @ KL(G)erit, p(wy) —

- Whlt*(G) & KL(G)Crit,p(wX) o Whit*(’g\'mOdSphigen ))

Sphe crit, p(wx

Therefore, we can reinterpret the object (G.22) as follows. Consider
ResriLe,,  (Whit. (@)™} € Rep(()-mod "
as an object equipped with a commuting action of Sphg, ,. Then (G.22) identifies with
Respre,  (Whit:(G)*) @  KL(G)eritp(wy) -

Sphg »



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE II 413

Comparing with the definition of
Whit., (g-mod P& ) € QCoh((LSE™)n,)-mod

crit,p(wx)

(see Sect. 7.5.1), the assertion of the lemma follows from the identification (G.3).

O

G.4.4. Consider the following (strictly unital) factorization functor, to be denoted ®

L (e rep. (smon-free)IndCoh T
(G.24) Rep(G') ‘4 QCoh(Op<¥) .t IndCoh” (OpE™ ) mon-tree-
Restricting the vacuum factorization module category
(IndCoh*(Opger)mon.free)fac% € IndCoh* (Oplger)mo,ﬂ_free—modffLCt

along (G.24), we obtain an object

(G.25) Resa, ((IndCoh™ (OpE™ ) mon-tree) ““**) € Rep(G)-modf .

G.4.5. We claim:

Lemma G.4.6. The object (G.25) identifies canonically with

(IndCoh* (Opger)moniﬁee)f&ctw JRep(G) 7
where we regard IndCoh™ (OpE™ )mon-free as an object of QCoh((LS’é‘f;)gg)—mod via
¢ (ODZ)Aomtree = (LSZT) g,

Proof. This is a particular case of Lemma G.3.8.

O

G.4.7. We now claim:

Proposition G.4.8. We have a canonical isomorphism of (strictly unital) factorization functors

enh,rfnd
o

DS (131 ~ (I)Q.

Let us accept this proposition for a moment and finish the proof of Proposition 7.5.7.

G.4.9. By Theorem G.1.10, combined with Lemmas G.4.3 and G.4.6, it suffices to show that the
functor ﬁsenh’rfnd appearing in Proposition 7.5.7 can be realized as the fiber at x of a functor between

Resa, (Whit, (ﬁ—modSph'gen )fa““) and Ress, ((IndCoh*(Opger)mon,ﬁee)f&“’” ),

crit, p(wx)

viewed as objects of Rep(G)-mod**.

The latter structure is supplied by Proposition G.4.8.
O[Proposition 7.5.7]

G.5. Proof of Proposition G.4.8.

G.5.1. It is enough to show that the two functors match after we compose them with the fully faithful
embedding

IndCoh™ (OpE™ ) mon-tree — IndCoh™ (OpE®").

We will first establish an isomorphism between the compositions of the two functors in question
with
FIndCoh(()préler7 _)enh . IndCoh* (Opger) N Oop{eg—modﬁwt.
G
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G.5.2.  We start by rewriting the corresponding composition for ®;. It is equal to

Id ® Vac(G)crit, p(wx )
—

. FLEg&
(G.26) Rep(G) ~" Whit,(G) Whitw(G) @ KL(G) exitp(wy ) —

Iaenh
— Whit*(G) s X KL(G)crit,p(wX) — Whit, (a‘mOdCrit,p(wX>) DS—) Oopgg—modfact.
phg

By Remark 1.7.8, we rewrite this as

=\ Satg’ o —*L\Whit, . Id ® Vac(G)crit, p(w
(G27) Rep(() ™€ Sphy % Sphy M9 whit, (@) Deritplerx)

— Whit*(G) %) KL(G)crit,p(wX) — Whit*(G) ® KL(G)Crit,p(wx) —

Sphg

~genh
— Whit, (ﬁ—modcriw(w{)) DS—> Oop{eg—modfad.
le

We can rewrite the composition in the first two lines in (G.27) as

—*Vac(G)erit, p(w
gt KL(G)erit,p(wx)

— Whit.(G) ® KL(G)erit,p(wy) = White(G) ® KL(G)erit,p(wy)-

Sphg

Lwhit, (G)®Id
=

(G.28) Rep(@) 4 Sphy,

Hence, we can rewrite (G.27) as

.. Sat®y —+Vac(Q)

(G.29) Rep(G) iy Sph, j)iw(wx)

senh

~ D
— KL(G)crit,p(wX) — g-modcrmp(wx) — Oopgg-modfaCt.

G.5.3. We now apply Theorem 5.2.5. It says that the functor

. Satly —*Vac(G)erit, p(wx )
Rep(G) 4 Sth — e KL(G)crit,p(wX)
is isomorphic to

o ®m Vac(G)erit, p(wx)
r(Opis®,—) OoplgE

G Oop{eg—modcom ¢ KL(G)crit,p(wX)~
e

(G-30) Rep(() "5 QCoh(Opic*)

Hence, we can rewrite (G.27) as

(G.31)
- ® DS (Vac(G)
r(op}®.-) CopE

L (regyx .
Rep(G) ! QCoh(Opg®)  —= Oopgg-modcom “ — Oopréeg-modfa“.

crit,p(wx))

G.5.4. We now use Theorem 4.8.3, which says that the natural map
Ooprcfg — DSenh(VaC(G)Crmp(wX))
is an isomorphism.

This allows us to rewrite (G.31) as

r(Opg®,-)

(G.32) Rep(G) ‘" QCoh(Op5®) -5 0, dfset,

dcom

reg-1MO
P

— Op,rez-mo
Opé

G.5.5.  'We now consider the composition involving ®»:

(G.33)
(anon—free>lndcoh FIndCOh(Oprgcr’_)cnh

Rep(G) "4 QCoh(Opi) 4 IndCoh”™ (Op2°) ¢ O ppres-mod™*.

This functor identifies with (G.32) on the nose.
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G.5.6. Thus, we have identified the compositions of the two functors

(G.34) Rep(G) = IndCoh* (OpE°")
with
IndCoh(Opxper’_)enh fact
IndCoh™*(Opg®) — Opprez-mod >
G

Let us show how to upgrade this isomorphism to an isomorphism between the two functors in (G.34).

G.5.7. It is enough to establish the isomorphism between the two functors in question on the com-
pact generators of Rep(G). These generators can be taken to be eventually coconnective. Hence, by
Corollary 4.4.2(a), it is enough to show that both functors are t-exact (in fact, it is sufficient to know

that they are t-exact on Rep(G)°).

The t-exactness of the composition involving ®; is clear. For ®;, we interpret it as

(G.35)

- ® Vac(Gerit,p(wy)

L (ereg  I(Op™%8, ) Qoptes
Rep(G) S QCoh(Opgg) p—G> (‘)Oprceg-modcom ¢ KL(®) exit, p(wy) =

N Dgenh,rfnd . mer
— g-moderit pwy) — IndCoh™(Opg®).

As was remarked already, it is enough to show that this functor is t-exact on Rep(G’)C. The compo-
sition in the first line of (G.35) is t-exact. Hence, by the construction of DS®™™™4 the corresponding
functor

Rep(G)© — IndCoh* (OpgE®")
maps to IndCoh*(OpE®)~ >, and its t-exactness follows from the t-exactness of its composition with
[indCeh(Opzer, —)°™ while the latter is the functor (G.32), which is evidently t-exact.

APPENDIX H. UNITAL LOCAL-TO-GLOBAL FUNCTORS AND MONOIDAL ACTIONS

This sections serves as a complement to Sect. 11. Here we express the notion of a (strictly) unital
local-to-global functor as a functor of what we call the independent category.

This will allow us to study the interaction between various global monoidal categories attached to
a local unital monoidal categories. These various variants are handy when studying the pattern of the
Hecke action.

H.1. The “independent” category.

untl

H.1.1. Let C°>" be a crystal of categories over Ran"™". Denote

loc lax untl loc,untl
CRanuntl =T (Ran 7g ’ )

untl)

For example, when C'°®"" is the unit sheaf of categories, i.e., D-mod(Ran , the above category

is D-mod(Ran"""),

H.1.2. Let C5°® be a target DG category. On the one hand we can consider the category
Funct'oc~elob lax-untl gloc (8loby f Jax ynital local-to-global functors, i.e., right-lax functors
Funtl . Cloc,untl N Cglob ® D_mod(Ranuntl)
between sheaves of categories, see Sect. 11.3.8.
On the other hand, we can consider the category Funct(Cig;n.mm CglOb) of (continuous) functors
Funtl . Ci:({);nuntl N Cglob.
There is a naturally defined functor

(Hl) Functloc~>glob,laxfuntl(gloc7 Cglob) N FunCt(Cng:num]’ Cglob).
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Funtl

Namely, given , we construct F'™ by applying the functor I'®*(Ran"™", —), followed by

Id ® O, (Ran""*!, )
—

Celob i D—mod(Ranuml) Cslob,

Remark H.1.3. Note that unlike the case of the usual Ran space, the functor (H.1) is not an equivalence.
For example, for

e = Dmod(Ran"™) and C=°" = Vect,

we have

Functlocﬁglob,lax-untl(Cloc Cglob) ~ D_mod(Ranuntl)
while Funct(Cpg,untt, C3°P) identifies with D-mod(Ran"™)Y. In terms of this identification, the func-
tor (H.2) is the pairing
!
D-mod(Ran"™) ® D-mod(Ran"™™"') — Vect, F1,Fs — C,(Ran"™,F; @ F»).

However, this pairing is not perfect. The reason for this is that, although the functor (Ag, unt1)1 is
defined, it does not satisfy the projection formula.

More generally, the category Funct'ocsloblax-untl(gloc qeloby can he described explicitly as lax
sections of another crystal of categories on Ran"™!, see Remark H.1.8.

H.1.4. From now on we will make the following assumption on Cl°¢utl:

For every S € Sch*? and a map z, R ., in Maps(S, Ran“““)7 the corresponding functor
loc ins.unitil Czy loc
CS«£1 - CS,§2

admits a continuous right adjoint.
Note that in this case, this right adjoint is automatically D-mod(.S)-linear.

Remark H.1.5. This assumption is made in order to simplify the exposition. One can make do without
it, but in what follows one will have to describe C'°“""! using proper (rather than affine) schemes
mapping to Ran, see Sect. C.4.6.

