
NOTES ON GEOMETRIC LANGLANDS:

GENERALITIES ON DG CATEGORIES

DENNIS GAITSGORY

Introduction

The purpose of this paper is to set up a language that will be used in the rest of the notes
pertaining to DG categories and functors between them. A more complete treatment can be
found in Lurie’s book and the DAGs.

1. DG categories

In this section we’ll be ignoring set-theoretical difficulties. Once the proper set-theoretic
context is reinstated, the lemmas stated without proofs here can be found in Chapters 4 and 5
of [Lu1].

Unless specified otherwise, we’ll be working with DG categories over the ground field k that
are co-complete. Any such category is automatically closed under limits. No harm will be
done if the reader perceives the word ”DG category” as a stable ∞-category enriched over the
category of complexes of k-vector spaces that contains all colimits.

In what follows we’ll denote by Vect the unit DG category, i.e., one of complexes of k-vector
spaces.

1.1. Continuous vs. all functors. For C1 and C2 as we consider the appropriately defined
DG-category Funct(C1,C2) of k-linear functors C1 → C2, see e.g. [Dr], Sect. 16.8.

Remark. We note that Funct(C1,C2) is not the category of naive DG-functors C1 → C2, but
rather one whose homotopy category is that of quasi-functors in the terminology of [Dr], Sect.
16.1 or homotopy functors in the terminology of [FG], Sects. 15.2 and 15.3.

We let Functcont(C1,C2) be the full subcategory of Funct(C1,C2) spanned by functors that
commute infinite with direct sums (at the homotopy level). Equivalently, these are functors
that commute with all colimits (here and elsewhere, by a ”limit” and ”colimit” we understand
homotopy limit and colimit, respectively).

Both Functcont(C1,C2) and Funct(C1,C2) are co-complete. Note that limits and colimits
in Funct(C1,C2) are computed object-wise. This implies, in particular, that

Functcont(C1,C2) ⊂ Funct(C1,C2)

is stable under colimits, and that this embedding admits a right adjoint (see Lemma 1.1.1
below). However, this embedding does not usually commute with limits.

Date: December 30, 2012.

1

2 DENNIS GAITSGORY

Lemma 1.1.1. For C1,C2 as above, any F ∈ Functcont(C1,C2) admits a right adjoint in
Funct(C2,C1). The full subcategory of (Funct(C2,C1))op obtained as right adjoints of objects
from Functcont(C1,C2) is

Functcocont(C2,C1) ⊂ Funct(C2,C1),

which consists of functors that commute with limits.

1.2. The 2-category of DG categories. We’d like to view the totality of DG categories as
an (∞, 2)-category in 2 ways, denoted DGCatcont and DGCat, respectively, where in both cases
the objects are DG categories, and the 1-morphisms are

Functcont(C1,C2) and Funct(C1,C2),

respectively.

For the most part, however, we’ll be working with DGCatcont. In this case, we’ll also use
the notation

Hom(C1,C2) := Functcont(C1,C2).

1.2.1. The trouble is, however, that the theory of (∞, 2)-categories hasn’t been adequately
documented at the time of writing. The paper [Lu3] develops the notion of (∞, 2)-category,
but doesn’t show that DG categories and its variants considered in the sequel form a (∞, 2)-
category.

A possible way out is as follows: for most applications (such as computation of limits and
colimits), it would be sufficient to view DGCatcont and DGCat as just∞-categories (i.e., (∞, 1)-
categories), by discrading non-invertible 2-morphisms, i.e., by considering as 1-morphisms the
corresponding maximal sub-groupoids

Funct◦cont(C1,C2) ⊂ Functcont(C1,C2) and Funct◦(C1,C2) ⊂ Funct(C1,C2).

1.2.2. By definition, when considering DGCatcont or DGCat as an (∞, 1)-category, we only
consider natural transformations that are isomorphisms. However, one can recover all natural
transformations as follows.

Namely, let (0→ 1) be the DG-category generated by two objects 0 and 1 with a unique
arrow 0→ 1. Then for C1 and C2 as above, we can consider Funct◦cont(C1⊗ (0→ 1),C2). The
fibers of the map

Funct◦cont(C1 ⊗ (0→ 1),C2)→ Funct◦cont(C1,C2)× Funct◦cont(C1,C2)

corresponding to the two functors Vect ⇒ (0→ 1), over a given pair F ′, F ′′ ∈ Funct◦cont(C1,C2)
is the groupoid of all natural transformations F ′ ⇒ F ′′.

A similar remark applies to DGCatcont replaced by DGCat.

1.3. Limits and colimits in DGCatcont and DGCat.

Lemma 1.3.1.

(1) The ∞-categories DGCatcont and DGCat admit limits and colimits.

(2) The forgetful functor DGCatcont → DGCat commutes with limits.

This is done in [Lu1, Sect. 5.5.3].

