“Non, c’est normal: les dénonciateurs dénoncent, les cambrioleurs cambriolent, les assassins
assassinent, les amoureux s’aiment.” J.-L. Godard, A bout de souffle (Michel & Patricia).

THE GEOMETRIC LANGLANDS FUNCTOR II:
EQUIVALENCE ON THE EISENSTEIN PART

LIN CHEN, DENNIS GAITSGORY AND SAM RASKIN

ABSTRACT. We prove the de Rham geometric Langlands conjecture for reducible spectral param-
eters.

The problem reduces to calculating constant terms of geometric Eisenstein series in spectral
terms, or equivalently, to proving the compatibility of the geometric Langlands functor Lg with
geometric and spectral constant term functors. Essentially because geometric Langlands has pre-
viously been understood for irreducible local systems in the case of G = GL,,, we are able to
deduce the full geometric Langlands conjecture in this case.

We perform this calculation using Kac-Moody localization at the critical level. Namely, the
interaction of Kac-Moody localization with the Langlands functor has been well-understood. One
of the main results of this paper describes the interaction of Kac-Moody localization with constant
term functors. We then deduce the general compatibility of the Langlands functor with constant
terms using this calculation.

Our analysis goes by reduction to a local problem, namely, calculating BRST functors on the
critical level Kazhdan-Lusztig category via a sort of Miura transform on the Langlands dual side.
For our applications, it is important to work at the level of factorization categories. These purely
local results may be of independent interest.

Finally, a substantial part of this paper develops foundational local-to-global methods related
to chiral homology; these results have been folklore in the subject for some time.

First draft
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INTRODUCTION

0.1. What is done in this paper? This paper is the second in the series of four, in the course of
which a proof of the geometric Langlands conjecture (stated here as Conjecture 20.3.8) will be given.

0.1.1. As far as the program of proving the geometric Langlands conjecture is concerned, in this paper
the following two steps toward the proof are performed:

e It is shown (Theorem 21.2.2) that the geometric Langlands functor
(0.1) Leg: D—mod% (Bung) — IndCohniip (LS (X))
is compatible with the functors of constant term;

e Assuming the geometric Langlands conjecture for proper Levi subgroups, it is shown (Theo-
rem 24.1.2) that L¢ induces an equivalence on Eisenstein-generated subcategories

D-mod% (BunG)Eis :> IndCOhan (LSG (X))red~

In the special case when G = GL,, it turns out that Theorem 24.1.2 already implies the full
geometric Langlands conjecture (see Sect. 24.2).

Another result that concerns the global geometric Langlands program, proved here, and which is of
independent interest is Theorem 23.2.5, which says that:

e The left adjoint functor of Lg can be obtained from the functor dual to Lg, by composing
with the Miraculous functor and Cartan involution.

0.1.2. Other results established in this paper concern the local geometric Langlands theory. Apart from
being of independent interest, these results provide local ingredients for the proofs of global theorems
mentioned above.

The two main local results are:

e The critical FLE (Theorem 7.3.4), i.e., an equivalence
FLEG, cri
KL(@)aie  ~ " IndCoh* (OpZo™ree(D*));

e The compatibility of the critical FLE with Jacquet functors (Theorem 9.1.3 and its enhance-

ment Theorem 9.1.7).

We should remark that both of the above local results are new only at the factorization level, i.e.,
when view both sides as categories over the Ran space. Namely, the poinwtise version of Theorem 7.3.4
had been established in [FG4], and the pointwise version of Theorem 9.1.3 had been (essentially)
established in [FG2]. However, the proofs of both these results given in loc.cit. use methods that do
not extend to a statement at the factorization level.
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0.2. The logical structure: compatibility with constant terms. We will now describe the logical
structure of the paper from the point of view of the geometric Langland conjecture.

0.2.1. In Sects. 20.1 and 20.3, we recall, referring to [GR1], the construction of the Langlands functor
(0.1).

By design, the functor L makes the following diagram commute!

Whit (Gro,ran) ——S Rep(G)ran

(02) COQHGT Tr‘sgec
D-mod (Bung) —<— IndCohyip (LS¢ (X)).

Here:

e CS¢ is the equivalence of Theorem 1.4.2, which we call the “geometric Casselman-Shalika
formula”;
e coeff is the functor of Whittaker coefficient(s);

e ' is the functor right adjoint to the localization functor

spec

. Loc’;
Rep(G)ran —2 QCoh(LSx(X)) — IndCohnip, (LS (X)).

0.2.2. The geometric Langlands conjecture (Conjecture 20.3.8) says that the functor L¢ is an equiv-
alence.

0.2.3. In the process of showing that Lg is well-defined, one proves that it is compatible with the
Eisenstein functors, i.e., for a standard (negative) parabolic P~ with Levi quotient M, it makes the
following diagram commute (again, up to a cohomological shift):

D-mod ; (Bunyr) —2— IndCohiip (LS y; (X))
(03) Eis!_,PP(wx) l lEiSi’SpeC

D-mod (Bung) —%— IndCohip(LS¢(X)).

In the above formula, Eispr (wx) is the translated Eisenstein series functor, see Sect. 20.4.2.

0.2.4. Given diagram (0.3), by passing to right adjoint functors along the vertical arrows, we obtain
a diagram

(0.4) D-mod; (Bunas) —— - TndCohirp (LS (X)),
CT;PP(WX) CT ™ 5pee
D-mod

1 (Bung) — > TndCohip (LS (X))
G

that commutes up to a natural transformation.

However, it is entirely not obvious that the natural transformation in (0.4) is an isomorphism.
Ultimately, we establish that it is an isomorphism (Corollary 24.1.4), but this comes after we prove our
main result, Theorem 24.1.2.

1Up to a cohomological shift, which we omit in the Introduction.
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0.2.5. First, prove a priori that there exists some natural transformation that makes the diagram

D-mod  (Bunar) —2— TndCohnip(LS (X))

(0.5) CT:’pP(wa TCT*,Spec
D-mod s (Bun) —X9 , TndCohnip (LSe(X))
commute.?

The existence of the commutative diagram (0.5) is one of the main results of this paper (Theo-
rem 21.2.2), and it uses local-to-global methods.

0.2.6. In Part III of this paper we review the critical localization construction, which is a functor
(0.6) Loce : KL(G)crit,Ran — D—mod% (Bung),
where KL(G)crit,Ran 1S the Kazhdan-Lusztig category at the critical level.
The spectral counterpart of (0.6) is the functor of spectral Poincaré series
(0.7) Poinc* : IndCoh* (Opg®***(D*))ran — IndCohnirp (LS (X))

In Theorem 20.6.2 we prove that the Langlands functor is compatible with the above local-to-global
functors, i.e., that the diagram

D_mod%(Bung) LN IndCohniip (LS (X))
o ] o
FLEG crit * mon-free (qy X
KL(GQ)erit,Ran  ———% IndCoh* (OpZ°"*(D* ) )ran

commutes,® where the bottom horizontal arrow is the critical FLE equivalence, given by Theorem 7.3.4.

0.2.7. We prove the existence of (0.5) by constructing a commutative cube (see diagram (21.2)) that
relates the diagram (0.8) for G with a similar diagram for M, with the crucial ingredient being the
compatibility of the critical FLE with Jacquet functors, given by Theorem 9.1.3 mentioned above.

0.2.8. Of course, the compatibility of Lg with the critical localization functor, expressed by diagram
(0.8) plays a much bigger role in this project than just proving the existence of (0.5).

In the next paper, it will be used to show that the functor Lg is ambideztrous (at least on the
cuspidal part), which is another crucial step towards the proof of the geometric Langlands conjecture.

Remark 0.2.9. One can say that our approach to the proof of the geometric Langlands conjecture
consists of playing diagrams (0.2) and (0.8) one against the other.

Note that the approach to geometric Langlands via (0.2) was essentially the idea behind Drinfeld’s
founding work [Dri] (later taken up by [FGV]), and the approach via (0.8) was the idea of the Beilinson-
Drinfeld approach in [BD].

Remark 0.2.10. In [Gail, Sect. 6.7], the second author suggested a different approach to proving the
compatibility between the Langlands functor and constant terms. The approach in the present paper
differs substantially from the strategy outlined there, relying on statements about the Kac-Moody
algebra rather than the more geometric tools suggested in [Gail].

With that said, completing the older strategy of deducing the constant term compatibility of geo-
metric Langlands is the subject of work-in-progress by the first author and K. Lin.

0.3. The logical structure: equivalence on Eisenstein parts.
2We do not know, and are not sure that it is true, that the natural isomorphism in (0.5) equals one of (0.4). One

can show, however, that the two differ by a (non-zero) scalar.
3Up to a graded line, omitted in the Introduction.
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0.3.1. In Theorem 23.1.2, we deduce from the diagram (0.5) that the functor Lg admits a left adjoint,
which we denote L. Moreover, the functor LE makes the diagram

L
D-mod s (Bunys) «—— IndCohnilp (LS 7 (X))

1
2
(0.9) Eis;pP(wX)l lEis—,spec
D-mod (Bung) +—%— IndCohxip(LS¢(X)).
commute.
Having both diagrams (0.3) and (0.9) implies that the functors L and L& send the subcategories

D-mod% (BunG)EiS C D-mod% (BunG)

and
IndCohnip (LS (X ))rea € IndCohniip (LS (X))

to one another.
The main result of this paper, Theorem 24.1.2, says that the resulting adjoint functors
(0.10) Le : D-mod (Bung)eis S IndCohitp (LS (X))sea : L&

are mutually inverse equivalences, provided that we know that the geometric Langlands conjecture
holds for all proper Levi subgroups of G.

We will now explain the logic of the proof of this theorem.

0.3.2. Consider the composition
Lg o ]Lé,
viewed as a monad acting on IndCohniip (LSx(X)).
We show (Theorem 23.6.2) that this monad is given by the action of an associative algebra object
Ac € QCoh(LSx (X))

(we view IndCohnilp (LS (X)) as a module category over QCoh(LSx(X))).

0.3.3. The assertion that the functor L% is fully faithful is equivalent to the assertion that the unit
(0.11) OLsq(x) = Ac

is an isomorphism. By [FR1], we already know that L¢ is conservative, so the fully-faithfulness of L&
is equivalent to the geometric Langlands conjecture Conjecture 20.3.8.

The assertion that Léhndcohmp@sc( X)),eq 18 fully faithful is equivalent to the assertion that the
map

(0.12) Opgrea(x) = AGILsgd(Xy

induced by (0.11), is an isomorphism, where LSg?d(X ) C LSx(X) is any closed substack, whose under-
lying subset consists of reducible local systems.
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0.3.4. The latter assertion is equivalent to the map

(0.13) Ows,_(x) = (P™°")" (Ac)

being an isomorphism for any proper standard (negative) parabolic P~ C G, where
pe°" L LSp- (X) = LSa(X)

is the canonical morphism.

Now, a simple but crucial observation is given by Proposition 24.3.8, which says that in order to
prove that (0.13) is an isomorphism, it is enough to show that the object

(p*°")"(Ac) € QCoh(LS p- (X))
is a line bundle.
We will actually prove that
(0.14) (p*'") (Ae) = (P¥") (OLs(x))-

This will imply that (p&'°®)*(Ag) is a line bundle, since the both stacks LS (X) and LS (X) are
quasi-smooth.

0.3.5. Note that
.AG ~ ]LG o ]Lé(OLS(;(X))‘
Recall also that the spectral constant term functor

CT™*P°¢ : IndCohniip (LS (X)) — IndCohniip (LS 37 (X)),

is given by
(qglob)* ° (pglob)l
where
q®°" 1 LSp- (X) — LS4 (X)

is the canonical morphism.
We will show in Theorem 24.6.2 that there exists a commutative diagram

L
D-mod (Bunr) +—“— TndCohnip (LS (X))
(015) CT*_v/’P(“’X)T )I\CTf’SpeC
L
D-mod (Bung) +—5— IndCohip(LS¢(X)).

Combined with the commutative diagram (0.5) (and assuming the Langlands conjecture for M),
this implies that there exists an isomorphism

(0.16) (@) ((PE'") (Ae)) 2 (@)« ((P**") (OLs g x)-

However, this is not enough to prove the existence of an isomorphism (0.14) itself.

0.3.6. Thus, in order to construct (0.14), we will need to enhance both (0.5) and (0.15), so that on
the spectral side they involve the category IndCoh(LS - (X)) rather than IndCoh(LS y;(X)).

0.4. The business of enhancement.
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0.4.1. The enhancement mentioned in Sect. 0.14 follows ideas initiated in [BG] and [?]. For us, it is
constructed using the local semi-infinite geometric and spectral categories

I(G,P7)"°° and (G, P™)*Peeloc,
introduced in Sect. 2.
By tensoring these categories over the spherical categories
Sph,, and Sph3>*,
respectively, we obtain what we call enhancements of the corresponding local and global categories:

o KL(M)eris ~» KL(M) 2"

crit
. D—mod% (Bunaz) ~ D—mod% (Bunyy) ",
e IndCoh™ (Opgon-free (D X )) ~» IndCoh* (Opgon—free (‘D X )) - ,enh;
o IndCohniip (LS ;7 (X)) ~ IndCohniip (LS (X)) ™R,

The global constant term and local Jacquet functors all admit enhancements to functors with values
in the corresponding enhanced categories.

0.4.2. An enhancement of Theorem 21.2.2, given by Theorem 22.2.4, says that the commutative
diagram (0.5) can be enhanced to

—,enh

L
D-mod (Bunyps) e 2 IndCohyip (LS 7 (X)) ~oenh
(0.17) oroe T TCT_ Jspec.enh

D-mod; (Bung) —%—  IndCohyip(LS¢(X))

0.4.3. In an ideal world, we would say that diagram (0.15) also admits an enhanced version

(LE,)—senb

D-modj (Bunas) ™" «—— IndCohiip (LS7 (X)) "
(0.18) CT:";;}(]“’X)T TCTf,spec,enh

L
D-mod; (Bung)  ¢—%—  TndCohyup(LSg(X)).

For technical reasons (see Sect. 25.4), instead of (0.15) we could only produce its partially enhanced
version

(L%/I)f,part,enh

D-mod (Bunj )~ Pertent IndCohnitp (LS y (X)) Pert-ent

(0.19) CT:’}D:T(Z?TT TCT—,spec,part.enh
]LL
D-mod; (Bung) —< IndCohniip (LS5 (X)).

0.4.4. Now, combined with the partially enhanced version of (0.17), i.e.,

—,part.enh

—,part.enh LM —,part.enh
D—mod% (Bunas) —— IndCohniip (LS, (X))
CT:":}:?:;’?T TCTf,spec,part.enh
D-mod; (Bung) LN IndCohyirp (LS¢ (X)),

we obtain an isomorphism of functors

(020) CT—,spec,part.enh O(LG ° ]Lé) ~ (H‘Mpart.enh ° (]Lﬁ/[)—,part.enh) o CT—,spec,part.enh )
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0.4.5. Assuming the geometric Langlands conjecture for M, we know that
Ly oLY ~1d,
which formally implies that
]L;/I,part.enh o (k) Pertenh o 1q.
That is, (0.20) implies
(0.21) CT—specpartenh o o o L) ~ QT SPec-part-enh
0.4.6. However, the category IndCohnip (LS 57 (X)) P2 is exactly rigged so that it identifies with
a full subcategory of
(0.22) IndCothNilp(LSpf (X)) € IndCoh(LSp- (X))
(see Proposition 19.2.3), and under this equivalence, the functor
CT—PeoPartent : TndCohnitp (LS (X)) — IndCohnirp (LS y (X)) P enh
corresponds to

" IndCoh(LS - (X)) — IndCoh ;g (LS p- (X)),

(pglob
IndCOhNilp(LSé(X)) —
where the second arrow is the right adjoint to (0.22).

This implies the existence of an isomorphism of functors
lobn ! L lobn !
(P*") o (Lg o Lé)|qron(Ls s (x)) = (P*7) lQuon(Ls 5 (x))-

As a special case, we obtain the formula (0.14).

0.5. Description of the actual contents. This paper is subdivided into five parts. We will now
briefly outline the contents of each.

0.5.1. In Part I we review the local theory, which constitutes an ingredient for local-to-global con-
structions.

In Sect. 1 we review various categories on the geometric side associated with the affine Grassmannian
of G, as well as their spectral counterparts. The main results here are the geometric Casselman-Shalika
formula (Theorem 1.4.2) and (derived) geometric Satake equivalence (Theorem 1.7.2).

In Sect. 2 we review the geometric and spectral semi-infinite categories. The main result here is the
the semi-infinite geometric Satake (Theorem 2.6.7), which establishes an equivalence between the two.

In Sect. 3 we discuss the self-duality on the geometric semi-infinite category (Theorem 3.2.2). We
also introduce the (factorization, associative) algebras Q°P°° and 2, which will later be used for the
construction of partial enhancements.

In Sect. 4 we discuss the Kazhdan-Lusztig category at the critical level. We also introduce local
operations associated with it, such as BRST and Drinfeld-Sokolov functors.

In Sect. 5 we introduce the space of local monodromy-free opers, and study operations associated
with the category of ind-coherent sheaves on it, such as the Jacquet functor.

In Sect. 6 we make preparations for the construction of the critical FLE equivalence, by studying

factorization module categories over Rep(GG). The main result is Proposition 6.4.4, which relates the
spherical and Whittaker categories of a given category, equipped with an action of the loop group £(G).

In Sect. 7 we prove the main result of this Part: the critical FLE, Theorem 7.3.4.

In Sect. 8 we give a proof of Theorem 7.6.4, which says that the critical FLE is compatible with the
natural self-dualities of the two sides.
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0.5.2. In Part IT we formulate and prove the compatibility of the critical FLE with the BRST and
Jacquet functors (Theorem 9.1.3), as well as its enhancement, Theorem 9.1.7.

In Sect. 9 we formulate Theorems 9.1.3 and 9.1.7, and then reformulate them in dual terms, as
Theorems 9.2.4 and 9.5.3, respectively.

In Sect. 10 we reduce Theorem 9.5.3 to the construction of diagram (10.2). We construct the
1-skeleton of this diagram, and check the commutativity of the three triangles.

In Sect. 11 we prove the commutativity of the pentagon in diagram (10.2).

0.5.3. In Part III we review various local-to-global constructions.

In Sect. 12 we study the Whittaker coefficient and Poincaré series functors, which connect
D-mod% (Bung) with the Whittaker category.

In Sect. 13 we study the localization functor, which connects D-mod 1 (Bung) to KL(G)crit-

In Sect. 14 we express the composition

Locg

KL(G)erie 5% D-mod (Bung) ““ Whits pan
in terms of factorization homology.

In Sect. 15 we give an expression to the composition of the localization and constant term functors
in terms of BRST and the localization functor for the Levi subgroup.

en

In Sect. 16 we introduce the global enhanced category D-mod 1 (Bunps)7°™ and generalize the

results of the previous section to the enhanced setting.

In Sect. 17 we introduce the spectral Poincaré series functor, which connects the local category
IndCoh*(Oprgo"’ﬁee(Dx)) with IndCohniip (LS (X)). We also study the interaction of this functor
with the spectral localization functor

Loc* : Rep(G)ran — IndCohninp (LS (X)).

In Sect. 18 we give an expression to the composition of the spectral Poincaré and constant term
functors in terms of spectral Jacquet and spectral Poincaré functors for the Levi subgroup.

In Sect. 19 we introduce the enhancement IndCohyip (LS 57(X)) ™", and generalize the results of
the previous section to the enhanced setting.

0.5.4. In Part IV we combine the results of Parts I-III to deduce consequences for the Langlands
functor.

In Sect. 20 we recall (following [GR1]) the construction of the Langlands functor, along with the
commutativity of (0.2) and (0.3). We establish the compatibility of Lg with the localization functor,
expressed by diagram (0.8).

In Sect. 21 we prove Theorem 21.2.2, which expresses the compatibility of the Langlands functor
with constant term functors.

In Sect. 22 we prove Theorem 22.2.4, which is the enhanced version of Theorem 21.2.2.

In Sect. 23 we prove that the functor Lg admits a left adjoint, which makes the diagram (0.9)
commute (Theorem 23.1.2). We relate this left adjoint to the functor dual to Le (Theorem 23.2.5).
We show that the composition Lg o LL is given be tensor product by an associative algebra object
Ac € QCoh(LSx (X)) (Theorem 23.6.2).
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0.5.5. In Part V we prove the main result of this paper, Theorem 24.1.2.

In Sect. 24 we state Theorem 24.1.2, which is the Eisenstein part of the geometric Langlands con-
jecture. We show that it implies the geometric Langlands conjecture when G = GL,. We reduce
Theorem 24.1.2 to Theorem 24.5.7, which says that diagram (0.19) commutes.

In Sect. 25 we prepare for the proof of Theorem 24.5.7: we introduce enhanced Eisenstein series
functors, and show that they are also compatible with L¢.

In Sect. 26 we prove Theorem 24.5.7.
0.6. Conventions and notation: generalities.

0.6.1. The players. Throughout the paper we work over a fixed algebraically closed field k of charac-
teristic 0. Thus, all algebro-geometric objects are defined over k.

In particular, X is a smooth projective curve over k, G is a reductive group over k, and G is the
Langlands dual of G.

0.6.2. Categories. When we say “category”, we mean a DG category over k (as defined, e.g., in [GR2,
Chapter 1, Sect. 1.10]. Unless explicitly stated otherwise, a DG category C is assumed cocomplete
(i-e., to contain arbitrary direct sums). (An exception would be, e.g., the category of compact objects
in a given C, denoted C°.)

Given a pair of DG categories C; and Caz, by a functor F' : C; — C2 we will always understand a
continuous functor, i.e., one that commutes with arbitrary direct sums (equivalently, colimits).

Conventions adopted in this paper regarding higher algebra and derived algebraic geometry follow
closely those of [AGKRRV].

0.6.3. Adjunctions and monads. Let
F:D—>C

be a functor that admits a left adjoint F¥. The composition M := F o F'* has a structure of monad
acting on C, and the functor F' enhances to a functor

F°™ : D — M-mod(C).

We shall say that the pair (F'X, F) (or just F) is monadic if F°™® is an equivalence. The Barr-Beck-
Lurie theorem says that this happens if and only if F' is conservative (as our conventions presuppose
F to commute with colimits).

In general, given a monad M acting on a category C, we denote by
indy : C 2 M-mod(C) : oblvy
the resulting monadic adjunction.

0.7. Conventions and notation: factorization.

0.7.1. The Ran space. We let Ran denote the non-unital Ran space of X. L.e., this is a prestack whose
value on an affine test-scheme S is the set of finite non-empty subsets in Hom(S, X4r)-

Given a point € Ran, we denote by Ran,c the prestack, whose value on an affine test scheme S
is the set of those subsets I C Hom(S, Xq4r), for which the union of their graphs

'rcSxX
set-theoretically contains S X z.
Making x vary over Ran, we obtain a prestack denoted Ranc. We denote by
Ploman and PThig

the resulting two projections Ranc = Ran.
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0.7.2. Factorization categories and algebras. Factorization categories play a prominent role in this pa-
per. We refer to [Rasl] for definitions. Properly speaking, a factorization category is a sheaf of categories
over Ran with extra structure. However, we will slightly abuse the terminology in the following way:

When talking about a factorization category A, we will denote by the same symbol A its fiber over
the closed point of the standard formal disc D. Thus, we will see factorization as structure on a given
abstract category A.

For a space Z mapping to Ran, we will denote by Az the category of sections of A (viewed as a
sheaf of categories) over Z. Thus, for z € Ran, we obtain the category, denoted A,.

For the identity map Ran — Ran, we obtain the category Aran (i.e., the category of sections of A
over Ran viewed as a sheaf of categories over Ran).

Given a factorization category A, we can talk about factorization algebras on it. We will thing of
a factorization algebra A as an object in A (understood as the fiber of A over the closed point of the
standard disc), equipped with extra structure.

We will denote by Agran the corresponding object in Aran. More generally, for Z — Ran, we can
consider the corresponding object
Az € Ay

0.7.3. Pointwise vs. factorizable. Given a factorization functor between factorization categories F' :
A, — A, we can talk about a certain property of this functor (such as admitting an adjoint or being
an equivalence) taking place at a pointwise level or a factorization level.

The latter is obviously implies the former.

0.7.4. Factorization modules categories. Given a factorization category A one can talk about a factor-
ization module category M over it on any space Z mapping to Ran. Typical examples are: (a) Z = pt
mapping to the distinguished point of the standard disc; (a’) Z = pt mapping to a point z € Ran; (b)
Z = Ran; (c) Z = Ranc.

A factorization module category M over A gives rise to a sheaf of categories over

Zc = Zar X Ranc.
- Ran,pr -

small

We denote by Mz the resulting category of global sections.

We will denote by M the retsriction of this sheaf of categories to Zar (along the tautological map
Z — Zc). Slightly abusing the terminology, we will think of a factorization module category as a
sheaf of categories M over Zgr, equipped with extra structure. We will denote by Mz the category of
sections of M over Z.

For A and Z as above, the restriction of A (viewed as a sheaf of categories over Ran) to Z, is
naturally a factorization A-module category. We will abuse the terminology slightly and say that “we
view A as a factorization module over itself.”

0.7.5. Factorization modules over factorization algebras. Given a factorization module M over A, and
a factorization algebra A in A, we can talk about factorization A-modules in M. We denote this
category by

A-mod™* (M).

An object of A-mod°(M) gives rise to an object of the category that we denoted above by M Zc-
Applying the restriction functor
MZg — Mz,
we obtain a (conservative) forgetful functor
oblv : A-mod™* (M) — M.

Note that this functor is not necessarily monadic, as it does not necessarily admit a left adjoint.
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0.7.6. Unitality. All factorization categories appearing in this paper will be unital. The unit in a
factorization category A is a section

]-A,Ran € ARan

with a natural unitality property.
In particular, we have a functor
ins. unit : Aran — ARang,
where ARang is formed with respect to the map Plhig Ranc — Ran.
Given Z — Ran, we will denote by 14,z the corresponding object of A .

In particular, we have the object denoted 1A € A, when we think of A as the fiber at the closed
point of the standard disc.

For € A, we have the corresponding object 14, € A;.

0.7.7. Enhancement. Let F' : A1 — As be a factorization functor between factorization categories.
Assume that A, is unital.

Then F(1a) is naturally a factorization algebra in As. The functor F' naturally enhances to a
functor

F™ Ay — F(1a)-mod™*(As).

It is difficult, however, to specify conditions that guarantee that F°™" is an equivalence.

0.7.8. t-structures. At times, we give arguments involving t-structures for factorization categories. All
such arguments should be understood by first implicitly fixing a finite set I and working over some
individual X1y so that the t-structures are defined.

0.8. Conventions and notation: Ind-coherent sheaves.

0.8.1. If Z is an affine scheme almost of finite type, we have a well-defined category IndCoh(Z). The
assigment

7~ ndCoh(Z), (Z1 25 Zs) ~ (IndCoh(Z1) %5 IndCoh(Zs))
is a functor
(0.23) IndCoh' : (Schf)°P — DGCat,
see [GR2, Chapter 5, Sect. 3].
The operation of right Kan extension produces from IndCoh' a functor
(PreStkiat )" — DGCat,
see [GR2, Chapter 5, Sect. 3.4], where
PreStkiage C PreStk

is the full subcategory, consisting of prestacks locally almost of finite type, see [GR2, Chapter 2, Sect.
1.7,
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0.8.2. In this paper, we will need the theory of IndCoh for algebro-geometric objects that are not
necessarily locally (almost) of finite type.

Following [GR2, Chapter 2, Sect. 1.2], let =" Sch*® denote the category of n-coconective affine
schemes. We define the functor

(0.24) IndCoh' : (5™ Sch®®)°P — DGCat,
by left Kan extending the restriction of (0.23) to <™ Schaf ¢ Schf along
(5" SchiT)P < (5™ Sch*)°P.
Le., for S € =™ Sch®®, we set

IndCoh'(S) := colim IndCoh(So).

S—S0, Soe=m Schaft

Taking the union over n, we obtain a functor
(0.25) IndCoh' : (%> Sch*™)°? — DGCat,
where <> Sch®f is the category of eventually coconnective affine schemes.

We extend (0.25) to a functor
(PreStk)°® — DGCat

by right Kan extending (0.25) along
(<% Sch®)°P < (PreStk)°P.
Le., for Z € PreStk, we set

IndCoh'(Z) := lim IndCoh'(S).

S—Z, S€<° Schaff

0.8.3. For any Z, there is a well-defined object

wz € IndCoh' (Z).

!
Moreover, IndCoh!(Z ) carries a symmetric monoidal structure, given by the ® tensor product, for
which wz is the unit.

0.8.4. For a scheme (or more generally an inf-scheme) Z locally almost of finite type, Serre duality
defines a identification

(IndCoh(Z))" ~ IndCoh(Z).

Suppose that for a given Z € PreStk, the category IndCoh'(Z) is dualizable, We set
IndCoh*(Z) := (IndCoh'(2))".

When well-defined, the category IndCoh*(Z) is a module over IndCoh'(Z) viewed as a (symmetric)
monoidal category (see Sect. 0.8.3.

In addition, IndCoh*(Z) is a module over QCoh(Z) with the usual (symmetric) monoidal structure.
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0.8.5. In some situations, one can describe the category IndCoh*(Z) more explicitly. Suppose that Z
can be written as
lim Z,,,

where Z, € PreStkias with IndCoh(Z,) compactly generated, and the transition maps
fap 28 = Za
are schematic and of finite Tor-dimension, so that the functors
fh.5 : IndCoh(Z,) — IndCoh(Z)
preserve compactness.
Then the functors

fa.p : IndCoh(Z,) — IndCoh(Zg),
left adjoint to
(fa.)« : IndCoh(Zs) — IndCoh(Za)

are well-defined, and we have
IndCoh* (Z) =~ colim IndCoh(Z,),

where in the formation of the colimit the transition functors are f; 5.

We can also write
IndCoh™(Z) ~ lim IndCoh(Z,),

where in the formation of the limit the transition functors are f; 5.
In particular, we have a well-defined functor
I'(Z,-) : IndCoh™ (Z) — Vect .

If Z, are eventually coconnective, so that Oz, is well-defined as an object of IndCoh(Z,), we have
a well-defined (compact) object
Oz € IndCoh™(2),
so that
I(Z,—) ~ Hommacon+(z)(0z, —).

0.8.6. Let us continue being in the situation of Sect. 0.8.5. Assume now that all Z, are smooth
(schemes or algebraic stacks). Then the above description of IndCoh*(Z) shows that we have a canonical
equivalence

IndCoh™ (Z) ~ QCoh(Z2).
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Part I. Local Theory

This Part consists almost entirely of a review of known results,* which constitute local ingredients
for local-to-global constructions in Parts III and IV.

There are two types of results and constructions that we will need to review. The first type takes
place either on the geometric or the spectral side separately. A typical example of such a construction is

the Jacquet functor that relates a category for G with the corresponding category for its Levi subgroup
M.

The second type passes from the geometric to the spectral side; such results, by definition, involve
Langlands correspondence of some sort. In fact, there are exactly two sources of such results (as long as
we stay at the critical level for G and level oo for é): one is the geometric Casselman-Shalika formula
(Theorem 1.4.2), and the other is the Feigin-Frenkel isomorphism (given by (7.2)). The compatibility
between the two is incapsulated by Theorem 7.2.5. The other results of local Langlands nature are
ultimately deduced from one (or a combination) of these two.

The main result of this part is the critical FLE, Theorem 7.3.4, which says that the Kazhdan-Lusztig
category at the critical level (for G) is equivalent to the category of ind-coherent sheaves on the space
of monodromy-free opers on the punctured disc (for G).

1. GEOMETRIC SATAKE AND CASSELMAN-SHALIKA FORMULA: RECOLLECTIONS

In this section we will review the constructions of categories of geometric nature associated, on the
geometric side to spaces of maps
D — G and D* — G,

and (twisted) D-modules on these spaces, and on the spectral side to spaces of maps
DdR — G and .Dji(R — G
and ind-coherent sheaves on these spaces.

Thus, the main players are:
e The category Whit'(G) of Whittaker D-modules on the affine Grassmannian;

e Its spectral counterpart QCoh(LSs (D)) ~ Rep(G);

e The equaivalence Whit'(G) ~ Rep((G), which we call the geometric Casselman-Shalika formula
(Theorem 1.4.2);

e The local Hecke category Sph (which can, in a certain precise sense, be recovered from its
action on Whit'(G));

e Its spectral counterpart Sphiy“* (which can also be recovered from its action on Rep(G));

e The (derived) geometric Satake equivalence Satc : Sphg =~ Sphy® (Theorem 1.7.2).

There are three “annoyances” that will be introduced in this section, and that will plague us through-
out the paper:

(1) This paper is concerned with the classical geometric Langlands. However, “classical” for G
means the critical level. This means that all geometric categories involved will consist not of
D-modules, but of critically or half-twisted D-modules. As a result, throughout the paper, we
will have to watch carefully what happens with these twistings as we move between different
spaces.

(2) Ultimately, on the geometric side, the object we need to consider is not the constant group-
scheme on X with fiber G, but rather its twist by the T-torsor p(wx). This twist is analogous
to the usual p-shift in the representation theory of the finite-dimensional G. Thus, all spaces
associated with G will undergo the corresponding twist.

4With the exception of the proof of the critical FLE, Theorem 7.3.4 and the compatibility-with-duality theorem,
Theorem 7.6.4.
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(3) Both categories Sph, and SphzDec are endowed with anti-involutions, denoted o and o®°?¢¢. A
source of constant headache throughout this paper is that these anti-involutions are compatible
under Satq, up to the Cartan involution, denoted 7¢ on G. This can be seen as a vestige (in
a rather precise sense) that the square of the usual Fourier transform is not the identity, but
rather is given by the action of —1.

1.1. The critical twist.

1
1.1.1. 'We choose once and for all a square root w§2 of the canonical line bundle wx on X.

1.1.2. Consider the affine Grassmannian Grg as a factorization space over X, equipped with an action
of the (factorization) group indscheme £(G).

1.1.3. Let detgr, denote the determinant (factorization) line bundle on Grg. We will denote by crit
the de Rham twisting equal to the half of the de Rham twisting defined by deta:-

We will denote by
D-modeit (Gre)

the corresponding (factorization) category of twisted D-modules

1
Remark 1.1.4. According to [BD, Sect. 4], the choice of w?f gives rise to a square root of deta:., as
a line bundle over Grg ran. However, this square root is incompatible with factorization.®

Henceforth, we will avoid using this trivialization.

1
1.1.5.  Consider the factorization Z/2Z-gerbe on Grg of square roots of detcr; we denote it by detd, ..
A 7/27Z-gerbe on a space defines an étale twisting of the category of D-modules on that space. Let
D-mod 1 (Grg)

1
denote the (factorization) category as D-modules corresponding to detérc.

1.1.6. Note that if £ is a line bundle on a space Y, and n is an integer, we have a canonical identification
of the corresponding twisted categories of D-modules:

(1.1) D-mod%,dlog(ﬁ)(‘é) = D-modL% ),

where:

e For a line bundle £ we denote by dlog(£) the de Rham twisting defined by it. Note that
tensoring by £ defines an equivalence

(12) D‘mOd(y) — D‘mOddlog(L)(y);

e For a given twisting T and ¢ € k, we denote by ¢ - T the new action corresponding to the
structure of k-vector space on de Rham twistings;

e The subscript £ denotes the étale twisting by the Z/nZ-gerbe of nth roots of L.

For example, when n = 1, the identification (1.1) is the identification inverse to (1.2).

5More precisely, this square root exists as a factorization Z/2Z-graded line bundle, where the grading over the
connected component Gré; of Grg (here A € Ag,¢ = mo(Grg)) equals (A, 25) mod 2.
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1.1.7. Applying this to Y = Grg¢ and £ = detgr;, we obtain a canonical equivalence of (factorization)
categories

D-moderit (Grg) =~ D—mod% (Grg).
Remark 1.1.8. According to Remark 1.1.4, we can also identify
D—mod% (Grg,ran) ~ D-mod(Grg,ran),
or equivalently
D-modcrit (Gre,Ran) 22 D-mod(Grg,Rran),
as plain categories, but these identifications are incompatible with the factorization structures.

Remark 1.1.9. We distinguish D-modcrit(Grg) and D-mod% (Grg) notationally for two reasons:

(1) The gerbe-twisted version makes sense not just in the context of D-modules, but also in other
sheaf-theoretic contexts (e.g., Betti, ¢-adic).

(2) The category D-moderit(Grg) comes equipped with a natural forgetful functor to IndCoh(Gr¢),
while for a general gerbe, the gerbe-twisted category of D-modules does not carry such a functor.

1.1.10. We can also consider the corresponding multiplicative factorization Z/2Z-gerbe on £(G),
equipped with a multiplicative trivialization of its restriction to £7(G).

Since the group indscheme £(N) is contractible, the restriction of the above gerbe to it also admits
a multiplicative trivialization.

In particular, if H is a factorization subgroup of either £7(G) or £(NN), it makes sense to consider
the (factorization) category

D—mod% (Gre)™

of H-equivariant D-modules.
1.2. A geometric twisting construction.

1.2.1. Let H be a group mapping to GG, and let Py be an H-torsor over X. Taking sections over the
formal disc, Py gives rise to a factorization torsor over £1(H); by a slight abuse of notation, we will
denote this £ (H)-factorization torsor by the same symbol Py.

Given a space Y over X, equipped with an action of £¥(H), we can form a twist, to be denoted
Y9, . If Y was endowed with a factorization structure compatible with the et (H)-action, then so is
Yo

The space Yp,, is acted on by the adjoint twist £ (H)p,, of £7(H).

1.2.2.  We will denote by the subscript Pg the various categories of D-modules associated with the
above geometric objects, such as

D-mod(Y) ~ D-mod(Y)p,, and D—mod(lj)£+(H) ~ (D—mod(y)‘eﬂH))?H
Note, however, that the category (D‘mOd(y)SJr(H))fP 4 is canonically equivalent to the original cat-
egory D—mod(H)£+(H ). We will denote this equivalence by
+ ~ ot
a7y ae : D-mod(Y)* 5 (D-mod(Y)* )5,

1.2.3. A typical example of this situation that we will consider is when H = T, and the T-bundle is

1
p(wx), i.e., the bundle induced from w$ by means of

20: G — T.
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1.2.4. We now record the following observation, to be used in the sequel:

Suppose that H is abelian and the action of £7(H) on Y is trivial. In this case, we have a canonical
isomorphism
You =Y.
In particular, we obtain an equivalence
ap gy cent : D-mod(Y)p,, — D-mod(Y)
and an a priori different identification
+ ~ +
QP cent (D—mod(‘é)‘c (H))TH = D—mod(‘d)‘c (H)
We will denote by
(translyZH )" 1= @y cent © Py taut
the resulting auto-equivalence of D—mod(‘d)£+(H ),

The functor (transly, )" is the pullback along the automorphism of the stack Y/LT(H) given by
the point Py € pt /L1 (H) and the action map

pt /L7 (H) x Y/£"(H) — Y/ (H).
1.2.5. A typical example of the situation of Sect. 1.2.4 is when Y = Grg, so that Y/£(G) is the local
Hecke stack
Heckeg® := £7(Q)\L(G)/£1(G).
Let H map to the center of G. In this case, the action of £ (H) on Grg is trivial.
The above automorphism of
EHON(G)/LH(C) = (P, P, Pl ~ Pl }
is given by the procedure of tensoring the G-bundles involved by Py, using the canonical map
pt/H x pt /G — pt /G.

1.3. The Whittaker category on the affine Grassmannian.

1.3.1.  We apply the construction of Sect. 1.2.3 to Y := Grg, viewed as a scheme acted on by £ (T) C
£7(@), and the group indscheme £(N).

Thus, we can form the (factorization) space Grg,,(wy), which is acted on by £(G),wy), and in
particular £(NV),(wy)-

1.3.2. The group indscheme £(NV),(, ) carries a canonical (residue) homomorphism
L(N) pwy) = N.
Choosing a non-degenerate character x of IV, we can consider the categories
Whit'(G) := D-mod (Grg, pux ) SV et X
and
Whit. (G) := D—mod% (GrG»P(WX))E(N)p(wX),X'
Remark 1.3.3. The categories Whit'(G) and Whit. (G) are canonically independent of the choice of x:

Indeed, given two non-degenerate characters x1 and x2, there exists an element ¢t € T' that conjugates
x1 and x2. The translation by ¢ on Grg ,(wy) defines then an equivalence between the corresponding
Whittaker categories.

The choice of ¢ is unique up to an element z € Zg. However, the translation action of z on Grg ()
is trivial.

1.3.4. The categories Whit'(G) and Whit.(G) are naturally mutually dual, up to replacing x by its
inverse. Note, however, that due to Remark 1.3.3, they are actually mutually dual.
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1.3.5. Let wge(r}\,)p(w}{) be the renormalized dualizing sheaf on £(N ), ), defined to be the *-pullback
of the dualizing sheaf along the projection
E(N)p(ux) = SN o) /LT (N pex) -
The operation of *-convolution with
W), © X" (exp)
is an endofunctor of D-mod 1 (Gre,p(wy))s which factors as
D-mod% (Gra,p(wy)) = Whit«(G) = Whit'(G) — D-mod% (Gra,pwy))-
Denote the resulting functor Whit..(G) — Whit'(G) by
Ownit(c) : Whit. (G) — Whit'(G).
The following fundamental result was established in [Ras6]:

Theorem 1.3.6. The functor Owniyc) i an equivalence (of factorization categories).

Remark 1.3.7. The proof of Theorem 1.3.6, as recorded in [Ras6], is given for a fixed formal disc, but
the same argument applies to prove that factorization version as well.

1.4. The geometric Casselman-Shalika formula.

1.4.1. The following is the statement of the geometric Casselman-Shalika formula (see [Ras5, Theorem
6.36.1]:

Theorem 1.4.2. There exists a canonically defined equivalence of factorization categories:
CS¢ : Whit'(G) — Rep(G).

Remark 1.4.3. In the course of the proof of Theorem 1.4.2 one uses the naive (i.e., non-derived)
geometric Satake to construct a functor

Rep(G) — Whit' (@),
and show that it is an equivalence, see Remark 1.7.8.
Remark 1.4.4. The functor CS¢ is normalized so that it sends the standard object

A* € Whit'(G), e A,

corresponding to the £(N), . )-orbit

S = &(N) pruy)
to the highest weight module

V* € Rep(@G).

(In the above formula, ¢ denotes the uniformizer on D.)

This normalization is not arbitrary, but is forced by the behavior of the FLE functor off critical
level.

Remark 1.4.5. For the validity of Theorem 1.4.2 at the factorization level, it is crucial that in the
definition of Whit'(G) we use the twisted category D-mod 1 (Grg), rather than the untwisted one, i.e.,

D-mod(Grg).
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1.4.6. The following is a basic pattern of how the equivalence CS¢ interacts with duality.

Let us denote by
FLE¢ . : Rep(G) — Whit.(G)
the functor equal to CS%, with respect to the canonical dualities:
Whit. (G) = (Whit'(G))" and Rep(G)" ~ Rep(G).

Remark 1.4.7. The notation FLEs , stems from the fact that the above functor is indeed the limiting
value of the (positive level) FLE equivalence. This will be made explicit in the compatibility between
FLEG,oo and FLEq crit, see Sect. 7.3 below.

1.4.8. Ezample. Note, in particular, that the functor FLEx ., sends
V* € Rep(G) — VN ¢ Whit.(G),
where for u € AT we denote by
V# € Whit.(G)
the object dual to A* € Whit'(G), i.e.,
(F, V") = Homype () (A", F),  F € Whit'(G),

where
(=, =) : Whit'(G) ® Whit.(G) — Vect

is the canonical pairing.

1.4.9. Note that the Whittaker category is canonically attached to the triple (G, B). Hence, the group
of outer automorphisms of G (i.e., the group of automorphisms of the polarized® root datum of G) acts
on both versions of the Whittaker category.

Let 7¢ be the Cartan involution, viewed as an outer automorphism of G. The corresponding
automorphism of the polarized root datum acts as A — —wo(X).

We can find another representative of 7¢ as an actual automorphism of G (defined up to a conjugation
by an element of T,q, the Cartan of the adjoint group) that swaps B and B~, and acts as inversion on
the Cartan subgroup 7. This choice of 7¢ preserves each standard Levi subgroup M, and induces on
it the automorphism 7as.

1.4.10. We have:
Lemma 1.4.11. The composition
. FLE& Owhit 1
Rep(G) —3 Whit.(G) =5 Whit'(G)

identifies canonically with
76 o (CSg) ™.

Remark 1.4.12. As a reality check, note that both functors in (1.4.11) send
V* € Rep(G) — AT"™ ¢ Whit'(G).
The proof of Lemma 1.4.11 follows easily from the construction of CSg via naive Satake.
1.5. The spherical category.
1.5.1. We denote by Sph¢'" the (factorization) monoidal category
D-mod 1 (£7(G)\&(G)/L£7(G)).

Remark 1.5.2. The superscript unr stands for unrenormalized, compare below.

6By a polarization of a root datum we mean a choice of the subset of positive roots.
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1.5.3. We let Sph, denote its renormalized version, which is defined as the ind-completion of the full

subcategory in Sphg'" consisting of objects whose image under (either of) the forgetful functors
D-mod (ETAON\L(Q)) « D-mod 3 (ET(GN\L(B)/LT(@)) = D-mod; (£(G) /£1(@))
is compact.
By construction, the monoidal (which is also the factorization) unit
1sph, € Sphg
is compact.
1.5.4. We have an adjoint pair of functors
ren : Sphy'”" = Sphy, : unr,
with ren being fully faithful and unr monoidal. This makes Sphg™ into a monoidal colocalization of

Sphg.

1.5.5. Inversion on the group £(G) defines an anti-involution, denoted o, of Sph,. We will refer to it
as the “flip” anti-involution.

Henceforth, we will use o to pass between left and right module categories over Sph.. In light of
this, we will not necessarily distinguish between left and right actions of Sph,.

1.5.6. The fact that Grg is ind-proper implies that the composition of the involution o with Verdier
duality (on compact objects) defines an equivalence

(1.3) Sphy, ~ Sphy,
which identifies both with right and left monoidal dualization.

Combined with the fact that the unit in Sphy; is compact, we obtain that Sphg; is rigid as a monoidal
category.7

1.5.7. Recall the setting of Sect. 1.2. For any G-bundle Pg on X, we can form the twisted version

Sth,TG
of Pq.

In particular, we have a natural action of Sphg () on Whit'(G) and Whit. (G).
However, according to Sect. 1.2.2, we can identify®
Sphg %(“ﬁimUt Sth,p(wX),
and thus we can regard Whit'(G) and Whit..(G) as acted on by Sph,, itself.
These actions are compatible both with the duality
(1.4) (Whit'(@))" ~ Whit.(G)

(see Sect. 1.5.5) and the functor Owniy(q)-

1.6. The spectral spherical category.

"Being a monoidal colocalization of a rigid category, Sph™ is semi-rigid.
81n the formula below we consider £(G) as acted on by £7(G) x £1(Q).
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1.6.1. We let Sphy* denote the spectral spherical category, i.e.,

IndCoh" (Hecke**'¢),

where

Hecke 1 := LS4(D)  x  LSg(D).
LS (DX)

We endow Sphsc{,JeC with a (factorization) monoidal structure via *-pull and *-push along the standard
convolution diagram.
The unit object is given by direct image of the structure sheaf along

LSx(D) — Heckeséf’ec’lOC .

Furthermore, the above construction is in fact a (factorization) monoidal functor
Rep(G) ~ QCoh (LS (D)) — Sphire.
We denote the resulting functor by
nv : Rep(G) — Sph*,

where “nv” stands for “naive.”

1.6.2.  The flip of two factors defines an anti-involution on Sphy* to be denoted ",
We will use o°7° to pass between left and right Sphiy““-module categories.
Note that we have a commutative diagram
A nv spec
Rep(G) ——— Sphy
(1.5) Idl laSPeC
A nv spec
Rep(G) ——— Sphy
commutes, where Id makes sense as an anti-involution of Rep(é), since this category is symmetric
monoidal.
1.6.3. Consider the general situation of a monoidal category of the form
A :=1IndCoh(Y x Y),
Yo
where Y is smooth and the projection Y — Yo is proper, where the monoidal structure is given by *-pull
and *-push along the convolution diagram.

In this case, the functors of right and left monoidal dualization on compact objects of A are given
by

F > o(D5(F)) @ pi (wE ) and (D5 (F)) @ p3 (w1,
respectively, where
p1,p2: 9 ;f) Y—1Y
are the two projections.

Hence, if the dualizing sheaf wy on Y has the property that it is pulled back from Yo, then the functors
of right and left monoidal dualization on A are canonically isomorphic as monoidal anti-equivalences.
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1.6.4. The pattern of Sect. 1.6.3 is realized for
Y :=LSs(D) and Y° := LS5 (D),
since in this case WLS (D) 18 & constant sheaf.

Hence, we obtain that the functors of left and right dualization on Sphscvf'ec are canonically identified,
thereby giving rise to an equivalence

spec\V spec
(1.6) (Sphy®) " ~ Sphf
is compatible with the Sph,*“-bimodule structure.

In particular, the category Sphsc{,’ec is rigid, so that (1.3) is the same identification as the one obtained
from rigidity (see [GR2, Lemma 9.2.4]).

1.6.5.  We have a natural action of Sph¥** on

QCoh(LSx(D)) ~ Rep(G).

This action is compatible with the canonical self-duality of Rep(é).
1.7. Geometric Satake equivalence.

1.7.1. The following is the statement of the geometric Satake equivalence (see [CR, Theorem 6.6.1]):
Theorem 1.7.2. There exists a unique equivalence of monoidal factorization categories
Satg : Sphg — Sph*,
compatible with the actions of Sphg on Whit(G) and SphF* on Rep(G) via the equivalence
CSc : Whit(G) ~ Rep(G).

Remark 1.7.3. What we denote by Sate and refer to as the (geometric) Satake equivalence, is often
also called “the derived (geometric) Satake equivalence.”

Remark 1.7.4. In the above statement of Theorem 1.7.2, the definition of the spectral side via IndCoh*
does not perfectly match the definition of the spectral side in [CR]. The same issue will occur again in
Theorem 2.6.7. We will address these issues in a future draft of this text.

1.7.5. Ezample. Unwinding the construction, we obtain that Satg sends the object in Sph, corre-
sponding to the double coset of the point t=* (for A € A™) to the object

nv(V?) € Sphy*e.
The above object object in Sph, is what is usually denoted by

[Cqrzwo,

the intersection cohomology sheaf on the closure of the £+ (G)-orbit Gr=*0™) of t=*0(™) (which is the
same as the £7(G)-orbit of t7*).

Remark 1.7.6. As in the case of Theorem 1.4.2, for the validity of Theorem 1.7.2 at the factorization
level, it is crucial that we work with the twisted category

D-mod (£ (G)\&(G)/£7(G))

rather than with D-mod (£ (G)\&(G)/£7(Q)).



28 LIN CHEN, DENNIS GAITSGORY AND SAM RASKIN

—1,nv

1.7.7.  In what follows, we will denote by Sat the functor

at 1

Rep(G) = Sph%* Sat, Sph .

Remark 1.7.8. Note, for example that the functor

.. satg b . A% L
Rep(G) — Sphg — Sphy —= Whit' (G)
is exactly CS™?'.

The functor

< Satgh ™ A%
Rep(G) —— Sphg — Whit' (G)
is FLEg ..
1.8. The curse of ¢ and 7.

1.8.1. The following statement results from the uniqueness assertion in Theorem 1.7.2 combined with
Lemma 1.4.11:

Corollary 1.8.2. The following diagram of anti-equivalences commutes:

Satg spec
Sphg ——¢ SphiP

Sph, [ e
-
Satg spec
Sphg ——— SphZ™.
1.8.3. Denote by Satg,. the (factorization) equivalence
Sphe 5 Sphg ™9 SphiFee .

Denote by Sata};"v the functor

76 o Satg"™,  Rep(G) — Sphg, .

Remark 1.8.4. The functor Sata};’“’ may be a more standard normalization for the geometric Satake

equivalence. For example, it sends the object V* € Rep(é) to the object in Sph, corresponding to the
double coset of the point t* (for A € AT), i.e., ICaé.

1.8.5. As another corollary of Lemma 1.4.11 we obtain:

Corollary 1.8.6. The equivalence

FLE
Rep(G) =~ Whit.(G)
is compatible with the actions of Sphg and Sphy* via Satg,-.

1.8.7. Warning. As has been mentioned above, we will use o (resp., 0°°°°) to pass between left and
right module categories for Sphe; (resp., Sphy).

Note, however, that due to Corollary 1.8.2, this procedure is compatible with the geometric Satake
equivalence up to the Cartan involution.

In practice, this will manifest itself as follows. Let C; and Cs (resp., C{"*° and C3P*°) of left
module categories for Sphg (resp., Sphg’ec). Due to the above left-right passage, we can form the
tensor products

Ci ® Csand Cipec X C;pec.

Sphg SphPe
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Suppose that we have a given a functor
F: Cy — CP*,

which is compatible with the actions via

Satg
~

(1.7) Sphg ~° SphiFee

and a functor
F>: Cy — CP*

which is compatible with the actions via

Satg, spec
(1.8) Sphg =~ Sphzp™.
In this case, we obtain a functor
(19) F1 X F2 : C1 X C2 ~ Cipec X C;pec.
Sphg Sphg’ec

1.8.8. Warning. Similarly, let C and C’ are left module categories for Sph., and Sphg’ec, respectively.
Let us view CY (resp., C'Y) again as a left module, using o (resp., o).
Let C ~ C’ be an equivalence compatible with the actions via (1.7) Then the induced equivalence
v~V

is compatible with the actions via (1.8).

2. THE LOCAL SEMI-INFINITE CATEGORY: RECOLLECTIONS

In this section we study categories, also of geometric nature, that ultimately allow one to connect
representation-theoretic (or also geometric) categories associated with the group G and corresponding
categories for its Levi subgroups.

The relevant category on the geometric side is the local semi-infinite category®

oo
2

I(G, P*)loc _ D—mod% (GI‘G)*’ — D-mod% (GrG)E(N(Pi))-L‘,*(M)’

and on the spectral side

I(G, P7)™e@!°¢ .= IndCoh* (LSG(D) LSG>(<®><) LSp— (D) LSMT’DX) LS M(D)) .
The main result of this section is the equivalence
(G, P7)°° ~ 1((, P )Pecloe,
given by Theorem 2.6.7.

As was mentioned in the preamble to the previous section, in order the make the theory work, we
need to apply the critical twist and the p-shift on the geometric side. The former operation is closely
linked to a cohomological shift embedded into the definition of the geometric Jacquet functors.'®

The reader is advised to ignore these shifts and twists on the first pass (i.e., trust that all these
shifts work out as they should).

2.1. The corrected Jacquet functor.

9Properly, we consider the renormalized version of this category, see Sect. ?7.

10T hese cohomological shifts are necessary also from other points of view, and one can reverse the logic and say that
the critical (or half-) twist is necessary in order to incorporate these cohomological shifts, in order to stay consistent
with the sign rules.
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2.1.1. Let P~ be the (negative) standard parabolic of G with Levi quotient M. Consider the restric-
tions of the line bundles

detar, and detar,,

along the maps
(2.1) Grg « Grp- — Gray,
respectively.

Denote their ratio by detary_,,; it naturally descends to Gras. By a slight abuse of notation, we will
denote the resulting line bundle on Gras by the same symbol detcrg -

2.1.2. We consider detGrG’ M @S an (evenly) graded line bundle on Gras, so that its portion over the
connected component Gr); has grading

2</\a 2pP>7
where 2pp is the character of M equal to the determinant of its action on n(P).

It was shown in [GL, Sect. 5.2] that detcry ,, admits a canonical square root,'* to be denoted
1
detgfc .+ Viewed as a Z-graded and hence Z/2Z-graded (=super) factorization line bundle, so that its

portion over the connected component Gr); has grading
(A, 2pp).
1
2.1.3. Ignoring the grading, the line bundle detgfc L, 8ives rise to an identification of the pullbacks
of the gerbes
1 1
deté, ., and detd,

to Grp-.

Due to the above identification of gerbes, we have a well-defined functor

™ D—mod% (Grg) — D—mod% (Grm),

given by !-pull and *-push along (2.1).

We will refer to "V as the “naive” Jacquet functor.

1

2.1.4. However, due to the fact that detgfc o does not factorize as a line bundle, but only as a super
line bundle, the above identification of gerbes is incompatible with factorization.

Hence, the functor 7™V is not compatible with factorization either.

2.1.5.  We introduce the corrected Jacquet functor
T D—mod% (Grg) — D—mod% (Gru),
as follows:

Over a connected component Gry;, we set

r(=) =1 (=) 20p)]-

The functor r is naturally compatible with the factorization structures, due to the sign rule.

2.2. The local semi-infinite category.

1
1Which depends on the choice of w? 2.
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2.2.1. We consider the unrenormalized factorization category
I(G, P7)°"™ := D-mod (Grg) ¥ := D-mod (Grg) “N (7)<,

We define the renormalized factorization category I(G, P~)"° by the same procedure as in Sect.
1.5.3, i.e., as the ind-completion of the subcategory of I(G, P~)"°% " consisting of those objects that

become compact in D-mod 1 (Gre)*™F™) | We remark that this is exactly the form of the semi-infinite

category considered in [CR].
Convolution equips I(G, P7)'° with a natural action of Sphy,.

2.2.2. The trivialization of the gerbe in Sect. 2.1.3 gives rise to an action of Sph,, on I(G, P7)"°.
However, as in Sect. 2.1.4, this action is incompatible with factorization.

We introduce a corrected version of Sph,,-action on I(G, P™)'¢ by precomposing the one above with
the automorphism of Sph,, that acts as the cohomological shift [()\,25p)] on the connected component
Gri;.

From now on, unless explicitly mentioned otherwise, we will only consider this corrected version of
the Sph,,-action on I(G, P™)"°.
The resulting Sph,,-action on I(G, Pf)loc is compatible with factorization, and commutes with the

Sph-action, making I1(G, P~)"¢ into a (Sphg, Sph,,)-bimodule.

2.2.3. By the same logic, pullback along Grp— — Grg, followed by the cohomological shift [(),25p)]
on Gr);, defines a (factorization) functor

(2.2) I(G, P7)°°" — D-mod y (Grp- ) *™® )"0 & Dmod, (Grag)® "0 = Sphyy,
that renormalizes to a conservative functor

(2.3) I(G, P7)'"°° — Sph,,

compatible with the Sph,,-actions.

We denote this functor by oblv%qsph.

2.2.4. Tt is shown in [Gai6, Proposition 1.5.3] (see also [Che2, Lemma 2.3.4]) that the functor (2.3)
admits a (factorization) left adjoint, to be denoted indspn 2. Since the functor (2.3) is conservative,
we obtain a monadic adjunction

(2.4) indgyn, 5o 1 Sphy, = (G, P7)"° : oblves gy
as Sph,,-module categories.

2.2.5. Let us consider the adjunction (2.4) as between right Sph,,-module categories. Due to the
monadicity, there exists a canonically defined (factorization) associative algebra object

Q € Sph M
so that
(2.5) I(G, P7)° ~ Q-mod(Sph,,)
and the adjunction (2.4) identifies with
indg : Sph,, = Q-mod(Sph,,) : oblvg.
2.3. A twisting procedure.

2.3.1. Let P be an M-torsor on X. We can consider Pas-twisted versions of all objects in sight, i.e.,
Gra,pps Grepy, £IN(P7))pyy,
see Sect. 1.2.1.



32 LIN CHEN, DENNIS GAITSGORY AND SAM RASKIN

2.3.2.  We will denote by subscript Pas the categories associated with the corresponding twisted geo-

metric objects, i.e.,
Sphysp,,» Sphgs,,, I(G, P )5y,

Pm

In particular, we have a monadic adjunction

indgpn s 1 Sphyy 5, = I(G, P7)5y, s oblvee s,

and the corresponding associative (factorization) algebra object
(~29>M IS SphM,TM .
2.3.3. Note, however, that the local Hecke stacks for M (or G), i.e.,
Heckeyf := £7(M)\&(M)/£* (M) and Heckeg® := £ (G)\L(G)/£1(G)
are canonically isomorphic to their twisted versions, see Sect. 1.2.2.

So, we have a canonical identification of monoidal (factorization) categories

APy pstaut QP g taut

Sphy, >~ Sphp e, and Sphg = Sphg, -
Similarly, we have a canonical equivalence

(26) aTM,taut : I(G7 P_)IOC =~ I(G7 P—)IOC

P
We tautologically have:
afPM,taut(Q) = Q?M.
2.3.4. Assume now that the M-torsor Py is induced by a Zps-torsor Pz,,. Recall (see Sect. 1.2.4)

that in this case we have a different identification

D‘TZM,cent

Sph M2z, ~ Sph,,
as monoidal (factorization) categories.
The composite
(2.7) (translgaZM )= QP cent O QP taut
is a monoidal (factorization) automorphism of Sph,,.
loc

2.3.5. Convention. Henceforth, unless explicitly specified otherwise, when we consider I(G, P™)y s 25
acted on by Sph,,, we will do so using the identification QP cent-

In particular, we will view ﬁprM as an associative (factorization) algebra object in Sph,, via

afPZM ,cent -

2.3.6. We can view the equivalence (2.6) as that between (Sph, Sph,,)-bimodule categories, where:

loc

1
ylos e

e Sph, acts naturally on I(G, P~ and via ap, taus on I(G, P7)

e Sph,, acts as naturally on I(G, P7)"°, and via ap, cent on I(G, P‘)B‘i;M (note that by
convention both actions incorporate the shift from Sect. 2.2.2).

2.3.7. Tautologically, we have
Qp,, , =~ (translp, )"(Q).

Remark 2.3.8. In practice we will take
1
Prr = pp(wx) = 2pp(wy ).

2.4. The spectral semi-infinite category.
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2.4.1. Denote by

spec,loc
Hecke & oo

the factorization space
LSG(D) X LSP_ (DX) X LSM(D)
LS5 (D) LS 5 (D)
The local spectral semi-infinite category is by definition
I(G, F’_)Spec’loc := IndCoh”™ (Heckesé);foc).
The category is I(G, P7)%Pe®!°¢ ig naturally a (Sph*®, Sph3h*®)-bimodule.

2.4.2. For future reference denote:
(2.8) I(G, P7)Ee'° := IndCoh' (Hecke 5 >°),

so that
I(é, P—)spec,loc and I(G, P—)(s:gec,loc

are each other’s duals, as factorization categories.

2.4.3. We have a correspondence

LSp-(D) —— LSG(D) _ x  LSp-(D%)
G
|

LS;;(D)
and its base change

LSp-(D)  x  LSy(D) —— Hecke s
LS 7 (DX) ’

(2.9) . l

spec,loc
Hecke ]

2.4.4. The functors of !-pull and *-push along (2.9) define a forgetful functor
oblv e gy : I(G, P7)*Pee1¢ — Sph%Pee,
which admits a left adjoint, denoted indsph_,%, given by *-pull followed by *-push.
Thus, we obtain an adjoint pair
(2.10) indgpn_ 2 1 Sphh® 2 (G, P7)™°!°° : oblv s gy

Moreover, it is easy to see that the adjunction (2.10) is monadic and respects the Sph3>*“-actions.

2.4.5. Asin Sect. 2.2.5, we can view the adjunction (2.10) as between right Sph’>““~-module categories.

Let
ﬁspec c Sphj\;ec
denote the corresponding associative (factorization) algebra object so that (2.10) identifies with the
adjunction

(2.11) indg.pee : SPhP* 2 QP“mod : oblvgpec.

2.5. The (factorization) algebra Q°P°°.
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2.5.1. Note that the adjunction
4" : QCOh(LS (D)) = QCoh(LS - (D)) : q.
identifies with
(2.12) ResY. : Rep(M) = Rep(P~) : C'(n(P7), —),
where C'(n(P~), —) is the functor of n(P~)-invariants (a.k.a. cohomological Chevalley complex).

2.5.2. Let
QP € Rep(M)

denote the (commutative) factorization algebra equal to
C'(n(P)),
i.e., the cohomological Chevalley complex with coefficients in the trivial module.
The (monadic) adjunction (2.12) can therefore be rewritten as
(2.13) indgspee : Rep(M) = Q°-mod(Rep(M)) : oblvaspec.

2.5.3. By a slight abuse of notation, we will denote by the same symbol Q°P°¢ its image along the
functor
Rep(M) = SphP®.

From diagram (2.9) we obtain that the adjunction (2.11) factors as a composition of

(214) indQspec : Sphjé}ec = QSpeC—mOd(Sphj\gec) : OblVQspec.
and
(2.15) indgpee_, gepee : QSpeC—mod(Sphj\gec) = QSpec-mod(Sphj\gec) 1 0blVaepee | gspec-

2.6. Semi-infinite geometric Satake. We now come to the central point of this section.
2.6.1. Consider the functor
(2.16) D-mod(Gre) ® D—mod(GrG)S(N(P_))'er(M) o~

~ D-mod(Gr¢) @ (D-mod(Grg) ® D-mod(Grp )= ) —

— D-mod(Grg) @ D-mod(Gre) ® D-mod(Gras) (@0 D-mod(Grg) ® D-mod(Gras) Fan(Grg—)eld
— D-mod(Gras).

This functor is equivariant with respect to the £(P™)-actions on D-mod(Grg) (via £(P7) — £(Q))
and on D-mod(Grys) (via £(P~) — £(M)), respectively.

2.6.2. Consider a variant of (2.16), given by

(2.17) D-mod (Grg) @ I(G, P7)*° ~ D-mod (Grg) ® D-mod (Grg)g(N(P_»'SJr(M) ~

)2(P_)

o~ D-mod% (Grg) ® (D-mod% (Grg) ® D-mod% (Gra) —

— D-mod% (Grg) ® D-mod% (Grg) ® D-mod% (Grar) (®Md)

T4r(Grg—)®I1d
<

— D-mod(Grg) ® D—mod% (Grm) D—mod% (Grum) — D—mod% (Grum),

where:
£(P7)
e The category (D-mod%(Grg) ® D—mod% (GrM)) makes sense due to the identification
of the two multiplicative Z/2Z-gerbes on £(P~) (one obtained by restriction from £(G), and
1

another from £(M)) that results from the existence of the square root detgfc v
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e The last arrow is the cohomological shift by (\,25p) on Grj;.