The properness assumption would guarantee that for map f : Z' — Z (of proper schemes) and

(z, = x,) € Maps(Z, Ran""")

I

the diagram
11rlsAu1rut&L,1 ofCaxogof

Czl,ﬂof CZHzizOf

i Is

. R
1ns.un1tz1g$

CZ,zl «—  — CZ,ZQ

obtained by passing to right adjoints in the commutative diagram

ins.unitmlo_fgm2of

CZ’,ﬂof — CZ’,Qof

i T

ins.unit
Criay.

z1Czo

commutes.
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H.1.6. Under the above assumption, passage to right adjoints defines a sheaf of categories

(gloc,untl)op
over (Ran""*)°P,
Note that we can tautologically identify Ci‘{;ﬂun“ = FlaX(Ran“n“,gloc’““ﬂ) with

Flax((Rzanuntl)op7 (gloc,untl)op).

Set
Cgsnuml’mdcp — [SUct (Ran™1)oP | (Cloeuntlyop) o plax((Rapuntlyor (glocuntlyop)
H.1.7. Let us describe lec{):n“““,indep explicitly as a full subcategory of Cg:num]:
An object

loc

(S 5 Ran) > cs,p € CSS

loc
Ranuntl indep

belongs to C if for every

(z, = z,) € Maps(S, Ran"™")

the map
Cs,z, — (ins. unity, QEQ)R(CS’£2)7
obtained by adjunction from
ins. unity, ca, (2,) — 24,

is an isomorphism.

Remark H.1.8. Let assume in addition that C'°©" i value-wise dualizable. Then passing to duals in
(CloeunthoP e obtain a crystal of categories ((C°¢""1)°P)Y on Ran"".

It is easy to see that the category

Functlocﬁglob,lax-untl (gloc , Cglob)

identifies with
((COP)V)Ranuntl = Flax(P{anuntl7 ((gloc,untl)op)\/ ® Cglob).

H.1.9. We claim:
Lemma H.1.10. The embedding

loc

— CRan“n“

emb. indep : Cy

c
anuntl indep

admits a left adjoint.

Proof. 1t is sufficient to show that

loc loc
CRanuutl’indep C CRopuntt

is closed under limits.

However, this follows from the fact that limits in Cg,,une exists and have the property that they

commute with evaluation on every proper Z mapping to Ran"™!, see Remark H.1.5.
|

H.1.11. Let emb.indep” denote the left adjoint of emb.indep. Thus, we can view le‘g:nmm indep

loc
Ranuntl-

as a
localization of C

Let us view the category Funct(Cchi’gnuntl indep’ Cgl"b) as a full subcategory of Funct(let’:nm,“, Cgk’b)

via precomposition with emb. indep”.



418 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

H.1.12. We claim:
Lemma H.1.13. The functor (H.1) sends
F\unctlocﬁglob,untl(cloc Cglob) c F\unctloc%glob,lax—untl(Cloc Cglob)

to

FunCt(Cig:n“r‘“,indep7 CglOb) C FunCt(CESD““t“ CgIOb)7
and the resulting functor
(H2) Functloc—)glob,untl(gloc7 Cglob) N Funct(cloc Cglob)

Ranunt! indep’

is an equivalence.

untl

Proof. We will access Ran via proper schemes mapping to it, see Sect. C.4.6.

Let us be given an object F € Funct!'°~8l°P(Clo¢ C#l°P), For every proper Z equipped with a map
x : Z — Ran, consider the corresponding functor

Fr,o:Csy — CHP
and its (not necessarily continuous) right adjoint

(FfZ,E)R :CE 5 CBS.

For Z' % Z, the diagram

F ! 2o
CYf 1oy —22% CH°P @ D-mod(Z’)

(H.3) g!T Tid@g!

F xz
ch, —2% P @D-mod(Z)

is equipped with a datum of commutativity. Since g is proper, the diagram

F zo
CEf oy — 2% CE° @ D-mod(Z')

(H.4) gyl lid Qg

Fz.a
ce  —ZZ, C# @ D-mod(Z'),

obtained from (H.3) by passing to left adjoints along the vertical arrows, also commutes.

From (H.4), we obtain a datum of commutativity for the diagram

F P
cler,,, 20 oo
(H.5) a l lid

cl, 2=, ceon
Finally, by passing to right adjoints in (H.5), we obtain a datum of commutativity for the diagram

(FfZ/ ,EOQ)R

cyr celeb
»z0og
(H.6) g T Tid
R
Clgcx (FfZ vi) (_*:glob7

where the functors are (F.fz ,E)R are not necessarily continuous, but limit-preserving.

The functor F is determined by the data of F [z plus the data of commutativity for the diagrams

(H.5), which is equivalent to having the data of limit-preserving functors (Ffz ,E)R plus the data of
commutativity for the diagrams (H.6).
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untl loc—glob,lax-untl loc glob
F t : (Clo°, CEP).

Suppose now that F is upgraded to an object of Func

untl)

Let us be given a map z; — z, in Maps(Z, Ran . The unital structure on C'°° gives rise to a

functor
. . . (loc loc
ins. unity, g, : Cz,g1 - CZ,£27

Fu! on F gives rise to a natural transformation

and the lax unital structure
Fr,e, = F, 2, 0ins unity, cq, -

By definition, this natural transformation is an isomorphism if and only if the above lax unital
structure on F is strict. By adjunction, we obtain a natural transformation

(ins. unitglggz)R o (Ffz&z)R — (Ffzvil)R’

Funtl ig strictly unital.

which is an isomorphism if and only if
Since for every (Z,z), the evaluation functor
Ci:({):n“““,indep — Cig:n“““ - ClZchE
commutes with limits, we obtain that the datum of a strictly unital object F'™™!' is equivalent to that
of a limit-preserving functor
CglOb - Cis;n“"tl,indep’
which is equivalent to that of a continuous functor
leg;n“ntl,indcp — CglOb‘
Thus, we have constructed an equivalence

Functloc~>glob,untl(gloc7 Cglob) ~ Flll’lCt(Cig Cglob).

c
anuntl ,indep?

Unwinding the construction, it is easy to see that the diagram

F\unctloc%glob,untl (gloc’ Cglob) P\unctlocﬁglob,laxfuntl (gloc’ Cglob)

loc glob loc glob
Funct( Ranunt! indep’ ce?y —— Funct(Cg5 unt1, CE7)

commutes.
O

untl

Remark H.1.14. The discussion in this subsection is not specific to Ran"™"". It applies to any pseudo-

proper categorical prestack.

H.2. The calculation of the independent category in the vacuum case.

H.2.1. Here is a sample calculation of the category Cll;);nu““,indep' Take Clocuntl .— D—mod(Ran“““).

Denote the corresponding independent category by

Vectganunt! indep -

H.2.2. Take C&°P = Vect. Using Lemma H.1.13, from the identity functor
D-mod(Ran"™) — D-mod(Ran"™"),

we obtain a functor

(H.7) Vectganuntl ingep — Vect .
We claim:

Proposition H.2.3. The functor (H.7) is an equivalence.
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Remark H.2.4. Note that by Sect. H.1.6 can be reformulated as saying that the functor

—w.

k un 3 i
(H.8) Vect  Reynh pstrict (Ran"™, D-mod(Ran"""))
is an equivalence.

Remark H.2.5. Note that, unlike the fact that Ran is contractible, which requires X to be connected,
the assertion of Proposition H.2.3 is valid for any X that is non-empty.

Proof of Proposition H.2.3. We will show that the functor (H.8) is an equivalence. The right adjoint
of this functor is given by the restriction of C,(Ran"™, —) to

FStriCt(Ran“n“, D—mod(Ran“nﬂ)) - FlaX(Ran““ﬂ,D—mod(Ran“ntl)) = D—mod(Ran“ntl).

It suffices to show that for F € I'*'"*(Ran"""!, D-mod(Ran"™"")), the map
F — C,(Ran"™, F) ® wp,unu
is an isomorphism.
For that it suffices to show that for any x € Ran, the map
(H.9) F, — C.(Ran"™", )
corresponding to
(H.10) pt — Ran"™™",
is an isomorphism.

We factor (H.9) as

(H.11) pt — Ran2™ — Ran"™",
and hence (H.10) as
(H.12) Fo — C.(Rang™, Flgapunn) = Co(Ran"™™, F).

We claim that both maps in (H.12) are isomorphisms. Indeed, the first map is an isomorphism,
becauase
Flranuent € ¥ (Ran"™", D-mod(Rani™")),

and z is the (value-wise) initial point of Rani™".

The second arrow in (H.12) is an isomorphism because the map

untl untl

Ran, " — Ran

is value-wise cofinal: its value-wise left adjoint is given by z’ +— z U z’.
O

H.2.6. Let us rerturn to Proposition C.5.4, and explain its meaning in terms of local-to-global functors.
Let us be given a strictly unital functor
Euntl zgloc,untl N Cglob ® D—mod(Ranuntl).

gloc,untl Cloc,untl,* on Ranuntl,* (as is the

Assume now that is the restriction of a sheaf of categories

case in all our examples).
Le Cp° be the value of this extension on the initial point. The entire datum of the extension

Cloc,untl — Cloc,untl,*

is equivalent to the datum of a functor

1 ins.unity
oc

(H13) C@ Fstrict (Ranuntlygloc,untl) N FlaX(Ranuntlygloc,untl) — Ci:c{);nuntl .
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Remark H.2.7. Note that in most examples, Clwoc ~ Vect, so that datum of (H.13) is that of an object
Lo € l—\strict(Ranunﬂ’gloc,untl).
Le., for every z € Ran, we have an object 1gioc , € C;jc and for every z C 2’ we have an isomorphism
ins. unitycpr (1gioe ; ~ 1gtoc 4
H.2.8. Consider the composition
F""" 6 ins. unity : Ci° — C#°” @ D-mod(Ran""").

The claim is that it factors canonically as

glob ld®

Cy° Y TRt oglob ) D-mod(Ran"™").

Indeed, the functor F*™ o ins. unity factors as
Cle = CH @ T (Ran"™*!, D-mod(Ran"")) —
— C#°" @ I'*(Ran""', D-mod(Ran'**)) = C#*°" ® D-mod(Ran"""),
and according to Remark H.2.4, the functor
CEb _y OElob @ potrict (Ran®™ Dmod(Ran™))

is an equivalence.

H.3. Non-unitality vs independence. Let C'°“"" be as in the previous subsection.

In this subsection we will utilize the contractibility of the Ran space to explain the relation between

the “indepndent” category Ci—({);nuncl and the non-unital version CE5,.