Note, however, that the forgetful functor DGCatcont → DGCat does not commute with
colimits.

GENERALITIES ON DG CATEGORIES 3

1.3.2. A lemma on colimits. Let I be an∞-category. Let i 7→ Ci be a functor I → DGCatcont.
For i, j ∈ I and α : i→ j let us denote the corresponding functor Fα : Ci → Cj .

By Lemma 1.1.1, each of the the functors Fα admits a right adjoint in Funct(Cj ,Ci), denoted
Gα. Thus, we obtain a functor Iop → DGCat.

The following assertion is, to be the best of our knowledge, due to J. Lurie:

Lemma 1.3.3.

(a) For every j ∈ I, the tautological evaluation functor

evj : lim
i∈Iop,G

Ci → Cj

admits a left adjoint, to be denoted ′insj.

(b) The functor
colim
j∈I,F

Cj → lim
i∈Iop,G

Ci,

corresponding to the system of functors
′insj : Cj → lim

i∈Iop,G
Ci,

is an equivalence of categories.

Proof. Let D be a DG category. By Lemma 1.1.1, maps in DGCatcont

Φ : lim
i∈Iop,G

Ci → D

are in bijection with maps in DGCat

Ψ : D→ lim
i∈Iop,G

Ci

that commute with limits. The latter are the same as systems of maps in DGCat,

Ψi : D→ Ci,

each commuting with limits, and such that Gα ◦Ψj ' Ψi for α : i→ j. The latter are the the
same as systems of maps in DGCatcont

Φi : Ci → D

satisfying
Φj ◦ Fα ' Φi,

which is the same as maps in DGCatcont

colim
i∈I,F

Ci → D.

�

1.3.4. One can right down the functor

lim
i∈Iop,G

Ci → colim
j∈I,F

Cj

in Lemma 1.3.3 more explicitly.

Namely, it equals
colim
i∈I

insi ◦ evi,

where insi denotes the tautological functor

Ci → colim
j∈I,F

Cj ,

4 DENNIS GAITSGORY

1.3.5. Assume that in the above setting the functors Gα also belong to Functcont(Cj ,Ci).
Assume also that for every diagram A = i1 ← j → i2, the category IA/ is contractible. (This
happens, e.g., when I is filtered.)

Lemma 1.3.6. Under the above circustamstances, the functor

Cj0

insj0−→ colim
j∈I,G

Cj ' lim
i∈Iop,G

Ci

evi0−→ Ci0

is canonically isomorphic to

colim
k∈I,α:j0→k,β:i0→k

Gβ ◦ Fα,

where the colimit is taken in Functcont(Cj0 ,Ci0).

Proof. Consider the category
′C := lax.lim

←−
i∈Iop,G

Ci

of all assignments

(1) i 7→ (ci ∈ Ci), (γ : i→ i′) 7→ (Gγ(ci′)
φγ−→ ci ∈ Ci),

equipped with the data of making the maps φγ coherently associative. However, the maps φγ
are not required to be isomorphisms.

We have a fully faithful embedding

C := lim
←−

i∈Iop,G

Cj ↪→ lax.lim
←−

i∈Iop,G

Ci =: ′C

whose essential image consists of those objects (1), for which the maps φγ are isomorphisms.

For a given index j and cj ∈ Cj , the assignment

(2) i 7→ colim
k∈I,α:j→k,β:i→k

Gβ ◦ Fα

naturally upgrades to an object of ′C. Indeed, for γ : i→ i′, the corresponding map is

(3) Gγ

(
colim

k∈I,α:j→k,β′:i′→k
Gβ′ ◦ Fα(cj)

)
' colim

−→
k∈I,α:j→k,β′:i′→k

Gγ ◦Gβ′ ◦ Fα(cj) '

' colim
−→

k∈I,α:j→k,β′:i′→k

Gβ′◦γ ◦ Fα(cj)→ colim
−→

k∈I,α:j→k,β:i→k

Gβ ◦ Fα(cj),

where the first isomorphism results from the continuity of the functor Gγ , and the last arrow
corresponds to the functor of index categories

(4) {k ∈ I, α : j → k, β′ : i′ → k} → {k ∈ I, α : j → k, β : i→ k},

given by pre-composition with γ.

It is clear that the assignment (2) defines a functor Cj → ′C. Denote this functor by ′insj .

It follows from the construction that for cj ∈ Cj and c ∈ C ⊂ ′C, we have a canonical
isomorphism

Maps′C(′insj(cj), c) ' MapsCj (cj , evj(c)).

Hence, by the (insj , evj)-adjunction, it remains to show that when I satisfies the assumtion
of the lemma, the essential image of the functor ′insj belongs to C ⊂ ′C.

