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Introduction

In this Chapter we will establish one of the goals indicated in the Introduction to Part III: we
will show that inf-schemes give a common framework for ind-coherent sheaves and D-modules.
In particular, we will show that the induction and forgetful functors

(0.1) indX : IndCoh(X) � D-mod(X) : oblvX

interact with the direct and inverse image functors in the expected way.
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2 AN APPLICATION: CRYSTALS

0.1. Let’s do D-modules! The usual definition of the category of D-modules on a smooth
affine scheme X is as the category

DiffX -mod,

where DiffX is the (classical) ring of Grothendieck operations.

This approach to D-modules is very explicit, and is indispensable for concrete applications
(e.g. to define regular D-modules and study the notion of holonomicity). However, this approach
is not particularly convenient for setting up the theory from the point of view of higher category
theory.

Here are some typical issues that become painful in this approach.

0.1.1. One often encounters the question of how to define the category of D-modules on a
singular scheme X? The usual answer is that we first assume that X is affine, and choose an
embedding X ↪→ Y , where Y is smooth. Now, define D-mod(X) to be D-mod(Y )X , i.e., the
full subcategory of D-mod(Y ) consisting of objects with set-theoretic support on X.

Then, using Kashiwara’s lemma, one shows that this construction is canonically indepen-
dent of the choice of Y . For general X, one considers an affine Zariski cover and glues the
corresponding categories.

Note, however, that the words ‘choose an embedding X ↪→ Y ’ mean that in the very defini-
tion, we appeal to resolutions. From the homotopical point of view, this exacts a substantial
price and is too cumbersome to be convenient.

0.1.2. Another example is the definition of the direct image functor. For a morphism f : X → Y
between smooth affine schemes, one introduces an explicit object

DiffX,Y : (DiffY ⊗Diffop
X )-mod,

which defines the desired functor

DiffX -mod→ DiffY -mod.

When X and Y are not necessarily smooth, one again embeds this situation into one where
X and Y are smooth. When X and Y are non-affine, this is performed locally on X and Y .

All of this can be made to work for an individual morphism: we can prove the proper
adjunction between pullbacks and pushforwards, and the base change isomorphism. However,
it is not clear how to establish the full functoriality of the category D-mod in this way; namely,
as a functor out of the category of correspondences.

0.1.3. Another layer of complexity (=homotopical nuisance) arises when one wants to construct
D-modules together with the adjoint pair (0.1).

0.2. D-modules via crystals. In this book, we take a different approach to the theory of
D-modules. We define the category of D-modules as crystals, establish all the needed func-
torialities, and then in the case of smooth schemes and morphisms between them identify the
resulting categories and functors with the classical ones from the theory of D-modules.
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0.2.1. By definition, for a laft prestack Z, the category of crystals on Z is

Crys(Z) := IndCoh(ZdR),

where ZdR is the de Rham prestack of Z.

Let f : Z1 → Z2 be a map of laft prestacks. Then !-pullback on IndCoh defines a functor

f !
dR : Crys(Z2)→ Crys(Z1).

This is the pullback functor for crystals.

0.2.2. Assume now that f is ind-nil-schematic, which means that the corresponding morphism
redZ1 → redZ2 is ind-schematics. Then one (easily) sees that the resulting morphism

(fdR) : (Z1)dR → (Z2)dR

is ind-inf-schematic. Now, using [Chapter III.3, Sect. 4], we define the functor

fdR,∗ : Crys(Z1)→ Crys(Z2)

to be the functor (fdR)∗. This is the de Rham direct image functor.

0.2.3. Taking Z1 = Z (so that redZ is an ind-scheme) and Z2 = pt, we obtain the functor of de
Rham sections

ΓdR(Z,−) : Crys(Z)→ Vect .

Moreover, the above constructions automatically extend to the data of a functor out of
a suitable (∞, 2)-category of correspondences. Namely, we consider the category PreStklaft

equipped with the following classes of functors:

–‘horizontal’ maps are all maps in PreStklaft;

–‘vertical’ maps are those maps f that redf is ind-schematic (we call them ind-nil-schematic);

–‘admissible’ maps are those vertical maps that are also ind-proper.

One shows that the assignment Z 7→ ZdR defines a functor

Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → Corr(PreStklaft)

indinfsch & ind-proper
indinfsch;all .

Composing with the functor

IndCoh(PreStklaft)
indinfsch& ind-proper
indinfsch;all

: Corr(PreStklaft)
indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont ,

we obtain a functor

CrysCorr(PreStklaft)
indnilsch& ind-proper
indnilsch;all

: Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → DGCat2 -Cat

cont .

The above functor CrysCorr(PreStklaft)
indnilsch& ind-proper
indnilsch;all

is the desired expression of functoriality

of the assignment
Z 7→ Crys(Z).

0.2.4. Now suppose that Z ∈ PreStklaft admits deformation theory. One shows that in the case
the tautological map

pdR,Z : Z→ ZdR

is an inf-schematic nil-isomorphism. Hence, by [Chapter III.3, Prop. 3.1.2], the functor

p!
dR,Z : Crys(Z)→ IndCoh(Z)

admits the left adjoint.

Thus, we obtain the desired adjoint pair:

inddR,Z : IndCoh(Z) � Crys(Z) : oblvdR,Z.
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0.2.5. But what does this have to do with D-modules? The basic observation, essentially due
to Grothendieck1, is that for a smooth scheme X, the category Crys(X), together with the
forgetful functor

ΨX ◦ oblvdR,X : Crys(X)→ QCoh(X),

is canonically equivalent to the category of right D-modules, together with its tautological
forgetful functor to QCoh(X).

We describe this identification in Sect. 4 of this Chapter. We also show that the functors on
the category of crystals (direct and inverse image for a map f : X → Y ) described above map
to the corresponding functors for D-modules under this identification.

This is thus our ansatz to the construction of the theory of D-modules: instead of developing
the theory of D-modules directly, we develop the theory of crystals, and then identity it with
D-modules when D-modules are conveniently defined; namely, in the case of smooth schemes.

0.3. What else is done in this chapter?

0.3.1. In Sect. 1 we introduce the category of crystals Crys(Z), where Z ∈ PreStklaft.

The key observation here is the following: let f : Z1 → Z2 be a map between prestacks such
that the induced map

redZ1 → redZ2

is (ind)-schematic. Then we show that the resulting map

(Z1)dR → (Z2)dR

is (ind)-inf-schematic.

This observation, along with the fact that pushforward is defined on IndCoh for (ind)-nil-
schematic morphisms, is what makes the theory work. I.e., this is the framework that allows
to treat the de Rham pushfoward (in particular, de Rham (co)homology) on the same footing
as the O-module pushforward (in its IndCoh variant).

We then establish some properties, expected from the theory of D-modules:

(i) For a closed embedding i : Y ↪→ Z, the functor idR,∗ : IndCoh(Y) → IndCoh(Z) is fully
faithful;

(ii) If Z is an (ind)-nil-scheme, the category Crys(Z) is compactly generated and has a reasonably
behaved t-structure.

0.3.2. In Sect. 2 we apply the results of [Chapter III.3, Sect. 5 and 6] and construct Crys as a
functor out of the category of correspondences.

We show that when evaluated on ind-nil-schemes, this gives rise to the operation of Verdier
duality.

1We learned it from A. Beilinson.
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0.3.3. In Sect. 3 we study the functor of forgetting the crystal structure:

oblvdR,Z : Crys(Z)→ IndCoh(Z),

which, in our framework, is just the pullback functor for the morphism

pdR,Z : Z→ ZdR.

The key observation is that if Z admits deformation-theory, then the map pdR,Z is inf-
schematic. Hence, in this case the functor oblvdR,Z admits a left adjoint, given by (pdR,Z)IndCoh

∗ .
This left adjoint, denoted inddR,Z, is the functor of induction from ind-coherent sheaves to
crystals.

When Z = X is a smooth affine scheme, under the identification

Crys(X) ' (Diffop
X )-mod,

the functor inddR,Z corresponds to

F 7→ F ⊗
OX

DiffX .