,indep
H.3.1. We claim:

Proposition H.3.2. The composite functor

loc emb.indep _joc t loc
CRan“r‘“,indep — (jRan““tl — CRan

is fully faithful.
Proof. The assertion of the proposition amounts to the following. Let us be given two objects
1 € Gt jmaep € O,
and a map
t'(c) 5 t'().
We need to show that this map can be uniquely upgraded to a map
¢ e,
This amounts to the following. Fix S € Sch*® and let us be given a map
(z, = x,) € Maps(S, Ran"™").
loc )

We need to equip the following diagram (taking place in in C Sizy

/ ¢S,£2 "
C57£2 c57£2

I |

ins.unitﬁ1 Cay (¢S,£1 )

. . /7 . . 1
ins. unity, cu, (€5, ins. unity, ca, (€5 5, )
loc
Ranunt

(where the vertical arrows are given by the structure of objects of C , on ¢’ and ¢”, respectively)

with a datum of commutativity.
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The datum of commutativity of the above diagram is equivalent to the datum of commutativity of
the following diagram (taking place in in Cs 4, ):

. R
1ns.un11:£1 Cay (¢5,25)

: R /
ins. unity’ c,, (€ z,)

(H.14) T T

/ b5,2,
Cs zq

. R 1
ins. unity c,, (€54, )

i
CS,§1 .

loc

Note the vertical arrows in (H.14) are isomorphisms, by the assumption that ¢’,c¢” € Cgy unit naep-

Thus, we can view both circuits in (H.14) as an object of g{omcls"il (C5,2,,€5,2,)-

Thus, letting z, vary, we can view the clockwise circuit in (H.14) as a map

(H.15) (ld® pr!small,S) (C%,gl ) — (d® prsmall,S)! (C%,gl )
in

C¢., ® D-mod(Sg).
D-mod(S)

Now, the universal homological contractibility of the map
c
Priman,s © Sz, =5

implies that the functor
1

Ploman,s * D-mod(S) — D-mod(S’%l)
is fully faithful, and hence so is

Id®@prl . g: Clb?le — Clso,czl ® D—mod(Szgl).
’ - ~" D-mod(S) -

Hence, the space

! !
g{omcloc D-mod(S%l ) ((Id & prsmall,S)(cfsygl )7 (Id & prsmall,S)(Cg,§1 ))

®
5121 D omod(S)

loc

is isomorphic to Homgyg |
L1

(Crsv7£1 , c’éil ), with the mutually inverse isomorphisms given by the functors

Id® pr;mall, s and Id ® diagk,, respectively.

CThis‘ equips the family of diagrams (H.14) with a unique datum of commutativity as z, varies over
Sz, .
H.3.3. Combining Proposition H.3.2 and Lemma H.1.13, we obtain:

Corollary H.3.4. The functor from the category of strict functors of crystals of categories
puntl, glocuntl _, cyglob ® D-mod (Ran"™")

to the category of functors
F: C"°° — C#°" @ D-mod(Ran),
given by restriction along Ran — Ran™', is fully faithful.
Unwinding the definitions, we obtain that the essential image of the above fully faithful functor
Functloc%glob,untl(cloc Cglob) N Functloc%glob,laxfuntl(Cloc Cglob) N Functloc%glob(cloc Cglob)
consists of objects that have a global unitality property.

IL.e., this proves Proposition 11.8.8.
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H.3.5. As another immediate corollary of Proposition H.3.2 we obtain:
Corollary H.3.6. The natural transformation
emb. indepL ot; ot — emb. indepL
is an isomorphism.
H.3.7. Finally, we record:
Corollary H.3.8. The composite functor

emb.indepL

t
CRan — CRanuntl CR,an“I‘tl,indcp

is a localization.

H.4. Sheaves of monoidal categories on the unital Ran space. Let A°“"" be a sheaf of unital
monoidal categories over Ran"™!. We will assume that A" gatisfies the condition from Sect. H.1.4.

We will also assume that the monoidal operation admits a right adjoint, which is a strict functor
between sheaves of categories.

In this subsection we will study the categories
(H.16) Ap e = D (Ran™ A" and AR, untlinden -

We will equip them with monoidal structures, and study the interactions between them.

Aloc,untl untl

H.4.1. Ezample. An example of such is the sheaf of unital monoidal categories over Ran
attached to a unital monoidal factorization category A.

An important example of such an A is Sph,.

H.4.2. Another example is the symmetric monoidal factorization category A associated to a crystal
of symmetric monoidal categories over X (this is a categorical counterpart of the procedure from
Sect. C.8).

An example of this is the constant crystal of symmetric monoidal categories over X with fiber

Rep(G).

Remark H.4.3. Note that being a sheaf of unital monoidal categories over Ran""*! automatically imposes

a condition on the compatibility between the monoidal unit and a structure of sheaf of categories:

The monoidal unit
1 t1 Al t1
1A Ran € T (Ran™™ A" = AR unu

belongs to
Fstrict(Ra’nuntl,Aloc,untl) C FlaX(Ranund’Aloc,untl).

H.4.4. Consider the map

untl untl untl

union : Ran x Ran — Ran
We have the 1-morphisms
Pp1 — union <— p2

in the category of maps from Ran"™! x Ran"™ to Ran"*. From here we obtain functors

pﬂlﬂ (Aloc,untl) N union* (Aloc,untl) « p; (Aloc,untl)

untl untl

x Ran
(Hl?) Aloc,untl X Aloc,untl N union* (Aloc,untl ® Aloc,untl)‘

as crystals of categories over Ran , and hence a functor

Combining with the monoidal operation on A" we obtain a functor
(H].S) Aloc,untl X Aloc,untl N union* (Aloc,untl).
Applying I'"**(Ran""" x Ran"""!, —), from (H.18) we obtain a functor

(H.19) Aot © Aggpunt — TP (Ran"™ x Ran™™', union™ (A'°9"™)).
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Finally, composing (H.19) with the functor
union; : I‘lax(Ranuntl x Ran"™", union™ (Aloc’“ntl)) — [lax (Ran“ntl, Aloc’“ntl),
left adjoint to union' (it exists thanks to Corollary C.4.10), we obtain a functor
(H.20) ARanuntt @ A, puntt — AR, une.

We will denote the resulting binary operation on Ag, unt by %, and will refer to it as “convolution”.

H.4.5. The above binary operation extends to a monoidal structure on Ay, unt1, which we will refer
to us the convolution monoidal structure. We will denote Apg, unt1, viewed as a monoidal category

equipped with the convolution structure by Af_ -

H.4.6. Note now that the monoidal operation on A" defines a pointwise monoidal structure on
Ap,untl.

We will denote A, unt1, viewed as a monoidal category equipped with the pointwise structure by

A®

Ranuntl*
Note that Aganuml is unital: its unit is the object 1y, unt1.

H.4.7. Unwinding the definitions, one obtains:
Lemma H.4.8. The pointwise monoidal structure on Ag, w1 descends to the quotient
ARanuntl - AR

anunt! indep-

In what follows we will consider Ag,,unt1 jngep @ @ monoidal category, with the monoidal structure
furnished by Lemma H.4.8.

!
Since Aganun“ is unital, we obtain that so is Ag,,untl jpgep-

H.4.9. Note now that the natural transformation
(Agapunt)' = unions o(Agpune )1 © (Agapunt)’ — uniony

defines on the identity functor on Ay, une1 a structure of right-laz monoidal functor

!

(H.21) Al — AP

Ranuntl*
H.4.10. However, we claim:

Lemma H.4.11. The right-lax monoidal structure on the functor (H.21) is strict.

Proof. Let C denote the crystal of categories

union* (Aloc,untl ® Aloc,untl)

untl untl

on Ran x Ran

Let ins. union denote the functor (H.17); we will use the same notation for the induced functor

ARanuntl ® ARanuntl ~ FlaX(Ranuntl % laanuntl7 Aloc,untl X Aloc,untl) N FlaX(Ranuntl % Ranuntl7g).
We have to show that for F1,52,F € AR, una, the map
(H.22)  Hompiaxganuntl x Ranunt! ) (ins. union(F1 X F2), union' (mult™(F))) —

!
— }Comrlax(Ra’nuntlﬁAloc,untl) (mult(F1 ® F2), F),

is an isomorphism, where:
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e mult denotes the functor
T's%(Ran"™, Alocunt] ®Aloc,untl) N l—\laX(Ranuntl’Aloc,untl)
induced by the monoidal operation
Aloc,untl ® Aloc,untl m_u)lt Aloc,untl;
e mult® denotes the functor
Tlax(Ran"t] Alocwuntly _, plax(Rapuntl plocuntl @) g loc,untly
induced by the functor
Aloc.untl mu_>1tR Alocuntl g plocuntl
right adjoint to the monoidal operation;
e union' denotes the functor

FlaX(Ranuntl, Aloc,untl ® Aloc,untl) N FlaX(Ranuntl % Ranuml,g);

The map (H.22) is given by the composition

!
Al
Ranuntl
ny

FHompiax (Ranunt! x Ranunt! ) (ins. union(F1 X F2), union' (mult™()))

FHompiax Ranuntt A * tl(C))(A!R,anur‘“ (ins. union(F; X F3)), A!Ranunn(union! (multR(ﬁ')))) ~
Ranuntl —

1
- R
=~ HOMpiax (Ranunt! Aloc,untlg ploc,untl) (F1 @ Fa,mult™(F)) ~

!
~ }Comrlax(Ranuntl’Aloc,untl) (mult(F1 ® F2), F).

Now the isomorphism assertion holds for any crystal of categories C on Ran"™"! x Ran"™"!, since the
map

t1 1 1
ARaquntt © Ran"™™ — Ran™" x Ran™"

is cofinal.
|

H.4.12. Thanks to Lemma H.4.11, we do not need to distinguish between the two monoidal structures
on Ag,,umu. Thus we will use the symbol Ay, w1 unambiguously to refer to a tensor structure on
Apapuntl.
|
Yet we will sometimes use the symbols Ay, una Or Agan‘mﬂ to emphasize that we are thinking of
the monoidal structure as convolution or pointwise tensor product, respectively.

H.4.13. Let A" be as in Sect. H.4.2, i.e., it is associated to a crystal A . of symmetric monoidal
categories on X. In this case, one can describe the corresponding (symmetric) monoidal category
explicitly.

ARanuntl ,indep

Namely, as a DG category it is isomorphic to the colimit over the twisted arrows category of the
category of finite non-empty sets (and arbitrary maps) of the functor that associates to

L%
the category
(H.23) DX, B AP ).