GENERALITIES ON DG CATEGORIES 5

I.e., we have to show that for an arrow γ : i → i′ in I and cj ∈ Cj , the map (3) is an
isomorphism. For that it is sufficient to show that the functor (4) is cofinal. I.e., we have to
show that for a given

k ∈ I, α : j → k, β : i→ k,

the category

{k′ ∈ I, δ : k → k′, β′ : i′ → k′, δ ◦ β ∼ β′ ◦ γ}

is contractible. However, the latter is exactly the assumption on I.
�

1.4. Tensor products. One of the main advantages of DGCatcont as opposed to DGCat is
the monoidal structure. Namely, DGCatcont carries a canonical symmetric monoidal structure
given by tensor product:

For C1,C2 ∈ DGCatcont is characterized by the property that Functcont(C1⊗C2,D) consists
of functors

C1 ×C2 → D

that are k-linear and commute with colimits in each variable.

The basic reference for this is [Lu2, Sect. 6.3.2]. Namely, Propositions 6.3.2.18 and 6.3.2.7
define on the the category of presentable stable∞-categories a structure of symmetric monoidal
∞-category. One then makes DGCatcont into a symmetric monoidal category by realizing it
as modules over the symmetric algebra object Vect in the symmetric monoidal ∞-category of
presentable stable ∞-categories.

Lemma 1.4.1. The formation of tensor products commutes with formation of colimits in each
variable.

The proof follows, e.g., from [Lu2, Prop. 6.3.1.16] using Lemma 1.3.3.

1.5. Fully faithful functors. Let Φ : C1 → C2 be a continuous functor between DG cate-
gories. Assume that Φ is fully faithfil.

Question 1.5.1. Is it true that the functor Φ ⊗ IdD : C1 ⊗D → C2 ⊗D is fully faithful for
any D ∈ DGCat?

The answer to the above question is “yes” at least in the following cases:

(a) If Φ admits a left adjoint, or a continuous right adjoint.

(b) If D is dualizable (see next section).

(c) Both C1 and C2 are dualizable, and D is isomorphic to the limit in DGCatcont of dualizable
categories.

2. Dualizable categories

The notion of dualizable category is also, as far as we know, due to J. Lurie.

6 DENNIS GAITSGORY

2.1. Duality datum. Let C be a DG-category. We say that C is dualizable, of there exists
another DG-category C∨ endowed with morphisms in DGCatcont

µ : Vect→ C∨ ⊗C and ε : C⊗C∨ → Vect,

satisfying the usual duality axioms, i.e., the compositions

C
IdC⊗µ−→ C⊗C∨ ⊗C

ε⊗IdC−→ C

and

C∨
µ⊗IdC−→ C∨ ⊗C⊗C∨

IdC⊗ε−→ C∨

are isomorphic to the identity functor.

2.1.1. Tautologically, one can say that C is dualizable if it is such as a 0-object of the (∞, 1)-
category DGCatcont, see e.g. Sect. 5 for a reminder what it means to be a dualizable object in
a monoidal category.

2.1.2. Alternatively, C is dualizable if there exists a DG-category C∨ endowed with a pairing
C⊗C∨ → Vect in DGCatcont which induces an equivalence

(5) C∨ ⊗D→ Functcont(C,D)

for any D ∈ DGCatcont. In particular, C∨ can be identified with Functcont(C,Vect).

2.1.3. Equivalently, there should exist a functor Vect → C∨ ⊗C in DGCatcont which for any
D1,D2 induces an equivalence

(6) Functcont(C⊗D1,D2) ' Functcont(D1,C
∨ ⊗D2).

2.1.4. Since the tensor product on DGCatcont is symmetric, we have that C∨ is the dual of C
if and only if C is the dual of C∨.

2.1.5. Dualizable categories enjoy nice properties regarding limits and colimits:

Lemma 2.1.6. Let i 7→ Ci be a functor I → DGCatcont. Let D be dualizable.

(1) The natural functor
D⊗ lim

I
Ci → lim

I
(D⊗Ci)

is an equivalence.

(2) The natural functor

colim
I

Functcont(D,Ci)→ Functcont(D, colim
I

Ci)

is an equivalence, i.e., D is compact as an object of DGCatcont (the colimit in LHS is taken
within DGCatcont).

Proof. For point (1), the LHS can be rewritten as

Functcont(D
∨, lim

I
Ci) ' lim

I
Functcont(D

∨,Ci),

which is equivalent to the RHS.

Point (2) follows from equation (5).
�

2.2. Dual functors. If C1,C2 are dualizable, there exists a canonical equivalence

Functcont(C1,C2) ' C∨1 ⊗C2 ' Functcont(C
∨
2 ,C

∨
1),

which we’ll denote F 7→ F∨.

GENERALITIES ON DG CATEGORIES 7

2.2.1. Limits and duals. Let us return to the set-up of Sect. 1.3.5, and let us assume that the
functors Gα belong to DGCatcont. Assume that each Ci is dualizable. In this case, the data
of Gα : Cj → Ci gives rise to yet another functor I → DGCatcont, namely, i 7→ Ci and
(α : i→ j) 7→ G∨α.