We show that if Z is an ind-scheme, then the morphism pdR,Z is ind-schematic. We use this
fact to deduce that the functor inddR,Z is t-exact.

0.3.4. In Sect. 3.3, we develop the theory of crystals relative to a given prestack Y. Namely, for
Z over Y, we set

Z/YdR := ZdR ×
YdR

Y

and we set
/YCrys(Z) := IndCoh(Z/YdR).

When Z = X and Y = Y are smooth affine schemes, and the map X → Y is smooth, category
/YCrys(Z) identifies with

(DiffX/Y )op-mod,

where DiffX/Y is the (classical) ring of vertical differential operators (i.e., the subring of DiffX
consisting of elements that commute with functions on Y ).

If Z admits deformation theory relative to Y, then the morphism

p/YdR,Z : Z→ Z/YdR

is again inf-schematic, and hence the forgetful functor

(p/YdR,Z)! : /YCrys(Z)→ IndCoh(Z)

admits a left adjoint, given by (p/YdR,Z)IndCoh
∗ .

0.3.5. In Sect. 4 we show how to identify the theory of crystals with D-modules in the case
of smooth schemes. Our exposition here is not self contained: we make frequent references to
[GaRo2].

We first consider the case of left D-modules, and we show that the category Crysl(X) of left
crystals on a smooth affine scheme X, defined as QCoh(XdR), identifies with DiffX -mod.

We then show that the category of right crystals (i.e., the usual category of crystals)

Crysr(X) := Crys(X) := IndCoh(XdR)

identifies with (DiffX)op-mod.
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Next, we show that the functor

ΥXdR
: QCoh(XdR)→ IndCoh(XdR)

that identifies Crysl(X) with Crysr(X) corresponds under the above equivalences

(0.2) Crysl(X) ' DiffX -mod and Crysr(X) ' (DiffX)op-mod

with the functor

Crysl(X)→ Crysr(X), M 7→M ⊗ det(T ∗(X))[dim(X)].

Finally, we show that for a map between f : X → Y between smooth schemes, under the
identifications (0.2), the functor

fN,l : DiffY -mod→ DiffX -mod

from the theory of D-modules corresponds to pullback

f∗dR : QCoh(YdR)→ QCoh(XdR),

and the functor

fD-mod,∗ : DiffX -mod→ DiffY -mod

from the theory of D-modules corresponds to push-forward

fdR,∗ : QCoh(XdR)→ QCoh(YdR).

1. Crystals on prestacks and inf-schemes

In this section we will reap the fruits of the work done in [Chapter III.3]. Namely, we will
show how the theory of IndCoh gives rise to the theory of crystals.

1.1. The de Rham functor and crystals: recollections. The category Crys(X) of crystals
on a prestack X is defined to be IndCoh on the corresponding prestack XdR. In this subsection
we recall the functor X 7→ XdR and study its basic properties.

1.1.1. For Z ∈ PreStk, we denote by ZdR the corresponding de Rham prestack, defined as

Maps(S,ZdR) := Maps(redS,Z),

for S ∈ Schaff .

For a morphism f : Z1 → Z2, let fdR : Z1
dR → Z2

dR denote the corresponding morphism
between deRham prestacks.

1.1.2. Note that the functor dR commutes both with limits and colimits.

Also, note that

ZdR ' (redZ)dR.

So, if a morphism f : Z1 → Z2 is a nil-isomorphism (i.e., redZ1 → redZ1 is an isomorphism),
then (Z1)dR → (Z2)dR is an isomorhism.
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1.1.3. We claim:

Proposition 1.1.4. The functor dR takes PreStklaft to PreStklaft.

Proof. Let Z be an object of PreStklaft. We need to show that ZdR satisfies:

• It is convergent;
• For every n, the truncation ≤nZ belongs to ≤nPreStklft.

The convergence of ZdR is obvious. To show that ≤nZ ∈ ≤nPreStklft, it suffices to show that
ZdR takes filtered limits in Schaff to colimits in Spc. However, this follows from the fact that
the functor

S 7→ redS, Schaff → redSchaff

preserves filtered limits, and the fact that redZ ∈ redPreStklft.
�

1.2. Crystals. In this subsection we introduce the category of crystals.

1.2.1. Composing the functor dR : PreStklaft → PreStklaft with

IndCoh!
PreStklaft

: (PreStklaft)
op → DGCatcont,

we obtain a functor denoted by

Crys!
PreStklaft

: (PreStklaft)
op → DGCatcont .

This is the functor which is denoted CrysrPreStklaft
in [GaRo2, Sect 2.3.2].

1.2.2. For Z ∈ PreStklaft we shall denote the value of Crys!
PreStklaft

on Z by Crys(Z). For a

morphism f : Z1 → Z2 in PreStklaft, we shall denote by f !
dR the resulting functor

Crys(Z2)→ Crys(Z1).

Note that if a morphism f : Z1 → Z2 is a nil-isomorphism, then

f !
dR : Crys(Z2)→ Crys(Z1)

is an equivalence.

1.2.3. For Z ∈ PreStk, we let pdR,Z denote the tautological projection:

Z→ ZdR.

The map pdR,Z gives rise to a natural transformation of functors

oblvdR : Crys!
PreStklaft

→ IndCoh!
PreStklaft

.

For a map f : Z1 → Z2, we have a commutative square of functors:

Crys(Z1)
oblvdR,Z1−−−−−−−→ IndCoh(Z1)

f !
dR

x xf !

Crys(Z2)
oblvdR,Z2−−−−−−−→ IndCoh(Z2).
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1.2.4. Finally, we make the following observation:

Proposition 1.2.5. For Z ∈ PreStklaft, the functor

Crys(Z)→ lim
Z∈(C/Z)op

Crys(Z)

is an equivalence, where C is any of the following categories:

redSchaff
ft ,

clSchaff
ft ,

<∞Schaff
ft , Schaff

aft,
redSchft,

clSchft,
<∞Schft, Schaft .

Proof. It is enough to show that the functor

dR : PreStklaft → PreStklaft

is isomorphic to the left Kan extension of its restriction to C ⊂ PreStklaft for C as above. It is
sufficient to consider the case of C = redSchaff

ft .

First, we note that the functor dR commutes with colimits. This implies that dR is isomor-
phic to the left Kan extension of its restriction to <∞Schaff

aft. Hence, it suffices to show that the
functor

dR : Schaff
aft → PreStklaft

is isomorphic to the left Kan extension of its restriction to redSchaff
ft .

In other words, we have to show that given Z ∈ Schaff
aft, S ∈ Schaff

aft and a map

redS → Z,

the category of its factorizations as

redS → Z ′ → Z

with Z ′ ∈ redSchaff , is contractible.

However, the latter is obvious as the above category has a final object, namely, Z ′ := redZ.
�

1.3. Crystals and (ind)-nil-schemes. In this subsection we introduce the class of prestacks
that we call (ind)-nil-schemes, and study the category of crystals on such prestacks. (Ind)-nil-
schemes play the same role vis-à-vis Crys as (ind)-inf-schemes do for IndCoh.

1.3.1. Consider the full subcategories

indnilSchlaft := PreStklaft ×
redPreStklft

redindSch ⊂ PreStklaft

and

nilSchlaft := PreStklaft ×
redPreStklft

redSch ⊂ PreStklaft,

where PreStklaft → redPreStklft is the functor Z 7→ redZ.

In other words, Z belongs to indnilSchlaft (resp., nilSchlaft) if and only if redZ is a reduced
ind-scheme (resp., scheme).

For example, we have

infSchlaft ⊂ nilSchlaft and indinfSchlaft ⊂ indnilSchlaft .

We shall refer to objects of indnilSchlaft (resp., nilSchlaft) as ind-nil-schemes (resp., nil-
schemes).
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1.3.2. We claim:

Lemma 1.3.3. The functor dR takes objects of indnilSchlaft (resp., nilSchlaft) to indinfSchlaft

(resp., infSchlaft).

Proof. We have
red(ZdR) = redZ.

Now, we claim that for any Z ∈ PreStk, the corresponding ZdR admits deformation theory. In
fact, it admits an ∞-connective deformation theory: all of its cotangent spaces are zero.