The symmetric monoidal structure is given by the operation of disjoint union of finite sets, see [FraG,
Sect. 2.2.1].
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H.5. Sheaves of monoidal categories on the non-unital Ran space. We now consider the usual
(i.e., non-unital) Ran space. For A" ag above, let A!°° denote its restriction along the map
t : Ran — Ran"™"!,

Denote
ARgan := '(Ran, A°).
In this subsection we will endow ARgran with monoidal structure(s) and study its interactions with
the unital counterparts.

H.5.1. By a slight abuse of notation, we will use the same symbol union to denote the corresponding
map
Ran x Ran — Ran.

Restricting (H.18) along
t: Ran — Ranuat

we obtain a map of crystals of categories
(H.24) A'*°® A'°° — union™ (A'°°)
on Ran x Ran.
Since the map union is pseudo-proper, the functor (H.24) induces a functor
ARan ® ARan = ARan.

H.5.2. The above binary operation extends to a monoidal structure on Aran, which we will refer to
us the convolution monoidal structure. We will denote ARran, viewed as a monoidal category equipped
with the convolution monoidal structure by Ag,,.

H.5.3. By construction, the functor
t1 : ARan — Ag,unt
has a monoidal structure, when we consider both as equipped with the convolution monoidal structure.
In particular, we obtain that the functor
(H.25) emb. indep” oty : Af., — ARanuntl indep
acquires a monoidal structure.

Combining with Corollary H.3.8, we obtain that the functor (H.25) is a monoidal localization.

H.5.4. Consider now the functor
|
t: ARan‘m“ — ARan-

Being the right adjoint of a monoidal functor, the functor t' acquires a right-lax monoidal structure
as a functor
A*Ran“r‘“ — A*Ran'

Note that the natural transformation
(H.26) emb. indep” oty o t' — emb. indep”

has a natural right-lax monoidal structure. However, from Corollary H.3.6 we obtain that the natural
transformation (as right-lax monoidal functors) is an isomorphism.

In particular, we obtain that the right-lax monoidal structure on (H.26) is strict.

!
H.5.5. As in Sect. H.4.6, we can also consider the ®-monoidal structure on Agra,. We will denote
ARan, viewed as a monoidal category equipped with the pointwise structure by Agan.

As in Sect. H.4.6, the identity functor on ARan has a right-lax monoidal structure, when viewed as

a functor
1

* ®
ARan — ARan'
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H.5.6. The functor t' is monoidal, when viewed as a functor

! !
® ®
Ap unt = ARan-
Hence, the functor

! !
t: AR, — A2

Ranuntl
acquires a left-lax monoidal structure, when viewed as a functor
| |
A%an - Aganuntl-
H.5.7. Let
A;L{l:;lost—untl C ARan

be the full subcategory generated by the essential image of the functor t'.

!
It is easy to see that it is preserved by the ® monoidal operation, and hence it acquires a monoidal
structure.

H.5.8. We claim:

Lemma H.5.9. The left-lax monoidal structure on the functor

! !
2 t 2 embindepL
Al?an — A® — ARanuntl

Ranuntl ,indep

becomes strict when restricted to AZmest-untl,

Proof. 1t suffices to show that the left-lax monoidal structure on the functor

! | ! ! . L
® t ® t) ® emb.indep
AL o S AL S AS I AL et e
is strict.

The assertion follows now from Corollary H.3.8, which implies that the above composition is iso-
morphic to

!
! . L
® emb.indep

ARanuntl ? ARan“““,indep

as a left-lax monoidal functor.
a

H.5.10. Let A be as in Sect. H.4.13. In this case, we can also describe the category AR,, explicitly.

It is given by the colimit of the functor (H.23), with the only difference that we take the twisted
arrows category of the category of finite non-empty sets and surjective maps.
The functor
tr: Af{an — A*Ranuntl
is given by embedding the index categories one into the other.

H.6. Local and integrated monoidal actions.

H.6.1. Let A" be as above. Let A!°° denote the restriction of A" along t : Ran — Ran"""

Let D be a DG category. We give the following definitions:

e A local action of A!°° on D is a (unital) action of the crystal of monoidal categories A'*¢ on
D ® D-mod(Ran);

e A local lax-Ran-unital action of A'°“""*! on D is a (unital) action of the crystal of monoidal
categories A% on D ® D-mod(Ran"™"), in the 2-category of crystals of categories and
right-lax functors between them;

e A local Ran-unital action of A'°®""* on D is a (unital) action of the crystal of monoidal
categories A'°“""! on D ® D-mod(Ran"™"'), in the 2-category of crystals of categories and
strict functors between them.
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H.6.2. At the poinwtise level, a local action of A°° on D yields an action of the monoidal category
A, on D for every & € Ran, denoted

ag,d—a-d, az€A;, deD.

A lax-Ran-unital structure on such an action is a natural transformation
ay, -d — ins. unity, cu,(az,) -d, az, € Ay ,deD.

A lax-Ran-unital structure is strict if the above natural transformation is an isomorphism.

H.6.3. Thus, we obtain the 2-categories
Ah’c-mod, AP _6d"™ and AP mod.
We have a fully faithful functor
Alocuntl o glociuntl o dlax

and a forgetful functor

1 1 1 1
Aot mod™ - A mod.

Note, however, that from Corollary H.3.4, we obtain:
Corollary H.6.4. The composite functor
(H27) Aloc,untl_mod N Aloc,untl_modlax N Aloc_mod

is fully faithful.
é

Raguntl- Wve claim that given a local lax-Ran-

H.6.5. Consider now the (unital) monoidal category A
unital action of A'°“"™! on D, we can construct a (unital) action of Aéan“““ on D.
Indeed, this follows from the fact that the functor
C.(Ran"™ —) : D-mod(Ran"™") — Vect

is symmetric monoidal.

Explicitly, given a € Ag,, unt1, the action is given by

—Qw un :
D 24" D@ D-mod(Ran"")*" "

Id ® C, (Ran !, )
—

— D ® D-mod(Ran""") 3 D @ D-mod(Ran"""") D.

H.6.6. From Lemma H.1.13 we obtain:

Corollary H.6.7. The composite functor

!

Aloc,untl_mod ‘_>Aloc,unt1_m0dlax N A® untl-mOd
Ran
is fully faithful with essential image being
!
®
ARan“““,indep'mOd C ARanuntl_mOd'
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H.6.8. Precomposing the construction in Sect. H.6.5 with the monoidal functor
9] !
Af{an — A;{anuntl ~ Aganuntl

we obtain that for
D c Aloc,untl_modlax

we have an action of Af,, on D.

Remark H.6.9. Unwinding the definitions, for a € ARan, its action on D is given by the composition

Id ® C_(Ran,—)
—

D 2% D @ D-mod(Ran) 25 D ® D-mod(Ran) D.

Le., the binary operation only depends on structure on D of object of A°°-mod.

However, one would not be able to define either left-lax or right-lax structure on this binary operation
without D being extended to an object of A°®"*.moed'?*.

H.6.10. From Sect. H.5.3 and Corollary H.6.7 we obtain:
Corollary H.6.11. The composite functor

1 tl 1 tl 1 .
AP mod — A" mod™ — A¥

* *
Rapunti-Mod >~ Ap - wg-mod — Ag,,-mod

is fully faithful with the essential image being

AR anuntl -mod C Af,,-mod.

,indep

H.7. Local actions with parameters.

H.7.1. Let now S be an affine scheme mapping to Ran. The discussion in Sects. H.4-H.6 applies when
we replace Ran (resp., Ran""") by S< (resp., &),

Note that S< and S<U**! are pseudo-proper relative to S, so Sect. C.4.24 applies.

H.7.2. In particular, one can consider the D-mod(.S)-linear monoidal categories
Agg,uncl A?g,unm Eg A?g and ASE«U“tl,indepv
equipped with the monoidal functors
!

* ~NOA®
Asg,unn — Asg,unm

* t *
Asg — Asg,unu,

! !

! | !
® t ®
Asg,uncl — Asg,unm

« embed.indepL
S C,untl - SS,untl jndeps

embed.indepL oty
—»

*
SC

where the last two functors are monoidal localizations.

SS-untl indep>

H.7.3. We also have the corresponding notions of local action, so we have the 2-categories

Algc—mod, Algc’unﬂ-lrnodlaX and Algc’unﬂ-mod,
the fully faithful embedding

Algc’“"“—mod s Alsoc’unﬂ—modlax
and a forgetful functor
A" mod™ — A$°-mod,

so that composition

Algc’u“tl-mod — Algc’“"“-modlax — Alé’c-mod
is fully faithful.
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H.7.4. 1In addition, we have the commutative diagrams

1 t1 1 t1
AZ" -mod —— AJM -mod'®*

| !

A gc untl jpgep-mod ———  Afc ynu-mod
H.7.5. We now claim:
Proposition H.7.6. The functor

untl ! untly! !
<prsmall,S> ®(prbig A®
? SC,untl ,indep

D-mod(S) ® A%

anuntl indep

is an equivalence.
Proof. Note that operation of union defines a map

S x Ranllntl uni_0>ns Sg,untl

Hence, we obtain a functor

!

A?gyum] _ FlaX(Sg,untl’ Aloc,untl) ‘“ﬂ;’s FlaX(S % R&l’luntl, Aloc,untl) ~ D-mod(S) ® A®

Ranuntls

and it is easy to see that it sends

! !

A% — D-mod(S) ® AY

S S untl indep Ranuntl indep”

The composition
untl

C,untl pr::ltalll,s X Plpig untl uniong  ~C untl
= — S x Ran —° 5=

S

is the identity map. Hence, the composition

6 SN
(Prgman,s) ®(Prpig ) ®

! ion! !
® unlons ®
A . —2° D-mod(S) ® A — A untl jndep

SCuntl indep Ranunt! indep
is the identity functor.
The composition

. ‘o c . pruntln g ¥ pr}\:ptl )
t] uniong t small, ig t
S x Ran"™ — =7 §="" — S x Ran"™

receives a 1-morphism from the identity map. This 1-morphism defines a natural transformation from
the identity endofunctor on D-mod(S) ® Aganuml to the composition
ntl untl)! !

z (Prgmau,s X PTp; union !
® N —° D-mod(S) ® A¥

Ranuntl Ranuntl Ranuntl*

D-mod(S) ® A

However, this natural transformation is an isomorphism when restricted to D-mod(S) ® Afi’
by the definition of this subcategory.

anuntl?