As before, the functor (2.17) has a natural factorization functor, and is compatible with the right
Sph,,-actions.

The functor (2.17) has an equivariance property with respect to £(P ™), similar to that of (2.16).
In addition, the (2.17) is compatible with the Sph,,-action on I(G, P~)"¢ (see Sect. 2.2.2) and the

natural action of Sph,, on D-mod 1 (Gru).

2.6.3. Given an M-bundle Pys on X, the functor (2.17) admits a twisted version

Py

(2.18) D-mod; (Gre,,,) @ I(G, PR — D-mody (Grar,, ).
Let us now be given an M-bundle P}, and a Zy-bundle P%, on X, so that

Par =~ Phy @ Py,

We have the following version of (2.18):

ld®agps  taut loc (2.18)

D—mod% (Gra,»y) ® (G, P )3y,

Qgprr
CPZ ,cent

— D-mod% (Grarp,,) o D-mod% (Grarp,)-

(2.19)  D-mody (Gre,p,,) ®1(G, PO

T//
Zm

The functor (2.19) is equivariant with respect to the natural action of £(P~)¢,, on D-mod 1 (Gra, )
and the action of

L(P7)py = E(M)py = E(M) gy,
on D-mod% (Grarp,)-
The functor (2.19) is compatible with the Sph,,-action on I(G, Pf)lj‘f,z from Sect. 2.3.5, and the
M

action of Sph,, on D-mod% (Graz,pq,) obtained from the identification

Qg
J’M,taut

Sph,, ~ Sph M2,

(see Sect. 1.2.2).

2.6.4. We take

P = pm(wx), Pz, = pr(wx),

so that
Py = p(wx).
Consider the resulting functor
(2.20) D-mod; (Grg,p(wyx)) ® I(G, P o) = D-mody (Graz,p (wx))-

The equivariance property of (2.20) with respect to £(N(M)) C £(P~) implies that the functor
(2.20) maps

(2.21) Whit'(G) @ I(G, P7)¢, ., — Whit'(M).

pp(wx)
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2.6.5. We now consider the functor
(2.22) Rep(G) @ (G, P7)™!°° 5 Rep(M),

defined by *-pull, é, and push along the diagram

LSG(ﬂ) X LSpf ('DX) X LSM('D)
LS&(DX) LS y7 (DX)

LS(D) LSz (D).
2.6.6. We are now ready to state the semi-infinite geometric Satake theorem, see [CR, Theorem 6.12.3]:
Theorem 2.6.7. There exists a unique functor (of factorization categories)
Sat ™% 1(G, PT) (uy) — L(G, PT)yPectoe
that makes the diagram

(CSg org)®Sat " 2

Whit'(G) @ (G, P7) s wy) Rep(G) ® I(G, P~ )wpecloc

(2.23) (2.21)1 l(2~22)

Whit! (M) L omm, Rep(M).
Moreover, the functor Sat™F is an equivalence (of factorization categories).

Remark 2.6.8. We remind the reader here of Remark 1.7.4, and our promise to correct the discrepancy
between our statement and the results of [CR].

2.6.9. The uniqueness statement in Theorem 2.6.7 implies that the functor Sat™T is compatible with

the actions of
Satar, - spec
Sph,, =~ Sph};
on the two sides.

Acting on the factorization units (see Sects. 2.7.1 and 2.7.4) below, we obtain that the equivalence
Sat™% makes the diagrams

Satpr, -
Sph,, Sphepee
indSph—) % l lindSpha %
—\loc Sat_’% ~ 15— \spec,loc
G, P7) sy — UG, P7)
and
Sat g, - spec
Sph,, SphiY
Oblv%ﬂsph]\ TOblV%aSph
—\loc Saﬁi'% = H—\spec,loc
I(G, P op(wx) —— (G, P7)%Pe®
commute.

Hence, we can view the equivalence Sat™ % as the statement that we have an isomorphism of
associative (factorization) algebra objects

(2.24) Satar(Qpp(wy)) = P,

(see Sect. 1.8 for why we have here Satys and not Satas,r).



THE GEOMETRIC LANGLANDS FUNCTOR II 37

2.6.10. Note that the functor (2.21) naturally factors as

(2.25) Whit (G) @ I(G, P7)5¢ .,y — Whit'(G) . gc I(G, P7)5S 0y — Whit' (M)

and the functor (2.22) naturally factors as

(2.26) Rep(G) @ I(G, P7)™P°°° 5 Rep(G) ® I(G, P7)*P°l¢ 5 Rep(M).
Sphsé ec

The uniqueness statement in Theorem 2.6.7 (combined with (1.9)) implies that the functor Sat ™%
is compatible with the actions of
Satg
Sphg =~ Sph*
on the two sides, so that the diagram (2.23) factors through a commutative diagram

Whit!(G) ® I(G,P_)loc (CSg org)®Sat ™" 2

Sphe pp(wx)

(2.27) l

Rep(é) ® I(G, P—)spec,loc

spec
Sphé

CSpr ot
_—

Whit! (M) Rep(M)

commutes.
2.7. The Jacquet functor.

2.7.1. Let
A_,% € 1I(G’P—>loc € I(G, P—)loc
be the factorization unit.
It equals the image of the factorization unit along
indgpn_, e : Sphy, — I(G, P7)"°.
Explicitly, A~ % is the image of
01,Grpy € D—mod% (GrM)EJr(M) ~ D-mod%(GrM,pP(wX))ng(M)
by !-pull and !-push along the diagram

Gry < Grp- — Grg.

2.7.2. Here is another way to describe the object A7 % .
Note that the category I(G, P~)"°° is related to Sph,, by a pair of adjoint functors

AV!E(N(P_)) : Sph, 2 I(G, Pf)lOC : Avf+(G)/£+(M) .

Then
(2.28) AT

f==3
2

%/ Sph
!

~ AV (51,GYG),

where 01,cr, € Sphg is the unit.

2.7.3. A similar discussion applies in the pp(wx)-twisted context. We will denote the corresponding
object by the same symbol
ATT € X(G, PR (o)
Let J ' denote the (factorization) functor
J7 Whit'(G) — Whit' (M)

given by applying (2.21) to A7 along the second factor.
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2.7.4. Let
1I(G,P*)8pec,loc (S I(C}’7 P*)Spec,loc

be the factorization unit.

It equals the image of the factorization unit along

indsphq% . Sphj\;plec N I(é, P—)spec,loc.

Explicitly, it is the image of the trivial representation along
Rep(P~) ~ QCoh(LS - (D)) — IndCoh* (Heckeg’e;foc).
2.7.5. Note that the (factorization) functor
Rep(G) — Rep(M)
obtained by applying (2.22) to 1y, p—)spec.ioc along the second factor is just
C'(n(P7), ).
2.7.6. From Theorem 2.6.7 we obtain:

Corollary 2.7.7. The following diagram of factorization categories and functors commutes:

Whit'(G@) 29°7¢,  Rep(G)

(2.29) J_’!JV lc(n(ﬁ*),—)
Whit! (M) =22, Rep(M).

2.7.8. For future reference, we introduce the functor

(2.30) J7" : Whit, (G) — Whit. (M)

so that the diagram
Whit.(G) ——— Whit. (M)
ewmc(c)l lewmc(m)
Whit'(G) ——— Whit'(M)
commutes.

Taking into account Lemma 1.4.11, from (2.29) we obtain a commutative diagram
. FLEg o <
Whit*(G) <——— Rep(G)
(2.31) r:*l lc(n(P-),f)
. FLE ;o -
Whit* (M) «——— Rep(M).
3. THE LOCAL SEMI-INFINITE CATEGORY: DUALITIES

This section can be skipped on the first pass, and returned to when necessary.

We will study a self-duality property of the category I(G, P~)"°¢. This property will play a role in
the proof of the main result of this paper, Theorem 24.1.2.

Unfortunately, an analog of this self-duality result on the spectral side has not been established yet
(see Conjecture 25.4.6). Had it been, it would have made the proof of Theorem 24.1.2 more streamlined
(see Sect. 25.4).

Instead, we introduce categories

Q-mod(Sph,,) and Q***“-mod(Sph3;)
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that “sit between”
(Sphy, and I(G,P7)°°) and (Sph*® and I(G, P™)"“P*°),
respectively.
There exists an equivalence
Q-mod(Sph,,) ~ QP*“-mod(Sph3>*)
and (easy-to-establish) self-dualities on Q-mod(Sph,,) and Q*P**-mod(Sph’F*), respectively, compati-
ble with the above equivalence. This would suffice for the proof of Theorem 24.1.2.
3.1. The dual of the semi-infinite category.

3.1.1. Consider the category
et ()
D—mod(Grc)E(N(P_)).
It is proved in [Che2, Corollary 1.4.5] that it is dualizable as a factorization category. Once the
dualizability is established, it follows formally that Verdier duality on Grg gives rise to an identification

i SN(P™)-£F (MW 1y, e+ ()
(D-mod(Grg) )Y ~D mod(Grg)S(N(Pf)).

3.1.2. Denote .
—\loc | £T(M)
I(G,P )Co = D—mod%(GrG)£<N(P7)).
By similar logic, we have a canonical identification

(3.1) (I(G, P-)‘OC)V ~1(@, PO)e.

3.1.3. Note that the identification (3.1) is compatible with the Sph,,-actions in the following sense:

e The action on (I(G, P‘)loc)v is induced by the Sph,,-action on I(G, P7)"° specified in
Sect. 2.2.2 (as always, we pass from right to left Sph,,-modules using o).

e The action on I(G, P7)!¢ is obtained from the natural geometric action, by applying the
inverse cohomological shift to the one from Sect. 2.2.2.

Since Sph,, is rigid, the duality (3.1) realizes I(G, P™)%° as a Sph,,-module dual of I(G, P~)"*°.
3.1.4. Direct image along Grp- — Grg defines a functor
(3.2) indgpns 2 o : SPhy, = 1(G, P7)e,
which, with respect to the equivalence (3.1), identifies with the dual of the functor
oblv e sy - I(G, P7)"° — Sph,,
of (2.3).

In particular, we obtain that the functor (3.2) admits a right adjoint, so that we have a monadic
adjunction

(3.3) indspnos 52 co : Sphy, 2 I(G, P7)& 1 0blVa Lgphico-

3.1.5. Let A be a monoidal category and A € A an associative algebra. We consider A-mod(A) as a
right A-module category, and A-mod”(A) as a left A-module category.

Tautologically, A-mod(A) and A-mod”(A) are each other’s duals (as right and left A-module cate-
gories, respectively).
Note also that
A-mod"(A) ~ A°-mod(A°),
where:
e For a monoidal categoty A, we denoted by A° denotes the monoidal category category obtained
by reversing the monoidal operation;
e For an associative algebra A in a monoidal category A, we denote by A° the corresponding
associative algebra in A°.
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3.1.6. Let Q. be the associative (factorization) algebra object in Sph,,, so that (3.3) identifies with
indg_ :Sphy, = Qco-mod : oblvg_ .
From the duality between
(G, P7)"° and I(G, P7)’
as Sph,,-module categories, we obtain an identification
Qeo >~ o(()?).

3.1.7. Let Pz,, be a Zy-bundle on X. Performing the twist as in Sect. 2.3, we can consider the
category 1(G, P7)kc

o, Pz,

We still have an equivalence
(3.4) (G P s, = NG P,
compatible with Sph,-actions.

Similarly, we can consider the associative (factorization) algebra object

Qcov5,, €SPy,
and we have
Qeor5,, = 0((Q,,,))-
3.1.8. We will apply the contents of Sect. 3.1.7 to Pz,, := pp(wx) and also Pz,, := —pp(wx).
3.2. The duality on the geometric side.
3.2.1. The starting point is the following key result of [Che2, Corollary 1.3.13]:
Theorem 3.2.2. The composite functor
D-mod(Grg)s(N(P))'er(M) — D-mod(GrG)er(M) — D-mod(Grg)ﬁz—]é](VQ_))

s an equivalence (as factorization categories).
3.2.3. From Theorem 3.2.2 we formally obtain:
Corollary 3.2.4. The functor

(3.5) 1(G, P)°° = D-mod ; (Grg)SN@)-£+On)

+ ¢t —loc
<+ D-mod (Gr)® an _, D—mod%(GrG)z(A(,’(wp)_)) =I(G, P~

is an equivalence (as factorization categories).

In what follows we will denote by Y'°¢ the functor inverse to the equivalence of (3.5).

3.2.5. Applying the Cartan involution on G (normalized so that it swaps P and P~, and thus com-
patible with the Cartan involution 7as on M, see Sect. 1.4.9), we obtain an equivalence

(G, P)*° £ 1(G, P7)".
Thus, composing (3.5) with (3.1) and 7, we obtain a self-duality
(3.6) (G, P7)) ~ (G, P7)".
By construction, the equivalence (3.6) is compatible with the actions of Sph,,, where:

e The action on (I(G, P7)")Y is the one specified in Sect. 3.1.3;
e The action on I(G, P7)*° is precomposition of the action specified in Sect. 2.2.2 with the
automorphism 7as of Sph,,.



THE GEOMETRIC LANGLANDS FUNCTOR II 41

3.2.6. As in Sect. 3.1.6, from the equivalence (3.6) we obtain an isomorphism
(3.7) ™ (Q) ~ o ((2)°),
as associative (factorization) algebras in Sph,,.

3.2.7.  We now consider the twisted version of the above situation. Let Pz,, be a Zj/-bundle on X.
We still have an equivalence

(3.8) (G, P)py = 1G P ), -
However, the Cartan involution induces an equivalence

loc G —\loc

I(G, P)J’ZM ~ I(G, P )TM(TZM)'

One can compose it with the equivalence

-1
(@ gy staut)o(@ry (27 ), taut)

—\loc loc
I(G,P )TM(TPZM) =~ I(G7P)TZM7
and thus obtain again a self-duality
(3.9) (G, Py )Y ~ UG, P75y

Note that the equivalence (3.9) is compatible with the Sph,,-actions, where
A\
e The action on (I(G, P_)lg‘?;M) is induced by the Sph,,-action on I(G, P7)%S  specified in

P2y
Sect. 2.3.5 (as always, we pass from right to left Sph,,-modules using o);

e The action on I(G, P_)lg?gM is precomposition of the action specified in Sect. 2.2.2 with the
automorphisms 77 and (translTZM ®r(?§’;41))* of Sph,,.

The equivalence (3.9) translates into the following isomorphism of associative (factorization) alge-
bras:

(3.10) ™( Q) (translg,‘g;@T o)) (g((ﬁﬂ,zM )a)) .

Note, however, that (3.10) can be equivalently obtained by applying (translj,gfl)* to (3.7).
M

3.2.8. We will apply the paradigm of Sect. 3.2.7 in the case Pz,, = pp(wx). Thus, we have
(3.11) LG, P ) = LG, P)S )
Note that
T(pp(wx)) = —ppr(wx),
so (3.10) amounts to
(312) 71 (@ o)) = (transl_zppox))s (0(@ppr)))) -
3.3. The algebra (.
3.3.1. Recall the commutative (factorization) algebra
QP € Rep(M) = Sph3%,
see Sect. 2.5.2.

Let Q € Sph,, be the image of Q"*° under Sat;,'. Recall that we have an identification of associative
(factorization) algebras
P —1 /A spec
QPP(WX) =~ Saty, (Q°7),
see (2.24).

Hence, the homomorphism
Qspec N ﬁspec
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gives rise to a homomorphism of associative (factorization) algebras
(3.13) Q-0

pp(wx):

3.3.2. Let Pz,, be a Zp-bundle on X. Note that for any such Pz,,, the diagram

Y nv spec SMIT/I1
Rep(M) ——— Sph’>®® ——— Sph,,

Idl l(translyZM )

- nv Sat 7}
Rep(M) ——— Sph>** Bt VIN Sph,,

commutes. Hence, we obtain

(3.14) (translp, )«(€2) = Q.

Hence, (3.13) gives rise to a homomorphism
(3.15) Q—Qp,
for any Pz,,.
Remark 3.3.3. The maps (3.15) can be constructed explicitly without reference to Satas.

Indeed, in the factorization picture over the part of Sph,, supported over

A% C Ag,p = m0o(Grm),

the sheaf Q is exactly the 0-th perverse cohomology of Q.
Remark 3.3.4. Another property of the pair Q — Q) that can be used to recover it is the following;:

Note that © € Sph,, is augmented as an algebra object, so that the functor

— ®lsph, : Q-mod”(C) - C

makes sense for any category C € Sph,, -mod”.
By construction, the functor
indspn_, s : Sphy, — I(G, P7)"°

upgrades to a functor

indg}i,_, s : Sph,, — Q-mod” (I(G, P7)").
In fact, indgrg,lf] s corresponds to the tautological functor

indZ2™ : Sph,, — Q-mod” (Q-mod(Sph,,))
in terms of the equivalence

Q-mod(Sph,,) ~ I(G, P~)"".

In particular, the object
—loc
1I(G,P_)1°C S I(G, P )
naturally upgrades to an object of'?

Q-mod” (I(G, P7)"°).
Then, by the construction explained in [Gai3], the object
Ly p-yoc ® Lspny, € (G, P)ee
identifies with the semi-infinite IC sheaf

ICT% e (G, P7)°c,

1214 fact, the associative algebra object Q e Sph,, can be recovered as the algebra of endomorphisms of
ll(G p—)loc € I(G, P_)loc relative to the action of Sph,,.
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introduced in [Gai3].

3.4. The algebra 2 and duality.

3.4.1. Note that by Corollary 1.8.2 and (1.5), we have
(3.16) T (Q) = a(2°).
The following is a basic property of the homomorphism (3.15):

Lemma 3.4.2. The following diagram of associative (factorization) algebras in Sph,, commutes:

(9 (3.16)

TM(3.15)l lo(3.15)°

() =7 5((Q)°).

o(Q°)

3.4.3. As a formal consequence, we obtain that for any Zs-torsor Pz,,, the diagram

3.16 3.14
(Q) (3.16) a(Q°) SCEIN (translw§71®T(TZM )« (0(227))
M
TM(3.15)l l("a“l??;j@f(?zM )x00(3.15)°
~ (3.10) =,
™(Qp,,,) —_— (translg,%,;(@_r(?ZM ) (0(QTZM ))

commutes.

In particular, taking Pz,, = pp (wx), we obtain a commutative diagram

(3.16) (3.14)
—_ —_—

™ () a(Q°) (transl_s, . (wx))™ (0(27))

(3.17) M (3,15)1 l(transl_zpp(WX))*OU(3.15)0

e (3.12) * O
™ (QPP(UJX)) — (tranSI—2PP(wx)) (U(sz(wx))> .

3.4.4. Let us translate Lemma 3.4.2 into an assertion about dualities of categories.
The map (3.15) gives rise to an adjoint pair
indg_, s : Q-mod(Sph,,) = I(G, P~)"° : oblvee_,q.
The identification (3.16) gives rise to an equivalence
(3.18) (Q2-mod(Sph,,))Y ~ 7a(Q)-mod(Sph,,).
Then we have a commutative diagram

(Q-mod(Sphy,))” 819,

7 (€2)-mod(Sph,,)

(oblv%ﬁn)vl lfcoindn_»%

~rloc

(I(G, P~)loc)\/ I(G, Pf)loc,co I(G, P)loc'

3.4.5. Similarly, in the twisted situation, we have an adjunction

indq_, ¢ : Q-mod(Sph,,) = I(G, P7)5; i oblve .o

43
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and a commutative diagram

(Q-mod(Sph,,))” 2225 71/(2)-mod(Sph,,)
(oblv%ﬁﬂ)vl lTGOindQH%
(1@, Pk, ) (G P) o,
l l(“?zM )0 (@rp (9 ) vaut) !
—_ ocC ‘rlOC ocC
I(va )}:o,ﬂ’ZM — I(Gv P)lﬂ’ZM

4. THE KAZHDAN-LUSZTIG CATEGORY

In this section we study the local representation-theoretic category on the geometric side, which
would be connected to the global category D-mod 1 (Bung) by a local-to-global procedure.

The category in question is the Kazhdan-Lusztig category at the critical level,

KL(Q)erit == ﬁ—m0d£+<c).

crit
We will need the following aspects of the theory associated with KL(G)crit:
Self-duality;
Action of the Feigin-Frenkel center,
Twists by Zg-torsors, twists by Zg—torsors and the combination of the two;
The BRST functor from KL(G)eit to a (twisted version of) KL(M)crit;
A version of the previous item enhanced using 1(G, P~)"°¢;
The functor of Drinfeld-Sokolov reduction.

4.1. Defintion and basic properties.
4.1.1. Let k be a level for g. We consider

g-mod,,
the category of Kac-Mooy modules at level k.

This category carries a natural action of £(G) at level k.

4.1.2. Let .
KL(G)x := g-modS (@,
denote the corresponding category of spherical objects.
We have an adjunction
oblvet (g : KL(G). = g-mod,, : AvE (@)
4.1.3. We have a monadic adjunction
(4.1) ind£+(G)_>(ﬁ’£+(G)) : Rep(2+ (G)) = KL(G)K : 0b1V(§,2+(G))—>2+(G)-

In particular, KL(G), is compactly generated by the image of compact generators of Rep(£™(G)).
Those can be taken to be the objects

Resgﬂg)(v)‘), V* € Irrep(G).
The corresponding objects in KL(G), are the standard (a.k.a. Weyl) modules, denoted
Vi € KL(GQ)s.
4.1.4. The category has a natural factorization structure, with the factorization unit being
Vac(G), := V2.

4.2. Critical level and Feigin-Frenkel center.
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4.2.1. Our primary interest in this paper is the case when xk = —% - Kil, where Kil is the Killing form.
We will denote the corresponding level by symbol crit.

4.2.2. Let 34 be the FF-center of Vac(G)erit, viewed as a factorization (chiral) algebra.

4.2.3. Let 34 be the (topological) algebra of de Rham cohomology of 34 over the formal punctured
disc. We can view “Spec”(34) as an indscheme.

The categories
ﬁ—modcrit and KL(G)crit
are naturally tensored over QCoh(“Spec”(3g))-

Remark 4.2.4. The last assertion is intuitively well understood, but as a precise assertion about DG
categories takes some work. At a point, and when also considering the commuting £(G)-action at
critical level, this is [Ras4, Theorem 11.18.1], the main assertion of the monograph [Ras4]. The ideas
from loc. cit. with standard modifications to treat the factorizable version that we use here.

4.3. Duality.

4.3.1. For a given level k, denote
’

K = —K+2-crit.
(In particular, crit’ = crit.)
4.3.2. It is known that the categories
g-mod,, and g-mod,;
are canonically dual to one another, in a way compatible with factorization.
The counit of the duality is the functor
g-mod,; ® g-mod,.s Y g-mod_ ki — Vect,
where the second arrow is the functor of semi-infinite cohomology.
4.3.3. The above duality induces a duality between
KL(G)x and KL(G),,
so that
(oblver ()~ AvE @ and (Av2" @) = oblvyi ).
The unit of the duality is the object
CDO(G)y ' € KL(G)x ® KL(G) -

Under this duality and the canonical self-duality of Rep(£'(G)), we have

. \ \% .
(inde+(6)m@ete)) = ObIVE et (@)-et(e) and (0Bl et (a)oetie) = inder ) et (@)

4.3.4. In particular, we obtain canonical self-dualities

(4.2) (g-moderit)” ~ g-modeit
and
(43) (KL(G)crit)v =~ KL(G)crit~

These dualities are compatible with the action of QCoh(“Spec”(34)), up to the action of the Cartan
involution'® T¢ on 34, see (8.3).

4.4. Twisting by Z%-torsors. In the bulk of the paper the observations of this subsection will be
applied when the reductive group in question is the Levi subgroup of the original G.

13The action of inner automorphisms of g on 34 (and hence on 34) is trivial; hence we obtain a well-defined action
of outer automorphisms of g on 34 (and 34).
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4.4.1. Let [g,g] be the Lie algebra of the derived group of G, so that ga, := g/[g, g] is the cocenter of
g.

Consider the vector space £(gab)/£7 (gab). Its dual, viewed as a group, acts by automorphisms of
the Kac-Moody extension, and hence also by automorphisms of the categories g-mod,, and KL(G).

In particular, given a (£(gab)/£7 (gab))*-torsor P, we can form the twisted versions of g-mod,. and
KL(G), denoted

g-mod,+p and KL(G).+7,

respectively.

4.4.2. Note that we have a canonical duality
gab > (25)".
In particular, we can identify
(£(gab) /L7 (gan))" = £7 (25 ® wx),

where the right-hand side is the space of sections of zz-valued 1-forms on the formal disc.

Let Zg denote the neutral connected component of the center of G. Consider the homomorphism

dlog : £7(2%) — £¥ (25 @ wx).
Thus, starting from a Zg—torsor iPZ% on X, we can:

e Produce a £"(Z2)-torsor (by restricting to the formal disc);

e Induce a £ (23 ® wx)-torsor using dlog;

e Think of the latter a (£(gab)/£7 (gab))*-torsor, which by a slight abuse of notation we denote
by

dlog (P40 ).

og( Z%)

The above construction is naturally compatible with factorization.

We denote the resulting (factorization) categories of Kac-Moody modules by

ﬁ'mOdK+dlog(Tzq) and KL(G)N-Fdlog(TZQ )
G G

respectively.

4.4.3. Note that the Contou-Carrére symbol defines a bilinear pairing
£7(Z2) x &(G) — £7(Z2) x £(Gab) = G,
where Gap = G/[G, G], so that it is a torus dual to Zg,.

This implies that a ZZ-torsor P40 on X gives rise to a multiplicative line bundle on £(G) (a.k.a.,
G

central extension by means of G,,), compatible with the factorization structure.

This central extension gives rise to an action of £(G) at the same level k on the category
'g\—mod,ﬁdlog(;pzo y. In particular, we have the convolution functor
G

D-modx(Gra) ® KL(G) xc+dlog(® 4 ) 5 a'mOdn+dlog(?Zq ).
G G
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4.4.4. Notational convention. Assume for a moment that the above Z%-torsor is of the form Mwx)
where X : G, — Z3.

In this case, we will use a short-hand notation
a-mOd;vkj\ = ,g\'mOd;vl»dlog(S\(wX)) and KL(G)N+5\ = KL(G)n+dlog(:\(wx))
for the corresponding twisted categories.

Note that the assignment
X ~ dlog(Awx))
is linear. So, the resulting torsor with respect to
£ (25 ® wx) = (£(gab) /L7 (gab))”

makes sense for any \ € z;.

Thus, the twisted categories

g-mod, 5 and KL(G),.,x

are defined for any X € z;.

4.5. BRST and Wakimoto functors.

4.5.1. Let P be a standard parabolic in G, and P~ its opposite. We have the functor of BRST
reduction with respect to £(n(p~)):

(44) BRST™ : ’g\-modmw,@ — I/T\l-mOdcrit+,§7ﬁP,

where:

e The subscript “crit” on both sides denotes the critical level for G and M, respectively.
e The subscript gp is as in Sect. 4.4.4.

The functor (4.4) naturally factors as
(4‘5) a'mOdcrit+n - (a‘mOdcrit+n)£(N(P—)) — fﬁ-mOdCﬁH_n_ﬁP.

4.5.2. The functor BRST™ induces a functor

et (M)

~ +
critrn f-mod®. M) KL(M)crit4r—pp -

g_mOd crit+k—pp

By composing with the forgetful functor

KL(@eit i i= grmodn @ * 5 Gemod 10,
we obtain a functor
(4.6) KL(G)erit+n — KL(M)exit+r—pp
which we denote by the same character BRST ™.
4.5.3. Let
(4.7) Wak ™% : f-modesit—ripp — G-m0derit_x

be the functor dual to the functor BRST™ of (4.4).

Since BRST™ factors as (4.5), the functor Wak ™% naturally takes values in

)Q(N(P_))

(/g\-modcrit,,g C ,g\'mOdCritfn-

In particular, (4.7) induces a functor

(4.8) KL(M)erit—nspp = gmod=s ™ 5 (Grmodeie—e) SN E D 5 no0d 7

crit—k+pp crit—rk?

which we denote by the same symbol Wak ™% .
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Remark 4.5.4. The above version of the Wakimoto functor is somewhat exotic. For example, it produces
objects that are not seen by the t-structure on g-modeyit—s (i.e., all of their cohomologies are 0).

One recovers from it the usual Wakimito functor by composing Wak ™% with the functor

ot
Avi' (N) ~

— g-mods+ @)

/g\‘mOdcritfn crit—k — /g\‘mOdcritfiw

see Sects. 11.4.4-11.4.6.

4.5.5. Denote:

(4.9) Wak ™S5 .= AvE @72 O o Wal ™ F | KL(M)erit—ntpp — KL(Q)erit—r-

This is the functor dual to (4.6).

4.5.6. The functor (4.9) can be explicitly described as follows: the corresponding object of
(KL(M)exit—rtpp) " @ KL(G)erit—r ~ KL(M)erittr—pp @ KL(G)erit—r
is given by
(BRSTﬁ ®Id) (CDO(G)crit+n,crit—n)-
4.6. Twisting by Zg-torsors.

4.6.1. Let Pg be a G-bundle on X. As in Sect. 1.2.1, we can consider the Pg-twists of g-mod, and
KL(G)x, denoted

g-mody p, and KL(G)x,p.,
respectively.
4.6.2. Note, however, that as in Sect. 1.2.2, we have a canonical equivalence
(4.10) apg taut  KL(G)r = KL(G)k, 2, -

This equivalence fits into the commutative diagram

AP o, taut

KL(G). KL(G)n 0,
°b“'<§,£+<a>>—>£+<a>l l°b“’(§,£+<c>)—>£+<c>
Rep(£7(G)) —< Rep(£7(G)py,).

4.6.3. Assume now that Pg is induced from a Zg-torsor Pz.. In this case, we have a canonical
identification

(411) OZTZG ,cent - a‘mOdn,Tzc :> a_mOdn—n(dlog(TzG )=

where:

e dlog(Pz,) is the £ (z; ® wx)-torsor, induced by means of the map
dlog : £ (Zc) — £% (2 @ wx).
e The level k(—, —) is viewed as defining a map
k(= =)t zg = 23,

and so we can view
k(dlog(Pzs), —)

as a torsor with respect to

£% (25 ® wx) = (£(gan) /L7 (gan)) "
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4.6.4. The equivalence (4.11) induces an equivalence
(4.12) a‘J’ZG,cent : KL(G)N,g)ZG :> KL(G)nfm(dlog(?ZG),fy
Composing with (4.10), we obtain an equivalence, denoted

(translyp

)

zZ

(4.13) KL(G)r  — KL(G)x-raiog(® ),
This equivalence fits into the commutative diagram

(transl(pz )*

KL(G),. ———"— KL(G) s r(dtog(®7,,),-)
°bl"(a,s+<c>)as+<c>l l"bl"(a,sﬂc))asﬂc)
Rep(£7(G)) Rep(£7(G))

*

(transllyz

QCoh(pt /2*(G)) ——2e"s  QCoh(pt /2* (G)
where the bottom horizontal arrow is the functor of pullback with respect to the automorphism
transly, of pt /£1 (@), given by tensoring with Pz, |».
4.6.5. Note that when x[., =0, (e.g.,, when k = 0, i.e., we are at the critical level), we have
k(dlog(Pz,), —) = 0.
So in this case, (translp, )" is an endofunctor of KL(G)x. It can be explicitly described as follows:
For every trivialization of Pz, we have
(translTZG )" ~1d.

A change of trivialization given by an element g € £%(Z¢) corresponds to the automorphism of the
identity endofunctor of KL(G),, given by the action of g on modules.

4.6.6. Notational convention. Assume for a moment that the above Zg-torsor is of the form A(wx),
where A : G, = Zg.

In this case, we will use a short-hand notation
g-mod—x(x,—) = §-mOds—x(dlog(A(wx)).—) ANd KL(G)x—r(x,—) = KL(G) x—n(dlog(r(wx)),-)-

Note that this agrees with the notation introduced in Sect. 4.4.4, where we regard x(\,—) as an
element of zj.

As in loc.cit., the notations
g-mod,_x(x,—) and KL(G),—x(r,—)

make sense for an arbitrary element \ € zg.

4.6.7. Similar constructions apply, if instead of KL(G), (resp., g-mod,,) we start with the category of
the form KL(G)K+d10g(prQ) (resp., /g\—modn+dlog(g>zq ))-
G G
‘We denote the resulting categories by
KL(G)n+dlog(TZ%)7n(dlog(fPZG),7) and a-mOdnerlog(TZ%)7~(d10g(TzG)»*)

or
KL(G) 45— n(r,—y and g-mod, 5. (x -,

respectively.

4.7. The twisted BRST and Wakimoto functors.
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4.7.1. Let Par be an M-torsor. Consider the P-twists of the objects appearing in Sect. 4.5, see
Sect. 1.2.
In particular, we obtain the functors
BRST;M :ﬁ-modcrit_m,yM — ]/ﬁ_mOdCrit+N—ﬁP,?M'

4.7.2. Note, however, that as in Sect. 1.2.2, we have the equivalences

et (M) et(m

ap g gaut : grmoda, 07— Grmod (M) and agy, wau t KL(M)ericin—pp — KL(M )erittr—pp. 2y

so that the diagram

~ et (M) QP taut ~ et ()
g_mOdcrit+n g_mOdcrit+K,fPM
(4.14) BRST—l lBRST;M

QP g taut

KL(M)criH—n—[)p KL(M)crit+n7p'p,?M

commutes.

4.7.3. Assume now that Py is induced by a Zy-bundle Pz,,. In this case, we can identify

O‘O’ZM ,cent

m'mOdcrit-Hc—ﬁp,?ZM = m'mOdcrit-He—ﬁp—m(dlog(?zM )s—)
and
aTZM ,cent
KL(M)crit-!—n—ﬁp,?ZM =~ KL(M)crit+nfﬁp7n(dlog(iPZM),7)

see (4.11) and (4.12), respectively.

In this case, we will view BRST;Z as a functor
M

~ et (M
gmodzy, 'y — KL(M)erit x pp—s(alos(?z,,),-)
equal to
BRST,,
. + ap staut + P
(4.15) g—modfrit(_f? Iay g-mod?®. (M) M

crit+n,fPZM

O‘fPZM ,cent
— KL(M)crit+n—ﬁp,fPZM ~ KL(M)crit-‘—n—[)p—m(dlog(?ZM),—)7

or, which is the same,

_ (translp )*
~ £t (M) BRST Zm
(4.16) g_nlOdcrit(—{—n) — KL(M)erit4r—pp & KL(M)CritﬁLN*ﬁP*N(dlog(TzM)’*)'

4.7.4.  We will denote by the same character BRST;,  the restriction of (4.15) along
M

e+ (M)

~ + ~
KL(G)Cr“ﬁLN = g_mOdfrit(—}-Gn) — g_mOdcrit—Hﬁ ’

so it is a functor
(417) BRST;ZM : KL(G)crit+n — KL(M)crit-l—/i—ﬁP—rc(dlog(fPZM),—)'

From (4.14) we obtain a commutative diagram

KL(G)crit+n L) KL(G)crit+n

(4.18) BRST_l lBRST'EZM

(transl:pZM )*
KL(M)erit4n—pp —— KL(M)crit+n—ﬁP—n(dlog(TzM )—)-
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4.7.5. Warning. Note that when k = 0 (i.e., we are at the critical level), the target category of both
functors

BRST™ and BRST;ZM
is KL(M)crit+n—[7p .

Yet, these two functors are different: namely, they differ by the automorphism of KL(M)crit+x—pp
given by (translp, )", see Sect. 4.6.5.

4.7.6. Similar conventions apply to the Wakiomoto functors. In particular, we obtain the functors

et ()

crit—k

Waky 2 2 KL(M)crit— st pp+r(diog(Pz,,),—) — 8-mod

and
Wa’k;’ZSAI;h : KL(M)crit—n+[)P+n(dlog([PZM),—) — KL(G)CI‘“:—K,-

4.7.7. We will apply the above constructions mostly in the case when Pz,, = pp (wx). So we obtain
the functors

BRST : KL(G)crit-He — KL(M)Crit-‘—)i—ﬁp—li(pP,—)

pp(wx)
and

—,Sph |
Wakpp(i’)x) t KL(M)rit—rtpp+r(pp,—) — KL(G)erit—r,
and similarly for the semi-infinite version.
When x = 0, these functors specialize to
BRST;p(wx) : KL(G)crit — KL(M)crit—ﬁP

and
Wak—SPh . KL(M)erit+5p — KL(G)erit,

pp(wx)

respectively, and similarly for the semi-infinite version.
4.8. The enhanced functor of BRST reduction.
4.8.1. By the definition of the functor
BRST™ : g-moderic — ﬁ-mOdcrit—pP,
it naturally factors as
g-modcrit — (/g\‘modcrit)g(N(P—)) @7 M-moderit—pp -

Moreover, the resulting functor BRST  respects the action of £(M).

4.8.2. Recall the category I(G, P7)%C, see Sect. 3.1.2. Restricting BRST  along

—\loc -~ +
I(G, P )lco ® KL(G)crit — (g‘mOdcrit)g(]\(fl(VQ— ))?
Sphg

we obtain a functor, which we denote by the same symbol

(4.19) BRST :I(G,P)%s 2 KL(G)exit — KL(M)erie—pp-
Phg

The functor BRST  respects the actions of Sph,,. Hence, using the fact that Sph,, and Sph, are
rigid, it gives rise to a functor, denoted

(4.20) BRST ™" : KL(@)erit = 1(G, P7)°° @ KL(M)erit—pp,

Sph s

which respects the Sph-actions.
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4.8.3. The original functor
BRST ™ : KL(G)erit = KL(M)crit—pp
is obtained by composing BRST™*™" with
oblv 5o gy, ®1d

(G, P @ KL(M)erio—pp AN Sphy;, ® KL(M)erit—pp ~ KL(M)erit—pp-

Sph s Sph s

4.8.4. In what follows we will need a twisted version of (4.20):

(4.21) BRST " )t KL(Gerie = H(G, P )5 () o2 KL(M)crit—pp-
Denote

(4.22) KL(M) 3™ = 1(G, P )y & KL(M)eric—pp-
Thus, we can regard (4.21) as a functor

(4.23) BRST " | KL(G)ere — KL(M) 0™ .

4.9. The functor of Drinfeld-Sokolov reduction.

4.9.1. Consider the functor of semi-infinite cohomology of £(n),. ), twisted by the character x (see
Sect. 1.3.2)

(4.24) £(1n) p(w)-mod — Vect .

4.9.2. Precomposing with
g-mody p(wy) =+ £(0) p(wy)-mod,

we obtain a functor of Drinfeld-Sokolov reduction that we denote by

(4.25) DS : g-mod,; p(wy) — Vect.

It follows from the construction that the functor DS factors as

(4.26) 0-modk p(wy) = (B-MOdk, p(wx)) (V) () x — Vect,

We denote the resulting functor
(’g\—mod,i,p(w”)g(;v)p(w)(),X — Vect
by
(4.27) DS: (ﬁ—modn,p(wx))g(mp(wx),X — Vect .

4.9.3. Precomposing further with

—~ ot (7)) Yp(wx ). taut et (T ~

g-mod: (1) etexy g-m dmpgw;) — g-mody p(wy)s
we obtain a functor, denoted by the same character
(4.28) DS: ﬁ—modﬁJr(T) — Vect .

By the same principle as in Remark 1.3.3, the functor DS of (4.28) is canonically independent of
the choice of the non-degenerate character x : N — Gg.

By a slight abuse of notation, we will denote by the same character DS the further restriction of
(4.28) along

KL(G), — ﬁ-modﬁﬂﬂ
or
~ —e +
g-mod.’ 2 < g-mod> @,
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5. MONODROMY-FREE OPERS

In this section we study the local counterpart of the Kazhdan-Lusztig category on the spectral side:
this is the category
IndCoh*(Opga (D))
of ind-coherent sheaves on the space of monodromy-free G-opers on the punctured disc. This cate-
gory will be related to the global spectral category (in this caece QCoh(LSx(X))) by a local-to-global
procedure.

We will study the following aspects of IndCoh*(Opg(D™)):
e Self-duality;
e The shifting procedure by a Zg-bundle and Miura opers;
e The spectral Jacquet functor, which connects IndCoh™(Ops (D)) with the a shifted variant
of this category for a Levi subgroup;

e An enhanced version of the spectral Jacquet functor using I(G, P~)sPecloc,

5.1. IndCoh* of monodromy-free opers.

5.1.1. Let Opg denote the (affine) D-scheme of G-opers on X. Like for any D-scheme, its fiber over
a given point of X is the scheme Opg(D) of G-opers on the formal disc.

Let Opg(D*) be the (factorization) indscheme of G-opers on the formal punctured disc.

5.1.2.  We have a naturally defined commutative but non-Cartesian diagram
Opg (D) —— Opg(D*)
We define the factorization indscheme of monodromy-free opers as the fiber product

Opg*™**(D) := LSg(D) _ x  Ops(D%).

Sa
5.1.3.  Our object of study is the resulting factorization category
IndCoh” (OpZ®™"*(D*)).
We will study it along with the factorization categories
IndCoh™(Opg (D)) = QCoh(Opg(D))) and IndCoh™ (Opes(D™)).
5.1.4. By construction, we have a natural action of
IndCoh(Hecke:P**'°%) =: Sph®P°°

on IndCoh* (Op°"™*¢(D>)).

5.1.5.  The functors of direct image along the closed embeddings

(5.1) Ope(D) « OpZe™Tee(DX).
and
(5.2) Opg™™(D*) < Opg (D).

define unital functors between the corresponding factorization categories.
In particular, the factorization unit in both
(5.3) IndCoh* (OpE°™™*°(D*)) and IndCoh* (Op¢(D*))

is the direct image of the structure sheaf of Opx (D). By a slight abuse of notation, we will denote it
by OOpG(D)v even when it is viewed as an object of either of the categories in (5.3).
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By further abuse of notation, we will denote by the same symbol Oop . (p) the space if its global
sections, viewed as a commutative (and hence, factorization) algebra in Vect.

5.1.6. Let

(5.4) IndCoh™ (Opg (D™ ))mon-free C IndCoh™(Opg; (D))

be the full subcategory of objects set-theoretically supported over the image of (5.2).
Let us regard both categories in (5.4) as modules over QCoh(LSx(D*)).
Note that direct image along (5.2) upgrades to a functor

(5.5) IndCoh*(Opg°™™(D*)) —
— Functqeon(Ls ; (0%)) - mod (QCoh(LS¢(D)), IndCoh™ (Opg (D ™)) mon-free ) ==
=~ Functqeon(Ls (0 %)) - med (QCOL(LS (D)), IndCoh”™ (Opg(D™))) -
We have the following key technical observation:
Lemma 5.1.7. The functor (5.5) is a pointwise equivalence.

5.2. IndCoh™ of monodromy-free opers as factorization modules.

5.2.1. Consider the functor of direct image
I'(Opg(D™), —) : IndCoh™ (Ope(D™)) — Vect .
It sends the factorization unit to Opp (D) € Vect, and hence upgrades to a functor
(5.6) ['(Opg(D*), =)™ : IndCoh* (Opg (D)) = Oop,, (n)-mod ™.

The functor (5.6) is t-exact with respect to the natural t-structures on the two sides. But, it is
not an equivalence: indeed, the right-hand side is left-complete with respect to its t-structure, and the
left-hand side is not. However, we have:

Lemma 5.2.2. The functor (5.6) induces an equivalence between the corresponding eventually cocon-
nective (a.k.a. bounded below) subcategories.

5.2.3. We can create a similar picture for IndCoh™ (Op‘é“’“‘f'ee(Dx)):
Direct image along the projection
t: OpE®™ ™ (D*) — LSy (D)
defines a (factorization) functor
(5.7) t. : IndCoh* (OpE°™ ™ (D*)) — QCoh(LS (D)) ~ Rep(G).
Denote
Re op = t(Oopg ())-
This is naturally a commutative factorization algebra in Rep(G).
5.2.4. Explicitly, for
V € Rep(G) = QCoh(LSx (D)),
let Vop := (t|ops(m))" (V) be the corresponding tautological vector bundle over Opg (D). Then
Rg,0p = ([(Opa(D), —) @ 1d) ((Re)op),
where
R € Rep(G) ® Rep(G)

is the regular representation.
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5.2.5. The functor (5.7) naturally upgrades to a functor
(5.8) (t+)™" : IndCoh™ (OpE®™™**(D*)) — Re op-mod ™" (Rep(G)).
We have:

Lemma 5.2.6. The functor (5.8) induces an equivalence between the corresponding eventually cocon-
nective subcategories.

5.3. Self-duality for opers.

5.3.1. As for any indscheme, we have an equivalence of factorization categories:

(5.9) (IndCoh* (Opa®™**(D*)))" ~ IndCoh' (OpE™ (D).
We now claim that there is a canonically defined equivalence
(5.10) Oop(cr) : IndCoh'(OpE*™ (D)) — IndCoh™ (OpF™ (D)),

compatible with the monoidal action of IndCoh!(Opg‘O"’ﬁee(Dx )) on both sides.

The construction of the functor ©¢,(&) will occupy the majority of this subsection.
5.3.2. Tautologically, for any indscheme, the datum of a functor
(5.11) IndCoh'(Y) — IndCoh* (Y),
compatible with an action of IndCoh'(Y), is equivalent to a choice of an object in IndCoh* (Y).

If the functor (5.11) is an equivalence, we will say that the corresponding object of IndCoh*(Y) is a
fake dualizing sheaf, and denote it by

wy ™ € IndCoh™ (Y).

Thus, in order to construct (5.10), we need to exhibit a fake dualizing sheaf on Opgo“'ﬁee(DX).
5.3.3.  We first consider the case when we take Y to be the indscheme Opgs (D) of all opers on the
formal punctured disc.

Recall that the D-scheme Opg is acted on simply transitively by the D-scheme of jets into a(g§)w,
where a(g) C § is the centralizer of a regular nilpotent element, and the twist by wx is performed with
respect to the canonical G,,-action on a(g).

Hence, Ops(D*) (resp., Ops(D)) is acted on simply-transitively by £(a(§)wy) (resp., £ (a(§)wy))-
In particular, the quotient
Ope(D™) /L7 (a(§)wx )
is acted on simply-transitively by £(a(d)wy)/L"(a(§)wy), and hence is a (factorization) scheme of
ind-finite type. In particular, the object

Wop (D) /et (a(@)y ) € MACOR" (Opg(D™) /L7 (a(§)wy ) := IndCoh(Opg(D™) /L7 (a(§)wx )
is well-defined.
5.3.4. We set
(5.12) wptake | e IndCoh*(Opg (D))

Opg (D)
to be the *-pullback of Wope(D*)/+ (a(@)wy ) along the projection
Op(D*) = Op(D*)/£* (a(@)uy -
The following is easy:
Lemma 5.3.5. The functor
Oopa) IndCoh' (Opg(D*)) — IndCoh™ (Ops (D))
defined by the object ™™ € IndCoh*(Opgs(D*)) of (5.12) is an equivalence.

Opg(DX)
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5.3.6. We now consider the closed embedding (5.2).
We let
W tes 1) € IndCoh” (Opg™™ (D))
be the !-pullback of wg;a;(em) along (5.2).
We claim:
Lemma 5.3.7. The functor
IndCoh' (OpZ°™¢(D*)) — IndCoh™ (OpE°*™*¢(D*))

defined by the object wg’iﬁ‘fﬂ,ﬁee (ox) € IndCoh* (Op®*™°(D*)) is an equivalence.
e

This gives rise to the sought-for functor ©g, s in (5.10). Note that by construction, the functor
O0p(¢) respects the Sph-actions.

Remark 5.3.8. By construction, the functor O, in (5.10) is rigged so that the diagram
IndCoh' (OpZ°™ (D)) —— IndCoh'(Opg(D*))
@omé)l l@omc‘:)
IndCoh* (OpE°*™¢(D*)) ——— IndCoh*(Opg(D*))
commutes, where the horizontal arrows are direct image functors along (5.2).

Remark 5.3.9. Note also that the !-pullback of w;’igfn_ﬁeewx) along (5.1) identifies with Oop(p)- This
implies that the diagram
IndCoh'(Opg(D)) ——— IndCoh'(OpEe-™e¢(D*))
90p(c“)l leow‘:)
IndCoh*(Opg (D)) ———  IndCoh™(Opx (D))

commutes as well, where the horizontal arrows are direct image functors along (5.1), and the left vertical
arrow is defined using

wg;a;‘;@) = O0py(p) € QCoh(Oop,, (1)) ~ IndCoh™ (Opg(D)).

This shows that the functor (5.10) sends the factorization unit
11ndCoh!(op8°n-free('Dx )) = WOopy (D)
to the factorization unit
11ndcoh*(opg°"-“ee(DX)) = O0p (D)-
In other words, the functor (5.10) is unital (which is must be, since it is an equivalence).

5.3.10. Just like IndCoh™ (Op‘é’on'ﬁee(DX)), the category IndCoh!(Opgon'f’ee('DX)) acquires a natural
action of

IndCoh(HeckeSC{?ec’loc) — IndCohNﬂp(HeckeSGpec’loc) =: Sph*,

and it follows from the construction that the functor ©q, ) respects these actions.

5.4. (Parabolic) Miura opers.
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5.4.1. Translated opers. Let G be a reductive group, and let P 20, be a G-bundle on X. We let
OPG,T 29,
be the following variant of the D-scheme Op:

In the definition of opers, instead of requiring that the induced 7-bundle be plwx), we require that
it be

(5.13) Plwx) ® ?Z%-
We let
mon-free
Obe.s,, (D) C OPEE“(D) C Opg,y, (D)
G G G
denote the corresponding factorization spaces.

The material from the previous subsection transfers verbatim to the present context.

5.4.2.  We now take the reductive group in question to be M, the Levi subgroup of a standard parabolic
P. We take
Pz = pp(wx).
Note that in this case, the T-bundle (5.13) is
pum(wx) ® pp(wx) = plwx),

where p in the right-hand side is the p for G.

We will use a short-hand notation

Opit,pp = OPr pp(wx)-
5.4.3. Example. When P = B, we obtain that the scheme
OPT,;;

that classifies connections on the T-bundle p(wx).

5.4.4. Let MOpg p- denote the D-scheme of P~-Miura opers, i.e.,
MOpG p— = (OPG X LSP— )trans7
’ LSG

where the superscript “trans” refers to the condition that the B-reduction of the G-bundles involved
in the oper structure is transversal to the P~ -reduction.

We have the natural forgeful map
(5.14) p*" : MOpg - — Opg
5.4.5. Note also that we have a map
(5.15) q"™ : MOpg p- — Opyy 5,
constructed as follows:

The M-bundle with a connection are induced from the P~-bundle. The reduction to B(M) comes
from the reduction of the original G-bundle to B.

The following is fundamental, albeit immediate:
Lemma 5.4.6. The map (5.15) is an isomorphism.

Remark 5.4.7. The composition
Miu Miuy—1
prto(a™)
is a map
OpM;ﬁP - Op@,
called the (parabolic) Miura transform.
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5.5. The spectral Jacquet functor.

5.5.1. Consider the fiber product

MOpg p-(D*)  x  LSp- (D).
LS (DX)

Note that the maps

Ops(D*) = MOpg p- (D*)  x  LSp-(D) = Opyy 5, (D),
LS p_ (DX)

u Miu

induced by pM" and g™, respectively, naturally factor via maps

Miu,mon-free Miu,mon-free
(5.16) Opg*™ ™ (D*) P «— MOpc,pf(DX)LS X(DX)LSP—(D)q —  Opjaee(DX).
o
5.5.2. Let
J 7P IndCoh' (Opg®™ (D)) — IndCoh' (Op}y 5 (D))

denote the functor

J—,spec,! L (inu,mon-free) Miu,mon—free)!

<o (p
5.5.3. Denote by J~*P°“* the functor
IndCoh* (Opg®™ (D *)) — IndCoh™ (Op}y s (D)),

so that we have a commutative diagram

IndCoh' (Opo™free(DX)) """ IndCoh' (OpiEfree(D*))
©op(a) lN Nl@o;»(m

IndCoh* (OpZe™fee(D*)) L5, TndCoh* (Opyriee(DX)),

where Oq, ) and Og,yy) are the identifications of Sect. 5.3.

5.5.4. We will refer to J~"*P°“* as the “spectral Jacquet functor.” The main theorem in Part I of the
paper will establish its relationship with the BRST™ functor at the critical level.

5.6. The semi-infinite spectral Jacquet functor.

5.6.1. Consider the (non-affine) D-scheme

so that
Opg,p (D) = Opa(D*)  x  LSp (D),
LS5 (D)

Consider the fiber product

Opg,p-(D*) %  LSy(D).
LS 1 (DX)

Let:

e i denote the map

LSy (D) = LSp (D*) x  LSy(D),
LS 7 (D)

and also its base change

Opg p-(D*)  x  LSp-(D) = Opgp- (D) x  LSy(D);
LSy (DX) LSy (D)
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e p denote the projection
LSp- (D) - LSu(D),
and also its base change my means of Op‘gor"ﬁee(Dx) — LS (D), which is

Opg,p- (D) X  LSp- (D) — Opg*™ e (D*);
LS, (DX)

e j denote the map
MOpg, - (D*) — Opg, p- (D™);
and also its base changes

MOpg p- (D) x  LSy(D) = Opgp- (D) x  LSy(D)
’ LS,7(DX) ’ LSy (DX)

and

MOpg p-(D*)  x  LSp-(D) = Opg p-(D*) x  LSp-(D).
’ LS5 (DX) ’ LS;_ (DX)

Note that the above maps give rise to a Cartesian diagram
MOpg p-(D*)  x  LSp (D) —— MOpg p- (D) x  LSy(D)
(DX)

LS, LS 37 (D)
i| |

(5.17) Opg,p-(D*)  x  L8p-(D) —— Opgp-(D*) x  LSy(D)
LSp_ (DX) LS 7 (DX)

g
Opgon»free (D)

5.6.2. Consider the (factorization) category

IndCoh! (Op@’ P (D°) X, I8 M(@)).
M

Let
| oo

(5.18) J"Spec"’T:IndCoh!(Op@,p_('Dx) x LSM(‘D))%IndCoh!(Op'A‘}Io‘;';'ee(DX))
LS 7 (DX) ’

denote the functor of pullback along

OPR} ™" (D) 2 MOpg,p-(D*) | X LSy (D) % Opg,p-(D*) _ X LSu(D).
M M

5.6.3. Let

IndCoh!<Op@1p—(®X) X LSM(D))

CIndCOh!(Op@ p-(D*) LSM(D))
LS 5 (D) ’

mon-free LS 7 (DX)

be the full subcategory consisting of objects set-theoretically supported over
LS (D) o) Opg,p- (D) C Opg p- (D).

Se
It follows by base change along (5.17) that the functor J~**P°®! factors as

(5.19) IndCoh!(Op’é‘on'free(Dx))p%IndCoh!(OpG,p_(Dx) x Lsp,(ﬂ))b
LS,_ (DX)

%IndCoh!(Opcypf(Dx) X LSM(D)) <
LSM (DX) mon-free

i Jﬁ’spec‘!y T 1 mon-iree
— IndCoh' (Op(;,p_('DX)LS VTDX)LSM(D)) — 7 IndCoh'(Opiu-free (D).
M
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5.7. The enhanced spectral Jacquet functor.

5.7.1. Recall the stack

HeckeZ 51 == LSs(D) x  LSp-(D*) x  LSy(D).
LS5 (DX) LS 7 (DX)

!
Note that the operations of !-pullback and ® give rise to a functor

(5.20) IndCoh' (Hecke*s"**)@IndCoh' (Op™™ free(DX))—>IndCoh!<OpG,p,(‘DX) x LSM(D)).
LS, (DX)

5.7.2. In fact, we have a canonically defined functor

(5.21) IndCoh'(Hecke?s"*°)  ® IndCoh'(Opg™ ™ (D)) —

spec
Sphé

—>IndCoh!(OpG,pf(®X) x LSM(D))

LSM(DX) mon-flree7

so that (5.20) factors as

(5.22) IndCoh' (HeckeSpec 1°¢) @ IndCoh' (OpZ°™ ¢ (D*)) —

— IndCoh (HeCkeSPe; IOC) ® IndCoh (O mon- free(Dx )) (5_21))
’ hS pec

Sp
—)IndCOh!(Opé’pf(Dx) X LSy(D )

< IndCoh'’ (Opa s (D) x LS M(D)).
LS 7 (DX)

mon-free LS 7 (DX)

5.7.3. Moreover, the partial composition

IndCoh' (OpZemfres (X)) ¢ IndCoh'(Opg p- (D) x LSy (D))

LS 7 (D) mon-free

in (5.19) identifies with

1 Id
IndCoh! (HeckeSPeS:10¢) @
G, p—

Il’ldCOh (Opmon free(,DX ))

— IndCoh! (Heckesé[)e;£00) ® IHdCOh! (Opgon—free(Dx )) (5_21>)
’ SphSGypcc

— IndCoh' (opé, — (D) x LSM(D))

mon-free

LS (DX)
5.7.4. Consider the functor
(5.23) IndCoh'(Hecke*c™) @ IndCoh'(Oponfree(p*)) 22
’ s;,hsé’“
—s IndCoh' (Opé,p— (D) » LSM(‘D)) f o

LS 4 (DX)
— spec,!, 2
— IndCol! (op@ 5 (D)  x LS M(@)) 7257 IndCoh' (Opiientree(DX)).
’ LS 7 (DX) ’
The functor (5.23) is compatible with the actions of Sph’>*“. By rigidity, it gives rise to a functor,
denoted

(5.24) JPeobeh L pdCoh' (OpE™ ™o (D)) —
— IndCoh” (Hecke?*s'*°)  ® IndCoh'(Opjy s (D)) =

M,pp
SphSPeC ’
M

=I(G,P7)®*"° @ IndCoh'(Opjy 5 (D).

spec
SphM
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Note that the functor J~SPe=henh of (5.24) respects the actions of Sphgy*“.

5.7.5. Tt follows from Sect. 5.7.3 that the composition of J~SPe®Henh with

oblv % —Sph ®Id
—

I(G, pf)spec,loc ® IndCOh! (OpmMcjg-;ree(ﬂx ))

Sphj\;ec
— SphPee . gpeclnd(}oh! (0P} et (D)) ~ IndCoh' (Opyy (D))
P
identifies with J—Pe!,
5.7.6. Denote
IndCoh' (Opy (D)) " := (G, P7)™**'°° @ IndCoh'(Opjy st (D)),

spec
SphM

,spec,!,enh

so that we can regard J— as a functor

IndCoh'(Opg®"™**(D*)) — IndCoh' (Opjy 5t (D ™)) .
5.7.7. Denote also
IndCOh* (Opyr_mn—free(®>< ))—,enh .— I(G, P—)spec,loc ® IIldCOh* (Opyr_mn—free(®>< ))

M,pP Sphigec M,ﬁp

Since the equivalence @Op( 1) 1s compatible with the Hecke actions, it gives rise to an equivalence

IndCoh'(Opl-ree(D <))~ Z™ [ndCoh* (Opjiree (D)) ",
5.7.8. We define the functor
(5.25) Jepeerent IndCoh™ (Opg®™ (D)) — IndCoh™ (Opyy s e (D)) e
so that
@%n;](M) o J*,spec,!,enh ~ Joospecxenh @op(c)~

Since the equivalence © ¢, ¢ is compatible with the Hecke actions, the functor .J —»spec,x.enh

the actions of Sphiy*“.

respects

5.7.9. By construction, the composition of J~SPe*enh with

oblv % -—)Sph®1d

I(G, p— )spec,loc ® IndCoh* (Opn}on-free (.D X ))

M,pp
spec s
SphM

M,pp

— Sph’?® @ IndCoh"(Opjys (D)) ~ IndCoh” (Opjy s (D))
Sph?Pe

identifies with J~P¢%*,

6. A DIGRESSION: FACTORIZATION MODULES CATEGORIES OVER Rep(G)

Constructions in this section will play an auxiliary role for the analysis of the critical FLE functor
in the next section.

We will explain a procedure that attaches to a module category C over QCoh(LSx(D™)) a fac-

Cfact,Rep(G')

torization module category over Rep(G), denoted Conjecturally, the assignment C ~~

Cfact:Rep(G) jg fully faithful as a functor between the corresponding 2-categories; we cannot prove this

at the moment, but we can make do with a particular case of this assertion, Lemma 6.1.5.

The key result of this section is the following. Let C be a category acted on by £(G), and we wish to

relate the categories Whit, (C) and Sph(C). The first observation is that Whit.(C) can be promoted

to a factorization module category over Rep(G), to be denoted Whit*(C)fa"’Rep(é).
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Now the claim (Proposition 6.4.4) is that (the tempered quotient of) Sph(C) can be recovered as
PUnChpop (¢ - modtact (Rep(é)fact,Rep(G")’Whit*(c)fact,Rep(é)) ,
where Rep(@)fa“’Rep(d) denotes Rep(G) when viewed as a factorization module category over itself.
6.1. Creating factorization modules categories.

6.1.1. Consider the space LSx(D*), and the monoidal category QCoh(LSs(D*)). Let us recall the
construction of a functor

(6.1) QCoh(LSg(D*))-mod — Rep(G)-mod™*, C s CRetRep(S)

Namely, we will create an object
QCoh(LSg(D*))™ReP(&) ¢ Rep(G) - mod™*
that carries a commuting action of QCoh(LSx(D*)). The functor (6.1) will then be given by

QCOh(LSG(DX))faCt,Rep(G) ® _.
QCoh(LSx (D X))

6.1.2. The object QCoh(LS@(DX))faCt’Rep(@) will have the feature that its underlying DG category,
equipped with an action of QCoh(LSx (D)), identifies with QCoh(LSx(D™)) itself.

This will imply that the functor (6.1) has the feature that for C € QCoh(LSs(D™))-mod, the
category underlying C™2°“RP(&) jdentifies with the original C.
6.1.3. The object QCoh(LSG('DX))faCt’Rep(G) is constructed as follows.

For our fixed point z € X and a finite subset x € x C X, consider the multi-disc D,, and set
(QCoh(LSg(D)) ™ P(@), = QCoh(LSg (D — x)).

6.1.4. In what follows, we will need the following assertion from [Ras3, Theorem 9.13.1]:
Lemma 6.1.5. The functor (6.1) is pointwise fully faithful when restricted to the full subcategory
QCoh(LS(D*))-modys ., (p) C QCoh(LSs(D™))-mod,
consisting of module categories set-theoretically supported over
LS&(D) C LS (D).

Remark 6.1.6. We conjecture that the functor (6.1) is pointwise fully faithful on all of
QCoh(LSx(D*))-mod. A partial result in this direction has recently been established in [Bog]: the
restriction of (6.1) to

QCOh(LSG(DX )) - modLsgsn(@ X)) C QCOh(LSG’(‘D X )) -mod
is pointwise fully faithful, where
LSE*™(D*) C LS (D)

is the stack of local systems with restricted variation (see [AGKRRV, Sect. 1.4]). We are not confident
that Lemma 6.1.5 or its extension [Bog] remain true factorizably.

6.2. Factorization modules categories attached to schemes.
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6.2.1. Let Y be an affine D-scheme over X equipped with a map

Y — pt/ G.
Consider the corresponding factorization spaces
(6.2) £hy) c Ly

and a commutative (but not necessarily Cartesian) diagram

£rY) —— £0Y)

| 5
LSg(D) —— LSg(DX).
)

6.2.2. On the one hand, we can consider IndCoh*(£(Y)) as an object of QCoh(LSs(D*))-mod.
Consider the resulting object

(6.3) IndCoh™ (£(Y))™"***(©) € Rep() - mod™*.
6.2.3. On the other hand, consider
QCoh(£7(Y)) = IndCoh* (£ (Y)) and IndCoh*(£(Y))
as factorization categories. Direct image along (6.2) defines a (unital) factorizaton functor
IndCoh*(£7(Y)) — IndCoh™(£(Y)).
Furthermore, pullback along t defines a (unital) factorizaton functor
Rep(G) = QCoh(LS4 (D)) — QCoh(£* (¥)).
Therefore, the operation of restriction of factorization modules defines an object
(6.4) IndCoh*(£(Y)) € Rep(G) - mod™*.
6.2.4. The following is obtained by unwinding the definitions:

Lemma 6.2.5. The objects of Rep(G) - mod™*, given by (6.3) and (6.4), respectively, are canonically
isomorphic.

6.2.6. Denote
gy)yrontee .= LSs (D) x  £(Y).

LS (D)
‘We have the closed embeddings
£ (Y) = L(Y)™ = 2(y),
and the corresponding unital factorization functors
IndCoh* (£ (Y)) — IndCoh* (£(Y)™" ™) — IndCoh*(£(Y)).

Let
IndCoh™ (£(Y))mon-tree C IndCoh™ (£(Y))

be the full subcategory consisting of objects set-theoretically supported on IndCoh* (£(Y)™mon-free),

From Lemmas 6.1.5 and 6.2.5 we obtain:

Corollary 6.2.7. There exists a canonical pointwise equivalence
Functqeon(Lsg (0 %)) - moa (QCoh(LSg (D)), IndCoh™ (£(Y))) =~
= Functpey (¢ - modfset (Rep(é)faCt’Rep(G), IndCoh* (s(y))mon_ﬁee) ,

where:

o In the left-hand side, IndCoh* (£(Y)) is viewed as a module category over QCoh(LSx(D*)) via
the functor t*;
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e In the right-hand side, IndCoh*(£(Y)) (and its full subcategory IndCoh™ (£(Y))mon-free ) is viewed

as a factorization module category over Rep(G), by the procedure of Sect. 6.2.3.
o In the right-hand side, Rep(G)2“FP(&) denotes the factorization category, corresponding to

Rep(G), viewed as a factorization module over itself.

Remark 6.2.8. It should be possible to replace IndCoh™ (£(Y))mon-tree With IndCoh*(£(Y)) in the above
corollary. Our inability to do so at the present moment is responsible for some additional, innocuous
technical complications.

6.2.9. We apply the above discussion to the case when Y = Ops. Combining Corollary 6.2.7 with
Lemma 5.1.7, we obtain:

Corollary 6.2.10. The functor of direct image along (5.2) upgrades canonically to a pointwise equiv-
alence

(6.5) IndCoh*(Opg®™™(D*)) 3

— Functgep (&) - modtact (Rep(G)faCt’Rep(é) ,IndCoh* (Op¢ (D™ ))mon_free) .