�

1.3.4. Recall from [Chapter III.2, Definitions 1.6.5(a), 1.6.7(c) and 1.6.11(c)], the notions of
(ind)-schematic and (ind)-proper maps of prestacks, as well as (ind)-closed embeddings of
prestacks.

Definition 1.3.5.

(a) We shall say that a map of prestacks is (ind)-nil-schematic if the map of the corresponding
reduced prestacks is (ind)-schematic.

(b) We shall say that a map of prestacks is an nil-closed-embedding(ind)-nil-closed embedding
if the map of the corresponding reduced prestacks is an ind-closed embedding.

Recall the notion of an (ind)-inf-schematic map of prestacks, see [Chapter III.2, Definitions
3.1.5]. We have:

Corollary 1.3.6. The functor dR takes (ind)-nil-schematic maps in PreStklaft to (ind)-inf-
schematic maps.

Proof. For a map of prestacks f : Z1 → Z2 and S ∈ (Schaff
aft)/(Z2)dR , the Cartesian product

S ×
(Z2)dR

(Z1)dR

identifies with

S ×
SdR

(redS ×
Z2

Z1)dR.

Now, we use Lemma 1.3.3 and the fact that the subactegory indinfSchlaft is preserved by finite
limits.

�

1.3.7. We claim:

Lemma 1.3.8. Let f : Z1 → Z2 be an ind-nil-proper map in PreStklaft. Then:

(a) The functor fdR,∗ : Crys(Z1) → Crys(Z2), left adjoint to f !
dR, is well-defined, and satisfies

base change with respect to !-pullbacks.

(b) If f is an ind-nil-closed embedding, then fdR,∗ is fully faithful.

Proof. Point (a) follows from Corollary 1.3.6 and [Chapter III.3, Proposition 3.2.4].

To prove point (b), we need to show that the unit of the adjunction

IdCrys(Z1) → f !
dR ◦ fdR,∗

is an isomorphism.
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Consider the Cartesian square:

Z1 ×
Z2

Z1
p1−−−−→ Z1

p2

y y
Z1 −−−−→ Z2.

The above unit of the adjunction equals the composite map

IdCrys(Z1) ' (p2)dR,∗ ◦ (∆Z1
)dR,∗ ◦ (∆Z1

)!
dR ◦ (p1)!

dR → (p2)dR,∗ ◦ (p1)!
dR → f !

dR ◦ fdR,∗,

where ∆Z1
is the diagonal map

Z1 → Z1 ×
Z2

Z1,

and second arrow is the co-unit of the ((∆Z1
)dR,∗, (∆Z1

)!
dR)-adjunction.

Now, by base change,

(p2)dR,∗ ◦ (p1)!
dR → f !

dR ◦ fdR,∗

is an isomorphism. Hence, it is enough to show that

(p2)dR,∗ ◦ (∆Z1
)dR,∗ ◦ (∆Z1

)!
dR ◦ (p1)!

dR → (p2)dR,∗ ◦ (p1)!
dR

is an isomorphism as well. However, the map

(∆Z1
)dR,∗ ◦ (∆Z1

)!
dR → IdCrys(Z1×

Z2

Z1)

is an isomorphism, since (∆Z1
)!
dR is an equivalence (because the map ∆Z1

is a nil-isomorphism).
�

1.4. The functor of de Rham direct image. In this subsection we develop the functor of
de Rham direct image (a.k.a., pushforward) for crystals.

1.4.1. Recall the functor

IndCohindinfSchlaft
: indinfSchlaft → DGCatcont,

that sends a morphism f to the functor f IndCoh
∗ , see [Chapter III.3, Sect. 4.3].

Precomposing it with the functor

dR : indnilSchlaft → indinfSchlaft

we obtain a functor

(1.1) CrysindnilSchlaft
: indnilSchlaft → DGCatcont .

1.4.2. For a morphism f : Z1 → Z2 in indnilSchlaft we shall denote the resulting functor

Crys(Z1)→ Crys(Z2)

by fdR,∗.

In other words,

fdR,∗ = (fdR)IndCoh
∗ .
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1.4.3. From [Chapter III.3, Corollary 5.2.3], we obtain:

Corollary 1.4.4. The restriction of the functor CrysindnilSchlaft
to the 1-full subcategory

(indnilSchlaft)ind-proper ⊂ indnilSchlaft

is obtained by passing to left adjoints from the restriction functor Crys!
indnilSchlaft

to

((indnilSchlaft)ind-proper)
op ⊂ (indnilSchlaft)

op.

Remark 1.4.5. Note that we have used the notation fdR,∗ when f is ind-proper earlier (in
Lemma 1.3.8), to denote the left adjoint of f !

dR. The above corollary implies that the notations
are consistent.

1.5. Crystals on ind-nil-schemes as extended from schemes. The material of this sub-
section will not be used in the sequel and is included for the sake of completeness. We show
that the theory of Crys on ind-nil-schemes can be obtained by extending the same theory on
schemes.

1.5.1. Consider the category redSchft, and consider the functors

Crys!
redSchft

: (redSchft)
op → DGCatcont

and
CrysredSchft

: redSchft → DGCatcont .

From Proposition 1.2.5 we obtain:

Corollary 1.5.2. The natural map

Crys!
indnilSchlaft

→ RKE(redSchft)op↪→(indnilSchlaft)op(Crys!
redSchft

)

is an isomorphism.

We are going to prove the following:

Proposition 1.5.3. The natural map

LKEredSchft↪→indnilSchlaft
(CrysredSchft

)→ CrysindnilSchlaft

is an isomorphism.

The rest of this subsection is devoted to the proof of this proposition.

1.5.4. Consider the 1-full subcategory of indnilSchlaft equal to

(indnilSchlaft)nil-closed = PreStklaft ×
redPreStklft

(redindSchlaft)closed.

I.e., we restrict 1-morphisms to be nil-closed maps.

It is enough to show that the map in Proposition 1.5.3 becomes an isomorphism when re-
stricted to the above subcategory. This follows by [Chapter III.3, Corollary 4.1.4] from Propo-
sition 1.4.4 and the following statement:

Proposition 1.5.5.

(a) The map((
RKE(redSchft)op↪→(indnilSchlaft)op

)
(Crys!

redSchft
)
)
|((indnilSchlaft)nil-closed)op →

→ RKE((redSchft)closed)op↪→((indnilSchlaft)nil-closed)op(Crys!
redSchft

|((redSchft)closed)op)

is an isomorphism.
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(b) The map

LKE(redSchft)closed↪→(indnilSchlaft)nil-closed
(CrysredSchft

|(redSchft)closed)→
→
(
LKEredSchft↪→indnilSchlaft

(CrysredSchft
)
)
|(indnilSchlaft)nil-closed

is an isomorphism.

Proof. Follows from the fact that for

Z ∈ indnilSchlaft,

the category

{f : Z → Z, Z ∈ redSchft, f is nil-closed}
is cofinal in

{f : Z → Z, Z ∈ redSchft},
by [Chapter III.2, Corollary 1.7.5(b)]

�

1.6. Properties of the category of crystals on (ind)-nil-schemes. In this subsection we
study properties of the category Crys(Z) on a given object Z ∈ indnilSchlaft.

1.6.1. We claim:

Proposition 1.6.2. The functor

Crys(Z)→ lim
f :Z→Z

Crys(Z)

is an equivalence, where the limit is taken over the index ∞-category

{f : Z → Z, Z ∈ redSchft, f is nil-closed}.

For every f : Z → Z as above, the corresponding functor

fdR,∗ : Crys(Z)→ Crys(Z)

is fully faithful.

Proof. The first assertion follows from Proposition 1.2.5 for C = redSchaff
ft and [Chapter III.2,

Corollary 1.7.5(b)].

The second assertion follows from Lemma 1.3.8(b).
�

1.6.3. Compact generation. From [Chapter III.3, Corollary 3.2.2] and , we obtain:

Corollary 1.6.4. The category Crys(Z) is compactly generated.

From Proposition 1.6.2, combined with [DrGa2, Corollary 1.9.4 and Lemma 1.9.5], we have
the following more explicit description of the subcategory

Crys(Z)c ⊂ Crys(Z).