O
H.7.7. From Proposition H.7.6 we obtain:

Corollary H.7.8. For a D-mod(S)-module category D, pullback along pry, : Ssunth  Ran"™! defines
an equivalence between the following data:

(i) A local Ran-unital action of Alg""™ on D-mod(S<"™) ® D;
D-mod(S)

(ii) A local Ran-unital action of A°"™ on D, compatible with the D-mod(S)-action.

!
®
Ranuntl indep

(ii’) An action on D of the monoidal category A , compatible with the D-mod(S)-action.
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APPENDIX I. THE INTEGRATION FUNCTOR IN THE NON-UNITAL SETTING

In this appendix, we give a categorical meaning to the functor (11.15)
/il’lS. unit - FLu,lCtlocHglob(gloc7 Cglob) N Pwunctlocﬁglob(gloc’ Cglob).

using the notion of left-lax (ak.a. left-lax) unital structure on a local-to-global functor F. As a
byproduct, we provide a proof to Proposition 11.8.8.

I.1. A left-lax unital structure on a local-to-global functor.

I1.1.1. In this subsection, we describe the notion of a left-lax unital structure on a local-to-global
functor F in concrete words. The precise definition will be given in Sect. 1.4. Also, we explain why
left-lax unital structures provide categorical meaning to the functor [ ins. unit.

1.1.2. Let Z be a space, and let z, = 2, be a morphism in the category Maps(Z, Ran“““). Recall (see
Sect. 11.3.2) that a laz unital structure on F means there is a natural transformation

FZ»£1 — FZ’£2 o CICSC
as functors CE’;I — C#°® ® D-mod(Z). Then a left-laz unital structure on F means there is a natural
transformation of the opposite direction, i.e.,

loc
FZ1£2 o Ca — FZ,,QI-

I.1.3. As in Sect. 11.3.4, using the prestack Z<, we can rewrite the datum of these natural transfor-
mations as a natural transformation

(I.1) F,c oins.unity — (Id ®(Prsma11,z)!) oFgy
as functors
CY¥° — C#°* @ D-mod(Z%)

which is supposed to be equipped with a datum of associativity.

1.1.4.  Using the adjunction ((pryyan )t (Pfaman.z)' ), knowing (I.1) is equivalent to knowing a natural
transformation

(Id ®(Preman,z)1) © Fzc o ins. unitz — Fz.
Note that the LHS is exactly the functor FL ™™™ (see (11.15)). Hence a left-lax unital structure on F
means a natural transformation
Ef ins.unit N E

equipped with a datum of associativity. As we will see in the proof of Proposition 1.1.7, the endofunctor
/ins. unit : Functloc%glob (gloc, Cglob) N Functloc%glob (gloc’ Cglob)

has a natural monad structure, and this datum of associativity says exactly that F is a module for this
monad.

1.1.5. In particular, for any local-to-global functor F, the functor FJinsunit 56 an induced (a.k.a. free)
module for this monad. Therefore we obtain a left-lax unital structure on F/ insunit o1 this left-lax
unital structure satisfies the following universal property. For any local-to-global functor G equipped
with a left-lax unital structure, knowing a (plain) natural transformation F — G is equivalent to
knowing a natural transformation E-f insunit _ G compatible with the left-lax unital structure.
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1.1.6. Let
Functlocﬂglob,left—lax—untl (gloc , Cglob)

be the category of left-lax unital local-to-global functors. The above observation suggests the following
result, which will be proved in 1.5 (after we give a precise definition to left-lax unital functors).

Proposition 1.1.7. The forgetful functor
eftolassall Functloc%glob,lcft-lax—untl(gloc’ CH) Ly Funct'*c~8lob (gloe, geleby
has a left adjoint
W e tasan ¢ Funct!o° o (gloc7 Cglob) N Functlocaglob,left—lax»untl(gloc7 Cglob)
that sends
F s Ef ins.unit_
In particular, the latter has a natural left-lax unital structure.

1.2. Comparison with the integration functor in the lax unital setting.

1.2.1. Tautologically, there is a commutative square

- C ax-
(12) Functloc%glob,untl (gloc’ Cglob) P\unctloc%glob,ldx untl(gloc7 Cglob)

tst—lax

Lst%left—laxic J/Llaxaall

F\unctlocﬁglob,lef‘c—lax—untl (gloc , Cglob) F\lnCtloc*}glOb (gloc , Cglob)

Lleft-lax—all

where each ¢7 is a forgetful functor from a category of local-to-global functors equipped with certain
unital structures to a category of such functors equipped with coarser structures. Here only tst—1ax and
Lst—left-lax are fully faithful.

1.2.2. Recall in Sect. 11.5, we also constructed an adjoint pair:
L loc—glob,lax-untl loc lob loc—glob,untl loc loby |
lst—slax : Funct & (C°°, C*°”) 2 Funct & (C°°,C%%) & Lst—lax

such that the left adjoint sends
Euntl — Euntl,fins.unit.

The following result, which will be proved in 1.6, says this adjoint pair is compatible with that in
Proposition 1.1.7.

Proposition 1.2.3. The commutative square (1.2) is left adjointable along the horizontal direction,
i.e., the Bech—Chevalley natural transformation from the clockwise circuit in the diagram below to the
counter-clockwise circuit is invertible:

L
Lst—1 ax-
(13) ]:—gunctloc—>glob,untl(gloc7 Cglob) s ax Functloc—)glob,hx untl(gloc’ Cglob)

Lstalcftlaxic J/Llaxaall
L

Functloc—)glob,left—lax—untl(gloc7 Cglob) Lleft-lax—sall Functloc_}glob (gloc, CglOb).

Moreover,

o The monad tsi—siax © L5 _1ax can be identified with (11.23).

o The underlying endofunctor of the monad tiefi-lax—sall © tias-tax—san Can be identified with (11.15),
and the unit of the monad can be identified with (11.16).

e The combination of (1.3) and (1.2) gives the commutative diagram (11.24).

1.3. Proof of Proposition 11.8.8. In this subsection, we deduce Proposition 11.8.8 from Proposi-
tion I1.1.7. This is essentially a formal diagram chase.
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1.3.1. We need to show the functor
Lst—all ‘= llax—all O lst—lax = lleft-lax—all O lst—sleft-lax
is fully faithful and identify its essential image.

Given
untl untl loc—glob,untl loc glob
F 6" € Funct unl(gloe, @sloby,

we have

Maps Lst%all( 1)7 LStHall(Quntl)) =

1

~ Maps Lstaall( l), Lleft-lax—sall O Lstaleft»lax(gunﬂ))

12
S
1

untl untl
Maps Lleft-lax—sall © Lst%all(F )7 Lst%left»lax(g ))

[

1R

untl untl
ft-lax—all © llax—all © Lstﬁlax(F )7 Lst—left-lax (g )) ~

]

1R

L untl untl
MaPS Lst—left-lax © lst—slax © Lst—»lax(F )7 Lst—left-lax (Q )) ~

Maps(tst—1ax © Lit—HaX(FuntlL (guntl)) =

Maps Lst—left- lax(Fun 1), Lst—left-lax (Quntl)) A
ntl untl)

R

R

(
(
(
Maps(t
(
(esi
(
(E

~ Maps

b
where

e The fourth equivalence is due to Proposition 1.1.7;
e The sixth equivalence is because tst—s1ax is fully faithful;
e The seventh equivalence is because tst—sieft-1ax 1S fully faithful.

We leave it to the reader to check the resulting composition is the inverse to the obvious map from the
RHS to the LHS. This proves tst—an is fully faithful.

1.3.2. Let F be a local-to-global functor. By definition, the Global Unitality Axiom (i) means exactly
the unit adjunction
F = tefe-tax—all © Lo tax—ai (F)

is invertible. In particular, F can be naturally lifted to the object
Llift—lax—)all(E) c F\unctlocgg‘lob,left—lauc-untl(gloc7 Cglob)'

By the proof of Proposition 1.1.7, the Global Unitality Axiom (ii) means exactly the left-lax structure
on 1&g 1ax—an (F) is strict (see Remark 1.5.8 below). It follows that F is contained in the essential image
of tst—an if and only if it satisfies the Global Unitality Axioms.

O[Proposition 11.8.8]

1.4. Definition of left-lax unital structures. To give a homotopy-coherent definition of a left-lax
unital structure on a local-to-global functor, we need some higher algebra. This will also complete the
omitted higher datum in Sect. 11.2.5, e.t.c..

1.4.1. For any [n] € AP, let Ran®'[™ be the moduli space of chains ¢z, C z; C --- C z,,. In particular,
we have

Ran'" = Ran, Ran®™ = Ran®.

We obtain a simplicial prestack Ran="* which is a (oo - )categocial object in PreStk. Indeed, Ran&10 =
Ran is the “prestack of objects” and Ran& 1 = Ran€ is the “prestack of 1-morphisms”. The projections
PTsmalls Plbig RanS — Ran
remember respectively the source and the target of a 1-morphism, while

diag : Ran — RanS

sends an object to the identity 1-morphism at it. The higher categorical structure on Ran%'* is provided
by its simplicial structure.



434 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

1.4.2. Let Y® be any categorical object in PreStk. Write Obj := Y°, Mor; := Y* and Morz := Y*. In
general, there is a comonad on the 2-category

CrystCat(0bj)

of sheaves of categories on Obj, whose underlying endofunctor is the composition

CrystCat(0bj) LN CrystCat(Mor) LI CrystCat(0bj),

where ps, p: : Mori — Obj are the projections that remember respectively the sources and the targets.

1.4.3. The operation of composition on ps . o p; can be obtained as follows. View
(1.4) 0bj &= Mory 25 0bj

as an endomorphism ¢ on Obj in the 2-category Corr(PreStk)ZHyaH of correspondences. The categorical
structure gives a monad structure on this endomorphism. Namely, ¢ o ¢ can be identified with the
correspondence

(L.5) Obj &= Mory 25 Obj
Then ¢ o ¢ — ¢ is induced by the 2-morphism from (I.5) to (I.4) given by the projection
po2 : Mora — Mory.
that corresponds to the map [1] — [2], 0 — 0,1+ 2. We have a functor between 2-categories®®

CrystCat : Corr(PreStk)Zﬂ:iﬁoP — 2 — Cat

that sends the endomorphism ¢ to the endomorphism ps . o p;. It follows that the monad structure on
¢ gives a comonad structure on ps . o p;.