6.2.11. In the factorizable setting, we do not know if Corollary 6.2.10 is true. However, we can
reconstruct

IndCoh*(OpE™ (D))
from
FUnCtpep(c) - modtact (Rep(é)fa“’ﬁep@ ,IndCoh™ (Op (D™ )))
as follows.
Lemma 6.2.12. Let S be an affine scheme with a map to Ran.

(a) The category

Funct () - moateet (Rep(G)™ (@), IndCoh® (Op (D))

has a unique t-structure for which the (conservative) forgetful functor to IndCoh*(Opgs (D)) is t-exact.
The subcategory Functge, ¢ - modfact Rep(@)*ReP(®) IndCoh* (Opg(D*))mon-free B is preserved un-
der truncations, so also inherits a t-structure.

(b) The functor

IndCoh™ (OpZ°""**(D*))s — Functp.,(c) - meafact (Rep(é)faCt’Rep(é), Indcoh*(opc-(ﬂax))mon_ﬁee)s

is t-exact and an equivalence on eventually coconnective subcategories.

(c) The category IndCoh*(Oprgon'ﬁee(Dx))s is compactly generated by eventually coconnective
objects. Moreover, an object of IndCoh*(Opré‘on‘free(Dx))s is compact if and only if its image in
IndCoh*(Opg(D*))s is compact.

6.3. Spherical vs. Whittaker.
6.3.1. Let C be a category equipped with a £(G),(w)-action at the critical level. Denote
Sph(C) := C @pwx) and Whit, (C) := Co)p )
6.3.2. We claim that Whit.(C) can be naturally upgraded to an object
(6.6) Whit, (C)2<tRP(@) ¢ Rep(G) - mod™™.
Indeed, the construction of [CFGY, Sect. 1.1] upgrades C to an object of

Cfact,Gr € D-modcrit (GI‘G,p(wX ) ) - l’nodfaCt .
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The categories comprising C™"" carry an action of the (factorization) version of £(G)(wy). Ap-
plying the functor of (£(NV),(y), X)-coinvariants, we obtain that C™°*¢*

gives rise to an object
Whit(C?*4") € Whit, (G) - mod™".
Finally identifying
. FLEg
Rep(G) ~  Whit.(G)

as factorization categories, we transform Whit(C™°*C") to the desired object (6.6).

6.3.3. We now claim that there exists a canonically defined functor
(6.7) Sph(C) — Functpe, () - moatact (Rep(é)f‘"‘Ct’RGp(é), Whit*(C)fa“’Rep(G)) ,
where
Rep(é)fact,Rep(G’) c Rep(é) _ modfact
),

is the object corresponding to Rep(G), viewed as a factorization module over itself.

6.3.4. Namely, we start with the tautological functor
D—modcrit(Grgyp(_,X)) X Sph(C) — C.
Sphg
By construction, this functor is a morphism of categories acted on by £(G),(wy), S0 a morphism of
factorization D-modecrit(Grg, p(wy))-module categories.
Passing to Whittaker coinvariants, we obtain a functor

(6.8) Whit.(G) ® Sph(C) — Whit.(C)
Sphg

that is a morphism of factorization Whit. (G)-module categories.
We now apply FLE; , to obtain a pairing
Rep(G) ® Sph(C) — Whit.(C)
Sphg

that is a morphism of factorization Rep(G)-module categories.
We obtain the morphism (6.7) by tensor-Hom adjunction.

6.4. Spherical vs. Whittaker, continued. For the remainder Sect. 6, we work in the pointwise
context, not over all of Ran space.

6.4.1. Let
(6.9) Sph®Pee b Sphg’ec

G,tem
be the tempered subcategory.
IL.e., this is the full subcategory generated by the essential image of
IndCoh™ (LS (D)) ~ QCoh(LSx(D))
by the !-pullback functor along
HeckeSG»"_’eC‘10C — LSx(D)

along either of the projections.

The embedding (6.9) admits a right adjoint, whose kernel is a monoidal ideal. This allows us to

view Sph®P®° as a monoidal colocalization of Sph%P¢°.
G,temp G
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6.4.2. Let C be as in Sect. 6.3.1. Set
Sph(C)temp = Sth,temp ® Sph(C),
Sphg

where
(610) Sth — Sth,temp
is the colocalization corresponding to
spec spec

Sphy™ — Sphé,temp

we can use either Satg or Satg to identify Sph, with Sph®P°‘; the resulting colocalizations are the
G G

same).

The functor (6.10) gives rise to a functor
(6.11) Sph(C) — Sph(C)temp,
and since the former is a colocalization, so is the functor (6.11).
6.4.3. We now claim:

Proposition 6.4.4.
(a) The functor (6.7) factors as

Sph(C) — SPh(C)remp — Functyey (@) - modtset (Rep(é)faCt’Rep(é), Whit*(C)fa“‘”’Rep(é)) .

(b) Suppose that C is generated, as a category acted on by £(G)pwy), by the essential image of the
forgetful functor

Sph(C) — C.
Then the above functor
6.12 SPh(C)temp — Functge, e - modrct (Rep(G)™ R Whig, (C)fetRep(@)
P Rep(G) - mod
is an equivalence.
(c) More generally, let define
(6.13) cohEen ¢

to be the essential image of the fully faithful embedding
D-moderit (Grg) ® Sph(C) — C.
Sphg

Then the functor
(6.14) Sph(C)temp — FunctRep(G) modfact (Rep(é)fact,Rep(G)’ Whit,. (CSph—gen)fact,Rep(G))
is an equivalence.

Proof. The assertion (a) follows as the pairing (6.8) factors through a similar expression with
Sph(C)temp in place of Sph(C).
In the setting of (b), note that the right hand side of (6.14) commutes with colimits in the variable

C and commutes with tensoring by DG categories; this follows from Lemma 6.1.5. This reduces the
assertion to the case when C := D-modcit(Grg,p(wy)), Where it amounts to the assertion that

SPhG temp —* FUNCtRey () - modtact (Rep(é)faCt’Rep(é), Rep(é)faCt’Rep(é)) ~
]
~ QCoh(HeckeF**°) = Sphscp’izmp
is an equivalence, where the displayed isomorphism follows from Lemma 6.1.5. This assertion is imme-
diate from the construction of the derived Satake isomorphism in [CR].
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Assertion (c) follows immediately from (b) applied to CSPh-gen,
O

Remark 6.4.5. Parallel to Remark 6.2.8, we actually expect (c) to hold with C in place of CSPh-gen,

7. THE CRITICAL FLE

In this section we prove the main result of Part I, namely, the critical FLE, Theorem 7.3.4, which
says that there exists a canonical equivalence of factorization categories

(7.1) FLEG crit : KL(G)eric =5 IndCoh™ (Opg®™ (D)),

The functor in one direction in (7.1) is a variation on the theme of the functor DS; essentially
FLEG it is obtained by decorating DS using Proposition 6.4.4 from the previous section.

Once we the equivalence (7.1) is established, we proceed to the study of its properties. The key ones
are:

e The compatibility of FLEg crit with the equivalence FLEy  : Rep(G) = Whit. (G), expressed
by Corollary 7.5.2, which says that the naturally constructed pairings

Whit, (G) @ KL(G)eris — Vect and Rep(G) @ IndCoh* (OpE™¢(D*)) — Vect
match up;

e Compatibility of FLEq crit with the self-dualities on the two sides, expressed by Theorem 7.6.4.
7.1. The enhanced functor of Drinfeld-Sokolov reduction.

7.1.1. Consider the functor

DS : g-modyit, p(wy) — Vect
of (4.25).

Consider the factorization unit

lﬁ-mod € /g\'mOdcrit,p(wX)y

crit,p(wx )
which is the vacuum module

Va.C(G)crit,P(WX)'

7.1.2. It is a basic fact in the theory of representations at the critical level that there exists a canonical
isomorphism of factorization algebras'*

FFW
(7.2) Oopg(p) = DS(Vac(G)erit,p(wx))
in Vect.
Hence, the functor DS can be enhanced to a functor

(73) Dsenh’coarse :ﬁ—modcrit,p(wx) — OOPG(D)—mOdfaCt.

14The is the Feigin-Frenkel isomorphism for W-algebras at the critical level.
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7.1.3. Recall the functor
I'(Opg(D*), =)™ : IndCoh™ (Opg(D*)) = Oop,, (p)-mod™*
of (5.6).
We claim:
Proposition 7.1.4. The functor DS can be lifted to a (factorization) functor
DS : §-modsis p(wy) — mdCoh™(Opg (D)),

so that
DSenh,coarse ~ F(Opé(.DX )7 _)enh ° DSenh .

Such a lifting is unique subject to the following conditions:

o DS is continuous;
o DS sends compact objects in ﬁ-modcrit,p(w{) to eventually coconnective (i.e., bounded below)
objects in IndCoh* (Opg(D™)).
Proof. Tt is enough to show that the restriction of DSe™€°¥™¢ {4 the subcategory
(’g\'mOdCrit,p(wX))C C /g\'mOdCrit,p(wX)
can be uniquely lifted to a functor
(g-m0drit, p(wy )¢ — IndCoh™ (Opg (D))~ ™.
However, this follows from Lemma 5.2.2; using the fact that the initial functor DS sends
(0-modesit, p(wy))” — Vect™ ™.

O

Remark 7.1.5. Note that Proposition 7.1.4 gets us pretty close to the construction of the sought-for
functor FLEG,crit of (7.1). Namely, the composition

Xp(w stau —~ enh .
(74)  KL(Q)arie " 25 KL(G)erit () = M0derit p(uy) b IndCoh™(Ope (D))
is almost we want. In order to genuinely construct (7.1), we need to show that (7.4) factors via
(7.5) IndCoh* (OpE°™™*°(D*)) — IndCoh* (Opg (D).

One way to do this is to resort to abelian categories (at the abelian level, the functor (7.5) is fully
faithful). This is essentially how this is done in [FG4]. However, the method by which it was proved
that (7.1) is an equivalence at the pointwise level, does not seem to extend to prove that it is an
equivalence at the factorization level. So in this paper, we will take a different approach, which is
based on the construction in Sect. 6.3 and Theorem 7.1.7 below.

7.1.6. Recall now that the functor DS factors via a functor
DS : Whit, (/g\_mOdcrit,p(wX)) — Vect .

It follows formally that the functor DS®™":°°#Ts¢ also factors via a functor, denoted

—=enh,coarse

DS : Whit*(ﬁ—modcrit,p(wx)) — oOpG(D)-mOdfaCt_
We now quote the following fundamental result of [Ras6]:

Theorem 7.1.7. The functor DS™® factors via a functor

—enh

(7.6) DS : Whits (§-moderis, p(wy)) — IndCoh™ (Opg (D)),
and the resulting functor DS™ is an equivalence of factorization categories.

7.2. Compatibility with the factorization module structure. Consider the functor D—Senh7 whose
existence is guaranteed by Theorem 7.1.7. In this subsection we will endow it with a structure of functor
between factorization module categories with respect to Rep(G).
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7.2.1. We consider Whit, (g-moderit, p(wy)) as a factorization module category wit respect to Rep(G)
by the procedure of Sect. 6.3.2.

We consider IndCoh*(Opg (D)) as a factorization module category over Rep(G) via the factoriza-
tion functor

(7.7)  Rep(G) ~ QCoh(LSg (D)) = QCoh(Ope (D)) = IndCoh* (LS (D)) — IndCoh* (Opg (D).

We claim that the factorization functor DS° is compatible with this structure.

7.2.2. Indeed, we can rewrite the factorization module structure on Whit., (/g\-modcrit’p(wx)) with re-

spect to Rep(G) specified above as follows:
Consider the factorization functor
(7.8) D-moderit (Gra, p(wy)) @ KL(G) erit p(wy) ~* 8-MO0derit, p(ewy)s
given by convolution.
Passing to £(IV) (w),x-coinvariants, from (7.8) we obtain a functor
(7.9) Whit, (G) @ KL(G)erit, p(wy) ~ Whits (§-m0oderis, p(wy) )-
Finally, applying the above functor to
IKL(@erie,ploy) = VAG)erit,p(ux) € KL(G)erit,pux)

we obtain a (factorization) functor

FLEg )
(7.10) Rep(G) —3~ Whit.(G)

—*Vac(G)erit, p(w )
—

Whit, (/g\‘mOdcrit,p(wx ) ) .

Unwinding the definitions, we obtain that the factorization module structure on the (factorization)
category Whit. (§-moderit,p(wy)) With respect to Rep(G) from Sect. 6.3.2 identifies with one given by
restriction along the functor (7.10).

7.2.3. We are now ready to show that the functor DS™ is compatible with the factorization module
structures. This amounts to establishing an isomorphism between the following two (factorization)
functors: one is

- . e Haenh «
(7.11) Rep(G) T2 Whit. (§-m0deris p(wy)) = IndCoh* (Ope (D))
and the other is (7.7).
Note that the functor (7.11) can be rewritten as

—1,nv
o-oSatGYT

(712) Rep(G) —" Sphg

—*Vac(G)erit, p(w )
—

KL(G)crityp(wX ) =

enh
— F-m0derit p(wy) = IndCoh*(Opg (D)),

1,nv

where Sat; ™" is as in Sect. 1.8.3, ans using Corollary 1.8.2 further as

—1,nv

-\ Satg
(7.13) Rep(G) —— Sphg

—*VaC(G)crit,P(WX)
—

KL(G)exit,p(wx) =

enh
— §-m0derit p(wy) = IndCoh*(Opg (D)),
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7.2.4. We will first establish an isomorphism between the compositions of (7.13) and (7.7) with the
functor

T (Opa(D*), =)™ : IndCoh® (Opg(D*)) = Oopy ()-mod ™"
of (5.6).
By the construction of the enhancement
[(Opg(D*), =) ~ [(Opg(D*), =)™,

it is enough to construct an isomorphism between the compositions of (7.13) and (7.7) with
I'(Opg(D*), —), as factorization functors.

However, this is given by the following result: essentially, [BD, Theorem 5.5.3] (see also [Ras2]),
combined with (7.2): !5

Theorem 7.2.5. The composition

s —l;xlv —*Vac(G)erit, p(w o
Rep(G) < Sphy Zegtelox) KL(G)exit,plax) — 0-M0derit p(uy) -3 Vect

identifies canonically with

= o [(Ops(D),—
Rep(G) =~ QCoh(LSg(D)) & QCoh(Opg(D)) T PES™) Vect
as factorization functors.
7.2.6. We now upgrade the above isomorphism of the two compositions
- [(Opg(DX),—)enh
(7.14) Rep(?) = IndCoh” (OpE™ () "PeE 7™ 0 ) -mod®*e*

to an isomorphism with target IndCoh* (Op°"™**(D>)) itself.

It is enough to establish the isomorphism between the two functors in question on the compact gener-
ators of Rep(G). These generators can be taken to be eventually coconnective. Hence, by Lemma 5.2.2,
it is enough to show that both functors are t-exact.

7.2.7. The t-exactness is clear for (7.7).

From the isomorphism (7.14), it follows that the composition of (7.13) with T'(Opg (D), —)" is
t-exact.

Now the t-exactness assertion follows from the construction of the upgrade
DSenh,coarse — DSenh

in Proposition 7.1.4.

7.3. The critical FLE. The construction of the sought-for functor (7.1) will be based on the con-
struction in Sect. 6.3.

150ur convention for the isomorphism (7.2) differs from one in [BD] by the Cartan involution. This convention
determines one for the functor FLEG crit. The convention adopted in this paper is compatible with Jacquet functors,
see Theorem 9.1.3.
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7.3.1.  Consider C = g-modeit,p(wy) as a category acted on by £(G)pwy)-
By (6.7), we obtain

(715) FL g),iﬁf : KL(G)Crit = Sph(C) —
— Flll’lCtRep(G) _ modfact (Rep(é)fact,Rep(G)7 Whit., (C)fact,Rep(G‘)> _

= Functrep, &) - moafact (Rep(é)faCt’Re"(é),IndCoh*(OpG(Qx))) .

Per the pointwise statement Corollary 6.2.10, the right hand side of (7.15) can be thought of as a
stand-in for IndCoh*(OpZ°™¢(D*)).’® We refine the target as follows.

It is known'” that the functor
DS : KL(G)erit — IndCoh* (Opg (D))

is t-exact and lands in IndCoh*(Opg&(D™))mon-free. Moreover, as the functor Sph(C) — Whit, (C)
always admits a right adjoint, the functor DS®™® |KL(G)eps, admits a factorizable right adjoint.
The following now formally results from Lemma 6.2.12.

Lemma 7.3.2. (a) There exists a unique functor
FLEeit : KL(G)erie — IndCoh™ (Ops®* ™ (D))

that is t-exact and fits into a commutative diagram

» IndCoh* (OprC‘Y.?O“’free (D*))

KL(GQ)erit N Functre, (@) - modfact (Rep(@)faCt’Re"(é),IndCoh*(Op@(‘DX)))

(b) The functor FLEcit admits a factorizable right adjoint.
7.3.3. We now claim:
Main Theorem 7.3.4. The functor FLEG v of (7.1), constructed above, is an equivalence.

By standard arguments (cf. [Rasb] Appendix A), Lemma 7.3.2 reduces us to proving the pointwise
assertion. This is essentially known by [FG4], although the functor was presented differently there. For
completeness, we present another argument of the pointwise assertion below.

7.3.5. Proof of the pointwise assertion. We now prove that the FLE functor is a pointwise equivalence,
which yields Theorem 7.3.4 by the above. For this subsubsection, all our categories are understood
pointwise.

By Corollary 6.2.10, it suffices to show that FLES ;™ is a pointwise equivalence. In the setting of
Proposition 6.4.4(c), note that
Whit, (§-mod>PPE" ) € Whit, (§-m0derit, p(wy)) = IndCoh™ (Opg (D))

crit,p(wx)
is the subcategory IndCoh*(Opes(D™))mon-free consisting of objects set-theoretically supported on
Opgon'ﬁee(DX); for example, this follows from the calculation of Drinfeld-Sokolov reductions of Weyl
modules in [FG2].

By Proposition 6.4.4, we are reduced to showing that KL(G)crit = (KL(G)crit )temp, OF equivalently,
that KL(G)erit — Whit. (g-modcyie p(wy)) is conservative.

16per Remark 6.2.8, it might be better to replace IndCoh* (Opgon'ﬁee(DX)) with its subcategory
IndCoh™ (OprGf‘c’“‘fr“(‘D>< ))mon-free t0 better match our present state of knowledge.

17As a pointwise statement, this is standard, cf. [Ras6, Corollary 7.2.2] for example. This formally implies left
t-exactness over X! by factorization. But right t-exactness follows easily from the adolescent Whittaker formalism of
[Ras6] — the subtleties in [Ras6, Appendix B] are only related to left t-exactness.
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By [FR1, Proposition 7.3.0.1], there is a canonical t-structure on (KL(G)crit)temp for which the
functor KL(G)erit — (KL(G)erit)temp 1S t-exact. By [FG4], DS is conservative on KL(G);;"O, so the
same is true of KL(G)crit — (KL(G)crit )temp, SO this quotient functor is an equivalence on eventually
coconnective subcategories.

As compact objects in KL(G)erit are eventually coconnective, it suffices to show that KL(G)crit —
(KL(G)erit)temp Preserves compact objects. We identify the latter with IndCoh*(OpZ°™"**(D*)) as
above. Then the calculation of DS reductions of Weyl modules in [FG2] yields the claim.

Remark 7.3.6. As a corollary of the proof, we observe that the action of Sph, on KL(G)eit factors
through Sphg g emp-

7.4. Coarsened versions of the FLE functor.

7.4.1. By the construction of the functor FLEqG crit we have the following explicit descriptions of its
compositions with various forgetful functors out of IndCoh* (Op®*™**(D*)):

e The composition with the functor
IndCoh* (OpE®*™*¢(D*)) — IndCoh* (Ope (D))

is the functor

KL Qp(wx),taut N Dgenh . ..
(G)crit — KL(G)crit,p(wX) - g'mOdcrit,p(wX) — IndCoh (OpG'(‘D ))7

e The composition with the functor

[(Opg(DX),—)nh
—

IndCoh* (OpE°"™**(D*)) — IndCoh*(Opg (D)) Oop, (py-mod ™

is the functor

Dsenh,coarse fact )

KL(G)erit " 25 KL(G)exitopieon) = FM0deriv plon) o = Oop s (my-mod™®;
e The composition with the functor
[(OpEe™™ee(D*), —) : IndCoh™ (OpE°™ ™ (D*)) — Vect
is the functor

(7.16) KL(G)erte 25" KL(G) eritpwx ) — G-m0deris puy) 25 Vect;

In this subsection we will describe explicitly the composition of FLEg, it with the functor
(t.)"™ : IndCoh™ (OpE™ ™ **(D*)) — R, op-mod ™ (Rep(G))
of (5.8).

7.4.2. In order to describe the composition
FLEG 3 = (t.)"" 0 FLEG crit,  KL(G)exit = R 0p-mod™ (Rep(G)),

it suffices to describe the composition

(7.17) pre-FLEg 4, := t« © FLEG crit,  KL(G)erit — Rep(G)

as a factorization functor. Since FLE¢ it is unital, it will follow automatically that the image of the
factorization unit

1KL(G)erse = Vac(G)arit € KL(G)erit

under pre-FLE ..;; identifies with Rg o,
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7.4.3. Using the self-duality of Rep(G) as a factorization category, the datum of a functor (7.17) is
equivalent to that of a factorization functor

(7.18) Rep(G) @ KL(G)erit — Vect .

Unwinding the definitions, we obtain that the functor (7.18) equals

EG,oo ®ap(wx),taut
—

- FL
Rep((Y) @ KL(G)or Whit. (G) ® KL(@erit p(oy)
— Whit, (g-moderit, p(wy)) D Vect,

Remark 7.4.4. The above procedure can be used to give an alternative construction of the functor
IFIJIE(?,crit:

We can define the functor pre-FLEZ?Sf by the procedure described above, then checked explicitly
using Theorem 7.2.5 that it sends 1kr(qg).;, t0 R op, and thus define the corresponding functor
FLEg™se. ’

One can then lift it to a functor

KL(G)erit — IndCoh™ (OpZ°™ (D))

using Lemma 5.2.6.

Remark 7.4.5. It is known that the functor (7.16) is t-exact. This implies that the functor FLEZ %3¢
is t-exact.

Arguing as in Sect. 7.2.7, one can deduce from this that the functor FLEq it itself is t-exact.

7.5. Compatibility of FLEG it and FLEs .. We now record the following compatibility property
of the functors FLEG crit and FLEC;.’OO, to be used in the sequel.

7.5.1. Recall that we have the equivalences

(7.19) Rep(G) ® IndCoh*(OpZ®™™(D*)) ~ IndCoh” (Opg (D™ ))mon-free

spec
Sth

and

=gaenh
7.20) White(G) ® KL(G)eric =~ Whits (§-m0desis o)) P P2 IndCoh™ (Opgs(D™))mon-tree-
p(wx) G

Sphg
The following was embedded into the construction of the FLEg crit functor (see (1.9)):
Corollary 7.5.2. The functors (7.20) and (7.19) match under the equivalences

IE(;,crit

FL * mon-free X 5 FLEG*OO
KL(G)erit =~ IndCoh™(Opg (D)), Rep(G) =~ Whit.(G).

Remark 7.5.3. Note that the actions on Sphg and Sph¥* on KL(G)eric and IndCoh” (Opgzemfree(DX)),
respectively match under Satg, and on Whit.(G) and Rep(G) under Sats. This is in line with the
curse in Sect. 1.8.7.

7.5.4. Denote by
(7.21) PO . Whit.(G) @ KL(G)erie — IndCoh™(Opg (D))

the resulting pairing

Whit, (G) ® KL(G)erit — Whits(G) ® KL(G)erit =23 IndCoh* (Ope(D™))mon-tree <

Sphg

< IndCoh™(Opg (D).
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Explicitly, it is given by

Id ®@a (g au .
(7.22)  Whit,(G) ® KL(G)erit X" Whit. (G) ® KL(G)exit p(en) =3

~aenh
— Whit. (§-modesi p(wy)) =+ IndCoh*(Opg(DX)).

Let PS¢ and PSo""“°*"¢ denote the compositions of Plgc’enh with the forgetful functors

(7.23) ['(Opg(D™), —) : IndCoh™ (Opg(D™)) — Vect
and
(7.24) ['(Opg (D), =)™ : IndCoh* (Opg (D)) = Oop,, (p)-mod ™,

respectively. (These two functors are obtained by replacing the last arrow in (7.22) by DS and

——=enh,coarse

DS , respectively.)
7.5.5. Denote by
(7.25) Poo™ : Rep(G) ® IndCoh” (Opg®™ (D)) — IndCoh* (Ope (D))
the resulting pairing
Rep(C) ® IndCoh” (OpE*™**(D*)) + Rep(() _ ® _IndCoh” (Opg*™ (D)) 72
Sphsé ec

~ IndCoh™ (Op&(D ™)) mon-treeIndCoh* (Ops (D)) — IndCoh™ (Opg (D).

Explicitly, it is given by

(7.26) Rep(G) ® IndCoh* (Oplgon»free(Dx ) gl

— QCoh(OpZ°™ (D)) ® IndCoh* (OpZ°™ (D)) & IndCoh* (OpZ°™ (D *)) —
— IndCoh™(Opg(DX)).

Let P2° and Ploc enh.coarse Jonote the compositions of Ploc *h with the forgetful functors (7.23) and
(7.24), respectlvely

7.5.6. From Corollary 7.5.2 we immediately obtain:

Corollary 7.5.7. The functors Po*™ and Plgc’e“h match under the equivalences

FLEG crit

. FLEs
KL(G)erit IndCoh* (Op2°™(D*)) and Rep(G) ~ = Whit.(G).
And hence:

Corollary 7.5.8. The functors PS¢ and Plé)c (resp., ch’e“h’coarse and ch’e"h’coarse) match under the
equivalences

crit

. . FLEg o
IndCoh™ (Opg°™ (D)) and Rep(G) =~ Whit.(G).
7.6. Compatibility with duality.

FLEg,
KL(G)ert ~

7.6.1. Recall that according to (4.3), we have a canonical identification
(7.27) (KL(G)erit)” =~ KL(G) cxit.-
By construction, the equivalence (7.27) respects the actions of Sphg;.

7.6.2. In addition, we have an equivalence

Op(G)

(7.28)  (IndCoh” (Opg™™**(D*))) " ~ IndCoh’ (Opg™ **(D*)) IndCoh* (OpE°™ (D).

This equivalence respects the actions of Sphiy*.
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7.6.3. We claim:
Theorem 7.6.4. With respect to the identifications (7.27) and (7.28), the functor
(FLEG,crit)" : IndCoh* (OpE°™ ™ (D)) = KL(G)erit

identifies with
76 o (FLEG,erit)

Moreover, this identification of functors respects the compatibility with the actions of

Satg, -

Sphg — ~"" SphF*.

Remark 7.6.5. Note the similarity between the statement of Theorem 7.6.4 and Lemma 1.4.11: in both
cases a non-tautological self-equivalence of the Whittaker side makes the FLE inverse to its dual, up
to the Cartan involution.

Remark 7.6.6. Note again that the appearance of the Cartan involution in Theorem 7.6.4 is in line
with the curse in Sect. 1.8.8.

7.7. Twisted version.
7.7.1. Let fPZ% be a Zg—bundle on X. We consider the following variants of the two sides of the FLE:
On the Kac-Moody side, we consider the category
KL(G)critfdlog(fPZ%)v

see Sect. 4.4.1.
On the oper side, we consider the category

IndCoh*(Opgf’gﬁ"Zféee(‘DX ),
G

see Sect. 5.4.1.
Taking into account Sect. 4.4.3, the construction in Sect. 7.3 applies and we obtain a functor

(7.29) FLEG crit—diog(9 50 ) * KL(G)erit—atog(9 5 ) — IndCoh” (Opgy o= (D).
G G G

Since the assertion of Theorem 7.3.4 is local, it formally implies that the functor (7.29) is also an
equivalence.

7.7.2. Again using Sect. 4.4.3, we can repeat the construction of Sect. 7.5.4 and obtain a functor

(7.30) PO . Whit. (G) ® KL(G)Crit,dlog(pr%) — IndCoh*(Op@’g)Z% (D™)).

As in Sect. 7.5.5, we obtain a functor
(7.31) Poo™ : Rep(G) ® 1ndCoh*(op2?;'Zf;;e(DX)) - IndCoh*(Opé’TZ% (D).

As in Corollary 7.5.7, we obtain that the above functors Pi5®™" and Plgc‘e"h match under the
equivalences

FLEG,crit—dlog(ﬂ’ZQ )
KL(G)erit—diog(? 0 ) o~ “ IndCoh*(Opg?;Zf;ee(DX))
G G

and

FLEs
Rep(G) =~ Whit.(G).
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7.7.3. Finally, note that we have the equivalences
(7.32) (KL(G)erit,~ diog(? 0 A= KL(G)crit+diog(# 40 )-
G G

In addition, we have an equivalence

\2 <) -
(7.33) <IndCoh*(Opm°n'free(DX))) ~ IndCoh' (OpZor-free(px)) "X

G,P,0 G,P 0
2% z%

IndCoh* (Opmon—free(.D X ))

G,P
Note also that the Cartan involution 7¢ induces an equivalence
TG
KL(G)critfdlog(ﬂ’Zq) o KL(G)crit+dlog(TZQ )
G G

It follows formally from Theorem 7.6.4 that, with respect to the identifications (7.32) and (7.33),
the functor

(FLEG, crit—diog(? 0 ) : IHdCOh*(Opgf)n?'Zf;ee(Dx)) — KL(G)erit+diog(? 40 )
G G

G
identifies with

76 © (FLEG crit—dlog(® 40 )
G
7.7.4. In practice, we will take the reductive group in question to be the Levi subgroup M of a standard
parabolic P, and Zy; := pp(wx).
So in this case, the equivalence (7.29) specializes to
(7.34) FLEn crit—pp : KL(M)erit—5p ~ IndCoh™(Opjya (D)),

see Sect. 4.4.4 for the notational conventions.

8. PROOF OF THEOREM 7.6.4

The idea of the proof is the following: we reduce the assertion of the theorem to the fact that the
natural self-duality of IndCoh(Opg(D ™)) is compatible under

—=enh ~
DS (g—modcm‘p(w}())Q(N)p(wx) ~ IndCoh(Opg(D*))
with a self-duality of the left-hand side.
The latter assertion may be hard to see explicitly, but it follows immediately from factorization: any
two self-dualities of IndCoh(Opx(D*)) differ by a line bundle, which is automatically constant (i.e., is

a line over k), since Opg(D™) is an affine space. However, factorization implies that this line comes
from a factorization line bundle on the Ran space, and the latter is necessarily trivial.

8.1. Recollections on the Feigin-Frenkel center. In order to prove Theorem 7.6.4, we will use an
additional piece of structure that exists on the category g-modcit, namely, the Feigin-Frenkel center.

8.1.1. Let 34 denote the Feigin-Frenkel center of g-modcrit, thought of as a factorization algebra map-
ping to inve+ gy (Vac(G)erit)-

In fact, at the pointwise level, 34 is the 0-th cohomology of invg+ gy (Vac(G)erit)-
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8.1.2. By construction, 34 is insensitive to twists by £ (G)-torsors. So, we can equivalently view 34
as mapping to
inv£+(G)p(WX)(Vac(G)C,it’p(wx)).

A basic fact in representation theory at the critical level is that the composite map

LG p(wy) LN )
(8.1) 39 — Vac(G)Crit’p(fo)X — Vac(G)Crit’p(:X)X — DS(Vac(@)erit, p(wx))
is an isomorphism.
The composition
FFY (CH
(8.2) OOP@(D) — DSG(VaC(G)crit,p(wx)) ~ 3as

where FFY is as in (7.2) is the Feigin-Frenkel isomorphism at level of centers for G.

We will denote the map (8.2) by FF3.

8.1.3. A crucial piece of structure that we will use that arises from the identification (8.2) and
Sect. 4.2.3 is an action of the (symmetric) monoidal category QCoh(Opg(D*)) on g-modcrit.

8.1.4. By construction, the functor

DS : g-modeit — IndCoh* (Opg (D))
intertwines the above QCoh(Opg (D™ ))-action on g-moderit and the natural action of QCoh(Opg (D))
on IndCoh*(Opg(DX)).

8.1.5. The action of QCoh(Opg (D)) on g-moderit, p(wy) gives rise to an action of QCoh(Opeg(D*))
on
(@-m0derit, p(wx)) (V) ey ) -
It follows formally that the equivalence

~aen

h ~ *
DS : (g-modcrit’p(wx))Q(N)p(wx) — IndCoh (OPG(DX))
is compatible with the QCoh(Opg(D*))-actions.
8.2. Feigin-Frenkel center and self-duality.

8.2.1. Recall that the unit for the self-duality on KL(G)eit is given by the (factorization algebra)
object
CDO(G)crit,erit € KL(G)erit @ KL(G)erit -
It is proved in [FG1, Theorem 5.4] that the following diagram of factorization algebras (in Vect)

commutes
TG

39 E— g
| |
(8.3) Vac(G)erit Vac(G)erit

leftl rightJ/
CDO (G)crit,crit ——— CDO (G)crit,crit 5

where left and right are the two maps corresponding to the structure on CDO(G)crit,crit Of factorization
algebra object in KL(G)crit @ KL(G)crit -

8.2.2. This implies that the self-duality
(/g\-modcrit)v ~ a‘mOdcrit
of (4.2) is compatible with the QCoh(Opx(D™))-actions up to 7¢.

8.3. Self-duality on opers via Kac-Moody.
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8.3.1. Let C be a category acted on by £(G),)- The construction of Sect. 1.3.5 applies, and gives
rise to a functor, to be denoted Owhit, (c):
. S(N X . Lt
(8.4) Whit.(C) := Ce(n),, yx — C (Mpwx)X =; Whit'(C).
Theorem 1.3.6 applies in this general situation and implies that the functor (8.4) is an equivalence.

In particular, we obtain that if C is dualizable, then Whit.(C) is dualizable and we obtain an
identification

o7t
(8.5) Whit. (C)" ~ Whit'(C") “23° Whit. (C").

8.3.2. We apply (8.4) to C := §-moderit,p(wy). Combining with the identification (4.2) we obtain a
self-duality

v
(86) ((g_mOdcrit,p(wx))S(N)p(wx)) =~ (g_mOdcrit,P(wX))S(N)p(wx)'

8.3.3. Combining with Theorem 7.1.7, the identification (8.6) gives rise to an identification
(8.7) IndCoh*(Opg(D*))Y ~ IndCoh*(Opg (D).

8.3.4. Since the functor (8.4) is given by averaging with respect to a subgroup of £(G) the

identification ©whit(g-mod y is compatible with the actions of QCoh(Opg(D™)).

plwx)s
crit.p(wx)
Combining with Sect. 8.2.2 we obtain that the identification (8.6) respects the actions of
QCoh(Opgs(D™)), up to 7a.
Combining further with Sect. 8.1.5, we obtain that the identification (8.7) is compatible with the
natural action of QCoh(Opg(D*)) on IndCoh*(Opes(D™)), up to 7a.

8.3.5. Using the tautological identification
IndCoh* (Opg(D*))Y ~ IndCoh' (Opg (D)),

we can interpret (8.7) as an equiavalence
(8.8) IndCoh'(Opg(D*)) ~ IndCoh* (Opg (D).

Thus, we obtain that the identification (8.8) is compatible, up to 7, with the natural actions of
QCoh(Opg(D*)) on IndCoh' (Opg(D*)) and IndCoh* (Opg (D)), respectively.

Hence, by Sect. 5.3.2, the identification (8.8) is given by an object
(8.9) ‘wrtke e IndCoh* (Opg(D™))

Opg(DX)
We claim:

1 x,fake

) Lo . fak
Theorem 8.3.6. There exists a canonical isomorphism between "wg = (DX) 5o
G

and the object WO (DX)
G

of (5.12), compatible with factorization.

Remark 8.3.7. As we shall see below, Theorem 8.3.6 is actually easy. However, it can be seen as a
particular case of a conjecture, proposed by G. Dhillon, which says that at any level x, the self-dualities
of the (renormalized) categories of factorization modules

Wy.e-mod™™* = Wj x-mod™*
that come from the identifications

Wy, e-mod™* = Whit, (§-mod,.) and W; z-mod™* = Whit.(§-modx)
and (8.5), respectively, agree.

For non-critical x, this conjecture is completely open. What makes it tractable at the critical level
is precisely the interpretation of Wy crit as the Feigin-Frenkel center.
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8.3.8. Proof of Theorem 8.3.6. Since both objects

*,fake

w 1 x,fake
Opg(DX)

and Wop s (D)

define equivalences
IndCoh' (Opg (D)) — IndCoh* (Opg (D)),
a priori, one is obtained from another by tensoring with a line bundle.

Since Opg(D*) is fibered over Ran into affine spaces, the above line bundle is canonically pulled
back from a line bundle on Ran.

Since all objects and identifications in sight are compatible with factorization, the above line bundle
on Ran is equipped with a factorization structure. Furthermore, the constructions involved are unital,
so the line bundle in question is equipped with a connection, i.e., it is a one-dimensional factorization
local system on Ran.

However, it is easy to see that any such object is canonically trivial.
O[Theorem 8.3.6]

8.4. Proof of Theorem 7.6.4.

8.4.1. Let C be a category, acted on by £(G) (). Assume that C is spherically-generated, i.e., that
the embedding
D-modeit(Grg) ® Sph(C) — C

Sphg
is an equivalence.

Note that in this case, the object
Whit, (C)®<RP(© ¢ Rep(G) - mod ™
lies in the essential image of the functor
QCoh(LSg(D*))-mod — Rep(G)-mod™*, C s CRetRep()
of (6.1). In other words, Whit, (C) is naturally a module category over QCoh(Opex(D™))mon-free-
Further, by Proposition 6.4.4, we have a canonical equivalence

(8.10) Sph(C)temp :) FunCthoh(opé(an ) mon-free (QCOh(LSG(D)), Whlt* (C))

8.4.2. Assume that C is dualizable. Note that in this case we have a canonical identification
(8.11) Sph(C)Y ~ Sph(CY),
so that the functors dual to

oblv® (@sex) : Sph(C) = €1 AvE (rex)

identify with
+@ £H(E) p(w
oblv® (Dex) 1 Sph(CY) = CY : Av, X))
respectively.
Furthermore, the identification (8.11) gives rise to a uniquely defined identification
(8.12) (SPh(C)temp)” = SPh(C” )temp,
so that the functors dual to
Sph(C) < Sph(C)temp
identify with
Sph(C”) S Sph(C”)cemp,

respectively.
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8.4.3. By (8.5), we can identify
(Whit.(C))" ~ Whit(C").
Since the monoidal category QCoh(Opg(D™))op s (n) is semi-rigid (see [AGKRRV, Appendix C]),
for any QCoh(Opg(D*))-module category D, dualizable as a plain DG category, we have a canonical
identification

(8.13) (FunctQCOh(opG@x))(QCoh(LS@(D)),D))V ~

=~ Functqcon(opg (0 x)) (QCoh (LS (D)), DY).

Combining, we obtain an equivalence

1R

(8:14)  (Functoean(opg () (QCoh(LS (D)), Whit. (C)) ) !
~ FunctQCOh(OpG(fDx))(QCOh(LS(;(‘D)),Whit(Cv)).

8.4.4. Unwinding the construction, we obtain that the equivalence (8.10) and a similar equivalence
for C¥ are compatible with the identifications (8.12) and (8.14).
8.4.5. Let in the context of (8.13)

D := IndCoh*(Ops(D™)),
so that

D" := IndCoh'(Opg (D))

Functqeon(opg (0)) (QCoh(LS (D)), D) ~ IndCoh* (Opg™™*(D*))

and
Functgeon(opg (0%)) (QCoh(LS (D)), DY) ~ IndCoh' (Opg®™ ¢ (D*)).

In this case, we obtain that the identification (8.13) gives back the canonical identification

IndCoh* (OpE°™*¢(D*))" ~ IndCoh' (OpZ°™ ™ (D*)).

Furthermore, for a QCoh(LSx(D™))-linear functor
IndCoh' (Opg (D)) — IndCoh* (Opg (D)),
given by an object F € IndCoh*(Opx(D™)), the induced functor

IndCoh'(Opg®*™**(D ™)) 2 Functqeon(opy (%)) (QCoh(LS¢ (D)), DY) —
— Functqcon(opg (0 ) (QCoh(LS¢ (D)), D) ~ IndCoh™ (Opg®™ (D))
is given by the !-pullback of F along
(8.15) OpEo™ e (DX) 5 Opg (D).

8.4.6. We apply this to
C:= (ﬁ'mOdcrit,p(wx))Sph_gen-

We obtain that with respect to the equivalence
FLEG crit * mon-free
KL(Q)erit  —" IndCoh* (OpZe™ee(D*)),
the identification
KL(G) it =~ KL(G)erit
of (4.3) corresponds to the identification

1 =, fake °
Opryon-free (DX) TG

IndCoh* (OpE®™™°(D*))¥ ~ IndCoh' (OpE™ (D)) ¢ — IndCoh* (OpE°™™e¢(D*)),

1, =,fake . Py 1, x,fake
where wopgon‘fmwx) is the !-restriction of Wop (D) along (8.15).
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8.4.7. 'Thus, in order to construct the identification of functors in Theorem 7.6.4, we have to construct
an isomorphism
1 *,fake ~ , % fake
Opg(D*) = Yopg (D)’
However, this follows from (8.3.6).
The compatibility with the Hecke actions follows by unwinding the construction.
O[Theorem 7.6.4]
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Part II. The FLE and the Jacquet functors

In Part I of this paper, we studied operations that take place on the geometric side or the spectral
side of the local Langlands theory separately, and we connected the two sides in four ways:

. . Satg spec
e Geometric Satake equivalence Sphe =~ Sph™;

. cs .
e The geometric Casselman-Shalika formula, i.e. the equivalence Whit'(G) ~ Rep(G);

FLEG,crit
e The critical FLE KL(G)crit ~ IndCoh* (Opgon'free(ﬂ));
T

~

loc Sat

< 1H—\spec,loc
pp(wx) G, Py ’

In this part, we will prove a theorem to the effect that a certain operation on the geometric side
corresponds to a particular operation on the spectral side. There will be two versions of this result:
“as-is”, i.e., unenhanced and an enhanced one.

e The semi-infinite geometric Satake I(G, P™)

The unenhanced version (Theorem 9.1.3) says that the BRST functor from KL(G)crit to the (twisted

mon-free

version of ) KL(M)erit corresponds to the spectral Jacquet functor from IndCoh™ (Opg (D)) to the
shifted version of IndCoh*(Op°™*°(D)). The enhanced version (Theorem 9.1.7) is more involved,
and it uses the enhanced BRST and spectral Jacquet functors.

The unenhanced version will be used in the proof of the (global) Theorem 21.2.2, which expresses the
compatibility of the (global) Langlands functor Le with the operation of constant term. Accordingly,
the enhanced version will be used in the proof of Theorem 22.2.4, which is an enhanced version of
Theorem 21.2.2.

Theorem 22.2.4 is the main result that will be needed for application to the proof of Theorem 24.1.2.

9. COMPATIBILITY OF THE FLE WITH THE JACQUET FUNCTORS

In this section we first formulate the theorem that expresses the compatibility of the critical FLE
with the BRST and the spectral Jacquet functors (Theorem 9.1.3), as well as its enhanced version
(Theorem 9.1.7).

However, in order to prove both these theorems, we will reformulate them in dual terms. Thus, we
will formulate Theorems 9.2.4 and 9.5.3, which are equivalent to Theorems 9.1.3 and 9.1.7, respectively.

A feature of the present situation is that although Theorem 9.2.4 looks simpler than its enhanced
version, namely, Theorem 9.5.3, we will have to prove the latter in order to prove the former. I.e., the
enhanced statements ends up being more accessible than the unenhanced one.

9.1. An initial formulation.

9.1.1. Recall the functor
BRST;P(WX) : KL(G)Crit — KL(M)Critfﬁp7
see Sect. 4.7.7.
Recall also the functor

J 79" - IndCoh* (OpE°™*°(D*)) — IndCoh*(Opjf;[",";'}f“”"/(DX ))s

see Sect. 5.5.3.
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9.1.2. The following theorem, which is one of the main results of this paper, expresses the compatibility
of the FLE with the Jacquet functors:

Main Theorem 9.1.3. The following diagram of functors commutes

FLEM,crit—pp

KL(M)erit—pp IndCoh* (Open-free(pxY)

M,pp
BRST;P(WX)T TJ—,spec,*
FLEG,cri
KL(G)crit Gty IndCoh* (Opienfree(DX)).

Remark 9.1.4. Note that the statement of Theorem 9.1.3 bears a similarity with that of Corollary 2.7.7.

9.1.5. Recall the functors
BRST, 0" )+ KL(G)erie = KL(M) 5™
(see (4.23)) and
J*,spec,*,enh . IndCoh* (Opxgon-free(,DX )) N IndCOh* (OpmMon-free(gx ))*,enh.
(see (5.25)).

Since the FLE respects the Hecke actions, from (7.34) and Theorem 2.6.7 (see also (1.9)) we obtain
an equivalence

Sat
to be denoted

=% @FLEw,crit—pp : KL(M) ™ 55 IndCoh™ (Op e (D)) —h,

crit—pp

—,enh
FLEM,ecrit—;ap :
9.1.6. The following is an enhancement of Theorem 9.1.3:

Main Theorem 9.1.7. The following diagram of functors commutes

LE—enh

KL(M) et — 220, IndCoh™ (Opiionfree () ~wenh
BRST;;(':‘X)T Tr,spec,*,enh
FLEG triy X free e x
KL(G)erie  ——=™  IndCoh* (OpZ°™fe*(D*)).

Note that the statement of Theorem 9.1.3 can be obtained from that of Theorem 9.1.7 by concate-
nating with the commutative diagram

FLEM, crit—p p
%

KL(M)eric—pp

|

IndCoh* (Opngon—free (D X ))

M,pp

T:

I spec * mon-free X
Sph,, -y KL(M)erit—pp Sph3Y SP% _IndCoh* (Opjyrfree (D))
Oblv%‘*SPh(@IdT TOblv%A)Sph(@Id
(G, P7)5 0y © KL(M)erit—pp (G, PT)Peeloe @ IndCoh™(Opjyy (D))
Sph sphj\;ec s
—,enh
—,enh FLEMvCTit_ﬁP * mon-free X —,enh
KL(M)o™ IndCoh* (Opl?- e (D*)). =<,

Remark 9.1.8. Note the similarity between the statement of Theorem 9.1.7 and the commutation of
diagram (2.27).

9.2. A dual formulation of Theorem 9.1.3. In order to prove Theorems 9.1.3 and 9.1.7, we will
reformulate them in dual terms. We start with Theorem 9.1.3.
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9.2.1. Let
coJ °P“* : IndCoh™ (Op;“;;jgfee (D*)) = IndCoh”™ (OprC'Y.-‘O“_f’ree (D))
be the functor dual to

J7%e IndCoh' (Opa®™™*°(D*)) — IndCoh' (Opia ™ (D*)).

M,pp

ySpec,*

Explicitly, coJ™ is given by

Miu,mon—free)* ° (inu,mon—free)!

(p

where the morphisms are

Miu,mon-free Miu,mon-free

Op[élon—freE(Dx ) P « MOP@,}‘:— (DX ) % LSP— (D) q N OpmMcjg-}free(ﬂx )7

see diagram (5.16).

9.2.2. Consider the diagram

TMO(FLEM,critfﬁP)il

KL(M)exit+pp IndCoh* (Opjyy (D))
Wak;éS(r;]bl lcor,spec,*
7Go(FLEG crit) !
KL(G)erie  <STHECemit) 1 qCoh* (Opionfiee (D X)),

According to Theorem 7.6.4 and Sect. 7.7.3, it can be identified with the diagram, obtained from
the diagram in Theorem 9.1.3 by passing to the dual functors.

9.2.3. Hence, we obtain that the statement of Theorem 9.1.3 is equivalent to the following:

Theorem 9.2.4. The following diagram of (factorization) functors commutes:

FLEM,critpr OTM
[ i N

KL(M)ecrit+pp IndCoh”* (Opj-fres(D*))
(9.1) Wak;};s(‘z};() l lw]_ﬁspecy*
FLEG crit ©T
KL(G)erit et 7, IndCoh*(OpEenfee(DX)).

9.2.5. We will next give a dual formulation of Theorem 9.1.7.
9.3. The dual of the left vertical arrow.

9.3.1. Consider the functor

(9:2) (G, PT) ® KL(Geriw — (ﬁ'mOdcrit)E(N)'EﬂM) = 'g\-modf’.%.
Sph crit
phg
It is a fully faithful embedding; we denote its essential image by
e —, % Sph-gen =N 7‘%
(g_mOdcrit ) C g—modcm .

It is easy to see that (9.2) admits a right adjoint (as a factorization functor):

>

(9.3) Fmod_;2 = 1(G, P @ KL(G)eit.

crit Sph
9.3.2. The following is straightforward:
Lemma 9.3.3. The functor (9.3) identifies with the dual of the functor

—loc ~ +
I(G) P )lco ® KL(G)crit — (g'mOdcrit)i(A(;I)VI)-

Sphg
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9.3.4. Recall the functor
Wak ™ F 1 KL(M )it pp () — §-modis? -
Let Wak ™3 SPR-ge® denote the composition of Wak ™% with (9.3)

Wak ™ 2 SPRER s KL(M) iy pp (wx) = HG, P @ KL(G)eris-

Sphg
From Lemma 9.3.3 we obtain:
Corollary 9.3.5. The functor Wak ™ 3 SPh-8 4o the dual of the functor BRST  of (4.19).

9.3.6. Note that the composition

-~ - % (9.3) —\loc Oblv%_’s"h®ld
g-mod_;> — I(G,P7) ® KL(G)erit Sphy ® KL(G)erit ~ KL(G)erit
Sphg Sphg
identifies with the functor
Avf+(c)/£+(M) :/g\—modc_r’i? — KL(G)erit -

Hence, the composition of Wak % SPh-gen with
) oblvgﬂsphébld
I(G,P7)°° ® KL(Q)eit Y Sphgy ® KL(G)erit ~ KL(G)erit
Sphg Sphg
identifies with the functor

Wak 5" KL(M ) erit i pp (wx) — KL(G)erie-

9.3.7. Consider the functor
BRST ™™ : KL(G)erie = (G, P7)'™° @ KL(M)erit—pp (wy)-

Sph
Its dual is a functor

(9.4) (G, P @ KL(M)aitsppwy) — KL(G)eric-
Sphj,
The functor (9.4) is compatible with the actions of Sph,. By rigidity, the datum of (9.4) is equivalent
to the datum of a Sph,,-linear functor

(9.5) KL(M)crittpp(wy) — UG, PT)C @ KL(GQ)exis-

Sphg
From Corollary 9.3.5 we obtain:
Corollary 9.3.8. The functor (9.5) identifies canonically with Wak > % »Sph-gen

9.3.9. In the sequel we will need pp(wx)-twisted versions of the above constructions. In particular,

we will continue the functor
% ,Sph-gen

Wak

pp(wx)

KL(M)critt pp () = WG, P7) e ® KL(G)erit,
pha

pp(wx) s
which identifies with the functor obtained by rigidity from the dual of

BRST ™" : KL(Q)eie — (G, P7)k¢ ® KL(M)crit—pp (wy) = KL(M) ;™"
Phps

pp(wx) pp(wx) s crit—pp(wx)”

9.4. The dual of the right vertical arrow. In this subsection we will perform constructions on the
spectral side, parallel to ones in Sect. 9.3.
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9.4.1. Recall the functor

(9.6) IndCoh!(Heckesé’e;foc) ® IndCoh'(Opg°™™°(D*)) —

spec
SphCJ

%IndCoh!(Opéypf(DX) X LSM(D))

LS 7 (D) mon-free

see (5.21).

By a similar token, we have a functor

(9.7) (G, P7)P @ IndCoh™(OpE™™ ™ (D*)) =

spec
Sphé

= IndCoh* (Hecke?*'*) @ IndCoh™*(OpgE°™™¢(D*)) —

G,P~ spec
Sphé

— IndCoh* (Op@, p- (D7) X LSM(D))

LS,; (DX) mon—free’

The following is straightforward:
Lemma 9.4.2. The functors (9.6) and (9.7) are equivalences.

9.4.3. It is easy to see that the embedding

IndCoh™ (OpG’pf (D) X LSM(D))

— IndCoh™ (OpG p— (D) X LSy, (D))
LS 4 (DX) '

mon-free LS 7 (DX)

admits a right adjoint (as a factorization functor).

Thanks to Lemma 9.4.2, we will view the resulting right adjoint functor
(9.8) IndCoh* (Opc s (DX)  x LS M(D)) -
’ LS 7 (DX)

— IndCoh* (opé’ s (D*)  x LS M(‘D)) ~

LS 3 (DX) mon-free

~ (G, PP @ IndCoh*(OpZ°™ (D))

spec
Sphé

as a right adjoint to

(9.9) I(G,P7)® @ IndCoh*(OpE ™ (D*)) 5

spec
Sth.

— IndCoh* (Op@) 5 (DX)  x LS M(D)) <

LS 7 (D) mon-free

<—>IndCoh*(OpG~,p_(®X) x LSM(®)).
LS 5 (DX)

9.4.4. The following is straightforward:

Lemma 9.4.5. The functor (9.8) identifies with the dual of the functor

(9.10)  IndCoh'(Hecke} ™) @ TndCoh'(Opg®™"**(D*)) &

spec
Sth‘

— IndCoh' (Opé’ s (D) x LS M(@)) <

LS 7 (DX) mon-free

< IndCoh'’ (opé’,-,_ (®7) %o LSM(D)>.
M
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9.4.6. Let coJ *P°>*% denote the functor

(9.11) IndCoh* (Op"fon'free('DX))) = IndCoh”™ (MOpg p- (D™) X LS, (D)) ELN

M,
ee LS (D)

— IndCoh* (opéy (D) %, 18 M(@)).
M

— oo - oy
Let coJ ~»sPec T -mon-free qonite the composition of

sspec,x,

(9.12) IndCoh*(OpiEen-fee(D*))) «/

M, pp

IndCoh* (opé s (D) x LSM(D)) ©8)
’ LSy (D)
= I(G,P7)™" @ IndCoh*(OpZ°™ (D).

spec
Sphé
From Lemma 9.4.5 we obtain:

Corollary 9.4.7. The functor coJ ~»5Pee* % mon-free jontifies with the dual of the functor

IndCoh!(Heckeg’epcfoc) ® IndCoh'(Opg°™™e(D*)) 5
' S

hSpec
G

~ IndCoh' (opé s (D*)  x LS M(D)) =,
’ LSM (DX) mon-free
! X Jﬁ’Spec'!’ % ! mon-free X
< IndCoh (opé, s (D) x LS M(D)) —" % IndCoh' (OpZen™ee(DX))),

LS (DX) M.pp
where J 7PN T s the functor from (5.18).
9.4.8. Note that the composition

(9.13) TndCoh* (opé,p,(DX)LS X(DX)LSM(D)) ©8
M

oblv% —Sph ®Id

- L(G,P7)®*°° @ IndCoh"(Opg®™ (D))

spec
Sphc

— Sph?*  ® IndCoh™ (OpE®™ (D)) ~ IndCoh™ (OpE°"™**(D*))

sphPes
identifies with the functor p. oi' (see diagram (5.17) for the notations).

mon-free with

oy — o0 .
Hence, the composition of coJ *%P¢“* 2

oblves g, ®Id

I(G, 7)™ @ IndCoh(Opg*™ ™ (D))

spec
Sth

— Sph®* @ IndCoh* (OpE°™™*¢(D*)) ~ IndCoh* (OpE°"*°(D*))

spec
Sphé
identifies with the functor coJ *P¢%*,

9.4.9. Consider the functor

J—uspec,henh

IndCoh'(OpE™ (D)) * "— " IndCoh" (Hecke ") ® IndCoh' (Opjy s (D)) =
’ Sphi\zec ’

_ I(G, P*)spec,loc ® Il’ldCOh! (Opxqon—free(,D X ))

M, pp
Sph°Pec ’
M

Its dual is a functor

(9.14) IndCoh' (HeckeP%') ~ ® IndCoh"(Opjy 5 !"**(D*)) — IndCoh* (Opg®™™**(D*)).

spe. M,pp
SphePec
M

87
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The functor (9.14) is compatible with actions of Sphi?““. By rigidity, the datum of the functor (9.14)
is equivalent to the datum of a Sph’“-linear functor

(9.15)  IndCoh™(Opyy s, (D)) — IndCoh™ (HeckeS*) ~ ®

From Corollary 9.4.7 we obtain:

Corollary 9.4.10. The functor (9.15) identifies with coJ *SP>™ 2

9.5. A dual formulation of Theorem 9.1.7.

% -mon-free

9.5.1. Denote by FLE

G,T1,crit

1 Sat ’

e ® KL(G)crit
phg

o0
2

(G, P)

pp(wx) s

®(FLEG, crit 0TG)
— 1

IndCoh* (OpE®* (D)) ~

spec
Sphé

I(G, P*)spec,loc ®

spec
Sphé

IndCoh* (OpE°™ee(D*)).

22 -mon-free

the equivalence (see (1.9))

(é’ p—)spec,loc ®

spec
Sth

IndCoh™ (OpE™ (D).

9.5.2.  Applying Corollaries 9.3.8 and 9.4.10, we obtain that Theorem 9.1.7 is equivalent to the follow-

ing:

Theorem 9.5.3. The following diagram of (factorization) functors commutes:

(9.16)
KL(M)criH—ﬁp

Wak— %0 Sph-gen
pp(wx)

22 -mon-free
FLEG . crit

(G, P)le

pp(wx) S

® KL(G)crit

phg

FLEM crit—pp OTM
‘.—_%

IndCoh* (Opmon—free(DX ))

M,pp

JVCOJ_ ,Spec,*, %-mon-free

I(G, P—)spec,loc ®

spec
Sth

IndCoh* (OpE°*-™e¢(D>)).

9.5.4. Note that Theorem 9.2.4 follows formally from Theorem 9.5.3 by concatenating with the dia-

gram

< -mon-free
I(G P loc G,T,crit
’

pp(wx) s

® KL(G)crit
phg

oblv% —Sph ®Idl

Sphe ® KL(G)erit
Sphg
FLEG crit )0,
KL(G)erit TLEG eri)oTG,

I(G, p—)spec,loc ®

spec
Sphé

IndCoh* (Opglon-free (nD X ))

loblv% —Sph ®Id

Sphgnec ® IndCoh* (Oprgon—free (D X ))

spec
Sphé

IndCoh* (Opg™™**(DX)).

Remark 9.5.5. In fact, we conjecture that there exists an equivalence

oo
—., %0
’ 2

g_mOdcrit

LEZ - crit . “
S5 IndCoh (opéyp,(g) x

LS, (D))

LS 5 (DX)
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that fits into the commutative diagram

FLEM, crit—pp OTM

KL(M)eriv+pp IndCoh* (Op}y> (D))
Wak;;’&)x)l JVCOJf,spec,*,%
=~ -5 FLE?T crit
g-mod,;” —_— IndCoh* (Opc,z‘% (D*)  x LSy (D))

1(67 P—)SPEC,IOC ® IndCoh* (Opgon—free(nDX)).

spec
Sphé

I(G, P )le § KL(G)erit
G

pp(wx) S

In fact, we know that such an equivalence exists at the pointwise level: this is essentially what is
proved in [FG3, Main Theorem 3]. See also Remark 10.2.7

10. PROOF OF THEOREM 9.5.3

In this section, we will begin the proof of Theorem 9.5.3. By construction, both vertical arrows
in diagram (9.16) are composites, in which the middle terms are categories of “semi-infinite” nature,
namely,

—.
2

= (ﬁ-modcrit)S(N(P_))'£+(M) and IndCoh™ (Opé p-(DX) X LSM(D)),
’ LS 7 (D)

(10.1)  g-mod

crit

respectively. Therefore, a natural approach to the proof would be to complete diagram (9.16) to one
that contains an arrow (in one direction) between the two categories in (10.1).

We conjecture that such an arrow exists, and that it is moreover an equivalence. Furthermore, we
know that this is the case at the pointwise level (i.e., over a specific point in Ran). However, we cannot
prove this, or even construct a functor at the factorization level (i.e., as categories over Ran).

Instead, we will find a category C that receives functors from both categories in (10.1), and our
strategy will be to show that the resulting diagram (i.e., diagram (10.2)) commutes.

In this section we will construct the 1-skeleton of (10.2), and establish the commutativity of the
three triangles. The commutativity of the pentagon will be established in the next one.

10.1. Strategy of proof.

10.1.1. As was explained above, our method of proof of Theorem 9.2.4 will consist of the following.
We will construct a category C (the definition is in Sect. 10.2.8) and a diagram
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(10.2)
FLEM crit—pp OTM * mon-free
KL(M)ecrit4 5p = IndCoh* (Opa-fes(D*))
Wak;};o(owx) coJf,spec,*,%
~ -2 IndCoh* 5 p— (DX X LS, (D
g'mOdcrlt2 G P ) LS 7 (DX) M( ))
(9-3) > < (9.8)
spec loc * mon-free
LG, P7)RC ) QSG KL(®)erit — free . ggpcc IndCoh* (Op2 (D*)),
FLEZ , cxit

in which the upper pentagon and all three triangles commute. An existence of such a diagram will
imply Theorem 9.5.3.

10.2. The factorization algebra Q(Rx ).

10.2.1. Consider the (commutative) factorization category
Rep(G) ® Rep(M) ~ QCoh(LSs (D) x LS (D)).

Let Q(Rx)°P®° denote the (commutative) factorization algebra in this category equal to the direct
image of the unit (i.e., the structure sheaf) under the (factorization) functor

QCoh(LSp- (D)) — QCoh(LSx (D) x LS, (D))
given by direct image along the map

(pxq):LSp- (D) = LSx(D) x LSy (D).

In other words, Q(Rx)*P*° corresponds to the commutative algebra object in Rep(G) ® Rep(M)
equal to

C (n(P7), Re),
where
Rg € Rep(G) x Rep(G)

is the regular representation.

10.2.2. Since the morphism (p X q) is quasi-affine, the functor (p X q). induces a (factorization)
equivalence

~

(10.3) (p x q)"™ : QCoh(LSp_ (D)) 3 Q(Re)™*-mod™™ (QCoh(LSs(D) x LS (D)) .
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spec

10.2.3. A notational remark. We denote the above factorization algebra by Q(Rx)*P*, and not simply
by Q°P°¢, because the latter symbol is reserved for the factorization algebra from Sect. 2.5.2.

Tautologically, Q°P°¢ is obtained from Q(R ) by applying the direct image functor along
LS (D) x LS4 (D) — LS4 (D).
As was noted before, the functor
a™ : QCoh(LSp- (D)) — Q-mod™™(QCoh(LS,;(D)))

is also an equivalence; this is due to the fact that the map q is also co-affine.

10.2.4. Let us denote by p* the map
LSP_ ('DX) — LSG(DX).
We have a commutative square of factorization functors

QCoh(LS5_ (D)) — 5 IndCoh*(LSp_ (D*)  x  LSy(D))

(PXCI)*l JV(PXXid)*
QCoh(LSx(D) x LSy (D)) —— IndCoh* (LS (D) x LS (D)),
given by direct image, where the horizontal arrows are unital.

In particular, we obtain that the above functor (p* x id). upgrades to a (factorization) functor

(10.4)  (p* x id)S™" : IndCoh* (LS (D*)  x LS (D)) —

LS 7 (DX)

— Q(Rg)™*°-mod™* (IndCoh* (LS¢(D*) x LS4(D))) .
Remark 10.2.5. We conjecture that the functor (10.4) is actually an equivalence. We will see shortly
that the equivalence statement does hold at the pointwise level, i.e., non-factorizably.

10.2.6. Let Q(Rs)CP denote the (commutative) factorization algebra in the (commutative) factoriza-
tion category

QCoh(Opgs(D) ® LS,7(D))
obtained by taking the pullback of Q(Rx)P°® along the map
Opé(D) ® LSM(D) — LSG(Q) ® LSM(D)

Let us denote by the same symbol p* the map
Opg, p-(D*) = Opg(D™).
Consider the map

(P xid) : Opg p- (D) s LS;1(D) — Ope(D™) @ LS (D).
M

Similar to the above, the functor

(p* % id)« : IndCoh™(Opg - (D) . TDX) LS,; (D)) — IndCoh*(Ops (D) @ LS ,;7(D))
Nt

upgrades naturally to a functor

(10.5) (p* x id)$"" : IndCoh*(Opg p— (D*)  x  LS;7(D)) —
’ LS 7 (D)

— Q(Rg)P-mod™* (IndCoh™(Opg(D™) @ LS (D))
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Remark 10.2.7. Similar to Remark 10.2.5, we conjecture that the functor (10.5) is an equivalence.
Combining, this leads to an equivalence

s FLBG . y
2 S0 1ndCoh (Op@ s (DX) x LSM(D)),
’ LSy (DX)

g-mod

crit

see Remark 9.5.5.

In Sect. 10.7 we will sketch a proof that this the functor (10.5) is an equivalence at the pointwise
level.

10.2.8. We define the category C from Sect. 10.1.1 to be

C := Q(Rg)°P-mod™* (IndCoh™ (Opg(D*) @ LS (D)) -
10.3. Functors to and from C on the spectral side.
10.3.1. We define the functor

(10.6) IndCoh™(Op¢ p- (D*) X LS;;(D)) = C
LS 7 (DX)
to be (10.5).
Our current goal is to construct a functor
(10.7) C — [(G, p7)eoloe B IndCoh" (OpE®™ (D)),
Plhg

and to establish the commutativity of the right triangle in (10.2).

10.3.2. We will first construct a functor

(10.8) I(G, P7)™" @ IndCoh*(OpZ°™™*°(D*)) - C.

spec
Sth‘

Namely, we let (10.8) be the composition

I(G, p— )spec,loc ® IndCoh* (Opgon—free (,D X )) (g_gg
SphSG,pcc
(10.6)

— IndCoh*(Opg; p— (D) x  LSy(D)) =¥ C

oY

Lemma 10.3.3. The functor (10.8) preserves compactness.
10.3.4. We let the sought-for functor (10.7) be the right adjoint of (10.8). The isomorphism
(10.8) ~ (10.6) 0 (9.9)
gives rise to a natural transformation
(10.9) (9.8) — (10.7) 0 (10.6).
We now claim:
Proposition 10.3.5. The natural transformation (10.9) is an isomorphism.

Once Proposition 10.3.5 is proved, we will have established the commutativity of the right triangle
in (10.2).

The rest of this subsection is devoted to the proof of Proposition 10.3.5.

Since all functors and natural transformations in (10.9) are equipped with a factorization structure,
in order to prove that (10.9) is an isomorphism, it is enough to do so at the pointwise level.

For the latter, it suffices to prove:

Proposition 10.3.6. The functor (10.5) is a pointwise equivalence.
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10.3.7. Note that the functor (10.5) is obtained by (formally smooth) base change
Opg(D*) — LS4 (D™)

from the functor (10.4). Hence, the assertion of Proposition 10.3.6 follows from the corresponding
assertion at the level of LSx:

Proposition 10.3.8. The functor (10.4) is a pointwise equivalence.
10.3.9. Proof of Proposition 10.3.8. Let q* denote the map
LSp- (QX) — LSM(DX)

and also its base change

LSpf(DX) X LS (D) — LS, (D).
LS 7 (DX)

Consider the (factorization) functor

(@)« : IndCoh™(LSp-(D*)  x  LSy;(D)) — IndCoh™ (LS ; (D)),
LS ;4 (DX)

and its enhancement

(10.10) (@)™ : IndCoh*(LSp— (D*)  x  LS;;(D)) = Q-mod™" (IndCoh* (LS 5 (D))) .
LSy (DX)

It is easy to see that the functor (10.10) is an equivalence at the pointwise level. The same is true
for the functor

(10.11)  (id xq*)™™ : IndCoh* (LS (D) X LSp— (D*)  x LSy (D)) —
LS, 7 (DX)

— Q-mod™* (IndCoh* (LS&(D*) x LS4(D))) .
Hence, if A is a unital factorization algebra in

IndCoh* (LS5 (D) x LSp— (D*)  x  LS4(D)),
LS 7 (DX)

the functor

(10.12) A-mod™* (IndCoh*(LS@(DX) xLSp-(D*)  x LSM(‘J)))) —
LS (DX)
= ((id XqX)inh(A)) -mod™* (IndCoh* (LS&(D*) x LS M(@))),
induced by (10.11) is also a pointwise equivalence.

Take A to be the direct image of the structure sheaf along the factorization functor given by direct
image along

LSp_(D*)  x  LSy(D) "X LSs(D*) x LSp- (D*) x LSy (D).
LS 7 (DX) LS 7 (DX)

Hence, it suffices to show that the resulting functor

(pXxid)i"h:IndCoh*<LSp_(‘DX) x LSM(D))—>
LS 5 (DX)

— A-mod™* <1ndcoh* (LSG(‘DX) xLSp_ (DX) x LS M(D)))
)

LS 7 (DX

is a (pointwise) equivalence.
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Since the map q* is formally smooth, it suffices to show that the functor
(p* x id)"™ : IndCoh” (LSp_(‘DX)> -
= ((px x id)i“h(OLspf(DX)» -mod®t (IndCoh* (LSG(DX) X LS p_ (@X)))
is a (pointwise) equivalence.
However, the latter follows from the fact that
pt /P~ — pt /G x pt /P~

is an affine morphism.

O[Proposition 10.3.8]
10.4. Functor to C on the geometric side.
10.4.1.  Our next goal is to define a functor

(10.13) g-mod_,
We will denote it by

—>C.

Crlt

o0
2

(10.14) FLEZ

G,T,crit

:g-mod_ > — Q(Rg)P-mod™* (IndCoh™(Opg (D) x LS4 (D))) .
Remark 10.4.2. If we knew that the functor (10.6) was an equivalence, we could interpret FLE?

as a functor

G,T, crlt

FLE?

G,T,crit *

2.2 = IndCoh™ (Opg

crit

g -mod, pP- (DX) X LSM(D)),

LS 47 (DX)

)

see Remark 9.5.5.
10.4.3. We will construct a factorization functor

pre- FLE_? : g modm? — IndCoh™ (Opg (D) x LS (D)),

G,T, crlt
and we will show that the image of the unit identifies, as a factorization algebra, with Q(Rg)Op

This will give rise to the desired functor (10.14).

e
enit_ as acted on by

Rep(M) ~ QCoh(LS (D))

10.4.4. We consider the category g-mod._

via the functor Sa‘c_1 it

Hence, in order to construct the functor pre—FLE
the direct image functor

IndCoh™(Opg(D™) x LS;7(D)) — IndCoh™ (Opg(D™)),

G 7.crits 1t suffices to construct its composition with

i.e., as a functor

'3 IndCoh* (Opg(DX)).

crit

(10.15) pre—pre—FLE : g-mod__

G,1, cnt
10.4.5. We let the functor pre—pre—FLEG +erit Of (10.15) be the composition

M)

ot (T) o‘p(wx),taut
crit

LRI - “mod Sl () g-mod

crit

(10.16) g-mod_,

crlt

T) ~ Dsen

h .
— g modmt tox) — FMOderit p(wy) — IndCoh” (Opg(D™)) =% IndCoh™ (Opg(D™)),

where 75 in the Cartan involution on G, viewed as an outer automorphism, and this inducing an
automorphism of Op.
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10.4.6. Our next goal is to show that the image of the factorization unit along
pre—FLEG T erit
identifies canonically with the image of Q(Rs)°P along
(10.17) QCoh(Opx(D) x LS;7(D)) — IndCoh*(Opgon'ﬁee(ﬂx) x LS7(D)) —
— IndCoh™ (Opg(D™) x LS (D).
10.5. Functor to C on the geometric side, continued.

10.5.1. Consider the functor

—1

—\loc . aPP(“’X)"a“‘@Id —loc . (9.2)
(10.18)  I(G,P7 )y iwy)  ©® KL(G)erit = I(G,P™) ® KL(G)erit —
Sphg Sphg
— g-mod_;* * IndCoh*(Opg (D) x LS (D).

We will show that it identifies canonically with the composition

——mon free
FLE 2
(10.19) I(G, Pf)}oo;(wx) ® KL(G)cnt G,7,crit
Sphg
— (G, PT)P @ IndCoh*(Opgo™ee(n*)) &3
Sphg’ec

(P ><1d)*

— IndCoh™(Opg - (D)  x  LSy(D)) IndCoh™ (Opg(D™) x LS (D)).

LS 7 (DX)
This will achieve two goals:

(a) This will imply that the factorization unit in ﬁ—mod;;? , which equals the image of the factoriza-

tion unit under (9.2), gets sent by pre- FLEG 7 crit 1O Q(Rg)CP, as promised in Sect. 10.4.6, thereby

completing the construction of the functor (10 13).
(b) This will show that the functor (10.18) can be naturally enhanced to a functor
(10.20) (G, P)ke ® KL(G)erit — C,

Sphg

pp(wx)

so that the diagram

(10.21)
IndCoh*(Opg p— (D™ X LS (D

grnodCrlt (Op¢, - ( )LSM(DX) x(D))
N (10.6)

(9-2) C (9.9)
M (10.8)

—\loc ~  p—\spec,loc * n:jon—free X
I(G, P )pP(wx) ® KL(GQ)erit — (G, P7) Sp}?pec IndCoh*(Opg (D))
FLEG2TCIIC <

commutes.
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10.5.2.  Since both functors (10.18) and (10.19) respect the actions of

tar, -

SphM 2 S hspec
using
Rep(M) =5 SphiPe,
it suffices to construct an isomorphism between their compositions with the forgetful functor

IndCoh* (Opg(D*) x LS ;4 (D)) — IndCoh*(Opg (D).

Thus, we have to compare

—\1 a;;(wx),taut(gld —\1 (9.2)
(10.22) (G, P7 ) 5wy SQ%) KL(G)erit = G, P7) 5 (wx) Sg KL(GQ)erit —
G
> ~ + AXp(w staut -+
- g InOd'Cmt2 — g mOdCrlt M) - g-mOdfrit(T) Pl g-mOdfrit(,’/I;()wX) -

enh T A
— g-moderit, p(wx) P2 IndCoh* (Opg(D*)) =& IndCoh*(Ops (D))

——mon free

and the composition of FLEG erit with
(1023) I(G, p—)spec,loc ® IndCoh* (O mon- free(Dx)) (9_92
SphSé)ec
(Ch ><1d)*

— IndCoh*(Opg p— (D*)  x LSy (D)) IndCoh* (Opg (D) x LS (D)) —

LS 7 (DX)

— IndCoh* (Opgs(D*)).

10.5.3. We first rewrite (10.22). As a first step, we rewrite it as

pp(wx)

@ par ) 2t B p ()
(10.24) 1(G, P7)ke ® KL(Q)eryq M X rlen ot
Sphg

w
crlt p(wx) - g_mOdCrit,P(wX) -

— (G, P )5 . gG KL(G)erit,p(wy) — 8-mod_

=genh _ N
= (§m0derit, p(w)) (V) ) —— dCoh™(Opg(D*)) & IndCoh” (Opg(D™)).
10.5.4. Consider the functor

(10.25) (G, P)oc e et G pyloe ) = D-mod (Gra,puy)) = Whit.(G),

pp(wx) plwx

where the last arrow is the tautological projection. This functor is compatible with the action of Sph,.
We can further rewrite (10.24) as

(10.25)R« w tau . *
(10.26) I(G,P7)° (& KL(G)er 2 Whity (G) © KL(G) eritp(y ) >
G

pp(wx) Sphe
Haenh T~ .
= (GMOderit p(wx)) SN ) P2, IndCoh* (Opg (D)) 2§ IndCoh* (Opg (D*)).

10.5.5. 'We now rewrite (10.23).

Consider the functor of direct image

(10.27)  I(G, P7)™°!°° = IndCoh* (LS(;(D) x  LSp-(DX) X LSM(D)> —
LS (DX) LS 5 (DX)

— IndCoh* (LS (D)) = QCoh(LS(D)).
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It is compatible with the actions of Sph¥““. Hence, it gives rise to a functor

(1028)  I(G,P7)™*™ @ IndCoh”(Opg™™ (D)) 25
Sphséec
— QCoh(LSs(D)) ® IndCoh*(OpEe™e(D*)) 5

Sphscg’eC
— IndCoh™ (Op@ (D x ))mon—free < IndCoh™ (Opé (® * ))

It is easy to see that the functor (10.23) is isomorphic to (10.28).

10.5.6. Note now that the functor (10.25) identifies with the functor obtained by duality from

(2.21)

Whit' (G) @ I(G, P7)k¢ == Whit' (M) — Vect,

pp(wx)

where the last arrow is the functor of fiber at 1 € Grys,,,,(wy ), Or equivalently, the functor of pairing
with

Lwhit, (v) € Whits (M).
Similarly, the functor (10.27) is obtained by duality from

Rep(G) @ I(G, p)Pecloe @23 Rep(M) — Vect,
where the last arrow is the functor of M-invariants.
Hence, from the commutativity of (2.27) it follows that the diagram
St

1(07 P—)loc i I(é, P—)spec,loc

pp(wx)

(10.25)l 1(10.27)

Whit.(G) —= Rep(G)

0
2

commutes, in a way compatible with the actions of Sphg =~ SphZ’**.

-mon-free

10.5.7. Hence, we can rewrite the composition of FLEE with (10.28) as

T,crit

(10.29)

-1
(FLE, _ o7q)®(FLEG crit ©7G)

—\loc (10.25)®1d . oo
I(G, P )LP(MX)S;%G KL(Q)erit -~ —% ~ White(G) ® KL(G)eit —

Sphg

— Rep(G) ® IndCoh™(Opg®™°(D*)) = QCoh(LSs(D)) ® IndCoh*(OpgE™™e(D*)) 5
C Sphgec

spe
Sphc.

— IndCoh* (Op@ (D x ))mon—free — IndCOh* (OpG‘ (® * ))

10.5.8. Thus, it remains to identify

—1
(FLE, " o7G)®(FLEG,crit ©7G)

Whit.(G) ® KL(G)erit — Rep(G) ® IndCoh™(OpZ°™ (D)) =
Sphg SphsGPec
= QCoh(LS¢(D)) @ IndCoh* (OpE°* ™ (D*)) = IndCoh* (Opg (D)) mon-tree
Sphsc ec

< IndCoh* (Opg(D*)) 2§ IndCoh* (Opg (D*)),
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which is the same as

-1
FLEZ! ®FLEG crit

Whit.(G) ® KL(G)erit s Rep(G) ® IndCoh*(OpZo™™e¢(D*)) =
Sphg Sphgrec
= QCoh(LS¢(D)) @ IndCoh* (OpE°™ ™ (D*)) 5 IndCoh* (Ope (D)) mon-tree
Sphsé ec

< IndCoh* (Opa(D*)),

with
. Id ®cp(wy), taut . *
Whit,(G) ® KL(G)erit — Whit«(G) ® KL(G)erit,pwx) —
Sphg Sphg

. pgenh .
— (g—modcrit,p(wx))S(N)p(wX) — IndCoh (Op@(@x)).

However, this is precisely the assertion of Corollary 7.5.2.
10.6. Functor from C on the geometric side.

10.6.1. Our current goal is to construct a functor

pp(wx)

(10.30) C—1(G,P)s ® KL(G)erit,
Sphg
and prove the commutativity of the left and lower triangles in (10.2).

. % _mon-free , .
10.6.2. Since the functor (10.8) preserves compactness and FLEGQT“C‘;);l "¢ is an equivalence, the com-

mutativity of the lower triangle in (10.21) implies that (10.20) also preserves compactness.

We define the functor (10.30) to be the right adjoint of (10.20). The commutativity of the lower
triangle in (10.2) is the automatic: we started from a commutative triangle (10.21), and replaced both
legs by their respective right adjoints, while the base is an equivalence.

In order to prove that the left triangle in (10.2) commutes, by the same logic as in Sect. 10.3, it
suffices to prove that it commutes at the pointwise level.
Remark 10.6.3. In fact, one can deduce from [FG3, Main Theorem 3] that the functor FLE?_}Zm
(10.14) is a pointwise equivalence (see Sect. 10.7), and thus repeat the logic of Sect. 10.3 verbatim.

of

In the argument given below we will make do with less information than the full equivalence.
10.6.4. By Proposition 10.3.8, at the pointwise level, we can interpret the functor FLEg;im as a
functor

Z - IndCoh* (Opg p— (D¥)  x LSy (D)),

crit
LS 7 (DX)

(10.31) FLEZ, . ¢ -mod

and the left triangle in (10.2) as the square
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(10.32)
PR PLEG  cr IndCoh* (Opg - (D* x LSy (D
g_modcr’itz ( Pa.p ( )LSM(DX) M( ))
(9-3) (9-8)
1 =~ —\spec,loc * mon-free X
G, P7) x) @ KL(G)er ——TC gy Dy IdCORT (0P (D),
FLEG | i ¢

in which the vertical arrows are obtained by passing to the right adjoints in the commutative diagram
(10.33)
~ - IndCoh* (Opg p— (D* x LSy (D
g-mod,;,° = ( G,P (D%) LS 11 (D7) i ( ))
FLEGZ,T,crit

(9-2) (9.9)

I(G, P7)Peloc @ IndCoh* (Ophenfiee(D).

—\loc
UG, P7) g wx) Spé%c; KL(Glerit — > SphiPee

2 _mon-free

FLEZ ; crit
We need to show that the natural transformation in (10.32) is an isomorphism.

10.6.5. Recall that the functor (9.2) is fully faithful with essential image denoted

. _ o0\ Sph-gen - _
(10.34) (g—modcr’itQ) C G-mod_?

crit  °
Similarly, the functor (9.9) is a fully faithful embedding with essential image

IndCoh* (Opéﬁpf (DX) X LSM(D))mon—free - (Opéﬁpf (DX) X LSM(D)),
LS,7(DX) LS,;(DX)

i.e., full subcategory consisting of objects set-theoretically supported over the preimage of

LSG(D) C LSG('DX)
10.6.6. Using the equivalence

(10.35) §-mod’;, ~ §-mod 12

crit

)

and the action of the Iwahori-Hecke category on g-mod.;,, we obtain the category ﬁ-modm? is also
tensored over QCoh(LSx(DX)).

Unwinding the definitions, one obtains that the functor FLE;?T’Crit is compatible with the actions
of QCoh(LSx(D™)) on both sides.
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Therefore, in order to prove that the natural transformation in (10.32) is an isomorphism it suffices
to show that the subcategory

Sph-gen

(/g\_mOdgrit) ~ g-mod,,

corresponding under (10.35) to (10.34), equals

crlt ’

(/g\'mOd(I:rit) mon-free C ﬁ'mOdéritv
i.e., the full subcategory consisting of objects set-theoretically supported over LSx(D) C LSx (D).
However, this follows from [FG3, Main Theorem 4].
10.7. A sketch of proof that FLE?;ZM is a pointwise equivalence. The material in this sub-

section is not needed in the remainder of the paper. But for the sake of completeness, we will sketch a
proof of the following assertion:

Theorem 10.7.1. The functor FLEG +erit 0f (10.14) is a pointwise equivalence.

EXo)
Remark 10.7.2. As was mentioned above, we conjecture that the functor FLEZ | ;; is actually an
equivalence as a factorization functor.

10.7.3.  The rest of this subsection is devoted to the proof of Theorem 10.7.1. In the paper [FG3, Main
Theorem 3] an equivalence

(10.36) FLEG ot ¢ 8-mody, — IndCoh™ (Opg - (D*)  x LSy (D))
’ LS 37 (DX)

was established.

Applying the equivalence (10.35), from (10.36) we obtain a (pointwise) equivalence
2 = IndCoh™ (Opg p— (D) x  LSy(D)).

crit
LS 7 (DX)

(1037) Fﬁgr,cnt g mod

We will show that the functor FﬁgT’crit is isomorphic to the functor FLEET,crit of (10.31). This
would imply the assertion of Theorem 10.7.1.

10.7.4. By definition, the datum of an isomorphism
FLEG T,crit — FLEG% T,crit
amounts to an identification between
2 FiB2
©3 IndCoh™ (Opg p- (D7) x LSy (D)) =3

LS ;7 (DX)

— Q(Rg)OP-mod ™t (IndCoh*(OpG(DX) x LS M(’D)))

g-mod_,

cr1t

and the functor FLE " . of (10.14).

G,T,cri

10.7.5. By unwinding the construction of (10.37), one obtains that the triangle

(10.38)

FLES e IndCoh* (Opgs - (D*)  x LS (D
ngdcrlt ( pa,p-( )LSM(DX) wi ( ))

*.Q

’ X i
prerLd T (i)

IndCoh* (Ops (D) x LS,7(D))

commutes.
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We need to enhance the isomorphism of functors given by (10.38) to one with values in
Q(Rg)°P-mod™* (IndCoh*(Opc(DX) x LS M(D))).

10.7.6. The required enhancement is constructed as follows.

The two sides of (10.37) are factorization module categories with respect to
Satg + spec
Sphg, —5" Sph’¥

respectively, and the functor Eﬁg ,crit 15 compatible with these functors.

Now, the required enhancement follows from the isomorphism between (10.18) and (10.19) using
the fact that the functor pre—FLEGT,;rT;tQ in (10.38) is compatible with the Sph,-module structures via
£(N) oo plre-F‘LE%)Q

—xVac i Av, ~ — T,cri *
Sphe V2 KL(G)ert s G-mod 3 Z47 IndCoh* (Opg (D) x LS (D)),

and the functor (p* x id). is compatible with the Sph?*“-module structures via

SphePee 26 1Cioh” (OpEom s (D)) %%
X i " .
— IndCoh* (Opg p— (D) x  LSy(D)) > xid)x 11 Coh (Ope(DX) x LS4 (D)).
LSy (DX)

O[Theorem 10.7.1]

11. ENGAGING THE PENTAGON

In order to finish the proof of Theorem 9.5.3, it remains to establish the commutativity of the
pentagon in (10.2). Le., we need to show that the two functors

(11.1) KL(M)erivt pp (wy) = QURe)PP-mod™* (IndCoh*(Opg (D) x LS 7(D)))
are canonically isomorphic.
We will do so by showing that the two functors become isomorphic after composing the two functors
in question with various forgetful functors from
(11.2) Q(Re)P-mod™* (IndCoh™(Opg (D) x LSy (D)) ,
which increasingly less information.

Namely, we will first consider the following sequence of forgetful functors:
Q(Rg)°P-mod™* (IndCoh™ (Ope (D) x LS (D)) —
— IndCoh*(Opg(D*) x LS (D)) — IndCoh™ (Opg(D*)) = Oop,, (n)-mod™* — Vect .

The structure of the argument will be as follows:

(1) The fact that the compositions of the two functors in (11.1) with the forgetful functor to Vect
are isomorphic will be a reflection of the basic fact about the action of the Feigin-Frenkel center
on Wakimoto modules;

(2) The fact that we can lift this isomorphism to one with values in Oop (p)-mo
immediately from unitality;

(3) The fact that this isomorphism lifts further to IndCoh* (Ops(D™)) is a question of homological
algebra, which we deal with explicitly;

(4) The further lift to IndCoh*(Opg(D*) x LS (D)) is automatic, thanks to the Rep(M )-action
on both sides;

(5) The final lift to (11.1) itself is the most substantial step of the proof. We will reduce the asser-
tion to a pointwise statement, and there we will deduce it from a basic calculation performed
in the paper [FG2].

dft will follow

11.1. Comparison of the unenhanced functors.
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11.1.1.  'We will first show that the compositions of the two functors in (11.1) with the forgetful functor
(11.3)  Q(Rg)°P-mod™* (IndCoh™ (Ope(D*) x LS;(D))) — IndCoh™ (Opes (D) x LS y7(D))
are canonically isomorphic.
The two functors
(11.4) KL(M) it pp(wy) = IndCoh*(Opgs(D™) x LS 7(D))
commute with the action of
Rep(M) ~ QCoh(LS; (D)).

Hence, it is enough to show that the compositions of the functors in (11.4) with the direct image
functor

IndCoh™*(Opg (D) x LS (D)) — IndCoh™ (Ops (D))

are canonically isomorphic.

11.1.2. The clockwise composition is the functor

T @ (wx ).taut
(11.5)  KL(M)erittsp(wx) =5 KL(M)erie—ppwx) 2 KL(M)erit—pp(wx ) poar(wx) =

genh

— M-MOderit—pp (wy ), par (wx) ﬂ IndCoh™ (OpMp (D*)) ~
~ IndCoh*(MOpg p_ (D*)) *—3* IndCoh* (Ope (D)),
where pMit is the Miura map
MOpg¢ - (D*) = Opg (D).
The counter-clockwise composition is the functor

Wak
(11.6)  KL(M)erit4ppwy)  —  8-modey;

G

>
5 -
“

—, 2 %p(wy),taut
Cnt

enh T
— g-mod_ 5 Fmoderic pioy) —% IndCoh(Opg(D*)) 2§ IndCoh™ (Opg (D)),

2
cnt p(wX)

which is the same as

Wak;;a?;x) Ap(wx ), taut
11.7)  KL(M)critesm (0 — g-mod.__ -
+op(wx) crlt
s N Dser
— g mOdcnt  wx) 9-mO0derit, p(wy ) G ¢ IndCoh* (Opa(DX)).

Remark 11.1.3. Note that we can rewrite the functor (11.7) also as

o

Wak

(o‘ﬁp(wx),cent)71 p;)(wx)
RO =

(11.8)  KL(M)ecrit+pp (wx) KL(M)crittpp (wx)mop (wx)

> w aut ~ —~ DS o7,
— g-mod_ ;> = g-mod_; = §-m0derit poy) “ IndCoh"(Op¢ (D)),

OO
crit,pp(wx) crit p(wx)

where a5, (wy),cent 1S an in (4.12), or
(O‘ﬁp(wx),cent)_l

%poar(wx ), taut
(11.9)  KL(M)erivipp(oy)  — KL(M)crit4pp (wx)onr (wx)

Wak 2

P(wx) 7£
— KL(M)Crit‘FﬁP (wx),p(wx) I g mOdcrlt pwx) -
DSG ot

— §-moderit, p(wy) IndCoh”(Op¢(D™)).
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11.1.4. We will first show that the two functors (11.5) and (11.7) become isomorphic after composing
with
I'(Opg (D), =)™ : IndCoh* (Opg (D)) = Oop,, (n)-mod ™.
This amounts to showing that they become isomorphic as (factorization) functors when composed
with the forgetful functor

(11.10) Oopé(g))-modfaCt — Vect,

and that the resulting two maps of factorization algebras

(11.11) OOPG(D) = Image Of(lKL(M)crit+;5p(wX))
agree.

11.2. Comparison of the further unenhancements.

11.2.1.  The composition of T'(Opg(D*), —)°™ with (11.10) is the functor T'(Opg(D*), —).
The composition of (11.5) with I'(Ops(D*), —) is the functor

11.12)  KL(M)eritrs o) 24 KL(M Sealox)ant g op
+pp(wx)

crit—pp(wx) crit—pp(wx).par(wx) 7
~ DS
- m_mOdcrit—ﬁP(wx)»PM(wx) — Vect.
The composition of (11.7) with I'(Ops(D*), —) is the functor

Wakp}; %) ~
(11.13)  KL(M)erit+pp(wy) — g-mod

TR

7,% p(wx ), taut
crit

~ -2 ~ DSg ora
2
— g—modcritypwx) — g-modcrit, p(wy) — Vect.

11.2.2. We rewrite (11.12) as

Xpap(wx ), taut
(11.14)  KL(M)crietpp(wx) 2+ KL(M)erittppwx)on (wx) —

~ TM ~ DS
= W0derit i (wx) par (wx) —F BMOGerit—jp(wx) par (wx) —+ Vect.

We rewrite (11.13) as

(aﬁp(wx),cent)_l

< (wx ), taut
(11.15)  KL(M)erivsppox) 5 KLIM )erittpp (wx)opar (wx)

oo

Wak ) -
~ 5
- KL(M)Crit+I§P(WX)vP<WX) g-mo crit,p(wx) -

— g-moderit, p(wx) P86 876 1 qCoh® (Opa(D™)).
11.2.3. Note, however, that
DSqg otg ~ DS and DSy omar =~ DSy .
So we have to construct an isomorphism between

~ DS
(11'16) KL(M)Crit+ﬁP(wx),PM(wx) - m'mOdCYit‘FﬁP(wx),PM(wx) — Vect

and

Wak
KL(M)erit4pp (@x)plwx)  —

= GmO0deriv p(wy) —5 IndCoh* (Opg(DX)).

B

2
€
=

—1
(@5 p(wyx),cent)

(11.17) KL(M)CritJrﬁP(wx)»PM(wx)

= Fmod iy
Remark 11.2.4. As we have seen above, the Cartan involutions play no role for the functors DS¢ and
DS, respectively. They will, however, play a role, once we will consider the action of Oop (), i-e. in

showing that the two morphisms (11.11) agree.
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11.2.5. Note also that the diagram
~ DS
KL(M)Crit+5P(wx),ﬂM(wx) - m'm0d0r1t+ﬁp(wx),PM(wx) — Vect
(O‘ﬁp(wx)»cent)ill (O‘ﬁp(wx),cent)ill lld

~ DS
KL(M)exittpp(wx)plwx) — M-MOderivtpp(wy)pwy) —— Vect
commutes.

Thus, we have to construct an isomorphism between

~ DS
(11.18) KL(M ) crit45p (wx)opp (wx) — B-M0erittpp(wx)ip(wy) —F Vect
and
Wak, (%)

(11.19)  KL(M)crit45pwx)plwx) —

SR~
= gmod ;%)

11.2.6. Finally, the isomorphism between (11.18) and (11.19) is evident:

= GmOderit p(wy) —5 IndCoh* (Opg(DX)).

The functor Wak;};(?wx) creates a module that is “semi-infinite free” with respect to £(n(P)),p(wx)>

see, e.g., [Gaib, Sect. 2.2].
11.3. Identification of the Oopé(g)-action.

11.3.1. The two circuits of the pentagon in (10.2) define maps of factorization algebras

FFY -
(11.20)  Oopy(p) — DSG(Vac(G)erit p(wyx)) =5 DS6 (Vac(G)erit p(wy)) —

— DSg 0p(wy ), taut © Wakp 2 (VaC(M)Crit+ﬁp(wX))

plwx)
and

Miu y*

( FF)) -
(11.21)  Oopg(m) — Oopy , (uy @ —* DSm(Vac(M)erit—pp (wx).oar (wx)) —F
- DSM(VaC(M)Crit+ﬁP(wx),PM(wx)) ~ DSy OQp s (wx),taut (VaC(M)Crit+ﬁP(wx))7

where F Fg is the isomorphism (7.2) for G, and FF)} is the corresponding isomorphism for M, and
Miu
OPM,pP(wX)(D) ~ MOp¢ 5- (D) e Opa(D).

We need to show that the homomorphisms (11.20) and (11.21) coincide under the identification

(11.22) DS 07G © Cpury ) cant © Wak 2

o (eox) (VAC(M)exitt pp(wx))

~ DS OQp s (wyx),taut © TM (Va'c(M)crit+ﬁp(wX))7
constructed in Sect. 11.2.
Equivalently, we have to show that the two structures of factorization (a.k.a. chiral) Oop e (D)~

modules on the two sides of (11.22) coincide.

11.3.2. Note that the factorization algebras in (11.22) are classical chiral algebras, i.e., at the pointwise
level they belong to Vect”. Hence, it is enough to establish the above assertion about the chiral
Oop, ()-action on the two sides of (11.22) at the pointwise level.

We will think of a structure of chiral Oop (p)-module as a (discrete) action of the (topological)
commutative algebra Ogp, . (px)-

(In the process of proof, we will see that the chiral action(s) in question are/is commutative, i.e.,
the action of Op,, . (px) factors via Oopgs(D)-)
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11.3.3. Recall that 34 denotes the Feigin-Frenkel center of g-modcrit, see Sect. 8.1.1. Let 3m be the
corresponding object for M, and let 3w 5, (wy) denote its twisted version.

Note also that 34 is insensitive to twists by £7(G)-torsors. So, we can equivalently view 34 as
mapping to

inv£+(G)p(wx> (VaC(G)Crit,P(wX ))’
and similarly for M.

Finally, recall (see Sect. 8.1.2) that the composite map

(11.23) 34 — inv£+(G)p(wx) (Vac(G)erit,p(wx)) —
— inV£+(N)p(WX) (Vac(G)crit,p(wX)) — DS(VaC(G)crit,p(wX))

is an isomorphism, and similarly for M.

11.3.4. Let 34 be the topological commutative algebra corresponding to 34. It maps to the Bernstein
center of the category g-moderit, i.e., it acts functorially on every object of g-modecyit.

Let 3m be the corresponding algebra for M. We will also consider its twisted versions

3m,—ﬁP(wx) and 3m:ﬁP(WX)'

The isomorphism (8.2) gives rise to an isomorphism

(1124) OOpG(QX) ~ 357

and similarly for M.

11.3.5. The isomorphism (11.23) implies that in order to show that the actions of OOPG,(DX) on the
two sides of (11.22) are equal, it is enough to show that the action of OOPG,(DX) on

DS 07 © Ap(u ) taut © Wak, | &, ) (Vac(M)erittpp ()
obtained via

FF3

G TG
(1125) OOPG(DX) >~ 39 ~ 39
and the action of 34 on Wak;;,?zx)(Vac(M)Crit_,_,jP(wx)) identifies under (11.22) with the action of

OOPG' (px) On
DSwm OQp s (wx),taut © TM (Va.C(M)crit+ﬁp(wx))
obtained via

(p Miuyx FF3, ™
(11.26) Oopg(ox) = OOPM,ﬁP(wx)(DX) > Bm,—pp(wx) X Impplwx)

and the action of 3(M)crit4pp(wy) 0N Vac(M )erit4pp (wx ), Where p**Mit denotes the map
OP it pp(wy) (D) = MOpg; - (D) P Opg (D).
11.3.6. For the latter, it is enough to prove the following: for any object
M € M-moderit4jp (wx )
the OOPG(DX)—action on
Wak ™ % (M)

obtained via (11.25) and the action of 3, on Wak ™% (M) agrees with the action, obtained via (11.26)
and the action of 3m 5, (wy) on M.
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11.3.7. Recall now that the duality
(g-moderit)” =~ g-moderit
is compatible with the action of 34, up to 7, see Sect. 8.2.2.
Similarly, the duality
(M-MOderit—pp(wy)) " = M-MOderictpp (wy)
is compatible with the action of
Bm—ppx) 2 Bmpplwx)-

11.3.8. Hence, by duality, the assertion in Sect. 11.3.6 is equivalent to the following: for M" € g-modeit,
the action of OOPG(DX) on

BRST~ (M)

obtained from

Oopg(px) = 3o

and the 34-action on M’ and the functoriality of BRST ~, agrees with the action, obtained via

(p* - Minyx FF3,
Oopg(ox)y = OOpM’pvP(WX)(DX) " Jm—pp(wx)

and the 3u,_5p(wy) 00 BRST™ (M) as an object of M-moderic—pp(wy))-

However, the latter is the basic property of the homomorphism FF%v and FF%

11.4. Upgrading to IndCoh™. We have established that the two functors
(11.27) KL(M)crit+pp (wy) = IndCoh™ (Opg (D)),
obtained from (11.4) by composing with the direct image functor

IndCoh™ (Opg (D) x LS;7(D)) — IndCoh™ (Opg(D™)),
become isomorphic, after we apply thefunctor

I'(Opa(D™), *)enh ®1d : IndCoh*(Opg (D)) — oOpG(D)_mOdfaCt'
We will now deduce from this that the two functors in (11.27) are themselves isomorphic.

11.4.1. Tt is enough to construct an isomorphism between the values of the functors in (11.27) on
compact objects in KL(M)crittpp(wx)-

Using Lemma 5.2.2, it is enough to show that both functors in (11.27) send (KL(M)crit4pp(wx))®
to IndCoh* (Opg (D))~ .

Since compact objects of (KL(M)crit4pp(wy))® are bounded below, it is enough to check that the
two functors in (11.27) are of bounded cohomological amplitude.

The latter assertion can be checked at the pointwise level.
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11.4.2. Consider first the functor corresponding to the clockwise circuit in the pentagon in (10.2). We
will show that the corresponding functor

KL(M)crit 4 pp(wy) — IndCoh™(Opg (D))
is t-exact.

This functor is

X,Miu)

enh
(P « 0Ty 0 DSYy OQppy (wx ) taut-

X ,Miu

This functor is t-exact since the morphism p is ind-affine, and the functor

Ypoap(wx ), taut
KL(M)erits pp(wx)  —> KL(M)erittpp(wx)ons (wx) =

enh

N DS .
— m—modC,iHﬁP(wX),pM(wx) # IndCoh (OPM,pM(wX)(DX))
identifies with

FLE A erit4pp (wx)
, plox
=

KL(M)erit+pp (wx)

and the functor FLEp crit45p(wy) 1S t-exact (see Remark 7.4.5).

IndCoh™ (Op3y s s (D*)) = IndCoh™ (0P 5., wx) (D)),

M, par(wx)

11.4.3. We now consider the functor corresponding to the counter-clockwise cicruit. The functor in
question is

enh 5
(11.28) Tg 0 DSE™ 0wy ) taut © Wakpp(zwx) .
We will now rewrite it, replacing Wak;l;zx) by the usual Wakimoto functor.
11.4.4. Note that the composition
_ %o = v£+(N(P)) N +
(11'29) KL(M)crit+l3P(wx) Wak—> ’ ﬁ'mOdcr;tz B — g'mOdfrit(P)
is the usual Wakimoto functor, to be denoted Wak.
Let Wak, ) denote its p(wx )-twist, i.e., the composition
% st (N (P))
Up(wx ) tautOWak, LG,y - Avs Plx) (P pwy)
(11.30)  KL(M)erittp(wy) — T gmod 2 — g-mod_;, 0

11.4.5. Note also that the composition

psenh

— -moderit, p(wx) Sc, IndCoh™(Opg(D™))

—_
N s
gmod, i x)

can be rewritten as

et (N(P
-, AV*L (N( >)P(wX)A 2+(P)p(wx) pgenh

Fmod i) - gmod g, o) = Bmoderit p(wy) — mdCoh”(Opg(D™)).

Hence, we obtain that the composition

Qp(wy ) baut OWak 2

KL(M)crit+,3P(wX) N pp(wx) ﬁ—mod

. enh
-

— Fmoderic p(wy) - IndCoh®(Ope(DX))

2
crit,p(wx)

can be rewritten as

Wak (wx) ~ £+(p) w = pgenh )
KL(M)erivtpp(ox)  — §modg, 05 = §moderi pwy) —5 IndCoh™(Opg (D).
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11.4.6. We will now describe the functor Wak in more familiar terms.

o

Let CDO(G)erit,erit be the CDO at the critical level; and let CDO(G)erit,crit be its localization,
corresponding to the parabolic big Bruhat cell

o

G=P-P CG.
We have:
CDO(é)crit,crit € ﬁ—m0d£+(P) ®§—mod£+(P_)_

crit crit

Consider the object

(11.31) (1d ® BRST ™) (CDO(G)erit crit) € §-mod ™ @ KL(M )exie— pp (s )-
Then the object (11.31) defines the functor Wak using the duality
(KL(M)erit—pp(wx)) = KL(M)erittpp (wx) -
11.4.7. From the above description of the functor Wak we obtain:
Lemma 11.4.8. The functor Wak, viewed as a functor

P — ﬁ—modcm

~ et
KL(M)CT“*’F;P(WX) — g_mOdcrit(

s t-exact.
Hence, we obtain that the functor Wak,, ), viewed as a functor

KL(M)crit+[7p(wx) — /g\_mOdcrit,p(wX)

is also t-exact.

11.4.9. Note also, that from the above description of Wak, we obtain that at the pointwise level, it
factors via a functor

KL(M)critH»ﬁp(wX) — a‘mOdgrih
where I C £%(G) is the Twahori subgroup.

Hence, the same is true for Wak,, -

11.4.10. Taking into account Sect. 11.4.5, we obtain that in order to show that the functor (11.28)
has a bounded cohomological amplitude, it is enough to show that the functor

N . Dsenh N
g_mOdgrit,p(wX) - g_mOdcrit,p(wX) g IndCoh (OpG(DX ))
has this property.

However, this follows from [Ras6].

11.5. Identification of the map of factorization algebras. We have proved that the compositions
of the two functors

(11.32) KL(M)erits pp (wy) = Q(Rg) P-mod™* (IndCoh™ (Ope (D) x LS (D))
with the forgetful functor

Q(Rg)°P-mod™* (IndCoh™ (Ope(D*) x LS (D)) — IndCoh* (Opgs (D) x LS (D))
are canonically isomorphic.

We will now show that the functors (11.32) are canonically isomorphic.
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11.5.1.  Let QMOP denote the factorization algebra in IndCoh*(Opg(D*) x LS;(D)) equal to the
image of
Vac(M)crittpp(wx) = 1KL(M)crit+;3P(wX) € KL(M)crit+pp(wx)
along the two isomorphic functors
KL(M)crit+ﬁp(wx) = IndCoh*(Op@(ﬁx) X LSM(?))

The two functors (11.32) give rise to two homomorphisms
(11.33) Q(Rg)°P = QMOP,

We need to show that the two maps in (11.33) are isomorphic.

11.5.2. The two factorization algebras in IndCoh*(Opgs(D*) x LS; (D)) are
%0 -1}
2 o Wak 2 (Varc(M)crit+;3p(wx))

pre_FLEG,T,crit pp(wx)
and
((pxa) 0 ))«(Omop; 4 (D),
respectively, where (p oj) X q is the map
MOpg - (D) = Opg, p- (D) = Opg(D) s LSp- (D) 223 Opg (D) x LS (D).
G
We will first construct an isomorphism

59
G,T,crit

oWak "2

pp(wx)

(11.34) pre-FLE (Vac(M)erit+pp(wx)) = ((p X q) Oj)*(OMOpG’}-,_(D)):

compatible with the maps from Q(Rx)°P to each.

We will then show that the isomorphism (11.34) equals the already constructed identification
oo ‘Q -, oo .
(11'35) pre_FLEGg,T,Crit oWa'kPP(wa)(VaC(M)crit+ﬁP(wx)) ~ QMOP ~ ((P X q) OJ)*(OMOPG,P— (D))'

11.5.3. Note the datum of an isomorphism (11.34) compatible with the maps from Q(Rs)°P amounts
to an isomorphism

G,T,crit

% O - i
(11.36) FLEZ 0 Wak 2 (Vac(M)erivs pp () ~ (10.6) 0 ju(Oniop, ,_ (1)
as objects of C, where we think of OMOpc . (py) as an object of

MOpg p-(D*)  x LSy (D).

LS 7 (DX)
11.5.4. Note that the object
Wak 2

o) (VAC(M ) exit s pp (wx)) € B-m0d e

belongs to
-, %

C g-mod

oo \ Sph-gen
) crit

G, P7)* @ KL(Gar 5 (Fmody”
G

Similarly, the object

j*(OMOpG . (p)) € IndCoh” (Opé’p_ (D) X LS (D))
. LS 5 (DX)

belongs to
(G, P7)™*!° @ IndCoh™(OpZ°™ (D)) ~

spec
Sth.

~ IndCoh* (Opc P (@X) X LSM(‘D))mon—free C
’ LSy (D)

C IndCoh™ (Opé P— (DX) X LSM(ﬂ))
’ LS 7 (DX)
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We will construct an isomorphism

2 _mon-free -2 .
(11.37) FLEZ (Wakppgwx)(Vac(M)C,inP(wX))) = j«(Omopg, 5 (m)

,T,crit

taking place in

IndCoh* (Opé P (DX) X LSM(D))mon—free-
’ LS 7 (D)

It would give rise to an isomorphism (11.36) by applying the commutative diagram (10.21).
11.5.5. The construction of (11.37) will take the following input from the paper [FG2, Theorem 4.11]:

Theorem 11.5.6. There exists a pointwise isomorphism between the objects

% -mon-free
G,T,crit

FLE, Wak;l;?wx ) (VaC(M)crit+ﬁp(wX))) and j* (OMOPCJ,P— (‘D))

taking place in

IndCoh* (OpG“ P (DX) X LSM(D))mon—free-
’ LS y; (D)

Furthermore, this isomorphism is compatible with:
e The maps into both sides of (11.37) from
LindCoh* (Opg p— (DX) % LS (D)) monctree = VO0pgs oo (D)3
’ LSy (DX ’
e The identification of the images of both sides under the functor

IndCoh™ (Opgs p— (D) x LSy (D))montree — IndCoh™(Opgs p— (DX)  x LS (D)) ® 50
’ LS y (DX) ’ LSy (D)
— IndCoh* (Opga(D*) x LS (D)) — IndCoh™ (LS (D)) = QCoh(LS (D)),
induced by the isomorphism of the two functors in (11.4).

We now proceed to the construction of the sought-for isomorphism (11.37).

11.5.7. Note that for an object
F € IndCoh™ (Op@ p- (@X) X LSM(D))mon_ﬁee

’ LSy (D)
and an open

U C Opg p- (D),
one can talk about the localization of ¥ on U; to be denoted Fyy. It comes equipped with a universal
map

F— Fu.

11.5.8. Tautologically, the map
O0p,; - (D) = LindCoh* (Opg p— (DX) % LSy (D))mon-tree — J«(Onmopg, 5o ()
LSy, (D X)
identifies j*(OMopG . (py) with the localization of Oopc. »_ () along the open
(11.38) MOp¢ - (D) C Opg,p- (D).

11.5.9. Hence, in order to construct the isomorphism in (11.37), it suffices to show that the map

(11.39) 1IndCoh*(OpG~,F,_(DX) X LS (D)) mon-tree

LS 17 (D)

oo
% -mon-free
— FLEZ (

T,crit

Wak 2 (VaC(M)Crit-FﬁP(wx)))

pp(wx)
also identifies the right-hand side with the localization of the source along the open (11.38).
The property of a map to be a localization along a given open can be checked strata-wise. Hence,

since the map (11.39) is compatible with factorization, it being a localization is a pointwise property.
The fact that this property holds follows from Theorem 11.5.6.
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11.5.10. Thus, we have constructed the the isomorphism (11.37), and hence an isomorphism (11.34),
compatible with the maps from Q(Rx)°P. We will now show that it equals the identification (11.35).

Note that both objects in (11.35) belong to the heart of the natural t-structure, i.e., they can be
thought of as classical chiral algebras. Hence, in order to show that two given morphisms between
them are equal, it is enough to do so at the pointwise level.

At the pointwise level, in order to show that two given maps between objects of
IndCoh* (Opg (D*) x LS 17 (D))”
are equal, it is enough to show that this is the case after applying the direct image functor
IndCoh™(Opg (D) x LS;(D)) — IndCoh™ (LS 17(D)) = QCoh(LS7(D)).

The required assertion follows now from the second point in Theorem 11.5.6.
O[Theorem 9.5.3]
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Part III. Local-to-global constructions

Part IIT again mainly consists of a review of previously known results. In this part, we study the
interactions of various local categories introduced in Part I with their global counterparts, which on
the geometric and spectral sides are

D-mod% (Bung) and IndCohniip (LS (X)),
respectively.

A feature of this part is that the constructions take place either purely on the geometric side, or on
the spectral side, but we do not study Langlands-type interactions between them (the latter will be
the subject of Part IV).

The main constructions studied in this Part as the following. On the geometric side we will see:
e Poincaré and Whattaker coefficient functors that connect Whit'(G) and D-mod 1 (Bung);
e The localization functor that connects KL(G)erit and D-mod% (Bung);
e The relation between the above two constructions;
e The functor of constant term, from D-mod 1 (Bung) to D-mod 1 (Bunys), and its enhanced
version;
e The relation between the constant term functors and localization.
Logically, we should have also included a section that studies the relation between constant term

and Poincaré functors, but in order to avoid the tedium, that topic has been delegated to Parts IV
(Sect. 20.5.4).

On the spectral side we will study the following constructions:

e The spectral localization and global sections functors, which relate the categories Rep(G) and
IndCohnilp (LS (X)) (but in fact, only QCoh(LSx (X)) is involved);

e The spectral Poncaré functors, which relate IndCoh*(Opg(D*)) and IndCohniip, (LS5 (X)) (but
again, only QCoh(LSx (X)) is involved);

e The relation between the above two constructions;

e The functor of spectral constant term, from IndCohniip (LS (X)) to IndCohnip (LS 37 (X)), and
its enhanced version;

e The relation between spectral constant term and spectral Poncaré functors.

Again, logically, we should have also included a section that studies the relation between spectral
constant term and localization functors, but that also has been delegated to Part IV (Sect. 20.5.3).

In this Part a new source of annoyance sets in: when studying relations between pairs of constructions
mentioned above, various cohomological shifts and determinant lines pop up. The reader may choose
to ignore them on the first pass.

12. THE COEFFICIENT AND POINCARE FUNCTORS
This section begins by introducing our main object of study: the critically twisted category of D-
modules on Bung. We rather thank of it as half-twisted D-modules, D-mod 1 (Bung). The reason being
that the latter version makes sense also in sheatftheoretic contexts other than de Rham (i.e., Betti,
l-adic).

The focus of this sections is Poincaré and Whattaker coefficient functors. In fact, there are two
Poincaré functors

Poincg ; : Whit!(G)Ran — D—mod% (Bung) and Poincg,« : Whit.(G)ran — D—mod% (Bung)co,

where D-mod 1 (Bung)co is the dual category of D-mod 1 (Bung). These two functors are Verdier-
conjugate: the dual functor of Poincg,« is the same as the right adjoint of Poince 1; this is the functor

D-mod; (Bung) — Whit' (G)ran-
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But in fact, the functors Poincg, and Poincg,« are also related in a much more non-trivial way:
they are intertwined by the Miraculous functor

Mirgung : D—mod% (Bung)eo — D—mod% (Bung),
see Theorem 23.3.6.

One can also give a global interpretation of the above functors, where instead of the affine Grass-
mannian, one uses the twisted Drinfeld compactification

Buny ywy) — Bung .

This is how the global geometric Whittaker model had been mostly approached so far (see, e.g., [Gail]).
The two approaches are, however, equivalent (see [Gaid]).

For the purposes of this paper, we will only explicitly need the global interpretation of the vacuum
cases of the above functors, see Sect. 12.5.

12.1. Twisted D-modules on Bung.

12.1.1. Let detuns be the determinant line bundle on Bung, normalized so that it sends a G-bundle
Pe to

®—1
det (T(X, g9,)) @ det (T(X,g50))

where P is the trivial bundle.

12.1.2. Note that we have

"
™ (detBunc) =~ detGrG,Ram

where 7 denotes the projection

(12.1) GrG,Ran — BuIlG .

12.1.3. Note also that up to the (constant) line det (I‘(X ) g'y%)>, the line bundle detpun, identifies
with the canonical line bundle on Bung.

12.1.4. We let crit denote the de Rham twisting on Bung, equal to the half of the de Rham twisting
defined by detBung, i-e.,

crit = % - dlog(detBung )-

We will denote by
D-moderit (Bung)
the corresponding category of twisted D-modules.
Note that by Sect. 12.1.3, the critical twisting on Bung is canonically isomorphic to the half-canonical
twisting.
12.1.5. Pullback along 7 defines a functor

e D-moderit (Bung) — D-moderis (Gre,Ran)-

Remark 12.1.6. According to [BD, Sect. 4], the choice of w?;z gives rise to a choice of the square
of detBun, as a line bundle. This allows us to identify D-modcrit(Bung) with the usual category
D-mod(Bung).

However, we will avoid using this identification.
12.1.7. As in Sect. 1.1.7, we obtain a canonical identification

(12.2) D—mod% (Bung) = D-moderit (Bung).
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12.1.8. Pullback along 7 defines a functor
T D—mod% (Bung) — D—mod% (Grg,ran),

so that the diagram
D-moderit (Grg,ran) ——— D—mod%(GrG,Ran)

D-moderit(Bung) — D—mod% (Bung)

commutes.
12.2. Restricting to (twists of) Buny.

12.2.1. Let Pr be any T-bundle. Consider the stack

Buny,p,; ~ Bung 5 X pt,
unp

where pt — Bunr is the point Pr.

Denote by p the map
Buny,p,; — Bung.

Note that the pullback of detpun, along this map is canonically constant. Denote the resulting line by
[G’NTT .
12.2.2.  We obtain that p gives rise to well-defined functors
Prrie : D-modeit (Bung) — D-mOdleg([G,NTT y(Buny,p,.) = D-mod(Bunny,p,.)

(the second identification is due to the fact that the dlog map over pt is trivial), and

(D-mod(Bunn,»,)),

T

p': D—mod% (Bung) — D-mod
[

E]m\»—‘

Np
1
where the subscript [Z N, TDeans the twist by the constant gerbe of square roots of the line Ig, Ng,.-
’ T

We have a commutative diagram

D-mod(Buny,p,) —— D-mod 1 (D-mod(Buny,p,.))
[G’N‘J’T

(12.3) p!CmT T”!

(12.2)

D-modcrit (Bung) D—mod% (Bung),

where the top horizontal row comes from the identification

(1.1)
Vect = D-mod(pt) ~ D'mOd%dlog(lc,NTT)(pt) ~" D-mod 4 (pt).

[
G.Ngp,,

12.2.3. We take Pr = p(wx). We claim:

Proposition 12.2.4. The line lg,n admits a canonical square root.

plwx)
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12.2.5. Proof of Proposition 12.2.4. Decompose g with respect to the action of the principal SLs
g~ Ve

plwx) 1S

By definition, the line lg,n

® (det(T(X, (V) p(ux))) @ det (DX, VE © 0x))°7).

Decompose V¢ into its weight spaces

VE=aV(n),

n

where each V°(n) is 1-dimensional.
We can write:
(12.4)  det(T(X, (V) pwx))) @ det(T(X, Ve @ 0x))® " ~
~ ® (det(I(X,w")) @ det(N(X,w§ ™)) @ det(I'(X, 0x))* ) X)

n>0
e ®n(2g—2)+(1— e —n(29—2)+(1—
®n(§ (‘/ ('fl) (29 )+( 9) ®‘f ( n)@ (29 )+( Q)) .

We claim that each term of the form
(12.5) det(T'(X,w$™)) @ det(M'(X,wl™™)) ® det(T'(X, 0x))® 2.

admits a canonical square root.

Recall the formlula
(12.6) det(T'(X,£1 ® £2)) @ det(T'(X, 0x)) ~ det(T'(X, £1)) @ det(T'(X, £2)) @ Weil(L1, L2),
where Weil(—, —) is the Weil pairing.

We obtain that (12.5) is isomorphic to

(12.7) Weil(wg", wg™).

1
Recall now that we have chosen a square root w§2 of wx. Then the expression in (12.7) is

2l ol ®4n?
<Weil(wX2,wX2)> ,
which is manifestly a tensor square.

We now claim that the tensor product

(12.8) ® ® (Ve(n)®n<2g—2)+(1—g)®Ve(_n)®—n<2g—2)+<1—g>)
e n>0

admits a canonical square root.

Indeed, up to squares, the expression in (12.8) is isomorphic to
®(1-g) ®(1—g)
(® & (Ve(n) ® Ve(—n))) ~ (det(n) @ det(n™)) .

Now, the Killing form identifies n~ with the dual of n, and hence trivializes the line det(n) ® det(n™).
O[Proposition 12.2.4]
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12.2.6. Let

1
(12.9) 63

plwx)

denote the square root of the line lg N constructed in Proposition 12.2.4.

plwx)

From Proposition 12.2.4 we obtain that there exists an a priori identification

(12.10) D-mod

[ (Buny, p(w)) =~ D-mod(Buny, 5(w))-

1
2
G Np(wx)

Denote by

p!% : D-mod% (Bung) — D-mod(Buny, p))
the functor equal to the composition
' (12.10)
D-mod% (Bung) — D-mod 3 (Buny pwy)) — D—mod% (Bung).
[G,N

plwx)

Note that we have a commutative diagram

D-mod(Buny (. x))

(12.11) pémT Tp!

(12.2)

D-mod(Buny (. x))

Nl

D-moderit (Bung) D—mod% (Bung).

12.3. The coefficient functor. In this subsection we will recall the definition of the functor of Whit-
taker coefficient(s).

12.3.1. The functor of Whittaker coefficient(s), denoted coeff¢ maps
D-mod% (Bung) — Whit!(G)Ran,
and is defined as follows.

To simplify the notation, we will work over a particular point € Ran. So we need to define the
functor

coeffg 4 : D—mod% (Bung) — Whit' (G)..

12.3.2.  Consider of the p(wx)-twisted version of the map (12.1)
Grg,p(wy),Ran — Bung .

By a slight abuse of notation, we will denote it by the same symbol 7. By further abuse of notation,
we will keep the same notation for the restriction of this map to

(12.12) GrG;P(wx)yl — GrG,p(wX),Ran'

1
12.3.3.  Due to the trivialization of the Z/2Z-gerbe (2 5 (o) given by Proposition 12.2.4, the map
Nop(wy

give rise to a well-defined functor

T D-mod% (Bung) — D—mod% (Gra,p(wx).z)-

!
1
2
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12.3.4. For a group-subscheme of N® C £(N)(wy),z, consider the functor
AvIVE) D—mod% (Gre,pwx).z) — D—mod% (GrG,‘,(wX)’E)Na’X — D—mod% (Gre pwy),z)-

For N* C N "‘,, we have a canonically defined natural transformation
(12.13) AviNQ,’X) — AvIVT)

We have the following (elementary) observation:
Lemma 12.3.5. The natural transformation

AViNQI’X) OT['!% — AVSKNQ’X) Oﬂ!%
induced by (12.13), is an isomorphism when N® is large enough.®
12.3.6. By Lemma 12.13, for N* large enough, the functor
(12.14) AvIVT0 on!%
does not depend on the choice of N®. In particular, its essential image is contained in
AQQ D—mod% (Grg,p(wx)‘z)Na’X = D—mod% (GI’G’p(wX))E)s(N>P(WX)s£’X = Whit'(@)..

Thus, we let coeff¢ , be the functor (12.14) for N® large enough.

12.3.7. By construction, the functor coeff¢,, is compatible with the action of Sphg ,.

12.3.8.  The functor coeff¢ (i.e., the totality of the functors coeffg ;) has the following unitality prop-
erty:

For z C 2’ consider the natural embedding

inclecar : Gra,pwx)z = Gre,pwx) e

Then
(12.15) coeffg o ~ incl;CL/ ocoeffg 4 .
12.3.9. Let

coeff&*° : D-mod 1 (Bung) — Vect
denote the composition of coeffc , with the functor
Whit' (@), < D—mod% (Gra,p(wy),z) — Vect,

where the second arrow is the functor of !-fiber at the unit point.

By (12.15), the above definition of coeff:* is canonically independent of the choice of .

Equivalently, coeff* is the unique functor D-mod 1 (Bung) — Vect so that the diagram commutes

!
(1Grg Ran)

Whit'(G)ran —— D—mod%(GrG,p(wx),Ran) D-mod(Ran)

coetic | |

coeﬁ'gac
D-mod% (Bung) Vect .

(In the above diagram the left vertical arrow is the !-pullback along Ran — pt, which is fully-faithful,
by the contractibility of the Ran space.)

12.3.10. Note that using the the equivalence CSq, the functor coeff¢ can be recovered from coeff\éac
via the Hecke action of

—1,nv

Rep(G) Sai) Sphe .

18The size of N depends on the genus of X and the cardinality of z.
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12.4. Poincaré functor(s).

12.4.1. The Poincaré functor
Poince, : Whit' (G)ran — D-mod(Bung)
is by definition the left adjoint to coeffq.
It explicitly given by
Whit' (G)ran — D-mod 1 (G16,p(w ) Ran) it D-mod (Bunc).
It is easy to see (using the action of Sphy) that the partially defined functor

o1

o D-mod% (Gra,p(wy),Ran) =5 D-mod% (Bung)
is actually defined on the essential image of
Whit!(G)Ran — D—mod% (GrG,p(wx),Ran)-

(The issue here is that the “lower-!” functors are not necessarily defined on non-holonomic objects.)
See also Remark 12.4.6, below.

12.4.2. We let
Poinca 1, : Whit' (G), — D-mod; (Bung)

denote the restriction of Poincg, along (12.12).

It is also given as
™1

Whit'(G), — D—mod% (Gre,pwy).z) g D-mod% (Bung).
12.4.3. It is easy to see (say, by rigidity) that the functor Poincg, , is also compatible with the action
of Sphg .
12.4.4. Let
.l
Lwnit!(6).e € Whit' (G)z
be the factorization unit.
It follows formally from Sect. 12.3.8 that the object
Poinca, 1z (Lwhit!(g),2) € D-mod% (Bung)
is canonically independent of the choice of .

We will denote it by

Poincgy € D-mod (Bung).

We also have
Poincg ~ Poince,i (Lypi! (G),Ran)s
where
L\whit'(G),Ran € Whit' (G)Ran
is the factorization unit spread over the Ran space.

12.4.5. By the same token as in Sect. 12.3.10, we can recover the functor Poincg 1 from the object
Poinc\é‘:ﬂC using the Hecke action.

Remark 12.4.6. Since the object 1y (), 18 ind-holonomic, it is clear that
™1 (Lwhit'(g),2) € D-mod (Bung)
is well-defined.

One can prove that Poincg 1, on all of Whit'(G), using the Hecke action, by the same principle as
in Sect. 12.4.5.
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12.4.7. Recall that along with the category D-mod(Bung), one can consider its version
D-mod(Bung)co, and similarly for gerbe-twisted versions D-modg(Bung).

In the untwisted case, we have the identification
(D-mod(Bung))" ~ D-mod(Bung)co.

In the twisted case, this becomes

(12.16) (D-modg (Bung))” ~ D-modge -1 (Bung)co-
1

For § = detg,, ., the identification (12.16) becomes a self-duality
(12.17) (D-mod% (Bung))" ~ D-mod% (Bung)co-
12.4.8. Let

Poincg,« : Whits (G)ran — D—mod% (Bung)co

be the functor dual to coeffq.

Let
Poincg,« z : Whit.(G)e — D—mod% (Bung)co

be the functor dual to coeffg, ;. It is easy to see that the functor Poincg « , is obtained from Poincg, «
by restriction along (12.12).

The functor Poincg,«,, is also compatible with the Hecke action.
12.4.9. Let
Poinc‘clfi € D-mod% (Bung)eo
be the factorization unit.
It follows formally that the pairing with Poincg¢, viewed as a functor

D-mod% (Bung) — Vect
is the functor coeff&.

12.4.10. The functor Poincg «,z can be explicitly described as follows. For N as in Sect. 12.3.4,
consider the composition
Av(NFx) Tl
D—mod% (Grc,p(wx)&) — D—mod% (GrG’p(wX)&) —>2 D—mod% (Bunc)co.

For N* C N "‘/, we have a canonically defined natural transformation

(12.18) T, 10 Av(*Na/’X> — T, 10 AvNT),
and it follows follows from Lemma 12.3.5 that the maps (12.18) are isomorphisms for N large enough.
It follows formally that the resulting functor
D-mod% (Gra,pwy),e) = D-mod% (Bung)co
factors via the projection

D—mod% (Gre,pwx).z) — (D—mod% (GrG,p@,X)’E)) — D—mod% (Bung)co-

LN p(wx)mX

The resulting functor

Whit (G)g = (D-mod% (GrG,p(wx),l)) — D-mod (Bung)co

E(N)P(wx),i’x

is the functor Poincg,«,z-

12.5. Coefficient and Poincaré functors: local version: global interpretation.
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12.5.1. Consider the stack Buny ,(w,) and the map
p: Buny pwy) — Bung.
Recall that by Sect. 12.2.6, we have a well-defined functor
(12.19) p!% : D—mod%(Bung) — D-mod(Buny, ,(uy))-

12.5.2. The character x has a global counterpart, which is a map

xEeP Buny p(wy) = Ga-

12.5.3. We let
coeff ;281" D-mod; (Bung) — Vect

denote the functor

CarBuny ,(wy)s—)
-

— & (+8lobY* (ax
) ®(x (exp) Vect .

Py
D—mod% (Bung) -3 D-mod(Buny, y(wy) D-mod(Buny ,(wy))

12.5.4. Let

Vac,glob
!

Poinc, € D-mod% (Bung)

be the object
Py o ()" (exp).

It is the left adjoint of coeffy;#'°?, viewed as a functor.
Let
Poinc\éa:‘gbb € D-mod 1 (Bung)co
’ 2

be the object

lob *
Pa 1o (X*°7)" (exp).
12.5.5. Denote
(SNp(wX) = dim(BunN,p(wX)).
We have
Dverdier(Poinc\é‘:‘f’gIOb) = Poincg‘?:’gbb[QéNp(wx)],
where DVerdier is the usual Verdier dualization functor
(D—mod% (Bung)©)°® — (D—mod% (Bung)co).
In other words, the object Poinc\é?:’gbb[%]vp(wx)], viewed as a functor

Vect — D—mod% (Bung)co
is the dual of coeff\éac’gbb.

12.5.6. It is easy to see that

Vac,glob _, Vac
coeff § =~ coeff¢*[20n,,, )|,

. _Vac,glob .. Vac
Poincg; =~ Poincg 20w, . )]

1
5!

and

Vac,glob

. Y
Poinc’; ~ Poincg’y .
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13. THE LOCALIZATION FUNCTOR
In this section we introduce and study the localization functor
Loce : KL(G)crit,Ran — D-mod% (Bung).
We do so in a more general context, when the group G in question is not even reductive, and the
level k is not necessarily critical. The topics here include:

e The behavior of localization when we introduce a twisting by a Zg- and Z%—torsors;

e The composition of the composition of the localization functor Locg,. : KL(G)k,Ran —
D-mod (Bung) with the forgetful functor D-mod, (Bung) — QCoh(Bung);

e The composition of the localization functor with the pullback functor D-mod,.(Bung) —
D-mod, (Bung-) corresponding to a group homomorphism G’ — G;

e For a unipotent group-scheme N’, the composition of the localization functor and the de Rham
cohomology functor D-mod(Buny/) — Vect.

The pattern in the three composite functors mentioned above is that they can all be expressed via
a local operation, followed by another localization functor:

e Restriction KL(G)x ran — Rep(£7(Q)), followed by O-module localization Rep(£"(G))ran —
QCoh(Bung);
e Restriction KL(G)x,ran — KL(G’)x,Ran, followed by

LOCG’,& : KL(GI)H,Ran — D-mOdH(BunG/);
e The functor of BRST reduction KL(N')Ran — Vect.

However, there is a caveat, common to all three of these situations: we must precompose the corre-
sponding local functor with the functor of inserting the factorization unit, which maps the corresponding
category Cran to its version Cranc, see Sect. 13.3. This operation is closely related to the functor of
factorization (a.k.a., chiral) homology, which is reviewed in Sect. 13.4.

13.1. Basics of localization.

13.1.1. We let
(13.1) Locg,x : KL(G)x,Ran — D-mod,(Bung)
be the naturally defined localization functor.

It is normalized so that the following diagram commutes

ind!

QCoh(Bung) — D-mod. (Bung)
(132) LochOhT TLOCG,crit

Indet(6)— (5.2 (0)

Rep(2+ (G))Ran KL(G)K,Ram
where:

e The (factorization) functor indg+ gy (g,e+(c)) : Rep(£¥(G)) = KL(G)x is the left adjoint to
the forgetful (factorization) functor oblv g e+ (G)) e+ (e : KL(G)x — Rep(£1(G));
LocQCoh
e Rep(£7(G))Ran 2+ QCoh(Bung) is the functor of pull-push along the diagram
B(/QJF(G))RZm + Bung xRan — Bung;

e ind/, is the functor of induction for left D-modules, i.e.,

M — Diff Bung)., ® M.

Bung
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13.1.2. In particular, the functor ind, sends the vacuum object
Vac(G)«,ran € KL(G)x,Ran
to
Diff(Bung). € D-mod,(Bung).
13.1.3. We let Locg,x,« denote the restriction of Locg,. along
KL(G)r,z = KL(G)«,Ran-

13.1.4. Let us specialize to the case when xk = crit. In this case, the functor Locg,crit,z is compatible
with the actions of Sphg, ,.