Corollary 1.6.5. Compact objects of Crys(Z) are those that can be obtained as

fdR,∗(M), M ∈ Crys(Z)c, Z ∈ redSchft and f is a nil-closed map Z → Z.
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1.6.6. t-structure. According to [Chapter III.3, Sect. 3.4], the category Crys(Z) carries a canon-
ical t-structure. It is characterized by the following property:

M ∈ Crys(Z)≥0 ⇔ oblvdR,Z(M) ∈ IndCoh(Z)≥0.

In addition, from [Chapter III.3, Corollary 3.4.4], we obtain:

Corollary 1.6.7.

(a) An object M ∈ Crys(Z) lies in Crys(Z)≥0 if and only if for every nil-closed map f : Z → Z

with Z ∈ redSchft we have

f !
dR(M) ∈ Crys(Z)≥0.

(b) The category Crys(Z)≤0 is generated under colimits by the essential images of Crys(Z)≤0

for f : Z → Z with Z ∈ redSchft and f nil-closed.

2. Crystals as a functor out of the category of correspondences

In this section we extend the formalism of crystals to a functor out of the category of
correspondences.

2.1. Correspondences and the de Rham functor. In this subsection we show that the de
Rham functor turns (ind)-nil-schematic morphisms into (ind)-inf-schematic ones.

2.1.1. Recall that the functor dR commutes with Cartesian products. Combining this observa-
tion with Lemma 1.3.6, we obtain that dR gives rise to a functor of (∞, 2)-categories:

Corr(dR)ind-proper
indnilsch;all : Corr(PreStklaft)

indnilsch & ind-proper
indnilsch;all → Corr(PreStklaft)

indinfsch & ind-proper
indinfsch;all .

Hence, from [Chapter III.3, Theorem 5.4.3 and Proposition 5.5.3], we obtain:

Theorem 2.1.2. There exists a canonically defined functor

CrysCorr(PreStklaft)
indnilsch& ind-proper
indnilsch;all

: Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → DGCat2 -Cat

cont ,

equipped with an isomorphism

CrysCorr(PreStklaft)
indnilsch& ind-proper
indnilsch;all

|(PreStklaft)op ' Crys!
PreStklaft

.

Furthermore, the restriction

CrysCorr(PreStklaft)indnilsch;all
:= CrysCorr(PreStklaft)

indnilsch& ind-proper
indnilsch;all

|Corr(PreStklaft)indnilsch;all

uniquely extends to a functor

CrysCorr(PreStklaft)
nil-open
indnilsch;all

: Corr(PreStklaft)
nil-open
indnilsch;all →

(
DGCat2 -Cat

cont

)2 -op
.

2.1.3. As in the case of [Chapter III.3, Theorem 5.5.3], the content of Theorem 2.1.2 is the
existence of the functor

fdR,∗ : Crys(Z1)→ Crys(Z2)

for ind-nil-schematic morphisms of prestacks f : Z1 → Z2, and of the base change isomorphisms
compatible with proper and nil-open adjunctions. Namely, for a Cartesian diagram of prestacks

Z′1
g1−−−−→ Z1

f ′
y yf
Z′2

g2−−−−→ Z2,
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with f ind-nil-schematic, we have a canonical isomorphism

(2.1) f ′dR,∗ ◦ g!
1,dR

∼→ g!
2,dR ◦ fdR,∗.

Moreover, if f is ind-proper, then fdR,∗ is the left adjoint of f !
dR. Furthermore, the isomor-

phism (2.1) is the one arising by adjunction if either fX or g2 is ind-proper.

If f is a nil-open embedding (i.e., the map of the corresponding reduced prestacks is an open
embedding), then fdR,∗ is the right adjoint of f !

dR. Furthermore, the isomorphism (2.1) is the
one arising by adjunction if either fX or g2 is a nil-open embedding.

2.1.4. Now, let us restrict the functor CrysCorr(PreStklaft)
indnilsch& ind-proper
indnilsch;all

to

Corr(indnilSchlaft)
ind-proper
all;all ⊂ Corr(PreStklaft)

indnilsch & ind-proper
indnilsch;all .

We denote the resulting functor by CrysCorr(indnilSchlaft)
ind-proper
all;all

. From [Chapter III.3, Theo-

rems 5.2.2 and 5.4.3] we obtain:

Corollary 2.1.5. The restriction of CrysCorr(indnilSchlaft)
ind-proper
all;all

to

indnilSchlaft ⊂ Corr(indnilSchlaft)
ind-proper
all;all

identifies canonically with the functor CrysindnilSchlaft
of (1.1).

2.1.6. Further restricting along

Corr(nilSchaft)
proper
all;all → Corr(indnilSchlaft)

ind-proper
all;all ,

we obtain a functor

Crys(nilSchaft)
proper
all;all

→ (DGCatcont)
2 -Cat

denoted by Crys(nilSchaft)
proper
all;all

.

In particular, we obtain a functor

CrysnilSchaft
:= Crys(Schaft)

proper
all;all

|nilSchaft
,

which is also isomorphic to

CrysindnilSchlaft
|nilSchaft

.

2.2. The multiplicative structure of the functor of crystals. In this subsection we show
how the formalism of crystals as a functor out of the category of correspondences gives rise to
Verdier duality.

2.2.1. Duality. From [Chapter III.3, Theorem 6.2.2], we obtain:

Theorem 2.2.2. We have a commutative diagram of functors

(Corr(indnilSchlaft)all;all)
op

(
CrysCorr(indnilSchlaft)all;all

)
op

−−−−−−−−−−−−−−−−−−−−→
(

DGCatdualizable
cont

)
op

$

y ydualization

Corr(indnilSchlaft)all;all

CrysCorr(indnilSchlaft)all;all−−−−−−−−−−−−−−−−→ DGCatdualizable
cont .
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2.2.3. Concretely, this theorem says that for Z ∈ indnilSchlaft there is a canonical involutive
equivalence

(2.2) DVerdier
Z : Crys(Z)∨ ' Crys(Z),

and for a map f : Z1 → Z2 in indnilSchlaft there is a canonical identification

f !
dR ' (fdR,∗)

∨.

2.2.4. As in [Chapter III.3, Sect. 6.2.6], we can write the unit and counit maps

µZdR
: Vect→ Crys(Z)⊗ Crys(Z) and εZdR

: Crys(Z)⊗ Crys(Z)→ Vect

explicitly.

Namely, εZdR
is the composition

Crys(Z)⊗ Crys(Z) ' Crys(Z× Z)
∆!

Z.dR−→ Crys(Z)
ΓdR(Z,−)−→ Vect,

where
ΓdR(Z,−) := (pZ)dR,∗,

and µZdR
is the composition

Vect
ωZdR−→ Crys(Z)

(∆Z)dR,∗−→ Crys(Z× Z) ' Crys(Z)⊗ Crys(Z).

2.2.5. Verdier duality. For Z ∈ indnilSchlaft, let DVerdier
Z denote the canonical equivalence

(Crys(Z)c)op → Crys(Z)c,

corresponding to the isomorphism (2.2).

In other words,
DVerdier

Z = DSerre
ZdR

.

2.2.6. As a particular case of [Chapter III.3, Corollary 6.2.9], we obtain:

Corollary 2.2.7. Let f : Z1 → Z2 be an ind-proper map in indnilSchlaft. Then we have a
commutative diagram:

(Crys(Z1)c)op
DVerdier

Z1−−−−−→ Crys(Z1)c

(fdR,∗)
op

y yfdR,∗

(Crys(Z2)c)op
DVerdier

Z2−−−−−→ Crys(Z2)c.

In view of Corollary 1.6.5, the above corollary gives an expression of the Verdier duality
functor on Z ∈ indnilSchlaft in terms of that on schemes.

2.2.8. Convolution for crystals.

Returning to the entire (∞, 2)-category Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all and the corre-

sponding functor
IndCohCorr(PreStklaft)

indnilsch& ind-proper
indnilsch;all

,

we obtain, from [Chapter III.3, Sect. 6.3], that the functor

CrysCorr(PreStklaft)
indnilsch& ind-proper
indnilsch;all

: Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → DGCat2 -Cat

cont

carries a canonical right-lax symmetric monoidal structure.