L.4.4. Applying to Ran"*, we obtain a comonad
P : CrystCat(Ran) — CrystCat(Ran)
whose underlying endofunctor is (prg,,.;)+ © (Pry,; )" In other words, we have (see Sect. 11.2.5)
P(C°) =~ Clo°C,
As explained in loc.cit., we have
Lemma 1.4.5. A local unital structure on C°° is the same as a P-comodule structure on it, where
P = (Praman)« © (Pry,;g) " : CrystCat(Ran) — CrystCat(Ran)
is a comonad acting on CrystCat(Ran).

1.4.6. From now on, whenever C°° is equipped with a local unital structure, we view it as a P-
comodule via the above lemma. Note that the coaction functor fits into the following commutative
diagram

gloc coact P(gloc)

Cloc ins.unit Cloc’g

865ee [GaRo3, Chapter 7] for the notation.
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1.4.7. Ezample. The constant sheaf of categories
D" := C®"°” ® D-mod(Ran) € CrystCat(Ran)
has an obvious local unital structure. Note that
P(C#°" @ D-mod(Ran)) ~ C*°" ® D-mod(Ran<),

where the RHS is viewed as a sheaf of categories over Ran via the small projection pr : RanS — Ran.

The corresponding P-comodule structure is given by the functor

small
I1d ®(pre,.y) : C¥°° ® D-mod(Ran) — C&'°" @ D-mod(Ran<).

Note that we have an adjunction
coact” : P(D™) = D" : coact

in the 2-category CrystCat(Ran), where the left adjoint coact” is given by the functor Id Q(Praman)!-
Also, the right adjoint coact is fully faithful, i.e.

coact” o coact = 1d.

Indeed, this follows from the contractibility of the map pr : Ran — Ran.

small

1.4.8. A general paradigm. Let P be a comonad acting on a 2-category S. Let ¢, d be two P-comodules.
For any morphism f : ¢ — d in S, we can talk about (co)lax P-linear structures on f. Namely, a lax
P-linear structure on f is a 2-morphism

ie.,
a : coactof — P(f) o coact,
equipped with a datum of associativity.

Recall any comonad P has a counit natural transformation € : P — Id, and for any comodule c,

the composition ¢ coact, P(c) 5 ¢ is isomorphic to the identity morphism. Then the above datum of
associativity in particular says the outer square in the following diagram commutes:

c coact P(C) € c

/0]

d P(d) d.

coact €

In other words, a becomes invertible after composing with the counit P(d) < d.
Dually, a colax P-linear structure on f is a 2-morphism
B : P(f) o coact — coactof
equipped with a datum of associativity. Also, 8 becomes invertible after composing with e.

Given a (co)lax P-linear structure on f, we say it is strict, or equivalently f is P-linear, if the above
2-morphism « (resp. ) is invertible.
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1.4.9. Now for S := CrystCat(Ran), ¢ := C'° and d := D®™" := C#°” ® D-mod(Ran), a morphism
f:c—din S is just a local-to-global functor

F: C"° — C#°® @ D-mod(Ran).

Suppose C!°¢ is equipped with a local unital structure, i.e., ¢ is equipped with a P-comodule struc-
ture, where recall P(C'°¢) ~ C!°“<. As explained in Sect. 11.3.4, we have

Lemma 1.4.10. In the above notations, knowing a lax unital structure on F is equivalent to knowing
a lax P-linear structure on f. Via this correspondence, the natural transformation

a: coactof — P(f) o coact,
is given by (11.12).

1.4.11. Now we define a left-lax unital structure on F to be a left-lax P-linear structre on f. This is
the homotopically sound definition promised in Sect. I.1.

1.5. Proof of Proposition I1.1.7.

1.5.1. Using the notations in Sect. 1.4.8, the forgetful functor tieft-1ax—san is given by
Ueft-lax—sall : Functiefi1ax-p(c,d) — Funct(c, d)

which sends a left-lax P-linear morphism f : ¢ — d to its underlying morphism. Now Proposition 1.1.7
is a particular case of the following general result.

Lemma 1.5.2. Let (S,P,c,d) be as in Sect. 1.4.8. Suppose:
(*) The morphism coact : d — P(d) has a left adjoint coact™ : P(d) — d.
Then the forgetful functor

(1.6) Functiefs-1ax- p(c, d) — Funct(c, d)
has a left adjoint given by
(I.7) Funct(c,d) — Functiesiax.p(c,d), f — coact”™ oP(f) o coact .

1.5.3. Proof. The rest of this subsection is devoted to the proof of the lemma. We first define the
desired left-lax P-linear structure on the composition

(1.8) ¢ <22 p(e) PO p(q) <ty g

It is the composition of the following three left-lax P-linear structures:

e The coaction morphism c coact, P(c) always has a natural strict P-linear structure;

e The morphism P(f) : P(c) — P(d) is a strictly P-linear morphism between cofree P-comodules;

coact coact”
—d

e As the left adjoint of the strictly P-linear morphism d —— P(d), the morphism P(d)
has a natural left-lax P-linear structure.

1.5.4. To show (I.7) is indeed left adjoint to (I.6), we provide the unit and counit natural transforma-
tions for this adjunction.

1.5.5. Unit natural transformation. Given f € Funct(c,d), we have the following commutative diagram

c coact, P(C) € c

o

d coact P(d) € d.

Then the desired morphism f — coact™ oP(f) o coact is obtained by passing to left adjoints along the
bottom line and using the fact that € o coact ~ Id. More precisely, we have a morphism

L L
€ — € o coact ocoact™ ~ coact™,
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where the first morphism is given by the unit adjunction of (coact”, coact). Hence we obtain a morphism
(1.9) f~ foeocoact ~ eo P(f) o coact — coact” oP(f) o coact .

which is the value of the desired unit natural transformation at f.

1.5.6. Counit natural transformation. Given g € Functieft-lax-p(c, d), the left-lax P-linear structure on
it provides a morphism in Functiefs-1ax-p(c, d):

P(g) o coact — coact og.
Using the adjunction (coactL7 coact), we obtain a morphism
coact” oP(g) o coact — g

which is the value of the desired counit natural transformation at g.

1.5.7. It is a routine exercise to verify these natural transformations indeed satisfy the axioms of an
adjunction. We leave it to the readers.
O

1.5.8. Remark. Note that Proposition 1.1.7 is indeed a particular case of Lemma 1.5.2 because of Sect.
1.4.7. Also, unwinding the definitions, for a local-to-global functor F and the corresponding f : ¢ — d,
the unit adjunction (1.9) is exactly (11.16).

Moreover, by definition, F satisfies the Global Unitality Axioms iff the corresponding f satisfies
(i) The unit adjunction (1.9) is invertible;
(ii) The natural transformation

(1.10) P(f) o coact — coactof

obtained from the inverse of (1.9) is invertible.

Now (i) implies f has a natural left-lax P-linear structure given by that of coact” oP(f) o coact. A
direct diagram chasing shows this left-lax P-linear structure is exhibited by the natural transformation
(I.10). Hence (ii) says this left-lax P-linear structure on f is strict. This was used in the proof of
Proposition 11.8.8 in Sect. 1.3.2.

1.6. Proof of Proposition 1.2.3.

1.6.1. Unlike Proposition 1.1.7, the proof of Proposition 1.2.3 is not completely formal. Instead, we
need the following particular feature of the setting of local-to-global functors.

Lemma 1.6.2. The composition

locﬂglob,lax»untl(cloc Cglob) locﬂglob,left»lax»untl(Cloc Cglob)
~ ~

L
Lieft-lax—rall © Lax—all : Funct — Funct

takes image in Funct'oc—globuntl(gloc eloby,

1.6.3. Remark. The claim of the lemma is a priori stronger than the results listed in Sect. 11.5. Namely,
given a local-to-global functor F equipped with a lax unital structure, Sect. 11.5 says there is a strictly
unital structure on F/ 5"t while the lemma says the natural left-lax unital structure on it (provided
by Proposition 1.1.7) is strict. Nevertheless, it is easy to see the proof in loc.cit. actually implies this
stronger claim. For completeness, we repeat this proof.

Proof. We will deduce the claim from Lemma 11.5.5. Let F be a local-to-global functor equipped with
a lax unital structure, and f : ¢ — d be the corresponding lax P-linear morphism. We need to show
that the left-lax P-linear structure on coact” oP(f) o coact is strict. Recall that P(f) o coact, i.e.,

. . c )
(L11) Clge, it gloe.C© B2 o#lob o ) mod(RanS)
is naturally P-linear. On the other hand, coact” : P(d) — d, i.e.,
(1.12) Id ®(pryan) - C2°” ® D-mod(Ran<) — C&°” @ D-mod(Ran).

has a natural left-lax P-linear structure because its right adjoint is naturally P-linear.
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Consider the categorical prestack
c
Ran x RanS"
Ranuntl

where Ran&""*! — Ran is the small projection pr

Ran, we obtain a crystal of categories over Ran

D-mod(Ran x Ran=""")

Ranuntl

untl
small*

untl Viewing it as a categorical prestack over

and a functor

(1.13) t' :D-mod(Ran x RanS"™) — D-mod(Ran®)
Ranuntl

given by pullback along t : Ran© — Ran x  Ran&""!. Note that both sides of (I.13) have natural
Ranuntl

local unital structures and the functor is obviously unital. Now Lemma 11.5.5, combined with a variant
of Lemma C.5.12, says the composition

D-mod(Ran x Ran<""") — D-mod(Ran®) (OTeman)t, D-mod(Ran),
Ranuntl

which is a priori left-lax unital, is strictly unital. The statement remains true if we tensor it with the
DG category C8°P. Then we finish the proof because the composition (I.11) factors through (I.13) by
the lax unital structure on F.

(]

1.6.4. By Lemma 1.6.2, there is a unique functor Tjax—st making the following diagram commute

X T st X _
(114) Functloc—»glob,untl(gloc’ Cglob) ax—s Functloc%glob,lax untl(gloc7 Cglob)

Lst%left—laxlc J/Llaxﬂall

L
Jlax- : “left-lax— all
P\unctlocﬁglob,lef‘c lax- untl(gloc7 Cglob) eft-lax—a Functloc%glob (gloc’ Cglob).