Lemma 2.2.2. Under the above circumstances, colim
i∈I,F

Ci is dualizable, and its dual is canon-

ically equivalent to colim
i∈I,G∨

C∨i . This equivalence is uniquely characterized by the property that

for i0 ∈ I, we have

(7) (insi0,G∨)∨ ' evi0,G,

in a way compatible with arrows in I.

In formula (7), the notation insi0,G∨ means the functor

insi0 : C∨i0 → colim
−→

i∈I,G∨
C∨i ,

and the notation evi0,G means the functor

evi0 : lim
←−
Iop,G

Ci → Ci0 .

Proof. First, let construct a pairing

(8)

colim
−→

i∈I,G∨
C∨i

⊗
 lim

←−
i∈Iop,G

Ci

→ Vect .

To do this, it is sufficient to specify the corresponding pairings

(9) C∨i0 ⊗

 lim
←−

i∈Iop,G

Ci

→ Vect, i0 ∈ I,

compatible with the functors G∨α. The pairing (9) is given by

C∨i0 ⊗

 lim
←−

i∈Iop,G

Ci

 Id⊗ evi0−→ C∨i0 ⊗Ci0 → Vect .

Now let us prove that the pairing (8) induces an equivalence

(10)

colim
−→

i∈I,G∨
C∨i

 '
 lim

←−
i∈Iop,G

Ci

∨ .
By [De, Prop. 2.3], it suffices to show that for any D ∈ DGCatcont the functor

(lim
←−

i∈Iop,G

Ci)⊗D→ Functcont

(colim
−→

i∈I,G∨
C∨i),D



8 DENNIS GAITSGORY

induced by (8) is an equivalence. To this end, one checks that the above functor is isomorphic
to the composition of the equivalences

(lim
←−

i∈Iop,G

Ci)⊗D ' (colim
−→
i∈I,F

Ci)⊗D ' colim
−→

i∈I,(F⊗Id)

(Ci ⊗D) ' lim
←−

i∈Iop,(G⊗Id)

(Ci ⊗D) '

' lim
←−
i∈Iop

Functcont(C
∨
i ,D) ' Functcont

(colim
−→

i∈I,G∨
C∨i),D

 ,

where the first and third equivalence are obtained by applying Lemma 1.3.3, and the limit of
Functcont(C

∨
i ,D) is taken with respect to the functors

Functcont(C
∨
j ,D) −→ Functcont(C

∨
i ,D), F 7→ F ◦G∨α, α : i→ j.

The characterization of the equivalence (10) given by (7) follows from the definition of the
pairing (8). �

2.2.3. It’s also easy to see that if, under the above circumstances, each of the categories Ci is
compactly generated, then so is C := colim

I,F
Ci. Indeed, the functors Φi : Ci → C send compact

objects to compact ones.

2.3. Compactly generated categories. Assume now that C is compactly generated. I.e.,
we can write C ' Ind(Cc), where Cc is a small (non-cocomplete) DG category consisting of
compact objects of C.

For any DG-category D we have that Functcont(C,D) is equivalent to the category

Funct(Cc,D)

of just k-linear functors Cc → D.

Note that we have a canonical pairing in DGCatcont:

Ind(Cc)⊗ Ind((Cc)op)→ Vect,

given by the Yoneda pairing Cc × (Cc)op → Vect.

Proposition 2.3.1. The above pairing makes Ind((Cc)op) into a dual of C. In particular, any
compactly generated DG-category is dualizable.

Proof. We’ll check that for any D the above pairing defines an equivalence

Ind((Cc)op)⊗D→ Functcont(C,D) ' Funct(Cc,D).

It will be convenient to use the following characterization of the the tensor product operation
on DGCatcont:

D1 ⊗D2 ' (Functcont(D1,D
op
2))

op
.

Hence, we obtain that

Ind((Cc)op)⊗D ' (Funct((Cc)op,Dop))
op ' Funct(Cc,D),

as required.
�

GENERALITIES ON DG CATEGORIES 9

2.3.2. Duality and adjunction. Let C1 and C2 be two compactly generated categories, and
F : C1 → C2 a functor that sends Cc

1 to Cc
2. This is a necessary and sufficient for the adjoint

functor
FR : C2 → C1

to belong to Functcont(C2,C1).

Let F c,op denote the functor
(Cc

1)op → (Cc
2)op,

obtained from F c : Cc
1 → Cc

2 by reversing the arrows. Let F op := Ind(F c,op) be its ind-extension

C∨1 ' Ind(Cop
1)→ Ind(Cop

2) ' C∨2 .

Lemma 2.3.3. Under the above circumstances, the functor F op is the left adjoint of F∨, and
F is the left adjoint of (F op)∨.

3. The Barr-Beck-Lurie theorem

3.1. The General set-up. Let us first review the general Barr-Beck-Lurie theorem. Let C
and D be ∞-categories that admit limits and colimits. Let

F : C � D : G

be a pair of mutually adjoint functors. Consider the monad A = G ◦ F : C→ C. The functor
G naturally factors through

C← A-modC
G′← D.

Note that the functor G′ itself admits a left adjoint F ′, defined as follows: for X ∈ A-modC

the assignment
n 7→ F (A×n(X))

is naturally a simplicial object of D, which we denote by F (A•(X)) and we define

F ′(X) := |F (A•(X))|.

Proposition 3.1.1. The functor G′ and F ′ define mutually inverse equivalences if and only if
the following two conditions hold:

• The functor G is conservative.
• If X• ∈ D is a simplicial object, such that G(X•) is split, then the natural map
|G(X•)| → G(|X•|) is an isomorphism.

Proof. We’ll prove the ”if” direction. Since G′ is conservative, it is enough to show that F ′ is
fully faithful, i.e., that the adjunction map

X 7→ G′ ◦ F ′(X)

is an isomorphism. It is enough to show that it is an isomorphism after applying the forgetful
functor A-modC → C.

Note that the simplicial object F (A•(X)) ∈ D is such that G(F (A•(X))) is split with the
−1-st term being X. Hence, by assumption

G(|F (A•(X))|) ' |G(F (A•(X)))| ' X,
as required. �

3.1.2. Easy Barr-Beck. A particularly easy case of the above proposition is when the functor
G commutes with colimits. In this case we see that the functors F ′ and G′ are mutually inverse
if and only if G is conservative.

10 DENNIS GAITSGORY

3.2. Monads and tensor products. Let C1,C2 be DG-categories, and let Ai : Ci → Ci,
i = 1, 2 be monads that belong to Functcont(Ci,Ci). Let C := C1 ⊗C2, and let A = A1 ⊗ A2.

Proposition 3.2.1. The natural functor

A1-modC1 ⊗ A2-modC2 → A-modC

is an equivalence.

Proof. Let Fi,Gi denote the pair of adjoint functors

Fi : Ai-modCi � Ci : Gi.

Consider the forgetful functor

G1 ⊗ G2 : A1-modC1
⊗ A2-modC2

→ C1 ⊗C2 ' C.

Its left adjoint is F1 ⊗ F2, and the resulting monad on C is A. By Sect. 3.1.2, it suffices to
show that G1 ⊗ G2 is conservative. The latter is equivalent to the image of F1 ⊗ F2 generating
A1-modC1

⊗ A2-modC2
. However, this follows from the fact that the image of Fi generates

Ai-modCi , since Gi is conservative by assumption.
�

4. Module categories

4.1. The set-up. Let O be a monoidal category. We’ll always be assuming that the monoidal
operation mult∗O : O⊗O→ O belongs to Functcont(O⊗O,O).

By an O-module we’ll mean a category C endowed with an associative action act∗O,C :

O⊗C→ C, such that this functor belongs to Functcont(O⊗C,C).

For two O-module categories C1 and C2, we shall denote by HomO -mod(C1,C2) the
DG category of functors C1 → C2 that are compatible with the O-action, and belong to
Functcont(C1,C2).

4.1.1. We make O-module categories into an (∞, 2)-category, denoted O -mod, by setting 1-
morphisms to be HomO(C1,C2). However, the same reservation pertaining to the notion of
(∞, 2)-category as in the case of DGCatcont (see Sect. 1.2.1) applies.

As in the case of DGCat, we can alternatively view O -mod as an (∞, 1)-category, by
discarding the non-invertible 2-morphisms, i.e., by considering the maximal sub-groupoid

Hom◦O -mod(C1,C2) ⊂ HomO -mod(C1,C2).

As for DGCat, the (∞, 2)-category structure can be essentially recovered from the (∞, 1)-
category by considering the arrows category, using the fact that O -mod is tensored over
DGCat.

When considering a functor Φ : O1 -mod→ O2 -mod as (∞, 1)-categories, we can recover it
as a 2-functor between the corresponding (∞, 2)-categories once Φ is endowed with a structure
of being tensored over DGCat.

GENERALITIES ON DG CATEGORIES 11

4.2. Duality of module categories. The following notion has also been explained to us by
J. Lurie:

Let O be a monoidal category, and C1 and C2 be left and right O-modules respectively. An
O-duality datum is a pair of functors

µ : Vect→ C2 ⊗
O
C1 and ε : C1 ⊗C2 → O,

where ε is O⊗Oop-linear, such that the composition

C1
µ→ C1 ⊗ (C2 ⊗

O
C1) ' (C1 ⊗C2)⊗

O
C1

ε→ O⊗
O
C1 ' C1

is the identity, and so is the functor

C2
µ→ (C2 ⊗

O
C1)⊗C2 ' C2 ⊗

O
(C1 ⊗C2)

ε→ C2 ⊗
O
O ' C2,

with the natural compatibility axioms holding.

4.3. Let C be a left O-module category, and assume that it is dualizable in the above sense.
Let C∨ denote the dual category.

Lemma 4.3.1. For any left O-module category C′ we have a natural equivalence

C∨ ⊗
O
C′ ' HomO -mod(C,C′).

Corollary 4.3.2. If C is dualizable as a right module category, then the functor

C′ 7→ C⊗
O
C′ : O -mod→ DGCatcont

commutes with limits.

4.4. Modules over an algebra. Let O be a monoidal category, and let A ∈ O be an as-
sociative algebra. Let A-modO denote the category of A-modules on O. Tautologically, this
category is the same as that of modules over the monad

A′ : O→ O : X 7→ A⊗X.

The category A-modO is naturally a right module over O.

4.5. Let O1 and O2 be two monoidal categories and Ai ∈ O1 be algebras. By Proposition 3.2.1,
we have:

Lemma 4.5.1. The natural functor

A1-modO1
⊗A2-modO2

→ (A1 ⊗A2)-modO1⊗O2

is an equivalence.

4.6. Consider now the category of A-bimodules on O, denoted A-bimodO. Consider also the
category A-modO ⊗

O
Aop-modOop .

Proposition 4.6.1. The natural functor

A-modO ⊗
O
Aop-modOop → A-bimodO

is an equivalence.

12 DENNIS GAITSGORY

Proof. Let G : A-modO → O and Gop : Aop-modOop → O denote the forgetful functors, and let
F and Fop denote their adjoints. We have a pair of mutually adjoint functors

F⊗ Fop : O ' O⊗
O
O � A-modO ⊗

O
Aop-modOop : G⊗ Gop.

The resulting monad on O corresponds to the category A-bimodO. Hence, by Proposition 3.1.2,
it suffices to check that the functor G⊗Gop is conservative. The latter is equivalent to the fact
that the image of F⊗ Fop generates A-modO ⊗

O
Aop-modOop . However, the latter follows since

the image of F (resp., Fop) generates A-modO (resp., Aop-modOop), since the functors G and
Gop are conservative.

�

4.7. Let O and A be as above.

Proposition 4.7.1. The categories A-modO and Aop-modOop are mutually O-dual.

Proof. The pairing ε : Aop-modOop ⊗ A-modO → O is the usual Hochschild homlogy functor.
The functor

µ : Vect→ A-modO ⊗Aop-modOop

corresponds to the object

A ∈ A-bimodO ' A-modO ⊗Aop-modOop .

�

Corollary 4.7.2. For a left O-module category C, we have a natural equivalence:

HomO -mod(Aop-modOop ,C) ' A-modO ⊗
O
C.

4.8. Let C be a left O-module category. For A as above, we can consider the monad AC on C
given by tensor product with A. Let A-modC denote the corresponding category of modules.

Proposition 4.8.1. The natural functor

A-modO ⊗
O
C→ A-modC

is an equivalence.

Proof. The proof follows again from Proposition 3.1.2: it suffices to observe that the forgetful
functor

A-modO ⊗
O
C→ O⊗

O
C ' C

is conservative.
�

4.9. Compact generation of tensor products. Let O be a monoidal DG category, and let
C1 and C2 be left and right O-module categories, respectively.

Assume now that O and that the monoidal operation O⊗O→ O admits a continuous right
adjoint, and that so do the action functors O⊗C1 → C1 and C2 ⊗O→ C2.

Proposition 4.9.1. Under the above circumstances, the right adjoint to the tautological functor

C2 ⊗C1 → C2 ⊗
O
C1

is continuous.

GENERALITIES ON DG CATEGORIES 13

Corollary 4.9.2. Assume that O, C1, C2 are compactly generated, and that the functors

O⊗O→ O, O⊗C1 → C1, C2 ⊗O→ C2

preserve compact objects. Then the functor

C2 ⊗C1 → C2 ⊗
O
C1

sends compact objects to compact ones. In particular, C2 ⊗
O
C1 is compactly generated.

Proof. (of Proposition 4.9.1)
By definition, the category C2 ⊗

O
C1 is given as the geometric realization of the simplicial

category

i 7→ C1 ⊗O⊗i ⊗C2.

By Lemma 1.3.3, the above geometric realization can be rewritten as the totalization of the
corresponding cosimplicial category obtained by taking the right adjoints.

Moreover, the right adjoint to the tautological functor

C2 ⊗C1 → |C1 ⊗O⊗• ⊗C2| = C2 ⊗
O
C1

is the evaluation functor

Tot(C1 ⊗O⊗• ⊗C2|)→ C2 ⊗C1.

Now, the assumption of the proposition implies that the above cosimplicial category belongs
to DGCatcont. In particular, the above evaluation functor is continuous.

�

5. Dualizability in a monoidal category

5.1. Inner Hom. Let O be a monoidal DG category and C an O-module category.

For X,Y ∈ C we set HomO(X,Y) ∈ O to be the object such that

HomO(Z,HomO(X,Y)) ' HomC(Z ⊗X,Y),

functorially in Z ∈ O.

An object X ∈ C is called relatively O-left compact if the functor

Y 7→ HomO(X,Y) : C→ O

commutes with colimits.

Lemma 5.1.1.

(1) Suppose that O is compactly generated. Then every compact object in C is relatively com-
pact.

(2) If 1O is compact, then the converse to (1) hold.

14 DENNIS GAITSGORY

5.2. Let us now consider O as a module over itself.

Recall that an object X ∈ O is said to be left-dualizable if there exists an object X∨ ∈ O
endowed with the

1O → X ⊗X∨ and X∨ ⊗X → 1O,

satisfying the usual axioms.

Recall also the following:

Lemma 5.2.1.

(1) If X is dualizable, we have

Hom(Y,X ⊗ Z) ' Hom(X∨ ⊗ Y,Z) and Hom(Z ⊗X,Y) ' Hom(Z, Y ⊗X∨).

(2) If either X or Y is left-dualizable, then

HomO(X,Y) ' Y ⊗Hom(X, 1O).

(3) An object X is left-dualizable if and only if there exists an object X∨ endowed with a
functorial isomorphism HomO(X,Y) ' Y ⊗X∨.

5.2.2. Evidently, if an object X is left-dualizable, then it’s relatively compact.

Proposition 5.2.3. Suppose that O is generated by left-dualizable objects. Then every relatively
compact object is left-dualizable.

Proof. Let X be relatively O-left compact. We need to establish the isomorphism

Y ⊗HomO(X, 1O) ' HomO(X,Y).

By assumption, both sides commute with colimits in Y . Hence, it’s enough to establish it
for a generating set of Y ’s. However, the isomorphism does hold whenever Y is left-dualizable.

�

6. Rigid monoidal categories

6.1. Let O be a monoidal category. Let mult∗O denote the tensor product functor O⊗O→ O,
and unit∗O : Vect→ O the unit. We shall say that O is rigid if the following conditions hold:

• The right adjoint of mult∗O, denoted multO∗, belongs to Functcont(O,O⊗O).
• The functor multO∗ : O→ O⊗O is compatible with the left and right actions of O. 1

• The right adjoint of unit∗O, denoted unitO∗, belongs to Functcont(O,Vect) (equivalently,
the object unit∗O(k) ∈ O is compact).

If this happens, it’s easy to see that the data of

ε : O⊗O
mult∗O−→ O

unitO∗−→ Vect

and

µ : Vect
unit∗O−→ O

multO∗−→ O⊗O

define an isomorphism O→ O∨; let’s denote this isomorphism φ1O.

6.1.1. Note that when O is compactly generated, the condition that O be rigid is equivalent
to Oc being a rigid monoidal category in the usual sense (i.e., every object admits a left and a
right dual).

1A priori, it’s only lax compatible

GENERALITIES ON DG CATEGORIES 15

6.1.2. Reversing the multiplication on O we obtain another identification O→ O∨, which we
denote φ2O. We have φ2O = φ1O ◦ ϕO, where ϕO is an automorphism of O.

It is easy to see, however, that O is naturally an automorphism of O as a monoidal category.
2 (When O is compactly generated, ϕ is the ind-exetension of the automorphism of Oc given
by X 7→ (X∨)∨, i.e., the discrepancy between left duals and right duals).

The category O∨ acquires a natural bimodule structure over O. It is easy to see that the
functor φ1O is compatible with the right O-module structures, while φ2O is compatible with the
left O-module structures.

6.2. Let us list some properties of rigid monoidal categories.

Lemma 6.2.1. Let O be a rigid monoidal category. Then:

(1) The diagram

O∨
(mult∗O)∨−−−−−−→ O∨ ⊗O∨

φi
x xφi⊗φi
O

(multO)∗−−−−−−→ O⊗O

commutes for i = 1, 2.

(2) Let F : O1 → O2 be a monoidal functor between rigid monoidal categories. Then its right
adjoint FR belongs to Functcont(O2,O1), and the following diagram commutes:

O2
FR−−−−→ O1

φiO2

y yφiO1

O∨2
F∨−−−−→ O∨1

for i = 1, 2.

The proof follows readily from the definitions.

6.2.2. Modules over rigid categories.

Proposition 6.2.3. Let O be rigid, and let C be a left module category over O. Then the right
adjoint (actO,C)∗ to act∗O,C belongs to Functcont, and is given by

C ' Vect⊗C µ⊗IdC−→ O⊗O⊗C
IdO⊗act∗O,C→ O⊗C,

i.e.,

C→ O∨ ⊗C
φ2
O⊗IdC' O⊗C,

where C → O∨ ⊗ C is obtained from act∗O,C via the duality data for (O,O∨). A similar
statement holds for right modules over O.

Proof. By tensoring up over O, it is enough to consider the universal case, when C = O. In
this case, we need to compare the following two functors. One is

O→ O∨ ⊗O
φ2
O⊗IdO' O⊗O,

2We are grateful to J. Lurie for pointing out this issue.

16 DENNIS GAITSGORY

written above, and the other is (multO)∗. We consider both sides as endowed with an action of
O on the right. The assumption on O says that both functors are compatible with this action.
Hence, it is enough to identify the two compositions

Vect
unit∗O→ O ⇒ O⊗O

coincide. But this is easy to see that both identify with µ.
�

As a corollary, we obtain:

Corollary 6.2.4. Let O be rigid, and let F : C1 → C2 be a functor between O-module cat-
egories. Suppose that F , when viewed as a functor between just DG categories admits a left
(resp., continuous right) adjoint G. Then the diagram

O⊗C1
IdO⊗F←−−−−− O⊗C2

act∗O,C1

y yact∗O,C2

C1 ←−−−− C2,

that a priori commutes up to a natural transformation, actually commutes. In particular, G
has a natural structure of functor between O-module categories.

6.3. Hohschild homology and cohomology. Let O be a monoidal category and K a bi-
module category. Recall that in this case we can form the ”Hochschild homology” category
HHO(K), defined as the geometric realization of the simplicial category

K ⇔ O⊗K...

In particular, if K = C1 ⊗C2 with C1 being a right module and C2 a left module, we have
HHO(C1 ⊗C2) =: C1 ⊗

O
C2, the tensor product of C1 and C2 over O.

Let O and K be as before. We can also define the ”Hochschild cohomology” category
CHO(K), defined as the totalization of the co-simplicial category

K ⇒ O∨ ⊗K...

In particular, for two left module categories C1,C2, by setting K = Hom(C1,C2), we have
CHO(Hom(C1,C2)) ' HomO -mod(C1,C2).

For C1 a left O-module and C2 a right O-module, we will use the notation

C1

O
⊗C2 := CHO(C1 ⊗C2).

6.3.1. Assume now that O is rigid. From Lemma 1.3.3 and Proposition 6.2.3, we obtain:

Proposition 6.3.2. HHO(K) ' HCO(K′), where K′ is the same as K as a right O-module,
and the left O-module structure is twisted by ϕ.

Corollary 6.3.3. Let O be a rigid monoidal category.

(1) Let C1 and C2 be two left O-modules with C1 dualizable as a category. Then

HomO -mod(C1,C2) ' C∨1 ⊗
O
C′2,

where C′2 is obtained from C2 by twisting the action by ϕ.

(2) Let C1 and C2 be right and left O-modules, both dualizable as categories. Then C1⊗
O
C2 is

dualizable and its dual identifies with C′2
∨ ⊗

O
C∨1 .

GENERALITIES ON DG CATEGORIES 17

(3) Let C be a left O-module category. Then for another category D,

HomO -mod(C,O⊗D) ' Hom(C,D).

6.4. Let O be a monoidal category and Cl and Cr be left and right O-modules, respectively.

Corollary 6.4.1. Suppose that O is rigid, and let Cl and Cr be as above. The following data
are equivalent:

• An O-duality between Cl and Cr;
• An isomorphism Cr → C∨l as right O-modules (in particular, Cl must be dualizable as

a category).

Corollary 6.4.2. Let O be rigid. Then an O-module category C is dualizable as a module
category if and only if it is dualizable as a plain DG-category.

6.5. Suppose now that C1 and C2 are bi-modules over O. A duality between them is a datum
of maps of O-bimodules:

εO : C1 ⊗
O
C2 → O, µO : O→ C2 ⊗

O
C1,

such that the usual axioms are satisfied.

We have:

Corollary 6.5.1. Let O be rigid and let C be an O-bimodule. Then for a bi-module C′ a
duality datum for the pair (C,C′) is equivalent to an isomorphism of bimodules C′ ' C∨ (in
particular, C must be dualizable as a category).

References

[De] P. Deligne, Catégories tannakiennes, in: “The Grothendieck Festschrift”, Vol. II, 111–195, Progr. Math.

87, Birkhäuser Boston, Boston, MA, 1990.
[Dr] V. Drinfeld, DG Quotients of DG Categories, arXiv:math:0210114.

[FG] E. Frenkel and D. gGaitsgory, D-modules on the affine flag variety and representations of affine Kac-Moody

algebras, arXiv: 0712.0788.
[Lu1] J. Lurie, Higher topos theory.

[Lu2] J. Lurie, Higher Algebra.

[Lu3] J. Lurie, (∞, 2)-categories and Goodwillie calculus-I.