As in [Chapter III.3, Sect. 6.3.2], we have:
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(i) Given a Segal object R• of PreStklaft, with the target and composition maps ind-nil-
schematic, the category Crys(R) acquires a monoidal structure given by convolution, and as
such it acts on Crys(X) (here, as in [Chapter II.2, Sect. 5.1.1], X = R0 and R = R1).

(ii) If the composition map is ind-proper, then ωR ∈ Crys(R) acquires the structure of an
algebra in Crys(R). The action of this algebra on IndCoh(X), viewed as a plain endo-functor,
is given by

(pt)dR,∗ ◦ (ps)
!
dR.

3. Inducing crystals

In this section we study the interaction between the functors IndCoh and Crys.

3.1. The functor of induction. In this subsection we show that the forgetful functor

Crys(Z)→ IndCoh(Z)

admits a left adjoint, provided that Z is a prestack that admits deformation theory.

3.1.1. For an object Z ∈ PreStklaft consider the canonical map

pdR,Z : Z→ ZdR.

We claim:

Proposition 3.1.2. Suppose that Z admits deformation theory. Then the map pdR,Z is an
inf-schematic nil-isomorphism.

Proof. We need to show that for S ∈ (Schaff
aft)/ZdR

, the Cartesian product

(3.1) S ×
ZdR

Z

is an inf-scheme.

Clearly, the above Cartesian product belongs to PreStklaft, and its underlying reduced
prestack identifies with redS. Hence, it remains to show that (3.1) admits deformation the-
ory. This holds because the category PreStkdef-laft is closed under finite limits.

�

3.1.3. From Proposition 3.1.2 and [Chapter III.3, Proposition 3.1.2(a)] we obtain:

Corollary 3.1.4. Let Z be an object of PreStkdef-laft. Then the functor

oblvdR,Z : Crys(Z)→ IndCoh(Z)

admits a left adjoint.

We denote the left adjoint to oblvdR,Z, whose existence is given by the above corollary, by
inddR,Z.

3.1.5. Thus, for Z ∈ PreStkdef-laft, we obtain an adjoint pair

(3.2) inddR,Z : IndCoh(Z) � Crys(Z) : oblvdR,Z.

We claim:

Lemma 3.1.6. The pair (3.2) is monadic.

Proof. Since oblvdR,Z is continuous, we only need to check that it is conservative. However,
this follows from [Chapter III.3, Proposition 3.1.2(b)]. �
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3.1.7. The next corollary of Proposition 3.1.2 expresses the functoriality of the operation of
induction:

Corollary 3.1.8. There is a canonically defined natural transformation

inddR : IndCoh(PreStklaft)indinfsch
|(PreStkdef-laft)indinfsch ⇒ Crys(PreStklaft)indinfsch

|(PreStkdef-laft)indinfsch ,

as functors

(PreStkdef-laft)indinf-sch → DGCatcont .

In particular, the above corollary says that for an ind-inf-schematic morphism f : Z1 → Z2

of objects of PreStkdef-laft, the following diagram of functors commutes:

IndCoh(Z1)
inddR,Z1−−−−−−→ Crys(Z1)

f IndCoh
∗

y yfdR,∗

IndCoh(Z2)
inddR,Z2−−−−−−→ Crys(Z2).

3.2. Induction on ind-inf-schemes. In this subsection, let Z be an object of indinfSchlaft.
We study the interaction of the induction functor with that of Serre and Verdier dualities.

3.2.1. We have:

Lemma 3.2.2. The functor inddR,Z sends IndCoh(Z)c to Crys(Z)c.

Proof. Follows from the fact that the functor oblvdR,Z is continuous and conservative.
�

3.2.3. Induction and duality. Let us apply isomorphism [Chapter III.3, Equation (6.2)] to the
map

pdR,Z : Z→ ZdR.

We obtain:

Corollary 3.2.4. Under the isomorphisms

DSerre
Z : IndCoh(Z)∨ ' IndCoh(Z) and DVerdier

Z : Crys(Z)∨ ' Crys(Z),

we have a canonical identification

(oblvdR,Z)∨ ' inddR,Z.

In addition, by [Chapter III.3, Corollary 6.2.9]

Corollary 3.2.5. The following diagram of functors commutes:

(IndCoh(Z)c)op DSerre
Z−−−−→ IndCoh(Z)c

(inddR,Z)op
y yinddR,Z

(Crys(Z)c)op DVerdier
Z−−−−−→ Crys(Z)c.



18 AN APPLICATION: CRYSTALS

3.2.6. Induction and t-structure. Recall that by the definition of the t-structure on Crys(Z),
the functor oblvdR,Z is left t-exact. We claim:

Corollary 3.2.7. Assume that Z is an ind-scheme. Then the functor inddR,Z is t-exact.

Proof. The fact that inddR,Z is right t-exact follows by adjunction. To show that it is left
t-exact we use [Chapter III.3, Lemma 3.4.6]: we have to show that the pdR,Z is ind-schematic.

Indeed, for S ∈ Schaff
aft and S → ZdR, the Cartesian product

S ×
ZdR

Z

identifies with the formal completion of S × Z along the graph of the map redS → Z. �

3.3. Relative crystals. In this subsection we describe how the discussion of crystals general-
izes to the relative situation.

3.3.1. Let Y be a fixed object of PreStklaft. Consider the ∞-category

(PreStklaft)/Y

and the corresponding (∞, 2)-category

Corr((PreStklaft)/Y)indinfsch & ind-proper
indinfsch;all .

Restricting the functor IndCoh(PreStklaft)
indinfsch& ind-proper
indinfsch;all

along the forgetful functor

Corr((PreStklaft)/Y)indinfsch & ind-proper
indinfsch;all → Corr(PreStklaft)

inf-proper
inf-sch;all ,

we obtain the functor

IndCohCorr((PreStklaft)/Y)indinfsch& ind-proper
indinfsch;all

: Corr((PreStklaft)/Y)indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont ,

with properties specified by [Chapter III.3, Theorem 5.4.3].

In particular, let

IndCoh!
(PreStklaft)/Y

: ((PreStklaft)/Y)op → DGCatcont

be the resulting functor.

3.3.2. The category (PreStklaft)/Y has an endo-functor, denoted by /YdR:

Z 7→ Z/YdR := ZdR ×
YdR

Y.

Corollary 1.3.6 implies that the functor /YdR gives rise to a functor

((PreStklaft)/Y)indnilSch → ((PreStklaft)/Y)indinfsch.

Hence, /YdR induces a functor

(3.3) Corr((PreStklaft)/Y)ind-proper
indnilsch;all → Corr((PreStklaft)/Y)indinfsch & ind-proper

indinfsch;all .

Thus, precomposing IndCohCorr((PreStklaft)/Y)indinfsch& ind-proper
indinfsch;all

with /YdR, we obtain the func-

tor

/YCrysCorr((PreStklaft)/Y)ind-proper
indnilsch;all

: Corr((PreStklaft)/Y)ind-proper
indnilsch;all → DGCat2 -Cat

cont .
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3.3.3. Let
/YCrys!

(PreStklaft)/Y
: ((PreStklaft)/Y)op → DGCatcont

and
/YCrys((PreStklaft)/Y)indnilsch

: ((PreStklaft)/Y)indnilsch → DGCatcont

denote the corresponding functors obtained by restriction.

For a map Z1 → Z2 in (PreStklaft)indnilsch, we shall denote by f !
YdR

and fYdR,∗ the corre-
sponding functors

/YCrys(Z1) � /YCrys(Z2).

These functors are adjoint if f is ind-proper/nil-open.

3.3.4. Let /YindnilSchlaft denote the full subcategory of (PreStklaft)/Y given by the preimage of

(indinfSchlaft)/Y under the functor /YdR.