In particular, we obtained:

e A lifting of the endofunctor
L . loc—glob loc glob loc—glob loc glob
Lleft-lax—all © Lieft-lax—all * FUNCE (€%, C*°”) — Funct (€5, Cc5™)
to an endofunctor

locaglob,lax—untl(cloc Cglob) —s Funct
~

loc—glob,lax-untl loc sloby |
lst—lax © Tlax—st + Funct & (Q ’ Cg )7

e A lifting of the endofunctor

loc%glob,leftflax—untl(Cloc Cglob) loc%glob,leftflaxfuntl(Cloc Cglob))
~ ~

L
Lieft-lax—rall © Ueft-lax—all : Funct — Funct

to an endofunctor

loc—»glob,untl(cloc Cglob) locﬁglob,untl(cloc Cglob)
— bl —_— )

Tlax—sst © lst—lax : Funct — Funct

5
1.6.5. To finish the proof, we only need to lift the unit and counit adjunctions
L L
Id = teft-lax—all © Lieft-lax—salls Lleft-lax—all © Ueft-lax—an — Id
to

Id — tst—lax © Tlax—ssts Tlax—sst © lst—lax — Id

and verify they satisfy the axioms of an adjunction. Indeed, these will induce an equivalence Tjax—sst =~
t5 . 1ax such that (I.14) can be identified with the Bech-Chevalley natural transformation (I.3). Then
the other claims in Proposition 1.2.3 follow from definitions.

1.6.6. We will lift the counit and unit natural transformations, and leave it to the readers to verify
they satisfy the axioms of an adjunction.
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1.6.7. Lift the counit. The lifting of the counit is obvious because the forgetful functor
Funct1004>glob,untl(Qloc7 Cglob) N Functloc4>glob,left—lax»untl(gloc7 Cglob)

is fully faithful and the any morphism in the RHS (such as the counit LlLeft_lax_}aH O Left-lax—all — 1d)
has a unique lifting to the LHS as long as its source and target are contained in the LHS.

1.6.8. Lift the unit. The rest of this subsection is devoted to lift the unit. Recall its definition in Sect.
1.5.5. By definition, the morphism € : P(d) — d is
Id ® diag' : C#"°® @ D-mod(Ran<) — C&"°® @ D-mod(Ran)
and the morphism
€ — coact”

is induced by the natural transformation

(115) diag! - diag! O Prsmall o(prsmall)! = (prsmall)!
provided by the isomorphism prg ., o diag ~ Id.

1.6.9. Recall the restriction functor

t' : D-mod(Ran x Ran=""') - D-mod(Ran<).

Ranuntl!
We claim the (horizontal) composition of (I.15) with t', i.e.,
(I.16) diag' ot' — (proa)iot
can be naturally lifted to a natural transformation between lax unital functors

D-mod(Ran x Ran<""") — D-mod(Ran).

Ranuntl

Here D-mod(Ran x RanS"™) and D-mod(Ran) are equipped with the local unital structures given
Ranuntl

respectively by RanS>unt!

and Ran""!,

1.6.10. Consider the map
diaguntl . Ranuntl N Rang,untl

and its left inverse
tl C,untl t1
Promay @ Ran=""" — Ran""".

Similar to (I.15), we have a natural transformation

(1.17) (diagum])! - (diaguml)! °© (pr‘:rl;l]t;ll)‘ °© (prlslllr‘]talll)] = (pr;'flﬁn)!-
Note that (diag"™)"' has an obvious lax unital structure, i.e., is a lax functor between sheaves of
categories on Ran"™"! while (pri™,), has a strictly unital structure by Lemma 11.5.5. The composition
(I.17) is compatible with the lax unital structures on both sides because each natural transformation
is.

By (a variant of) Lemma C.5.12, when restricted along Ran — Ran""", (1.17) gives exactly (L.16).
In other words, we have proved the claim in Sect. 1.6.9.

1.6.11. Recall that P(f) o coact (which is just (I.11)) factors through Id®t'. It follows that (I.16)
induces a natural transformation

€0 P(f) o coact — coact” oP(f) o coact
compatible with the lax unital structures on both sides.
1.6.12. On the other hand, we have
f =~ foeocoact >~ eoP(f) o coact

because € is the counit of the comonad P. Moreover, this isomorphism is obviously compatible with
the lax unital structures on both sides.
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1.6.13. Combining the above two subections, we obtain that
f — coact™ oP(f) o coact

is naturally compatible with the lax unital structures on both sides. In other words, we have found the
desired lifting of the unit adjunction.

1.6.14. We leave it to the readers to check the above liftings indeed satisfy the axioms of an adjunction.
O[Proposition 1.1.7]
APPENDIX J. A HOMOTOPICAL DEVICE FOR COACTION

The goal of this section is to introduce a homotopical device that will help us carry out the con-
structions in Sects. 4.6 and 5.3 up to coherent homotopy.

J.1. Associative algebras via mock-simplicial sets.

J.1.1. Let us recall the following device of encoding the structure of associative algebra (resp., module
over a given associative algebra) in a monoidal category (see [Lu2, Sect. 2.2.4]).

Let A°P™°ck he the category of (possibly empty) finite ordered sets. The operation of (ordered)
union defines on A°P™°k g structure of monoidal category. Its monoidal unit is 0.

In what follows we will denote®”
Amock - (Aop,mock)op
J.1.2. The datum of a unital associative algebra in a monoidal category 2l is equivalent to that of a

monoidal functor
A op,mock 9.

Under this correspondence, for a given functor F' : A°P™°k 5 9 the corresponding algebra object
a € Ais F({*}). The unit in a is given by the map

1y =F(0) - F({x}) =a,
corresponding to the (unique) map ) — {*}.
The binary operation on a corresponds to the map
a®@a=F({«})® F({x}) ~ F({1,2}) = F({+}) = q,
where the arrows is given by the (unique) map {1,2} — {*} in A°P-mock,

J.1.3. Let A%™ be the category of non-empty finite ordered sets, pointed by their maximal ele-
ment. The category ASP"™° is naturally a module over A°P™o%k,

J.1.4. Let us be given a monoidal category 2. Let a be an associative algebra in 2, thought of as a
monoidal functor
Fo @ AP0 9L

Then the category
a-mod(2A)
of a-modules in 2 is equivalent to that of functors of left A°P™°*_module categories
Azp,mock N 22(7

where 2 is a left A°P™°*_module via F,.

87The category A™°%K is equivalent to the subcategory of A consisting of active morphisms, i.e. those that preserve
the maximal and minimal element. For our purposes, the nonstandard “mock” terminology will be more convenient.
We caution the reader that the usual simplex category, denoted A, is that of non-empty finite ordered sets. Note that
arrows in A and A™°% go in opposite directions.
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J.1.5.  Under this correspondence, given a functor F,, : A%™°%* _ 9 the object of 2 underlying the
corresponding a-module is
m = Fn({}).
The action map a ® M — M is given by
a@m=~ F,({0}) ® Frn({}) ~ Frn({0,%}) = Fp({*}) ~ m.
J.1.6. As above, in what follows we will denote
Ainock = (Agp,mock)op.
We will refer to functors A°P™ok s [ (resp., AP™ON 5 9 A™Ok 5 9 AmOK _y 9() as mock-

simplicial (resp., pointed mock-simplicial, mock cosimplicial, pointed mock cosimplicial) objects of

2.

J.2. Factorization categories attached to associative factorization algebras. Recall that our
goal is to carry out the constructions in Sects. 4.6 and 5.3. We will achieve this by introducing
appropriate objects to feed into the machine in Sect. J.1.

J.2.1. Let 2; be a monoidal category and let €; be a module category over it. Note that given two
such pairs, we can talk about strictly and right-laz monoidal functors of pairs

(Fa, Fe) : (A1,€1) = (Ar, €2),
i.e., Fy, : Ay — s is righ-lax monoidal, and F, : €, — €3 is right-lax compatible with the actions.

We introduce several such pairs now.

J.2.2. Take
Ay = A™N Ay = (FactAlg"™ (X))°P, As = FactCat) "' (X),

where the subscript “lax” means that we are considering lax factorization categories.

J.2.3. By Sect. J.1, an object

(J.1) R € AssAlg(FactAlg™™ (X))

can be viewed as a stricty monoidal functor

(J.2) APk PactAlg"™ (X)),

and hence also as a stricty monoidal functor

(1.3) A™N 5 (FactAlg"™™" (X))P.

J.2.4. In addition, we have a naturally defined right-lax monoidal functor

(J.4) (FactAlg"™)°P — FactCat™™'**(X), R — R-mod™", (R, 4 R2) ~> Resg .
Composing, for R as above, we obtain a right-lax monoidal functor

(J.5) AMOck FactCatFa[;“‘laX(X), n = R _modt,

J.2.5. Take

¢ = AP, €, = FactCatjiy"'™(X), €3 = FactCat "™ (X),
where:

o A™OK acts on ATk a5 in Sect. J.1.3;
e FactCat™'**(X) acts on itself via the (symmetric) monoidal structure on FactCat;""'**(X);
o (FactAlg"™(X))°P acts on FactCat!™"'**(X) by

lax

R, A R-mod™*(A) ~ (R ® 1a)-mod™*(A).

We note that the above action of (FactAlg"™)°® on FactCat*'**(X) is monoidal thanks to
Lemma C.11.19.
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. . . L1
J.2.6. Let Rbeasin (J.1) and suppose that it acts on the unit 1c € C for some C € FactCat;""**(X).

Then the functor (J.2) extends to a strictly monoidal functor of pairs

(1.6) (AcPmock APk —y (FactAlg"™™ (X), (FactCatjuy " (X))°?), 1+ C.

lax

Hence, we obtain a strictly monoidal functor of pairs

(J.7) (A™O ATOK)  ((FactAlg"™(X))°P, FactCat!™"™'**(X)), % +— C.

lax
J.2.7. In addition, the functor (J.4) extends to a right-laxz monoidal functor
(J.8)  ((FactAlg"™(X))°P, FactCat!™"1** (X)) — (FactCat™""'**(X), FactCat!""'**( X)),

lax lax lax

which acts as identity on the module component.

J.2.8.  Combining, we obtain that for (R, C) as in Sect. J.2.6 we obtain that (J.5) extends to a right-lax
monoidal functor of pairs

(Jg) (ATOCk, Ainock) N (FactCatun“’lax(X), Factcatuntl,laX(X))

lax lax

that sends
(x € ATN) w C.

J.3. The renormalization step.
J.3.1. We apply Sect. J.2.8 to
R = 34 and C = g-moderit,

and consider the resulting right-lax monoidal functor of pairs (J.9); denote it
(J.10) (Fig» Fomoderie)-
J.3.2.  We now introduce several more (symmetric) monoidal categories. Let

A = Ay := FactCat! "™ (X)

lax

be as above.
We let 2" be the following 1-full subcategory of 2, to be denoted
FactCat{la‘;“’lax (X)t’m.