13.1.5. We let
(13.3) Locg : KL(G)crit,Ran — D—mod% (Bung)
denote the composition of Locg,crit with the equivalence (12.2).

The corresponding functors Locg,s inherit the compatibility structure with the action of Sphg .

13.2. Localization in the twisted setting. We now consider two types of twisted situations, and
also their combination.

13.2.1. Let P be a torsor with respect to (gab)” ® wx on X. It gives gives rise to a multiplicative de
Rham twisting on Bung,, , denoted by the same character.

By a slight abuse of notation, we will keep the same symbol P to denote the pullback of this twisting
along the projection

(13.4) Bung — Bung,, .
13.2.2. Given a level k, we will denote by x + P the Baer sum of the two de Rham twisting on Bung.
Consider the twisted Kazhdan-Lustig category KL(G) .+, see Sect. 4.4.1.

In this case, the localization functor maps

Locg k+9 : KL(G) k42, Ran — D-mod,+9(Bung).

making a diagram parallel to (13.2) commute.
13.2.3. Assume for a moment that P is of the form dlog(ﬂ’zg) for a Z%-torsor Pz, on X.

Using the Weil pairing

BunZoG ® Bung,, — pt /Gm,

the Z%-torsor Pz, gives rise to a line bundle, denoted, L»_, on Bung,,. By a slight abuse of notation,

G
we will denote by the same symbol Ly , its pullback along (13.4).
G
In this case, the twisting P is the de Rham twisting given by Ly o5 we will denote it by dlog(fPZ% ).
G

Parallel to Sect. 4.4.4, if TZ% is of the form A(wx) for A : G,, — Zs, we will use the short-hand
notation
K+ A=k + dlog(A(wx)).
Note that by linearity, the twisting x + A makes sense for any A € Z5-

13.2.4. Suppose that in the setting of Sect. 13.2.3, k = 0. In this case we will denote by Locg the
composite functor

0

LOCG,crit+dlog(TZ0 )
& G

(13'5) KL(G)crinlog(fPZo),Ran — ¢ D-mOdcrit+dlog(ﬂ>Z0)(Bunc) —
Ie] G

— D-moderit (Bung) (3'2)) D-mod% (Bung).
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13.2.5. Let now P be a G-torsor on X. We can consider the Pg-twist of the entire situation, and in
particular the localization functor

Locg k7 : KL(G)k,p; — D-mod.(Bung,»., ),

which makes the diagram

D-mod, (Bung) P taut D-mod, (Bung,»;)
(136) LOCG’RT TLOCG,K,,TG
AP o, taut
KL(G)N,RHI’I KL(G)K,TPG,Rany

commute, where in the top row, ap tauts is the tautological identification

AP, taut
Bung —— Bung,p, -

13.2.6. Assume now that P is induced from a Zg-torsor Pz,. In this case, we have a canonical
identification
O“J’ZG ,cent
BunG,yZG —  Bung.
Lemma 13.2.7. The isomorphism QP cent identifies the twisting k on BunG,prG with the twisting
k — k(dlog(Pz,, —)
on'® Bung. Furthermore, the diagram

&P, ,cent

D-modx(Bung,2,,,) g

D-mod,— x(diog(? 5, .—) (Bunc)

(13.7) LOCG,K,CPZGT TLOCG,n—n(dlog(Tzc,f)

&P, ,cent
KL(G)N,’J’ZG ,Ran & ? KL(G)nfn(dlog(fPZG ,—),Ran-

13.2.8. Note that the composite map

AP o taut APz, scent
Bung — BunGszG —~  Bung

is the inverse of the automorphism
translg:ZG : Bung — Bung,
given by tensoring with Pz .

From Lemma 13.2.7 we obtain that the pullback of the twisting of the twisting x on Bung with
respect to transly, . identifies canonically with the twisting & — r(dlog(Pz, —).

By concatenating diagrams (13.6) and (13.7), we obtain a commutative diagram

(transl:yZG )*
D-mod,(Bung) ——— D—modn,n(dlog(fpzc ,—)(Bung)

(13,8) LocG’NT TLOCG,n—n(dlog(‘J’ZG,f)

(translprG )*
KL(G)N,Raﬂ ? KL(G)K—K(dIOg(TzG ,—),Ran;

where the functor (translyzc )* in the bottom line is as in Sect. 4.13.

13.2.9. Note in particular, that from Lemma 13.2.7 we obtain that the critical twisting is invariant
under the automorphism transly, .

Hence, the operation (transly, )" is well-defined as a functor

D-moderit (Bung) — D-moderit(Bung) and D—mod% (Bung) — D—mod% (Bung).

195ee Sect. 4.6.3, where the notation k(dlog(Pz, —) is introduced.
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13.2.10. Parallel to Sect. 4.6.6 for Pz, of the form A(wx) for A : G, — Zg, we will use a short-hand
notation

Kk — k(A —) =k — k(dlog(A(wx), —).
Note that this notation is consistent with one in Sect. 13.2.3, i.e., we can treat x(\, —) as a bona
fide element of zj.
13.2.11. The content of Sects. 13.2.5-13.2.10 renders as-is, if instead of the initial twisting given by
K, we start with one of the form k + P for P as in Sect. 13.2.1.

In particular, we will have twistings of the form

K+ dlog(P 0 ) — r(dlog(Pz), —) and k + A—k(\, =), NEzgAE z.
13.3. A digression: unitality.

13.3.1.  Let C' be one of the factorization categories
Whit'(G), Whit.(G), KL(G)., etc.
Let C#°P be the corresponding global category, which in the above three examples is
D—mod% (Bung), D—mod% (Bung)eo and D-mod, (Bung),

respectively.

Let F be a functor

Cran — C#P
be a functor, which in the above three examples is
Poincg,1, Poince,« and Locg,x,

respectively.

13.3.2. Note that in each case, the functor F factors naturally as

C g (Ran,—)®Id
b ~dR

Clge, ey D-mod(Ran) ® C&° CceP,

loc

13.3.3. Let Z be an arbitrary space mapping to Ran. We can then consider the base change Cy“ and
the corresponding functor

Fz : C¥° — D-mod(2) @ C&°P.

For example, for Z = pt and the map pt — Ran corresponds to z, we recover the functor F.

By a slight abuse of notation, we will denote by the same symbol F the composition
k5 Domod(2) g @t “n IO gulon

13.3.4. For a fixed point z, let Ran,c be the relative Ran space, i.e., the moduli space of collections
of points z’ that contain z. It is equipped with a natural forgetful map

PTpig : Rangc — Ran
that remembers the ambient finite set.
13.3.5. Consider the category
loc
CRanE c*
The structure of unital factorization category defines a functor

loc

. . 1
ins. unit : C;° — CRan, . -
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13.3.6. Note also that Ran,c is equipped with a distinguished point
diag : pt — Rangc
corresponding to z’' = z.
Direct image along this embedding defines a functor
(diag). : C° = Cls,, .,
so that the diagram
Cloc (diag). Clee

Ran,c

(13.9) Fil lﬁm&

(diag)«®Id
_—

D-mod(pt) ® C&#°®* —~— D-mod(pt) ® C&"°P D-mod(Ran,c) @ C#&°P

commutes.
The functor (diag). has a right adjoint, denoted (diag)' and we have a canonical identification
(13.10) (diag)' o ins. unit ~ Id .

Passing to adjoints, the datum of commutativity of (13.9) and the isomorphism (13.10) give rise to
a natural transformation

(13.11) (diag)« o Fz — FRran,c © ins. unit
as functors
Cr° = D-mod(Ran,c) ® C#°"

13.3.7. In the examples that we consider the functor Fran has the following unitality feature: the
natural transformation

(13.12) Fz ~ Cyr(Rangc,—) o (diag)« o F, (240 Car(Rangc, —) © Fran,c © ins. unit = F o ins. unit
of functors
Cloc — cElob,
is an isomorphism.
Furthermore, the natural transformation
(13.13) FRan,c © ins. unit — wran, X Fa,

as functors
Cy° = D-mod(Ran,c) ® C*",
obtained by the (Cyg(Rangc, —), wRan,c ® —)-adjuntion from

. . . (13.12
Car (Rangc, —) o Fran, © ins. unit (21 Fz,

is also an isomorphism.

Remark 13.3.8. Informally, the isomorphism (13.13) reads as follows: for y € Ran with support disjoint
from that of z, the diagram
1d®1g0c
oc g oc oc
Cy¢ —— Cy*®Cy

(13.14) Fﬁl ng'—'g

CglOb ;> C glob
commutes.

Remark 13.3.9. In the case
C'°° = Whit'(G), C#°* = D-mod} (Bung), F = Poinca,

the commutativity of (13.14) is equivalent to the isomorphism (12.15).
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13.3.10. We now let the point & vary along Ran, we obtain the space Ranc, which is the moduli space
of pairs
(z,2' |z Ca)).
We still have the maps
prsmall? prbig : Rang = R‘a‘n

that remember z and 2’, respectively.

In addition, we have the map

diag : Ran — Ranc, z+— (z,2),

so that

Prsman © dlag = PIpig © dlag =id.

As above, we have the functor

. . 1 1
ins. unit : CRan — CRanc

which is D-mod(Ran)-linear with respect to
(Prapan) : D-mod(Ran) — D-mod(Ranc).
In addition, we have an adjoint pair
diag, : CRS, = Ci‘{;ng : diag’,
so that
diag! oins.vac. >~ Id.
13.3.11. Asin (13.11) we obtain a natural transformation
(13.15) (diag)« o Fran — FRanc © ins. unit

as functors
Cr, = D-mod(Ranc) @ C&'°".
As in (13.12), the induced natural transformation

(13.16) Fran =~ ((Propman)+ ® Id) o (diag)« o Fran (13—';5)

of functors

((prsmall)* ® Id) o FRang o ins. unit

CRS, = D-mod(Ran) @ C&'°°,
is an isomorphism.
Furthermore, the natural transformation
(13.17) FRanc © ins. unit — ((prymay) ® Id) o Fran,
obtained by the ((pry,,.1)+s (Praman)' )-adjunction from

((Proman)+ ® Id) 0 Franc © ins. unit (13.19) Fran

is also an isomorphism.
13.4. A digression: factorization homology. Let A be a factorization algebra (in Vect).

13.4.1. For any finite set I, we can consider the category
A-mod™*(D-mod(X")).

This is a category tensored over D-mod(X7).
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13.4.2. For a surjection of finite sets I’ — I we have a tautological identification

A-mod™*(D-mod(X’))  ®  D-mod(X') ~ A-mod™*(D-mod(X")).
D-mod(X1")

This allows us to pass to the limit/colimit and consider the category
fact

A-modgay, -

Remark 13.4.3. Note that A-mod™* does not necessarily form a factorization category, unless we
perform some renormalization procedure.

Namely, for a pair of disjoint collections of points z* and z?, the naturally defined functor
‘/‘l—modgilCt ® fl—modfzzCt — A—modgﬁcf@z
is not necessarily an equivalence.

13.4.4. Note that for any space Z mapping to Ran, one can consider the base change A-mod%t of
A-modfect

Denote by oblv, z the tautological forgetful functor

oblv 2 : A-mod® — D-mod(Z2).

The discussion in Sect. 13.3.10 applies verbatim in the present situation with

1 fact
Cy¢ := A-mod3*".

In particular, we have the functor
. fact fact
ins. vac. : A-modgRa, — A-modgan;

the adjunction
(diag). : A-modfst = A-modf{‘;f,g : (diag)';
and an isomorphism
(diag)' o ins. vac. ~ 1d.
13.4.5. We reproduce the setting of Sect. 13.3.1 with
Ce°P = Vect,
and the functor
Fran : A-modi<t — D-mod(Ran)
being
Clact (X;5A, —)Ran := (Praman)= © oblvA,Rang oins. vac. .
13.4.6. Base changing along Z — Ran, we obtain a variant of the above functor
C™ (X5 A, —)z : A-modE°* — D-mod(Z2).
In particular, for z € Ran, we obtain a functor
CPY(XG A, =)y : A-mod — Vect .
Let C™*(X; A, —) denote the functor A-modf* — Vect equal to the composition

fact CN(X3A,-) 2

A-modyg D-mod(2) Car®7) oot .
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13.4.7. As in Sect. 13.3.11, we have natural transformations
. 1ag)« o C. A, =)z — O ; A, —)Rang © 1ns.vac., -mod, = D-mo algc
13.18) (di CPYX;A CRUX;A e oi A-mody** = D-mod(R.
and
. iag). o C. ; A, —)Ran — C. ; A, —)Ranc © ins. vac., -modRy, = D-mod(Ranc).
13.19) (di CPY(XA CPY(X; A coi A-modgs;, = D-mod(Ranc
We claim:
Lemma 13.4.8. Assume that A is unital. Then the natural transformation

(13.20)  CR(X;4, ), = Can(Rangc, ) o (diag). 0 C™**(X; 4, -), =

— Cyr(Rangc, —) o CP(X; A, —)Rangc © ins.vac. = C"™*(X; A, —) o ins. vac.
as functors
A—modi_“t = Vect
and

(13.19)

(13.21)  C™(X; A, —)Ran ~ (Prypay )« © (diag)s o C™*(X; A, —)ran
= (Prgman)* © Cfaet(X;fl, —)Rang o ins. vac.

as functors
fact

A-modgRs, = D-mod(Ran)

are isomorphisms. Furthermore, the natural transformations

(13.22) CP(X; A, —)Rangc © iNS. vac. = Wran,c ® CP (XA, —)s
and
(13.23) CRt (X A, —)Ranc © ins.vac. — (Preman) © CP(X; A, —)Ran

are also isomorphisms.

13.4.9. We will now discuss a generalization of Lemma 13.4.8, which will be repeatedly used in the
sequel.

Let B be another factorization algebra, equipped with a homomorphism ¢ : A — B. Restriction

along ¢ defines a functor
res? : B-mod¥* — A-mod®*

for any Z — Ran.

Consider the following two functors

B-modfist = D-mod(Ran).

One is just
(13.24) CP*(X; B, —)Ran-

The other is

fact . _
res® Ot (X34, -)) Ranc
—

(13.25) B-modhet M3 3-m0d§‘§§;g = .A-mod%a;f1£
— D-mod(Ranc) (Pramag)- D-mod(Ran).
The identification (diag)' o ins. unit ~ Id gives rise to a natural transformation
(13.26) CP(X; B, —)Rran — (13.25).
The map ¢ gives rise to a natural transformation
(13.27) (13.25) = (Proman)s © C**(X; B, —)Ranc © ins. vac. .

We claim:
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Lemma 13.4.10. Assume that both A, B and ¢ are unital. Then the composition

C.faLCt (X7 B) _)Ran (1?);?6) (1325) (13_'27) (prsmall)* © C'faCt (X’ B’ _)Rang o ins. vac.

equals the map (13.21) for B. Moreover, the natural transformations (13.26) and (13.27) are isomor-
phisms.

13.5. Localization and the forgetful functor.

13.5.1. Note that by adjunction, the commutative diagram (13.2) gives rise to a natural transformation

(13.28) QCoh(Bung) -~ D-mod (Bung)
LocgCOh Locg,k
Rep(£+ (G))Ran oblv KL(G)N,Rany

(@, 2+ (G)—+e+(G)
where:

e oblv) : D-mod,(Bung) — QCoh(Bung) is the “left” forgetful functor, i.e., the right adjoint
to ind!;
e oblv(; ot () se+ (o) | KL(G)x — Rep(£7(G)) is the natural forgetful functor.

13.5.2. The natural transformation in (13.28) is not an isomorphism (unless G = 1). We will now draw
another diagram, in which a natural transformation will be an isomorphism, which encodes another
basic property of the localization functor.

13.5.3.  The diagram (13.28) gives rise to a diagram

(13.29) QCoh(Bung) - D-mod,. (Bung)
oblv,
LochOh Locg,
Rep(£7(G))Rranc KL(G)x,Ranc -

PV (g, e+ (G2t (G)
We claim:

Lemma 13.5.4. The natural transformation in (13.29) becomes an isomorphism after precomposition
with the functor

ins. unit. : KL(G)x,Ran — KL(G’),@’Rang .

We will now use Lemma 13.5.4 to describe the composition
oblvl, o Locg,x

more explicitly in terms of the functor Locgcc’h.
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13.5.5. Note that the functor LocgCOh essentially amounts to integration over Ran (parameterized by
points of Bung).

Given a factorization algebra A € Rep(£1(G)) we can consider an analog of the functor of factor-
ization homology:

CPN(XG A, —)pin6 : A-mod™* (Rep(£7(G)))ran — D-mod(Ran) ® QCoh(Bung),

so that analogs of Lemmas 13.4.8 and 13.4.10 hold.

13.5.6.  Set
‘AG,H = OblV(§1E+(G))_>£+(G)(VaC(G)K),

viewed as a factorization algebra in Rep(£*(G)). Note that the functor oblv g ¢+ (ay)_ e+ (G) enhances
to a functor

obIviEy s () ot (@) P KL(G)x = Ag n-mod™*(Rep(£7(G))).
Note that the composition

KL(G)x Ran 5" KL(G) x Ranc g Rep(£7(G))ranc
can be identified with

oblv¢

nh
KL(G)N,Ran (g,l‘ﬂﬁg)—uﬁ' @ -AG,N-YHO(].faCt (Rep(£+ (G)))Ran mﬂc'

oblv 4

— Acw-mod™(Rep(£7(G)))ranc.  — " Rep(L£7(G))ranc -

Hence, we can rewrite the composition

QCoh
G

Loc 00blv 5 et (@))— e+ () © Ins. unit

as

oblverh
(13.30) KL(Q)ugan  O5LE@7T@

cfact (x4, ,.,—)BunG
— Ag-mod ™ (Rep(£F (G)))ran G

QCoh(Bung).
Hence, combining Lemma 13.5.4 with Lemma 13.4.8 we obtain:
Corollary 13.5.7. The functor
oblv, o Locg x : KL(G)x,Ran — QCoh(Bung)
identifies canonically with (13.30).

13.6. Localization and restriction.

13.6.1. Let ¢ : N' — G be a group homomorphism. We restrict the level xk to N’, and consider the
corresponding Kazhdan-Lustig category

KL(N'),, := #-modS ")
and the localization functor
Locy . : KL(N")s,Ran — D-mod, (Buny-).

The triple (KL(N")x, D-mod, (Buny-),Locy ) fits the paradigm of Sect. 13.3.1.
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13.6.2. The map ¢ gives rise to (factorization) restriction functors

Rep(£7 (@) 5% Rep(e+ (V")) and KL(G), 55 KL(N')...
In addition, the map ¢ gives rise to a map
qﬁgbb : Bunys — Bung,
which is compatible with the twistings, and thus gives rise to a functor
(¢'°")%. : D-mod, (Bun¢) — D-mod, (Buny),
which makes the diagram

lob =
QCoh(Bung) 2 QCoh(Buny)

oblvfi T Toblvfi

(d)glob)!
D-mod. (Bung) ——— D-mod.(Buny)

commute.
13.6.3. It follows from the definition of the localization functors that we have a natural transformation

d)glob ‘N
(13.31) D-mod, (Bung) — %> D-mod,.(Bunx)

Locg, x Locys o

KL(G)H,RBH e —— KL(N/)N,Ran'

res¢

13.6.4. The natural transformation in (13.31) is not an isomorphism (unless ¢ itself is). We will now
draw another diagram, in which the natural transformation is an isomorphism, and which expresses
the composition

(¢#'°")%, o Locg,

via Locy7 .
13.6.5. The diagram (13.31) gives rise to a diagram:

(¢81°P)L

(13.32) D-mod, (Bung) ——— D-mod, (Buny-)
Loca x Locns 4

KL(G)N,Rang —_— KL(N,)H:Ra“C .

res? -
We will prove:

Proposition 13.6.6. The natural transformation in (13.32) becomes an isomorphism after precom-
posing with

(13.33) ins. unit : KL(GQ)x,Ran — KL(G)N,Rang.

Taking into account (13.16), from Proposition 13.6.6 we obtain:
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Corollary 13.6.7. We have a commutative diagram of functors

(o0,

D-mod, (Bung) D-mod, (Buny)

LocG’KT TLOCN/,K/

ins.uni res?®
KL(G)N,RB.I] —t> KL(G)N,Ran(; —_— KL(N,)N,RanC

Note that Corollary 13.6.7 can be reformulated as follows:

Corollary 13.6.8. The natural transformation in (13.31) becomes an isomorphism after precomposing
with

KL(G) o ttan "5 KL(G)mmane 28" KL(G) r,an-

13.6.9. The rest of this subsection is devoted to the proof of Proposition 13.6.6.
Since the functor
(13.34) oblv!, : D-mod, (Buny/) — QCoh(Buny)

is conservative, it is sufficient to prove that the natural transformation in (13.31) becomes an isomor-
phism after precomposing with (13.33) and postcomposing with (13.34).

13.6.10. By the construction of the natural transformation in (13.31), it fits into the cube:

(¢EloP)*
QCoh(Bung) QCoh(Buny)
oble oblvz
LocgCOh LocQCOh
N/
(13.35) D-mod, (Bung) D-mod. (Buny/)
<\(¢210b)i€ ’ T \
res¢
Rep(2+ (G))Ran Rep(2+(Nl))Ra“

Locg k Locns 4

KL(G)K,Ran KL(NI)K,Ran

res®

where:

e The side natural transformations are (13.28) for G and N'; respectiely;
e The front natural transformation is (13.31);
e All other faces naturally commute.
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The cube (13.35) gives rise to the cube

(¢glob)*
QCoh(Bung) QCoh(Buny)

oblvfi oblvfc
Coh Coh
Locg on LOCI%’ ©

)‘\(&bb)! pmo (BunNQ\

Rep(,Q‘L(G))Rang T res? Rep(£* (N"))Rranc

(13.36)  D-mod.(Bung

Locg,k

KL(G)K,Rang KL(N/)""RM’Q

I'ES¢.
Applying Lemma 13.5.4 for G, we obtain that it suffices to show that the natural transformation in

oblvfi

(13.37) D-mod, (Buny-) QCoh(Buny-)

QCoh
LocN/,,{ LOCN/

KL(N")x,ranc Rep(£F(N'))Ranc
- ObIV G/ ot (N/))— e+ (N) -
becomes an isomorphism after precomposing with
ins.uni res®
(13.38) KL(G)xRan =" KL(G)xRanc — KL(N')x.Ranc -

13.6.11. Let Ag,. (resp., Ay’ ) be the factorization algebra in Rep(£7(G)) (resp., Rep(£1(N'))) as
in Sect. 13.5.6. Let Ag v, be the factorization algebra in Rep(£¥(N’)) equal to

res‘b(AG,n).
The functor
resd) OOblV(’g*’£+ (G)—=2£+(G) : KL(G)N — Rep(£+(N'))

enhances to a functor

(res?® ooblv(ﬁ,gﬂc))_,sﬂc))enh :KL(G)x — Ag. 7. e-mod™ (Rep(£F(N))).

We can rewrite the composition of (13.38) with the counter-clockwise circuit in (13.37) as

(res® ooblv

(13.39)  KL(G)x Ron

nh
(ﬁ,£+(c>)as+(c))e
—

Cfaet (XA g s ) BN

— Ag.n' -mod™* (Rep(£7(N')))Ran — QCoh(Bunyy).
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Using Corollary 13.5.7, we rewrite the composition of (13.38) with the clockwise circuit in (13.37)

as
(resd)ooblv(» + + yenh .
§.£7(G)—=LT(G) fact ins.vac.
(13.40)  KL(G)s Ran — A, N w-modRa,  —
fact OblvAGvN'»N"AN'»'i fact CfaCt(X;AN',N’_)B‘mN,

— Ag N7,x-mOodRan - ./llwm-modRang — QCoh(Bunyr).

Now, the expressions in (13.39) and (13.40) match by Lemma 13.4.10.
O[Proposition 13.6.6]

13.7. Localization for unipotent group-schemes.

13.7.1. Let N’ be a unipotent group-scheme over X. Let §y/ denote the integer dim(Buny-).
Note that the canonical line bundle of Buny-, i.e.,
det(T"(Buny-)),

is canonically constant. Let [/ denote the corresponding (ungraded) line.

13.7.2. Consider the factorization category
KL(N') := £(n)-mod®" ™"
and the localization functor
Locy : KL(N')Ran — D-mod(Bunyv).
The triple (KL(N'), D-mod(Buny-), Locy-) fits the paradigm of Sect. 13.3.1.

13.7.3. Consider the (factorization) functor of semi-infinite cohomology with respect to £(n’):
BRST, : £(n')-mod — Vect.
Its value on the factorization unit
le(n/)-mod = Vac(N')
is the (commutative) factorization algebra

Q') = C (T ().

Thus, BRST,, enhances to a functor
BRSTZ™ : £(n')-mod — Q(n’)-mod ™.

By a slight abuse of notation, we will denote by the same symbols BRST,, and BRST®™" the
restrictions of the above functors along

KL(N') — £(n’)-mod.
13.7.4. We now recall the following result of [CF2, Theorem 4.0.5(4)]:2°

Theorem 13.7.5. The composition

Cyr(Bunyy/,—)

Loc
KL(N")Ran —% D-mod(Buny-) Vect
identifies canonically with the functor
BRST®e}h cfact( x.0(n'),— —®nr [0 s
KL(N)gan —3 Q(n')-modfst A oo ~ W NT o

20Apply loc.cit. to the projection N’ — pt and the factorization unit Vac(N’). Note that the Tate twist (Example
3.3.9 of loc.cit.) for N’ is trivial, hence KL(N’) = KL(N’), as factorization categories.
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Remark 13.7.6. Note that the composition

BRSTerllh Cfact X;Q 4 —
KL(N)gan —3  Q(n')-modi<t ™ (A >Vect,

appearing in Theorem 13.7.5 can be also described as follows:

BRST / Cyr(Ranc),—)
i

KL(N)Ran "= KL(N')Rane  —" D-mod(Ranc) Vect,

and also as

KL(N ) an "5 KLV Y rane 28" KL(N Yo o’ D-mod(Ran *** 5™ Vect,

13.7.7. Example. Take the object
1kL(N),Ran € KL(N )Ran.
Then
LOCN’(IKL(N’),Ran) ~ Diff(BunN/),
viewed as a left D-module. The corresponding right D-module is
indT (wB““N’ )
Hence, on the one hand,
Car (Bunys, Locn/ (1kL(n7),Ran)) =~ T'(Bunys, wBun,, ) =~ I'(Bunys, OBun,, ) @ [n[0n-].
On the other hand,
BRSTn/(lKL(N/)) = Q(n’),
while
CR(X;Q(n') =~ D(Buny/, OBun , ),
as desired.
13.7.8. A wariant. Let x be a (factorization) character
£n') = G,

assumed trivial in £+ (n’). The character x gives rise to a map Bunys — G, which we denote by the
same symbol x.

Let BRST,y ,, be the x-twisted version of the semi-infinite cohomology functor, i.e.

BRST, (—) = BRST (- ® X)-
Note that
Vac(N') ® x ~ Vac(N').
Hence,
BRST, , (Vac(N')) ~ BRSTy (Vac(N')) ~ Q(n')

as factorization algebras.

Let BRST?}}; be the enhancement of BRST,
BRSTZ™ : £(n')-mod — Q(n')-mod ™",

n,x -
13.7.9. The next assertion results formally from Theorem 13.7.5:

Corollary 13.7.10. The composition

—&x* (e

KL(N ) Ran -2 D-mod(Buny/) ~ 2§ D-mod(Buny)

C; Bun ;7 ,—
dR(L)N ) Vect
identifies canonically with the functor

BRSTM cfact (x.0(n'), — s[5
KL(N)Ran — 7 C(£7(0'))-modfest ™ A oo~ NT o

13.8. Integrating over (twists of) Buny.
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13.8.1. Let P be a T-bundle on X. Consider the unipotent group scheme Nyp,.. Denote the corre-
sponding moduli stack Buny,, = identifies with Buny ..

The resulting map Bun Ny, — Bung can be thought of as

-1
aiPT,taut
BunN,J,T — BunGU,T ——  Bung.

13.8.2. Recall that the pullback of detpun, to Buny p, is constant. Hence the pullback of the de
Rham twisting dlog(detBung) to Buny p, is canonically trivial.

Hence, for the de Rham twisting on Bung giving by an invariant form s, we have a well-defined
functor

(13.41) pi. : D-mod,, (Bung) — D-mod(Buny p,.).
13.8.3. Note that the embedding
Ny, — Gy,
gives rise to a map
Lpy) = Br,pp-
In particular, we obtain a well-defined restriction functor

ap L ,tau
K >

KL(G) "KL(G)wpy — KL(Noy.).

Denote
Q(npr, 9)x := BRSTw,_(Vac(G)r,2,)-

This is a factorization algebra, which receives a homomorphism from Q(ng,,).

Thus, the composition

enh
ap,taut BRSTn:pT

KL(G). 5 KL(G)sp, = KL(Np,) — " Q(np,)-mod™"
further enhances to a (factorization) functor
BRSTS"™" : KL(G)x — Qngy, 9)e-mod ™.
13.8.4. From Theorem 13.7.5 we are going to deduce the following assertion:

Theorem 13.8.5. The composition

L ,i ' Cyr(Buny p..,—)
(13.42) KL(G)x,Ran % D-mod (Bung) By D-mod(Buny p,.) IR Vect
identifies with the functor
BRST enh Cfact (. _ -1 [ ]
n SANXQnp 1 0) k) N N
(13.43) KL(G)«,Ran 5T Q(ngp,., g)-modfsen 37 Vect LT Veet,
where the notations 6N'J’T and [N’J’T are as in Sect. 13.7.1.
Remark 13.8.6. Note that the composition
BRSTE b Cfaot (X Q. .0)r,—)
KL(G)x,Ran 5T Q(ng,., g)-modEst Gl Vect
appearing in Theorem 13.8.5 can be also described as follows:
ins.unit BRST“TT CAR(RanC),—)
KL(G)x,ran — KL(G)N,Rang — KL(NTT)Rang — * D-mod(Ranc) —= Vect,

and also as

CaR(Rang),—)
N

ins.unit (PTig) BRST"TT
KL(G)xRan =" KL(G)xranc —+ KL(G)xRan — ' D-mod(Ranc) Vect .



THE GEOMETRIC LANGLANDS FUNCTOR II 137

13.8.7. Proof of Theorem 13.8.5. First, we rewrite the functor

Locg !

KL(G)x,Ran = D-mod, (Bung) LY D-mod(Buny,p,.)
using (a Pr-twisted version of) Corollary 13.6.7.

We obtain that it identifies with

P, ,taut

KL(G)N,Ran — KL(G)K,?T,Ran inﬂit KL(G)K,?T,Rang —

Locyn ™
— KL(NTT)Rang I D-mod(Buny, ).

By Theorem 13.7.5, the functor

Loeny Cyr(Buny o,..,—)
KL(Nop)rane —3 D-mod(Bunypy)  —% "' Vect
identifies with
BRSTSR cfact (X Q(ngp.),—) —®Iny [no ]
KL(N3; )ranc ' Q(n?T)-modﬁfflg ' 57T Vect L7 Vect .
Hence, the functor (13.42) identifies with the composition
BRSTSH

ap ,taut "I

(13.44) KL(G)xran > KL(G)rppran =3 KL(G)wpr Rane — KL(Np ) Rane  —

cfet(Xi(ng ). -)
— Q(ng,.)-modiees - 57T Vet

We can rewrite (13.44) tautologically as

BRSTE enh

Pr fact ins.vac fact Oblva("TT’g)_’Q("’J’T)
(13.45) KL(G)xran —> Qnpp,g)-modgrae, — Q(ng>T,g)—modRa,ng N

fact .
faet | CEH(XQ(ng,),-)

—Q®Ing [Ong
— Q(nyp,)-modgan — Vect T T

]
Vect .

Thus, it suffices to show that the composition

fact ins.vac fact

oblvn(“? ,8)—=Q(ngp, )
T T
SZ(“TT ) g)'nlOdRan ? SZ(“TT ) g)'nlOdRang ?

cft(X:Q(ng ). -)
— Q(ng,.)-modiees - — T Vect

identifies with

cfaet (X:0(np 1 ,0)k,—)
Qngp,, g)-modﬁi;f«. 3 Vect .

However, this follows from Lemma 13.4.10.
O[Theorem 13.8.5]

13.8.8. Note that the same proof applies in the situation twisted by a character. Namely, x be a
character of nyp, as in Sect. 13.7.8.

Denote
Q(nepr, X, 0)r = BRSTh,, x(Vac(G)x,»r)-

Consider the corresponding functor

BRSTZ ™" : KL(G)x — Q(np,., X, §)x-mod ™.

np X

Then:
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Theorem 13.8.9. The composition

KL(G)x,Ran LOC—GSN D-mod (Bung) L D-mod(Buny,p,.) _®Q(6Xp)

Cyr(Buny p..,—)
— D-mod(Bunn,p,.) TR Vect
identifies with the functor
BRSTE b fact (5. —®I 5
domix Cft (X302 (ngp 1, x00) 5 —) BNy, BNy, ]
KL(G)x,Ran 3T Q(nTT,x,g)—modgﬁ T Vect 27,70 Vect

14. THE COMPOSITION OF LOCALIZATION AND COEFFICIENT FUNCTORS

The goal of this section is to give an expression via chiral homology of the composition
(14.1) KL(G)erit,han —$ D-mod 3 (Bung) =5 Whit'(G)ran.

This expression (combined with the (FLEg, crit, FLE# o, )-compatibility expressed by Corollary 7.5.2)
will be used in Part IV in order to show that the Langlands functor is compatible with the critical
localization and the spectral Poincaré series functor via the critical FLE.

14.1. The vacuum case.

14.1.1. Let us specialize the setting of Theorem 13.8.9 to the case k = crit and Pr = p(wx). In this
case, the integer that we denoted 5N9>T is 6Np(wx)' Denote the corresponding line [N-'PT by

(14.2) [N

plwx)”
14.1.2. We obtain:

Theorem 14.1.3. The composition
Locg,crit ) 7éQ(EXP)

KL(G)erit. Ran D-moderit (Bung) "5 D-mod(Bunyy,p(w )

CarBuny pwy)s—)
—

— D-mod(Buny,pwy)) Vect
identifies with the functor
O‘p(wx),taut Dsenh,coarse
KL(G)crit,Ran — KL(G)Crit,p(wX),Ran —
ClR (X300 . (p):—) —®In, o ON ]
— OOPG(D)—modf{ﬁf‘ —5¢ Vect PLex) TP Nt

14.1.4. From (12.11) we obtain a commutative diagram

Id

Vect _ Vect
« ol
CaR(BunN,p<wx>,7>o<—®x*(exp>ﬂ T—@lc,"}vp(wx)
D-mod(Buny, p(wy)) Vect
p!cric T Tcoeﬂ-\clac,glob
(12.2)

D-moderit (Bung) D-mod% (Bung)

LOCG,cricT /’\LOCG

KL(G)crit,Ran L) KL(G)crit,Ran-

Recall also that

Vac,glob Vac
coeff § =~ coeff*[20n,,, |-
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14.1.5. Hence, Theorem 14.1.3 can be restated as:

Theorem 14.1.6. The composition

®1 —1
g -2 1% bn ]
Loc coeff %a¢ GNpwx) - Nowx) ' Ne(wx)
KL(G)crit,Ran — D—mod% (Bung) —S$ Vect plexs__gex Vect
identifies with the functor
fact .
O‘p(wx),taut Dsenh,coarse fact C. (X’OODC;('D)’_)
KL(G)crit,Ran — KL(G)crit,p(wx),Ran — OOpG(’D)'mOdIZ{i;n — Vect .

14.2. Composition of coefficient and localization functors: the general case. We are now
ready to state the general theorem, describing the composition of the functors

—oi2 NG ]
G:Np(wx) Np(wx)

N w
KL(G)erit,Ran Locg D—mod% (Bung) — g D—mod% (Bung)

and

coeffg : D—mod% (Bung) — Whit'(G)ran.

14.2.1. Recall that the category Whit'(G)gran is the dual of Whit.(G)ran. Hence, the description of
the above composition is equivalent to describing the pairing

(143) KL(G)crit,Ran ® Whit*(G)Ran tocg @ld

1
(- ®3 ®—

®[G,Np(wX) [Np( [5Np(wx)])®1d

1
wx)

— D-mod% (Bung) ® Whit.(G)ran

— D-mod (Bung) ® Whit. (G)ran “*““55 ™ Whit' (G)ran ® Whit..(G)ran — Vect .

14.2.2. We will prove:

Theorem 14.2.3. The functor (14.3) identifies canonically with

(144) KL(G)crit,Ran ® Whit*(GrG)Ran ins.unit;@);ns.unit KL(G)crit,Rang ® Whit*(GrG)Rang —

ploc,enh,coarse

— (KL(G)crit ® Whit*(GrG))RanC X Ranc
~Ran -
. CfaCt(X;OopG,(/D),*)RanC X Ranc
t - an -
— OOPC;(D)‘mOdfgnc X Ranc - D—mod(Rang R>< Rang) -
~Ran = an

Cyr(Ranc x Ranc,—)
Ran

Vect,

where the fiber product Ranc x Ranc is formed using the projections pry;, : Ranc — Ran.
~ Ran - -
Remark 14.2.4. Note that the functor (14.4), appearing in Theorem 14.2.3 can also be rewritten as

KL(G)crit,Ran ® Whit, (GrG)Ran inS~UniL®i)nS~unit KL(G)crit,Rang ® Whit, (GrG)Rang —

(Prpig X Prpig)«
—

— (KL(G)erie ® Whits (G16)) panc « ranc (KL(G)erit ® Whit, (Gre)) g, —
~Ran -

ploc C, g (Ran,—
—<, D-mod(Ran) an (B8 et .
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14.2.5. The rest of this subsection is devoted to the proof of Theorem 14.2.3.

We rewrite the functor

(14.5)  KL(GQ)erie,ran ® Whits (G)ran €5 ' Domod

coeffg ® Id

(BIIIIG) ® Whlt* (G)Ran
— Whit!(G)Ran ® Whlt* (G)Ran — Vect .

1
2

as
Locg ® Poincg «
—

(14.6)  KL(G)erit,Ran ® Whit.(G)Ran D-mod (Bung) ® D-mod (Bung)co — Vect

14.2.6. Using Lemmas 13.5.4 and 13.4.10, we can rewrite the functor

Locg ® Poincg «
—

KL(G)crit,Ran ® Whit, (G)Rran D—mod% (Bung) ® D—mod% (Bung)co

as

KL(G)Crit’Ran ® Whit*(G)Ran iﬂS-UniL@)nS-Unit KL(G)crit,P(wx),Rang ® Whit. (GI’G’)Rang —
— (KL(G) erit pwy) @ Whit (Gre))

Ranc X Ranc
~Ran =

(Locg ® Poincg,«)Ranc x Ranc
- an

— " " — D-mod(Ranc x Ranc)) ® D—mod% (Bung) ® D-mod% (Bung)eo —
Ran

Cyr(Ranc x Ranc,—)®Id®Id
~Ran =

D-mod% (Bung) ® D—mod% (Bung)co-

Hence, we can rewrite (14.6) as

(147) KL(G)crit,Ran ® Whit*(G)Ran inS-Unit;@;nS-unit KL(G)crit,P(wx),Rang ® Whit* (GI’G)Rang —
= (KL(G)eit, p(wy ) @ Whit. (Gre)) N

Ranc X Ranc
~Ran -

(Locg (X)PoincGY*)Rang X Ranc
— R — D-mod(Ranc x Ranc)) ® D-mod (Bung) ® D-mod (Bung)co —
Ran
CaR(Rang X Rang ,—)®Id ® Id
Ran D-mod% (Bung) ® D—mod% (Bung)co — Vect .

Hence, it is enough to identify the composition

(148) (KL(G)crit ® Whlt* (GrG))RanC X Ranc =
=Ran =
(Locg ®P0iHCG,*)Rang X Ranc
., R — D-mod(Ranc x Ranc)) ® D—mod% (Bung) ® D—mod% (Bung)eo —
~ Ran -

Cyr(Ranc x Ranc,—)®Id® Id
~ Ran -

D-mod% (Bung) ® D-mod% (Bung)co —

®L 1
(-8l % 1% oN ]
Nop(wx) (wx) plwx)
— Vect plex) _giex Vect

with

Ploc,enh,coarse

(14.9)  (KL(G)erit ® Whit.(Gre)) N

Ranc- X Ranc
~Ran -

C.faCt(X;Oopé('u)v—)Ranc x Ranc

fact =Ran =
— O0pg (0)"MOdRanc x Ranc — D-mod(Ranc R>< Ranc) —
~Ran - an

Cyr(Ranc X Ranc,—)
Ran

Vect .
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14.2.7. Note that both functors (14.8) and (14.9) factor naturally via

(KL(G)erie ® Whit, (Gre)) KL(G)erit ® Whit. (Grg)

b
Sphg )Ranc X Ranc
~Ran -

Ranc x Ranc - <
~Ran -
and in particular via

I
an

(KL(G@)erit (X)Whit*(Gm))Ranc « Ramc KL(G)erit ®  Whit.(Grg)
B - Rep(&) R x R
angRan ang

1,nv

where Rep(G) maps to Sphy, via Sat,

Hence, using the fact that the action of Rep(G) on lwnit, () is an equivalence, we are reduced to
showing to establishing an identification between

. sV
(Locg ® PO‘"CG’,*)RanC X Ranc ®P01ncG"?i
— Ran -

(14.10) (KL(G)CM)Ranc « Ranc
~Ran =
CAR(RangRX Rang,—)@ld@[d

— D-mod(Ranc x Ranc))® D-mod% (Bung) ® D-mod% (Bung)co
Ran

1
(_®[22Np<w ) R g (0]
— D-mod 1 (Bung) ® D-mod 1 (Bung)eco — Vect XX Vect
2 2
and
O‘p(wx),taut Dsenh,coarse
(14.11) (KL(G)M)R%}énmg X (KL(G)crit,p(wX))Ran%nm,,g
- CfaCt(X;OopG-('D),—)Ranng Ranc
ac an
— O0pg (D) MOdRanc x Ranc — D-mod(Ranc R>< Ranc) —
=Ran = an
CaR(Ranng Ranc,—)
a Vect .
14.2.8. We rewrite (14.10) as
(LOCG)RanC X Ranc
=Ran =
(14.12) (KL(G)Crit)Ranc « Ranc —
~Ran -
Cyr(Ranc X Ranc,—)®Id
~ Ran -
— D-mod(Ranc x Ranc)) ® D-mod 1 (Bung)
~ Ran - 2
®3 ®—-1
g Vac (=®leN ., N e BN o]
coe: plwx) plwx) X Vect .

— D—mod% (Bung) —% Vect

14.2.9. Now the isomorphism between (14.12) and (14.11) follows from Theorem 14.1.6.
O[Theorem 14.2.3]

14.3. Composition of coefficient and localization functors: the twisted case. We will now
consider the variant of Theorem 14.2.3 in the situation twisted by a Zxs-torsor P 4o .
G

14.3.1. Consider the functor
LOCG,crit—dlog(szq) : KL(G)crit—dlog(fPZQ ),Ran — D‘mOdcrit—dlog(TZQ )(BunG)v
G G G
see Sect. 13.2.3.

Since the de Rham twisting dlog(%P 0 ) corresponds to a line bundle on Bung, we have a canonical
G

equivalence
D—modcrit_dlog(:pzo y(Bung) =~ D-moderit (Bung).
G
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Composing further with (12.2), we obtain an equivalence

(14.13) D-modcrit,dlog(yzo y(Bung) ~ D—mod% (Bung).
G

Denote by Locg the composite functor

LOCG,critfdlog('J’Zq) (14.13)

KL(G)crit—dlog(# 0 ),Ran — ¢ D-modcric—diog(? o ) (Bung) = =~ D-mod (Bung).
G G

1
2
14.3.2. Consider the composition

Locg @ Id

(14.14) KL(G)Crit_dlog(g)ZO ),Ran ® Whit«(G)ran  — D-mod% (Bung) ® Whit.(G)ran —
G

_e®32 ®-1
CO6 N ) ! BNy x) DI

N
(wx) coeffg ® Id

D—mod% (Bung) ® Whit.(G)ran
— Whlt‘ (G)Ran ® Whlt* (G)Ran — Vect .

Consider now the functor
(14.15)  KL(G)erit—diog(® o ) Ran ® Whits (G)ran ="
G

— KL(G)critfdlog(fPZ%),Rang ® Whit* (GrG)Rang —

. ploc,enh,coarse
— (KL(G)crit~dlog(iPZQ ) ® Whit, (GI’G)) G —
G Ranc X Ranc
~ Ran -
Cf&Ct(X;OOPG‘,'yZQ («D)»*)RanngmRang
— Oopé » (D)—modﬁﬁc x Ranc G—> D—mod(Rang X Ra,ng) —
’ ZO@ ~Ran = Ran
Cyr(Ranc X Ranc,—)
&g Vect,
where P3¢ %€ is the composition of the pairing P”®" of (7.30) with the forgetful functor
h X fact
I‘(Op@’?zoé (D), =)™ : IndCoh™ (OPG,TZ% (D)) — OOPGJ’ZO (py-mod ",
€]

14.3.3. Parallel to Theorem 14.2.3, we have:
Theorem 14.3.4. The functors (14.14) and (14.15) are canonically isomorphic.

15. LOCALIZATION AND CONSTANT TERM FUNCTORS
In this section we define the constant term functor
CT, : D-mod(Bung) — D-mod(Bunas),

along with its twisted versions, when we introduce a level, and a shifted version, when we apply a
translation on Bunys using a Zj/-bundle.

Our main goal is to describe the composite functor

cTo
KL(G)ecrit,Ran LO—C§ D-mod% (Bung) *ﬂwx) D—mod% (Bunu)
as a composition of the BRST functor

BRST, () : KL(G)erit,Ran = KL(M)crit—pp (wx ). Ran
and the localization functor
L
KL(M)crit—pp(wy)Ran D-mod; (Buny),

with the insertion of vacuum in the middle.
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Such a description will be a consequence of the results of the previous section.

Here is one thing to watch out for: there are two “p-shifts” around: one is the translation by pp(wx),
which is artificially introduced in order to match the spectral side. And there is the twist by the line
bundle on Bunyys, corresponding to pp(wx) € Bunz?w . It is intrinsic to the functor of BRST reduction,
and it will correspond to the Miura shift on the spectral side.

15.1. The (untwisted) functor of constant term.

15.1.1. Let P~ be a standard negative parabolic. The usual constant term functor
D-mod(Bung) — D-mod(Bunay)

is defined to be

(15.1) CT; :=(q7 )« o (p7)'[~ dim. rel(Bunp— / Bunas)],

for the morphisms in the diagram

(15.2) Bung & Bunp- %, Bunas,

and where the amount of the shift dim.rel(Bunp- /Bunys) depends on the connected component of
Buny,.

15.1.2. The p-translated constant term functors. The functor that actually plays a role in Langlands
theory is the following translated version of the functor CT; :

We will denote by
(15.3) CT, : D-mod(Bung) — D-mod(Bunay)

*,pp(wx)

the functor, given by composing the following three functors:

e The functor (q7). o (p~)', i.e., l-pull *-push along the diagram (15.2);

e The functor transly ) : D-mod(Buny) — D-mod(Buna);

e Over the connected component of Bunys of degree A, the cohomological shift to the right by
the amount

6N(P_)pp(wx) + <>‘7 2[5P>,

where
(15.4) 6N(P_)pp(wx) = dim(BunN(P_)pP(wX)).
15.1.3. Note that the composition of the first two functors comprising CT;pP(wX) is just pull-push
along
Bung e Bung— ,pwy) N Bunyy,
where

Bun,- ,pwy) := Bunp- X Bunjy .
BunM,translpP (wx)

Note also that the relative dimension of the morphism
Bunpf,pp(ux) — Bunas
over the connected component of Buny,s of degree A\ equals
5N(P—)pp(wx) + (X, 2pp).

*pp(wx)

So, the third functor comprising CT
right by

can be thought of as the cohomological shift to the

dim. rel(Bun, - ,p(wy) /Bunas).

15.2. Constant term functor on gerbe-twisted D-modules. For our purposes, we will need to

consider the functor CT_ _  not on D-mod(Bung) but rather on D—mod% (Bung).
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15.2.1.  Let us denote by lg p— ar,pp(wy) the (non-graded) line

®-1 ®—2
detBung |pp(wx) ® detgyy,, lop(wx) ® [N(P*)pP(WX)’

where the notation [N(P’)pp(wm is as in Sect. 13.7.1.%!

We record the following (elementary) observation:

Lemma 15.2.2. There exists a canonical isomorphism of lines

®2
~ (&3 ®3 ®—1
[G,P*,M,pp(wx) = ([G,N ® [Np(wx) ® [M,N(M)pM(wX) ® [N(M)pM<wX) ®

plwx)
® det(I'(X,0x) ® g)® 2 @ det(I'(X, Ox) @ m)®?,

where
®3

and [
GiNp(wx) N

plwx)
®3

are the lines introduced in (12.9) and (14.2), respectively, and [y o)
’ pm(wx

and [N(M)pM(‘*’X) are the
corresponding lines for M.
Corollary 15.2.3. The line lg p— nrpp(wy) @dmits a canonical square root.

In what follows we will denote by
0}
G, P~ ,M,pp(wx)

(15.5) [

the square root of g p— s given by Corollary 15.2.3.

wop(wx)?
15.2.4. Let L£;,(uy) be the line bundle on Bunys corresponding to the Z3,-torsor pp(wx), see
Sect. 13.2.3.
‘We claim:

Proposition 15.2.5. There is a canonical isomorphism between the following two line bundles on
Bung- ppwy):
o The pullback of detpung along Bunp— ,pwy) — Bung;
e The tensor product of:
— The pullback of detpun,, along Bunp— ,pwy) — Bunas;
— det(T*(Bunpf’pP(wX) /BunM))®2;
— The pullback of L?;(ix> along Bun,— ,p(wy) — Bunu;
— The line lg p— arpp(wx)-
Proof. We first identify the two lines bundles up to a constant line.
Fix an M-bundle Pj;. Comparing the two sides, we need to establish an isomorphism
det(T(X,n(P7) pp(wx)-Pa @ wx)) = det(T(X, (g/0(P 7)) pp(wx)-Pu @ wx)) ® Weil(—2p5(Par), wx),
up to a constant line.

For a root & € n(P), let €, denote the line bundle &(Pxr). It is enough to show that for every o we
e det(T(X, €27 @ wl{r ¥ T) ~ det(D(X, €0 ®@ Wi T)) @ Weil(E4, wx)® 7,
up to a constant line.
By Serre dualty,
det(N(X, 27! @ wiT® ™)) ~ det(T(X, €0 @ wi®™)).
Hence, we have to show

det(T(X, €0 @ W) ~ det(T(X, €0 ® W\ T™)) ® (Ea,wx)® 71,

21N0te, however, that since pp is central in M, the line detpun,, |PP(“’X) is canonically trivial.
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up to a constant line. However, this follows from (12.6).

In order to determine the constant line, we take the fibers of both sides at the trivial M-bundle,
hence the result.
O

Remark 15.2.6. An assertion parallel to Proposition 15.2.5 holds for the untranslated Bunp—. The
only difference is that instead of the line lg p— a1, p(wy) We Will have I%(_;,).
15.2.7.  Combining Proposition 15.2.5 and Corollary 15.2.3, we obtain that the line bundles

detBunG |BunP and detBunM |BunP

—.pplwx) —.pp(wx)
differ by a line bundle that admits a canonical square root.
Hence, the Z/2Z-gerbes
3 3
detBunG |B““p—va(WX) and detBunM |B“np—,pp(wx)

are canonically identified.
This allows to define the functor

(15.6) CT : D—mod% (Bung) — D—mod% (Bunay).

#pp(wx)

15.2.8. Similarly, parallel to Remark 15.2.6, we have the untranslated functor
(15.7) CT, : D-mod% (Bung) — D-mod% (Buny).

15.3. Constant term and localization: a general level.

15.3.1. Let x be a general level. Note that the pullbacks to Bunp- of the de Rham twistings corre-
sponding to k on Bung and Bunp are canonically isomorphic.

Hence, we have a well-defined functor

CT, : D-mod,(Bung) — D-mod, (Bunay).

15.3.2. Note also that as in Proposition 15.2.5 (see Remark 15.2.6), we have a canonical isomorphism
of the de Rham twistings

1
(15.8) 3 ~dlog(detBunG))|BunP7 ~

1 *
=3 - dlog(detpuny,))|Bun,,_ + dlog(det(T" (Bunp- /Bunn))) — dlog(Lsp (wy))-
This allows to consider the functor

CT; et : D-moderit+x(Bung) — D-moderit+x(Bunar)

equal to

- 15.8
D-modcrit+x (Bung) =: D-moderit;+« (Bung) % D-modcyig g | 4+ (Bunar) ) ~ 4

—®det(T* (Bun,_ / Bun,;))® 1t
~ D_mOdcritM +r+dlog(det(T* (Bunp,_ / BunM)))fdlog(LﬁP (wx) ) (BunM) —

[~ dim.rel(Bun,_ /Bunys)]
~ D-modcmM+,€_d10g(LﬁP(wX))(BunM) := D-modcrit4r—pp (Bunas) —

— D-modcritx—pp (Bunar).
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15.3.3.  We have the following general statement (see [CF2, Theorem 4.0.5]:%2)

Theorem 15.3.4. The following diagram of functors commutes:

*,crit

D-moderit+x (Bung) D-modcrit4r—pp (Bunas)

LOCG,crit+nT TLOCM,crit+nfﬁP

ins.unit BRST™

KL(G)crit+n,Ran KL(G)crit+n,Ran§ KL(M)crit+n—ﬁP,Ran§ .

Remark 15.3.5. Not that at the level of fibers at points of Buns, the assertion of Theorem 15.3.4 exactly
reproduces the assertion of Theorem 13.8.5 (with N replaced by N~ (P) and the torus T replaced by
Z°(M)).

Remark 15.3.6. Note that the counter-clockwise composition in Theorem 15.3.4 can be also rewritten
as

KL(G)crit+n,Ran inﬂit KL(G)crit+n,Rang (prbﬁ . KL(G)criH—n,Ran BPE)_

Locn crit+r—pp
— KL(M)crit+n—f;p,Ran — D—I’IlOdcriH_,i_f,P (BunM).

15.3.7. Let Pz,, be a Zy-torsor. Denote by CT for the functor

*,crit,O’ZM

- transl}
,crit s

D-moderit+« (Bung) c—> D-modcrit4+r—pp (Bunay) — M D—modcm_m_ﬁp_K(dlog(yZM),_)(BunM),
see Sect. 13.2.8 for the notation.

Concatenating Theorem 15.3.4 with (13.8), we obtain:
Corollary 15.3.8. The following diagram of functors commutes:

CT*,crit,IPZM

D-moderit+x (Bung) D-modcrit4r—pp —r(dlog(Pz,,):—) (Bunyy)
LOCG,Crit+NT LOCM,crit+m7[)P7m(dlog(iPZM),*)T
_ y BRST},
ms.unt M
KL(G)Crit-l»n,Ran _— KL(G)crit-Q—n,Rang E—— KL(M)crit—{-n—ﬁp—n(dlog(fPZM ),—),Ranc
where BRSTy, s the functor of (4.17).
M

15.3.9. In particular, for k = 0, Corollary 15.3.8 specializes to the commutative diagram

CT. .
werit, Pz

D-modecrit (Bung)

(15.9) LOCG,critT TLOCM,crit—ﬂP

X . BRST,
KL(G)crit,Ran Lunlt) KL(G)crit,Rang —ZM> KL(M)critfﬁp,Rang~

D-modcrit—pp (Bunas)

22The commutative diagram below is the combination of two commutative diagrams: one is obtained by applying
Theorem 4.0.5(3) of loc.cit. to P — G, the other by applying Theorem 4.0.5(4) to P — M. These two diagrams are
combined using Theorem 4.0.5(2), which produces the pp-shift. Also, see [CF2, Sect. 2.4] for a similar diagram but
only for X = P! and P = B.



THE GEOMETRIC LANGLANDS FUNCTOR II 147

15.3.10. 'We will mostly use Corollary 15.3.8 and (15.9) when Pz,, = pp(wx), in which case they read
as
(15.10)

cro

*,crit, pp (wx)

D-moderit+ (Bung) D-moderittr—pp—r(pp,—) (Bunar)

LOCG,crit-H-cT TLOCM,Cl'it-%—)i—ﬁp—)i(pp,—)

BRST
ins.unit pp(wx)
KL(G)Crit—i—f{,Ran e KL(G)@‘it-&—n,Rang _— KL(M)crit+nfﬁpfn(pp,f),Rang )

and
CT, crit,pp(wx)
D-modeyit (Bung) D-modcrit—pp (Bunas)
(15.11) Loccymﬁ TLocM,cmfﬁP
ins.unit BRST;p(wX)
KL(G)crit,Ran _— KL(G)crit,Rang _— KL(M)crit—ﬁp,Rang 5
respectively.

Note that the functors CT . pp(wx)
counterparts, even though the target categories are the same.

and BRST;P (wy) AT€ different from their non-translated

15.4. Constant term and localization: the half-twisted case.

15.4.1. We are finally ready to state the main result of this section:

Theorem 15.4.2. The following diagram of functors commutes

cro
D-mod1 (Bung) — epCx), D—mod% (Buna)

1
2
L
Locga ®[GP MPP(WX)T T ocr
ins.unit BRSTPP(Wx)
KL(G)crit,Ran —_— KL(G)crit Rang ——— KL(M)crit—ﬁp,Ranga

where 5N(P’)pp(ux is the integer (15.4) and 5 is the line (15.5).

G, P M, pp(wx)
15.4.3. Proof of Theorem 15.4.2. Given (15.11), we only have to show that the following diagram

commutes

cro
D—mod% (Bung) — neplx), D—mod% (Bunas)

(12. 2)@[ 2 T 1(12.2)

G, P~ ,M,pp(wx)

CT*,crit,pP(wX)

D-modeyit (Bung)
However, the latter is a straightforward consequence of the constructions.

D-modcrit—pp (Bunas).

O[Theorem 15.4.2]

15.4.4. 1In a completely similar way, we have the following compatibility assertion for the untranslated
half-twisted constant term functor:

Theorem 15.4.5. The following diagram of functors commutes

cTy
D- mod% (Bung) — D—mod% (Bunu)
Locg ®[N(P ) TLOCM
ins.unit BRST™
KL(G)cric,Ran —_— KL(G)crit,Rang —_— KL(M)critfﬁp,Rang .
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16. LOCALIZATION AND CONSTANT TERM FUNCTORS: THE ENHANCED VERSION

This section can be skipped on the first pass, and returned to, when necessary. Here We introduce
global enhancements of the objects we studied in the previous section.

We first introduce the global enhanced category D-mod 1 (Bunjps) 7™, essentially by tensoring
D-mod (Bunys) with the Ran version of the local semi-infinite category I(G, P~)"°° over Sph,,. This
category is related to the category D-mod 1 (Bunyas) by a pair of adjoint functors

indeon : D-mod; (Bunp) = D-mod (Bunps) ™ : oblvepnn.

We introduce the enhanced constant term functor
CT, e D—mod% (Bung) — D—mod% (Bunjys) ",
so that CT; ~ oblves, o CT; ", This is done by a geometric procedure that involves modifying the
G-bundle at points “along the P~ -direction.”
We introduce the enhanced version of the localization functor

Locy; ™ : KL(M) " — D-mod, (Buny) .

crit,Ran

The main result of this section is a generalization of Theorem 15.4.2; given by Theorem 16.4.2, which
expresses the composition

—enh
CT, ™ oLocg

as a pre-composition of LocIT/[’enh with the enhanced functor of BRST reduction at the local level.
16.1. The enhanced recipient category.

16.1.1. Recall the (factorization) category I(G, P7)"°°. It is equipped with an action of Sph,, (see
Sect. 2.2.2).

Consider 1(G, P7)RS, and D—mod%(BunM) ® D-mod(Ran) as categories over Ran. Consider the
tensor product

D-mod% (Buny) " Ren .= [(G,PT)RS,  ® (D-mod% (Buny) ® D-mod(Ran)) .

Sphas,Ran
The (monadic) pair of adjoint functors
(16.1) indspn_ s : Sphy, = I(G, P7)"*° : oblv e Lspn
gives rise to a monadic adjunction

(16.2) D-mod (Bunjs) ® D-mod(Ran) = D-mod (Bunjy) ~ehRan,
16.1.2. More generally, let Z be a space mapping to Ran. Then we can form the category
D-mod; (Buny) ™= := 1(G, P7)E° _ ® (D-mod% (Buna) ® D-mod(Z)) ,

Sphpy, 2
equipped with a monadic adjunction
D-mod, (Bunas) ® D-mod(Z2) = D-mod, (Buny) "0z,
In particular, for z € Ran we have the category
D-mod (Bunjy) o=
and a monadic adjunction

D—mod% (Bunpr) =2 D—mod% (Bunjpy) P
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16.1.3. Define D—mod% (Bunys) ~°™" to be the fiber product

D-mod: (BunM)_’enthm X D-mod 1 (Bunyy),
2 D-mod ; (Bunjs)®D-mod(Ran) 2
2

where:

e The functor

D-mod, (Bunj) "PRan D-mod (Bunjs) ® D-mod(Ran)
is the right adjoint (forgetful) functor from (16.2);
e The functor D—mod% (Buny) — D—mod% (Bunas) ® D-mod(Ran) is
— X wran-
Note that, due to the contractibility of the Ran space, the functor
D—mod% (Bunpy) ™" — D—mod% (Bunjy) o Ran

is fully faithful.
16.1.4. The adjunction (16.2) gives rise to a monadic adjunction

(16.3) indenn : D—mod% (Bunpy) = D—mod% (BunM)f’e“h : oblvenh.-

16.1.5. Here is another way to think about the category D-mod 1 (Bunjs) ™. Recall the associative
factorization algebra Qe Sph,,, see Sect. 2.2.5.

The monoidal operation on Ran endows Sph,,r,, with a structure of mononoidal category, and

QRran With a structure of an associative algebra in it.

We have a monoidal action of Sph,, g,, on D-mod 1 (Bunas), and a tautological equivalence
ﬁRan—mod(D—mod% (Bunp)) =~ D-mod (Bunps) ",
so that the adjunction (16.3) becomes

indg_ D—mod% (Buny) = ﬁRan—mod(D—mod% (Buna)) s oblvg .

Remark 16.1.6. One can show that the category D-mod% (BunM)f’e“h introduced above is equivalent
to the category I(G, P7)&°" from [Gail, Sect. 6.1], defined as follows.

For a group H, let Bunf;" denote the prestack of H-bundles defined generically on X. There exists

a tautological map
gen

Bung — Bunf ™.
Consider the prestack

Bun‘ff" X Bung.

gen
BunG

The category I(G, P7)8"°" is by definition the fiber product

D-mod (Bunf™ x Bung) X D-mod (Bunay),

gen .
Bung; D mod%(BunP_)

where the functor
D-mod% (Bunas) — D-mod% (Bunp-)

*

is (97)".

In other words, I(G, P~)&°" is the full subcategory of D—mod% (Bunfff X Bung), consisting of
Bunéen

objects, whose pullback to Bunp- lies in the essential image of the (fully faithful) functor (q7)*.

Under the equivalence
D-mod (Bunys) """ ~ I(G, P7)E"P,
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the functor oblve,n corresponds to the tautological functor
(G, P& - D-mod (Bunay).

16.2. The enhanced constant term functor. Our current goal is to define the enhanced constant
term functor

cT,em D-mod (Bung) — D-mod (Buny,) ™"
so that
oblvenn o CT; ™ ~ CTS,
where CT is the functor from Sect. 15.2.8.

16.2.1. To simplify the notation, we will fix a point z € Ran, and describe the corresponding functor

(16.4) T, e D-mod (Bung) — I(G, P7)¥° @ D-mod (Buny) =: D-mod (Bunjy) e,

= Sphar,

By duality, the datum of a functor (16.4) is equivalent to that of a Sph,, ,-linear functor
(16.5) (G, P ), ® D-mod; (Bung) — D-mod s (Buny),
where

et (M),

(G, P7)cssy = D-mod g (Gre.a) gy (p)),

see Sect. 3.1.2.

16.2.2. Consider the Hecke global stack

737

ob B
Bung Heckeél&b 2¢ Bung .
Denote by s the projection
HeckegGl;b — HeckeS%, := £7(G)2\Gra, .

Note that we have a canonical identification of line bundles on Heckegcl;b

(7* *)* *
hg(detpung) >~ hg(detpung) ® s™(detarg ,)-

In particular, we have a canonical identification of Z/2Z-gerbes

H* i ‘}* i * i
(16.6) he(detd,,,) ~ ha(dets,, ) ®s (detércjz).
16.2.3. Consider the fiber product
(16.7) Hecke’gf’ﬁ,’z = Heckegéf’zb X Bunp-.
- h g,Bung
Denote the resulting maps by

he pe he pe
G.p G.p
Bung ¥ Hecke§” <% Bunp- .

We have a natural map
Heckegclf;b — £7(P7):\Cre s,

which we denote by the same symbol s.

Due to Remark 15.2.6, the identification (16.6) gives rise to an identification of Z/2Z-gerbes

e 1 - * —\* 3 * 3
hg,p-(detgn,) ~ (hgp-)" o (a7) (detd,,,, ) ®s (detd, )
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16.2.4. Thus, we have a well-defined functor
— | 1 '
(168 (hor)- (318 (e ().
which maps

D—mod% (GrG&)EJr(Pi)l ® D—mod% (Bung) — D-mod 1 (Bunp-).

(a7)* (detg )
16.2.5. Consider the functor
(16.9) D—mod% (GrG,£)£+(P_)£ ® D—mod% (Bung) — D—mod% (Bunu)
equal to the composition of (16.8) with:

e The functor

4. : D-mod 1 (Bunp-) - D-mod 1  (Bunp-) =: D-modi (Bun);
(a7)*(detZ,, ) et :

e The functor of cohomological shift to the right by the amount
dim. rel(Bunp- /Bunyy)

over a given connected component of Bunj,.

It is easy to see that that functor (16.9) factors via the quotient

et (M),
SH(N(P~)e

et (M),

.
D—mod% (Grge)® ¥z ~ D—mod% (Grg ) SN(P-))a

—» D—mod% (Grg,z)
along the first factor.

The resulting functor

et (M),

D-mody (Gre.a)en(p™y,

® D—mod% (Bung) — D—mod% (Bunar)

is the sought-for functor (16.5).
16.2.6. By construction, the functor (16.5) is compatible with the actions of Sph .
16.3. The enhanced localization functor.

16.3.1. Notational convention. In order to avoid overburdening the notation, for the duration of Sects.
16.3-16.5 we will denote by
—,enh
KL(M)crii—ﬁp

the (untwisted) category
I(G, P_)IOC & KL(M)crit—ﬁp

Sph
(cf. (4.22)).
We will restore the original meaning of KL(M);;‘ET})P, ie.,
UG, P )i ) (@ KL(M)erit—py
Sph s

in Sect. 16.6.
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16.3.2. Fix a point z € Ran, and recall that the corresponding localization functor
Loca,g : KL(M)crit,e — D—mod% (Bunar)

respects the actions of Sph,, ..

o . —,enhg
Hence, it gives rise to a functor, to be denoted Loc Men =

Id @ Locps o
16.10)  KL(M)™ = 1(G,PT)°  ® KL(M)aing  —5"*
crit,z )
= - SphM,E =
— I(G, P‘)icOC ® D-modi (Buny) =: D-mod;(BunM)_*e“hz,
~ Sphpy. 2 3

compatible with the adjunctions
KL(M)erit, e = KL(M) it
and

D-mod% (Buny) = D-mod% (Bunys) e,

16.3.3. Making the point z vary along Ran, from (16.10) we obtain a functor

(16.11) Loc,/ ™ Ren s KL(M) i an — D-mod (Buny,) " hRan,
More generally, for Z — Ran, we obtain a functor
(16.12) Locy;™"* : KL(M) 7"y — D-mod (Bunas) "=

16.3.4. Consider the space Ranc, thought of as mapping to Ran using pry,;,. Consider the functor

— »e“hRanC

Loc, —senhRan Id @(prpig)

(16.13)  KL(M)_cob =it gy (pr)—enb

crit,Ran crit,Ranc

D—mod% (Bunay)
— D—mod% (Bunyy ) o PRan
The following assertion results from the isomorphism (13.17):
Lemma 16.3.5. The functor (16.13) takes values in

D-mod 1 (Buny) 7 ""Ren X D-mod 1 (Bunys) =: D-mod 1 (Bunas) ",
2 D-mod ; (Bunjs)®@D-mod(Ran) 2 2
2

16.3.6. Thanks to Lemma 16.3.5 we obtain a well-defined functor, to be denoted
(16.14) Locy; ™" : KL(M) ;2 — D-mod%(BunM)*’e"h.

crit,Ran
By a similar token, we define the corresponding functor in the twisted setting:

(16.15) Locy; ™" : KL(M) ;o™ — D-mod} (Buny) .

crit—pp,Ran

The above functors possess the unitality property from Sect. 13.3. Following the conventions of

—,enh

Sect. 13.3.3, for a space Z mapping to Ran, we will denote by the same symbol Loc}; the resulting

functor
KL(M)_: — D-mod; (Bunys) ",

crit,Z
ie.,

—,enh
—enh MMz _)eld

16.16) KL(M)_: 5 D-mod(Z) ® D-mod 1 (Bunys) ™" CdR(Z—’) D-mod 1 (Bunas) ",
crit,Z 2 :

and similarly in the pp-shifted case.

Remark 16.3.7. Note that the functor (16.16) can also be written as

—e
Loc

nh
KL(M)_ — KL(M) o M D-mod%(BunM)*venh,

crit,Z crit,Ran

where the first arrow is (de Rham) direct image along Z — Ran.

16.4. Compatibility of localization with constant terms—enhanced version.
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16.4.1. The following assertion is an analog of Theorem 15.4.5 for the enhanced constant term functor:

Theorem 16.4.2. The following diagram of functors commutes:

cT—enh

D-mod1 (Bung) - D-mod 1 (Buny,) ™"
2 2
Locg ®[%(Pl ) TLOCXJ’enh
ins.unit BRST —-enh

KL(M) — ,_enh

KL(G)crit,Ran — KL(G)Crit,Rang crit—pp,Ranc?

where BRST ™ is the factorization functor of (4.20), and Loc); b s as in (16.15).
Remark 16.4.3. Note that the counter-clockwise composition in Theorem 16.4.2 can be rewritten as

. . Thig) % —,enh
KL(G)crit,Ran mﬂlt KL(G)crit,Rang (pg KL(G)crit,Ran BRST_)

enh
LocM

— D—mod% (Bunu)

N KL(M)izenlt —,enh .

crit—pp,Ran
16.4.4. The proof of this theorem will occupy the rest of this subsection and the next one.

Recall that we have the natural transformations

(16.17) D- mod% (Bung) _®) . D mod1 Bunp-) — o D—mod% (Bunu)

®—1 ®—1
LOCG@[N(P ) Locp, ®[N(P ) Locps

KL(G crit,Ran —> KL(Pi )Critg\P, ,Ran W KL(M)crithﬁp,Rany

where:
* D-mod, (Bunp-) := D-mod 1 (Bunp-);

detgunc ‘BunP,
e The functor Locp- : KL(P‘)CmG|P_ Ran — D—mod% (Bunp-) is defined in a way parallel to
(13.3);

e The functor D-mod, (Bunp-) — D-mod (Buny) is
(97 )s 0 (— ® det(T* (Bunp- /Bunas))® ") [— dim. rel(Bunp— / Bunay)].

Moreover, the resulting natural transformation

(16.18) D- mod% (Bung) °Ty D—mod% (Bunay)
Locg ®IN(P )| Locyr
G)crlt Ran BRST— KL(M)critM —pp,Ran;

becomes an isomorphism after precomposing with

(1619) KL(G)crit,Ran ins._un)it KL(G)crit,Rang (prﬁ . KL(G)crit,Ran-
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We will show that the diagram (16.18) can be enhanced to

CT*—,enh

(16.20) D-mod; (Bung) D-mod% (Buny,)~eh

1
2
®—1 —,enh
Locg ®[N(P)| LocM

KL(M)_emh

critps —pp,Ran"

BRST*,enh

This will imply Theorem 16.4.2.

16.4.5. In order to unburden the notation, instead of constructing (16.20), we will be working over a
fixed point z € Ran.

Thus, we want to construct the diagram

—,enhg
(16.21) D-mod% (Bung) CTx D—mod% (BunM)_’enhl
Locg, s ®[;(3(_;7) Loc;ienhl
—,enh
KL(G)crit,g BRST—-enh KL(M)CI‘“ZM*[)P,Q'

16.4.6. By duality, the datum of (16.21) is equivalent to that of

I(G, P7)&s ® D-mod, (Bung) (165 D-mod ; (Bunay)
Id@(LocQE@(%(‘;_)) Locs
(G, P7)&% @ KL(G)erit x KL(M)erity; —pp .5
where the bottom horizontal arrow is the composition
(4.19)

(G, P ), @ KL(Qarite = [(G, P, ® KL(G)eritw

Sth&

— KL(M)CritM*ﬁP,E'
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Equivalently, we need to construct a diagram

(16.9) D—mod% (Bunu)

16. -mod1 (Grg,z )z @ D-mo 1 (Bung
6.22)  D-mod, (Gre.e)® )= @ D-mod, (B

d® (LOCGE ®[%(*;7)) Locar,z
PR
D—mod% (Grg2)® P )z @ KL(G)erit, KL(M)crity—pp s

where the bottom horizontal arrow is the functor

£t (P7); BRST
crit -

D-mod (Gra.p)® P2 @ KL(G)erit.e = §-mod KL(M)exity,—pp .-

We will construct the desired diagram (16.22) in Sect. 16.5.6.
16.5. Localization in the presence of level structure.

16.5.1. Fix a point € Ran, and the scheme

levely
Bung

For a level k, we will consider the corresponding category of twisted D-modules
levely

D-mod, (Bun, *).

It is acted on by the group £(G). at level k.

16.5.2. Parallel to the functor
Locg,k,z : KL(G)k,e — D-mod.(Bung),

there exists a functor

~ level,
Locg,k,z : g-mod, z — D—mod,Q(BunGV “),

compatible with the actions of £(G),.

In particular, for a subgroup H C £"(G)., we have a commutative diagram

D-mod,(Grg,.)" ® D-mod,(Bung) —*— D-mod,(H\ Bun, ')
(16.23) m@LochJ TLOCG,N,Q
D-mod,(Gre.o)" ® KL(G)r.e LN §-mod?

16.5.3. Consider the particular case of (16.23) when H = £7(P7),. We obtain a commutative
diagram:

D—rnod,ﬁ((}rg,&)fr(lpj£ ® D-mod, (Bung) ——— D-mod, (Bung X pt /LT (P7).)
pt/e+t (G)z
(16.24) Id®Locc,~,4 TLOCG,N&

- * ~ +p—
D-mod(Gro.e)® 2 @ KL(G)re  — grmod: . =,
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16.5.4. Note now that the map
p~ :Bunp- — Bung
naturally factors via a map

‘p” : Bunp- — Bung X pt /LT (P7),.
pt /e+ (G

As in (13.31), we obtain a diagram

+ — 7o—!
(16.25) ~ D-modx(Bung . /;j(c& pt /L7 (P7)z) (P w D-mod,.(Bunp_ )
Locg k,z LocP_’ﬁ’£
+(p- -
/g\—modfrit(,; )z KL(P )critG|P_ ,Ran

where the bottom horizontal arrow is the natural restriction functor.
16.5.5. Specializing to the critical level, (16.24) is equivalent to

D—mod% (Ger,Q)EHIr)£ ® D—mod% (Bung) —— D—mod% (Bung X pt /LT (P ).

pt /£ (G)a
(1626) Id®LOCG,gT TLOCG)2
— * R ot (p—
D-mod% (Grc,z)ﬁ(P )2 @ KL(G)erite —— g-modjritE: )i,

and (16.25) is equivalent to

D-mod (B x t /et (P (e i
(16.27) mod 1 (Bung o /2+(G)£P LT (P7)z) D mod% (Bunp-)
LOCG,Q LocP_ =
ot (p— _
’g:—mod;it(i )z KL(P )critG|P_ ,Ran-

16.5.6. End of proof of Theorem 16.4.2. We are now ready to construct (16.22) and thereby prove
Theorem 16.4.2.

Namely, (16.22) is obtained by horizontally concatenating the diagram (16.26) with (16.27) and the
right square in (16.17).
g

16.6. Enhanced categories—twisted versions.

16.6.1. We can repeat the contents of the preceding subsections when we replace the category
I(G, P7)!°° by its twisted version I(G, P™)°

pp(wx)"

We consider I(G, P~)k¢ ) as acted on by Sph,, according to the convention in Sect. 2.3.5.

pp(wx

Recall also that we have an equivalence

(16.28) (G, prylee “rrexgtent g prylee

pp(wx)’
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which is compatible with the actions of Sph., and is compatible with the actions of Sph,, via the

automorphism

*
translpp (wx)
~

(16.29) Sph,, Sph,, .

16.6.2. Denote the resulting global enhanced category by

—,enh
D—mod% (Bunar), 7y

We denote by the same symbols
(16.30) indenn : D—mod% (Buna) = D—mod% (BunM)_’enh : oblvenn

pp(wx)

the resulting pair of adjoint functors.
16.6.3. Here is another way to think about D-mod (Bunjy) ~onb:

Let (Nlpp(wx) be as in Sect. 2.3.2. Let

QPP(WX),RHD € SphM,Ran
be the corresponding associative algebra object.

Then the adjunction (16.30) identifies with

indﬁpp(wx)’mm : D-mod% (Buny) = QpP(wX),Ran-mod(D—mod% (Bunys)) : oblvg

16.6.4. Note that the functor

transl®
D—mod% (Buna) Lpfex) D—mod% (Bunar)

is also compatible with the Sph,-actions via (16.29).

®

Hence, tensoring transl y with (16.28), we obtain an equivalence

pp(wx
—,enh 5 —,enh
(16.31) D—mod%(BunM) ~D mod%(BunM)pP(WX),
to be denoted
* —,enh

(translpP(wX)) ¢ N

which makes the diagram
transl’
D-mod% (Bunar) — L SN D-mod% (Bunas)
oblvenhT TOblVenh
—,enh (tranSIZP(WX))iycnh —,enh
D-mod% (Bun) D-mod% (Bunar), ")

commute.

16.6.5. A twisted version of the functor CT, -enh gives rise to a functor

CT;;;?](LX) : D—mod% (Bung) — D—mod% (BunM);I;e(l:JhX)7

so that the diagram

(transl® )—,enh

—,enh rp(wx) —,enh
D—mod% (Bunay) D mod% (BunM)pP(wX)
—,enh —,enh
T, T TCT*»PP(“’X)

D—mod% (Bung) D—mod% (Bung)

commutes.

pp(wx),Ran’
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16.6.6. Let KL(M)_™  be as in (4.22) (see Sect. 16.3.1 for our notational conventions). We have

crit—pp

the corresponding localization functor
,enh —,enh —,enh
(16.32) Loc (o  KL(M) 5, — D—mod% (Bunays) .

16.6.7. The following assertion follows formally from Theorem 16.4.2 by applying the functor

transly ()

Theorem 16.6.8. The following diagram of functors commutes:

—,enh

*op(wx) —,enh
- LS SME LEEN - ’
D mod% (Bung) D mod% (Bunar), "0
Locg ®IG«P_vaPP(“’X)T TLDCI\/I op(wx)
BRST ,enh

KL(G)crit,Ran Lumt) KL(G)crit,Rang ﬂ KL(M)_’-enhv

crit—pp,Ranc?

where BRST; e(':lh x the factorization functor of (4.23), and Loc;f;‘;‘(wx) s as in (16.32).

17. SPECTRAL POINCARE AND GLOBAL SECTION FUNCTORS

In this section we start dealing with the local-to-global constructions on the spectral side, i.e., when
the recipient category is IndCoh(LSx(X)).

We introduce two versions of the spectral Poincaré functor:

PomcSpelC

IndCoh' (OpE°™ ™**(D*))ran  —3 ' IndCohniip (LS (X))

and
PomcS pec

IndCoh* (OpE°" (D™ ))Ran " IndCohniip (LS5 (X)).
However, we show (Theorem 17.2.4) that they are intertwined by the “self-duality” functor

Oop(c) : IndCoh'(OpE*™ (D)) — IndCoh* (OpE™ (D)),
up to tensoring by a graded line.
Next we recall the definition of the spectral localization and global sections functors
Loc™ : Rep(G)Ran = IndCohyip (LS (X)) : g
Finally, we give the expression for the composition

PomcSpec rspec

IndCoh* (Opg®™ " (D*))Ran IndCohniip (LS (X)) -+ Rep(G)Ran
via chiral homology, which exactly matches the composition (14.1) under FLEG,crit and FLEg .

17.1. The spectral Poincaré functor.
17.1.1. The spectral Poincaré functor

Poinc?; : ITndCoh' (Opg*™**(D*))ran — IndCoh(LS (X))
is comprised of the functors

Pomcg’fc IndCoh' (OpZ°™ free(D;)) — IndCoh(LSx (X)), =z € Ran,

where

Pomcsc?e,cz i= (7)x 0 (52)'

for the morphisms
Opxgon-free(ﬂz) fi Opxéxon—free(X _ g) E LSG(X)
and

OpE™ (X — ) i= Opg(X —2) _ x  LSq(X).
LS (X —2)
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17.1.2. The functor PoincSGPjC has the unitality property spelled out in Sect. 13.3. Concretely, this

means the following (cf. Sect. 12.3.8):
Fix a point z,2’ € Ran be two points with z C 2’. Then the diagram
IndCoh'(Opg®*™**(D;)) —— IndCoh'(OpE®™ (D))
(17.1) Poincsc-pj';l lPoincSGf”e!::l/
IndCoh(LSx (X)) —_— IndCoh (LS4 (X)),
commutes, where the top horizontal arrow is given by pull-push along

Opg(Dy — ) x LS(Dyr)

LSg (D%, ~2)
(172) Opa(DX)  x  LSu(Da) Ope(DX) %  LSe(Da)
’ LS&(Dy) N LSG(D;)
Oprénon—free (DQX ) Opgon—free (D;, ) ,

in which the slanted arrows are given by restriction along the inclusions
DX = (Dy —z) ¢ D,
respectively.
Indeed, the commutativity of (17.2) follows from the fact that the diagram

Ops(X —z) x  LSg(X) ——— Opg(X —2') x  LSg(X)
LS (X —z) LS (X—a’)

| I

OpG(Dz/ —@) X LS(;(DZI) e OpG*(D;(,) X LSG‘«(DZ/)
- LSy (D), —2) a T LSg(D)) -

is Cartesian.

17.1.3. A basic property of the spectral Poincaré functor is the following;:

Proposition 17.1.4. The essential image of the functor PoincscfjC lies in

QCoh (LS (X)) C IndCoh(LS(X)).

Proof. Fix a point z € Ran and ¢, disjoint from z, and denote 2’ = z U zo. Let us interpret the

functor Poinc(" via the corresponding diagram (17.1).

Note that all terms in the diagram
Oprgon»free(D;UIO) s£<U_$O Opgon—free (X _ (Q U $0)) "Eﬁ;ﬁo LSG'(X)
are acted on by the spectral Hecke groupoid IndCoh(Heckeg’ico’loc), and hence, the the functor

Poinc’*® : IndCoh'(OpE°™ ™ (D)) @ IndCoh' (OpZ°™ (D)) — IndCoh(LS (X))

G,zUzg

is manifestly equivariant with respect to this action.
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Hence, it is sufficient to show that the action of Sphspec0 on IndCoh'(OpZ°™ (DY) factors via

spec spec
Sph 1) — Sth’ ,2temp,zq

(see Sect. 6.4.1) for the notation.

However, this follows from the fact that the compact generators of IndCoh!(Opré“’“'free('D;O)) can

be obtained as !-pullbacks of objects in IndCoh'(Opg (D).
O

Remark 17.1.5. Note that the above fact that the action of Sph7** on IndCoh' (OpZ°™¢(D*)) factors
through Sphg’izmp is a spectral counterpart of the fact that the action of Sphy on KL(G)eit factors
through Sphg (e, see Remark 7.3.6.

17.2. Another version of the spectral Poincaré functor.

17.2.1.  We now consider the category IndCoh* (Op°""**(D*))Ran, and a functor
PomcSpec IndCoh* (OpE°"™*°(D*))Ran — IndCoh (LS (X)),

comprised of the functors

Poinc?® : IndCoh* (Opg***(D})) — IndCoh(LS4(X)), z € Ran,

where

Poch’eC@ = (mz)x © (52)",

for the morphisms 7, and s; as in Sect. 17.1.1.

17.2.2.  Denote by I, (@) the (non-graded) line
(det P(X, a(8)wx ),

where a(§). is as in Sect. 5.3.3.

17.2.3. Recall now that we have a canonical equivalence

@O(

(17.3) IndCoh' (Ope&™™ free( “Nran =~ IndCoh™ (Opg°™ e (D)) Ran,
see Sect. 5.3.
The main result of the present section reads:
Theorem 17.2.4. There is an isomorphism of functors
spec

Poinc )| ~ PoincSva,e*C 0 O ® lkost( [0c]-

In the above theorem and elsewhere

0g = dim(Bung) = (g — 1) - dim(G).

17.2.5. The rest of this subsection is devoted to the proof of this theorem.
To simplify the notation, we will establish the required isomorphism at a fixed point z € Ran, i.e.,
(17.4) Poinc( o= PoincZ’ 0 Oppa) @ lkost(c 9G],

with respect to the equivalence

Oop(a)

(17.5) IndCoh'(OpZ°™ (D)) "= IndCoh* (OpgE°™ (D))
of Sect. 5.3.
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P “and Poinc®?*° | it is enough to establish the commuta-

Note that by the construction of Poincy ° £

tivity of the following diagram
IndCoh* (Oprcn;on»free (Dgx )) (17.5)

(17.6) |

IndCoh' (OpE®™ (D))

-

MA@~ | [-sg] .
IndCoh(Opg" (X — x)).

Kost(G)

IndCoh(OpE°™™*¢(X — z))
17.2.6. Recall that the equivalence (17.5) is such that the equivalence (17.5) is such that the diagram

Oop(c)

IndCoh' (OpZ°™ (D)) ——= IndCoh*(OpZ°™ (D))
©op(a)

IndCoh'(Ops(DX)) ——=  IndCoh*(Ops (D))

commutes, where the bottom horizontal arrow is the equivalence of Lemma 5.3.5, and the vertical
arrows are given by !-pullback.

Hence, by base change, the commutativity of (17.6) follows from the commutativity of the next
diagram:

<) -
IndCoh* (Opg (D)) e IndCoh'(Op (DY)
(17.7) st l lf
1d ®[§oﬁst(é)[*

el
IndCoh(Opg (X — ) IndCoh(Opg (X — z)),
where by a slight abuse of notation we denote by the same symbol s, the map
Opg(X —z) = Opa(Dy),

so that the two instances of this functor are obtained from one another by base change

LS@(@z) X —.
LS (D)
17.2.7. Let
*,fake * . X
(17.8) Y e (DX) € IndCoh™(Ops(Dy))

be the image of the dualizing sheaf
w!opc ox) € IndCoh'(Opg (D)),
see (5.12).

Since Opg (D, ) is ind-pro-smooth, the commutativity of (17.7) is equivalent to the existence of a
canonical isomorphism

(17.9) s;(wg;a;‘;; ) @ liost(e196] = wopg (x—a)-

17.2.8. Let us recall the explicit shape of the object (17.8). Recall that the indscheme Opg(Dy) is
an affine space with respect to the Tate vector space

V:=T(D;, a(d)wy)-

Denote by Lo C V the standard lattice, i.e.,

Lo :=I'(Dg, a(§)wx)

so that
Lo
Opg(Ds) ~ Opg(De) X V.
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Write
L
Opg(Dy) = colim Opg(Ds) X L,
where L runs over the (filtered) poset of lattices containing L. Denote

L,
OpE(DY) := Opgs(Dy) X L.

Then

wiake colim O ® det(L/Lo)® " [dim(L/Lo)].

Opg(DX) — OpE, (D)

17.2.9. Thus, (17.9) is equivalent to a compatible family of isomorphisms
(17.10) oopg (DX)n0pg (x—z) © det(L /L0)® ™ ® Igger(e [0 + dim(L/Lo)] =~
= Wopk (0)NOpg (X —2)°
Denote by I' the co-lattice
N(X —z,a(8)wx),
so that Opg (X — z) is an affine space with respect to I'.
Then OpLG,(‘D;) N Ops (X — z) is an affine space with respect to LNT', and we have

=0 ® det(L N T)® " [dim(L N T)].

w,
Opg,(Dz)NOp (X —z OPE, (D7 )NOp g (X —z)

17.2.10. Thus, (17.10) reduces to an identification of graded lines:
det(L/Lo)® ™! & lxoei (e [0c + dim(L/Lo)] ~ det(L N T)®~*[dim(L N T)],
which in turn reduces to the existence of an isomorphism
det(Lo NT)[—dim(Lo NT)] = (21 5 [~c]-
However, the latter isomorphism is just the fact that

LoNT ~ (X, a(§)wy ),

combined with the fact that
dim(I'(X, a(§)wy )) = dim(Bung).
O[Theorem 17.2.4]

17.3. The spectral localization and global sections functors.

17.3.1. The spectral localization functor

Loc* : Rep(G)ran — QCoh(LS (X))
is defined as pull-push along the diagram
(17.11) LS (D)Rran ¢ LSx(X) x Ran — LS (X),

where:
e We identify Rep(G) and QCoh(LSx(D)) as factorization categories;
e The map LSx(X) X Ran — LS (D)Rran is comprised of the maps LSx(X) x 2 — LSx(Dy),
given by restriction.

The functor LocsgeC possesses the unitality property spelled out in Sect. 13.3.
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17.3.2.  The functor Locy* admits a right adjoint, denoted
[P : QCoh (LS (X)) — Rep(G)ran,

obtained by applying pull-push along (17.11) in the opposite direction.

Explicitly, for a given z € Ran, the corresponding functor

I'Z : QCoh(LSg (X)) — Rep(G)z
is given by *-direct image along
17.3.3. Note also that the categories QCoh(LSs(X)) and Rep(G)ran are both canonically self-dual,
and with respect to these dualities, we have
(LocSG-peC)V o~ FSG-peC.

17.4. Composing spectral Poincaré and global sections functors.

17.4.1. Our current goal is to study the composite functor

incSpeC rspec

(17.12) IndCoh™ (OpE°™ ¢ (D*))gan  —5~ QCoh(LSs (X)) <+ Rep(G)ran-

Applying the canonical self-duality of Rep(G)ran, the datum of the functor (17.12) is equivalent to
the datum of the pairing

IndCoh™ (OpE®*™**(D*))Ran @ Rep(G)ran — Vect,

given by
¢ . Poincge:@I .
(17.13)  IndCoh™(Opg™ ™™ **(D*))ran ® Rep(G)ran  —>  QCoh(LS4(X)) ® Rep(G)ran —
rsPeegId

“—  Rep(G)ran ® Rep(G)ran — Vect .
We will prove (cf. Theorem 14.2.3):
Theorem 17.4.2. The functor (17.13) identifies canonically with

(17.14)  IndCoh™ (OpE°™ ™ (D*))ran @ Rep(G)pan = " HEES 10
— IndCoh* (OpE™™**(D*))Ran. ® Rep(G)rane —

Ploc,enh,coarse

— (IndCoh* (OpE™"**(D*)) ® Rep(G3)) ¢ _,
Ranc X Ranc
~Ran =
- Cfad(x;oopc-('D),—)Rang X Rang
ac n
— Oop (D) MOdRanc x Ranc — D-mod(Ranc R>< Ranc) —
=Ran = an

Cyr(Ranc x Ranc,—)
~— Ran -

Vect,
where Plgc’enh’coarse is the functor introduced in Sect. 7.5.5.

Remark 17.4.3. Note that the functor (17.14), appearing in Theorem 17.4.2 can also be rewritten as

IndCoh* (Oprgon_free(,D X ))Ran ® Rep(G)Ran ins.unit;@i)ns.unit
— IndCoh™ (OpE®™"**(D*))Ran. ® Rep(G)rane —

— (IndCoh* (Op"c’go”'f’ree (D*) ® Rep(é)) (prbigi);big)*

Ranc- X Ranc
~Ran -

ploc Cn (Ran,—
—%s D-mod(Ran) an (B30 oo

an

= (IndCOh*(opg""‘ffee(DX ) ® Rep(é))
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17.4.4. The rest of this subsection is devoted to the proof of Theorem 17.4.2.
First, using the (non-derived) Satake action, as in the proof of Theorem 14.2.3, we obtain that the

assertion of the theorem is equivalent to that of the following:

Theorem 17.4.5. The functor

PoincSPe*C (LS (X)), —
IndCoh” (OpZ°™ (D" ))pan  —$" QCoh(LSg (X)) W e5) ™

identifies canonically with

Vect

renh(Op (DX, —
IndCoh* (Op=°™**(D*))an — IndCoh™ (Ope (D) ran  Es )7
C_fact(x;oopé(,D)’,

)
— Oopg (D)—modf{ﬁ, Vect .

17.4.6. 1In order to simply the exposition we will replace the situation over Ran by one with a fixed
z € Ran. So, we want to show that the composition
spec

Poincy I(LSg (X))
-—

(17.15) IndCoh* (Opg*™™*(D"),)  —3"* QCoh(LS4(X))

identifies canonically with

Vect

* mon-free /gy X * X fact C?h(X,Oop 5(P) ")z
IndCoh™(Opg (Dz)) = IndCoh™(Opg(Dy ) =~ Oop s (p)-mody -5 Vect .
17.4.7. The functor (17.15) can be tautologically rewritten as the composition

P(Opgoee (X ~z),-)
—

IndCoh” (OpZ°™ (D)) —= IndCoh(OpE°™ (X — z)) Vect,

and further, by base change along

Oprélon—free (X _ Q) Sz OprGgon»free (D; )

! !

Ops(X —2) —2—  Opa(D))
as

F(Opc“(_X;z)ﬁ)

IndCoh* (OpE* (D)) — IndCoh* (Opg (DX)) BEN IndCoh(Opgs(X — z)) Vect .

17.4.8. Thus, we need to establish a canonical isomorphism between the functors

F(Opg(i)—z),—)

IndCoh” (Opg (D)) —= IndCoh(Opg (X — z)) Vect

and
CM(X,00p (D) )z
IndCoh™(Ope(Dy)) ~ Oopc.;(g;.)-mod;_aCt org® Vect .

The latter is, however, a general feature of affine D-schemes, as is explained in the next subsection.

17.4.9. Let A be a commutative factorization algebra on X, and let Y := Specy(A) be the corre-
sponding affine D-scheme. Assume that A is locally D-free, i.e., that it is non-canonically isomorphic
to
Symg , (Diffx @ M),
Ox
where M is a vector bundle on X.
For a point £ € Ran, consider the indschemes
Sect(D5,Y) and Sect(X —z,Y)

of horizontal sections of Y over D, and X — z, respectively. Let s, denote the closed embedding

Sect(X — z,Y) < Sect(Dy, Y).
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Note that the functor of global sections
I'(Sect(Dx,Y), —) : IndCoh™ (Sect(D;,Y)) — Vect
enhances naturally to a functor

" (Sect(DJ,Y), —) : IndCoh™ (Sect(D), Y)) — A-mod.

‘We have:
Lemma 17.4.10. The functor

IndCoh™ (Sect(Dy ,Y)) %, IndCoh” (Sect(X —z,Y)) Pt X2 yoet
is canonically isomorphic to
PeRb (Sect(D,Y),~) CP (XA, )
IndCoh”* (Sect(D, Y)) T2 Amodteet AT vy

O[Theorem 17.4.2]

17.5. The twisted case.
17.5.1. Fix a Zg—torsor (PZ% on X, and consider the corresponding D-scheme OPC:,TZ%- Mimicking
Sects. 17.1.1 and 17.2.1 we define the functors

Poincg  : IndCoh!(Opgf’gr,“zf;ee(‘Dx))Ran — QCoh(LS4(X))

G

and

Poincg , : Indcoh*(opg?;:ge(px))Ran — QCoh(LS(X)).

The assertion of Theorem 17.2.4 translates verbatim to the present context.

17.5.2.  We have the following counterpart of Theorem 17.4.2:
Theorem 17.5.3. The functor

Poinc*P°°®1d

IndCoh* (OpE5 (D" ))ran @ Rep(G)ran 3 QCoh(LS(X)) ® Rep(G)ran —
G

Fg’“gyld _ _
— Rep(G)ran ® Rep(G)ran — Vect.

identifies canonically with
* mon-free V ins.unit ® ins.unit
IndCoh"(Opg3 | (D*))Ran ® Rep(G)ran 23"
G

— IndCoh" (Opg% v (D)) Ranc. ® Rep(G)rane —
le]

Pl?c,enh,coarse
N <IndCoh*(Op‘£f’£‘f;ee(Dx))®Rep(G)> CNN

Za Ranc X Ranc

~ Ran =
fact

X oy —
- ce( ,Oopé’?Z%(D), )RangRénRang
— Oop. (0)-MOdRan - x Ranc T D-mod(Ranc x Ranc) —
P20 ~Ran = Ran

G

Cyr(Ranc x Ranc,—)
Ran

Vect,

Ploc,enh,coarse

where is the corresponding coarsened version of the functor (7.31).
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18. SPECTRAL POINCARE AND CONSTANT TERMS FUNCTORS
In this section we introduce the spectral constant term functor
CT™*P*° : IndCohnitp (LS (X)) — IndCohnip (LS 17 (X))
and establish its compatibility with the spectral Poincaré functors
Poincg’:=C : IndCoh!(Oprc';.m"_free(Dx))Ran — IndCohniip (LS (X))
and

Poincj\gic : IndCoh' (O3> (D)) ran — IndCohnitp (LSe (X))

M,pp

This is the spectral counterpart of the compatibility of localization and constant term functors,
studied in Sect. 15. The two pictures will be intertwined by the Langlands functor, see diagram (21.2).

18.1. The spectral constant term functor.

18.1.1. Consider the maps
pelob q&lob
We define the spectral Eisenstein functor
Eis™*P% : IndCoh(LS 7 (X)) — IndCoh(LS& (X))

by

Eis—,spec = (pglob)’k o (qg;lob)ak~
Here, (q#'°)* is well-defined as a functor
IndCoh(LS;; (X)) — IndCoh(LSs- (X)),

since the morphism q&'°" has a finite Tor-amplitude (in fact, it is quasi-smooth).

18.1.2.  We define the spectral constant term functor
CT™*P* : IndCoh (LS5 (X)) — IndCoh(LS ;7 (X))
as the right adjoint of the functor Eis™*P°¢, i.e.,

CT*,spec = (qglob)>'= ° (pglob)!.

18.1.3. It is shown in [AG, Proposition 13.2.6] that the functor Eis™**P* sends

IndCOthlp(LSM(X)) — IndCOhNilp(LSG(X)).

Similarly, it follows from [AG, Theorem 7.1.3] that the functor CT™"°P* also sends
IndCOhNilp(LSG(X)) — IHdCOhNilp(LSM(X)).
Thus, the functors (Eis™ P, CT™"°P°°) form an adjoint pair

IndCOhNilp (LSM (X)) = IndCOhNilp (LSG“ (X))

18.2. The spectral Poincaré vs constant term compatibility.
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18.2.1. The goal of the rest of this section is to prove the following result (cf. Theorem 15.4.2):

Theorem 18.2.2. The following diagram of functors commutes:

IndCohnitp (LS (X)) orom,

spec
PomcG T

IndCohniip (LS 3 (X))

IndCoh (O mon- free(D ))Ran TPOlncEe!c

insAunitl

IndCoh' (Op&°™ T (D* ))ranc L~ IndCoh' (OpE (D)) anc

Pi1,5p

Remark 18.2.3. Note that the counter-clockwise circuit in Theorem 18.2.2 can be rewritten as

IndCoh' (OpZ°™™ (D)) an "= TndCoh' (OpE*™ ™ (D*))anc 28"
=S ! PoincPe¢
M

— IndCoh' (OpE™™ ™ (D*))pan ” —  IndCoh' (Op= T (D*))pan  —
— IndCohnip (LS 37 (X)).

18.2.4. To simplify the notation, we will fix a point z € Ran and replace the source category by
IndCoh!(Opré‘O"'free(Dg)). Thus, we need to establish the commutativity of the diagram

IndCohniip (LS (X)) o, IndCohip (LS 47 (X))
Pomcz)?:]\
(18.1) IndCoh'(Opze™free (D)) [poincites

ins.unit
l
IndCoh' (OpE®™™**(D*))Ran,  C 27 IndCoh! (OPRE* (D) ) Ran, ¢ »
where the functor ins. unit is comprised of the functors
IndCoh'(Opg™™**(Dy)) — IndCoh' (Opg*™"**(D))), zCz’,
given by pull-push along the diagram (17.2).

18.2.5. Fur future reference for z C z’, denote

(18.2) opm"““ee(ﬂX ) := Opg(Dy — ) x LSs(Dy) ~ Ope(Dy — ) x  LSa(Dy).
LS (D), —z) LS (Dg)
Let
Oprpon—free (D X

z;Ran, ¢ )

denote the relative indscheme over Ran,c, whose fiber over z’ € Rangc is Ome“ free(D;I,).
18.3. The clockwise circuit.

18.3.1. We first rewrite the clockwise circuit in (18.1). By definition, it is given by !-pull-*-push along
the diagram

LSP_ (X) —_— LSM(X)

l

Oprgon—free (DQX) Oprgon-free (X _ z) LSG (X)

which by base-change can be rewritten as !-pull-*-push along
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(18.3)
Oprgon»free(X _Q) X LSp— (X) _ LSPf (X) E— LSM(X)
LS (X)
Oprgon-free (‘D; ) Oplélon—free (X _ I)

18.3.2. Recall that MOpg p- denotes the D-scheme of P~ -Miura opers (see Sect. 5.4.4). For a point
y € Ran, consider the indschemes

(MOpgET*)8 := MOpg - (X — y) x  LSp-(X)
LS, (X—y)

and

(MOpE Ay == MOpg p- (D)) x  LSp-(Dy),
LS5 (Dy)

along with their Ran versions
(MOPEZE™ )i and (MOPEE ™ )5,
and

mon-free\glob mon-freeyloc
(MOPG,P* )RanEC and (MOpG,P* )Ranzgt

respectively.
18.3.3. For 2’ € Rangc denote

mon-free\glob | mon-free\glob mon-free
(MOp¢ p=")5.0 = (MOpg p="")%/ X Op¢ (X —2)
== = OprGA:xon—free(XiEI)

and

mon-freeyloc | mon-free\loc mon-free X
(MOPG‘,P* )g;z’ = (M pG‘,P* )z’ X OpG‘ (Dx;x’)7
Opxémn—free(«D ></ ) I
z

where Opré‘on’f‘ee(@:;z,) is as in (18.2).
Let

mon-free\glob mon-free\loc
(MOp¢ p=") and (MOpP& A=) ziRan,

z;Ran, ¢
denote the corresponding Ran versions.
18.3.4. We have a naturally defined map
(18.4) (MOpgp )8, - = Opa®™ ™ (X —z) x LSp-(X).

ZiRangc LS (X)
The key step in establishing the commutativity of (18.1) is the following assertion:

Lemma 18.3.5. The functor given by !-pull-*-push along (18.3) is canonically isomorphic to the
functor given by !-pull-*-push along

(Mopgfgffee)i‘;‘;&nlg — LSp-(X) —— LSy (X)

(18.5) l
Oprgon-free (DQX ) Oprgon—free (X _ g) .
The proof of the lemma will be given in Sect. 18.5.

18.4. Morphing into the anti-clockwise circuit. The rest of the proof will be essentially a diagram
chase.
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18.4.1. 'We rewrite the functor pull-push along (18.5) as pull-push and along

(MOPEEL ) 2han, e+ (MOPEET)aR, . — LSp-(X) — LSy (X)
Oprgon-free (‘D; )7
which we expand as
(MOPEof)dn,  ——— (MOPEEI™ )il ——— LSp (X) —— LSy (X)

!

mon-free\loc
(Mop 3. P )E;Ranig

G,P~
(18.6) l
mon-fr
OpC,'O ee(D;;Ranzg )
Oprémn-free (Dgx )
18.4.2. Since the square
mon-fr lob mon-fr lob
(MOpg =" )z ikan, . — (MODPE T )Ran,
mon-free mon-free
OpG‘ (D;;Rangg ) Opé (‘D;({angg )

is Cartesian, by base change, we rewrite the pull-push along (18.6) as the pull-push alonh

(MOpgE ) gy, . — LSp-(X) — LSy (X)

l

mon-free\loc
(MOPG',;»— )Ranlg

(18.7) l

mon-free mon-free
Op@ (D;;Rangg) Opé (Dﬁangg )

Opgon-free (®£X )

18.4.3. Note that the pull-push along the lower left corner of (18.7) effects the functor of the lower
left vertical arrow in (18.1). Hence, it is enough to compare the resulting two functors with source
IndCoh' (Opg®™ (D, .))-

To simplify the notation we now fix a point ' € Rangc. Thus, we need to show that the pull-push
along

(Mopg?g-:‘ree)ill‘)b = LSI';_ (X) E— LSM(X)

l

(18.8) (MOpgopree)loe

|

Oprgon—free (D;, )
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is canonically isomorphic to the pull-push along
Oprgon-free(X _ g/) LSM (X)

M,pp
(18.9) (MOpgepfree)loe ——  Opiion-free(pX,)

!

Opgon-free ('D;, )

18.4.4. We rewrite the pushforward along the upper row in (18.8) as pushforward along

(MOPEE )% — Op ™™ (X — &) = LS 3 (X).

The desired isomorphism follows now by base change from the fact that the square

- lob -
(Mopg:)g_free)ilo Opr]\r}l]o‘;;ree(x _ Ql)

! |

(Mopgfg—free)lgolc Oprj\ryllo’g—}free(@;/)

is Cartesian.

18.5. Proof of Lemma 18.3.5.

18.5.1. By the projection formula, it is enough to show that the direct image of the dualizing sheaf

along (18.4) is isomorphic to the dualizing sheaf on Opgor"ﬁee(X —z) x LSz (X).
LS (X)

We will show that the map (18.4) is proper with O-contractible fibers.

18.5.2. Consider the fiber product
Bung(X — z) X Bunp- (X)

Bung (X —z)
and its open subspace
gen.trans
(18.10) Zast := ( Bung(X — z) X Bunp- (X)
Bung (X —z)

corresponding to the condition that the B-reduction and the P~ -reduction are transversal at the generic
point of the curve.

We have the obvious forgetful map
Opa™™*(X —z) x LSp-(X)—=Bung(X —z) x  Bunp_(X)

LS (X) Bung (X —z)

whose image lands in Zast.
18.5.3. For x C z’, denote

Zasty, =

trans
Bung (X —z) X (BunB(X —z) X Bunp- (X g’)) X Bunp- (X),

Bun 5 (X —2/) Bung (X —2/) Bunp_ (X—2')
where the suprescript “trans” indicates transversality on all of X — 2’
Let Zastyc be the space over Rangc, whose fiber over 2 is Zasty, .
We have a tautological map
(MOpgfg'_ﬁee)gbb — Zastgc .

z;Rang, ¢
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18.5.4. Restriction defines a map

(18.11) Zastgc — Zast
that fits into a Cartesian square
(MOpgoge)siib., - ——— Zastdc

l !

Opré]on—free (X _ E) X LSP7 (X) —— Zast.
LS (X)

Hence, it is enough to show that the map (18.11) is proper with O-contractible fibers.
18.5.5. The map (18.11) factors as
Zasty — Zast xRangc — Zast,
and we claim that the first arrow is a closed embedding.

Indeed, we can describe Zastg as the subspace of Zast xRangc, consisting of quadruples

. B B ~ P ,
{P5,Pp-, GXPp =G X Pp-|x—z,2'}
corresponding to the closed condition that the isomorphism S is transversal over X — 2’

This implies that the map (18.11) is proper.

18.5.6. Let us now show that the fibers of (18.11) are O-contractible. For a given point

. B B ~ P
{?B,Tpf,G X ?B’ ~ G X ?P, |X—£}
of Zast, let U C X — z be the locus where the isomorphism f is transversal.
Write U = X —y. Then the fiber of (18.11) over the above point identifies with Ran,c. The
O-contractibility assertion follows now from the contractibility of the relative Ran space.
O[Lemma 18.3.5]

19. THE ENHANCED SPECTRAL CONSTANT TERM FUNCTOR

This section is a spectral counterpart of Sect. 16, and it can also be skipped on the first pass, and
returned to when necessary.

We introduce the enhanced recipient category on the spectral side, denoted
IndCohiip (LS 37 (X)) ™",

which is essentially obtained by tensoring IndCohniip (LS 7 (X)) with I(G, P7);2"¢ over Sphif™. Tt
is related to IndCohnilp (LS ;7 (X)) by a pair of adjoint functors

indenn : IndCohyinp (LS 7 (X)) = IndCohninp (LS 7 (X)) ™ : 0blvenn.

We introduce the enhanced spectral constant term functor
CT P . IndCohninp (LS (X)) — IndCohnirp (LS 37 (X)) ™"

so that
CT %P ~ oblvey, o CTSPecenh

We introduce an enhanced spectral Poincaré series functor
Poinc;iipec’e“h : IndCoh' (Opj\“;;jgfee(ﬂx D™ — IndCohnitp (LS 37 (X)) ™,

and establish an enhanced version of the spectral Poincaré-vs-constant term compatibility from the
previous section.
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We also introduce partially enhanced versions of the above constructions. These have a much more
transparent meaning. For example, the corresponding category IndCohniip (LS 5 (X))~ P22 s the
subcategory

IndCOhM7 Nilp (LSpf (X)) Q IndCOhNilp(LSpf (X)),
singled out by a natural singular support condition. The partially enhanced versions will be needed for

the proof of the main result, Theorem 24.1.2.

19.1. The enhanced recipient category on the spectral side.

Lspec

19.1.1. Recall that factorization category I(G, P~)%Pe®!°¢ equipped with an action of Sp o Ran®

Parallel to Sect. 16.1.1, define
IndCohiip (LS 37 (X)) o™ Ren .= [(@, PT)P¢ @  (IndCohniip (LS 17 (X)) ® D-mod(Ran)) .

spec
SphM,Ran

The (monadic) adjunction

. . spec — = 15— \spec,loc
lndsphﬁ% : SphM,Ran — I(G,P ) : OblV%qsph

gives rise to a (monadic) adjunction

(19.1) IndCohyirp (LS ;7 (X)) ® D-mod(Ran) = IndCohyiip (LS i (X)) <" "Ran

19.1.2. Parallel to Sect. 16.1.2, for Z — Ran, define
IndCohniip (LS 17 (X)) ™% == (G, P7)P**'*°  ®  (IndCohniip (LS ;7(X)) ® D-mod(Z)) .

spec
Sehiz o

We have a monadic adjunction
IndCohnilp (LS 17 (X)) ® D-mod(Z) = IndCohyiyp (LS y; (X)) "2
In particular, for a point z € Ran, we have the category
IndCohnip (LS 37 (X)) ",
and a monadic adjunction
IndCohnip (LS 37 (X)) = IndCohnip (LS 37 (X)) ™=,

19.1.3. Parallel to Sect. 16.1.3, we define the category IndCohiip (LS 57 (X)) ~°"" to be the fiber prod-
uct

IndCohniip (LS 57 (X)) 7" Ran x IndCohniip (LS 37 (X)).
IndCohnip (LS 37 (X)) ®D-mod(Ran)

The (monadic) adjunction (19.1) gives rise to a monadic adjunction
(19.2) indenn : IndCohip (LS 7 (X)) = IndCohitp (LS 7 (X)) ™ : 0blvenn.
19.1.4. Recall the associative (factorization) algebra Q% ¢ Sphi®, see Sect. 2.4.4. Consider the
corresponding associative algebra object

Q;paerf € Sphj\g?lclan :

Parallel to Sect. 16.1.5, we can identify
(19.3) IndCohnip (LS 17 (X)) 7™ ~ QiP*“-mod(IndCohnitp (LS 7 (X))),
so that the adjunction (19.2) becomes

indg.pe. : IndCohnirp (LS 7 (X)) = Q52 -mod (IndCohniip (LS 37 (X)) : 0blvgepee-
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19.1.5. Parallel to Remark 16.1.6, we have the following alternative description of the category
IndCohniip (LS (X)) 772

Consider the prestack

LSG(X) X LSP* (X))dR,
(LS5 (X))ar

and the category
I(G, p—)spec,glob .—

— IndCoh 7y, (LS p- (X)) x (IndCoh (LSG(X) x  (LSp- (X))dR)> ,
IndCoh(LS p_ (X)) (LS (X))ar
where:
[ ]
IndCoh(LSG(X) x (LS p,(X))dR) — IndCoh(LS 5 (X))
(LS (X))dr
is the functor of pullback along
LSp-(X) = LSa(X)  x  (LSp-(X))ar;
(LS&(X))ar
[ ]
(19.4) IndCothNilp(LSpf (X)) € IndCoh(LSp- (X))

is the full subcategory generated by the essential image of IndCohniip(LS,;(X)) along the
pullback functor

(q¥'°")* : IndCoh(LS ;7(X)) — IndCoh(LS p— (X)).
We have the following result, which is a particular case of [Roz, Theorem 4.6.6]:
Theorem 19.1.6. There exists a canonical equivalence
(19.5) IndCohnip (LS 37 (X)) ™" ~ [(G, P~ )Pew8lob,
Under this equivalence, the forgetful functor
0blvenn : IndCohyinp (LS 57 (X)) ™ — IndCohiip (LS 57 (X))

corresponds to the functor
SR glob
(19.6) (G, P7)™°#°" — IndCoh ;i (LS p— (X)) T IndCohitp (LS 7 (X)).

Remark 19.1.7. Since the morphism q&"°" : LS 5— (X) — LS,7(X) is co-affine, one can characterize the
above subcategory (19.4) by a singular support condition. Namely, it consists of objects whose singular
support belongs to

Sing(LS y; (X)) s ?<(X) LSp- (X) C Sing(LSp- (X)).

19.2. Partial enhancement. Consider the functor (19.6). We will now describe the corresponding
factorization of the functor oblvenn on the other side of the equivalence (19.5).

19.2.1.  Set

IndCohnilp (LS 57 (X)) Pt Ran . — (Rep(P)Ran ®  IndCohniip (LS 7 (X)) ®D-m0d(Ran)>
Rep(M)Ran
and

(19.7)  IndCohnip (LS 37 (X))~ P¥et .=

= IndCohniip (LS 37 (X))~ Part-enhran X IndCohniip (LS 17 (X)).
IndCohnjjp (LS 37 (X)) ®D-mod(Ran)
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Let
(19.8) indpari.enn : IndCohnip (LS 37 (X)) = IndCohni (LS 37 (X)) 7 P* ™™ - 0blvpart.enn

denote the corresponding (monadic) adjunction.

19.2.2. The following is an elementary particular case of Theorem 19.1.6:
Proposition 19.2.3. There exists a canonical equivalence
IndCohninp (LS 7 (X)) ~P*"" o IndCoh (LS p— (X))

Under this equivalence, the forgetful functor oblvpart.enh corresponds to the functor q8l°P.

19.2.4. Proof of Proposition 19.2.8. Recall the commutative (factorization) algebra Q°°°° € Rep(M),
see Sect. 2.5.2. Let

QP € Rep(M)ran

be the corresponding (commutative) algebra object.

As in Sect. 19.1.4, we can identify
(19.9) IndCohiyp (LS 17 (X)) P4 ~ Q3P“_mod (IndCohnitp (LS 7 (X)),
where Rep(M )Ran acts on IndCohyip (LS 7 (X)) via

nv : Rep(M)Ran — SPhi fan -
Under the equivalence (19.9), the adjunction (19.8) corresponds to
indgspee : IndCohnilp (LS 37 (X)) 2 Qins-mod(IndCohnilp (LS 17 (X))) : oblvaspec.
A version of Lemma 17.4.10 for co-affine morphisms (the morphism in question is q : LSp- — LS;;)

shows that the monad on the category IndCohniip (LS ;7(X)), defined by the action of Qfpes identifies
with the one given by the action of

4+ (Ors,,_ (x)) € QCoh(LS y (X)).

This makes the assertion of Proposition 19.2.3 manifest.
O[Proposition 19.2.3 |

19.2.5. Note that the forgetful functor
Oblv%HSph : I(G, Pf)SPerICC N Sphj\gec
factors as

I(G, pf)spec,loc N Rep(pf) ® Sphj\gec C'(“(P__):)—)®Id Rep(M) ® Sphj\gec _ Sphj\gec .
Rep(M) Rep(M)

Indeed, this follows from interpreting I(G, P~)sPe¢1°¢ a5 ﬁsPec-mod(SphM), using the homomorphism
nV(QSpeC) N ﬁspec

and the identification
Q*°_mod(Rep(M)) ~ Rep(P").

The above factorization allows us to factor the functor oblvenn as

19.10)  IndCohniry (LS 5 (X)) —eh 2Rt
P M

—5 IndCohitp (LS gy (X)) 7Pt “PNESE™ 11 4Cohy (LS i (X))
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19.2.6. One can view the factorization (19.10) in terms of the identifications (19.3) and (19.9) as

oblvzspec spec
2Ran *Ran

QP mod (IndCohniip (LS 37 (X)))
oblv _spec

— QP mod(IndCohnitp (LS 7 (X))  —*" IndCohnip (LS 37 (X)).

Remark 19.2.7. One can show that the factorization (19.10) indeed corresponds under the equivalence
(19.5) to the given factorization of the functor (19.6).

19.3. The enhanced spectral constant term functor. In this subsection we will upgrade the
spectral constant term functor

CT % .= q&°P 6 (p&"°?)',  IndCohnilp (LS (X)) — IndCohnirp (LS 7 (X))
to a functor
CT*Pe™™ . IndCohpitp (LS (X)) — IndCohnip (LS 57 (X)) ™"
so that
CT P ~ oblven, o CT SPeeent
19.3.1. To simplify the notation, we will fix a point z € Ran and describe the corresponding functor
(19.11) CT*Pe e 1ndCohnip (LS (X)) — IndCohnip (LS yy (X)) o™=,

By duality, the datum of a functor (19.11) is equivalent to that of a Sph’>*"-linear functor

(19.12) (G, P7)eol¢ @ TndCohnin (LS (X)) — IndCohni (LS 37 (X)),

where
I(G, P7)%e'°¢ ;= IndCoh' (HeckesGPj;’_loc)’

see (2.8).
19.3.2.  Set
Hecke*o#'" := LS5 (X) x  LSp (X —z) x  LSy(X).
s ST LS (X—z) LSy (X —z)
It is equipped with the maps
hepee nepes
LSa(X) % Hecke " & LS (X),

and also with a map
spec spec,glob spec,loc
5 : Heckeé’[y& — HeckeG’Pf’z,
given by restriction along D, — X.
The functor
%spec specy! ! <;spec !
(h@)p—)* (s°%) (_)®(h@,p—) (=)
defines the sought-for functor (19.12).
19.3.3. Denote
CT—,spec,part.enh = (full N part) ° CT—,spec,enh’

which is a functor
IndCohniip (LS (X)) — IndCohniip (LS 57 (X))—,part.enh‘

Unwinding the constructions we obtain:
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Lemma 19.3.4. The functor CTSPecPartenh  oonrosnonds under the identification of Proposi-
tion 19.2.83 to the composition

(

loby!
IndCOhNilp(LSG(X)) — IndCOh(LSG“(X)) Pg—)) IndCOh(LSp_ (X)) —» IndCOhM—Nilp (LSp- (X)),

where the last arrow is the right adjoint to the tautological embedding
IndCohy; ), (LSp- (X)) < IndCoh(LSp- (X)).

Remark 19.3.5. The functor CT~>%P¢%°"h has a natural description on the other side of the equivalence
of (19.5). Namely, the corresponding functor

IndCohninp (LS (X)) — I(G, P~ )Pecslob

is the composition of:

e The embedding IndCohniip(LSx (X)) < IndCoh(LSx(X));

e The pullback functor along LSx(X) X LSp- (X))ar — LS&(X);
(LS (X))ar
e The right adjoint of the tautological embedding

IndCOthNilp(LSp_ (X)) X (IHdCOh(LS@(X) X (LSP_ (X))dR)> —
IndCoh (LS 5 (X)) (LS (X))ar
— IndCoh(LS&(X) X (LSp-(X))ar)-
(LS (X))dr

19.4. The enhanced spectral Poincaré series functor. The material in this subsection is parallel
to that of Sect. 16.3.

19.4.1. Fix a point € Ran. The spectral Poincaré series functor

Poinc}2 IndCoh' (OpE™¢(DX)) — IndCohniip (LS 37 (X))

M., M,pp
is compatible with the action of Sphif ™.

Hence, it induces a functor

Poinc ;""" : IndCoh' (Opi**(D)) ™ — IndCohnirp (LS y (X)) ™",

M,
where IndCoh!(Op"l\}[‘);fee(Dg))f‘e"h is as in Sect. 5.7.7.

. . _—,spec,enh . . . .
The functors Poinc}’’ and Poinc = are compatible with the adjunctions

IndColy' (Opfy,7** (D)) = IndCol'(Opf5,** (D)) ™

and
IndCohniip (LS 37 (X)) = IndCohnip (LS 37 (X)) "=,

19.4.2. Making the point z vary along Ran, we obtain a functor

Poinc 7" en : IndCoh' (Opjy 5™ (D)) 7™ — IndCohnip (LS 57 (X)) ~"Ren.

M,

More generally, for Z — Ran, we obtain a functor

Poinc *P°“*™% : IndCoh' (Opjy s (D)) 7™ — IndCohnilp (LS 7 (X)) ™=

M,! M, pp
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19.4.3. Consider the space Ranc, viewed as mapping to Ran by means of pry,;,. Consider the functor

. - ,spec,enthanC
PolncM,! =

(19.13)  IndCoh'(Opjy ™™ (D)) g™ ™=5" IndCoh' (Opj s (D)) it

Id @ (pPryig) «
—

— IndCohnip (LS y7 (X)) " Ranc IndCohuirp (LS 7 (X)) e man.

The following assertion results from the isomorphism (13.17):
Lemma 19.4.4. The functor (19.13) takes values in
IndCohnip (LS 37 (X)) ™" € IndCohniip (LS y; (X)) " PRan,
19.4.5. Thanks to Lemma 19.4.4 we obtain a well-defined functor, to be denoted
(19.14) Poinc,;"P**™ : IndCoh' (Op3; 52" (D)) o™ — TndCohitp (LS 7 (X)) ™.

For a space Z mapping to Ran, we will denote by the sam symbol Poinc-*P°*“*™ the resulting

M,!
functor

IndCoh'(Op3s (D)) 2 ™" — IndCohinp (LS 7 (X)) ",
cf. Sect. 16.3.6.

19.5. The enhanced spectral Poincaré vs constant term compatibility.

19.5.1. The following assertion is an enhanced version of Theorem 18.2.2:

Theorem 19.5.2. The following diagram of functors commutes:

CT—-spec,enh

IndCOhNilp (LSG(X)) IndCOhNilp(LSM(X))*’enh
Poincg”e!c/[
IndCoh' (()}D'C]%mn"ﬁee(DX ))Ran TPoinc;f’ipec’e“h

ins.unitl
J— ,spec,!,enh

IndCoh' (OpE*™**(D*))ranc ~———— IndCoh'(Op}s (D)) i

We omit the proof, as it is obtained by tracing the same sequence of diagrams as that of Theo-
rem 18.2.2.

Remark 19.5.3. Note that the counter-clockwise circuit in Theorem 19.5.2 can we also written as

IndCoh! (Oprgon»free(D X ))Ran inw‘)it Indcoh! (Oprgon-free (D X ))Rang (Prbj)*

. —,spec,enh
I dC h! O mon-free DX J_‘Spcc’!’cnhl dC h! O mon-free ®>< —,enh PomcM’!p
— IndCoh’(Opg; (D" ))Ran = —  IndCoh' (Opjyy,;, (D" ))rin —

— IndCohnip (LS i (X)) ",
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Part IV. Applications to the Langlands functor

In this Part we will assemble the ingredients developed in Parts I-IIT and study the global Langlands
functor
Le : D—mod% (Bung) — IndCohniip (LS (X)).

The geometric Langlands conjecture (Conjecture 20.3.8) says that Lg is an equivalence.

In this part:
e We wecall the construction of Lg along with its defining property, which is the compatibility
with the functors
coeff : D-mod 1 (Bung) — Whit' (G)ran and TP : IndCohniip (LS (X)) — Rep(G)Ran-
e We recall also the compatibility?® of Lg with the Fisenstein series functors

Eis P

D-mod y (Buny) o D-mod 3 (Bung) and TndCohyirp (LS (X)) =" IndCohitp (LS (X))-

e We prove that L satisfies another local-to-global compatibility, namely, with the functors

. spec
Poinc®?

KL(G)crit,Ran Locg D-mod (Bung) and IndCoh(OpZ°™™¢(D*))  —5"" IndCohip(LSs(X)).

e We state and prove the central result of this Part, Theorem 21.2.2 (along with its enhanced
version, Theorem 22.2.4), which establish the compatibility of the Langlands functor with the
geometric and spectral constant term functors.

As an application, we show that Lg admits a left adjoint, and we relate this left adjoint to the
functor dual to Lg.

We show that the composition Lg o L%, viewed as an endofunctor of IndCohyip (LS (X)), is given
by tensoring by an (associative algebra object)

Ac € QCoh(LSx(X)).
We show that the geometric Langlands conjecture reduces to the assertion that the unit map
OLs,(x) = Ac

is an isomorphism.

20. THE LANGLANDS FUNCTOR

In this section we recall the construction of the Langlands functor in carry out the first three bullet
points described above. Here is what is used in each of them:

e The construction of Lg uses the geometric Casselman-Shalika formula (Theorem 1.4.2), the
spectral action, i.e., the assertion that the Hecke action of Rep(G)ran on D-mod 1 (Bung) factors
through an action of QCoh(LSx (X)), and a cohomological estimate from [GR1].

e The compatibility with the Eisenstein functors uses the compatibility of local Jacquet functors
with the equivalence FLE4 ,, given by (2.31);

e The compatibility with Locg and Poinc® uses Theorems 14.2.3 and 17.4.2, as well as the

G,
compatibility between FLEG,crit and FLEg ., expressed by Corollary 7.5.8.

20.1. Recollections on the Langlands functor—the coarse version. In this and the next subsec-
tions we recall the construction of the Langlands functor

(20.1) L¢ : D—mod% (Bung) — IndCohniip (LS (X)).

23This compatibility is actually an ingredient in showing that Lg is well-defined.
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20.1.1. Recall that the functor

(20.2) Loc* : Rep(G)ran — QCoh(LS¢(X))

is naturally (symmetric) monoidal, and is a localization (i.e., it admits a fully faithful right adjoint).
The following is a key feature of the Hecke action (see [Gail, Corollary 4.5.5]):

Theorem 20.1.2. The action of Rep(C;')Ran on D—mod; (Bung) obtained via

—1 ,nv

Rep(é)Ran = Sphg Ran
factors through (20.2).

20.1.3. Thanks to Theorem 20.1.2, we have a canonically defined action of QCoh(LSx(X)) o
D-mod 1 (Bung). In particular, a choice of an object in D-mod 1 (Bung) defines a QCoh(LSx(X))- hnear

functor QCoh(LSx (X)) — D-mod% (Bung).
We define the functor
(20.3) L& temp : QCoh(LS (X)) — D-mod; (Bung).
to correspond to the object
(20.4) Pomc\G/a,c’glob € D-mod (Bung),

see Sect. 12.5.4.

20.1.4. By construction, the functor ]Létemp makes the following diagram commute:

cs;t <
Whit'(Grg,ran) «———  Rep(G)Rran

(20.5) Poincc,z[—zaNp(wX)ll lLocj;ec
D-mod (Bunc) Loomp. QCoh(LS(X)).

20.1.5. Note that the counter-clockwise circuit in (20.5) commutes with the actions.

Satg

(20.6) SPhg pan = SPEST .

Since the right vertical arrow in (20.5) also has this property and is a localization, we obtain that
the functor L yemp also commutes with the actions of (20.6).

This implies, in particular, that the essential image of Lé,temp lands in the full subcategory
(20.7) D—mod% (Bung)temp C D—mod% (Bung)

(see [FR2] for the definition of this subcategory).

20.1.6. Since the object (20.4) is compact, the functor ]Lé’temp preserves compactness. Hence, it
admits a QCoh(LSx(X))-linear (automatically continuous) right adjoint, to be denoted

(20.8) L, coarse : D—mod% (Bung) — QCoh(LSx(X)).
It follows from Sect. 20.1.5 that the functor Lg coarse factors as

(20.9) D-mod s (Bung) — D-mody (Bung)emp 5" QCoh(LS¢ (X)),
where the first arrow is the right adjoint to the embedding (20.7).

20.1.7. It follows by rigidity that the functor L, coarse also respects the actions of (20.6).
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20.1.8. Passing to the right adjoints in (20.5), we obtain that the functor Lg,coarse makes the following
diagram commute:

Whit' (Grg Ran) e, Rep(G)ran
(2010) COEEG[26Np(wX)]T Tl"scpec

D-mod ; (Bung) ~2"™ QCoh(LS¢(X)).
20.2. The case G =T.

20.2.1. Let G =T be a torus. Consider the Fourier-Mukai equivalence
FM : QCoh(Bunr) — QCoh(Buny),
given by the Poincaré line bundle
Lpoine € QCoh(Bunr x Buny),

as a kernel, where Lpoinc, viewed as a map Bunr x Buny — BG,, is given by the Weil pairing.

20.2.2. It is known that FM can be enhanced to an equivalence
FM™ : D-mod(Bunr) — QCoh(LS4(X)),

that makes the following diagram commute:

D-mod(Bunz) “M™" QCoh(LSs(X))
QCoh(Bunr) SERLEN QCoh(Buny),

where:

e The functor D-mod(Bunr) — D-mod(Bunr) is oblv”, the forgetful functor for “right” D-
modules;

e The functor QCoh(LS4#(X)) — QCoh(Buny) is direct image along the projection
LS#(X) — Bung .

20.2.3. Unwinding the definitions, we obtain that the functor Ly := L7 coarse identifies with
FM®™" o7,

where 77 is the Cartan involution, i.e., the inversion automorphism, of 7'

20.2.4. Let Pr be a point of Bunr, and let £, be the line bundle on Buny, obtained by Weil pairing
with Pr. By a slight abuse of notation, we will denote by the same character Ly, its pullback to
LS#(X).

We obtain that the following diagram commutes
D-mod(Buny) —Z%— QCoh(LS#(X))
(transl-yT)*T T7®L(§;l

D-mod(Bunr) —Z%— QCoh(LS;(X)).
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20.2.5. Similarly, let o be a T-local system. Let F, be the corresponding character sheaf on Buny.
Then the diagram

D-mod(Buny) —Z— QCoh(LS#(X))

7®3'5T Ttransla

D-mod(Buny) —=%— QCoh(LS4(X)).
commutes.

20.3. The actual Langlands functor.
20.3.1. We now quote the following result established in [GR1]:

Theorem 20.3.2. The functor Lg coarse Sends compact objects of D—mod% (Bung) to objects of
QCoh(LS&(X))” ™ (i.e., objects cohomologically bounded below).
20.3.3. Consider the tautological embedding
EO,Nilp : QCOh(LS(;(X)) — IndCOhNilp(LSG-(X)),
and its right adjoint
(Zo i)™ : IndCohnitp (LS (X)) — QCoh(LSg(X)).
According to [AG, Proposition 4.4.5], the functor (Eg nip)” is t-exact and induces an equivalence

(20.11) IndCohniip (LS5 (X))” ™% — QCoh(LSx (X))~ .
Hence, using Theorem 20.3.2, we obtain that the functor
D-mod% (Bung)® LG,z)arse QCoh(LSs(X))” ™
can be uniquely lifted to a functor, to be denoted
(20.12) D-mod  (Bung)® =§ IndCohiip (LS¢(X))” ™.

20.3.4. Finally, we define the sought-for functor (20.1) to be the (unique) extension of (20.12) to a
continuous functor
D—mod% (Bung) — IndCOhNilp(LS@(X)).