Restricting the functor /YCrysCorr((PreStklaft)/Y)ind-proper
indnilsch;all

to

Corr(/YindnilSchlaft)
ind-proper
all;all ⊂ Corr((PreStklaft)/Y)ind-proper

indnilsch;all,

we obtain the functor

/YCrysCorr(/YindnilSchlaft)
ind-proper
all;all

: Corr(/YindnilSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont .

Furthermore, for an object Z of /YindnilSchlaft, the category /YCrys(Z) satisfies the following
properties:

(1) The category /YCrys(Z) is compactly generated, and is self-dual in the sense of Theo-
rem 2.2.2.

(2) The category /YCrys(Z) carries a t-structure in which an object F is coconnective if
and only if its image under the forgetful functor oblv/YdR,Z : /YCrys(Z)→ IndCoh(Z)

is coconnective, for oblv/YdR,Z := (p/YdR,Z)!, where p/YdR,Z denotes the canonical mor-
phism

Z→ Z/YdR.

(3) If Z admits deformation theory over Y (see [Chapter III.1, Sect. 7.1.6] for what this
means), then the morphism p/YdR,Z is an inf-schematic nil-isomorphism, and hence the
functor oblv/YdR,Z admits a left adjoint, denoted ind/YdR,Z.

Remark 3.3.5. The essential difference between Crys and /YCrys is that for Z ∈ (PreStklaft)/Y,

the category /YCrys(Z) depends not just on the underlying reduced prestack. E.g., for Z = Y,

/YCrys(Z) = IndCoh(Y).

3.3.6. Assume for a moment that Y = Y is a smooth classical scheme, and Z = Z is also a
classical scheme smooth over Y . Then, as in [GaRo2, Sect. 4.7], one shows that the category

/Y Crys(Z)

identifies with the DG category associated with the abelian category of quasi-coherent sheaves of
modules on Y with respect to the algebra of ‘vertical’ differential operators, i.e., the subalgebra
of Diff(Z) that consists of differential operators that commute with OY .
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4. Comparison with the classical theory of D-modules

In this section we will identify the theory of crystals as developed in the previous sections
with the theory of D-modules.

This section can be regarded as a companion to [GaRo2, Sects. 6 and 7], and we shall assume
the reader’s familiarity with the contents of loc.cit.

4.1. Left D-modules and left crystals. In this subsection we will recollect (and rephrase)
the contents of [GaRo2, Sect. 5]. Specifically, we will discuss the equivalence between the
category of left D-modules on a smooth scheme X and the category of left crystals on X.

4.1.1. Let X be a classical scheme of finite type. Consider the category QCoh(X×X)♥ and its
full subcategory (QCoh(X×X)∆X

)♥, consisting of objects that are set-theoretically supported
on the diagonal. Let

(QCoh(X ×X)∆X
)♥rel.flat ⊂ QCoh(X ×X)∆X

)♥

be the full subcategory, consisting of objects that are X-flat with respect to both projections

ps, pt : X ×X → X.

The category (QCoh(X ×X)∆X
)♥rel.flat has a naturally defined monoidal structure, given by

convolution.

Moreover, we have a canonically defined fully faithful monoidal (!) functor

(4.1) (QCoh(X ×X)∆X
)♥rel.flat → QCoh(X ×X),

where QCoh(X ×X) is a monoidal category as in [Chapter II.2, Sects. 5.2.3 and 5.3.3].

4.1.2. Now suppose that X is smooth. In this case, we have a canonically defined object

DiffX ∈ AssocAlg
(

(QCoh(X ×X)∆X
)♥rel.flat)

)
,

namely, the Grothendieck algebra of differential operators.

Composing (4.1) with the monoidal equivalence

QCoh(X ×X)→ Functcont(QCoh(X),QCoh(X)),

we obtain that DiffX gives rise to a monad on QCoh(X).

We consider the category DiffX -mod(QCoh(X)). It is equipped with a t-structure, character-
ized by the property that the tautological forgetful functor DiffX -mod(QCoh(X))→ QCoh(X)
is t-exact.

The category D-modl(X) of left D-modules on X is defined as the canonical DG model of

the derived category of the abelian category (DiffX -mod(QCoh(X)))
♥

.

As in [GaRo2, Proposition 4.7.3] one shows that the canonical functor

(4.2) D-modl(X)→ DiffX -mod(QCoh(X))

is an equivalence.
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4.1.3. Let X be any scheme almost of finite type. Recall the category

Crysl(X) := QCoh(XdR),

see [GaRo2, Sect. 2.1]. It is equipped with a forgetful functor

oblvldR,X : Crysl(X)→ QCoh(X).

Assume now that X is eventually coconnective. According to [GaRo2, Proposition 3.4.11],

in this case the functor oblvldR,X admits a left adjoint, denoted indldR,X , and the resulting
adjoint pair of functors

indldR,X : QCoh(X) � Crysl(X) : oblvldR,X ,

is monadic.

The corresponding monad is given by an object

Dl
X ∈ AssocAlg(QCoh(X ×X)∆X

).

I.e., we have an equivalence

Crysl(X) ' Dl
X -mod(QCoh(X)).

4.1.4. Again, assume that X is smooth. In this case one easily shows (see, e.g., [GaRo2,
Proposition 5.3.6]) that

Dl
X ∈ (QCoh(X ×X)∆X

)♥rel.flat.

Moreover, it is a classical fact (reproved for completeness in [GaRo2, Lemma 5.4.3]) that

there is a canonical isomorphism in AssocAlg
(

(QCoh(X ×X)∆X
)♥rel.flat

)
:

(4.3) Dl
X ' DiffX .

In particular, we obtain a canonical equivalence of categories

D-modl(X) ' DiffX -mod(QCoh(X)) ' Dl
X -mod(QCoh(X)) ' Crysl(X),

compatible with the forgetful functors to QCoh(X).

We denote the resulting equivalence D-modl(X)→ Crysl(X) by F lX .

4.1.5. Let f : X → Y be a morphism between smooth classical schemes. In the classical theory
of D-modules, one defines a functor

fN,l : D-modl(Y )→ D-modl(X)

that makes the diagram

(4.4)

D-modl(Y )
fN,l

−−−−→ D-modl(X)y yoblvl
dR,X

QCoh(Y )
f∗−−−−→ QCoh(X)

commute.

Also recall (see [GaRo2, Sect. 2.1.2]) that for a map f : X → Y between arbitrary schemes
almost of finite type, we have a functor

f†,l : Crysl(Y )→ Crysl(X),
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that makes the diagram

(4.5)

Crysl(Y )
f†,l−−−−→ Crysl(X)y y

QCoh(Y )
f∗−−−−→ QCoh(X)

commute.

The following can be established by a direct calculation:

Lemma 4.1.6. The following diagram of functors naturally commutes

D-modl(Y )
fN,l

−−−−→ D-modl(X)

F l
Y

y yF l
X

Crysl(X)
f†,l−−−−→ Crysl(X),

in a way compatible with the forgeftul functors to QCoh(−).

4.2. Right D-modules and right crystals. In this subsection we will discuss the equivalence
between the category of right D-modules on a smooth scheme X, and the category Crys(X),
considered in the earlier sections of this Chapter.

4.2.1. Note that for any scheme X, the monoidal category QCoh(X × X) carries a canonical
anti-involution, denoted σ, corresponding to the transposition acting on X ×X.

In terms of the identification

QCoh(X ×X) ' Functcont(QCoh(X),QCoh(X)),

we have
σ(F ) ' F∨, F ∈ Functcont(QCoh(X),QCoh(X)),

where we use the canonical identification

Dnaive
X : QCoh(X)∨ ' QCoh(X),

of [Chapter II.3, Equation (4.2)].

In particular for an algebra object A in QCoh(X × X), we can regard σ(Aop) again as an
algebra object in QCoh(X ×X), and we have

(4.6) (MA)∨ 'Mσ(Aop),

where MB denotes the monad on QCoh(X), corresponding to an algebra object B ∈ QCoh(X).

4.2.2. Let X be smooth. Consider the object

σ(Diffop
X ) ∈ AssocAlg

(
(QCoh(X ×X)∆X

)♥rel.flat)
)
,

and the corresponding category

σ(Diffop
X )-mod(QCoh(X)).