Its objects are lax unital factorization categories, equipped with a t-structure. For a pair of objects
Cq, Cy, we let

Maps (Cy1,C2) C Maps (C1,C2)

FactCatPth18% (x)t-str FactCat™mth1ax x)
lax lax

be the full subcategory consisting of left t-exact functors.

J.3.3. We let 2" be the full subcategory of the category of arrows in 2, whose objects are those pairs
®:C"" = C,

for which:

e & induces an equivalence between the eventually coconnective subcategories;
e C™" is compactly generated by objects that are eventually coconnective.

Note that the tautological forgetful functor
A" A, (@:C*" = C)—C
is 1-fully faithful, i.e., induces a fully faithful functor on spaces of morphisms.

Explicitly, given two pairs Ci*" 21 ¢y and CF™ 23 Ca, a functor ¥ : C; — Cs in ' lifts to A" if
and only if the ind-extension of

(Cien)c C (Cien)>7oo ~ Cl>700 i CQ>700 ~ (Cgen)>7oo

is left t-exact (equivalently, has a bounded cohomological amplitude on the left).
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J.3.4. Finally, we let 2 be again FactCat'™™'*(X), and we consider the forgetful functor

lax
(J.11) A" = A", (&:C™" — C) = C™.
J.3.5. Note now that given a lax monoidal functor
(A™mock Amock) (9 1),
in order to lift to a lax monoidal functor
(Amock7Ainock) @y,

it suffices to do so at the level of objects and 1-morphisms, i.e., it is sufficient to do so at the homotopy
level (moreover, the lift at the level of objects defines it completely).

We start with the functor (F} , Fymod,,;, ) of (J.10). We lift to a functor

3g»

(F Fﬁ—modcrjt)/l . (Amock7 A;nock) N (Q‘”,Ql”)

3g»

at the level of objects by sending
(n € A™%) ~ (IndCoh" (“Spec”(3,)*" — 55" -mod™*)

({n,*} € ATH) (IndCoh*(“Spec”(34))*" ® g-modeit — 35 "-mod(g-moderit)) -
The existence of the lift at the level of 1-morphisms is guaranteed by Lemma 4.6.12.

J.3.6. We compose (F:

dg»

(Fgg , Fa_modcm)m . (Arnock7 A[*nock) N (Factcatuntl,laX(X)’ FactCat“ml’laX(X)).

lax lax

F;5 mod,,;, )" with (J.11) to obtain a right-lax monoidal functor of pairs

However, by construction, the latter functor is strictly monoidal. I.e., the functor
Fé/;' S APk FactCat{’affl’lax(X )
is strictly monoidal, and
F odo, Aok FactCat}lar;fl’laX (X)

is a functor between A™°*_module categories.

Applying Sect. J.1 to (F},, Fi-mod.,;,)" we obtain the desired coaction of IndCoh* (“Spec”(34)) on
a‘mOdcrit-

This completes the construction from Sect. 4.6.

J.4. Adding another monoidal category. In order to carry out the construction in Sect. 5.3, we
need to enhance the setting of Sect. J.2.

J.4.1.  We modify the setting of Sect. J.2.1, and we now take 2z to be the category, denoted
(FactAlg® € FactCatiay )™ (X),

whose objects are pairs (A, R), where:

e A ¢ FactCat2(X);
e R € FactAlg™! (X, A).

The space of morphisms
Maps pactaiger EFactCatlax)“““(X)((Alv R1), (A2, R2))
consists of pairs: (®, @), where:
e & is a lax unital functor A; — As;

e ¢ is a map of unital factorization algebras in A,

:RQ — <I>(:R1)
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Remark J.4.2. Note that we can interpret (FactAlg®? € FactCatjayx) "™ (X), equipped with the forgetful
functor to FactCat{n'(X) as the co-Cartesian fibration corresponding to the functor

lax
FactCati'(X) — co-Cat, A ~— (FactAlg"™" (X, A))°".

The monoidal structure on (FactAlg®® € FactCatiax )™ (X) corresponds to the right-lax monoidal
structure on the above functor.

J.4.3. We let 23 be the same as in Sect. J.2.5, i.e., FactCat""'**(X).

lax

Note that we have a lax monoidal functor

(J.12) (FactAlg® € FactCatiax)™™" (X) — FactCat™'**(X), (A, R) — R-mod™(A).

lax

J.4.4. We take €3 =2 and €3 = A3. The functor (J.12) gives rise to a right-lax monoidal functor of
pairs

(J.13) ((FactAlgop € FactCatiax )" (X), (FactAlg® FactCatlax)u"“(X)> —
— (FactCat™"**(X), FactCat™'* (X)).

lax lax
J.4.5. We now explain a procedure that gives rise to strictly monoidal functors
A™* 5 (FactAlg®™ € FactCatiax )" (X)

and strictly monoidal functors of pairs

(Ameck Amocky ((FactAlgop € FactCatjayx )" (X), (FactAlg® € FactCatlax)u““(X)) .

J.4.6. Let (FactAlg € FactCatiay)"™(X) denote the category defined as follows. It objects are pairs
(A, R), where:

e A € FactCat!"(X);
e R € FactAlg"™™ (X, A).

The space of morphisms

Maps(FactAlgGF&ctCatlax)“““(X) ((A17 :Rl)’ (A27 iR2))
consists of pairs: (@, ¢), where:

o & is a strictly unital functor Ay — Ag;
e ¢ is a map of unital factorization algebras in As

(I)(Rl) — Rz.
Remark J.4.7. As in Remark J.4.2, the category (FactAlg € FactCatia )" (X), equipped with the

forgetful functor to FactCat™*(X), is the co-Cartesian fibration corresponding to the functor

FactCatl!(X) — oo-Cat, A — FactAlg™" (X, A).
J.4.8. Let A a monoidal unital lax factorization category A and let R € FactAlg™ (X, A) be an
object, equipped with a structure of associative algebra, in the sense of the monoidal structure on A.

We can think of (A,R) as an associative algebra object in (FactAlg € FactCatiayx )™ (X). Hence,
by Sect. J.1, it gives rise to a (strictly) monoidal functor

Fax : A°P™°% _ (FactAlg € FactCatiay)"™ (X).
Let C be a unital lax factorization category, equipped with an action of A as a monoidal factorization
category. Suppose, moreover, that R acts on 14 in the sense of the action of A on C.

Then we can consider (C, 1¢) as a module over (A, R) in (FactAlg € FactCatia, )" (X). Hence, by
Sect. J.1, the functor Fa x extends to a (strictly) monoidal functor of pairs

(Fa.x, Fc) : (A°Pmock A9Pmock) ((FactAlg € FactCatjax )" (X), (FactAlg € FactCatlax)“n“(X)) )
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J.4.9. Let
((FactAlg € FactCatiax) "™ (X))aq; C (FactAlg € FactCatiax) ™" (X)

be a 1-full subcategory, where we take the same objects, but as 1-morphisms we let

Maps((FactAlgEFactCatlax)U““(X))adj ((A17 :Rl)7 (A27 fRQ)) c
c MapS(FactAlgEFactCatlax)“““(X) ((A1,R1), (A2, R2))

be the full subcategory consisting of those pairs (P, ¢), for which ® admits a factorization right adjoint,
which then automatically acquires a lax unital structure (see Sect. C.11.21).

J.4.10. Note that the operation of passage to the right adjoint functor defines a (1-fully faithful,
symmetric) monoidal functor

(J.14) ((FactAlg € FactCatiax)"™" (X ))aqj — ((FactAlg® € FactCatiay )™ (X))°P,
which acts as identity on objects, and sends
(®: A1 — As, p(R1) = Ra) ~ (7 : Ay — A1, : Ry — 7 (R2)),

where 1) is obtained from ¢ by adjunction.
J.4.11. Therefore, given a (strictly) monoidal functor of pairs

(AOp’mOCk, Ai’p’mOCk) — ((FactAlg € FactCatlax)unﬂ(X), (FactAlg € FactCatlax)“ntl(X)) ,
which at the level of 1-morphisms lands in
(J.15) (((FactAlg € FactCatiay ) "™ (X))aqj, ((FactAlg € FactCatlax)un“(X))adj) ,
by passing to right adjoints, we can create from it a (strictly) monoidal functor of pairs

(AmOCk7 Ain“k) — ((FactAlg;Op € FactCatlax)“"tl(X), (FactAlg®® € FactCatlax)untl(X)) .

J.5. Applying the paradigm. We are finally ready to complete the construction from Sect. 5.3.

J.5.1. In the context of Sect. J.4.8, we take
A :=Rep(G), C:=KL(G)erit, R = R 0p-
The data of action from Sect. J.4.8 is provided by Sect. 5.2.9.

Denote the resulting monoidal functor of pairs by
op,mock op,mock
(FRep(@). R 02 FRL(G)erse) 3 (AT APREE) —
— ((FactAlg € FactCatiax )" (X), (FactAlg € FactCatlaX)“ml(X)) .
J.5.2.  Note now that since Rep(G) is rigid, the above functor (Frep(c) Re o0 FKL(G) .,) lands in the
Rés op eri

subcategory (J.15).

Hence, by Sect. J.4.11, we can produce from it a (strictly) monoidal functor of pairs
mock mock
(FRep(@),Rgs 0 FRL(Gexie adj + (AT, ATH) —

— ((FactAlg°p € FactCatiax )" (X), (FactAlg™ € FactCatlax)“ml(X)) .

J.5.3. Composing with (J.13), we obtain a right-lax monoidal functor of pairs

(Frep(c) VFRL(G) e Jaa © (AT, AT) — (FactCatypy ™ (X), FactCatyp (X))

’RCJ,Op
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J.5.4. The final step consists of lifting the functor (Fre, (e Re o FKL(G) iy )adj to a (strictly) monoidal
’ ,Op
functor of pairs

(Frep(c) T FRL(G) e Jac © (AT, AT) — (FactCatypy ™ (X), FactCatyp (X)),

’RCJ,Op
which at the level of objects sends

n— IndCoh* (Oprélon—free)(@n7 (’fl L *) — Indcoh*(opgon—ﬁree)@n ® KL(G)crit~

This is achieved by repeating the procedure in Sect. J.3.6 using Lemma 5.3.9.
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