20.3.5. Since the compact generators of (20.6) act on QCoh(LSx(X)) by cohomologically bounded
functors, from Sect. 20.1.7 we obtain that the functor L¢ is compatible with the actions of (20.6) on
the two sides.

Combining with Theorem 20.1.2, we obtain that the functor Lg is QCoh(LSx(X))-linear.

20.3.6. By construction, the composition

(Zo,Ni1p) B

D-mod ; (Bung) = IndCohni(LS¢(X)) %" QCoh(LS4(X))
is the functor Lg coarse-

Hence, the functor Lg makes the diagram
CS¢g

Whit! (Gre,ran) ——o— Rep(G)Rran
(2013) coeffg[QéNp(uX)]T Tr‘g’ec
D-mod; (Bun) —~% , IndCohnip(LSg (X))

commute, where by a slight abuse of notation, we denote by the same symbol I'Y** the composition

spec

= S )R - .
IndCohnip (LS (X)) %)™ QCoh(LSs (X)) 4= Rep(()ran-
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20.3.7. The following is the statement of the categorical (global, unramified) geometric Langlands
conjecture in the de Rham context:
Conjecture 20.3.8. The functor
Le : D-mod% (Bung) — IndCohniip (LS (X))
is an equivalence.
The goal of the present sequence of papers is to prove this conjecture.

Remark 20.3.9. From diagram (20.10), we obtain a diagram

CSe .

(20.14) Whit' (Grg,ran) Rep(G)ran
Poincg ) [_26Np(wx ) ] Locscu?eC
LG, coarse
D-mod; (Bung) —— %% . QCoh(LSg(X)).

One can show that the assertion that Ls is an equivalence is logically equivalent to the assertion
that the natural transformation in (20.14) is an isomorphism.

20.4. The Langlands functor and Eisenstein series.

20.4.1. Let Eis; : D-mod(Bunys) — D-mod(Bung) be the functor left adjoint to CT . Ie., it s given
by *-pull and !-push along the diagram (15.2), combined with the cohomological shift to the left by
dim. rel(Bunp- /Bunas) over a given connected component of Bunjy.

The functor Eis; is rigged so that it is the left adjoint of the functor CT of (15.1).

20.4.2. Let
Eis; , (wy) : D-mod(Bunas) — D-mod Bunc)

be the functor equal to the composition of

e Over a connected component of Bunjs of degree A, the cohomological shift to the left by the
amount

6N(P7)pp(wx) + <>‘7 2pvP>’
e Pushforward along the translation map

(pp(wx) - —) : D-mod(Bunys) — D-mod(Bunyy);

e The functor of !-pullback along Bunp- — Bunjys;

e The functor of !-pushforward along Bunp- — Bung.

The functor Eis, .,  is rigged to be the left adjoint of the functor CT of (15.3).

*pp(wx)

20.4.3. Using the identifications of the corresponding Z/2Z-gerbes in Sect. 15.2.7, we define the func-
tors
Eis;, wy) D-mod% (Bunas) — D-mod% (Bung)

and
Eis, : D—mod% (Bunas) — D—mod% (Bung),

which are the left adjoints of the functors (15.6) and (15.7), respectively.
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20.4.4. We claim:

Theorem 20.4.5. There exists a canonical datum of commutativity for the diagram

D-mod; (Bunar) —2— IndCohiry (LS (X))

(2015) Eisfpp(wx)[6N(P7)pp(wx)]l JﬁEisf’Spec

D-mod; (Bung) —%— IndCohxirp(LS¢ (X))

The rest of this subsection, and the next one, are devoted to the proof of Theorem 20.4.5.

20.4.6. It is enough to show that the two circuits in Theorem 20.4.5 are isomorphic as functors out of
D—mod% (Bunas)©.

First, we claim that both functors in question send D-mod 1 (Bunaz)© to bounded below objects in

IndCohnip (LS (X)).

For the counter-clockwise circuit, this follows from the fact that (a) the functor Eis () Preserves
compactness (being a left adjoint), and (b) Theorem 20.3.2 (for G).

For the clockwise circuit this follows from (a’) Theorem 20.3.2 (for M), and (b’) the fact that the
functor Eis™*P°¢ is of bounded cohomological amplitude.

20.4.7. Hence, using the equivalence (20.11), it suffices to establish the commutativity of the following
diagram

L, coarse

D-mod% (Buny) ——— QCoh(LS; (X))
(2016) Eis:pp(wx) [6N(P7)PP(WX)]J, lEiS&)’:rpseec

LG, coarse

D-mod% (Bung) ——— QCoh(LSx(X)),
where

Eisoibe == p2°® 0 (¢¥°")", QCoh(LSy; (X)) — QCoh(LS(X)).

20.4.8. Combining with (20.10), since the functor I'Y** is fully faithful, we obtain that it suffices to
establish the commutativity of the next diagram

Whit' (G ran —%%  Rep(G)ran

coeff ¢ [26Np(wx ) ]T Trgec
(20.17) D—mod% (Bung) QCoh(LSx (X))
Eis;pP(wx)[5N(P_)pP(wX)]T TEiSc_o'asgcec

D-mod ; (Buny) DM conrse, QCoh(LS i (X)).

20.4.9. By duality, the commutativity of (20.17) is equivalent to the commutativity of the following
diagram
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(20.18)

(FLE(';’OO)71 ®]LM,coarse

Whit. (G)ran ® D-mod (Bunas) Rep(G)ran ® QCoh(LS y; (X))

Poincg « ® EiS:PP(WX) Jr[éN(Pi)PP(WX) +25Np(wx >] lLocSGPec ® Bis_Spee
D-mod (Bung)co ® D-mod (Bung) QCoh(LSx (X)) ® QCoh(LSx (X))
rdR(BunG,—é—)l lr(Lsé(X),—é—)
Vect LN Vect .

We will give a local-to-global expression to the composite vertical arrows in (20.18), and will show
that they match under the functor (FLE4 ) ™' ® Ly

20.5. The commutativity of (20.18).
20.5.1. First, we will show that the right vertical arrow in (20.18) identifies with the composition

Locj\gec ®1d

(20.19)  Rep(@)ran ® QCoh(LS 17 (X)) & 5791 Ren (W) Ran ® QCoh(LS (X)) My

(LS 7 (X),—&—
M

.+ QCoh(LS (X)) ® QCoh(LS (X)) ) Vect .

Note that since the functor
C (n(P7),—) : Rep(G) — Rep(M)
is unital as a functor between factorization categories, we can rewrite (20.19) as

(20.20)  Rep(G)ran ® QCOh(LS 57 (X)) ™42 Rep(()ranc ® QCoh(LS (X)) & "7 %M

spec

— Rep(M)Rranc ® QCoh(LS (X)) M7 QCoh(LS (X)) ® QCoh(LS (X)) —

F(LSM@{H%F) Vect

20.5.2. Next we note that the functor Eis_gSPeC is the dual of the functor?*

CTohes = q¥% o (p¥°")",  QUoh(LS¢(X)) — QCoh(LS  (X)).

Hence, the right vertical composition in (20.18) can be rewritten as

LocSPee CT:5PeC @ 1d

(2021)  Rep(G)ran ® QCoh(LSy (X)) S QUOh(LS (X)) ® QCOh(LS 57 (X)) “Te5

D(LS 5 (X),—@—
—

— QCoh(LS (X)) ® QCoh(LS y; (X)) ) Vect .

20.5.3. Hence, we obtain that it suffices to establish the isomorphism of the following diagram

—,spec
QCoh(LSs(X)) eonre, QCoh(LS ; (X))
LocscpCc T TLOCj\SCC
> ins.unit X C.(“(Pi)v*) >

Rep(G)Ran ——— Rep(G)ranc ————— Rep(M)ranc-

However, this follows from (the parametrized version of) Lemma 17.4.10, applied to the co-affine
morphism
—spec,

24Wza,rning: the functor CT_ SR is not simply the coarsened version of CT ; two differ by a tensor product

by a graded line bundle, see (24.16).
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20.5.4. The next assertion follows from the standard Zastava space calculation:
Lemma 20.5.5. The composite left vertical arrow in (20.18) identifies with

(20.22)  Whit.(G)ran ® D-mod (Bunar) 7291 Whit, (M) ran D-mod (Bunas) —

Poinc g .« ®Id[26N(M> w ] unpys,— : —
N2 ICE DR D-mod% (Bunas)eo ® D—mod% (Bunay) Tar(Buna,~®-) Vect,

where J7°* is the factorization functor from (2.30).

20.5.6. Thus, we obtain that in order to establish the commutativity of (20.18), we need to establish
the commutativity of

(FLEG“,OO)_1®]LM,coarse

Whit.(G)ran ® D-mod 3 (Bunar) Rep(G)ran ® QCoh(LS (X))

J"*®Idl lC'(n(f"),—)@d
Whit. (M)ran ® D-mod; (Buny) Rep(M)ran ® QCoh(LS 7 (X))
lpomcc,* ® 12N, (] lLocj\;ec ®1d
D-mod; (Bunar)co @ D-mod (Bunas) QCoh(LS ;7 (X)) ® QCoh(LS 7 (X))
rdR<BunM,—é—>l lmLs@(x»—é—)
Vect LN Vect .

However, this follows from (2.31) and the commutative diagram

(FLEM,OO)_I(X)H‘M,COarSe .

Rep(M)ran @ QCoh(LS y; (X))

Whit. (M)ran ® D—mod% (Bunu)

pm(wx)
D-mod (Bunas)eo ® D-mod (Bunays) QCoh(LS; (X)) ® QCoh(LS (X))
e | | s, 60
Vect e Vect,

which is equivalent to the M-version of the commutative diagram (20.10).

Remark 20.5.7. The proof of Theorem 20.4.5 can be summarized by the following cube (in which the
arrows are marked up to cohomological shifts and tensor products by constant lines):
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(20.23)
! CSa =
Whit' (G)ran Rep(G)ran
M

Cs -«

Whit' (M )gan M Rep(M )ran
coeff FSGPQC
coeff jr F?Zec
L,
D‘mOd% (BunG) ¢ IndCOhNilp(LSG(X))

D—mod% (Buna)

IndCohiip (LS y (X)).

Ly

The assertion of Theorem 20.4.5 is that the bottom lid of this cube commutes, We have deduced
this by showing that the remaining five faces of (20.23) commute.

20.6. Compatibility of the the Langlands functor with critical localization.

20.6.1. The following theorem expresses the compatibility of the Langlands functor with critical lo-
calization:

Theorem 20.6.2. The diagram

D-mod (Bung) —<— IndCohiip (LS (X))
1 . _spec
Locg ®‘2’2I\/p(wx) ®[%;(LX) [—6Np(wX)]T TPomcCs*
FLEG cri
KL(G)crit,Ran #) IndCoh* (Opgon-froc(nDX ))Ran

1
commutes, where the lines [gZN } and [%_(1 are as in (12.9) and (14.2), respectively.
o(wx plwx

) )

In a completely similar fashion, we have the following twisted version of Theorem 20.6.2:

Theorem 20.6.3. Let P,o be a Zg—tomor on X. Then The diagram
G

D-mod; (Bung) Lo, IndCohniip (LS¢ (X))

®% _ . spec
L 22 ®-1 -5 Poinc’}
ocG ® G’Nﬂ(wx)® Nﬂ(Wx)[ No(wx)] o

KL(G)crit—dlog(i}’Zq ),Ran IHdCOh* (Oprél?jrvl_zf;ee (® % ))Ran
G G

FLEG,critfdlog(’J’ZO )
el
commutes.

The rest of the subsection is devoted to the proof of Theorem 20.6.2.
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20.6.4. First, we observe that since the action of Sphg g,, on KL(G)crit,ran factors through the
tempered quotient, the essential image of the functor Locg lands in

D—mod% (BunG)temp C D—mod% (Bunc).

Hence, taking into account Proposition 17.1.4 and Theorem 17.2.4, we obtain that the commutativity
of the diagram in (20.6.2) is equivalent to the commutativity of the following one:

D-mod s (Bung)remp 2" QCoh(LS4(X))
T TPoincgjye:
FLEG cri
KL(G)crit,Ran <% IndCoh* (Oprcgon_free(@x ))Ran,

and further equivalent to

D—mod% (Bung) LGucoarse, QCoh(LS¢ (X))
(20.24) Tpoim?‘i‘f
KL(G)erit,Ran TEEG erit, 1hdCoh* (Op’é‘on‘free(ﬂ *))Ran-

20.6.5. Since the right vertical arrow in (20.10) is fully fully faithful, it suffices to show that the two
circuits in (20.24) become isomorphic after composing with the functor T2

Since the diagram (20.10) is commutative, we obtain that it suffices to establish the commutativity
of the diagram
CSqg =

Whit' (G)ran ~ ——2 Rep(G)Rran
coeff [26Np(wx)]]\ Tr‘g’ec
D—mod% (Bung) QCoh(LS¢ (X))
®1 ®— oincPe¢
Locg ®[G’2Np(wx)®[Nﬂ(11x) [_6Np(wx)]T TP G,
FLEG cri
KL(G)erit,Ran — S TndCoh* (Op‘élon'free (D))ran,

or which is the same

Whit' (G)ran ~ —— % Rep(G)an
coeHGT Tl—‘sgec
(20.25) D-mod (Bung) QCoh(LSg (X))
1 . spec
hoca ®[g21\’p<wx) B T[SN”(“X)] TPOIBC‘;*
FLEG cri
KL(G)crit,Ran #) IndCoh* (Opyélon—frcc(rDX ))Ran,

20.6.6. Applying duality, we obtain that it suffices to show that the pairing

(20.26)  KL(G)eri.ran @ Whits (G)ran S5 D-mod (Bung) ® Whit.(G)ran coeffe ®1d
(o5 I~ N, ]
! Nop(w w (wx)
— Whit' (G)ran ® Whit. (G)ran — Vect plox) _TRlex) T TRk

agrees under the FLE equivalences

FLEG, crit * mon-free X X FLEG’N
KL(@)erit,ran =~  IndCoh™(Opg (D*))Ran and Rep(G)ran =~  Whit.(Grg)
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with

Poincg’T@Id

(20.27)  IndCoh*(OpZ°™™*°(D*))ran ® Rep(G)ran  —3  QCoh(LSx(X)) ® Rep(G)ran —

reeeld . .
i R’ep(G)Ran ® Rep(G)Ran — Vect .

20.6.7. By Theorem 14.2.3, the functor (20.26) identifies canonically with (14.4). By Theorem 17.4.2,
the functor (20.27) identifies canonically with (17.14).

The desired assertion follows now from Corollary 7.5.8.
O[Theorem 20.6.2]

21. COMPATIBILITY OF THE LANGLANDS FUNCTOR WITH CONSTANT TERMS

In this section we will establish one of the main results of this paper, which says that the Langlands
functor admits a compatibility isomorphism with the constant term functors. I.e., we will establish the
commutativity of the diagram

D-mod  (Bunas) —2— TndCohyip(LS (X))
(21.1) CT:,PP(“’X)[_5N(P7)pp(wx)]‘[ TCT_’SPSC

D-mod (Bung) —%— IndCohnip(LSg(X))

The proof is based on the local-to-global approach, namely, we will deduce the global compatibility
from the local one, given by Theorem 9.1.3, i.e., the compatibility of the critical FLE with local Jacquet
functors.

A caveat in the proof is that the functor
Locg : KL(G)crit,Ran — D-mod% (Bung)

is not a quotient (it is not even essentially surjective). However, we will show that KL(G)crit,Ran
“dominates” D-mod 1 (Bung) enough, so that we can draw the global compatibility from the local one.

21.1. The cube.

21.1.1. Consider the 1-skeleton of the cube (cf. (20.23)):
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(21.2)
L
D-mod s (Buny) M IndCohniip (LS 37 (X))
CT:"’P(“’X)[*éN(P_)pP %)
CT—spec
L,
D‘mOd% (BunG) G IndCOhNilp (LSG(X))

FLEM crit—pp

KL(M)crit—ﬁp,Rang

IndCoh* (Op’ﬁfgfee (D™))Ranc

<, spec,*

ST oins.unit oins.unit

;P(“-’X)

KL(G)crit,Ran

IndCoh* (Opgon-free (D X ))Ran

FLEG, crit

where the vertical arrows are as follows:

e The functor KL(G)erit,Ran — D-mod% (Bung) is

—1

®% ®
Loc [~2 [
G OlG N, wy) @ Wowx)

[=0N )]
e The functor IndCoh* (OpE°"™**(D*))ran — IndCohnip (LS (X)) is Poinc
e The functor KL(M)Crit,‘;P,Rm,g — D—mod% (Buny) is

®3 ®-1 ®-3
Locw ®[G’Np(wx> ® [Np(wx) ® [G,P’,M,pp(wx)[_éNP(wx) - 6N(P_)pp(wx)]’

®3 . .
where [GsziM,pP(wx) is as in (15.5);

e The functor IndCoh*(Op2"**(D*))ranc — IndCohnin (LS 7 (X)) is

M,pp

1
-1 ®—§

. ®% ®
Poinc®?° @ [~ 2 [ [
i Ol N, ) Wy @la = mpp ) ®
o-}
® [M,N(M)pM(wx) ® [N(M)PM(“"X) [6N(M)PM(“"X) - 5NP(‘*’X) - 5N(P_)Pp(wx)]'

21.1.2. Note that the front and the back faces of the above cube commute, thanks to Theorems 20.6.2
and 20.6.3.

21.1.3. The left face of (21.2) commutes commutes thanks to Theorem 15.4.2.

21.1.4. The bottom face of cube (21.2) commutes thanks Theorem 9.1.3.
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21.1.5. We now claim that the right face of (21.2) commutes as well. Using Theorems 17.2.4 and
18.2.2, this boils down to the numerical identity
b —0m = 5N(P—)pp(wx) + 5Np<wx> - 5N(M)pM<wX)

and following identification of (ungraded) lines:
1

@1 %2 ®3 ®-1 ®3%
(21.3)  Ikose(a) @ Kost(ar) = 16N ) @ Wowx) @ [M,N(M)pM(WX) ® NG, wx) @ leP— Mopp(wx)

where lkost(c) is as in Sect. 17.2.2, and I[gos(ary is the corresponding line for M.

Taking into account Lemma 15.2.2; the required identification of lines follows from the next assertion:

Proposition 21.1.6. There is a canonical isomorphism

kost(@) = G N, ® N, ®det(T(X,0x) @ 9)° "

plwx)
Proof. First, using the Killing form, we identify a(§) with a(g).
We have:
(63,0 ) @ det(T(X, 0x) ® §) = det(T(X, gy(ur)))
and
[Np(wx) = det(F(X, np(wx)))-
Thus, we need to establish an isomorphism
det(T'(X, a(g)wy ) @ det(T(X, npuy))) > det(T(X, (8/1)pwx)))-
It is easy to reduce to the case when g is adjoint, so we will make this assumption for the duration
of the proof.

Decompose

as in Sect. 12.2.5.

Note that we can identify
a() = & V*(e),

however, that canonical G,,-action on a is shifted by 1 relative to the action of G,, < SL2 on V¢(e),
so that
det(T(X, a(g)ux ) = © det(T(X, V() o) @ wx)):

We will show that for every e,
(214)  det(D(X, V() ) @ wx)) @ detTX, & VE()yux)) = det(T(X, @ V(M) pu)-

More precisely, we will show that

(21.5) det(T'(X, Ve(e)f)(wx) ® wx)) ~ det(I'(X, Ve(_e)ﬂ(wx)))
and for every n > 0
(21.6) det(T'(X, Ve(n)P(wx))) =~ det(I'(X, Ve(_n + 2)P(wx)))'

Indeed, the Killing form identifies V¢(e) with the dual of V¢(—e), so that by Serre duality
(X, Ve(e)/)(wx) ® wX)V ~ I'(X, Ve(_e)p(wx))[l]'
This implies (21.5).

Similarly, for n > 0, the Killing form and the action of the positive generator of sly identifies V°(n)
with the dual vector space of V¢(—n + 2), and hence by Serre duality

D(X, VE(n)pwx)))” = DX, VE(=n+ 2) ) [1]-
This implies (21.6).
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21.2. The statement of the (unenhanced) compatibility theorem.
21.2.1. We can now state the (unenhanced version) of the theorem that expresses the compatibility
of the Langlands functor with constant terms:

Main Theorem 21.2.2. Assume that the geometric Langlands conjecture (i.e., Conjecture 20.5.8)
holds for M. Then there exists a unique datum of commutativity for the diagram (21.1), such that
along with the datum of commutativity of the other five of the faces of the cube (21.2), the entire cube
commutes.

Remark 21.2.3. Recall that by Theorem 20.4.5, the diagram

D- m0d1 (Bunar) —)IndCothlp LS (X))

Eis,” [6
Lep(wx) U N(PT) )L (wy)
(21.7) / /

D-mod (Bung) — 0 IndCohniip (LS (X

is equipped with a datum of commutativity. This equips the diagram (21.1) with an a priori non-
invertible 2-morphism

D-mod (Bunp) — "M IndCohniip (LS 7 (X))

*pP(wX) N(P Dpp(wx)
(21.8) / \ /

D- mod1 (Bung) —> IndCohniip (L

We do not know whether the natural transformation in (21.8) equals (i.e., is homotopic to) the
isomorphism of Theorem 21.2.2.

However, we will eventually show that the natural transformation in (21.8) is an isomorphism, see
Corollary 24.1.4 (a posteriori, this follows immediately from GLC).

One can show that the two natural transformations (one from Theorem 21.2.2 and another from
(21.8)) differ by a scalar. However, we do not know (and cannot confidently conjecture) that this scalar
equals 1.
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21.2.4. We now commence the proof of Theorem 21.2.2.

The commutativity of the five of the faces of the cube (21.2) established above implies that the outer
diagram in

D-mod; (Buny) — "M IndCohniip (LS 7 (X))

1
2

CT;PP(WX)[75N(P7)pp(wX)] CT—spec

CT*»PP(wx) o LOCG[_JN(P_)pP(qu)

Lg

(21.9) D-mod; (Bung) ———< > TndCohnip (LS (X))

Locg coLoca
KL(G)Crit,Ran
is endowed with a commutativity datum.

The statement of Theorem 21.2.2 is equivalent to the fact that this datum comes from a uniquely
defined commutativity datum of the inner square in (21.9).

For expositional purposes, we first consider the case when P = B.

21.3. Proof of Theorem 21.2.2 for P = B.

21.3.1. The category D-mod 1 (Bunr) ~ D-mod(Buny) splits as a direct sum according to the con-
nected components of Bunz, which are indexed by the coweight lattice of T'. For each coweight pu, let

cT * denote the corresponding direct summand of CT_

#pp(wx) *pp(wx)’

—,spec

Let CT™°P¢“# denote the corresponding direct summand of CT . It corresponds to the direct

summand QCoh(LS#)* of
QCOh(LST (X)) = IndCOh{g} (LST (X)) = IHdCOhNilp (LST (X))

consisting of objects, on which the action of T by l-automorphisms of LS (X) has character —u (here
we regard p as a weight of T'), see Sect. 20.2.

Thus, in proving Theorem 21.2.2, instead of the diagram (21.9), we can consider
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(21.10)
]LI»‘
D-mod (Bunj,) ——— IndCohniy, (LS (X))*
CT;:,P‘LP(“’X>[_6N(P7)pP(wX) S

CT;;’MP(‘“X) oLocg[—6

D—mod% (Bung) e IndCohniip (LS (X))

coLocg
KL(G)crit,Ran

for a fixed pu.

21.3.2. For a fixed pu, let A € Ag’Q be large enough so that the image of the map

Bun% — Bung

is contained in the open Harder-Narasimhan stratum Bun(G<’\) (see [DG, Sect. 7.4] regarding our
conventions regarding the parameterization of the Harder-Narasimhan strata).

By construction, we have:

Lemma 21.3.3. The functor CT*_’p"P(WX) factors as

(CT:’“ ( ))(<>\)
D—mod% (Bung) — D—mod% (Bun(G<A)) p— D—mod% (Bunr).
21.3.4. Consider the closed substack
Bun(GZ)‘) C Bung,
so that
Bun(G<A) c Bun/Z := Bung — Bun(GZ)‘) .
Note that the open Bun(G{EA) has the property that its intersection with every connected component

of Bung is quasi-compact.

It follows from Lemma 21.3.3 that the functor CT:;)“P(wX) also factors as

S (cT # ( ))(/2*)
D—mod% (Bung) —» D—mod% (Bun(G/*A)) X D—mod% (Bunr).

21.3.5. Let P’ be a standard parabolic in G with Levi quotient M’. Recall that Aj ,, denotes the
quotient of A by the root lattice of M’, i.e.,

Ag,p/ ~ 71 a1g(M") ~ 7o (Bunyy).
Recall (see [DG, Sects. 7.1.3-7.1.5]) that we can view Ag pr as a subset of Ag’Q, Denote
A pr = Dg,pr 0 ALC.

Let
>A

BunAG/I, C Bunj,/
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be the union of connected components, indexed by coweights \’ € Ag pr With

N>

QlV

With the above notations, we can identify D-mod (Bung =) with the quotient of D-mod 1 (Bung)
>
by the full subcategory generated by the essential images of D-mod 1 (Bunf/l,) along the Eisenstein

functors

Eis; : D-mod (Bunpr) — D-mod; (Bung)
for all standard proper parabolics P’.

21.3.6. For N € Ag pr, let IndCohNilp(LSM,(X)))" be the direct summand of IndCohniip (LS 37/ (X))
consisting of objects on which the action of Z,;, by l-automorphisms of LS,;,(X) has character —\’.

Let IndCohniip (LS (X))ZY denote the quotient of IndCohni, (LS (X)) by the full subcategory
generated by the essential images of2°

IndCohnip(LSa)Y, N >A—2(g—1) - ppr.
G

We will prove:
Proposition 21.3.7. For a fized p, and X\ large enough in the order relation é, for every standard

parabolic P' and \' € Ag, pr satisfying X' > A, the functor
G

P —
—

IndCohninp (LS 7 (X)) "E5" IndCohirp (LS (X)) " QCoh(LS;(X))"
vanishes.

Assuming Proposition 21.3.7 for a moment, we obtain that for \ sufficiently large, the functor
CT ™ ®PeSH factors as

o —spec,ny(/=X)
(/=) ( )

IndCOhNilp (LSG (X)) b IndCohNHp (LSG (X)) QCOh(LST (X))u .

21.3.8. The compatibility of the Langlands functor with the Eisenstein functors given by Theo-
rem 20.4.5 implies that the functor Ls descends to a well-defined functor

LY2Y . D-mod (BunY=") — IndCohnip (LS (X)) =Y.

We obtain that the commutativity datum for (21.10) is equivalent to that of the commutativity
datum for the inner square in

25The shift by 2(g — 1) - pps in the formula below is due to the fact that on the geometric side in Theorem 21.2.2,
we are dealing with the functor Eisrpp(wx) rather than just Eis, .
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(21.11)

LA
D_mOd% (Bunﬁ/j) —M> IndCohan (LSM (X))”,

—. (/20 —s
(CT,  p(wx)) [ 6N(P7>PP(“’X)] (CTspecsy (/2X)

LU=
D-mod (Bung/=") ——— IndCohiip (LS (X)) /Y

-mod% (Bung)

KL(G)crit,Ran
compatible with the existing commutativity datum for the outer diagram.

However, the resulting assertion follows now from the next observation:

Lemma 21.3.9. The functor

L

KL(G)crit,Ran ¢ D—mod% (Bung) — D—mod% (Bungzk))

is a Verdier quotient.

Proof. Indeed, this assertion holds (at any level) for any open substack of Bung whose intersection
with every connected component is quasi-compact.
|

21.4. Proof of Proposition 21.3.7. For the duration of the proof, we will change the notation from
P’ to P.

21.4.1. By base change, the functor

Eis®P¢

IndCohninp (LS 1 (X)) "5 IndCohyip (LS (X)) ©™—5 " QCoh(LSz(X))

can be rewritten as the composition of:

e *-pull along LS3(X) — LS;(X);
e l-pull along LS5(X) x LSp- — LSp(X);
LS (X)
e *-push along LS5(X) x LSz (X)— LSz (X) — LS;(X).
LS (X)
However, since the morphism LS;(X) — LS;;(X) is quasi-smooth, up to shifting the degree , we
can replace the *-pull by !-pull. So the functor in question becomes !-pull followed by *-push along the
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diagram

LSp(X) x LSy (X).

LS (X)

BV

LS, (X) LS#(X)

21.4.2. We decompose LS;5(X) x LSp-(X) according to relative positions of the two reductions,
LS (X)

which are indexed by the elements of W/ \W.
For each w € Wi/ \W, let

(LSp(X) x LSz-)w CLSp(X) x LSz (X)
LS&(X) LS (X)

denote the corresponding locally closed substack, and let

(LSp(X)  x  LSp- (X))
LS (X)

denote its formal completion inside LSp(X) x LSg-(X).
LS4 (X)

We will show that for every w and A large enough, the pull-push functor along

(LSp(X) x LSp- (X))
LS (X)

(21.12) LS (X) LS#(X)
has the property that its (), 1) component vanishes for

(21.13) by % A N eAp.

21.4.3. We will first establish the corresponding fact for the diagram

(LSp(X) . x L85 (X))
&(X)

(21.14) LS 5 (X) LS4(X).
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Note that the diagram (21.14) can be factored as
(LSp(X) x LSp—(X))w
LS (X)

G

LSB (M)(X)

(21.15) LS (X LSy (X

Pull-push along (21.14) identifies with

(21.16) (aur)- (p‘M(—> & h (wh>) ,

where wy, is the relative dualizing sheaf of the map h. Up to shift by a fixed weight, we can replace
(21.16) by

(21.17) (anr)« (P'M(—) ®h(Owsp(x) LSB(X))w)> .
LS 5 (X)

21.4.4. Fix a regular dominant cocharacter 0:Gm— Z 27> and let us consider the resulting action of
G, by l-automorphisms on the stacks in

LSB (M)(X)

LS, (X LS; (X

The weights of this action that appear in h*(O(LSP(X) X LSy (X))w) are of the form
LS 5 (X

(,0), «isaroot in i~ Nw(i(P)).
In particular, all such weights are negative.
Hence, for F € IndCohnip (LS 5; (X))A’, the weights on its pull-push along (21.14) are of the form
—(N,6) +2=°.
For the p-direct summand of the above object we must thus have
—(N,0) +Z=° = —(u,6),
which impossible once (21.13) is satisfied with A large enough.

21.4.5. 'We now prove the assertion for the pull-push along (21.12). This functor admits a filtration
with subquotients of the form

(qur)- (p‘M(—> & ha(wn) ® Sym(Normw>) ,

where Norm,, is the normal bundle to (LS5(X) x LSpz-(X))w inside LSp(X) x  LSz-(X).
LS (X) LS&(X)

The proof follows the same logic, using the fact that the weights of G,, on Norm,, are of the form

(o, ), aisarootin ™ /&~ Nw(i(P)),
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and all such weights are also negative.
21.5. Proof of Theorem 21.2.2 for a general Levi.

21.5.1.  As was stated in Theorem 21.2.2, its proof relies on the validity of the geometric Langlands
conjecture for Levi quotients of all proper parabolics of G.

Remark 21.5.2. What we really need to assume for the proof to go through is a certain property of the
category of IndCohnip(LS,;(X)), see Sect. 21.5.7. This property takes place purely on the spectral
side, and it follows from GLC.

Let us formulate this property for G. For \ € Ag’Q, consider the Verdier quotient category
IndCohniip (LS (X)) — IndCohnip (LS& (X)) =Y, Ae AL?,
where we kill the subcategory generated by the essential images of the functors

Eis™*° : IndCohNilp(LSM,(X))A/ — IndCohniip(LSe (X)), N €AL pry N LA=2(g— 1) ppr.
’ G

for all standard parabolics P’ of G.
What we need is that the functor
IndCohip (LS¢(X)) — lim IndCohniip (LS (X)) <Y
SG

is an equivalence.

With this property at hand, we could imitate the argument Sect. 21.2 essentially word-by-word.

Remark 21.5.3. For A € AEJQ, denote by QCoh(LSs(X))(<Y the corresponding quotient of
QCoh(LSx (X)) so that we have a commutative diagram.

=R
=0,Nilp

QCoh(LS (X)) IndCohuip (LS (X))

(21.18) l l

=R
=0,Nilp

QCoh(LSx (X)) =Y 2 IndCohilp (LS (X)) <Y,
Assuming GLC for G, it follows from the localization argument given below that the category
IndCohnilp (LS (X)) SV is generated by the essential image of

QCOh(LS (X)) ~*3™ IndCohwip (LS (X)) — IndCohniip(LSe (X)) <.
This implies that the bottom horizontal arrow in (21.18) is actually an equivalence.

In particular, we obtain that the category IndCohniip, (LSs(X)) can be recovered from the usual
QCoh(LSx(X)) also as
lim QCoh(LSy (X)) <M.
A <ga

21.5.4. Fix p € Al and let

Bung\;”) C Buny,

be the quasi-compact open equal to the union of Harder-Narasimhan strata Bung\j/) with
po<
M
We consider D-mod 1 (Bung\%“ )) as a quotient of D-mod 1 (Bunjas). Assuming that p is dominant
enough (as a coweight of M), the kernel of the projection
D-mod, (Bunas) — D-mod, (Bun{*))
is generated by the essential images of

D-mody (Bunjy), 4w €AGp, # Zp—2g—1)-pp
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along the functors
Eisi,_p 0 (wx) D-mod%(BunM/) — D—mod% (Bunas),

where M’ is the Levi of a standard parabolic P’ of M.

21.5.5. Let IndCohniip (LS 17 (X))(<*) denote the quotient of IndCohyiip (LS 7 (X)) by the full subcat-
egory generated by the essential images of

IndCohnip (LS )", w € AL prr Lu=209-1)pp

along the functors
EiSSpec . IndCOhNilp (LSM/) — IndCohNup (LSM (X))

21.5.6. The compatibility of the Langlands functor L with Eisenstein series implies that there exists
a commutative diagram

L(SH)
D-mod%(Bung\;“)) —__ IndCohnip (LS i (X)) )

| [

D-mod (Buny) —2—  TndCohwip (LS (X)).

~

21.5.7. Since
D_mod% (BunM) — lim D—mod% (Bunﬁ#))
o

is an equivalence, we obtain that

IndCohniip (LS 7 (X)) — lim IndCohip (LS 57 (X)) S
7

is also an equivalence.

Hence, in order to construct a datum of commutativity for (21.9), it enough to construct a compatible
data of commutativity for the diagrams (for varying u)

L(Em
D-mod 3 (Bun{7"’) ———> IndCohiip (LS (X)) )

| |

-mod 3 (Buna) IndCohnip (LS 7 (X))

TCT*vPP(wx)[‘sN(P—)pP(WX)] TCT’SPec

(21.19) D-mod: (Bung) — "6 IndCohnip (LS (X))

1
2

Locga

KL(G)crit,Ran 5

compatiblle with the given data of commutativity for the outer diagrams.
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21.5.8. Let Bun(G<)‘) C Bung be a quasi-compact open union of Harder-Narasimhan strata, such that
the functor

D-mod (Bung) CT:ﬂwx) D-mod, (Bunas) — D-mod (Bun{>*))
factors via the quotient
D—mod% (Bung) — D—mod% (Bun(G<A)).
As in Sect. 21.3.4, we consider the larger open
Bun(G<)‘) C Bun(G/S)‘),

and the corresponding functor

(CT, (SRR D-mod (Bun(G/S)‘)) — D-mod (Bung\?‘)).

*pp(wx)

21.5.9. Let
IndCohniip (LS¢ (X)) — IndCohnip (LS (X)) /=Y

denote the corresponding quotient, see Sect. 21.3.6.

The following is a generalization of Proposition 21.3.7:
Proposition 21.5.10. For a fixed p and X\ large enough in the order relation 5, for every standard

parabolic P' and \' € Ag, pr satisfying X' > A, the functor
G

A’ EisSPec
-—

IndCohniip (LS 7/ (X))
— IndCohip (LS (X)) “5 IndCohnirp (LS 7 (X)) — IndCohnip (LS 7 (X))
vanishes.

Let us assume this proposition for a moment and finish the proof of Theorem 21.2.2.

Corollary 21.5.11. For X\ large enough in the order relation >, the composite functor
G

D-mod, (Bung) L6 IndCohninp (LS (X)) ™5 IndCohyirp (LS 7 (X)) — IndCohiip (LS 7 (X)) 5
also factors via the quotient
D—mod% (Bung) — D—mod% (Bun(G/ZA)).
21.5.12. Denote the resulting functor
D-mod (Bun/=M) — IndCohninp (LS 57 (X)) <)

by
(CT*,SPSC oLg)(S“)’(/ZA) .

We obtain that a datum of commutativity for (21.19) is equivalent to that for the diagram
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. . (<m)
LW oot DS IndCohnilp (LS 57 (X)) =*

*pp(wx N(P7)pp(wy)

(CT—>spec OLG)(SM)’(/Z)\)
(Bun(G/ZA))

D-mod% (Bung)
LOC/
KL(G)crit,Ran
However, this follows again from Lemma 21.3.9.

O[Theorem 21.2.2]

21.5.13. Proof of Proposition 21.5.10. The proof proceeds along the same lines as that of Proposi-
tion 21.3.7, using the following generalization of the diagram (21.15):

Let P and P» be a pair of standard parabolics of G with Levi quotients M; and M2, respectively.
For an element

w € Wi\W/Wa,

let

(LSp, (X) x  LSp,(X))w CLSp (X) x LSp (X)
LS (X) LS (X)
be the corresponding locally closed substack.

Then the diagram

(LSp, (X) % LSp, (X))
LS~ (X)

G

LSz, (X) LSy, (X)
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can be factored as

(LSp, (X) % LSp, (X))
LS (X)

LS, nw—1(5y) (X) ~ LS, 5,yn 5, (X)

LS p, =1 (B) /N (Pynw—1 (8 (P2)) (X) ~ LS8y )1 By pao (N (1)) () (X)

in which the middle diamond is Cartesian, where
151/ = Pl N w_l(Pg)/N(Pl) ﬂw_l(Pz) and PQI = ’LU(pl) N PQ/'LU(N(Pl)) n N(Pg)
are standard parabolics in M) and M, with Levi quotients Mj and M3, respectively.
22. COMPATIBILITY OF THE LANGLANDS FUNCTOR WITH CONSTANT TERMS: ENHANCED VERSION

In this section we will prove an enhanced version of Theorem 21.2.2, in which the target category is
IndCohnitp (LS 7 (X))~ instead of IndCohniip (LS 7 (X)).

This enhanced version will be used for the proof of the main result of this paper, Theorem 24.1.2.
22.1. Some enhanced functors.
22.1.1. Consider the Langlands functor for the group M
D-mod  (Bunyy) " IndCohniip (LS 7 (X)).

It is compatible with the actions of
Satps

Sph,, ~" Sph7®.

Since the functor Sat™ % is compatible with the actions of

Satpr, -

Sphy, =" Sph}*,
it gives rise to a functor

Sat ™2 QLo : D-mod 3 (Bunar) "= — IndCohuirp (LS 7 (X)) 7 "Ren
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(see (1.9)).
22.1.2. It is easy to see that the above functor Sat ™ QL sends the full subcategory
D-mod (Bunys) ™" D-mod (Bunjy) e PRan
to the full subcategory
IndCohitp (LS 37 (X)) ™™ € IndCohiip (LS y (X)) " e,
Denote the resulting functor

D-mod (Bunas) ™" — IndCohnip (LS i (X)) ™"
by ]L;/[’e“h.

22.1.3. Note also that by mimicking the construction of the functor Poinc;;l’slpec’enh (see (19.14)) we
can produce a functor
(22.1) Poinc "™ : IndCoh™ (Op3ys " (D)) g™ — IndCohninp (LS 7 (X)) 7™

M, pp
It follows formally from Theorem 17.2.4 that we have a commutative diagram

IndCohitp (LS (X)) 7™ —1%—  IndCohip (LS 7 (X)) e
(22.2) P"‘“Ki,s!pec’e"ﬁ Tpoinc;{fe“*e“h@atKost(C;,)[5G]
IndCoh(OpE™™* (D)) 7.5 ——— IndCoh (O™ (D))",
Op(a1)
where @5;9(';3) :=Id®Og,(sr) as the functor
(G, PT)™ @  IndCoh'(Opyy; . **(D™)) = (G, PT)™**° @ IndCoh”(Opyy;," (D).

apec apec
SphM SphM
22.2. Enhanced version of the cube.

22.2.1. Consider the 1-skeleton of the cube:

(22.3)
e L=senh
D-mod (Bunar), ) IndCohniip (LS 7 (X)) ~"
—,enh
*’PP(WX)[_6N(P7)9P <)
CT*,spec,enh
L
D-mod; (Bung) ¢ IndCohniip (LS (X))
—,enh
KL(M —,enh FLEM'CritfﬁP IndCoh* (O mon-free DX —,enh
( )crit—pP,Rang ndaco ( pM,pP ( ))Rang
—,enh . .
BRSTPP(W)() o ins.un;
sspec,x.enh ging ynit

FLEG crit

KL(G)crit,Ran

IndCoh* (Op’é‘on'free (D*))ran,

in which the vertical arrows are as follows:
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e The functor KL(G)crit,Ran — D-mod% (Bung) is

[—on

®3 ® )
Loca ®[G7Np(wx) ®ly P(“’X)]’

1
plwx)
e The functor IndCoh* (Opg‘or“free('D>< ))Ran — IndCohnilp (LS (X)) is Poincd
e The functor KL(M)_:™" — D-mod% (Buna) ™ s

crit—ﬁp,Rang pp(wx)

Locooh  @(®3 ®-1 @3 = —5 ]
M,pp(wx) < G:Npwy) Nowx) G,P~ ,M,pp(wx) No(wx) NPT )pp(wx)

®3 . .
where [G,zP*,M,pp(wx) is as in (15.5);

e The functor IndCoh” (OPJ" ™ (D)) ranc — IndCohiny (LS i (X)) ™" is

M,pp

.- h ®L ®—1 ®-3
Poinc °Pe™ @ [~ 2 ® I, 2 ®
M G Npwx) < Nowyx) © G,P~ ,M,pp(wx)

®—3
® [M’N(M)PM(“JX) ® [N(M)PM(“’X)[(;N(M)PM(“’X) o 6NP(“X) B 6N(P7)pp(wx)]’

. _ spec,enh : .
where Poinc *P*“"" is as in (22.1).

22.2.2.  We claim now that all but the top face of this cube are endowed with a datum of commutativity.

The front face is identical to that of the cube (21.2), and hence commutes. The back face is obtained
formally by the enhancement procedure from the back face of the cube (21.2), and hence also commutes.

The commutation of the left face is the content of Theorem 16.6.8. The commutation of the right
face is the content of Theorem 19.5.2.

Finally, the commutation of the bottom face in (22.3) is the content of Theorem 9.1.7.
22.2.3. We are now ready to state the enhanced version of Theorem 21.2.2:

Main Theorem 22.2.4. Assume that the geometric Langlands conjecture holds for M. Then there
exists a unique datum of commutativity for the top face in (22.3), such that along with the datum of
commutativity of the other five of the faces, the entire cube (22.3) commutes.

22.3. Proof of Theorem 22.2.4.

22.3.1. The commutativity of all but the top face in (22.3) implies that the two curved arrows in the
diagram

IndCohniip (LS (X)) ~o20

— h —,enh
L ™eCT
M

*vpp(wx)[_éN(P’)pP(wX)

CTf,spec,enh O]LG

(22.4) D—mod% (Bung)

Locga

KL(G)crit,Ran
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become isomorphic after precomposing with the functor Locg. The statement of the theorem is equiv-
alent to the fact that this isomorphism comes from a uniquely defined isomorphism between the curved
arrows themselves.

22.3.2. Recall that the forgetful functor
IndCohnip (LS 37 (X)) ™" — IndCohniip (LS 37 (X))
is monadic, and that the corresponding monad is given by the action of the associative algebra object
0o € Sphihr.. -
The endofunctor F of IndCohniip, (LS 37 (X)) underlying the above monad has the following property:
It is naturally filtered by the poset Ag%, so that

F~ col%rorg Fi.
AEARS,

22.3.3. Let F) be a composite of a finite collection of the functors Fx. Let
FA-mod
denote the category of
{z € IndCohniip (LS ;(X)), o : Fa(z) = x}.
The category IndCohniip (LS (X)) ™™ can be identified with a limit of categories of the form Fy.

22.3.4. We will show that for each A separately, there exists a unique isomorphism between the post-
composition of the two curved arrows in (22.4) with the projection

IndCohnip (LS 37 (X)) ™" — Fa-mod,
so that after pre-composing with Locg we obtain the already existing isomorphism.

The uniqueness assertion implies that these isomorphisms give rise to a uniquely defined isomorphism
for the diagram (22.4) itself.

22.3.5. For a finite collection p of (sufficiently large) elements of Al let

IndCohnip (LS iy (X)) 2

denote the quotient of IndCohniip (LS ;7 (X)) by the full subcategory generated by the essential images
of
IndCohwip (LS )", p' €AG pry L pp—2(g—1)-ppr, p€p
M
along the functors
EiSSpec . IndCOhNilp(LSM/) — IIldCOhNup(LSM(X)).

The collections p naturally form a (filtered) poset, and as in Sect. 21.5.7, the assumption that GLC
holds for M implies that the functor

IndCohniip (LS i (X)) — lim IndCohnip (LS iy (X)) )
B

is an equivalence.

22.3.6. The functors Fx (and, hence, their compositions Fy) have the following property:

For every p, the composite

IndCohnitp (LS 17 (X)) = IndCohnitp (LS 47 (X)) — IndCohnitp (LS y (X)) (52
factors as
w'

25 IndCohnip (LS (X)) )

.n
I=

IndCohniip (LSM (X)) — IndCohniip (LSM (X)) (<w)

for some sufficiently large Hl'
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22.3.7. For )\ and p < i’ as above, let
Fi *_mod
denote the category of
{z. € IndCohNilp(LSM(X))(Sﬁ/), a: Fi ’E(mﬁ/) — Tpul,

where z, denotes the image of z, along the projection
IndCohnirp (LS 7 (X)) 27 — IndCohirp (LS 57 (X)) 2.

We have:

!’
. B op
Fx-mod ~ lim Fy “-mod.
= ﬁgﬁ/ A

Hence, it is enough to show that for each p < H,’ there exists a unique isomorphism between the
post-composition of the two curved arrows in (22.4) with the projection

IndCohninp (LS 7 (X)) ™" — F§ *-mod,
so that after pre-composing with Locg we obtain the already existing isomorphism.

22.3.8.  We now note that the for a fixed p < H’, the resulting two arrows

’
K

D—mod% (Bung) = Fi ~-mod

both factor as ,
D-mod% (Bung) — D-mod% (Bung)/=" = Fi *_omod

for some v.
Indeed, since the functor
F& mod — IndCohitp (LS 17 (X)) <2
is conservative, this follows from the corresponding property of the two arrows
D-mod (Bung) = IndCohnip (LS y (X)) £,
established in the course of the proof of Theorem 21.2.2.
22.3.9. Now, the required assertion follows the fact that the functor
KL(G)erit,Ran Locg D-mod; (Bung) — D-mod (Bung)/ =¥

is a Verdier quotient.
O[Theorem 22.2.4]

23. THE LEFT ADJOINT OF THE LANGLANDS FUNCTOR

In this section we start reaping the benefits from the work done until this point.
e We show that the functor Lo admits a left adjoint (to be denoted %), which is also compatible
with the geometric and spectral Eisenstein series functors;
e We show that, up to a cohomological shift, the functor LE identifies with the composition

Serre

(23.1)  IndCohniip (LS (X)) =~ IndCohNﬂp(LSG(X))VL—G>D-m0d%(Bung)

Verdi
v e&ler

irBung

M T
~ D—mod% (Bung)eo —> D—mod% (Bung) 8 D—mod% (Bung),

where Mirgun, is the Miraculous functor, and 7¢ is the Cartan involution;
e We show that the composition Lg o L&, which is an endofunctor of IndCohniip (LS (X)) is
given by tensor product by an associative algebra object Ag € QCoh(LSx(X)).

23.1. The existence of the left adjoint.
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23.1.1. The goal of this subsection is to prove the following statement:

Theorem 23.1.2. The functor Lg admits a left adjoint. Moreover, for every standard parabolic P,
we have a commutative diagram

L
D-mod (Bunys) 207 IndCohning (LS (X))

(23.2) Eis;pp(wx)[6N(P7)pp(wx)]Jr JﬁEis*’SpeC

L
D-mod s (Bung) +~%— IndCohyup(LS¢(X)).

The rest of the subsection is devoted to the proof of this result.

23.1.3.  As was shown in [AG, Theorem 13.3.6], the category IndCohniip (LS (X)) is generated by the
essential images of QCoh(LS,; (X)) C IndCohyiip(LS; (X)) along the functors

EiS_’Spec N IndCohNﬂp (LSM (X)) — IndCOhNilp(LSG(X)).
In Theorem 21.2.2, we have constructed a commutative square

D-mod  (Bunyy) — M5 IndCohip (LS 4 (X))

CT:,pP(wx)[76N(P*)pP(WX)]T TCTf’Spec

D-mod% (Bung) SN IndCohniip (LS (X)),

in which the vertical arrows are the right adjoints to the ones in (23.2).

It follows formally that in order to prove that (Lg)” exists and makes (23.2) commute, it suffices

to show that for every M, the (a priori partially defined) left adjoint (Las)*, is actually defined on
QCoh(LS;(X)) C IndCohniip (LS 7 (X)).

23.1.4. Up to changing the notation, we can assume that M = G. However, then the existence of
(LG)L|QCO},(LSG(X)) was built in to the construction of Le: this is the functor L (omp of (20.3).
O[Theorem 23.1.2]

23.2. The left adjoint as a dual.

23.2.1. Recall that D—mod% (Bung)co denotes the dual of the category D-mod% (Bung). Consider the
functor

D—mod% (Bung)co & IndCohyiip (LS (X)),
dual to L&, where we identify IndCohnip (LSs (X)) with its own dual via Serre duality.
We now recall the Miraculous Functor.
Mirgung : D—mod% (Bung)eo — D—mod% (Bung),
see [Gai2, Sect. 2.1.1].

Remark 23.2.2. In [Gai2], the functor Mirpun, was defined in the untwisted setting, i.e., for
D-mod(Bung) rather than for D-mod %(Bung). However, the same procedure defines is also for

D-mod 1 (Bung), and the resulting functor has the same properties: the two setting are actually
equivalent, see Remark 12.1.6.
23.2.3. Define the functor
®¢ : IndCohniip (LSe (X)) —% D-mod(Bung)
as

&g := 7¢ o MirBung O]Lé [46@ - 26Np(wx)]’
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23.2.4. We are going to prove:

Theorem 23.2.5. There exists a canonical isomorphism
dg ~ (La)~.

23.3. Proof of Theorem 23.2.5.

23.3.1. Both functors appearing in Theorem 23.2.5 are (automatically) compatible with the derived

Hecke action via
Satg

Sphg =~ Sph¥*,
see Sect. 1.8.8.
Hence, they both define functors

L&, tom
D-mod% (BunG)temp ;: ’ QCOh(LSG‘(X))

G,temp

that make both diagrams

L
D-mod (Bung) <Z—G IndCohnilp (LS (X))
G

T TEO,NHP

]LL
D-mod  (Bung)eemp ¢~  QCoh(LSg(X))

G,temp

and

D-mod (Bung) <(];—G IndCohip (LS (X))
G

(23.3) l l(Eo,an)R

L
]L‘G,tcmp

D—mod% (BUHG’)temp QCOh(LSG‘(X))

G temp
commute.
23.3.2. We will first show that the functors Lé,temp and ®¢ temp are (canonically) isomorphic.

Since the functor
LocZ® : Rep(G)ran — QCoh(LS¢ (X))
is a Verdier quotient, it suffices to establish an equivalence
(23.4) L& temp © LOCEF*® ~ @ temp © LocF*e .
By construction, the functor ]Lé,temp makes the diagram

Whit! (Csg) ™! <
it' (G)Rran +«———— Rep(G)ran

i — spec
Poincg 1| 26NP(WX)]l lLocé

H“L tem
D—mod% (BunG’)temp # QCOh(LSG‘ (X))
commute.

Hence, it suffices to check that the diagram

i )
Whit' (G)Ran {8 Rep(G)ran
POinCG’![_QSNP(WX)]J/ Locgec

TG oMirgung OLéchOh(Lsé(x))[@c*?tsN ]

D-mod y (Bung)iemp ?“X) )Coh(LSs(X))
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commutes as well.

23.3.3. Recall (see Lemma 1.4.11) that
TG © (CSG)71 ~ ®Whit(G) o FLEG‘,oo .
Thus, we need to establish the commutativity of

Owhit(¢)°FLEg o .
(__—§

Whit' (G)ran Rep(G)ran
(23.5) PoiﬂCG,!l lLOCS(sec
Mirgun .~ oL%|oco . [45¢c]
D-mod ; (Bung)uemp o G QC0h(LS (X))

23.3.4. Recall that the functors
Lo : Rep(G)Rran S QCoh (LS (X)) : rgee

are mutually dual, when we identify QCoh(LSx (X)) with its own dual via the usual duality (i.e., usual
dualization on perfect comlexes).

Hence, when we use the identification
QCoh(LS4 (X)) = QCoh(LS¢(X)),
induced by the Serre duality on IndCoh(LS (X)), the dual of the functor I'}*® becomes identified with
Locs‘Gvpec [dim(LS&(X))] = Locsc{,Dec [20¢].
Here we are using the fact that LS is quasi-smooth and derived-symplectic, so that
stG >~ OLSG(X)[dim(LS(;(X))].
Hence, by taking the duals in the commutative diagram

CSg=(FLEg& )V

Whit! (G)Ran Rep(G)Ran
CoeﬁG[QéNp(wX)]T Trsé’ec
LG, tem
D—mod% (BUHG’)temp u QCOh(LSG(X))7
we obtain a commutative diagram
FLEg .
Whit. (Gre)ran . Rep(G)ran
(236) PoincG)*[ZéNMwX)]J/ Locsépec [26¢]

L&|
G QCoh(LSG (X))

D-mOd%(BunG)co,temp — QCOh(LSG‘(X))

23.3.5.  We now recall the following result, established in [Lin, Theorem 1.1.6]:
Theorem 23.3.6. The diagram

Ownhit(a)

Whit'(G)Ran Whit. (Gre)Ran
(23.7) Poinca 1 l lPoinca,* 2on,, )

Mirgun [26¢]
%

D-mod% (Bung) D-mod% (Bung)co-

23.3.7. Now, concatenating the diagrams (23.6) and (23.7). we obtain the desired commutative dia-
gram (23.5). Thus, we have established the isomorphism

L
]LG,temp =~ cI>Cv',temp .
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23.3.8. We will now deduce
L& temp =~ Pctemp = (La)" ~ @6.
The functor (]LG)L being a left adjoint, preserves compactness. We will prove:
Lemma 23.3.9. The functor ®¢ also preserves compactness.
Lemma 23.3.10. The functor
D-mod% (Bung) — D—mod% (Bung)temp,
right adjoint to the tautological embedding, is fully faithful on compact objects.

Assuming these two lemmas for a moment, we obtain the assertion of Theorem 23.2.5 from the
commutative diagram (23.3).

23.4. Proof of Lemma 23.3.9.

23.4.1. Tt is enough to show that ®¢ sends objects of the form Eis™**P°(F), for F € QCoh(LS;(X))°
to compacts.

23.4.2. Note the functors
Eis P . IndCOhNilp(LSM(X)) = CT°Pec . IndCOhNilp(LS@(X))
are mutually dual, up to tensoring by a line bundle on LS ;.

Hence
L¢ o Eis™%P°
is isomorphic to
(CT—,spec OILG)V,
up to tensoring by a line bundle.

—»SP¢ s isomorphic to

Hence, combining with Theorem 21.2.2, we obtain that L o Eis
(Las 0o CT,)Y ~ Eis, oLy,
again up to tensoring by a line bundle.
23.4.3. Now, by [Gai2, Theorem 4.1.2],
7 © Mirpung 0 Eis, ~ Eis, o Mirgun,, o7m.

Combining, we obtain that
D¢ o Eis™ " ~ Eis; o®yy,
again up to tensoring by a line bundle.

Now, the assertion follows from the fact that the functors ®5; send compacts in QCoh(LS; (X)) to
compacts in D—mod% (Bunaz), which follows from the isomorphism I[,ﬁ/,’temp ~ P s temp-
O[Lemma 23.3.9]

23.5. Proof of Lemma 23.3.10. For this proof we can (and will) identify D—mod%(Bunc) with
D-mod(Bung).
23.5.1. For an object F € D-mod(Bung), let
Ftemp = F — Tanti-temp
be the fiber sequence associated with
D-mod(Bung )temp < D-mod(Bung).
We have to show that for a pair of compact object F1,F2 € D-mod(Bung), the map
Homp.moed(Bung) (F1, F2) = Homp_mod(Bung) (F1,temps F2,temp)

is an isomorphism.
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23.5.2.  As we shall see, just the assumption that F2 be compact will suffice. Thus, we have to show
that if &, is anti-tempered, i.e., if

¥ — ffl,anti-temp
is an isomorphism, and F, is compact, then

HomD-mod(BunG) (3:17 ?Z,temp) =0.

Recall (see [Gai2, Theorem 3.1.5]) that the functor Mirgun,, is an equivalence. Hence, it is enough
to show that

(23.8) Homp.mod(Bung )eo (MiTpung (F1), Mirg,, . (F2)) = 0.
23.5.3. Recall that compact objects in D-mod(Bung) are of the form
ju(Fv),
where ]
U ‘g Bung

is the embedding of a quasi-compact open, and Fy € D-mod(U)°.

With no restriction of generality, we can assume that U is co-truncative (see [DG, Sect. 3.1] for
what this means). In this case we have

Mirg g, 0(j)t 2 (G0)x,co;
where
(ju)+,co : D-mod(U) — D-mod(Bung)co
is the tautological functor.
Hence, in order the prove (23.8), it suffices to show that if ¥ € D-mod(Bung) is anti-tempered, then
()0 © Mirp y,, (F) =0,
where (ju )& is the left adjoint of (ju)«,co-

23.5.4. Let
Id"™ : D-mod(Bung)co — D-mod(Bung)
be the naive functor (see [Gai2, Sect. 2.1]). Recall that
(Ju)eo = (ju)" o 1d™.
Hence, it suffices to show that the compisite functor
nv . —1
Id™ o Mirg,,,,
annihilates the anti-tempered subcategory.

23.5.5. Note that both functors Id"™" and Mirgun,, commute with the Hecke action. Hence, it suffices
to side for any ¥ € D-mod(Bung), we have

(Id™ o Mirgn,, (F))anti-temp = 0.
However, this follows follows from the next result of [Ber2]:
Theorem 23.5.6. The functor 1d™ oMirgﬁnG sends D-mod(Bung) to D-mod(Bung)temp-
O[Lemma 23.3.10]

23.6. The composition L¢ o (Lg)”. Recall that the geometric Langlands conjecture says that the
functor Lg is an equivalence. We can now reformulate this as saying that the unit of the adjunction

Id — Lg o (Lg)*

is an isomorphism as endofunctors of IndCohyiip (LS5 (X)), combined with the fact that the functor
L¢ is conservative (the latter will be proved in Part V of this paper, see Sect. 24.3.2).

In this subsection we commence the study of the composition Lg o (Lg)*.
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23.6.1. Note that L¢ o (Lg)*, viewed as an endofunctor of IndCohyip(LSs (X)), is QCoh(LS s (X))-
linear. Hence, it it is a priori given by an object in

Ac € IndCOhNilp(LSG(X)) ® IndCOhNilp(LSG(X)).
QCoh(LS (X))

The goal of this subsection is to prove the following assertion:

Theorem 23.6.2. The object Ag belongs to

QCoh(LS¢ (X)) ~ QCoh(LS4 (X)) ® QCoh(LSg (X)) C
QCoh(LS (X))

C Il’ldCOhNilp(LSG (X) % IndCOhan (LSG(X))
QCoh(LS 4 (X))

In other words, this theorem implies that we have an isomorphism

Leco(Le) ~Ac ® —, Ac€ QCoh(LSs(X)).

OLs & (X)

Remark 23.6.3. Once Theorem 23.6.2 is proved, and given the fact that the functor L¢ is conservative,
we will have interpreted Conjecture 20.3.8 as the statement that the unit of the adjunction

(23.9) OLSG(X) — Ag
is an isomorphism in QCoh(LSx(X)).

In Part V of this paper, we will show that the map (23.9) becomes an isomorphism when restricted
to the reducible locus of LS (X). This will reduce Conjecture 20.3.8 to the study of the restriction of
Ac to the irreducible locus LS‘ged(X) (X).

In Paper 3 of this series, we will show that
A irred ‘— A irre
Girred G|Ls p 4(X)
is a classical vector bundle equipped with a flat connection.

In Paper 4 of the series, we will deduce from this that (23.9) is an isomorphism also over LS¥*?(X),
thereby proving Conjecture 20.3.8.

23.7. Proof of Theorem 23.6.2.

23.7.1. Let j : LSE*!(X) C LS&(X) denote the embedding of the locus of irreducible local systems.
Leti: LSrC:?d (X) — LSx(X) be the embedding of its complement (with any scheme-theoretic structure).

Let
(23.10) IndCohnilp (LS (X))rea € IndCohninp (LS (X))
be the full subcategory of objects set-theoretically supported on LS’gd.

In other words,

IndCohniip (LS (X))rea = ket(5 : IndCohnip (LS (X)) — IndCohnirp (LSE Y (X))).
Denote bya the tautological embedding,
IndCohnilp (LS (X)) rea — IndCohnilp (LS (X))
and by?‘ ist right adjoint.
it : IndCohnilp (LS5 (X)) rea = IndCohiip (LS (X)) : 7
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23.7.2. In order to prove that Ag belongs to QCoh(LSx (X)), it suffices to show that
(" ®5")(Ac) € QCoh(LSE™ (X))
and

(23.11) (' ®7)(Ac) € QCoh(LSE(X)).

The former is automatic, since the spectral nilpotent cone Nilp restricted to LSinred(X ) consists only
of the zero section, so the embedding
QCoh(LSE*Y (X)) C IndCohnilp (LSEY (X))
is an equality, see also [AG, Proposition 13.3.3].
We now proceed to proving (23.11).

23.7.3. Since both functors Lg and L& are compatible with the inclusions and projections
IndCohnyiip (LS (X)) = QCoh(LS¢e) and D-mod% (Bung) S D—mod% (Bung)temp,
so is the composition Lg o LL.
Denote the induced endofunctor of QCoh(LS¢g) by Ag temp- In other words,
Lé,tomp © (L&)temp := AGtomp @ —, A omp € QCoh(LSs(X)).

OLs 5 (X)

In order to prove (23.11), it suffices to show that

(Lg o H‘é)|IndCOhNilp(LSG‘(X))red ~Agtemp  © =

OLs & (X)
as endofunctors of IndCohniip (LS ¢ (X))red-
For that end, it suffices to establish a functorial isomorphism
(23.12) Ac(M) ~ Agemp @ M, M € IndCohnip(LSe(X))red-
OLs 5 (X)
23.7.4. For M as above, let
Meemp and Ag(M)temp
denote the projections of M and Ag (M), respectively, along
(23.13) IndCohniip (LS (X))rea = QCoh(LS s (X)) red,
where
(23.14) QCoh (LS5 (X))rea := ker (j* : QCoh(LS (X)) — QCoh(LSE (X))) .
By construction
(23.15) Ac(M)temp ~ AGtemp @  Miemp-

OLs & (X)
Thus, we wish to show that (23.15) implies (23.12).
23.7.5. We claim:
Proposition 23.7.6. The functor (Lg o Lé)|IndCohNi1p(LS@(X))red preserves compactness.

Let us assume this proposition temporarily and finish the proof of Theorem 23.6.2.
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23.7.7. We claim that Proposition 23.7.6 implies the following:

Corollary 23.7.8. The restriction of Ag temp to the formal completion (LSx (X))
an object of QCOh((LSG“(X))erng(X))‘

A )
Lstsd () is perfect as

Proof of Corollary 23.7.8. The assertion of Corollary 23.7.8 can be reformulated as saying that

.AG,temp|(LSé(X))I/:SrG9d(X))

is dualizable as an object of QCoh((LSx(X ))Esrgd ( X)), and equivalently, as saying that the functor
AGtemp & —: QCoh((LS(;(X))ﬁSr;d(X)) — QCOh((LSG‘(X))QSYPd(X))
OLs & (X) G el

admits a right adjoint.

Note that restriction along

(LSG'(X))I/:sgd(X) — LSa(X)
defines an equivalence
QCOR(LSg(X))rea = QCON((LS (X)) grea (x)):
where
QCoh(LSx(X))rea C QCoh(LSx (X))

is as in (23.14).

According to [AG, Corollary 9.2.7], the category QCoh(LSx(X))red is compactly generated by

QCoh(LS (X)) N QCOoh(LSe(X))rea € QCoh(LS&(X))red-

Hence, it suffices to show that the functor

-A'G‘temp ® - QCOh(LSG(X))red — QCOh(LSG(X))red

OLs 5 (x)
preserves compactness. However, this follows from Proposition 23.7.6 via the commutative diagram

LgoLk

IndCOhNilp(LSG(X))red IndCOhNilp(LSG (X))red

I |

Ag,temp 24 -
OLSG(X)

QCoh(LSg(X))rea  ———— s QCOM(LSg(X))rea-

Indeed, an object of QCoh(LSx(X)) is compact if and only if its image in IndCohyip (LS (X)) is
compact.
O

23.7.9. Let M be as in (23.12). By Proposition 23.7.6,
Ac(M) € Coh(LSx(X))rea := Coh(LSx (X)) NIndCoh(LSx (X)),

and by Corollary 23.7.8, the object Ag,temp ® M also belongs to this subcategory.
OLs & (X)

The projections of these objects along (23.13) are identified by (23.15). The isomorphism (23.13)
now follows, since the restriction of (23.13) to

Coh(LS¢(X))rea C IndCoh(LS¢(X))rea

is fully faithful.
O[Theorem 23.6.2]

23.8. Proof of Proposition 23.7.6.
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23.8.1. Let
D-mod, (Bung)eis C D-mod (Bung)

denote the full subcategory generated by the essential images of the functors
Eis; : D—mod% (Bunas) — D—mod% (Bung)
for Levi quotients M of proper parabolics P C G.
23.8.2. We claim that the functors
Le : D-mod (Bung) = IndCohniip (LS¢ (X)) : L&
send the full subcategories
D-mod (Bung)mis C D-mod (Bung) and IndCohniip (LS (X))rea C IndCohninp (LS (X))
to one another, and the resulting functors
Le : D-mod (Bung)eis S IndCohitp (LS (X))sea : L&
preserve compactness.

also preserves compactness.

red

This would imply that (Lg o Lé)hndCohNﬂp(Lsc(x))

23.8.3. For the functor LLg, this follows from its compatibility with the Eisenstein procedure, expressed
by Theorem 20.4.5.

23.8.4. To prove the assertion for L%, we note that the subcategory (23.10) is generated by the
essential images of the functors

EiSSpec : IndCOhNilp(LSM(X)) — IndCOhNilp(LSG(X))
for proper parabolics (indeed, the collection of their right adjoints, i.e., the functors CT*P°° is conser-
vative on IndCohniip (LS (X )rea)-

Now, the assertion concerning L% follows from the commutative diagram (23.2).
O[Proposition 23.7.6]
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Part V. The Langlands functor is an equivalence on Eisenstein subcategories

In this Part we prove the main result of this paper, Theorem 24.1.2, which says that the Langlands
functor Lg and its left adjoint LE define mutually inverse equivalences between the following full
subcategories on the geometric and spectral sides, respectively:

e On the geometric side, this is the subcategory
D-mod (Bung)gis C D-mod (Bung),

generated by the essential images of the Eisenstein functors Eis) for all proper parabolics;
e On the spectral side, this is the full subcategory

IndCOhNilp(LS@(X))red C IIldCOhNilp(LSé(X)),
consisting of objects, set-theoretically supported on the locus LSrGeGl (X) C LSx(X), consisting
of reducible local systems.
As an almost immediate corollary of this result, we will obtain a proof of the geometric Langlands
conjecture (Conjecture 20.3.8) when the group G is GLy, see Sect. 24.2.
We will reduce the assertion of Theorem 24.1.2 to the following one (Theorem 24.4.2): the functors

CT—,spec,part.enh and CT—,spec,part.enh O]LG o ]Lé,

,spec,part.enh

are canonically isomorphic, where CT™
functor from Sect. 19.3.3.

is the partially enhanced spectral constant term

In its turn, the proof of Theorem 24.4.2 will use the following ingredients:

The expression for L& via L¢ (see formula (23.1));

The self-duality of I(G, P~)"¢ (see Theorem 3.2.2);

The relation of the above self-duality to the Miraculous functor Mirgun, (Theorem 25.2.3);
The relation of the above self-duality to the partial enhancement, expressed by (the innocuous-
looking) Lemma 3.4.2.

24. STATEMENT OF THE EQUIVALENCE

In this section we state our main result, Theorem 24.1.2 and commence it proof, by reducing it to
Theorem 24.4.2, and further, to Theorem 24.5.7.

We will first prove the unenhanced version of Theorem 24.5.7, given by Theorem 24.6.2. This proof
of Theorem 24.5.7 will follow the same pattern, once we decorate it with appropriate manipulations on
the local semi-infinite categories, i.e.,

(G, P7)"°° and I(G, P™)"oPee,

As a first application of Theorem 24.1.2, we give a proof of the geometric Langlands conjecture for
the group GL,,.

24.1. Statement of the result.

24.1.1. In Sect. 23.8.1, we have considered the pair of (mutually adjoint) functors
(24.1) Le : D-mod; (Bung)gis S IndCohnitp (LS (X))rea : L&.
In this section we will formulate and begin the proof the main result of this paper:

Main Theorem 24.1.2. Let us assume that GLC' is valid for Levi subgroups of all proper parabolics
of G. Then the adjoint functors in (24.1) are mutually inverse equivalences.
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24.1.3. From Theorem 24.1.2 we obtain:

Corollary 24.1.4. The natural transformation in (21.8) is an isomorphism.

Proof. By passing to the right adjoints along the vertical arrows in

D-mod% (Bunu) SLIVEN IndCohniip (LS 7 (X))

~

EiS:pP(“’X)[EN(P_)pP(wX)]l lEis_’Spec

D—mod% (Bung)Eis ’E——) IndCOhNilp (LSG (X))redy

we obtain that the natural transformation in question is an equivalence, once both circuits on the
diagram are restricted to

D-mod% (Bung)gis C D-mod% (Bung).

Hence, in order to prove the corollary, it suffices to show that both circuits vanish when restricted
to

D—mod% (Bung)cusp := (D-mod% (Bung)Eis)J‘

The vanishing is tautological for the clockwise circuit. For the vanishing of the anti-clockwise circuit,
it suffices to show that there exists some isomorphism
—,spec ~ — _
CT olLg >~ Ly o CT pp(wx)[ 6N(P_)pp(wx)]'

*y

However, the latter is given by Theorem 21.2.2.

Remark 24.1.5. As was already mentioned, we do not know whether the isomorphism
CT—,speC O]LG jad ]LM o CT;PP(“)X)[_6N(P_)Pp(wx)],
constructed in Corollary 24.1.4 above equals the one given by Theorem 21.2.2.

Remark 24.1.6. Note that Theorem 24.1.2 implies that the GLC is equivalent to the statement that
the functors (L%, Le) define mutually inverse equivalences

(24.2)  La.irrea : D-mod s (Bung)cusp = IndCohniip (LSE Y (X)) ~ QCoh(LSE®Y (X)) : LE srrea-
As was mentioned in Remark 23.6.3, this is equivalent to showing that the map

(24.3) OLsiéred(X) — Ag,irred,

induced by (23.9), is an isomorphism.

24.2. Proof of Conjecture 20.3.8 for G = GL,,. Assuming Theorem 24.1.2, in this subsection we
will give a proof of Conjecture 20.3.8 in the case when G = GL,,.

24.2.1. First off, by induction on n, we can assume that Conjecture 20.3.8 holds for all proper Levi
subgroups of G. Hence, the conditions of Theorem 24.1.2 are satisfied.

Hence, by Remark 24.1.6 it remains to show that the (mutually adjoint) functors in (24.2) are
(mutually inverse) equivalences of categories.

We need to show that the map (24.3) is an isomorphism. It suffices to show that it induces an
isomorphism at the level of fibers at all geometric points of LS‘ged(X ).
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24.2.2.  We now recall the following assertion, which follows from the main result [Berl]:
Theorem 24.2.3. Suppose that G = GL,,. Then the composite functor

(24.4) D-mod% (Bung)cusp — D-mod% (Bung) cocffa Whit' (G)ran

is fully faithful.

Remark 24.2.4. Note that once Conjecture 20.3.8 is proved, we would know that the assertion of
Theorem 24.2.3 holds for any G.

Note also that, thanks to [FR1], we already know that the above functor is conservative for any G.

24.2.5. Passing left to adjoint functors in (24.4), we obtain that the functor

Poinc ¢

Whit' (G)ran  — D-mod; (Bung) — D-mod 1 (Bunc)eusp
is a localization.

Consider the commutative diagram

cs;t

Whit' (Grg ran)  +—2—  Rep(G)ran
POinCG‘![726N0(wx)]l J{Locsé’ec
]LL
(24.5) D-mod; (Bung) "= QCoh(LS¢ (X))
LE irred
D-mod% (BunG)cusp . QCOh(LSG (X))’

in which the upper portion is (20.5).

As we have just seen, the left composite vertical arrow in (24.5) is a localization. Note that the
composite right vertical arrow in (24.5) is also a localization: indeed, each of the right vertical arrows
has this property.

Since the upper horizontal arrow is an equivalence, we obtain that the functor Lé,med is a localiza-
tion.

24.2.6. Let
o : Spec(K) — LSE°(X)
be a geometric point. Applying base change

— ® Vecti
QCoh(LSic‘.;fed(X))
to (24.2), we obtain an adjunction
(24.6) Le.o : D-mod 1 (Bung )eusp ® Vectx S Vectx : Lé o
2 QCoh(Lsirred (X))

and the corresponding morphism of K-algebras
(24.7) K — Ac,o,
where Ag,s is the fiber of Ag at o.

The fact that Lé,i”ed is a localization implies that ]Léa is also a localization. This means that
either the map (24.7) is an isomorphism (which is what we want to show), or Ag,, = 0.

We claim, however, that the latter is impossible (note that in the argument given below we will use
yet another additional piece of knowledge about GL,).
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24.2.7. Note that if Ag,, were 0, this would mean that the category

D-mod 1 (Bung)s := D-mod 1 (Bung)cusp ® Vectx
2 2 QCoh(LSitred (X))

is 0.

Performing base change k ~ K, we identify D-mod 1 (Bung), with the category of Hecke eigen-
sheaves with respect to o.

However, it was shown in [FGV] that for an irreducible o, the category D-mod 1 (Bung), contains

a non-zero object.
O[Conjecture 20.3.8 for GLy]

24.3. Proof of Theorem 24.1.2: initial observations.

24.3.1. In the course of the proof of Proposition 23.7.6, we have seen that the essential image of each
of the functors in (24.1) generates the target category.

In particular, we obtain that the functor La|p-mod; (Bung)g;. 1S conservative.
2

Hence, in order to prove Theorem 24.1.2 it suffices to show that the functor ]LéhndCohNi]p(LSG(X))red
is fully faithful.

Le., we need to show that the unit of the adjunction
(24.8) Idindcohygy (LS g (X))rea —* (L © ]Lé)|IndCohNi1p(LSG(X))red
is an isomorphism.
24.3.2. As an aside, let us show that the functor

Le : D-mod% (Bung) — IndCohniip (LS (X))

is itself conservative.

Indeed, given the conservativity of Lg|p-mod ; (Bung)m it suffices to show that La|p-mod ; (Bung)eusp
is conservative. However, the latter was established in [FR1]. ’
24.3.3. By Theorem 23.6.2, the endofunctor L¢ o L is given by tensor product with an object

Ac € QCoh(LSx(X)).

Moreover, the structure of monad on L o LL corresponds to a structure of associative algebra on
Ac as an object of the (symmetric) monoidal category QCoh(LSx(X)).

Under this identification, the unit of the adjunction

Idindacohy, (Lsg(x)) = La o L&

corresponds to the map of associative algebras

(24.9) OLSG(X) — Ag.

24.3.4. In order to show that (24.8) is an isomorphism, it suffices to show that the *-restriction of the
map (24.9) to the formal completion

(LSG(X))ﬁsgd C LS

is an isomorphism.
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24.3.5. Note that the composition
QCOh(LSG(X))red > QCOB(LSG(X)) > QCoh((LSe (X)) irea)

is an equivalence.

Note also that the collection of functors

(p¥°")" : QUoh(LS (X)) — QCoh(LSp- (X)),

for proper standard parabolics of G, is conservative on QCoh(LSx(X))red-

Hence, it suffices to show that for each proper parabolic as above, the induced map
(24.10) Ous,_ (x) = (P")*(Ac)

is an isomorphism.

24.3.6. We will deduce this from the following statement:

Main Lemma 24.3.7. For every proper parabolic, the object
(P¥™")"(Ac) € QCoh(LSp- (X))

is a line bundle.

Indeed, the fact that Main Lemma 24.3.7 implies that (24.10) is an isomorphism follows from the
next observation:

Proposition 24.3.8. LetY be any prestack and let Ay be a unital associative algebra object in QCoh(Y).
Assume that Ay is a line bundle. Then the unit map u : Oy — Ay is an isomorphism.

Proof. Briefly, the cone of the unit map is a perfect complex. In general, one can verify the vanishing
of a perfect complex by checking the vanishing of its fibers at field-valued points. This reduces us to
the case where Y is the spectrum of a field, where the assertion is obvious.

We also present an alternative argument that adapts more generally when Ay is a unital associative
algebra in a symmetric monoidal stable co-category whose underlying object Ay is invertible.

After tensoring m : Ay ® Ay — Ay on the left with the inverse line bundle Ai?_l, we obtain a map
v : Ay — Oy. It is straightforward to check that v is the inverse to .

Indeed, first one sees that the composition v o u is the identity for Oy by tensoring with the line
bundle Ay and using the definition of v. This means Ay = Oy @ X for a summand X and compatibly
with u. It suffices to see that the map o : X — Ay is nullhomotopic to deduce that K is zero. The
composition

KN AKX A0A ™ A
clearly equals a, but as m = id ®v by definition of v and as v o & = 0 by definition of X, we obtain the
desired nullhomotopy.
O

O[Theorem 24.1.2]
24.4. Proof of Main Lemma 24.3.7.

24.4.1. The key ingredient in the proof of Main Lemma 24.3.7 is the following assertion:
Theorem 24.4.2. Assume that Conjecture 20.3.8 holds for M. Then the functors
CTsPeeenb o o ]Lé and CT-Specenh
become isomorphic after composing with the forgetful functor
full — part : IndCohniip (LS (X)) ™ — IndCohnip (LS (X))~ Partent,

The proof of Theorem 24.4.2 will occupy the rest of the paper.
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Remark 24.4.3. Once Theorem 24.1.2 is proved, it will follow formally that the functors
CT Pt oL o LE and CTSPecenh

themselves are isomorphic.

24.4.4. Let us show how Theorem 24.4.2 implies the statement of Main Lemma 24.3.7.

glob is a morphism between quasi-smooth stacks, it suffices to show that

Since p
(24.11) (P°")' (Aa) ~ (p¥")! (OLs, (x) (X)),

when view both Ag and Ops,(x)(X) as objects of IndCohnip (LS# (X)) via

EO’NHP : QCOh(LSG(X)) — IndCOhan(G).

24.4.5. According to Lemma 19.3.4, the composition

—,s sent
CT —-spec.enh )—,enh full—»part

(24.12) IndCOhNilp(LSG(X)) IndCOhNilp(LSG(X)

— IndCohNﬂp (LSG- (X))*ypart.enh

identifies with

IndCohyitp (LS (X)) < IndCoh(LSg (X)) ¢

loby!
P22 IndCoh(LS - (X)) — IndCoh y;yyy (LS p— (X)),
where the last arrow is the right adjoint to the tautological embedding

IndCoh ;. nyp (LS5 (X)) < IndCoh(LS 5 (X)).

In particular, the restriction of (24.12) to
QCoh(LSx(X)) C IndCohniip (LSx(X))
identifies with

(

QCOh(LS¢ (X)) ™% QCoh(LS 5 (X)) < IndCohyy iy (LSp- (X)).

24.4.6. Thus, in order to prove (24.11), it suffices to show that
(full = part) o CT P! (A¢) ~ (full — part) o CT P (Org _ (x)).
However, by Theorem 23.6.2,
(24.13) A ~ Lg o L& (OLs, (x))
as objects of QCoh(LSx (X)) C IndCohniip (LS (X)).

Hence, (24.13) follows from Theorem 24.4.2.
O[Main Lemma 24.3.7]

Remark 24.4.7. The above proof produces an isomorphism
(pglob)*(AG) ~ OLSP7 (X)-
However, we do not claim that this isomorphism equals the unit morphism (24.10).

24.5. The partially enhanced geometric constant term functor.
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24.5.1. Recall the factorization algebra
Q € Sph,,,
see Sect. 3.3.

Consider the category

— part.enh
D-mod 1 (Bunyy) ~P*temt,
2

—,enh

constructed in a way parallel to D-mod 1 (Bunar) , where at the local level we perform the operation

Q-mod(Sph,;) ® D-modi(Buny) ~ Rep(P”) ® D-mod.(Buny)
Sph s 2 Sph

M Rep(M) 2

instead of

(G, B)* ® D-modi (Bunys) := ~pP(wX)-mod(SphM) ® D-modi (Bunas) ~
phas 2 Sphy 2

pp(wx) s

~ ﬁSpeC—mod(Sphj@ec) ® D-modi (Buny).
sphj\;ec 2

24.5.2. The homomorphism (3.13) gives rise to a forgetful functor

Qpp(wy)-mod(Sph,,) — Q-mod(Sph,,),
and hence to a functor

—,enh

—,part.enh
pp(wx) )

full — part : D-mod% (Bunas) — D—mod% (Bunu)

The functor
oblvg : Q-mod(Sph,,) — Sph,,
gives rise to a functor

)—,part.enh

OblVpart.enh : D—mod% (Bunas — D—mod% (Bunar),

so that
0blvenh =~ 0blVpart.enh © (full — part).

24.5.3. Denote
CT—,part.enh — (full N part) o CTTenh

*pp(wx) PP (wx)
We have
—,part.enh _ -
Oblvpa.rt.enh o CT*,pP(wx) - CT*,PP(WX) :

24.5.4. As in Sect. 22.1.1, the functor Lys upgrades to a functor

]L&,part.enh . D—mod% (BunM)f,part.enh N IndCOhNilp(LSM(X))f,part.enh

so that we have a commutative diagram

]Lf,enh
—,enh M —,enh
D—mod%(BunM)p:(I;X) — IndCohniip (LS 37 (X)) ™
full%partJr lfull—)part
—,part.enh
D d: (B —,part.enh L IndCohn; LS. (X —,part.enh
-mod; (Bunar) —— IndCohwiip (LS 7 (X))
Oblvpart.cnh l lOblvpart.cnh

D-mod (Bunyy) LN IndCohxilp (LS 7 (X)).
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24.5.5. In a parallel fashion, the functor ®,s gives rise to functors
q>1\—4,part.enh . IndCOhNilp(LSM(X))—,part.enh N D—mod% (BunM)—,part.enh

and

® ;" - IndCohnirp (LS 7 (X)) ™™ — D-mod (Bunjy) ot

pp(wx)

so that the diagram

cI>7’e"h
D-mod ; (Buny ),y —  IndCohni (LS y (X)) "
full%partl lfull—)part
g~ ,part.enh
D-mod (Buny)—oPart-ent M [ndCohpip (LS yy (X)) ~oPart-enh
Oblvpart,enhl J{Oblvpart.enh
D-mod% (Bunas) L2V IndCohniip (LS 7 (X))

commutes.

24.5.6. It follows formally from Theorem 22.2.4 that we have an isomorphism of functors

—,part.enh _ ~o T —»part.enh —,part.enh
CT*,PP(WX) OLG[ 6N(P7)pp(wx)] =~ Ly OCT*,pP(wx) :

Note that the assumption that Las is an equivalence, formally implies that so is L,;P*""""

. . — ,part.enh
inverse given by @, P4,

, with

Hence, using Theorem 23.2.5, in order to prove Theorem 24.4.2 it suffices to prove the following:
Theorem 24.5.7. There exists a canonical isomorphism
—,part.enh ~ & part.enh —,spec,part.enh
CT*;PP(WX) O(I)G [_6N(P7)pp(wx)] =~ (bM [0} CT .

The rest of the paper will be devoted to the proof of Theorem 24.5.7.

Remark 24.5.8. As in Remark 24.4.3, once Theorem 24.1.2 is proved, it would formally follow that we
actually have an isomorphism of functors

(24.14) CT, " o®g [~y (p- Yopoy) = @, o QT sPes ek

#pp(wx)

The reason we cannot prove (24.14) directly is that we do not know a certain (expected) self-duality
statement for the local category

I(G, P—)spec,loc’
see Sect. 25.4.5.

24.6. The unenhanced version of Theorem 24.5.7.

24.6.1. For expositional purposes, we will first prove an unenhanced version of Theorem 24.5.7:
Theorem 24.6.2. There exists a canonical isomorphism
- ~ —,spec
CT*,DP(UJX)O(I)G[_(SN(P’)‘)P(WX)] =~ ®a o CT :

The rest of this section will be devoted to the proof of Theorem 24.6.2.
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24.6.3. Dualizing and applying the definition of the functors ®¢ and ®,s, we obtain that the required
isomorphism is equivalent to

(24.15) Lg o 7¢ o Mirgung o Eis, ,, (,,)[40c — 20N p(wy) 6N(P*>pp(wx)] =

~ (CT—,speC)\/ oLyyoTam o MiI'BunM [451\/1 — 25N(M)ﬂM(uX)]’

where
. L - v
EIS*:PP(WX) T (CT*aPP(WX)) :

#pp(wx)
e Over the connected component of Bunys of degree A, the cohomological shift to the right by
the amount

In other words, Eis is the composition of the following functors:

(A, 2pp) + 6N(P*)pp(wx);
e Pushforward along the translation map

transl, , (wy) D-mod% (Buny) — D-mod% (Buny);
e The functor (p~)« o (q7)', i.e., -pull and *-push along the diagram (15.2).

24.6.4. Let £,,(wy) be the line bundle on LSy;(X), given by Weil pairing with pp(wx) € Bung,, (see
Sect. 20.2.4).

Proposition 24.6.5. There erists a canonical identification of (non-graded) line bundles on LS p— (X):

a (L2, ) =~ det(T" (LS - (X)/LS 34 (X))).

pp(wx)
Let us accept Proposition 24.6.5 temporarily and proceed with the proof of (24.15).
We obtain a canonical isomorphism
(24.16) (CT*)Y ~ Eis " o(— ® Lf’}f(wx))[dim(LSp_ (X)) — dim(LS 4 (X))],
where we also note that
dim(LSp- (X)) — dim(LS 7 (X)) = d¢ — dm-

24.6.6. Note also that under Ly, the endofunctor
—®Lppwx)

of IndCohiip (LSy; (X)) corresponds to (transl_,,(,))~ as an endofunctor of D—mod%(BunM)7 cf.
Sect. 20.2.4.

Hence, we can rewrite the desired isomorphism (24.15) as
(24.17) Lg o 7¢ o MirBung OEiS:,pP(wX)[?’(SG — 26Np(wx) — 5N(P_)pp(wx)] ~
~ Rig~sPec oLy o (transl,gpp(wX))* O TMm O MirBunM [351\/1 — 26N(M)PM(“’X>]'

24.6.7. 'We now apply the isomorphism of Theorem 20.4.5:

(24.18) Lo 0 Bisi o) [0 (P, o] = BisT P oLy
This allows to rewrite the desired isomorphism (24.17) as
(24.19) Lg o 7¢ o Mirpung 0 Eis, , (,,,)[30c — 20Ny — 26N(P_)pp(wx)] ~

~Lgo EiS:PP(WX) O(tranSl*QPP(wX))* © 7ar © MirBuny, [30a — 26N(M)pM(wx)]'
Le., it is sufficient to establish the isomorphism
(24.20) 7 o MirBung o Eis; , (. )[30¢ — 26N, ) — 26N(P’)pp(wx>] o~
~ Bis| () O(transl_op, wx))s © Tar © Mirguny, [30m = 2681y, ()]

purely on the geometric side.
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24.6.8. Let

Eis!un—ren , EIS[_ ,un-ren , EIS: ,un-ren

be the un-renormalized Eisenstein functors: i.e., we perform the pull-push along (15.2) without applying
cohomological shifts.

Then over the connected component of Bunys corresponding to A € Ag,p, the left-hand side of
(24.20) is

(24.21) 76 © Mirpung 0 Eis """ o(transl, , (wy))«[30c — 25Nﬂ(wx) — 35N(P7)pp(wx) — (X, 2pp)]
and the right-hand side is

(24.22)  Eis; """ o(transl, , (wy))« © (transl_o,  (wy) )« © Tar © MirBuny,
[B0ar =268 (a0) 0y T ONP), gy — AT 20P(29 = 2),20P)].
Thus, we have to establish the isomorphism of functors
(24.23) 7@ o MirBung © Eisy """ o(transl, ; (wx))+ =
~ Eis, """ o(transl, , (wy))« 0 (transl_o,p(wy))« © Tar © MirBun,, =
= Eis; """ o(transl_, . (wy))« © Tar © MirBun,,

and the numerical identity

(24,24) 30g — 26Nﬂ(wx) — 36N(P*) =30p — 25N(M)PM(WX) + 5N<P7)pp(wx) — <2pp(2_g — 2), 2ﬁp>

pp(wx)

24.6.9. Recall that, according to [Gai2], we have a canonical isomorphism of functors
(24.25) Mirgun,, © Eis, """ ~ Eis/"" ™" o Mirgun,, -

This implies (24.23) using the fact that

un-ren

7¢ o Eis;

,un-ren

oTn =~ EiS!_
and that
Tar © (transl, ,wy))« = (transl_,,(wy))« © T
The identity (24.24) is a straightforward verification using Riemann-Roch.
O[Theorem 24.6.2]

Remark 24.6.10. Thus, modulo the overall cohomological shifts, the proof of (24.15) amounts to the
following diagram

D—mod%(BunM)co M) D-mod%(BunM) T, D—mod%(BunM) i, IndCohniip (LS 37 (X))

l(transl,gpP(WX))* l*m;@ﬁ(wx)

Eis:,pP(wX>J, lEiSz,pp(wm D-mod 1 (Buny) —— IndCohyip (LS 4 (X))
lEisprwx) lEis_’spoc

D-mod: (Bung)co — D-mod
p)

- 1(Bung) ——— D-mod: (Bung) ——— IndCohpiip(LSx (X)),
irBung 2 TG 2 La

in which the two left squares commute up to cohomological shifts, and the composite right vertical
arrow identifies with (CT~*P°°)Y again up to a cohomological shift.

24.7. Proof of Proposition 24.6.5.
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24.7.1. The proof is based on the following general observation:

Lemma 24.7.2. Let E be a local system on X and let € be the underlying vector bundle. Then there
exists a canonical isomorphism

det(Tar (X, E)[1]) ~ Weil(det(&),wx).

Proof. We calculate I'qr (X, E) using the de Rham complex
X&) - I'(X, & ®wx).
Hence,
det(Tar (X, E)[1]) ~ det(T'(X, &€ ® wx)) ® det(T(X, €))® "
Using formula (12.6), we have
det(D(X, EQwx))@det(T(X, €))® ™! ~ Weil(det (&), wx )@det(T(X, wx ))® ™ @det(I(X, 0x))® ™),

However,
det(T'(X,wx)) ~ det(I'(X, 0x)),

whence the result.
O

24.7.3. Let o, be a M-local system, and let P,; be the underlying M-bundle. The fiber of
T*(LSp— (X)/ LSy (X)) over oy is

(Car (X, n(P7)ay)[1])7,
which using Verdier duality can be rewritten as
Far (X, (n(Pi)*)Um)[l]'
Hence, using Lemma 24.7.2, we can rewrite the fiber of det(T™(LSp- (X)/LSy;(X))) at oy as
Weil(det((n(P_)*)yM),wx).

Since the Langlands dual Lie algebra is equipped with a pinning, the line bundle det((n(P~)*)
identifies with 2pp(Py;). This implies the assertion of the proposition.

Pr

O[Proposition 24.6.5]

25. A DIGRESSION: ENHANCED EISENSTEIN SERIES FUNCTORS

In this section, we prepare the ground for the proof of Theorem 24.5.7. In fact, we will make an
attempt to prove a fully (as opposed to partially) enhanced version of Theorem 24.5.7, given by (24.14),
but we will encounter an obstruction, when trying to carry out the duality step on the spectral side
(see Sect. 25.4).

Concretely, we will:

Introduce enhanced Eisenstein series on the geometric side;

Study their relation to the Miraculous functor Mirgun;

Introduce enhanced spectral Eisenstein series;

Prove a generalization of Theorem 20.4.5, given by Theorem 25.3.5, which establishes the
compatibility of the Langlands functor with the enhanced Eisenstein functors.

25.1. Enhanced Eisenstein series functors on the geometric side.
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25.1.1. For a fixed z € Ran, consider the prestack (16.7). The operation

(hr ) (s*(—) & (hapa) o <q*)*<—)) (dim. rel(Bunp— /Bunas)]
defines a functor

I(G7 P)lxoc ® D'mOdl (BunM) =
- S 2

phM,g

= D-mod (GrG,E)E(N(P_))i'ng(M)E ® D—mod% (Bunas) — D—mod% (Bung).

1
2 SPhM,g

Varying z, we obtain a functor, denoted

Eis, ™" : D-mod (Bunyps) ™" — D-mod (Bung).

25.1.2. Unwinding the constructions, one can see that the functor Eis, renh

CT:,enh.

is the left adjoint of

25.1.3. For a fixed x € Ran, define the category

D-mod (BunM);O’enh£ =1(G,P), ® D-mod (Bunas)co-

Sphpy o
Varying z, as in Sect. 16.1, we produce the category denoted

D-mod (Bunay) oo™

The adjunction (3.3) gives rise to a (monadic) adjunction

. _,enh
indenn,co : D-mod 1 (Bunas)co = D-mod 1 (Bunas)og™" : oblvenn,co-
2 2

25.1.4. The operation

! ! |

(M- 0)e (SI(—) @ (hep-2) © (qf)'(—)) [~ dim. rel(Bunp- / Bunyy)]

defines a functor

(Buny) =

1
2

(G, P)&s o ® D-mod

PhM,g

+
= D—mod% (Grrc;,g)E (M) ® D-mod% (Bunas) — D-mod% (Bung)co-

SNP e i,
Varying z, we obtain a functor, denoted
Eis, ™" D-mod (Bunys) o™ — D-mod (Bung).
‘We have
Eis, et oindenn,co ~ Eis; ,

where
Eis, = (CT;)",

i.e., Eis, is the version of EIS*,I)P(WX),

but without the pp(wx)-translation.
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25.1.5. The identification
(I(G, P)°%)Y ~1(@G, P)*

as factorization categories and
D—mod% (BunM)V ~ D—mod% (Bunas)eco

gives rise to an identification
(25.1) (D-mod% (BunM)f’e“h)v ~ D-mod (Bunjpy) o5 "

With respect to this identification, we have

indY,, ~ oblvenn,co and oblvy,, ~ indenn co-

25.1.6. Unwinding the definitions, we obtain that under the identification (25.1), the functor Eis; ™"
identifies with the dual of the functor CT, ™"

25.1.7. In a similar fashion we can consider the functor

s —senh . —,enh
Eis, ) oy D—mod% (BunM)pP(wX) — D—mod% (Bung),

which is the left adjoint of CT_**™»

*pp(wx)’

Recall, however (see (16.31)) that we have a canonical equivalence

* —,enh | —,enh _ —,enh
(transl, . () : D—mod% (Buna) ~D mod% (BunM)pP(wX).

With respect to this identification the diagram

h (traDSIZP(wxﬂﬂenh enh
—,en _ —
D-mod% (Bunu) D mod% (Bunar), ")
e . —enl
ElS! e ‘hl lEls!vP?(Lx)

Id

D-mod% (Bung) D-mod% (Bung)

commutes.
25.1.8. Proceeding as in Sect. 16.6, we introduce a translated version

—,enh
D—mod% (BunM)CO,pP (wx)

of the category
D-mod (Bunas) g™,
along with the functor

o —senh . —,enh
Els*’;P(wx) : D—mod% (BunM)CO;P(uX) — D—mod% (Bung).

We still have an identification

o)V h
(D—mod% (Bunas) % ) ~ D-mod% (Bunar) )"

pp(wx) co,pp(wx)’
with respect to which we have

Eisf,enh (CTf,enh )V'

~
*pp(wx) — *pp(wx)
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25.1.9. Asin (16.31), we have an equivalence

(25.2) (transl:P(wX))f’e“h : D-mod% (BunM);o’enh ~ D—mod% (BunM);;;";(wx),
and the following diagrams commute:
—,enh (25.2) —,enh
D-mod% (Bunas) ey — D-mod% (Bunar) 050 wx)
o en . —,enh
Eis_ hl JVElS*'pP(“"X)
D—mod% (Bung) 4, D—mod% (Bung)
and
transl;P (wx)
D-mod% (Bunar)co _ D—mod% (Bunas)co
Oblvcnh,coT TOblvcnh,co
D d (B )—,enh (tmnSl:P(wx))_Yenh D d (B )—,enh
-mo % UNM )co -1mo % unps copp(wx)”

25.1.10. Finally, the above constructions make sense when instead of the parabolic P~ we use its
opposite, and/or instead of the translation by pp(wx) we use any other Zjs-torsor, in particular,
—pp(wx).

25.2. Miraculous functor and enhanced Eisenstein series.

25.2.1. Recall the equivalence of factorization categories
T I(G, P7)e — 1(G, P)*,
see Sect. 3.2.4.
Tensoring Y'°¢ with the functor
Mirgun,, : D-mod(Bunas)co — D-mod(Bunay),
we obtain a functor to be denoted

yeleb . D-mod (Bunys) o™ — D-mod (Bunys )™,

25.2.2.  We now quote the following assertion (see [Chel, Theorem 5.3.5(b)]), which generalizes (24.25):

Theorem 25.2.3. We have the following commutative diagram of functors®®

Yglob )enh

D—mod% (Bunas) 5" D—mod% (Bunas

Eis:’e"h[éN(P_)]l lEis!e"h[—éN(P)]

MirBung

D—mod% (Bung)co D—mod% (Bung).

26The presence of the cohomological shifts in the diagram below is due to the fact that they were artificially built
into the functors Eis] **™" and Eis]*°"}, respectively.
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25.2.4. Note that the Cartan involution on G defines an equivalence
76 : (G, P)°° — I(G, P7)",
and when combined with the equivalence
™ : D—mod% (Buny) — D—mod% (Bunas),
we obtain an equivalence
D-mod (Bunjp )™ — D-mod, (Bunys) ",
to be denoted 7p.
The following diagrams commute by construction:

enh

D-mod% (Buny )t —E D—mod% (Bunas) ™

Eis'enhl lEisr,enh
T
D-mod; (Bung) —%—  D-mod:(Bung),
2 2

enh

D—mod% (Buny )t —2 D—mod% (Bunas) ™

CTinhT TCT*_ jenh
D—rnod% (Bung) —%— D—mod% (Bung),

and
D—mod% (Bunps) —2— D—mod% (Bunay)

oblvenhT TOblvenh
)—,enh

D-mod (Bunp )™t —F2— D-mod (Bunas

25.2.5. Concatenating with Theorem 25.2.3 we thus obtain the following commutative diagram

lob -
D—mod% (Bunpy)gg®™® e D—mod% (Bunjps)*™ —2— D—mod% (Bunjy) P
(26.3) Bis iy o) | | -on ) | g o)
Mirgun T
D-mod (Bung)ee — Gy D-mod (Bung) —E— D-mod (Bung).

25.2.6. We now consider the pp(wx)-translated of the above constructions. We have an equivalence

T UG, P )& pp (o) = UG P s

co,pp(wx

and a commutative diagram

—,enh yelob enh
D-mod  (Bun )5y s Demod (Bunar )
. —,enh ._enh
(25.4) Els*,pp(wx)[6N(P7)pP(X)]l lElSz,pP(wX)[*5N(P>pp(x)]
MirBunG
D-mod1 (Bung)eo BEE—A D-mod i (Bung).
2 2

The Cartan involution 7p is now an equivalence

enh 7.
D—mod% (Buna)§mlwy) — D—mod% (Buna)

—,enh
—pp(wx)”

We obtain the following variant of (25.3):

relob

D—mod%(BunM)c—o’:n;(wx) — D-mod%(BunM)ZI;h(wX) _Tr D—mod%(BunM)

—,enh
—pp(wx)

—,enh

. . h . —,enh _
Els*xﬂP(“’X)[éN(P_)ﬂP(X)]l lElS!e’r"’P(“’X)[75N(P)PP(X)] J,Els!’pr(NX)[ JN(P_)*PP(X)]

Mirgun T
D-mod (Bung)eo ] D-mod; (Bung) ~ —%—  D-mod (Bung).
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Remark 25.2.7. We can expand the latter diagram as

—,enh yelob enh TP —,enh
D-mod% (Bunar) gy — D-mod% (Bunm)phiwy) — D—mod% (Bunar) =770 )
l(transl_2pP(mX)):’e"h
. —,enh ..enh —,enh
EIS*YPP(MX)‘[ Els!ﬂpp(wx)l D-mod (Bunar), 70
. —,enh
lEIS!va(WX)
MirBunG TG
D-mod1 (Bung)eo T D-mod1 (Bung) ey D-mod1 (Bung),
2 2 2

in which the squares commute up to overall cohomologcal shifts, and where (transl_gpp(wx));’e“h is the
functor

(((transl_, _ (., ))*)—,enh)_1 B
PP(_x) ) ,enh_}

D-mod (Bunar)™) )

D—mod% (Bunas
)7,enh

w )" _ en
ppg) D—mod%(BunM) renh

pp(wx)”

((transl

Thus, we have constructed an enhancement of the left portion of the diagram from Remark 24.6.10.

25.3. Enhanced spectral Eisenstein series.

25.3.1. For a fixed z € Ran, consider the paradigm of Sect. 19.3.2. The operation
Hspec specy * ! *)spec *
(). (@ e G )

defines a functor

(G, P7)Peol  ®  IndCohnip(LS,7(X)) = IndCohniip (LS (X)).

= spec
SphM,g

Letting the point z vary along Ran, we obtain a functor, denoted

Eis P . IndCohip (LS 17 (X)) ™™ — IndCohnip (LS (X)).

25.3.2. Unwinding the construction, we obtain that the functor Eis™*P*®"! ig the left adjoint to the
functor CT%P¢%¢mh  4q defined in Sect. 19.3.

25.3.3. Recall the adjoint pair
indenn : Sph*® = 1(G, P7)°° : oblvenn.

Unwinding the construction, we obtain an identification of functors

. —,spec,enh —,spec,enh
Eis P P .

oindenn ~ Eis

25.3.4. The following assertion is an enhancement of Theorem 20.4.5:

Theorem 25.3.5. There exists a canonical datum of commutativity for the diagram

—,enh

L
D-mod% (Bunys) "0 2L IndCohyip (LS (X)) ~>enh
(25.5) Eis;;?:‘wx)[6N(P,)pP(wX)]l J’Eis_,spec,enh
D-mod; (Bung) ~ —<—  IndCohyip(LS¢ (X)),

The proof will be given in Sect. 25.5.
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Remark 25.3.6. Assuming Theorem 25.3.5 we can further expand the diagram in Remark 25.2.7, by
concatenating it on the right the diagram

—,enh
D—mod% (Bunar) =770 )

—,enh
(transl_QpP(wX))* e"‘l

—,enh

L
D-mod (BunM);If(‘;hX) M TndCohwip (LS ;7 (X)) e
Eis s, p(;:(th)J/ Eis—,spec,enhl
D—mod% (Bung) —_ IndCohniip (LS (X)),
G

which also commutes commute up to an overall cohomological shift. 1.e., we obtain the diagram

enh yelob enh TP —.enh
D-mod ! Bunp) o0 ) ——— D-mod 1 (Bunp)E0 ) —F— D-mod (BunM)_pP(WX)
,enh
(bransl g, 1 ))e M|
L—enh
i enh ..enh enh M - h
Eis . - ,en
S Pp(wx)J. ‘b!,PP(wx)l D-mod 1 (B““M)pp(wx) — IndCohpyp (LS py (X))
- enh
s PP(WX)l 1Eis~,spec,enh
MirBunG TG
-mo ung)eo —_— -mo un - -mo un R ndCohyy; = .
D-mod ; (Bung) D-mod ; (Bung) D-mod ; (Bung) 0 IndCohyp, (LS 5 (X))
2 2 2 G

25.4. What is missing for a direct proof of (24.14)7

25.4.1. Dualizing (24.14), we obtain that it is equivalent to the existence of an isomorphism of functors
. . —,enh —,spec,enh —,enh

(25.6) Lg o 7G o Mirung o Eis_ 700, ) = (CT™*P Yoo (@)Y,

up to a cohomological shift.

Given the diagram in Remark 25.3.6, we can break this into a combination of the following three
statements:

(1) There exists a (canonical) identification
\%
(25.7) (IndCohNup(LSM(X))_’e“h) ~ TndCohxitp (LS 7 (X)) "™
(2) Under the identification (25.7), we have
(CT—,spec,enh)V ~ Eis—,spec,enh;
(3) Under the identification (25.7), the functor
(®,;™)" : D-mod 1 (BunM)coj,“:(wx) — IndCohyip (LS (X)) "

identifies, up to a cohomological shift, with the composition

—,enh ~glob
D-mod%(BunM)Co,pP(wX) — D- mod1 (BunM)Co op(wx) N
(transl_o Vo€ L7 ek
—,enh pp(wx)/* —,enh M
— D—mod% (BunM)co!_pP(wX) — D—mod% (BunM)co!pP(wX) =—

— IndCohniip (LS 37 (X)) 7.
Remark 25.4.2. Recall the identification
IndCohnitp (LS 37 (X)) ™ =~ I(G, P ) Peoslob,
given by Theorem 19.1.6.
The category I(G, P7)Pe“&"°P is naturally endowed with a self-duality datum

.. Vv ..
(I(G, P—)spec,glob) ~ I(G, P—)spec,glob’
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and under this identification we have

(CTf,spec,enh)V ~ Eis™ ,spec,enh

Thus, the pathway towards establishing (25.6) boils down to verifying point (3) in Sect. 25.4.1.

25.4.3. Here is, however, how we envisage a direct local-to-global approach to verifying properties
(1)-(3) in Sect. 25.4.1.

Let

(transl_o, o (wy)) 7P

be the (factorization) monoidal automorphism of Sph’7 that corresponds under Saty; to the (factor-
ization) monoidal automorphism (transl_s, . (. ,))" of Sph,,.

Note that the functor

( ® L )) . IndCOhNilp(LSM(X)) — IndCOhNilp(LSM(X))

PP(wx

intertwines the actions of SphSp °¢ L up to (transl_g,p, (wy)) P

25.4.4. Let IndCohNﬂp(LSM(X))Co’enh denote the variant of IndCohniip (LS (X)) ™°"", where instead
of I(G P~ )spPee loc we use I(G P~ )epee sloc,

Note that the Serre duality on IndCohniip (LS ;7 (X)) defines a natural identification
\
(25.8) IndCohyitp (LS 7 (X)) o™ =~ (IndCohNilp(LS M(X))*'e““)

25.4.5.  We propose:

Conjecture 25.4.6. There exists an equivalence of factorization categories

o 9s.pec

(25.9) (G, P)Rectoe (G, P yPectoe,
with the following properties:

(1) The equivalence Ogpec, = intertwines the Sphigec-actions on the two sides up to the automorphism
(transLQ‘,P(wX))*’spec. ’

(2) The identification (25.7) obtained via (25.8) by tensoring

(_®Lpp<wx))[ ¢—ouml
IndCohnitp (LS 7 (X)) IndCohip (LS 57 (X))
with C—)Spec,% satisfies point (2) in Sect. 25.4.1.
(3) The diagram
(G, P7)eC (o) Lt 12N 1(Gi, P yzeetoe

TIOClN ~l@spec,%

(2510) I(G, P)IOC I(G, P~)spec,loc

pp(wx)

TGlN NTsat—,%

-1

« oo

.y pp(wx),taut O, () taut 1
I(G, P )3;P(wx) I(G,P7)c

pp(wx)

commutes.

Note that point (3) in Conjecture 25.4.6 implies point (3) in Sect. 25.4.1.
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Remark 25.4.7. Conjecture 25.4.6 allows us to expand the diagram from Remark 25.2.7, by concate-
nating it on the right with

—,enh
D-mody (Bunar) 520, ) —— IndCohniip (LS 37 (X))es ™"
(tran51,2pp(wx)):’enhl l( RL pP(wX))r@@Spec’%[&GfaM]
L—,enh
e D-mod 3 (Buna), % —*— IndCohnirp(LS (X)) ™"
Bis, 0 ) l lEiS—,spec,enh
D-mod; (Bung) ——  IndCohnip (LS(X)),
G

where L;/[‘fc';h is obtained by tensoring
Las: D—mod% (Bunas) — IndCohwip (LS 47 (X))
with the (factorization) equivalence
LG, P7)% (o) = LG, PT)heoloe
resulting from (25.10).

Thus, we obtain an enhanced version of the diagram from Remark 24.6.10:

—,enh
’rglOb enh TP nh M co nh
D-mod 1 (BunM)Co PP(WX) — % D- mod% (Bunp)§0, ) ——— D- modil) (Bunpy)~ PP(“’X) —22 IndCohyp (LS 37 (X)) e ©
—,enh ®2
E ’ L S
(tranﬁlizpp(wx>)* l l( ® PP(‘”X))® spec, 7
h ]Lf,enh
c.—.en scenh enh M . —,enh
Eis | pp(wx)l E‘S!apP(“"X)l D-mod ;. (BunM)pP(wX) —M— IndCohygy, (LS 7 (X)) ™
Elsl,;’P(wx>l | Bis—>spec,enh
Mirgyn 4 e
D—mod% (Bung)co _ D—mod% (Bung) _— D—mod% (Bung) T IndCohN“p(LSG(X))

(in which we have ignored all cohomological shifts), and the proof of (25.6) follows the same logic as
that of (24.15):

Indeed, according to point (2) in Conjecture 25.4.6, the right vertical arrow in (25.11) identifies with
(CT—sPeeenh)V " while the composite arrow

rglob

D—mod%(BunM);)’;n;’(wx) — D- m0d1 (BunM)p’;h(wX) =
—,enh
—,enh M ,co ,enh
— D-mod (Buna) 570 — IndCohwilp (LS (X)) eo®

identifies with (®,;°"")" (the latter, due to the commutation of (25.10)).
25.5. Proof of Theorem 25.3.5. The proof follows closely that of Theorem 20.4.5.

25.5.1.  Since both circuits in (20.15) send compacts to compacts, the same is true for (25.5).

Hence, as in the proof of Theorem 20.4.5, it suffices to establish the commutativity of

—,enh

L
D-mod% (Bunps) 7™t 2 IndCohpip (LS ;7 (X)) 7renh
Eis;;;j:(l:.,x) [EN(PﬂpP(wx)]l l(EO’Nilp)RoEis—,spec,enh
La,coarse
: QCoh(LSx(X)).

And further, it suffices to establish the commutativity of:

D-mod% (Bung)
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Whit' (G)ran ~ —2C Rep(G)Ran
coeffG (20N, (,, ]T Tl—\scé)ec
D-mod% (Bung) IndCohniip (LS (X))
Bis ™ teOn(p op o) ]T TEis_ sspec,enh
D—mod% (Bunpy) et LCnh) IndCohpip (LS 7 (X)) 770,

25.5.2. By duality, it suffices to show that the following diagram commutes:

— —,enh
(FLEg )7 ®Ly;*"

Whit. (G)Ran ® D-mod (Bunyy)~eh Rep(G)ran ® IndCohniip (LS 3 (X)) "

D-mod (Bung)eo ® D-mod; (Bung) QCoh(LSx (X)) ® IndCohnilp (LS (X))
E
S | IndCohnip (LS¢(X))
|raseco.-
Vect 4, Vect .

25.5.3. In fact we will show that the compositions

pp(wx),Ran

(25.12)  Whit.(G)Ran ® D-mody (Bunar) ® (G, P)kee -

—.enhRan

PG, « OB b wx) PN P () T2V o)
—

D-mod} (Bung)eo ® D-mod; (Bung) —

FdR(Bﬂa—é—) Vect
and

LocSPec ® Eis™ ,spec,enhR gy,

(25.13)  Rep(G)ran @ IndCohniip (LS 7 (X)) @ [(G, P )grecloc ¢

— QCoh(LS (X)) ® IndCohyiip (LS (X)) —2 IndCohyip (LS (X)) e

Vect
match under (FLE4 )" @ Ly ® Sat™ % .
25.5.4. As in Sect. 20.5, up to inserting ins. vac, the functor (25.13) identifies with
(25.14)  Rep(G)ran @ IndCohnip (LS 7 (X)) @ (G, P )giiPeoloc —
— IndCohyinp (LS i (X)) ® (Rep(é) ®1(G, P*)*’SP“JOC) 1d@(222)
Ran
. 1d ® Locih .
— IndCOhNilp (LSM (X)) ® REP(M)Ran — IndCOhNilp (LSM (X)) ® QCOh(M) —
24 IndCohiip (LS 7 (X)) " 28 yiees .
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Again, a standard Zastava space calculation shows that, up to inserting ins. vac, the functor (25.12)
identifies with

pp(wx),Ran

(25.15)  Whit.(G)ran ® D-mod (Bunar) ® I(G, B)lke —

— D—mod% (Buny) ® (Whit*(G) ®1(G, B)'¢ ) 148(2:21)
Ran

pp(wx)

Id ® Poinc s, « [26 N (ar)

o]
D—mod% (Bunas) ® Whit, (M) —rmlex) D—mod% (Buna) ® D—mod% (Bunas)eo —

FdR(Bun_zv,;,—@—) Vect

Now the desired assertion follows from the commutation of the diagrams (2.23) and (20.10) (for M).
O[Theorem 25.3.5]

26. PROOF OF THEOREM 24.4.2

In this section we will finally prove Theorem 24.5.7.

We will follow the pattern of the (failed) proof in Sect. 25.4, but at the partially enhanced level.
The difference now is that the required self-duality assertion on the spectral side is easy to obtain: it
corresponds to the Serre duality on LS;— (X), up to a twist by a line bundle.

26.1. Partially enhanced Eisenstein functors.

26.1.1. Recall the category D-mod 1 (Bunps) 7PHenh gee Sect. 24.5. It comes equipped with a pair
of adjoint functors

part — full : D-mod (Bunjy )~ Partenh = D-mod (BunM);I’f(ZhX) : full — part .

Define the functor
Lop(wx) Leop(wx)

Eis, P2rt-enh . — gig ™ o(part — full), D-mod 3 (Buny,) ~Partent D-mod; (Bung).

—,part.enh

By construction, the functor is the left adjoint of the functor CT p(wx)

26.1.2. Denote
Q" = 1m(Q).

By a similar token, using the algebra (2~ instead of €2, we can consider the partial enhancement
D—mod% (Bunp )P °"® " and the functors

. part.enh . part.enh part,enh
Eisy ) tox ) BisT . ey D mod%(BunM) —D mod%(Bunc).

26.1.3. Recall that due to (3.16), we have a canonical identification
(26.1) (Q2-mod(Sph,,))" ~ Q -mod(Sph,,).
Passing to the duals in the adjunction

Q-mod(Sph,,) = I(G, P7)k¢

pp(wx)

we obtain an adjunction

(26.2) Q™ -mod(Sph,,) = I(G, P7)ke

co.pp (wx)*
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26.1.4.  Recall the category D-mod (BunM);)’fp“;(wX) and the functor
. —,enh . —,enh
Eis, lox) D—mod% (Buna) o0 (wy) = D—mod% (Bung),

see Sect. 25.1.8.

By a similar token to Sect. 24.5, using the category Q™ -mod(Sph,,) instead of I(G, Pf)lc‘;c,pp(wx),

we define the category D-mod% (Bun g )ogrart-enh,

The adjunction (26.2) gives rise to an adjunction

(part — full)eo : D-mod (Bunyy )Pt = D-mod (BunM);’:”:)":(wx) : (full — part)co.

Define the functor

.. —,part.enh | 1a._ —,enh —,part.enh
Eis, > o) = Eis_ W) o(part — full)eo, D—mod% (Bunas) 07000 — D—mod% (Bung)co-

26.1.5. Note that (26.1) gives rise to an identification
(26.3) (D—mod% (BunM)f‘part’e“h) Y o~ D-mod (Bunpy)ogPrtent,
Under this identification, we have
(part — full)¥ ~ (full = part)co and (full — part)¥ ~ (part — full)co.

Furthermore, we have

v
— t.enh . —,part.enh
T P27 ~ Eis_’ .
(C *pp(wx) Sspp(wx)

26.1.6. Recall the category IndCohnip (LS ;7 (X)) ~P**°"h " equipped with an adjoint pair
part — full : IndCohnip (LS 37 (X)) ~P**"" = IndCoh (LS ; (X)) ™ : full — part .
Define
Eis—,spec,part.enh — Eis—,spec,enh O(part N full)
This functor is the left adjoint of CT™:SPec-Part-enh - [ypder the identification of Proposition 19.2.3,
the functor Eis™sPecPart-enh ¢qrrasnonds to
IndCoh ; iy, (LSp- (X)) 25 IndCoh (LS4 (X)).
26.1.7. Note that the identification
UspeC(QspeC) ~ Qspec
implies that we have a canonical identification
(26.4) (IndCohnip (LS 37 (X))~ PV ~ IndCohip (LS j (X))~ Partenh
so that under the Serre duality identification
(IndCohniip (LS 57 (X)) ~ (IndCohiip (LS 47 (X)),
we have
(indparbenh)v >~ Oblvpart.enh and (OblvpartAenh)v =~ indparhenh-
Note that we have a commutative diagram

(IndCOhNilp (LSM (X))*,part.enh)\/

Proposition 19.2.3
—>

(IndCoh gy iy (LS5 (X))

(26.4)1 SerreLs . (x) ®q* (LE@P—(’A;X)) l [— dim.rel(LS 5 (X)/ LS 37 (X))]

Proposition 19.2.3
%

IndCohniip (LS 7 (X)) ~Part-ent IndCoh 7 nj1p (LS p- (X))

In particular, since the map p is proper, and hence p. is the dual of p' with respect to Serre duality,
we obtain that with respect to the identification (26.4), we have

(26.5)  (CTspecpartenhyV o pygmspecpartenh o (o 0% (£92 ) [dim. rel(LS p— (X)/ LS 5 (X))].

pp(wx)

26.2. Partial enhancement and the miraculous functor.
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26.2.1. Let I\/Iirpart;:;"h denote the functor

Bun

D-mod (BunM);)’;tEf;}; — D-mod; (BunM);’;r(t:;];
obtained by tensoring
MirBun,, : D-mod% (Bunas)co,pp(wyx) — D-mod% (Buna)pp (wy)
with the identity functor on Q7 -mod(Sph,,).
The following assertion results from Lemma 3.4.2:

Corollary 26.2.2. The following diagram commutes

Mirpart,euh
—,part.enh Bun s part.enh
D‘mOd% (BunM)co,pP(uX) D_mOd% (BunM)pP(wx)
(26.6) (partﬁfun)col l(partﬁfull)
—.enh glob enh
D-mod% (BunM)CO,pP(wX) e D-mod% (Bunar) g iy

26.2.3. Concatenating with Theorem 25.2.3, we obtain:

Corollary 26.2.4. The following diagram commutes

. part.enh
T
_ Bun
D-mod (Bunpy ) Pertenh - D-mod% (Buny )Part-enh
isoPart-enh ..part.enh
(26.7) Els*,pP(wx) [6N(P7)‘7P(X)]J, JVEIS”PP(WX)[_6N(P)pp(x)]
glob

D—mod% (Bung)co D-mod% (Bung)

26.2.5. Let 702" denote the functor
D-mod (Bunjy)Part-ent D-mod (Bunj, ) Part-enh
obtained by tensoring
™ : D—mod% (Bunas) — D—mod% (Buna)
with
T+ 7 -mod(Sph,,) — Q-mod(Sph,,).
The following diagram commutes tautologically:

part.enh

-
D-mody (Bunp)P2rtemt M5 Domod; (Buny ) Prtenh
2 2
(part%full)l Jv(partafull)
enh TP —,enh
D-mod%(BunM)pP(wx) - D—mod% (Bunar) =700 -
Concatenating with
enh TP —,enh
D—mod% (BunM)pP(wX) — D—mod% (BunM)—pp(qu)
B h ._—,enh
Els!e,r;p(wx)[_SN(P),;P(X)]JV lElS!,fpp(wx)[*(SN(P_)pr(x)]
D—mod% (Bung) <, D—mod% (Bung),
we obtain a commutative diagram
part.enh
D-mod 1 (Bum\/[)pa“'e“h M s D-modi (BunM)f’part'enh
2 2
. part.enh ..—,part.enh
(26.8) Elsﬁpp(wx)[féN(P)pP(x)]l lElS!v_PP(WX)[ 6N(P*)_,,P(x)]

D-mod% (Bung) < D—mod% (Bung),
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26.2.6. Note that thanks to (3.14), we have a well-defined endo-functor

)—,part.enh )—,part.enh

—,part.enh | _ _
(transl_o, . (wx))* :D mod% (Bunas — D mod% (Bunas

I

which makes the diagram

—,part.enh
(transl_o, L (wy )% part.en

D—mod% (Bunar) ™ spart.enh D-mod% (Bunp)™ spart.enh

(part—»full)l l(partﬁfull)
—,enh —,enh
D—mod% (Bunar) — 770 — D—mod% (Bunar) "0

(transl_sz(wX))*
commute.
Hence, we can rewrite the functor

. —,part.enh —,part.enh
Els!!ipppt(wx) : D-mod, (Bunpy) 7Pt D-mod (Bung)

as

,part.enh

(transl_ we))e
(26.9) D—mOd%(BunM)_’Part.enh 20p (@)
—,part.enh

Bis; Pt
— D-mod 1 (Buny,) ~Part-enh 2P Domod (Bung).
2 2

26.2.7. Concatenating Theorem 25.3.5 with the commutative diagram

LT ,part.enh

D—mod%(BunM)_’pa”'enh M IndCohnip (LS (X))~ Part-enh
(part—full) J, l (part—full)
]Lf,enh
D—mod%(BunM);;(‘;hX) M IndCohnip (LS 5 (X)) et

we obtain a commutative diagram

Lo ,part.enh

D-mod g (Bunyy) ~P*" ———— IndCohitp (LS yr (X)) 7Pt
(26.10) Eis:’;;a(r:)_;n)hl[éN(P*)pP(wX)] lEiS*,SPeC,part.enh
D-mod (Bung) e, IndCohxirp (LS¢ (X)).

26.2.8. Finally, we note that we have a well-defined functor

(—@L%2 )Pt IndCohing (LS 37 (X)) P 5™ 5 IndCohnitp (LS yy (X)) 7P 5ot

pp(wx)

which in terms of the equivalence of Proposition 19.2.3 corresponds to

-® q*(L®2 ) : IndCoh 7 Nilp (LSp- (X)) — IndCoh y;_ Nilp (LSp- (X)),

pp(wx)
and which makes diagram

[~ part.enh

D-mody (Bunys) ~ P ———— IndCohnirp (LS 7 (X)) ~Port-ent
(transl_QpP(wX)):,partAenhJV l(_®‘c§;(wx))—,part‘enh
Lf,part.enh

D-mod g (Bunpy) ~P*e" ———— IndCohitp (LS yr (X)) 7Pt

commute.
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26.2.9. To summarize, we obtain the following partial enhancement of the diagram in Remark 24.6.10:

irréart-enh _part.cnh L= part.enh
—,part.enh unpr M — —
D—mod% (Bun pz)eo PATE-e" D—mod% (Bunpy)Part-enh M D—mod% (Bun ;) Part.enh IndCohpjyp (LS 7 (X)) ~-Part.enh
N —,part.enh _oc®2 —,part.enh
(“a“SI—ZpP(wX))* l (=® pp(wx)) J.
. N . N LX/I,partAenh
s~ part.en jgpart.en —,part.enh —,part.enh
Bis 0% Els!’pP(wX)l D. rnod% (Bunpy) IndCohjp (LS 37 (X))
E._—,part,enh R X t.enh
la!pr(wX) l Eis—SPec,part.en J{
D-mod 1 (Bung)co _ D-mod ; (Bung) e D-mod 1 (Bung) _ IndCohyjp (LS 5 (X)),
2 MirBung 2 G 2 Le

which commutes up to overall cohomological shifts.
26.3. Proof of Theorem 24.4.2.

26.3.1. Dualizing, it suffices to establish an isomorphism between the functors

(26.11) Lg 0 76 0 Mirgung o(CT_ 200
and
(26.12) (CT—,spec,part,enh)\/ ° (q);/iparheﬂh)V’

as functors
(D-modj (Bunar) ~P**™)" — (IndCohnirp (LS (X)),

up to a cohomological shift (the shift automatically works out thanks to Theorem 24.6.2, which has
already been proved).

26.3.2. We identify
(IndCohniip (LS5 (X)))Y =~ IndCohniip (LS5 (X))

via Serre duality on LS (X).
We identify
(D-mod% (Bunjy) ~Prtenh)Y ~ D-mod, (Bunyy)ggPrtenh
as in (26.3).
Under the latter identification, we have

— t.enh\V . —,part.enh
T P ~ Eis_’ .
(C *pp(wx) ) E Sspp(wx)

Hence, the functor (26.11) identifies with the counter-clockwise circuit in the diagram in Sect. 26.2.9.

Thus, in order to prove Theorem 24.4.2, it remains to identify (26.12) with the clockwise circuit in
the diagram in Sect. 26.2.9, up to an overall cohomological shift.

26.3.3.  We identify
(tndClohiny (LS 3 (X)) ") * o~ IndCohp (LS y (X))~
as in (26.4).
According to (26.5), the functor (CT ~-SPec-Part-enh)V jqentifies with the right vertical composition in

the diagram in Sect. 26.2.9, up to an overall cohomological shift.

((I)X/[,part.enh)\/

Hence, it remains to identify the functor with the top horizontal composition in the

diagram in Sect. 26.2.9.
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26.3.4. With respect to the identifications (26.3) and (26.4), the functor (®,;°****"™)" is obtained by
tensoring

(26.13) ILM OTpn O MiI‘BunM : D-mod% (BunM)CO — IndCOhNilp(LSM(X))

with the composition

(26.14) Q7 -mod(Sph,,) ~ (€2-mod(Sph,,))" ~ (2*-mod(Sph’y**))" ~ Q*-mod(Sph’*),
where

e The first equivalence is induced by (26.1);
e The second equivalence is obtained by duality from the identification

(26.15) QP*-mod(Sph’;*) =~ Q-mod(Sph,,),

induced by Satas;
e The third equivalence is induced by the identification

USpeC(QSpeC)O ~ QSPec
26.3.5. Unwinding, we obtain that (26.14) is the same as
(26.16) Q" -mod(Sph,,) < Q™ -mod(Sph,,) ¥ Q-mod(Sph,,) Saty Q°*“-mod(Sph3*).

Matching the terms of the factorization (26.16) with those of (26.13), we obtain that (&, ")V
indeed identifies with the top horizontal composition in the diagram in Sect. 26.2.9.
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APPENDIX A. IndCoh* AND IndCoh'

A.0.1. InSect. 0.8, we sketched a definition, which we refer as the pre-renormalized one, of IndCoh*(Z)
and IndCoh'(Z) on any prestack Z. But in fact, that definition is not (at least obviously) equivalent to
the genuine definition, which we refer as the renormalized one, used in the main text. For example, it
is not clear the factorizable geometric Satake equivalence (Theorem 1.7.2) still holds if we use the pre-
renormalized definition. In fact, we don’t even know IndCoh*(HeckeSC{,’eC’bC) is a factorization category
without renormalization.

A.0.2. In this appendix, instead of giving the detailed definition, we shall provide axioms that char-
acterize these renormalized categories. Details and proofs will be provided in the next version of this
paper, as well as in the incoming paper [CF1]. The readers can also find similar discussions in [Ras4].

A.0.3. First off, there is a full subcategory PreStk.en C PreStk of renormalizable prestacks, which
contains all those prestacks over which ind-coherent sheaves are considered in this paper. For example,

Heckegec’loc, Opea (D)

are renormalizable.

A.0.4. For any Y € PreStk,en, there are two compactly generated categories
IndCoh},.,(Y), IndCoh.e, (Y)

canonically dual to each other. If Y is laft, then both categories are canonically identified with
IndCoh(Y) defined in [GR2].

A.0.5. Let
Coh(Y) C IndCohy,,(Y)

be the full subcategory of compact objects, which are called coherent sheaves on Y.

A.0.6. For any Y € PreStkren, there is a canonical t-structure on IndCohj,,(Y) that is right com-
plete and compatible with filtered colimit.?” The subcategory Coh(Y) is closed under (cohomological
truncations) and its objects are bounded.

A.0.7. IfY is a renormalizable qcgs scheme, then Zariski locally its coordinate (DG) ring is coherent
(see [Lurl, Definition 7.2.4.16]), and Coh(Y") can be identified with the full subcategory of QCoh(Y") of
quasi-coherent sheaves that are cohomologically bounded with locally finitely presented cohomologies.

A.0.8. IfY is a renormalizable indscheme, then
IndCoh}e, (Y), IndCoh.e, (Y)

can be identified with the pre-renormalized categories in Sect. 0.8.

A.0.9. The assignment
Y — IndCoh},(Y), Y — IndCoh.,(Y)
is naturally covariant (resp. contravariant) in Y. In particular, for any morphism f:Y — Z, there is
a *-pushforward functor
f+« : IndCoh;, (Y) — IndCoh;,,(Z)
and a !-pullback functor
f' : IndCoh'en(Z) — IndCohle, (V).

2THowever, this t-structure is generally not left complete. In fact, it is (left) anti-complete in the sense of [Lur2,
Sect. C.5.5]. Also, in general, IndCoh'_, (Y) does not have a well-behaved t-structure.

ren
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A.0.10. If f:Y — Z is qcgs schematic and of bounded Tor dimension, or more generally if Y admits
a fpqc cover Y’ such that Y’ — Z is so, then f. admits a left adjoint

f* : IndCoh}e,(Z) — IndCohye, (V)
and dually, f' admits a continuous right adjoint
f2 : IndCoh, (Y) — IndCohte, (Z).
We have base-change equivalences between *-push and *-pull (and dually between ?-push and !-pull).

A.0.11. The bounded below part IndCoh}.,,(—)" as well as Coh(—) satisfies fpqc descent with respect
to the *-pullback functor.?®

A.0.12. If f:Y — Z is ind-proper, then f. admits a continuous right adjoint
f7: IndCohle,(Z) — IndCohle, (V)

and dually, f' admits a left adjoint
fi : IndCoh',, (Y) — IndCoh.e,(Z).

We have base-change equivalences between *-push and ?-pull (and dually between !-push and !-pull).
Also, ?-pull and *-pull (and dually !-push and ?-push) commutes for Cartesian squares in PreStkyen.

A.0.13. For Y, Z € PreStkyen, we have canonical product formulae:
IndCoh;.,,(Y) ® IndCoh;,, (Z) ~ IndCoh;.,(Y x Z)
and similarly for IndCoh'e, (—).

A.0.14. In particular, IndCohyen(Y') has a natural symmetric monoidal structure. Moreover, there is
a canonical symmetric monoidal functor

T : QCoh(Y) — IndCohyen(Y),
which allows us to view

IndCoh}e, (Y), IndCoh.e, (Y)
as QCoh(Y)-module categories.

28However, IndCoh’,, (=) does not satisfy fpqc descent. This is the main difference between the renormalized

category and the pre-renormalized one.
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