The category D-modr(X) of right D-modules on X is defined as the canonical DG model of

the derived category of the abelian category (σ(Diffop
X )-mod(QCoh(X)))

♥
.

As in [GaRo2, Proposition 4.7.3] one shows that the canonical functor

(4.7) D-modr(X)→ σ(Diffop
X )-mod(QCoh(X))
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is an equivalence.

4.2.3. Let X be a scheme almost of finite type. For the duration of this section, we will denote
by

Crysr(X) := Crys(X) := IndCoh(XdR),

where the latter is defined as in Sect. 1.2.2, and by

indrdR,X : IndCoh(X) � Crysr(X) : oblvrdR,X

the corresponding pair of adjoint functors from (3.2). I.e., we are adding the superscript ‘r’ (for
‘right’) to the notation from Sect. 1.2.2 to emphasize the comparison with right D-modules.

Let Dr
X be the object of AssocAlg(IndCoh(X ×X)∆X

), corresponding to the monad

oblvrdR,X ◦ indrdR,X

via the equivalence of monoidal categories

IndCoh(X ×X)→ Functcont(IndCoh(X), IndCoh(X)).

By Lemma 3.1.6, we have:

Dr
X -mod(IndCoh(X)) ' Crysr(X).

4.2.4. Suppose that X is smooth. Recall that in this case the adjoint pairs

ΞX : QCoh(X) � IndCoh(X) : ΨX

and

Ξ∨X : QCoh(X) � IndCoh(X) : Ψ∨X = ΥX

are both equivalences.

In this case one shows as in [GaRo2, Sect. 5.5] that there is a canonical equivalence of
categories

(4.8) F rX : D-modr(X) ' Crysr(X),

that makes the diagram

D-modr(X)
F r

X−−−−→ Crysr(X)y yoblvr
dR,X

QCoh(X)
ΞX−−−−→ IndCoh(X)

commute.

Remark 4.2.5. One can obtain the equivalence of (4.8) formally from the corresponding com-
putation for left D-modules.

Namely, taking into account the equivalences

(oblvldR,X ◦ indldR,X)∨-mod(QCoh(X)) ' σ(Diffop
X )-mod(QCoh(X)) ' D-modr(X)

(where the first equivalence comes from (4.3) and (4.6)), and

(oblvrdR,X ◦ indrdR,X)-mod(IndCoh(X)) ' Crysr(X),

it suffices to construct an isomorphism of the monads

(4.9) ΨX ◦ (oblvrdR,X ◦ indrdR,X) ◦ ΞX and (oblvldR,X ◦ indldR,X)∨,

acting on QCoh(X).
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The latter isomorphism holds for any eventually coconnective X, and follows from the iso-
morphism of monads

oblvldR,X ◦ indldR,X ' Ξ∨X ◦ (oblvrdR,X ◦ indrdR,X) ◦Ψ∨X ,

see [GaRo2, Lemma 3.4.9].

Remark 4.2.6. The monads in (4.9) correspond to the pair of adjoint functors

′indrdR,X : QCoh(X) � Crys(X) : ′oblvrdR,X

of [GaRo2, Sect. 4.6]. Furthermore, in terms of the

Dnaive
X : QCoh(X)∨ ' QCoh(X) and DVerdier

X : Crys(X)∨ ' Crys(X),

we have the isomorphisms

(′indrdR,X)∨ ' oblvldR,X and (′oblvrdR,X)∨ ' indldR,X .

4.3. Passage between left and right D-modules/crystals. In this subsection we will com-
pare the abstractly defined functor

ΥXdR
: Crysl(X)→ Crysr(X)

from [Chapter II.3] and the ‘hands-on’ functor

D-modl(X)→ D-modr(X),

given by tensoring a given left D-module with the right D-module

det(T ∗(X))[dim(X)].

4.3.1. According to [GaRo2, Proposition 2.2.4], for any scheme X almost of finite type we have
a canonically defined equivalence

ΥXdR
: Crysl(X)→ Crysr(X),

that makes the diagram

Crysl(X)
ΥXdR−−−−→ Crysr(X)

oblvl
dR,X

y yoblvr
dR,X

QCoh(X)
ΥX−−−−→ IndCoh(X)

commute.

Concretely, the functor ΥXdR
is the functor from [Chapter II.3, Sect. 3.3.4] applied to XdR,

and it is given by

M 7→M⊗ ωXdR
,

where ⊗ is the action of QCoh(XdR) (= Crysl(X)) on IndCoh(XdR) (= Crysr(X)).

4.3.2. Now, suppose that X is a smooth classical scheme. Recall that in this case there is a
canonical equivalence

(4.10) D-modl(X)→ D-modr(X),

given by tensoring a given left D-module with the right D-module

ωD-mod,X := det(T ∗(X))[dim(X)].

We denote the above functor by ΥD-mod,X .
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4.3.3. We will prove:

Theorem 4.3.4. The following diagram of functors canonically commutes:

(4.11)

D-modl(X)
F l

X−−−−→ Crysl(X)

ΥD-mod,X

y yΥXdR

D-modr(X)
F r

X−−−−→ Crysr(X)

.

By applying Theorem 4.3.4 to OX ∈ D-modl(X), we obtain:

Corollary 4.3.5. There exists a canonical isomorphism in Crysr(X):

(4.12) F rX(ωD-mod,X) ' ωXdR
.

4.3.6. Applying the forgetful functor

oblvrdR,X : Crysr(X)→ IndCoh(X),

to the isomorphism of (4.12), we obtain:

Corollary 4.3.7. There exists a canonical isomorphism in IndCoh(X):

(4.13) ΞX(det(T ∗(X))[dim(X)] ' ωX .
Note that latter corollary is the well-known identification of the abstractly defined dualizing

sheaf with the shifted line bundle of top forms.

Remark 4.3.8. The isomorphism (4.13) can be proved without involving D-modules or crystals,
by an argument along the same lines as that proving the isomorphism (4.12) in Sect. 4.4 below.
This argument is given in a more general context in [Chapter IV.4, Proposition 7.3.4].

4.4. Proof of Theorem 4.3.4.

4.4.1. First, we make the following observation, which follows from the constructions:

Lemma 4.4.2. For M ∈ D-modl(X) and N ∈ D-modr(X) we have a canonical isomorphism

F rX(M⊗N) ' F lX(M)⊗ F rX(N).

This lemma reduces the assertion of Theorem 4.3.4 to establishing the isomorphism (4.12).

4.4.3. Recall that for a map f : X → Y between smooth schemes, one defines the functor

fN,r : D-modr(Y )→ D-modr(X)

by requiring that the diagram

(4.14)

D-modl(Y )
fN,l

−−−−→ D-modl(X)

ΥD-mod,Y

y yΥD-mod,X

D-modr(Y )
fN,r

−−−−→ D-modr(X)

commute.

Assume for the moment that f is a closed embedding of smooth schemes. Let

D-modr(Y )X ⊂ D-modr(Y )

be the full subcategory consisting of objects with set-theoretic support on X.

Recall that in this case we have Kashiwara’s lemma which says that the functor fN,r induces
an equivalence D-modr(Y )X → D-modr(X).
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4.4.4. For a morphism f : X → Y between schemes almost of finite type, let

f†,r : Crysr(Y )→ Crysr(X)

be the corresponding pullback functor, see [GaRo2, Sect. 2.3.4], i.e., f†,r = f !
dR.

Assume for the moment that f is a closed embedding. Let Crysr(Y )X ⊂ Crysr(Y ) be the
full subcategory consisting of objects with set-theoretic support on X.

Recall (see [GaRo2, Proposition 2.5.6]) that in this case the functor f†,r induces an equiva-
lence Crysr(Y )X → Crysr(X).

4.4.5. Let f : X → Y be a closed embedding of smooth classical schemes. The next assertion
also follows from the constructions:

Lemma 4.4.6. Under the equivalences

fN,r : D-modr(Y )X → D-modr(X) and f†,r : Crysr(Y )X → Crys(X),

the diagram

D-modr(Y )X
F r

Y−−−−→ Crysr(Y )X

fN,r

y yf†,r
D-modr(X)

F r
X−−−−→ Crysr(X)

commutes.

As a corollary, we obtain:

Corollary 4.4.7. For a closed embedding of smooth schemes f : X → Y , the diagram

D-modr(Y )
F r

Y−−−−→ Crysr(Y )

fN,r

y yf†,r
D-modr(X)

F r
X−−−−→ Crysr(X)

commutes.

Proof. Follows from the fact that the functor fN,r (resp., f†,r) factors through the co-localization
D-modr(Y )→ D-modr(Y )X (resp., Crysr(Y )→ Crysr(Y )X). �

4.4.8. We are finally ready to construct the isomorphism (4.12) and thereby prove Theo-
rem 4.3.4.

Consider the object

ωD-mod,X � ωD-mod,X = ωD-mod,X×X ∈ D-modr(X ×X).

Consider the isomorphism

(4.15) F rX ◦∆N,r
X (ωD-mod,X×X) ' ∆†,r ◦ F rX×X (ωD-mod,X � ωD-mod,X)

of Corollary 4.4.7.

On the one hand,

F rX ◦∆N,r
X (ωD-mod,X×X) ' F rX ◦∆N,r

X ◦ΥD-mod,X×X(OX×X) '

' F rX ◦ΥD-mod,X ◦∆N,l
X (OX×X) ' F rX ◦ΥD-mod,X(OX) ' F rX(ωD-mod,X).
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On the other hand,

∆†,r ◦ F rX×X (ωD-mod,X � ωD-mod,X) ' ∆†,r (F rX(ωD-mod,X) � F rX(ωD-mod,X)) '

' F rX(ωD-mod,X)
!
⊗ F rX(ωD-mod,X),

where
!
⊗ denotes the symmetric monoidal operation on Crysr(X), i.e., the

!
⊗ tensor product on

IndCoh(XdR).

Thus, from (4.15) we obtain an isomorphism

F rX(ωD-mod,X) ' F rX(ωD-mod,X)
!
⊗ F rX(ωD-mod,X)

in Crysr(X).

Now, it is easy to see that F rX(ωD-mod,X) is invertible as an object of the symmetric monoidal
category Crysr(X).

This implies that F rX(ωD-mod,X) is canonically isomorphic to the unit object, i.e., ωXdR
, as

required.

4.5. Identification of functors. In this subsection we will show that the pullback and push-
forward functors on crystals correspond to the pullback and push-forward functors defined
classically for D-modules.

4.5.1. We now show:

Proposition 4.5.2. Let f : X → Y be a morphism between smooth schemes. Then the diagram
of functors

D-modr(Y )
fN,r

−−−−→ D-modr(X)

F r
Y

y yF r
X

Crysr(Y )
f†,r−−−−→ Crysr(X)

canonically commutes.

Remark 4.5.3. It follows from the construction given below that when f is a closed embed-
ding, the isomorphism of functors of Proposition 4.5.2 identifies canonically with one in Corol-
lary 4.4.7.

Proof. Follows by combining the following five commutative diagrams:

D-modl(Y )
fN,l

−−−−→ D-modl(X)

F l
Y

y yF l
X

Crysl(Y )
f†,l−−−−→ Crysl(X)

(of Lemma 4.1.6);

D-modl(Y )
fN,l

−−−−→ D-modl(X)

ΥD-mod,Y

y yΥD-mod,X

D-modr(Y )
fN,r

−−−−→ D-modr(X)
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(of diagram (4.14));

Crysl(Y )
f†,l−−−−→ Crysl(X)

ΥYdR

y yΥXdR

Crysr(Y )
f†,r−−−−→ Crysr(X),

(of [Chapter II.3, Sect. 3.3]) and finally the diagrams (4.11) for X and Y , respectively.
�

4.5.4. Recall that for a map f : X → Y between smooth schemes, we have a canonically defined
functor

fD-mod,∗ : D-modr(X)→ D-modr(Y ).

For a smooth scheme X we let ΓD-mod(X,−) denote the functor

D-modr(X)→ Vect

equal to (pX)D-mod,∗.

Note that Verdier duality defines an equivalence

DVerdier
X : D-modr(X)∨ → D-modr(X),

characterized by the fact that its unit and counit maps are

µD-mod,X : Vect
ωD-mod,X−→ D-modr(X)

(∆X)D-mod,∗−→ D-modr(X ×X) ' D-modr(X)⊗D-modr(X),

and

εD-mod,X : D-modr(X)⊗D-modr(X) ' D-modr(X ×X)
(∆X)N,r

−→ D-modr(X)
ΓD-mod(X,−)−→ Vect,

respectively.

4.5.5. We claim:

Proposition 4.5.6. The diagram of functors

D-modr(X)∨
DVerdier

X−−−−−→ D-modr(X)

(F r
X)∨
x yF r

X

Crysr(X)∨
DVerdier

X−−−−−→ Crysr(X)

canonically commutes.

Proof. It is enough to establish the commutation of the following diagram:

Vect
µD-mod,X−−−−−−→ D-modr(X)⊗D-modr(X)

Id

y yF r
X⊗F

r
X

Vect
µXdR−−−−→ Crysr(X)⊗ Crysr(X).

Recall the description of the functor εXdR
is Sect. 2.2.4. Thus, taking into account the

isomorphism (4.12), it suffices to show that the diagram

D-modr(X)
(∆X)D-mod,∗−−−−−−−−→ D-modr(X ×X)

F r
X

y yF r
X×X

Crysr(X)
(∆X)dR,∗−−−−−−→ Crysr(X ×X)
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commutes.

However, this follows by adjunction from the commutation of the diagram

D-modr(X)
(∆X)N,r

←−−−−− D-modr(X ×X)

F r
X

y yF r
X×X

Crysr(X)
(∆X)†,r←−−−−− Crysr(X ×X),

while the latter commutes by Proposition 4.5.2.
�

As a consequence of Proposition 4.5.6, we obtain:

Corollary 4.5.7. For a smooth scheme X, the following diagram of functors canonically com-
mutes

D-modr(X)
F r

X−−−−→ Crysr(X)

ΓD-mod(X,−)

y yΓdR(X,−)

Vect
Id−−−−→ Vect .

Proof. Obtained by passing to the dual functors in the commutative diagram

D-modr(X)
F r

X−−−−→ Crysr(X)

ωD-mod,X

x xωXdR

Vect
Id−−−−→ Vect .

�

4.5.8. Finally, we claim:

Proposition 4.5.9. For a map f : X → Y between smooth schemes, the following diagram of
functors canonically commutes:

D-modr(X)
fD-mod,∗−−−−−→ D-modr(Y )

F r
X

y yF r
Y

Crysr(X)
fdR,∗−−−−→ Crysr(Y )

Proof. We factor the map f as

X
f1→ X × Y f2→ Y,

where f1 is the graph of f , and f2 is the projection to the second factor.

Hence, it is enough to establish the commutativity of the diagrams

(4.16)

D-modr(X)
(f1)D-mod,∗−−−−−−−→ D-modr(X × Y )

F r
X

y yF r
X×Y

Crysr(X)
(f1)dR,∗−−−−−→ Crysr(X × Y )
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and

(4.17)

D-modr(X × Y )
(f2)D-mod,∗−−−−−−−→ D-modr(Y )

F r
X×Y

y yF r
Y

Crysr(X × Y )
(f2)dR,∗−−−−−→ Crysr(Y ),

respectively.

Now, the commutation of (4.16) follows by adjunction from the commutation of

D-modr(X)
(f1)N,r

←−−−− D-modr(X × Y )

F r
X

y yF r
X×Y

Crysr(X)
(f1)†,r←−−−− Crysr(X × Y ),

given by Proposition 4.5.2.

To establish the commutatition of (4.17) we rewrite it as

D-modr(X)⊗D-modr(Y )
ΓD-mod(X,−)⊗Id−−−−−−−−−−−→ D-modr(Y )

F r
X⊗F

r
Y

y yF r
Y

Crysr(X)⊗D-modr(Y )
ΓdR(X,−)⊗Id−−−−−−−−−→ Crysr(Y ),

and the result follows from Corollary 4.5.7.
�


