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Chapter 1

What is a lagrangian field theory?

¥ Write introduction™**

Even though for many classical theories the equations of motion were known
first, such as Newton’s equations of classical mechanics or Maxwell’s equation of
electromagnetism, the advantages of studying a field theory through its action has
many advantages. The notion of symmetry of Euler-Lagrange equations, called
covariance in physics, can be quite involved. For example, realizing that the Maxwell
equations are covariant under Lorentz rather than Galilei transformations took some
effort and famously led Einstein to the theory of special relativity [?]. A symmetry of
the action S on the other hand is simply a transformation of the space of fields that
leaves the function S invariant. Therefore, it is much easier to find an action with
symmetries prescribed by physical considerations. In Yang-Mills gauge theory or
general relativity the actions are determined almost entirely by local gauge symmetry
and diffeomorphism symmetry, respectively. Moreover, using the action we can
establish a relation between the symmetries of a classical field theory and conserved
quantities by Noether’s first theorem and degeneracies of the equations of motion
by Noether’s second theorem.

*** Add references to the following literature:

Differential geometry:

IFF03] (proof of Peetre-Slovak)

Jets: [Sau89], [Sau0g|, [Saul0f, [Nes03]

Local maps and differential operators: [Kocl0]

Pro-manifolds: [GP17]
General relativity: [Wal84] [AMMS2]

Frechet spaces: [SW99|

Variational bicomplex: [Tak79]

General references to the subject: [DF99], [Zuc87]

KKk
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1.1 Fields and actions
1.1.1 The set of fields

In physics, a field describes the state of a classical system by assigning to every
point of a geometric space or object the value of some physical quantity at that
point. An example for a field is the function that assigns to every point of a solid
the temperature at that point. Another example is the field that assigns the wind
velocity to every point on the surface of the earth. Such assignments are generally
assumed to be smooth maps. This is an idealization, of course, as the two examples
show, in which the physical systems consist of discrete atoms. But it has led to
very accurate descriptions of physical phenomena. In mathematics, the idealization
is promoted to a definition.

Definition 1.1.1. A field is a smooth section of a smooth fiber bundle /' — M.
The set of all fields is denoted by F := I'°(M, F').

Remark 1.1.2. In the example of the temperature field the fibre bundle is F' =
M x [0,00) = M, where M is the manifold describing the solid. This shows that
F is generally not a vector bundle. In the example of the air velocity field the fibre
bundle is the tangent bundle F' = T'S? — S? of the sphere, which shows that F is
generally not a trivial bundle.

Terminology 1.1.3. In physics, the base manifold of the fibre bundle is called
the background geometry or the spacetime, the latter especially in fundamen-
tal theories such as gauge theory or general relativity. F' is sometimes called the
configuration bundle, and the typical fiber of I’ the configuration space or the
field content. J is usually called the space of fields, although it often remains
unclear or implicit what “space” means mathematically.

Example 1.1.4. Let M = R and F := @ x R be a trivial bundle. Then F =
C>(R, Q) is the space of smooth paths in Q. If we replace R with S! then JF is the
free loop space of Q).

1.1.2 The action principle in its “mythological” form

In a field theory, the fields are usually subject to a field equation f(y) = 0, where
f:F — Vis a map to a vector space V. The solutions of the field equation are
those fields that are governed by the laws of physics or that possess some desired
mathematical properties. Typically, f is a differential operator.

Example 1.1.5. Let M C R3 be a submanifold with boundary oM. Let F :=
R3 x R — R3 =: M, so that F = C°(R?). In electrostatics, p € C®(R3?) is viewed
as the electrostatic potential. The field equation is Ay = 0, where A is the Laplace
operator. The solutions of the field equation are harmonic functions subject to
boundary conditions on OM.

Terminology 1.1.6. In physics, the fields that solve the field equations are often
called on-shell and those that do not off-shell. This terminology comes from from
the so-called mass-shell (German: Massenschale), which is the positive energy sheet
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of the hyperboloid of the 4-momentum (pg, p1, p2, p3) € R* of a relativistic particle of
rest mass m? = (pg)? — (p1)? — (p2)? — (p3)?. In this sense “shell” is a mistranslation
of “Schale”. In early quantum field theory, where the momenta are represented by
partial derivatives on the wave functions, the mass-shell became to denote the space
of solutions of the equation of motion [l = m? of the free relativistic particle.

The set of solutions of the field equation will be denoted by Fyen := f1(0).
In general, Fgen C F is not a submanifold. The field equations are often quite
complicated. The main tool to study them is the action principle. In its ideal
form it is stated as follows.

Action principle 1.1.7. There is a smooth function
S:F—R,

called the action, such that ¢ € F is a solution of the field equation if and only if
it is a critical point of S.

The value of this principle is that it is usually much easier to construct and
study a field theory via its action than via its field equations. For example, a
diffeomorphism ¢ € Diff(F) acts naturally on functions on F by pullback. So @ is
a symmetry of the field theory given by an action S if ®*S = S. It follows that
® maps critical points of S to critical points, i.e. ®(Fgpen) = Fnen- Conversely, if
the symmetries are known, like the Lorentz transformations of special relativity, the
requirement for S to be invariant restricts the possible actions of any theory. For
such reasons, the action principle is one of the most important guiding principles in
both classical and quantum field theory.

Mathematically, however, the action principle is often not rigorously true.
In his 2011 Felix Klein lectures Graeme Segal called it the “mythological picture”
of field theory. One of the main goal of these notes is to explain how the action
principle can be restated so that it is rigorously true, sufficiently general to cover
the most relevant field theories, such as General Relativity, and compatible with the
current mathematical tools used in field theory.

1.1.3 The action principle in classical mechanics

What is the action? And how do we get from the action to the field equations?
The basic example is a classical mechanical system, where M = R is time and
F =@ xR, so that a field is a smooth path ¢ : R — ). Let us assume for simplicity
that @ = R™. When the system is at rest, it will have to be at a critical point of
the potential energy V. When the system moves, the kinetic energy has to be taken
into account as well. The action turns out to be given by the difference of kinetic
and potential energy,

S(q) = / [ ()i (1) — V(a(t) ) dt.

where ¢'(t) are the components of the path, where repeated indices are being summed
over so that ¢'(t)¢"(t) = >, ¢"(t)¢*(t), and where we have chosen units in which
the mass is m = 1.
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Problem 1.1.8. The integral over R that defines the action is generally divergent.

In a first attempt to avoid problem [I.1.8 we could consider only those ¢ that
have a finite action, but even the solutions of the field equation may not satisfy this
condition. For example, consider the case of a free particle where V(q) = 0. The
solutions of the equations of motion are paths of constant velocity. So only if the
velocity is zero the action is finite.

In a second attempt, we can restrict the domain of integration to a compact
interval [a, b] for the action to be finite. We will denote this action by Sj, 4. Following
the action principle , we now have to compute the critical points of Si, ). Let
q : [a,b] — @ be a smooth path. Since we have assumed for simplicity that @ is a
vector space, 1,3 = J. Therefore, a tangent vector £ € T,J can be represented by
smooth family of paths R 3 ¢ — ¢. € C°(R, Q) given by ¢. = g+e€£. The derivative
of Sjap in the direction of § is obtained by inserting g + ¢ and expanding the result
to first order in €.

Stap) (@ +€&) — Siap ()

B 5/a {qi(t)éi“) - g; (a(t)) fi(t)}dt +0(2)
= g/a {%(ql(t)&(t))_qz(t)fz@) - g}; (q(t)) fi(t)}dt n 0(52)

— —5/ {q‘i(t)+ g‘q/i (q(t))}gi(t) dt+5/ %(gi(t)gi(t)) dt + 0(?) .

Let us first consider variations £ that have compact support in [a,b], so that the
second integral vanishes. The first integral vanishes for all £ if and only if ¢* satisfies
the field equation

which is the equation of motions of a point particle in a potential V. The second
integral is given by

b
| G wem) at =i - i .
Now we consider variations ¢° that have their support concentrated in small neigh-
borhoods around the boundary points a and b. By keeping £‘(a) and £'(b) constant
while shrinking the support, we can make the first integral arbitrarily small. The
conclusion is that the second integral has to vanish for all £ independently of the
first, which is the case if and only if

i'(a) =0 and ¢'(b) =0.

This is certainly not a condition we want to impose on g. We can modify the action
principle by requiring £¢(a) = 0 = £(b). But then the solutions of the field equation
are not the critical points of S but rather points where the derivative of S vanishes
on a subset of vectors in T;F. Moreover, we have to require this for all compact
intervals [a, b].
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In a third attempt to solve problem we as mathematicians could assume
M to be closed, i.e. compact without boundary [Abb0O1]. In the case of classical
mechanics this would mean, however, that time is S* so that we would only consider
periodic solutions. The assumption that M is closed will also exclude some of the
most interesting spacetimes, like Minkowski spacetime or many realistic physical
models for the curved spacetime of the universe we live in.

1.1.4 Lagrangians

In the example of classical mechanics we have seen that the action is obtained by
integrating for every field ¢ a volume form over the spacetime manifold R.

Definition 1.1.9. A smooth function L : F — QP(M), where top = dim M, is
called a lagrangian.

Remark 1.1.10. For simplicity, we shall assume that M is oriented. If M is non-
orientable, we have to tensor before integration with the determinant bundle of M
as it is done in [DF99].

Given a lagrangian L, we tentatively define the action by

S(0) = | Le).

But, as we have seen, even for classical mechanics the action is generally not finite,
so it is certainly not a smooth map to R. The issues come from the integration over
the non-closed manifold R.

When we review the derivation of the equation of motion carefully, we see that
we did not need to compute any integrals. All we did is to discard exact terms under
the integral. This means that we can just as well study the cohomology class of the
integrand without ever pairing it with the fundamental class [M]. We will return to
this idea in Chap. [7]

Definition 1.1.11. A lagrangian field theory (LFT) consists of a smooth fiber
bundle F' — M and a lagrangian L : F — Q*P(M).

1.2 Examples of lagrangian field theories
1.2.1 Classical mechanics

*¥*Give an interesting example, like geodesics on a riemannian manifold. ***

1.2.2 Maxwell theory

Minkowski space Maxwell theory is the classical theory of electromagnetic fields.
Its background geometry is physical spacetime, i.e. a lorentzian 4-manifold M. The
most basic choice for M is Minkowski space, i.e. M = R* equipped with the metric

n= %nijd:c"dxj
= 1(=(dz")* + (dz')* + (da®)* + (dz?®)?)

where 2V is the time-coordinate and 2!, 22, 2® the space-coordinates.
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Remark 1.2.1. We define lorentzian metrics to have the signature (—1,1,1,1),
which is sometimes called the “east coast” convention, the signature (1, —1,—1, —1)
being called the “west coast” convention. The advantage of the east coast con-
vention is that the metric induces the usual euclidean scalar product on 3-space
Span{z!, 22 23}.

Terminology 1.2.2. A tangent vector v € TM on a lorentzian manifold is called
space-like if n(v,v) > 0, light-like if n(v,v) = 0, and time-like if n(v,v) < 0. A
submanifold S C M is called space-like, light-like, or time-like, if all tangent vectors
in T'S are.

Recall that every bilinear form ( , ) on a vector space V' can be extended to a
bilinear form { , ) : AV x A*V — R on the k-th exterior power by

<Ul VANRAAN Vg, W1 VANPIRWAN ’LUk> = det((vi,wj>1§i7j§k) . (11)
We consider the fibre-wise scalar product given by the inverse of 7,

(,):T"Mxy T°M — R

where 1/ denotes the inverse matrix of 7;;, i.e. 591, = ;. By (1.1 this induces a
bilinear form on differential k-forms,

() Q¥ (M) x Q¥ (M) — C™(M).
Let us equip M with the standard orientation for which (z° z!, 22 23) is an
oriented chart. Then there is a unique oriented volume form vol € Q*(M) that is
normalized, (vol,vol) = 1. In terms of coordinate 1-forms, it is given by

vol = da® A ... Ada?.

The volume form is used to define a Hodge structure (see e.g. Sec. 3.3 of
[Jos17]), i.e. a C°°(M)-linear map

o QF (M) — QEmMEE(M)
which is uniquely determined by the defining equation
aAxf = (a, ) vol,
for all o, 8 € QF(M) and all k. Note that vol = x1. The Hodge-x satisfies
* (*a) = (det n)(—1)dimM=lablaly (1.2)

where det 7 is the determinant of the metric in any orthonormal basis. For a metric
of signature (—1,1,1,1) we have detn = —1.
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Charges and currents Electric charges and currents generate the electromag-
netic field. In physics, a time-dependent charge density is a smooth function p on
Minkowski space and a current density a vector field v = v1% + 02% + 1)38%3 on
M with components only in the space directions.

The total charge gs; contained in a submanifold S C R? of space at time ¢ is

given by the integral

qst = / pdxt Adx* Adx.
{t}xS

The flux of the current through the surface 05 at time ¢ is given by

Qg = / Ly(dx' A da® A da®)
{t}x8S
= / du,(dz* A da® A dz®)
{t}xS
= / (divv) dz' A dz® A da?
{t}xS

v’
oxt”

The current density describes the flow of charge through space, so if the charge
is conserved, then the rate of change of the charge in every space-region S must be
equal to the negative flux through the surface of S, %qs,t = —®g,. This is the case

if and only if

where we have used Stokes’ theorem and divy =

dp .
i —divo. (1.3)

We obtain a form of condition (1.3]) that does not rely on the splitting of the manifold
M into time and space directions by combining charge density and current density
into the 4-vector field

J = 0 + ot 0 + 02 0 +
T pé’xo ozt ox? ox3

The de Rham differential of ¢ vol is

0
divyvol = (a—;o + divv) vol .

The conclusion is that Eq. (1.3) holds if and only if j := ¢ vol is closed. This
suggests the following definition.

Definition 1.2.3. Let M be an n-dimensional manifold. A form j € Q" 1(M) is
called a current. A current is conserved if it is closed, dj = 0.

Terminology 1.2.4. In physics, it is usually the vector field J that is called the 4-
current. For our purposes, Def. is more convenient. Unlike for .J, the condition
in Def. [L2.3] for a current to be conserved does not involve the volume form.
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Lagrangian and field equations The fields for Maxwell theory on Minkowski
space are 1-forms. That is, the configuration bundle is 7*M — M and the space of
fields

F = Q' (M).

In Maxwell theory it is customary to denote the fields by the letter A. The lagrangian
for the electromagnetic field generated by a current j = ¢;vol is

(% (dA,dA) + LJA) vol (1.4)
:%dA/\*dAJrj/\A '
The Euler-Lagrange equation is
dxdA=j. (1.5)

The equation d(dA) = 0, which is satisfied for any field A, is also part of the Maxwell
equations. Note that Eq. (1.5)) implies that dj = 0, that is, j is conserved.

Terminology 1.2.5. In physics, A is usually called the gauge field, in order to dis-
tinguish it from the electromagnetic field F' := dA. Denoting the electromagnetic
field with F' is so standard in physics, that we could not resolve to use a different
letter in order to distinguish it from our notation for the configuration bundle.

If we view Eq. (1.5)) as equation d x F' = j for the electromagnetic field F', not
assuming that the field is the differential of a 1-form A, we have to add the equation

dF =0 (1.6)

to the field equations. Egs. (1.5 and (1.6 together are the Maxwell equations.

The Maxwell equations are invariant under the Lorentz group, the group of linear
transformations of R* that leave the bilinear form 7 invariant. A careful study of
these symmetries led Einstein in 1905 to the development of special relativity [Ein05].
In addition to this external symmetry group that acts on the spacetime manifold,
there is the internal symmetry group (C’OO(M ), +, 0) that acts on the fields by

(M) x QY(M) — Q'(M)
(f, A) — A+df.

A careful study of this symmetry, called local gauge symmetry, led to the devel-
opment of gauge theories.

1.2.3 Review of connections on principal bundles

In Yang-Mills gauge theory the fields are connections on a principal bundle. We will
first review this concept.
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Definition of connections on principal bundles Let G be a Lie group and
m: P — M a right principal G-bundle. We denote the free and proper right G-
action by P x G — P, (p,g9) — p-g = R,p, where R : G — Diff(P) denotes the
structure homomorphism of the action. A connection on the fibre bundle P — M
is given by a horizontal lift h : TM x,; P — TP, i.e. a right splitting of the short
exact sequence of vector bundles over P,

(Tm,prp)

0 VP TP TM %y P———0 . (1.7)

h

The group G acts on &, € T'P by

&g =TRE,.

Since the bundle projection 7w : P — M is G-invariant, m(R,p) = 7(p), its tangent
map T'w : TP — TM is invariant as well, Tn(TR,¢,) = T'n&,. Since TR, is a map
of vector bundles covering R,, prp(T'R,&,) = Ry(prpé,), the tangent projection
prp: TP — P is G-equivariant. It follows that, when we equip T'M x,; P with the
right G-action defined by
(v,p)-g:=(v,p-g),

then the map (7w, prp) is G-equivariant. From the G-invariance of T'r it follows that
VP = ker T'r is also G-invariant, so that the inclusion VP C T'P is G-equivariant.
The upshot is that the short exact sequence is a sequence of G-equivariant
maps of vector bundles over P. Therefore, we should require the splitting A of a
connection to be G-equivariant as well.

Definition 1.2.6. A connection on a principal bundle P or a principal con-
nection on P is an equivariant splitting h of the short exact sequence (1.7) of
vector bundles over P.

The affine space of connections The set of connections on P is a subset of the
vector space of all maps of vector bundles TTM x,; P — T P. However, since the
zero map is not a section of (7’7, prp), connections are not a vector subspace. The
difference of two connections h and h’ satisfies

T (W (v,p) — h(v,p)) =0,

that is, pu := h’ — h takes its values in ker T'm = V P. Conversely, let p : TM Xy,
P — VP be a G-equivariant map of vector bundles over P. Then h + p satisfies
Tr(h(v,p) + p(v,p)) = v, so that h is a G-equivariant splitting of (1.7). The
conclusion is that the set of connections on the principal bundle P is an affine space
modelled on the vector space of G-equivariant maps TM x,; P — V P of vector
bundles.

Since the G-actions are free and proper, such a G-equivariant map can be identi-
fied with a map on the G-quotients, (T'M x; P)/G — V P/G. Since G acts trivially
on T'M, the quotient of the domain is

(TM %3 P)/G 2 TM x5 (P/G) = TM .
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The quotient V P/G of the target has a nice description, too. Every vertical tangent
vector of P can be represented by a smooth path ¢ — p, € P with constant base
point 7w(p;) = m(po). Since the fibre over 7(py) is isomorphic to G, there is a unique
smooth path t — ¢, € G with gy = e, such that p; = pg - ¢;. It follows that we
can identify the tangent space at every point with g, which means that we have an
isomorphism of vector bundles

VP=Pxg.
The action of h € GG on the vertical path p; is given by

pi-h=(po-g:) h=(po-h)-h'gih.

Differentiating with respect to ¢, we see that the action of G on V' P is given on the
isomorphic vector bundle P x g by

(p. X)-g=(p-g,AdgX).
It follows that the quotient
VP/Gg(PXg)/G:PXAdg

is the vector bundle associated to the principal bundle by the adjoint representation
Ad : G — GL(g), which is called the adjoint bundle. We summarize our findings
in the following proposition.

Proposition 1.2.7. Let P be a principal G-bundle and P Xaq g the associated
adjoint bundle. The set of principal connections on P is an affine space modelled
on the vector space

(M, T"M @ (P x4 9)) = QM) @coon I(M, P Xaq9).

Corollary 1.2.8. When the adjoint bundle of P is trivial, P Xxaq 9 = M X g, then
the affine space of connections is modelled on the vector space of g-valued 1-forms

AM)® g.

There are two basic cases, in which the adjoint bundle is trivial, so that Cor.
applies. In the first case P is a trivial bundle. An important example for this is
when M = R* is Minkowski space. Another example is, when we restrict M to a
coordinate ball U C M. This implies that locally, connections are modelled on the
space of g-valued 1-forms. These forms are called local connection 1-forms.

The second case is that G is abelian, so that the adjoint representation is trivial.
For example when G = U(1), so that g = u(l) = R, principal connections are
modelled on the vector space of 1-forms on M. This is the case we have in Maxwell
theory.
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Curvature Taking the quotient by G of the sequence (1.7), we obtain a short
sequence of vector bundles over M,

0—— P xXpqg——TP/GZsTM 0, (1.8)

which is called the Atiyah sequence of the principal bundle P. This sequence of
vector bundles induces a sequence of the vector spaces of sections,

0——T>(M,P xpq9) — X(P)¢ = X(M)——0, (1.9)

where X(P) denotes the space of G-invariant vector fields on P.

Remark 1.2.9. The right G-action on P induces a left G-action on vector fields
by pullback, g - £ = R;§. A vector field § is G-invariant if it is a fixed point under
this action. Observe, that the map & : P — TP of a G-invariant vector field is
G-equivariant.

A splitting of (1.8) induces a splitting h : X(M) — X(P)% of (1.9). The curva-

ture of the connection is given by
F<U7w) = [h(U), ]’L(U))] - h([v,w]) ) (110)

for all v,w € X(M). The curvature vanishes if and only if & is a homomorphism of
Lie algebras. If this is the case, the connection is called flat.

Remark 1.2.10. Sequence (|1.9) can be viewed as an extension of Lie algebras.
Then F' is the 2-cocycle in the Lie algebroid cohomology that classifies extensions
up to isomorphism.

The horizontal lift of every v € X(M) projects to v, m.h(v) = v. In other words,
h(v) is w-related to v. Since the Lie brackets of m-related vector fields are m-related
(see e.g. Prop. 8.30 in [Leel3]), the curvature satisfies

T F (v, w) = m[h(v), h(w)] — mh([v, w])
= [mh(v), mh(w)] = [v, w]
=0.

Moreover, using that h(fv) = (7*f)h(v) and h(v) - 7*f = 7*(v - f) for every f €
C>(M), a similar calculation shows that F' is C*°(M)-linear in both arguments,
which implies that F is a bundle map on A?T*M. We conclude that the curvature
is a 2-form with values in the adjoint bundle,

F € T (M, N’T*M & (P X4 6))
~ O (M) ®cooanry [(M, P Xaq 9) -

Remark 1.2.11. According to Prop. [I.2.7] the set of connections is an affine space

modelled on the vector space of 1-forms on M with values in the adjoint bundle. The

curvature, however, takes values in the vector space of 2-forms on M with values in

the adjoint bundle. The reason is that the curvature is defined as difference of two
09.04.19 (2) terms in an affine space.
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Connection and curvature as invariant forms As it is the case for short exact
sequences in any abelian category, a right splitting of the sequence induces a
left splitting and vice versa. In fact, given a horizontal lift h : TM x,; P — TP, we
obtain a map

0: TP —VP

fp — e(fp) = gp - h(Tﬂ- £p7p) ’

which maps &, € VP to &, so it is a retract of the inclusion VP — T'P. Moreover,
if h is G-equivariant, then so is 6. Using the natural trivialization VP = P x g, this
retract can be viewed as a linear map 6 : T'P — g, which is equivariant with respect
to the action &, - g = TRy§, on TP and X - g = Ad;-1.X on g. These observations
are summarized in the following proposition.

Proposition 1.2.12. Let Q*(P) ® g be equipped with the left G-action defined by
9 (a®X):=Ra®Ad,X,

foralla® X € Q*(P)®g. Then a principal connection on P is given by a unique
G-invariant form 6 € QY(P) ® g that acts as the identity 6(&,) = &, on all vertical
vectors {, € V,P =g, p € P.

Terminology 1.2.13. In view of Prop. [1.2.12] an invariant g-valued 1-form on P
that restricts to the identity on vertical vectors is called a connection 1-form.

Given a connection 1-form 6 or, equivalently, a horizontal lift h, the horizontal
tangent space at p € P is defined as

H, :=ker0, = h(TM x, {p}) C T,P.

The horizontal distribution H = kerf C T'P is the Ehresmann connection given
by 6. Since 6 is G-invariant, so is H. In fact, a connection on a principal bundle
can be identified with a G-invariant Ehresmann connection.

Terminology 1.2.14. A form in Q°*(P) ® g is called horizontal if it annihilates
the vertical tangent bundle V P. A form that is horizontal and G-invariant is called
basic.

The vector space of all G-invariant forms will be denoted by (Q2°(P) ® g)¢ and
the space of horizontal forms by Q°(P)ne. So the space of basic forms is denoted
by (Q.(P)hor ® g)G

Proposition 1.2.15. The set of connection 1-forms is an affine space modelled on
the vector space of basic 1-forms.

Proof. Let 0 be a connection 1-form. If 8’ another connection 1-form, then p := 6'—0
is a G-invariant 1-form, such that for all §, € VP we have u(§,) = ¢'(§,) — 0(&,) =
& — & = 0, so that p is horizontal. Conversely, if p is a basic 1-form on P, then
¢ == 0 + p is a G-invariant 1-form on P, such that for all {, € VP we have
0'(&,) = 0(&) + p(&p) =& +0=¢,, so that #' is a connection 1-form. O
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Both Prop. [1.2.15] and Prop. establish that the set of connections has the
natural structure of an affine space, which implies that the affine spaces of the two
propositions must be isomorphic. The following lemma makes this explicit.

Lemma 1.2.16. A connection on the principal bundle P induces an isomorphism
of C*°(M)-modules

T (M, AT*M @ (P X0 8)) = (Q°(P)hor ® 9)° . (1.11)
Proof. A section o of AT*M & (P xaq g) — M can be identified with a map
ANTM — P Xpag,
of vector bundles over M, which in turn can be identified with a G-equivariant map
ANTM xy P— Pxg
of vector bundles over P. The horizontal lift induces a G-equivariant isomorphism
h:TM xy P =5 H

of vector bundles over P. This shows that ¢ can be identified with a G-equivariant
linear map
ANH — g,

which can be identified with a G-invariant section of A¥H* ® g — P, which in turn
can be identified with a basic form

fo € (Q(P)hor ® )7 = T(M,\"H © g)¢.
From pu, we retrieve o by

o1 A Ao, p) = [ ,u(h(v1,p) ARA h(Uk,P))} )

for all vy,...,vx € T, M, all m € M, and all p in the fibre over m, where [p, X| for
p € P, X € g denotes an equivalence class in P xaq 9= (P X g)/G. O

Remark 1.2.17. A local trivialization P|y = U x G induces an isomorphism of
each side of Eq. (1.11]) with Q*(U) ® g.

A G-invariant vector field £ is vertical if and only if it projects to the zero vector
field, m,& = 0. If £ is vertical and y an arbitrary G-invariant vector field, then

m[6, x| = [m&, mx] = [0, mx]
=0,

that is, the Lie bracket of a vertical G-invariant vector field with any other G-
invariant vector is again vertical.

A connection is flat if the horizontal distribution H is integrable, which by the
Frobenius theorem is the case if and only if the space of horizontal vector fields is
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closed under the Lie bracket. Every vector field £ € X(P)“ can be decomposed as
& = &y + &g into its vertical and horizontal parts,

§v =0(8), &n=8-0(S).

Since a vector field is horizontal if and only if it is annihilated by 6, the distri-
bution H is involutive if and only if

F(&,x) = 0([¢u. xu)) (1.12)

vanishes for all £, x € X(P)Y. It is straightforward to check that F~(§, X) is C*(P)-
linear in both arguments, so it is a two form on P. Moreover, F' is vertical and
annihilates horizontal vector fields, so it can be viewed as a basic 2-form,

F € (Q*(P)hor ® 9)°

Proposition 1.2.18. The basic 2-form F is identified by the isomorphism of Lem.
with the curvature form F defined in Eq. ((1.10)).

Proof. For every v € X(M), the horizontal lift 2(v) € X(P)“ is the unique horizontal
G-invariant vector field that projects to m.h(v) = v. When we evaluate F' on the
horizontal lifts of two vector fields v, w € X (M), we obtain

F(h(v), h(w)) = 0([h(v), h(w )
= 9([h(v), h(w)] — h([v,w]))
= [h(v), h(w)] — h([% w])
= F(v,w),
which proves the proposition. O

Notation 1.2.19. In view of Prop. [1.2.18] we will from now on denote the 2-form
F defined in Eq. ( also by F = F.

The DGLA of invariant forms The de Rham differential on Q°*(P) and the Lie
bracket on g can be extended to the graded vector space Q°*(P) ® g, by

dla® X) :=da® X

[()‘@X,ﬁ@Y] = (a/\ﬁ)@[X’Y]’ (1.13)

forall c®@ X, 0®Y € Q*(P) ® g. The following proposition is straightforward to
prove.

Proposition 1.2.20. The differential and bracket (1.13)) equip the graded vector
space Q°*(P) ® g with the structure of a differential graded Lie algebra (DGLA).

Proposition 1.2.21. The graded subspace (Q*(P)®g)¢ C Q*(P)®g of G-invariant
forms is a sub-DGLA, i.e. it is closed under the differential and the Lie bracket.
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Proof. Every pullback commutes with the differential, R}da = d(Rj), and with
the product, R;(a A ) = Rya A R}, for all a, 8 € Q*(P). The adjoint action
commutes with the Lie bracket Ad,[X,Y] = [Ad,X, Ad,Y]. With these relations it
is easy to show that the bracket of invariant forms a ® X,3®Y € (Q*(P) ® g)¢
satisfies

g-la®X, Y] =g ((aAp)®[X,Y])

= Ri(a A B) ®Ady[X,Y]

— (Rl A R:B) @ [Ad, X, Ad,Y]
= [R'a® Ad, X, B3 ® Ad,Y]
=g (@®X),g-(BRY)]
=la®X,f®Y],

so it is G-invariant. Similarly, we obtain for the differential of a G-invariant form

g-dla® X)=g-(da® X)
— Rida ® Ad,X
— d(R?a) ® Ad,X
= d(Rya ® AdyX)
=d(g- (@ ® X))
da®X),

so it is G-invariant, as well. O

Proposition 1.2.22. The curvature of a connection 1-form 6 € (Q'(P) @ g)¢ is
given by

= —df + - [6 0].
Proof. The curvature can be written as

F(&,x) =0([6 —6(£), x — 0(x)))
= 0([&,x] = [£,000)] = [0(), x] + [0(£), 0(x)]) (1.14)
= 0(1¢, X)) — [£,000] + [, 0(&)] + [0(£), 0(x)]

for all G-invariant vector fields &, .

By the identification VP = P x g, the elements of g are the fundamental vector
fields of the G-action on P. So if a vector field § € X(P) is G-invariant, R;¢ = &,
then the Lie derivative of £ with respect to all X € g must vanish,

€, X]=0. (1.15)

Let {X,} C g be a basis. Then the connection 1-form can be written as § = 6*® X,,.
It follows from (1.15)), that for G-invariant vector fields &, y € X(P)“ we have

[£,000] = [€,0°(0) Xa] = (£-6%(X)) Xa -
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With this relation we obtain
(dO)(&, x) = (d6*)(&, x) X
= (£-07(x) — x - 0°(&) — 0°([6. x]) X
=16,000] — [x, 0(&)] — 0([£, X]) ,

which is minus the first three terms of the right hand side of Eq. (1.14]). For the last
term, we have

[6,6](¢, >—LXL5[9, 0]
lel0® ®Xa,9 ® X4
= Lyte(0” A06> ® [Xa, X5

( “(€) 0“0%)) [Xa, Xo]
—(“() <> 0a(x) 0°(€)) ® [Xa, X
= 2[6%(£) Xa, 6”(x) X

),

= 2[0(€),00x)] ,
from which is follows that 1[0, 0](¢, x) = [0(€),0(x)]. We conclude that the sum of
(—db) (&, x) and 3[6,6](€, ) is the right hand side of ([L.14). O

Terminology 1.2.23. An element A of a DGLA is called Maurer-Cartan ele-
ment if dA + 3[A, A] = 0. In this terminology, a connection 1-form defines a flat
connection if A = —0 is a Maurer-Cartan element of the DGLA (Q*(P) ® g)°.

Given a connection 1-form 6, we define a linear map by
dg: Q" (P)@g— Q' (P)®g
don := dn — [0, 7]
for all n € Q*(P) ® g. The map dy is a derivation, i.e. it satisfies

do[n, ¢] = [dgn. €] + (=1)" 1, dy(]

for all n,{ € Q*(P) ® g, which can be checked by a straightforward calculation.
Since 6 is G-invariant, dy maps G-invariant forms to G-invariant forms, so it induces
a degree 1 derivation on G-invariant forms. Moreover, dy is a differential, d3 = 0, if
and only if 6§ defines a flat connection.

(1.16)

Proposition 1.2.24. Let 6 be a connection 1-form and F its curvature 2-form.
Then dQF =

Proof. We have
doF = d(—df + 116,0]) — [0, —d6 + 1[0, 6]]
= —d?0 + 1([d6, 0] — [0, d0]) + [0, 6] — 1[0, [0, 6]]
=-110,16,0]],
where we have used d*> = 0 and [df, 0] = —[0,df]. For the remaining term we get
from the graded Jacobi identity
16,10, 6]] = [16,0],6]] - 16,10, 6]]
= —2[6,[0,0]],
which implies that [0, [0, 0]] = 0. O
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1.2.4 Yang-Mills gauge theory

In Yang-Mills gauge theory, the fields are the connections on a principal G-bundle
P over a lorentzian 4-manifold M. As we have seen in Prop. [I.2.7] connections are
sections of an affine bundle, so they are really fields in the sense of Def. We
define the gauge field

A:=-0

to be the negative of the connection 1-form. The curvature is given in terms of A

by
F(A) =dA+ 3[A, A]. (1.17)

The product of fields So far, we have equipped (Q°*(P) ® g)¢ with the structure
of a DGLA. In order to make sense of terms like F'(A) A xF'(A), which appear in
the lagrangian of Maxwell theory, we have to be able to multiply elements of
(Q*(P)®g)®. This is achieved by embedding g into its universal enveloping algebra
U(g), which is the free associative algebra generated by g modulo the relations
XY —-YX =[X,Y] forall X,Y € g. The adjoint action of G on g extends uniquely
to the adjoint action on U(g), so we obtain a map

(Q°(P)® )¢ — (2°(P) @ U(g))“.

The right hand side is a differential graded algebra (DGA). The associative product
of a ®@a and f®bin Q*(P) ® U(g) is denoted by

(a®@a) AN (BRD):=(aANPB)®@ab.

Warning 1.2.25. The product in Q°*(P) ® U(g) is denoted by A, even though it is
not graded anti-commutative.

The trace Let ® : G — GL(k,R) be a finite-dimensional representation of G' and
p: U(g) — Mat(k,R) the corresponding representation of the universal enveloping
algebra. Let Tr : Mat(k, R) — R denote the trace. We define

Tr, : U(g) -2 Mat(k,R) — R.

Note that Tr, inherits the trace property Tr,(XY) = Tr,(YX) from the trace of
matrices. The action of G induces an action of G on Mat(k,R) given by g- B :=
®(g9)BP(g)~'. The map p is G-equivariant with respect to this action and the adjoint
action on . The matrix trace is invariant with respect to the adjoint action, so
that Tr, is G-invariant. It follows that the map

Q*(P) ® U(g) 22 0*(P) @ R
is G-invariant, so that it descends to a map on equivariant forms,

Tty : (Q°(P)hor @ U()) " — Q°(M)

(1.18)
n®ar— Try(a)n,
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where we have used the isomorphism
(QP)nor) = QM)
From we can deduce that the trace is graded cyclic,
Tr,(m A ... Amg) = (—1)mlmeltetmD Ty ) A A Ay (1.19)

Remark 1.2.26. For every Lie algebra there is the adjoint representation on the
vector space g, given by ad(X)Y = [X,Y]. The bilinear form g x g — R, (X,Y) —
Traq(X,Y) is called the Killing form. A real Lie algebra is semi-simple if the
Killing form is non-degenerate, and it is the Lie algebra of a compact Lie group if
the Killing form is negative definite. So when G is semi-simple compact, like SU(2)
and SU(3), the trace is taken with respect to the adjoint action. For G = U(1),
however, the adjoint action is trivial, so that the trace has to be taken with respect
to a non-zero character of u(1).

Lagrangian and field equations We now have all the technical ingredients to
write down the Yang-Mills lagrangian (without current), which is given by

L(A) = Tr, (3 F(A) A*F(A)), (1.20)

where p is the adjoint representation for G semisimple and a non-zero element of g*
for G = U(1). The Euler-Lagrange equation is

dyx F(A) =0, (1.21)

where d4 = dy is the gauge equivariant extension of d, which was introduced in
Eq. (1.16)).
If we view Eq. (1.21)) as equation for the field F', we have to add the equation

doF =0 (1.22)

to the field equations. In Prop. we have seen that this equation is satisfied
for the field I = F(A) that arises as curvature of A. Egs. (1.21)) and ([1.22)) together
are called the the Yang-Mills equations.

Example 1.2.27. Let G = U(1), so that g = R. Since U(1) is abelian, the adjoint
action is trivial, which implies the isomorphism

(2 (Phor @R) "V =00 (M) @ 9.

It follows that if we choose some connection as the origin in the affine space of
connections, then connections can be identified with 1-forms on M. The trace can be
taken with respect to the representation p = idg, so that Tr, = id. We thus retrieve
the Maxwell lagrangian with 7 = 0 from the Yang-Mills lagrangian (|1.20)).

Remark 1.2.28. At first sight, the Yang-Mills equations look no more complicated
than the Maxwell equations. Note, however, that the expression for the
curvature F'(A) contains a quadratic term, so that the field equations contain cubic
terms in A. This makes solving the Yang-Mills equation a very difficult non-linear
problem. In fact, one of the Millennium prize problems in mathematics is about the
solutions of the Yang-Mills equations.

10.04.19 (3)
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1.2.5 Abelian Chern-Simons theory

Chern-Simons form There are other interesting lagrangians on the space of con-
nections on a principal G-bundle P — M.

Definition 1.2.29. Let A be a gauge field, i.e. A = —0 for a connection 1-form 6.
The 3-form on M given by

(JJCs(A) = Tl"ad (F(A) NA— %A NAN A)
is called the Chern-Simons 3-form for A.

Proposition 1.2.30. The Chern-Simons 3-form satisfies
dwes (A) = Traq (F(A) A F(A)) .
Proof. Let {X,} C g be a basis. The square of A = A* ® X, is given by
ANA=(A"® X,) A (AP @ Xg)
= (A* N AP) @ X, X5
=1(A* N AP — AP N A%) @ X X5
= 1A NAP @ (X0 X5 — XpXa)
= 1A4° NAP @ [X,, Xg)
= 1[4, 4].

It follows that the curvature form of A can be written as
F(A)=dA+ANA. (1.23)

Inserting this expression for F'(A) into the definition of the Chern-Simons 3-form,
we obtain

wes(A) = Trag(JANA+2ANANA) .
We have to compute the differential of weg(A). First, we observe that since the
trace satisfies Eq. (1.19)), we have the relations
Tr(dANANA) =Tr(ANANIA) = —Tr(ANdANA),

where from now on we write Tr for the trace. In fact, the computations do not
depend on the representation with respect to which we take the trace. Eq. ((1.19)

also yields
Tr(ANANANA)=-Tr(ANANANA),

which implies that
Tr(ANANANA)=0.

With these relations we obtain
dwes(A) = Te{d(dA AN A) + 2d(ANANA)}
=Tr{dANdA+ 2(dANANA—ANIANA+ANANIA)}
=Tr{dANdA+2dANANA+ANANANA}
— Tr{F(A) A F(A)},

where we have used that Tr and d commute, and that d is a derivation. O
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Lagrangian and field equation Let M be 3-manifold. The Chern-Simons la-
grangian is given by the Chern-Simons 3-form,

L(A) = wCs(A) .
The Euler-Lagrange equation is
F(A)=0.

In other words, Chern-Simons theory is the theory of flat connections on principal
fibre bundles. In fact, it is closely related to secondary characteristic classes in
Chern-Weil theory. ***Add reference***

1.2.6 Poisson sigma models

**EWill be added later®**

1.2.7 General relativity

In general relativity a field is a lorentzian metric on a smooth oriented manifold of
dimension n. The vacuum Hilbert-Einstein lagrangian is

L(g) := R(g) vol,,

where R(g) is the scalar curvature and vol, = 1 the canonical volume form of g.
The Euler-Lagrange equation is the vacuum Einstein equation

. 1
G := Ric(g) — 53(9) g=0,

where Ric(g) is the Ricci curvature and where the symmetric 2-form G is called the
Einstein tensor. Pairing the Einstein tensor with the inverse metric, we obtain

L n n—2
9"Gi;j = R(g) — 53(9) ="

R(g).

If n > 2 it follows, that every metric that satisfies the Einstein equations has van-
ishing scalar curvature. This in turn implies that the vacuum FEinstein equations
are equivalent to

Ric(g) = 0.

In other words, a metric satisfies the Euler-Lagrange equations of general relativity
if it is Ricci flat.

Exercises

Exercise 1.1 (Quotient diffeology of the folded line). Let X = R with the natural
diffeology of the smooth manifold R. Let Y = R/Zy = [0, 00) be the quotient of the
action of Zy = {1, —1} by multiplication. Determine the quotient diffeology on Y,
that is, the finest diffeology, such that the quotient projection X — Y, x +— |z| is a
morphisms of diffeological spaces. What are the smooth paths v : R — Y that pass

through ~(0) = 07
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Exercise 1.2 (Subspace diffeology at the boundary). Let X = R? with the natural
diffeology of the smooth manifold R?. Let Y = D? = {z € R? | ||z|| < 1} be the
closed disk. Determine the subspace diffeology of Y, that is, the coarsest diffeology,
such that the inclusion X — Y is a morphisms of diffeological spaces. What are
the smooth paths v : R — Y that pass through v(0) = (1,0)?

Exercise 1.3 (Horizontal exterior differential). Let P — M be a principal bundle

with a connection given by a connection 1-form 6. The horizontal exterior differential
of a differential form o € QF(P) is defined by

(Da)(&o, - .-, &) == (da)(&omy - - -5 k)

where £ = £ —0(€) is the horizontal component of €. Show that D? = 0 if and only
if 6 defines a flat connection.

Exercise 1.4 (Chern-Simons 5-form). Let P — M be a principal bundle. Let F'(A)
denote the curvature 2-form of a gauge field A. Compute the Chern-Simons 5-form,
which is the 5-form w(A) on M that satisfies

d(w(A)) = Traa{ F(A) A F(A) A F(A)}

and depends polynomially on A and dA.



Chapter 2

Diffeological spaces of fields

The first attempt to view the set F = I'°(M, F') as a mathematical space is as a
topological space, by equipping F C Hom(M, F') with the subspace topology of the
compact-open topology of Hom(M, F'). Recall, that the compact-open topology is
the topology that is generated by the open sets Ucy defined for every compact set
C C M and open set V C F by

Ucyv i ={peTF | pC)CV}.

However, many if not most of the functions on F, that are relevant in classical field
theory will not be continuous with respect to this topology. Consider F':= RxR —
R, so that F = C*°(R). Consider the sequence n — ¢, of fields given by

(z—n)?

on(T) = e"2

We can picture this as a travelling gaussian wave. Any translation invariant phys-
ical quantity, like the energy E(p,) = 5 [o ]%% e = [p(x — n)2e~ @)’ — VT,
will be constant for the sequence ¢,. However, in the compact-open topology ¢,
converges to the zero function ¢, — 0, which can be verified by restricting ¢,, to
any compact interval. The conclusion is that the compact-open topology on J will
not be particularly useful in field theory.

In many situations the notion of smooth paths is sufficient to get from global
to infinitesimal structures. For example, we only need to use the notion of smooth
paths of diffeomorphisms given by local flows in order to show that the Lie algebra
of the diffeomorphism group Diff (M) is the Lie algebra of vector fields X(M). For
this we need the concept of tangent vectors and tangent maps of diffeological spaces.

On smooth manifolds there are two basic definitions of tangent vectors. In
the first definition a tangent vector at m € M is an equivalence class of smooth
paths t — 7, € M that are tangent at m, i.e. they have the same value m and
the same first derivative at ¢ = 0 in a chart. (One then has to check that the
definition is independent of the chart.) We call this the geometric definition of
tangent vectors. In the second definition a tangent vector at m is a derivation at
m of the algebra of smooth functions on M, i.e. a linear map v,, : C*°(M) — R,
such that v, (fg) = (v f) g(m) + f(m) (vmg). We call this the algebraic definition
of tangent vectors. There is an obvious map from paths to derivations that sends a
path 7 to the directional derivative f % f(7)|i=0. Getting back from derivations
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to paths is a bit more tricky, involving Hadamard’s lemma in a chart. This shows
that the two definitions are equivalent.

For diffeological spaces the situation is more complicated. There is a variety
of different notions of tangent vectors and tangent spaces [Hec95,|[KM97, Vin08§|,
Stall,[Z13,CW16|. The definitions of tangent vectors of a diffeological space X fall
essentially into two groups: the geometric definitions in terms of equivalence classes
of smooth paths in X and the algebraic definitions in terms of derivations of the
algebra C*°(X) := Hompimg (X, R) of diffeological functions on X. For a comparison
of the various approaches see [CW16]. Which of those definitions is the “right” one
will depend on the application.

In field theory we want both, that the tangent vectors of the space of fields F are
represented by diffeological paths and that these paths induce the same derivation on
the algebra of diffeological function on F. Therefore, we choose a definition, which
combines the geometric and algebraic approaches. ***Rewrite introduction®**

The price we have to pay for the great flexibility of diffeological spaces is that
there cannot be particularly strong geometric statements that hold for all diffeologi-
cal spaces, since they would have to be valid for all topological spaces. But if we stay
close enough to the diffeologies that come from actual smooth maps of manifolds,
diffeological spaces are a useful concept in field theory (see e.g. [BEW13]).

2.1 Diffeology
2.1.1 The category of diffeological spaces

Definition 2.1.1 (e.g. Def. 1.5 in [IZ13]). Let X be a set. A diffeology on X
is a map D that assigns to every open subset U C R" for every n > 0 a set
D(U) C Homge (U, X) of maps called plots, such that the following conditions are
satisfied:

(D1) Every constant map p: U — X is a plot.

(D2) Let p : U — X be a map on an open subset U C R" and {U;};c; an open
cover of U. If p|y, : U; — U is a plot for every i € I, then p is a plot.

(D3) If p: U — X is a plot and f : V — U a smooth map from an open subset
V C R™, then po f is a plot.

A set with a diffeology is called a diffeological space. A morphism of diffeo-
logical spaces f : X — Y is a map of sets such that for every plot p : U — X the
map fop:U — Y is a plot. The category of diffeological spaces will be denoted by
Difflg.

Terminology 2.1.2. In the terminology of diffeological spaces, the open subsets
of R™ for all n > 0 are called parameter spaces. Plots are also called smooth
parametrizations or smooth families. A plot R — X is called a smooth path.
A morphism of diffeological spaces is also called a diffeological map or a smooth
map when it is clear from the context that “smooth” refers to the diffeology.
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Definition 2.1.3. Let C be a concrete category, i.e. a category with a faithful
functor | — | : € — Set. Let C be an object of €. A diffeology on the set |C| is called
a diffeology on C.

Example 2.1.4. Here are a few examples for diffeologies. Let C' be an object of a
concrete category C.

(a) The discrete diffeology or fine diffeology on C is the diffeology for which
the plots to |C| are the locally constant maps.

(b) The coarse diffeology on C'is given by D(U) = Homsge (U, |C]), i.e. all maps
are plots.

(c) Every topological space C'is equipped with the continuous diffeology given
by D(U) = Homyg,,(U, C), i.e. maps to |C| are plots if they are continuous.

(d) Every smooth finite-dimensional manifold C' is equipped with the natural
diffeology given by D(U) = Homyq(U, C), i.e. maps to |C| are plots if they
are infinitely often differentiable.

Def. is a good working definition of diffeological spaces, that can be easily
applied to concrete situations. For general considerations, however, it is useful to
rephrase the definition in the language of sheaves: Let Eucl denote the category
which has as objects all open submanifolds of euclidean spaces R™, n > 0 and as
morphisms smooth maps between them. R? = x is the terminal object in ucl. The
functor of points,

|_ | : Eucl — Set

U —— Homgya(x,U),

is faithful, so it equips Eucl with the structure of a concrete category. ucl together
with open covers is a site, called the site of euclidean spaces. Let X be a set.

Then the functor
Eucl® — Set

U — Hom(|U|, X), (2.1)
is a sheaf on Eucl.
Definition 2.1.5. A subsheaf D(_) C Hom(] _ |, X) that satisfies
D(x) = Hom(| * |, X)
is called a concrete sheaf on Eucl.
Notation 2.1.6. It is customary to omit the forgetful functor | _ | of a concrete cat-

egory whenever it is clear what the underlying set of an object is and that morphisms
are maps of sets. For example, in Def. we have considered maps p : U — X
rather than maps p : |U| — X. In the same vein, we will write

Hom(|U|, X) = Homge (U, X)

for U € Eucl and X € 8et. Moreover, since | * | = |[R°| = {0} is a singleton, i.e. a
terminal object in Set, we write | x | = *.



30 2. Diffeological spaces of fields

Proposition 2.1.7. A diffeological space is a concrete sheaf on the site of euclidean
spaces. A morphism of diffeological spaces is a morphism of sheaves.

Proof. Axiom (D3) is equivalent to D being a subpresheaf of (2.1)). (D2) is the sheaf
axiom for D.

Let us assume that D is a concrete sheaf on Eucl. Every constant mapp : U — X
factors as U — % — X. Since D(x) = Homge(*, X ) and since D is a presheaf it
follows that p € D(U), so that (D1) is satisfied. Conversely, assume (D1). Since
every map * — X is constant it follows that D(x) = Homge(*, X). We conclude
that the condition D(x) = Homg(*, X) is equivalent to (D1).

Let (X, D) and (Y, D') be diffeological spaces. Let 7 : D — D’ be a morphism
of sheaves, i.e. a natural transformation of the functors. Let

f:X2DHx s D(x)2Y,

where 7, is the natural transformation evaluated at the terminal object x € Eucl.
Let u € U, which can be viewed as a map u : * — U. Due to the naturality of 7 we
have the following commutative diagram:

(

*) _f, D' (%)

This means that for every plot p : U — X we have (1y(p))(u) = f(p(u)). Since
this holds for all u € U, if follows that 7y (p) = fop € D'(U), so that f is a smooth
map. Conversely, a smooth map f : X — Y defines a natural transformation by
v : D(U) — D'(U), p— fop. We conclude that we can identify a morphism of
diffeological spaces f : X — Y with the morphism of concrete sheaves given by the
composition of plots with f. O

Proposition 2.1.8. Mapping every smooth manifold M to the set M with the nat-
ural diffeology defines a fully faithful injective functor I : Mfld — Difflg.

Proof. The natural diffeology of a smooth manifold M is given by the restriction of
the representable presheaf N — Hom(N, M) from Mfld to Eucl. This induces an
injective map I : Mfld — Difflg. Since Eucl is dense in Mfld, i.e. every manifold is a
colimit of a diagram in Eucl (see Sec. 2.1.4), it follows from the Yoneda lemma that
this embedding is fully faithful. O]

Notation 2.1.9. When it is clear from the context that we are working in the cate-
gory of diffeological spaces, we will identify Mfld with its image under the embedding
I : Mfld — Difflg and write I(M) = M for M € Mfld.

Corollary 2.1.10. The plots of a diffeological space X are given by
D(U) == HomDifﬂg(U, X)

forallU C R", n > 0.
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Terminology 2.1.11. Since manifolds are a full subcategory of diffeological spaces,
the usage of “smooth” for diffeological spaces is consistent with the meaning “in-
finitely often differentiable” for manifolds.

Proposition 2.1.12. The category of diffeological spaces has all small limits, all
small colimits, and all exponential objects.

Proof. The proof is a straightforward exercise in basic category theory: Limits of
the sheaves in Diflg can be taken point-wise. Colimits are taken in presheaves,
i.e. point-wise, and then sheafified. Exponential objects are given by the universal
property. For a fully elaborated proof see [BH11|. ]

Terminology 2.1.13. A category such as Difflg that contains Mfld as full sub-
category and satisfies the properties of Prop. [2.1.12] is often called a convenient
category or a convenient setting for differential geometry |[BH11,[KM97,|Stall].

We will denote the exponential objects in Difflg by
Hom(X,Y) =Y~¥

and call them the diffeological mapping spaces. It follows from the universal
property of exponential objects and Cor. that the mapping space diffeology
is given by

D(U) = Hom@iﬂqg(U,Ho_m(X, Y)))

= Hompime (U x X,Y),

which is also called the functional diffeology.

Notation 2.1.14. Let X be a diffeological space. Then C*(X) = Hom(X,R)
denotes the mapping space of real-valued functions on X.

The functor of points Difflg — Set, X — Hompimg (¥, X) is faithful, so it equips
Difflg with the structure of a concrete category. This functor has both a left adjoint
given by the fine diffeology on X and a right adjoint given by the coarse diffeology.
This has the following consequence.

Proposition 2.1.15. The functor of points Difflg — Set preserves all limits and
colimits.

Proof. Every functor with a left adjoint preserves all limits and every functor with
a right adjoint preserves all colimits [ML98, Sec. V.5]. O

2.1.2 Inductions and subductions

Let X be a set with two topologies T and T”. Then T is finer than 77, i.e. T D T,
if there are fewer T-continuous maps than 7”-continuous maps to X. This suggests
the following definition.

Definition 2.1.16. Let D and D’ be two diffeologies on X. If D(U) c D'(U) for
all U, then D is called finer than D’ and D’ coarser than D.
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With the notion of finer and coarser diffeologies we can give constructions of dif-
feologies that are analogous to topological spaces. Let f: X — Y be a map. When
Y is a diffeological space, the pullback diffeology of f is the coarsest diffeology
on X such that for every plot p: U — X the map f op is a plot. It is given by

(fDy)(U) = (£)"(Dy(U)),

for all U, where Dy is the diffeology on X [[Z13, Sec. 1.26]. This means that a map
p:U — X is a plot if and only if fop: U — Y is a plot. When f is injective, the
pullback diffeology is also called the subspace diffeology.

When X is a diffeological space, the pushforward diffeology is the finest
diffeology on Y such that for every plot p : U — X the map f op is a plot. A
map p: U — Y, U C R" is a plot of the pushforward diffeology, if every u € U
has a neighborhood V' C U such that p|y = f op for some plot p : V — X
[1Z13, Sec. 1.43]. When f is surjective, the pushforward diffeology is also called the
quotient diffeology.

Definition 2.1.17 (Secs. 1.29 and 1.46 in [[Z13]). Let f : X — Y be a map of
diffeological spaces. If f is injective and X has the pullback diffeology, it is called
an induction. If f is surjective and Y has the pushforward diffeology, it is called a
subduction.

Proposition 2.1.18. Let 7 : X — Y be a morphism of diffeological spaces and
c:Y — X a section. Then 7 s a subduction and o an induction.

Proof. Let p: U — Y be a plot. Then p:=cop:U — X is a plot, because o is a
morphism of diffeological spaces. Since o is a section of 7, we have mop = wogop = p.
We conclude that Y is equipped with the pushforward diffeology of 7. Since 7 has
a section it is surjective, so that it is a subduction.

Let p: U — Y be some map on U C R". Since m o ¢ = idy, p is a plot iff
(Too)op =mo(oop)isa plot. Since the diffeology on Y is the pushforward
diffeology of 7, this is the case iff 0 o p is a plot. We conclude that the diffeology on
Y is the pullback diffeology of o. Since o is a section it is injective, so that it is an
induction. O]

Corollary 2.1.19. Injective subductions and surjective inductions are isomorphisms
in Difflg.
Proposition 2.1.20. Let

X xy Z225 7

)

be a pullback diagram of diffeological spaces.

(i) If the diffeology on Z is the pullback diffeology of g, then the diffeology on the
pullback X xy Z is the pullback diffeology of pry.

(i) If the diffeology on'Y is the pushforward diffeology of g, then the diffeology on
X s the pushforward diffeology of the projection pry.
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Proof. Consider the following diagram:

U\X,
N Ay L2 (2.2)
L

(i) Let r : U — X Xy Z be a map such that p :== pryor : U — X is a plot.
Since f is a morphism of diffeological spaces, f o p is smooth. Since the diagram
is commutative, f op = g o q. Assume that the diffeology on Z is the pullback
diffeology of ¢g. This implies that ¢ : U — Z is a plot. Since both p and ¢ are plots,
it follows from the universal property of the pullback that the unique induced map
r is a plot, as well. We conclude that the diffeology on X xy Z is the pullback
diffeology of pry.

(ii)) Let p : V' — X be a plot. Since f is a morphism of diffeological spaces,
fop:V — Y isaplot. Assume that Y is equipped with the pushforward diffeology
of g. Then every point v € V has a neighborhood U C V, such that there is a
q : U — Z satisfying g o ¢ = f o p, where p is the restriction of p to U. It follows
from the universal property of the pullback that there is a plot r : U — X Xy Z
such that pry or = p. We conclude that the diffeology on X is the pushforward
diffeology of pry. O

Corollary 2.1.21. If g in diagram (2.2)) is an induction, then pry is an induction.
If g is a subduction, then pry is a subduction.

Proof. Injections are stable under pullback. The first statement then follows from
Prop. [2.1.20| (i). Similarly, surjections are stable under pullback, so that the second
statement follows from Prop. [2.1.20] (ii). O

Proposition 2.1.22. If a smooth map of diffeological spaces f : X — Z factors as
f = hog through a subduction g: X =Y, then h:Y — Z is smooth.

Proof. Let p: U — Y be a plot. We have to show that ¢ := hop is a plot. By
assumption, g is a subduction. This means that every u € U has a neighborhood V,
such that p|y, = gop for some plot p : V,, — X. Therefore, q|y, = hop|y, = hogop =
fop. Since f is smooth, ¢ly, is a plot. Covering U with such neighborhoods, we
obtain an open cover {V, },cy such that the restriction of ¢ to every open V, is a
plot. It follows from the sheaf property of the diffeology that ¢ is a plot. m

Terminology 2.1.23. A diffeological space F' together with a subduction F' — X
will be called a bundle of diffeological spaces over X.

Let FF' — X be a bundle of diffeological spaces. Then the diffeological space
Fx = {ilj'} Xx F

is the fibre over x € X. Since {z} < X is trivially an induction and since by
Cor. [2.1.21]inductions are stable under pullback, the inclusion F,, < F'is an induc-
tion. It follows, that the diffeology of F), is the subspace diffeology.
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Definition 2.1.24. Let FF — X be a bundle of diffeological spaces. Then
F(Xv F) = {idX} X Hom(X,X) HO—m(X> F)
is the diffeological space of sections of F.

Remark 2.1.25. Since the inclusion {idx} < Hom(X, X) is trivially an induction,
it follows from Cor. [2.1.21|that I'(X, F') C Hom(X, F') is equipped with the subspace
topology of the mapping space topology.

Given a collection S of maps from open subsets of euclidean spaces to a set X,
the diffeology generated by S is the finest diffeology such that all maps in S are
diffeological.

2.1.3 Diffeological vector spaces

Definition 2.1.26 (Sec. 3.7 in [IZ13]). A diffeological vector space is a vector space
X with a diffeology, such that addition and scalar multiplication are morphisms of
diffeological spaces.

Let X be a vector space with a diffeology D on the underlying set. In general,
(X, D) is not a diffeological vector space, but there is a finest diffeology D' O D
such that (X, D’) is a diffeological vector space. This will be called the free vector
space diffeology generated by D.

Remark 2.1.27. There is a functor from diffeological vector spaces to the category
of vector spaces V' with a diffeology on the underlying set D, which forgets the
compatibility of the diffeological and vector space structure. Mapping (V, D) to the
(V, D’) is the left adjoint, which is why D’ is called the free vector space diffeology.
In [Vin08| Def. 2.2.1] D’ is called the weak vector space diffeology.

Let us describe the free vector space diffeology D’ explicitly. Let p; € D(U) be
plots and \; € C*°(U) be smooth functions for 1 < i < k. Since scalar multiplication
and addition are D’-smooth, the map p: U — X given by

plu) = A(w) pr(w) + ...+ N () pi(u) (2.3)

is a plot in D'(U). It is straightforward to verify that maps that are locally of this
form define a diffeology on X, which is the free vector space diffeology D’.

Definition 2.1.28. Let X be a vector space. The free vector space diffeology
generated by the fine diffeology on the underlying set of X (see Ex. (a)) is
called the fine vector space diffeology.

Remark 2.1.29. Since every diffeology contains the fine diffeology, the fine vector
space diffeology is contained in every other vector space diffeology.

Proposition 2.1.30. Let X be a vector space. The fine vector space diffeology on
X is the finest diffeology on the underlying set X such that the restriction of every
linear map R™ — X to an open subset U C R", n > 0 is a plot.
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Proof. Let D denote the diffeology generated by linear plots and D’ the fine vector
space diffeology. Every linear map ¢ : R¥ — X is of the form

1 k 1 k
gla’,...,a") =o'z + ...+ "y,

where z; € X is the image of the canonical basis vector e; of R™. This is of the
form (2.3)), which shows that D(U) c D'(U).

Let U C R™ be an open subset and X : U — R* u s (AY(u),..., A\*(u)) a smooth
map. Since the composition of a smooth function with a plot is a plot, the map
p:=qo\isin D(U), which is of the form

p(u) = M(u)zy + .. 4+ N(u) 7y, (2.4)

Looking at Eq. (2.3]), where the plots p;(u) = x; are constant maps, we see that
every plot in D'(U) is locally of the from ([2.4]). This shows that D'(U) C D(U). We
conclude that D = D'. O

Proposition 2.1.31. The fine vector space diffeology on a finite dimensional vector
space R™ is the natural diffeology of R™ viewed as manifold.

Proof. A map U = R™, u — (A (u),...,A"(u)) for U C R™ is smooth if and only
if every A is smooth. O

Proposition 2.1.32. Let X and Y be diffeological vector spaces. If X has the fine
vector space diffeology, then every linear map X — Y is smooth.

Proof. Let f: X — Y be linear. A plot in the fine vector space diffeology on X is
locally of the form (2.4). Since f is linear, (fop)(u) = A (u) f(z1)+...+X"(u) f(zn),
which is a plot in the fine vector space diffeology on Y and, therefore, a plot in any
vector space diffeology on Y. O]

Proposition 2.1.33 (Prop. 3.4 in [CW19]). Let X be a diffeological vector space.
The diffeology on X is the fine vector space diffeology if and only if every linear map
X — R is smooth.

Warning 2.1.34. The last statement shows that if a diffeological vector space X
is not equipped with the fine vector space diffeology, then there are linear functions
X — R that are not smooth.

Lemma 2.1.35. Let X be a diffeological space and Y a diffeological vector space.
Then Hom(X,Y) with point-wise addition and scalar multiplication is a diffeological
vector Space.

Proof. Let f,g : U — Hom(X,Y) be plots, which are given by morphisms of dif-
feological spaces f,g : U x X — Y. Since the addition on Y is smooth, the map
f+g:UxX =Y, (f+9)(u,x) = f(u,x) + g(u, x) is a morphism of diffeological
spaces. Similarly for every a € R, the map af : Ux X =Y, (af)(u,z) = a f(u, z)
is smooth because the scalar multiplication on Y is smooth. O
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Definition 2.1.36. Let X and Y be diffeological vector spaces. Then Lin(X,Y)
denotes the diffeological vector subspace of all linear maps in Hom(X,Y).

X' = Lin(X,R)
is the diffeological dual vector space of X.

Notation 2.1.37. Many authors use the notation X* for the diffeological dual of a
diffeological vector space. We will follow the convention of topology and functional
analysis, reserving X* for the algebraic dual and using X’ C X* for the smooth or
continuous dual.

Proposition 2.1.38. The smooth dual of a fine diffeological vector space is the
algebraic dual vector space with the fine vector space diffeology.

Proof. This follows from Prop. [2.1.33] O

2.1.4 Extensions of functors from manifolds to diffeological spaces

Definition 2.1.39. The category of plots of a diffeological space X has as objects
plots p : U — X and as morphisms triangles

U%V

N\ /o
X

where f: U — V is a smooth map.

Notation 2.1.40. The category of plots will be denoted by Eucl] X, where we
identify ucl = y(Eucl).

Proposition 2.1.41. Every diffeological space (X, D) is the colimit of its category
of plots, i.e. the colimit of the functor Eucl | X — Difflg, (U — X) — y(U), which
we write as

X = c[?lgl(l y(U).

Proof. The proof follows from Thm. 1 in Sec. II1.7 of [ML98| applied to the functor
D : Eucl®® — Set. ]

The proposition shows that y : Eucl — Difflg, U — Homyq(_,U) is dense in
Difflg, that is, every object in Difflg is the colimit of a diagram in y(Eucl). This
leads to the following observation.

Proposition 2.1.42. Let ® : Mfld — € be a functor to a cocomplete category. Then
the left Kan extension of ® along the embedding I : Mfld — Difflg exists and we
have the commutative diagram of functors

eucl—L - MAd —2- ¢

Difflg

Moreover, ***Do we have to add: “when ® preserves colimits, then”?*** Lan; ® =

Lan,(® o J).
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Proof. prove me

Notation 2.1.43. Since [ is injective and fully faithful, we can identify every man-
ifold M with the diffeological space M = I(M). Prop. 2.1.42| then shows that
(Lan; @)(M) = ®(M). Therefore, we will use the notation

¢(X) = (Lan, ®)(X)
for all X € Diffig.

Example 2.1.44. Let Q : Mfld — dgVec® be the functor that maps a manifold to
its de Rham complex. Then Q(X) := (Lan; Q)(X) is the de Rham complex of
the diffeological space X.

The left Kan extension of Prop. [2.1.42] is given object-wise as the colimit over
the category of plots,
O(X) := colim®(U),
U—X

where we use notation [2.1.43| This colimit can be computed as coequalizer

[T e@sn=—=1I ¢W)— @),

vhvix Ubx

where the arrows on the left map the object ®(U) indexed by the morphism U EN
V % X in &ucl | X identically to the object ®(U) indexed by the domain q o f and
codomain ¢, respectively.

If ® takes values in Set, the coequalizer is obtained as a quotient

d(X) H o), [ ~, (2.5)

pU—X

where ~ is the equivalence relation generated by the following relations: An element
z € ®(U), is O-related to y € &(V), if there is a smooth map f: U — V such that
go f=pand (®(f))(x) =y. Two elements in the coproduct are then related by ~
if and only if they are connected by a zigzag of ®-relations.

Remark 2.1.45. The construction (2.5)) still works if ® is a functor to a concrete
category for which the forgetful functor preserves colimits. By Prop. [2.1.15, Difflg
is such a category.

2.2 Tangent bundle
2.2.1 Kan extension of the tangent functor

When we want to define the tangent bundle of a diffeological space by the left Kan
extension we have to observe that the tangent functor 7' : Mfld — Mfld does not
take values in a cocomplete category. To solve this issue we embed the target Mfd
into Difflg.
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Definition 2.2.1. Let T : Mfld — Mfld be the tangent functor of manifolds and let
I : Mfld — Diffig be the natural embedding of Prop. [2.1.8] The left Kan extension

T :=Lan;(I oT) : Difflg — Diffig
will be called the tangent functor of diffeological spaces.

The base point projections pry, : TM — M for all M € Mfld define a natural
transformation prygg @ 7' = idymaq. By composition with id; we get a natural
transformation

idfopryq : L oT = I oidyiaq -

By the functoriality of the left Kan extension we obtain a natural transformation
pr := Lan;(id; o prygq) : Lan;(I o T) = Lan, I. (2.6)

Using T' = Lan;(I o T') and the natural isomorphism Lan; I = idpim,, we obtain a
natural transformation pr : 7' = idpims. The naturality of pr means that we have a
commutative diagram

Tx 1y
N
x—1 .y

for every morphism of diffeological spaces f.

Definition 2.2.2. Let X be a diffeological space. The diffeological space T'X given
by Def. together with the morphism pry : TX — X given by the natu-
ral transformation is called the tangent bundle of X. The morphism of
bundles Tf : TX — TY is called the tangent map or tangent morphism of
f € HOHlDifﬂg<X, Y)

Definition 2.2.3. A vector field on a diffeological space X is a section of the
tangent bundle TX — X.

Proposition 2.2.4. Let X and Y be diffeological spaces. Then T(X xY) = TX X
TY.

Proof. The categories of plots Eucl | X and ucl | Y are sifted, so that colimits over
them commute with finite products |[GU71,/ARV10]. Since T': Mfld — Mfld and
1 : Mfld — Difflg preserve products, so does their composition I o T O

For a more explicit description of T'X we can use that the left Kan extension is
given point-wise by the colimit

TX := colimTU,
pU—X

where p ranges over all plots to X and where the manifold T'U is viewed as diffeolog-
ical space. By Eq. (2.5) and remark [2.1.45| the colimit is given by the diffeological

quotient space

X =[] (TU), / ~, (2.7)

p:U—X
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where the index p distinguishes the different summands of TU. The equivalence
relation is given as follows: A vector v, € (T'U), is T-related to a vector w, € (T'V),
if there is a smooth map f : U — V such that qo f = p and T'fv, = w,. Two
vectors are related by ~ iff they are connected by a zigzag of T-relations.

Notation 2.2.5. For every v, € (TU), in the disjoint union on the right hand side
of (2.7)), we denote by p,v, the equivalence class it represents.

Let f: X — Y be a morphism of diffeological spaces. By the naturality of the
quotient (2.7), the tangent map T'f maps a tangent vector in T'X represented by
the v, € (TU), to the tangent vector in 7Y that is represented by v, € (TU) fop,
that is

Tf(p*(UU)) = (fop)(va). (2.8)
for all plots p: U — X and all v, € TU.

2.2.2 Representing tangent vectors by smooth paths

Proposition 2.2.6. Let 0, = % denote the standard coordinate vector field on R

and Oi—y € ToR its value at 0. The map
px : Hom(R, X) — T'X (2.9)
Y — Vx (at:O) ) .

18 a subduction which is natural in X.

Proof. T'X is equipped with the quotient diffeology of the coproduct diffeology, that
is, with the pushforward diffeology of the quotient map ]_[p(TU )p — TX. This
means that a smooth family v : W — T X, W C R" of tangent vectors is smooth
if it can be lifted locally to a smooth family in one of the summands (7U), of the
coproduct, i.e. for every point w € W there is a neighborhood N C W of w and a
smooth family £ : N — (TU),, n — &(n) such that p.(£(n)) = v(n). Every family &
of tangent vectors on the smooth manifold U is represented by a smooth family of
paths v : N — Hom(R, U), that satisfies {(n) = ©(n)o. Consider the smooth family
of paths 7 : N — Hom(R, X), v(n) := powv(n). For every n € N we have

(Tv(n))(9=0) = &(n) ,
which shows that 0,—¢ € (TR),(n) and &(n) € (T'U),, are T-related. It follows that

v(n) = p.(&(n)) = v(n).(d1=0)
= px(v(n)),

for all n € N. This shows that px is surjective and that every plot in T'X lifts
locally to a plot in Hom(RR, X). In other words, py is a subduction.

Let f: X — Y be a morphism of diffeological spaces. By equation ([2.8)) we have
for every smooth path v : R — X the relation

(Tf o px)(7) = Tf(7(i=0)) = (f ©7) ,(Bi=0) = py (f 07)
= (py o f)(7)-

Since every tangent vector is represented by a path, it follows that T'fopx = py o f..
In other terms, X — pyx is a natural transformation Hom(R, _) = T. O]
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Proposition shows that every tangent vector in T'X is represented by a
smooth path in X and that plots of tangent vectors are represented by homotopies
of paths. More precisely, a family v : U — T'X of tangent vectors is a plot if every
point in U has a neighborhood on which v is represented by a smooth family of
paths in X. The naturality of the map means that there is a commutative diagram

Hom(R, X) — Hom(R,Y)

PXl lpy
Tf

77X ——TY

for every morphism of diffeological spaces f. This shows that the tangent map is in-
duced by the pushforward of smooth paths, as in the case of manifolds. The following
proposition, too, is completely analogous to the situation for smooth manifolds.

Proposition 2.2.7. Let X be a diffeological space. The tangent vector on the dif-
feological space X that is represented by a smooth path v : R — X depends only on
the germ of v at 0.

Proof. Let i : (—e,¢) < R be the embedding of a small interval containing 0. The
differential of ¢ at 0 is the identity, T(0;—p) = Oi—o. It follows from the construction
of the quotient that 7. (0i=0) = (7 01)4(0¢=0). Since 7 o is the restriction of v
to (—e¢,¢), it follows that restricting the path v to an open neighborhood of 0 does
not change the tangent vector it represents. We conclude that px(v) depends only
on the germ of v at 0. O

Proposition 2.2.8. The projection pry : T'X — X is a subduction.
Proof. As it is the case for exponential objects in any category, the evaluation map
evo : Hom(R, X) — X
V=,

is a morphism, i.e. it is smooth. We have the following commutative diagram of
diffeological spaces:

Hom(R, X) 25 TX

J/PTX
evo

X
The map ¢ : X — Hom(R, X) that maps = to the constant path c(z); = x is
a smooth section of evyg. The composition of ¢ with px : Hom(R, X) — TX is
smooth. We have pry o (poc¢) = evgoc =idy, that is, px o cis a section of pry. It
now follows from Prop. that pry is a subduction. ]

Definition 2.2.9. The tangent vector in 7, X represented by the constant path
v = x is called the zero vector at x and denoted by 0,. The map X — TX,
z — 0, is the zero section of T'X.

Corollary 2.2.10. The zero section of TX — X is an induction.

Proof. We have seen in the proof of Prop. that the zero section is a smooth
section of pry. It follows from Prop.[2.1.18|that the zero section is an induction. [J

Corollary 2.2.11. The evaluation map evy : Hom(R, X) — X is a subduction.
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2.2.3 The derivation of a tangent vector

Definition 2.2.12. Let C*°(X) be the algebra of smooth functions on the diffeolog-
ical space X. A derivation of C*(X) at x € X is a linear function 0 : C*°(X) — R
such that

A(fg) = (0f) g(x) + f(z) (Og)

for all f,g € C*(X). The vector space of derivations at x will be denoted by
Der, (C>(X)).

Remark 2.2.13. A linear map on a diffeological vector space is not necessarily
smooth, so that a priori there may be derivations that are not smooth. ***Should /can
we require derivations to be smooth?***

By definition, a function f : X — R is smooth if for every plot p : U — X the
map f o p is a map of smooth manifolds. In particular, if v : R — X is a smooth
path, then fovy:R — R is a smooth function, so that we can define the directional
derivative,

0,1 = S 1)

It follows from the Leibniz rule that 0, is a derivation of C*°(X) at 7. Let

Hom(R, X), := {z} xx Hom(R, X)

be the fibre over z of the subduction evy : Hom(R, X) — X, i.e. the diffeological
space of paths v : R — X that start at 7y = x. The directional derivative defines a
map of sets
Hom(R, X), — Der, (C*(X))
v 0y,

The following proposition states that this maps factors through 7, X.

Proposition 2.2.14. There is a unique map O : T,X — Der, (C‘X’(X)), such that

Hom(R, X),

T

T,X —2— Der, (C*(X))
commutes.

Proof. Let p: U — X be a plot and x = p(u) for some u € U. Let £, € T,U and
vy = p«(&) be the tangent vector on X that is represented by &,. Then

Do, f = (d(f o p), &)

for all f € C®(X) is a derivation at z. We have to show that 9, is well-defined,
i.e. that it does not depend on the representative £,. Let ¢ : W — X be a plot
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and n,, € T,,W a tangent vector that is T-related to £,. This means that there is a
smooth map h : U — W such that p = g o h and (T,h)&, = nw. Then

(d(foq),mw) = (d(f oq), (Tuh)u)
= foq)oT,h,&,)

foqoh) &)

fop)&u)-

This shows that if two tangent vectors on the domains of plots are T-related, then
they define the same derivation. By transitivity of the equivalence relation of the
quotient it follows that 5% is well-defined, so that we obtain a map 9 : T, X —
Der, (C>(X)).

If v, = 7.(0=0) = px(7) for a path v : R — X, then

d
d
d
d

o~ o~ o~ ——
—_— ==

aﬂx(v)f = <d<f ° 7>7at=0> = a’}’fa

which shows that 9 o px = 0, that is, the diagram of the proposition commutes.
Moreover, since px is surjective, 0 is unique. O

Remark 2.2.15. The map 9 is generally neither surjective nor injective [CW16],
so it cannot be used to identify T, X with a subset of Der,(C*(X)).

% Add a comment /reference to Def. 3.2.3 in [VinO8]***
In general, T, X is not a vector space. While we cannot add paths, we can rescale
the time parameter of a path,

L* : R x Hom(R, X') — Hom(R, X)

*

(Oé?/Y) — (La,}/ it ,Yat) )

where L, : R — R, L,t = at is the multiplication with a. This morphism of
diffeological spaces descends to a morphism on the tangent bundle.

Proposition 2.2.16. There is a unique morphism of diffeological spaces

RxTX —TX
(o, v;) — - vy,

such that the diagram

R x Hom(R, X) -~ Hom(R, X)

idg X pxl le

RxTX ——TX
commutes. It satisfies
a-(Brv)=(af) vy, 1-vy=v,, 0-v,=0,

forala,feR, xe€ X, andv, € T, X.
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Lemma 2.2.17. Two smooth paths v,7 : R — X represent the same tangent vector
on the diffeological space X if and only if there is a commutative diagram

R r2 L R

x Jp/ (2.10)

X

where p is a plot and f, f smooth functions such that Tf (Do) = T'f (D=o).
Proof. This follows from the proof of Prop. 3.4 in [CW16]. ]

Proof of Prop.|2.2.16] Let v, € T, X be represented by a path v: R — X, ie. v, =
px(7) = 7«(0¢=0). For the diagram to commute, the scalar multiplication of v, by

a € R must be defined by

o vy = px(Liy) = (0 7)-(01=0)

We have to show that this map is well-defined.
Let 4 : R — X be another path that represents the same tangent vector as .
By Lem. [2.2.17 there is a diagram like ([2.10]), which we can extend to a diagram

R LRz R

20k

R r2 . R

N

A

=

This shows that the paths v o L, and 7 o L, represent the same tangent vector.
Let v, be represented by the path v. Since L} (L})y = Lag7 it follows that

a-(B-v,) = (af) - v, Since Liy = = it follows that 1-v, = v,. Since L§y is the

constant path at x, it follows that 0 - v, = 0,. O

Definition 2.2.18. An R-cone is a set C' together with a map
RxC—C

(a,¢) — a-c
such that a- (f-¢) = (af)-¢,1-c=c,and 0-c=0- forall a,f € R, ¢, € C.
With this terminology, Prop. [2.2.16| states that the fibres of the tangent bundle
of a diffeological space have the natural structure of R-cones.
2.2.4 Tangent space of a diffeological vector space

We will now raise but not answer the following question: Under what conditions
can the tangent bundle of a diffeological vector space X be identified with X x X7
In a first step we construct a map X x X — TX.
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Lemma 2.2.19. Let X be a diffeological vector space. Then the map

A: X x X — Hom(R, X)
(z,y) — (t — = + ty)

1s a bilinear induction.

Proof. Let p : U — X x X, u — (z(u),y(u)) be a map on U C R". Assume
that A o p is a plot. This means that [, : U x R = X, (u,t) — z(u) + ty(u) is a
plot. Therefore, the composition U = U x {0} — U x R — X, which is the map
x:U — X, is a plot. Similarly, the map y : U — X is given by the composition of
smooth maps
UL o xREXD x o x F5 x|

where A : U — U x U, u+— (u,u) is the diagonal map, so y is a plot. We conclude
that p = (x,y) is a plot, so that the diffeology on X x X is the pullback diffeology
of A\. Since A is injective, it is an induction. By definition, A is bilinear. n

Corollary 2.2.20. The map
X x X 2 Hom(R, X) 25 TX
is a morphism of diffeological spaces.

Proposition 2.2.21. Let X be a vector space equipped with the fine vector space
diffeology. Then the map X x X — TX of Cor. |2.2.20) is an isomorphism of
diffeological spaces.

Proof. First, we show that v : X x X — TX is injective. If x # 2/, then v(z,y) #
v(z',y') since the base points of the tangent vectors are different. It remains to show
that y # ¢ implies that v(x,y) # v(x,y/). Let d be the map of Prop. . Let
a € X' be a smooth linear function. Then

= d d
Oz )@ = %O‘(l’ +ty)lo = E(Oé(fv) +ta(y))o

= a(y)

It follows from Prop. that every linear map o : X — R is a morphism of
diffeological spaces, so that we can always find an « such that a(y) # «(y’). This
shows that 9 is injective.

Let v : R — X be a smooth path with 79 = x. In a neighborhood U = (—¢,¢)
of the origin v is of the form , ie. v =~la + ... +~Fz for smooth functions
vt € C®(U) and vectors x; € X. The path v lies entirely in the finite-dimensional
subspace Y = Span{xy,...,z}. This means that the directional derivative of any
function f € C*°(X) depends only on the restriction of f to Y. Prop.[2.1.31]implies
that the subspace diffeology on Y is the natural diffeology on the manifold Y = R*.
It follows that the linear path 4; = z +ty with y = A4 21 +. .. + 5% x;, represents the
same tangent vector as v. We conclude that v is surjective.
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We have shown that the inverse of ¥ maps the tangent vector represented by the
path v =y} 21 + ... + F 2} to the pair
(@,9) = (@1 + - + 70 Th: Yo 1+ - - + g Th) -

This shows that plots of such paths are mapped to plots in X x X, so that v is an
isomorphism of diffeological spaces. O

Prop. [2.2.21|shows that under the strong assumption that X is a fine diffeological
vector space, we can identify the set of tangent vectors at a point of X with X. Under
what general conditions this is true is, to our best knowledge, an open question.

2.2.5 Fibre-wise linear bundles

Definition 2.2.22. Let A — X be a diffeological bundle, i.e. a subduction. A
fibre-wise linear structure on the bundle A consists of two maps of diffeological
bundles,
+:AxxA— A
T RxA— A
called fibre-wise addition and scalar multiplication, that equip every fibre of A with
the structure of diffeological vector space, such that the zero section X — A, z +— 0,
is smooth. A diffeological bundle together with a fibre-wise linear structure will be
called a fibre-wise linear diffeological bundle.

Terminology 2.2.23. The notion of linear diffeological bundles of Def. is
very natural and has appeared under the name regular vector bundle in [Vin0§],
diffeological vector space over X in [CW16], and diffeological vector pseudo-
bundle in |[Perl6|. I apologize to the reader for following my own idiosyncratic
linguistic preference.

Proposition 2.2.24. A fibre-wise linear structure on a diffeological bundle A —
X induces the structure of a C*°(X)-module on the diffeological space of sections
(X, A).

Proof. Let f: X — R be a smooth function and a € I'(X, A) be a smooth section.
Then we have a smooth section

fa X S XxX PSR A A,
where A(z) = (z,x) is the diagonal map. This defines a smooth map
C*(X)xT'(X,A) —TI'(X,A)
(f;a) — fa.
If b€ I'(X, A) is another smooth section, then we have a smooth section

axb

a+b: X X x X2 AxA A,
This defines a smooth map
(X, A) xT'(X,A) — T'(X,A)
(a,b) — a+b.

It follows from the defining property of a fibre-wise linear structure that f(ga) =
(fg)aand f(a+b) = fa+fb, so that we obtain the structure of a C*°(X)-module. [
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2.3 The space of fields

Definition 2.3.1. Let F — M be a smooth fibre bundle. The diffeological space
of sections F :=T'(M, F') (Def. 2.1.24) is called the space of fields.

The space of fields is equipped with the subspace diffeology of the diffeological
mapping space Hom(M, F'). This means that a map ¢ : U — F, u — ¢, defined on
the open subset U C R" is a plot if the map

Ux M — F, (u,m) — @, (M)

is smooth, i.e. an infinitely often differentiable map of finite-dimensional manifolds.

2.3.1 Tangent bundle

Let ¢ : R = J, t — ¢; be a smooth path of fields. We define
oo: M — TF
— d ( )
m —pi(m
it t=0’

where the right hand side is a suggestive notation for the tangent vector in TF
represented by the smooth path t — ¢, (m). Since ¢ is a section of M we have that
7(¢i(m)) = m. It follows that

d

T (gbo(m)) = %ﬂ(got(m))

d
t=0  dt

=0y, .
t=0

This means that ¢g(m) lies in the vertical tangent bundle of F,
VF :=kerTm, (2.11)

which is a vector bundle over /. We have the following commutative diagram of
manifolds:

(2.12)

This shows that ¢ is a section of the bundle V' — M, which covers the section
%o = pryp o Yo. The map

pry = (prp)e : N(M,VF) — (M, F) =5

is a subduction since zero section is a smooth section of prs. The fiber over p € F
is given by
(M, VF), =T"(M,p*"VF), (2.13)
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where p*VF = M x7”'F VF is the pullback fibre bundle. The map
75 : Hom(R, F) — ['(M, V' F)
Y —> Yo
is a morphism of diffeological bundles over . The following result is one of the
reasons for using diffeological spaces in field theory.

Theorem 2.3.2. Let ' — M be a smooth fibre bundle. Then there is a unique
isomorphism TF — T'(M, V' F) of diffeological bundles over F, such that

Hom(R, F)

TF —=ST(M,VF)
commutes.

Lemma 2.3.3. Let F' — M be a smooth fibre bundle and p,v : R — F smooth paths
in the space of fields. If @ and 1 represent the same tangent vector, then ¢y = 1.

Proof. By Prop. [2.2.14] ¢ and v induce the same directional derivative, 5pg(¢) =
Dpy(wy- Let (2*,u®) be local bundle coordinates on a neighborhood of m € M. The

map ul, : F — R, x*(m) = u*(x(m)) is a smooth function on F. Its directional
derivative with respect to ¢, is

~ d d

(e}

Dps (i) Uy, = %U%(%) 0 = a@?(m)
= @G (m).
Since 5p3(¢,)u$“n = 5,,5(@1@% for all m € M and a, it follows that ¢g(m) = 1o(m) for
all m e M. O
Lemma 2.3.4. The map 75 : Hom(R,F) — I'(M,VF), ¢ — ¢q is a subduction.

t=0

Proof. A section n: M — V' F is a vertical field supported on N = (prpon)(M) C
M. Since N is an embedded submanifold, we can extend 1 to a complete vertical
vector field  on F', supported on a tubular neighborhood of N. Let ® : R x F' — F
be the flow integrating 7. Then the smooth path ¢ : R — F defined by ¢;(m) =
O(t, (prp o n)(m)) satisfies ¢o = 1. This shows that every section in I'(M,VF) is
the time derivative at 0 of a path in F, so that the map 77 is surjective.

Let p: U xR x M — F be a smooth homotopy of sections of F'. Then the maps
p:UXM— F, p(u,m) = %(u, 0,m) is smooth. This shows that 74 maps plots to
plots, so it is smooth.

Let now ¢ : U x M — VF define a smooth family of sections of VF — M. It
can be extended trivially to a section ¢ : U x M — U x VF, (u,m) — (u,q(u,m))
of the vertical tangent bundle of the fibre bundle idy x 7 : U x F' — U x M. By the
same argument as above, we can find a smooth path p: R — I'(U x M,U x VF),
such that py = ¢. The path p is of the form p,(u, m) = (u,p(t,u,m)) for a smooth
map (t,u,m) — p(t,u,m), so that q(u,m) = %(U,O,m). It follows that ¢ = T30 p
for the plot p : U — Hom(R, F). We conclude that I'(M, V F) has the pushforward
diffeology of 7. O
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Lemma 2.3.5. Let A — M be a smooth vector bundle. Let a,b: R — A be smooth
paths of fields. If ag = by, then a and b represent the same tangent vector on A.

Proof. Inlocal fibre coordinates (z*,..., 2", u!, ..., u*) over aneighborhood V C M,
the sections are given by the coordinate functions, which we denote by

)
).

a®(t,x) = a?(:z:l,

Vit ) = b (xt, ... 2"
Since @y = by, the difference b — a® is a function that has vanishing value and
vanishing partial derivative with respect to t at t = 0. It follows from Hadamard’s
lemma that there is a smooth function h* = h®(x,t) on the local coordinate chart,
such that

b (t,x) — a®(t,x) = h*(t, )t

Now we define smooth functions p® : R2 x V — R, f: R — R?, and g : R — R? by

p*(r,s,x) == a“(r,z) + h*(r, 93)32

It is easy to check that

[0}

a“*=pof, b*=pog,

and that
0

(Tof)0r = arl oo

= (Tog)0, .

The maps p* for 1 < a < k define a smooth homotopy of local sections py :
R? — A(V). Since py depends linearly on h we can use a standard partition of
unity argument to sum the local homotopies to obtain a smooth family of sections
p : R? — A that makes the following diagram commute:

R R2% R

x Jp/ (2.14)

A

We conclude that the smooth paths a; and b, represent the same tangent vector on
A. m

Terminology 2.3.6. Let F' — M be a fibre bundle and S C F' a subset. We say
that a plot p : U — F is contained in S if the image of the map U x M — F|
(u,m) — p,(m) is contained in S.

Lemma 2.3.7. Let F' — M be a smooth fibre bundle, let ¢ : R — F be a smooth
path of fields, and let S C F be a tubular neighborhood of w(M). Then there is a
smooth path contained in S that represents the same tangent vector as .
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Proof. We can view the smooth path of fields ¢ as a smooth map ¢ : R x M — F.
Let S C F be a tubular neighborhood of ¢o(M) = ({0} x M). Let U; C M be an

open set with compact closure. Then we can find an ¢; > 0 sufficiently small, such
that go((—ai, ;) X Ui) C S. Let y; : R — R be a smooth function with the following
properties:

(i) |x:i(t)] < e for all t.
(ii) x;(t) =t for |t| < 5.

From these properties it follows that ¢ (x;(R)xU;) C S and that ¢(x;(t), u) = ¢(t, u)
for [t| < e, u € U;. Using a standard partition of unity argument, we obtain functions
e: M — Rt and x : Rx M — R, such that ¢ := po(x xidy) : Rx M — F
satisfies the following properties.

(i) ¥(t,m) C S for all t and m.
(i) (t,m) = @(t,m) for [t| < .

Property (i) means that 1 is a smooth path of fields contained in S. Property (ii)
means that the restrictions of ¢ and ¢ to the open set D := {(@, m) | me M}
are equal.

It remains to show that ¢ and 1) represent the same tangent vector. Let the map
p:R2x M — F be defined as

pwsmy={mu_%ﬁ+%ﬂnmwm;<n&m¢RxD
. @(T’m)v (r737m)ERXD

For all (r,s,m) € R x D, r # 0 we have

A= 5 )

S S
((1=55)r+zrmm)

=
=p(r,m).

which shows that p is smooth. Moreover, p(t,0,m) = ¢(m) and p(t,t*, m) = ¥ (t, m)
forallt € R. Let f : R — R? and ¢ : R — R? be defined as in diagram (2.14]). Then
po f = and pog = 1. By the same reasoning as for diagram ([2.14)), it follows
that ¢ and ¢ represent the same tangent vector. O]

Proof of Thm.[2.3.3. Lem. [2.3.3] shows that the map 75 : Hom(R, F) — I'(M,V F),
© — o descends to a well-defined map

v:TF — T(M,VF).

Since by Prop. the map py : Hom(R, F) — T'F is surjective, v is unique. It is
clear from the construction of v that (pry)* o v = prs. In other words, v is a map
of bundles (in sets) over J.

By Lem. [2.3.4] 75 is a subduction. In particular 74 is surjective. This implies
that v is surjective. We now show that v is injective, as well. Let ¢,9 : R — J be
smooth paths such that ¢y = Yo. We must show that ¢ and v represent the same
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tangent vector on ¥ in the quotient (2.7). Let S C F be a tubular neighborhood of
wo(M) = 1o(M). Since the normal bundle of S is isomorphic to the pullback ¢§V F
of the vertical bundle, there is a smooth map

og:pVF — F

and a tubular neighborhood S’ C iV F of the zero section, such that the restriction
o : S — §is a diffecomorphism. By Lem. there are paths ¢’ and ¢’ that are
contained in S, so that they can be identified with the paths a := 67! o ¢’ and
b:= 5! o4 in the vector bundle A = iV F', which satisfy ag = by. Now we can
apply Lem. which shows that there is a diagram like . Applying the
pushforward by ¢ to this diagram we obtain the commutative diagram

R oof R2 oog R
\lp/
@ Y’

F

Moreover, since (Tof)0; = (Tog)d;, it follows that (To(o o £))9, = (To(o © 9)),.
This shows that ¢’ and ¢’ represent the same tangent vector in the quotient ([2.7),
which implies that ¢ and v represent the same tangent vector ps(¢) = ps(¢)). We
conclude that v is injective.

It remains to show that v and its inverse are smooth. Since 73 = v o ps and since
by Prop. ps is a subduction, it follows from Prop. that v is smooth.
Similarly, since ps = v~! o 75 and since by Lem. Ty is a subduction, it follows
from Prop. that v~! is smooth. We conclude that v is an isomorphism of
diffeological spaces. O

Corollary 2.3.8. The fibre of the diffeological tangent bundle of TF — F over
peTF s

T,3=T(M,p'VF). (2.15)
Terminology 2.3.9. In the language of variational calculus, an element of 7,3 is
called an infinitesimal variation of ¢.

Example 2.3.10. Let F' := M x N P M be the trivial bundle. Then F =
Homygq (M, N) is the set of smooth maps from M to N, equipped with the functional
diffeology. The vertical tangent bundle is given by VF =0y, x TN = M x TN —
M x N. A tangent vector at ¢ : M — N is given by a section of

M Xy (M XTN) =M xG"NTN — M.
By the universal property of the pullback, such a section is given by a commutative
diagram
M—5TN
X lmN
N

If N = M, the tangent space at the identity is given by T}qF = X(M), the space of
vector fields on M.



2.3 The space of fields 51

Corollary 2.3.11. The tangent bundle of a diffeological space of fields is fibre-wise
linear.

Proof. Let ¥ =T'(M, F') be a space of fields. By Thm. we have

TF g TF 2 T(M,VF) xpore D(M,VF)
={(&x) eT(M,VF xyy VF) | prpo& =prpox}
~ (M,VF xp VF).

Since VI — F is a vector bundle we have the structure maps of addition VF x g
VF — VF and scalar multiplication R x VF — VF. The pushforward of these
maps defines a fibre-wise linear structure on the diffeological bundle I'(M, VF) —
L(M, F). O

Proposition 2.3.12. Let A — M be a vector bundle. Then we have an isomorphism
TA=AXA

of fibre-wise linear diffeological bundles over A, where pry : A X A — A is the trivial
bundle.

Proof. We have an isomorphism
Axy A— VA

d
(Gmy b)) — a(am + tbm)|t:0

of smooth fibre bundles over M, which induces an isomorphism of the spaces of
sections
AXAZT(M,Axy A) —T(M,VA)=TA.

For every section a € A, the restriction A = {a} x A — T,A is a smooth map of
diffeological vector spaces. 0

Remark 2.3.13. The isomorphism of Prop.[2.3.12|is the smooth map of Cor.|2.2.20]

Example 2.3.14. Let E — M and FF — M be smooth fibre bundles. Then the
product of the space of sections of E and F’ is itself a space of sections,

EXTF=ET(M,ExyF).
This shows that the tangent bundle of & x & is given by

TEXxTF) = F(M,V(E X 0 F))
ET(M,VE xy VF)
=TEXTYH,

which is a special case of Prop. [2.2.4]
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2.3.2 Vector fields

In Thm. 2.3.2]

In Prop. we have shown that the map from smooth paths in the diffeological
space X to T'X is a subduction.

Let X(F) := I'(F, TF) denote the diffeological space of vector fields. In Cor.
we have seen that T — J is fibre-wise linear. Prop. shows that X(F) has
the structure of a C°°(F)-module. By definition of the functional diffeology, a plot
U — X(F) is given by a smooth map U x F — TTF.

2.3.3 Differential forms

For our purposes, there is no need to consider the general theory of differential
forms on diffeological spaces [IZ13] Sec. ***]. We will only be concerned with the
diffeological space of fields for which every fibre of the tangent bundle TF — F is
the diffeological vector space of sections of a vector bundle.

Definition 2.3.15. Let X be a diffeological vector space. A p-form on X is a
morphism of diffeological spaces X? — R that is multilinear and antisymmetric.

Let us denote the p-fold product of a fibre bundle X — V" in the category Difflg
of objects over Y by (X,y)?. Then

(T?/g)p:g—’? Xg ... XgTCTr (216)

TV
p-factors

is the p-fold fibre product of TF — F. The empty product in the category of objects
over J is the identity of F, so that

(TF)5)" = 7.

The tangent bundle of a space of fields is a fibre-wise linear bundle of diffeological
spaces, so that we can extend Def. [2.3.15| to all fibres of the bundle in an obvious
way.

Definition 2.3.16. A differential p-form on the space of fields F is a morphism
of diffeological spaces
v:(TT;5)P — R,

such that the restriction of v to every fibre is multilinear and antisymmetric.
The fibre product is itself a space of fields,
(TF)5)P =T (M, (VFu)P) .
This shows that the fibre over ¢ € JF is given by

>~ (M, (¢"VF) xar ... X (¢"VF)).
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Remark 2.3.17. The diffeological tensor product (T,,F)®? is defined by the uni-
versal property that there is a multilinear map i : (T,,F)? — (7,,F)®? such that
every smooth multilinear map on (7,,F)? extends to a unique smooth linear map on
(TF)®P. But since the vector space T,,F is rather large, this tensor product is hard
to describe explicitly. We point out preventively that it is not given by

L(M, (" VF)®P) 2 T,F Q@cec(ar) - - - Qcee(any TpF
which is a quotient of the much larger vector space (T,,F)%?.
The set of all differential p-forms is a diffeological vector subspace
(%) © Hom((TFs)",R)

which is endowed with the structure of a C°°(F)-module in the usual way. The
collection of all diffeological spaces QP(F), p > 0 is a graded commutative algebra
Q(F), with the wedge product of a p-form v and a ¢-form v/ defined in the usual
way by the antisymmetrized point-wise product

(v AV)( ;, . ,é’ffrq)

1 g o g ag
= il E sgn(o) I/(f‘p(l), o ,£¢(p)) u’(§¢(p+1), o ,5@(””))
0€Sptq

for all ¢ € F and all 5;,, e ,ff;*q € T,F. The inner derivative with respect to a
vector field x € X(J) is also defined in the usual manner by

() (&g 607) = (X &g - 60 7),

for all ¢ € J.
Let E — N be another smooth fibre bundle. In Prop. we have shown that
the tangent functor on diffeological spaces commutes with products, so that

TFxE=TFxTE
& (T?X 8) XgFxe (?X T(C:),

which is the fibre product of fibre-wise linear diffeological bundles over F x €. It
follows that the fibre at (p, 1) € Fx € is the direct sum of diffeological vector spaces

T(%Qp)(g: X 8) = T¢3:@ ng .
This induces a decomposition of the n-fold fibre product of T'(F x €) as follows. Let

TPN(F x &) := ((TF x &) jgxe))” Xaxe ((F X TE) jxe)’

(TF5)P x &) xgxe (Fx (T€)e)9) (2.17)
(TTF)5)P x (TEse)?.

The fibre over (p,9) € F x € is

12

12

T (5 x &) = (T,3) & (T,€)".
With this notation we have the decomposition
(T(f}' X 8)/(§Xg))n = T(n’o)(? X 8) X(Fx€) T(n_l’l)(ff X 8) X(FxE) - - -

2.18
o X(FxE) T(O’”)(?x 8) ( )
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Definition 2.3.18. A differential (p, ¢)-form on F x € is a fibre-wise linear and
antisymmetric map of diffeological spaces

V. (T"f/g)p X (T(C_:/g)q — R.
The space of all (p, ¢)-forms will be denoted by QP4(F x €).

It follows from ({2.18)) that the space of differential n-forms on F x € decomposes
as
QIFxE) AT xEQM(TFxED...0 0" (FxE),

in complete analogy to smooth manifolds.

Let A — M be a vector bundle. We have shown in Prop. that the tangent
bundle of the space of fields is TA = A x A Py A, Tt follows that the n-fold fibre
product is given by

(TA/ )" = Ax A" 25 A

This shows that a differential n-form on A is given by a smooth map
v:AXA" — R, (2.19)

that is multilinear and antisymmetric in A".

Since T'A is naturally a trivial bundle, we have the notion of constant vector
fields and forms on A. A vector field £ : A — TA = A x A is constant if it is of
the form &, = (a,b) for some b € A. This shows that the space of constant vector
fields is given by A. A differential n-form v is constant if for any family of constant
vector fields €1, ... €™ the map a — v(&},...,£") is constant. Viewed as a map of
the form ([2.19)), v is constant if and only if it does not depend on the first factor A.
We thus arrive at the following statement, which is in complete analogy to the case
of finite dimensional vector spaces.

Proposition 2.3.19. Let A — M be a vector bundle. Constant differential n-forms
on the diffeological space A = T'(M, A) can be identified with n-forms on the vector
space A, that is, with smooth multilinear and antisymmetric maps A™ — R.

2.3.4 Fréchet manifold structure

If the diffeological structure is not enough, we can equip F with the structure of a
smooth Fréchet manifold modelled on the tangent spaces T, = I'*°(M, *V F') with
the usual semi-norms of infinitely often differentiable functions on a non-compact
manifold [Ham82]. We will not make much use of such Fréchet manifold structures,
so we will not go into any more detail here.



Chapter 3

Locality

For a general action F — R there is no mathematical reason why the critical points
should be the solution of a PDE, as is the case for most LFTs that come to mind.
The condition that guarantees that the Euler-Lagrange equation is a PDE is locality.

Definition 3.0.1. A lagrangian L : § — Q'P(M) is called local if there is a natural
number £ > 0, such that for all fields ¢ € F and all points m € M the value of L(y)
at m depends only on the partial derivatives of ¢ at m up to order k.

***Add some text here. Add that it ought to depend smoothly on the deriva-
tives™**

3.1 Jets
3.1.1 Jet bundles

Definition 3.1.1. Two local sections ¢ and ¢’ of a smooth fiber bundle F© — M
defined on a neighborhood of m have the same k-jet at m, denoted by j¥ ¢ = j* ¢’
if they have the same value and partial derivatives up to k-th order at m.

It is not immediately clear that this is a good definition, since the partial deriva-
tives of a section generally depend on the choice of coordinates. For example, the
section of a line bundle is given in local coordinates by an R-valued function. In one
coordinate system this function can be constant so that its first derivatives vanish,
while in another coordinate system it will have non-zero derivatives. But when the
value and all partial derivatives of two sections ¢ and ¢’ are equal up to order k for
one choice of coordinates, they will be equal in all charts.

Exercise 3.1.2. Let f,g: M — R be functions on a smooth n-dimensional mani-
fold. Let z = (z',...,2") : U — R" be local coordinates on a neighborhood U of
m. Let k be a natural number. Show that if

_9F | __ 9%
oxit - .. Oxh z(m) oxit - .. Qg x(m)

for all [ < k and all indices 1 < 1q,...,%; < n, then these equalities hold in any other
coordinate system.
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Figure 3.1: Caption

Exercise shows that having the same partial derivatives at a point m up
to a given degree k is an equivalence relation on the space of all local sections on a
neighborhood of m. The k-jets are the equivalence classes of this relation.

Definition 3.1.3. Two maps f,g : M — N of smooth manifolds have the same
k-jet at m € M if the sections m +— (m, f(m)) and m — (m, g(m)) of the trivial
bundle M x N — M have the same k-jet at m in the sense of Def. [3.1.1}

Remark 3.1.4. Two sections of F' — M have the same k-jet at m in the sense
of Def. if and only if, when viewed as functions M — F, they have the same
k-jet at m in the sense of Def. [3.1.3 In this sense, the two definitions of jets are
equivalent.

Terminology 3.1.5. The natural number & in Defs. [3.1.1] and [3.1.3| is called the
order of the jet.

Example 3.1.6. Two smooth paths f,g : R — M have the same 1-jet at 0 if and
only if they represent the same tangent vector at the point f(0).

The last example shows that the concept of jets can be viewed as a generalization
of tangent vectors in two ways. First, the domain is generalized from a line R to
a higher dimensional manifold, so that tangent vectors are generalized to tangent
planes. Second, tangent planes are generalized to surfaces given by higher order
polynomials. The geometric meaning of jets is then that two sections have the same
jet at m if they have the same value (0-jet), the same tangent plane (1-jet), the same
osculating ellipsoid or hyperboloid (2-jet), etc. at m. This is sometimes expressed
by saying that, when two sections ¢ and ¢’ have the same k-jet at m, they are
tangent to k-th order at ¢(m) (Fig. [3.1)).

The analogy with tangent vectors can be taken further by also generalizing the
concept of tangent spaces and tangent bundles. The set of all k-jets at m is denoted
by

JEF = {j% o | for all open U > m and all ¢ € I'(U, F)}.

The union of all jets at all m will be denoted by
JF =] JLF.
meM
On the set of k-jets we have the natural projection
e JVE — M, jf;go»—>m,
to the base-point of every jet. The fibre of m, over m is JX F.

Example 3.1.7. Let F = R x R — R be the trivial line bundle over R, so that
F = C*(R). The k-jet of a function ¢ € C*(R) at m € R can be identified with
the k-th Taylor polynomial of ¢ at m. This induces an isomorphism

JE(R x R) = R[]/ (7).

In the language of algebraic geometry this is the ring of functions on the k-th
infinitesimal neighborhood of m.
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Exercise 3.1.8. Let FF = R x () — R be a trivial bundle over R. Show that
JIRxQ)=2RxTQ.

Exercise shows that J'(R x @) has natural structure of a smooth fiber
bundle. In fact, this is the case for every J*F. The way to show this is analogous
to showing that the tangent bundle of a smooth manifold is itself a smooth man-
ifold: We choose local bundle coordinates on F' and show that these induce local
coordinates on J*F.

Let (z%,..., 2" ul,... ,u") be a system of local bundle coordinates of F, that is,
(x') are the base coordinates and (u®) the fiber coordinates of some local trivializa-
tion. This induces coordinates (z°,u®, u&, ug LU ) on J kF given by

> Py Yig,ig0 t

' u l:J’“F—)R,

01,82 y.0y0
7' (Jmp) = '(m), (3.1)
0'(u” o )
o -k .
uilﬂ'z,m,iz (]m@) T Ordriz - - . Orit |m )

for all [ < k and all sequences i1, ...,% of indices. In order to handle the indices
efficiently we will use multi-index notation.

Notation 3.1.9. Let (2!,...,2") = (z%) be local coordinates indexed by 1 < i < n.
A multi-index is an n-tuple I = (I3, ..., I,) € Nj. Multi-indices are used to define
compact notation for products such as

Z‘I — (l’l)h (132)12 . (l’n)I” '

The number
|I’ :Il+[2++[n

is called the length or order of /. Our main use of multi-indices is for higher partial
derivatives,

GBI I

921~ (@)1 (0a2)E2 - - (D)l

~(52) (G2 (5 = (&)

This suggests the following notation for jet bundle coordinates,

o am(pa
ug(jk ) = o,

For every number 1 < i < n, we define the concatenation of I with i by
I,i = ([1,...,]1'_1,11‘—}- ]-,[i—l-lu---,ln)-

The concatenation of the multi-index 0 = (0,...,0) will be denoted by 0,7 = ¢. This
makes the multi-index notation consistent with that of Eq. (3.1)). That is, if
I = iy,14g,...,4; is the concatenated multi-index, then uf = v, ;. While multi-
indices label the coordinates u¢ uniquely, the concatenation i4,...,7; of different
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sequences can represent the same multi-index. In fact, let I be a multi-index of
order k. Then

k!

#{(i1,...,ix) €{1,...,n}" | [:zl,...,z'k}:ﬁ,

where the multi-index factorial is defined by
I':=L!L!---1,!.

This combinatorial factor has two be taken into account when changing between
the summation over multi-indices I and sequences i1, ...,4;. Let C7 be some finite
sequence labelled by the multi-index I, then

o
ZCIZ%—,] S G (33)

1<i1,eig <n

where [y, ..., ]! denotes the multi-index factorial of the multi-index I =iy, ..., .
The concatenation of two multi-indices is given by the sum

I+J=U+J,.... L+ J,).

Splitting the sum over a multi-index into the sum over two concatenated multi-
indices we again have to take into account combinatorial factors,

JIK!
XI: Cr = Z}: 2}; (J+—K)!CJ+K . (3.4)

As special case, we have

1
d Cr= ; ; m@,k . (3.5)

1

Further usages of multi-indices will be explained as they occur.

Remark 3.1.10. The Taylor expansion at the point xg of an analytic function

(o', ..., ") : R" — R" can be written in multi-index notation as
o 10 I
o (x) = Uzoﬁ | @,

which shows that the jet bundle coordinates of j* o can be identified with the k-th
Taylor polynomial of p* at zo = (z'(m),...2"(m)). In this sense, a k-jet can be
viewed as the coordinate independent version of the k-th Taylor polynomial.

It is straight-forward to show that the transition functions from one set of jet
bundle coordinates to another are smooth (cf. exercise |3.1.2)). The conclusion is the
following proposition.

Proposition 3.1.11. Let F' — M be a smooth fibre bundle. Then J*F has the
natural structure of a smooth manifold and J*F — M is a smooth fibre bundle.
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For every k > [ > 0 there is a forgetful map
. 7k l & ]
pr, S — JF, jno = e,

which forgets the partial derivatives of order higher than [. In local jet coordinates
it is the projection

(2", u™,us, ... u ) (2 u . u® L), (3.6)

y Wi » Wit g » Yo L S PP 7]

which shows that pr,; is a surjective submersion and a map of fibre bundles over
M.

3.1.2 Jet evaluation and prolongation

Definition 3.1.12. The map
i Fx M — J'F
(p,m) > e
is called the k-th jet evaluation.

In general, the jet evaluations are not surjective. For example, when F' — M
is a non-trivial principal bundle then F' has no global sections at all, so the image
of j* is empty. Another important example is the bundle of lorentzian metrics in
general relativity, which does not have a global section if the base manifold is closed
with non-vanishing Euler characteristic. This is the reason why jets are defined to
be represented by local sections. Here is a criterion for the surjectivity of the jet
evaluations.

Lemma 3.1.13. Let F — M be a smooth fibre bundle. The jet evaluations j*,
k > 0 are all surjective if and only if the evaluation j° is surjective, i.e. if for every
point of F' there is a global section through that point.

Proof. Assume that j° is surjective. Then for any k-jet j* ¢ represented by a local
section ¢, there is a global section ¢ : M — F such that ¢(m) = ¢(m). We can
choose local bundle coordinates (2%, u®) on an open neighborhood U x V' C F such
that ¢ is defined on U and such that ¢(U), ¥(U) are both contained in U x V.
Furthermore, we can choose the coordinates such that ¢ = 0 on U. Let f be
a smooth bump function on U with support contained in U and locally constant
value 1 on a small neighborhood of m. Then there is a smooth global section y
defined by x(z) = ¥(z) for x ¢ U and x“(x) = f(x)p*(z) for z € U, which satisfies
3% x = j¥ ¢. This shows that every k-jet has a preimage under j*. O]

Proposition 3.1.14. Let F — M be a smooth fibre bundle with connected fibres.
Then the jet evaluation j* is surjective for all k > 0 if and only if F has a global
section.

Proof. Assume that j* : F x M — J*F is surjective for all k > 0. Then the image
of j* is non-empty, so that F must be non-empty.
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Conversely, assume that ¢ € F. Let p € F,,,. Since by assumption F,, is path-
connected, there is a smooth path v : [0, 1] — F,, with 7(0) = ¢(m) and (1) = p.
Let U C M be an open neighborhood of m and F|y = U X F,, a trivialization in
which the section ¢ is constant, i.e. p(u) = (u,¢(m)) for all u € U. Let V. C U be
an open ball containing m such that the closure of V' is contained in U. Then there
is a smooth bump function f : U — [0,1] such that f(m) = 1 and f(u) = 0 for
all w € U\ V. Now we can define a local section ¢ : U — F which is given in the
trivialization by ¢ (u) = (u,v(f(u))). By construction, ¢(m) = p and ¢ (u) = ¢(u)
for all w € U \ V. The section defined by ¢ on U and by ¢ on M \ U is a global
smooth section of F' through p. This shows that j° is surjective. It now follows from
Lem. that j* is surjective for all k& > 0. O

Proposition 3.1.15. The jet evaluations § x M — J*F are smooth maps of diffe-
ological spaces.

Proof. A path t — (¢, m;) € F x M is smooth in the diffeclogy if ¢ — ¢, is a
smooth homotopy of sections given by a smooth map of manifolds ¢ : R x M — F
and if m : R — M is a smooth map of manifolds.

Let (z',u®) be local bundle coordinates on F. Then t — % = u® o ¢; and
t — mi = x'(m,) are the paths in local coordinates. Let (z’,u%) be the induced
coordinates on J*F, so that

Ii(jk(90t7mt)) = mi

1] 3.7
u§ (5% (pe,me)) = %Tf(t,mt). (37)

By assumption m! is a smooth function of #. Since all partial derivatives of the
smooth map of manifolds ¢ are smooth, the maps t — u¢ (j (e, mt)) are all smooth.
We conclude that R — J*F, t — j*(¢, m;) is a smooth map of manifolds. This
argument generalizes from paths to smooth families in & x M that are parametrized
by open subsets of R". O

Proposition 3.1.16. Let ¢ be a smooth section of the fibre bundle F' — M. The
map
Fo M — J'F, m»—)jrlflga,

15 a smooth section of the k-th jet bundle, called the k-th jet prolongation of ¢.

Proof. This is easily checked in local jet coordinates in which j¥¢ is given by

o« 0~
Uiy ... ik (JkSO) = o5 Opin (3.8)
which is a smooth function of the local base coordinates (z',...,x"). ]

Notation 3.1.17. In the physics literature, the right hand side of Eq. often
denotes both, the jet bundle coordinates of the prolongation of a single field ¢ and
the coordinates functions uf, ; themselves. This is analogous to the coordinates
(x',...,2") of a manifold, which can denote both, the coordinates of a single point
x and the coordinate functions of a chart. For example, consider the action in



3.1 Jets 61

classical mechanics, S(q) = [, L(qa, q'a)dt. On the one hand, S(¢) can be viewed
as the action of a single path ¢® € C*°(R, Q). In this case, the integrand is a closed
1-form on R, which is always exact. On the other hand, during the derivation of
the Euler-Lagrange equation, we discard exact terms under the integral. So for the
step “discarding exact terms” to be meaningful, we need to view the arguments
of L(q%,¢*) as jet coordinate functions rather than as the coordinates of the first
prolongation of a single path ¢®.

Terminology 3.1.18. A section of a jet bundle of F' that is the prolongation of a
section of F'is also called holonomic, and a section that is not a prolongation non-
holonomic. This language originated historically from the theory of constrained
mechanical systems.

Remark 3.1.19. Prop.[3.1.16|allows us to view the k-th jet evaluation equivalently
as map
i F—=T(M,JF), @+ .

Proposition 3.1.20. Let f : E — F be a map of smooth fiber bundles over M
covering the identity on M. Then

JfIE — JE e gn(fow),
18 a well-defined smooth map of fiber bundles called the k-th prolongation of f.

Proof. Tt follows from the chain rule for partial derivatives that j* (f o ) depends
only on jk ¢, so that j¥f is well-defined. The chain rule also shows that j*f is
smooth. O

Remark 3.1.21. If £ = M is the rank 0 fiber bundle over M, a smooth map
E — F covering the identity is a section of F. Its k-th prolongation in the sense of

Prop. is the prolongation in the sense of Prop.
Let f: F — F' and g : F/ — F” be maps of smooth fibre bundles over M that
cover the identity on M. Let ¢ be a section of F. Then
(1"(g0 ) Ume) = dm((g o f)ow) =in(go (f o))
=7%9(n(f o)) = *9(5"F(ime))
= (7"9 3" ) (me)
which shows that the jet prolongation is functorial. This can be stated as follows.

Proposition 3.1.22. Let Fiby, denote the category that has smooth fibre bundles
over M as objects and smooth bundle maps covering the identity of M as morphisms.
The k-th prolongation is a functor J* : Fiby, — Fibyy,.

Example 3.1.23. Let £ = R x X and F' = R x Y be trivial bundles over R. A
smooth map f : X — Y of the fibres can be viewed as a bundle map f : (t,z) —
(t, f(x)). Its first jet prolongation is given by
TR X)ZRXTX — RXTY = JH (R xY)
(t,v) — (£, Tf(v) .

where we have used exercise [3.1.8, This shows that the first jet prolongation of f
at a fixed time is the tangent map of f.
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3.1.3 The affine structure of jet bundles

Two local sections ¢ and ¢’ of 7 : F — M have the same 1-jet at m if they have
the same value ¢(m) = ¢'(m) and the same derivative T,,,p = T,,¢" : T,,M —
T mF. Since ¢ is a section of 7, T,,¢ is a section of Tymym @ Ty F' — T, M.
It follows that a 1-jet of F' is given by a subspace of a tangent space T,F' which
T'm projects bijectively to the tangent space Ty M. By definition, an Ehresmann
connection is given by the choice of such a subspace of the tangent space, called
the horizontal tangent space, at every point of the bundle. We thus arrive at the
following observation.

Observation 3.1.24. An Ehresmann connection of /' — M can be identified with
a section of the bundle J'F — F.

Observation [3.1.24| can be used to express the bundle J!F — F in terms of other
definitions of connections. A connection can be given by a horizontal lift,

h:TM xy F — TF,

i.e. a section of the map (T'm,prp) : TF — TM xp F, where 7 : F — M and
prp : TF — F are the bundle projections. Let A’ be another horizontal lift. Then

T (h (Vm, f) — h(vm, [)) = 0.

It follows that two horizontal lifts differ at each point p € F by a linear map
TrpyM — V,F, where VI := ker T'r is the vertical tangent bundle of F'. The vector
space of such linear maps can be identified with

Hom (Trg) M.V, F) = T M @ V, F .

We infer that the difference between two horizontal lifts is given by a section of the
vector bundle

T (IT"M)® VF — F,
where 7*(T*M) := F Xy T*M denotes the pullback bundle. Returning to observa-

tion |3.1.24] we see that the choice of a horizontal lift h, which can be identified with
a section of J'F — F induces the following isomorphism of bundles over F,

J'F — 75(T*M) @ VF
gL r— [Um = (T ) U — h(vm, go(m))} )
We can summarize this in the following proposition.

Proposition 3.1.25. Let m : F' — M be a smooth fibre bundle. The fiber bundle
J'F — F is an affine bundle modelled on the vector bundle 7 (T*M) @ VF.

From Prop. we recover the well-known fact that the set of connections,
which can be identified with the set of sections of J'F — F, forms an affine space,
as we have seen for connections on principal bundles in Prop. and Prop.[1.2.15]
Another consequence is that the sheaf of sections of J'F — F is soft. Prop.[3.1.25
can be generalized to the following statement.
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Proposition 3.1.26. Let F' — M be a smooth fibre bundle. For every k > 0, the
Jorgetful map pry ;. : JFE — J*LE is an affine bundle modelled on the vector
bundle ;_ (S*T*M)) @ pry_, o(VF), where mp_y : J*"'F — M is the bundle map
and pry_; g : JFIF — F the forgetful map.

Prop. can be proved using jet coordinates, which is somewhat tedious (see
e.g. Thm. 5.1.7 and Thm. 6.2.9 in [Sau89]). We will use that pr, : J*F — J*1F is
naturally embedded as subbundle into the affine bundle J*(J*1F) — J*"1F. The
embedding is given by the following lemma.

Lemma 3.1.27. For all k,l > 0 there is a natural embedding
o JHE — JNIE) gt — (i), (3.9)
for all local sections .

Proof. The k-th order partial derivatives of the [-th prolongation of a local section
@ of F'— M are the (k + [)-th oder partial derivatives of . This implies that the
k-jet of j'¢ at m depends only on the (k + l)-jet of ¢ at m, which shows that
is well-defined. It is easily checked in local jet coordinate that ¢y, is an embedding.

m

It is instructive to spell out the embedding of Lem. |3.1.27| in local coordinates.
Let (2%, u®) be local fibre bundle coordinates on F|y for some open U C M. These
induce jet bundle coordinates as in Eq. . A local section 1 : U — J'F of the
[-th jet bundle is given in local coordinates by

n=O" M)

where 7; o = U,

& .i, on. Its k-th jet at m is given in coordinates by

e’ o e’
U ni17 et 7711, )il
{63
8770‘ 8771"1 ] ey g
-k OxI1? oxJ1? ) OxI1
jmn - :
k k
akna . 15] 77?1 ‘ 0 77,?‘1 """ i
OxI1---0xIk ?  Oxd1--0zIk’ "7 Qxi1--0z7k [ m

ik+l

The embedding ¢; maps a (k + [)-jet jt'p to

a e _ ol

2 PR cey 921 -0z

8300‘ 82(pa 81+l(’po‘

k41 _ Oxi1) Ox'19xI1 ) MR OxI19x1 -zl
bt (Jm ) = :
ak;oa 8k+i4pa ak-&:lwa
azjl-uaajjk ) 8zjl~--8zjk8xi1 ’ Tt Bwjlaxjk&ﬂlax” m

The prolongation of the forgetful map j*pr;,, : J*(J'F) — J*(J"F) drops the last
[ — n columns of the coordinate matrix.

17.04.19 (5)
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Proof of Prop.|3.1.26. The map

JER L (LR

NP

JELR

embeds the fibre bundle F := J*F — J*'F into the bundle J*(J*!F), which by
Prop. is an affine bundle modelled on the vector bundle A = 7} ,T*M ®
VJF=1F. This means that each fibre of E is equipped with a free and transitive
action of the additive group of the corresponding fibre of A.

An element jln € JY(J*1F) represented by a local section n: U — J*"1F is in
the image of ¢ ;1 iff there is a local section ¢ : U — F' such that

(03 (0% (0%
U 77117 R T/Z& ..... T—1
™ 877?1 8771'1 ,,,,, ip_1
Ori1r  Pgirr Ozl m <3 10)
a Ay ot )
_ QO ) Oxtl? Tty 8xi1-~~8xik—1
- B 2(1 82 za 8k 204
Oxild  Qx10xI1’ T 9pd19zil...9ztk—1 )y

We have to show that there is a fibre-wise free and transitive action of additive group
the vector bundle B := 7} _, (S*T*M)) @ pr_, o(VF) on v 1 (J*F) C J'(J*'F).
An element of B is given by a jet j5~1p € J*"1F together with a linear map

0:S"TM — V) F .
Given such a 6, there is a local section ¢ : U — F, such that j*~1 = j*~1p and
ak¢a B 8k§0a N
OrnQxt - Qxik lm  QxQxit - - - Qe Iy

This defines a fibre-wise free and transitive action of m;_, (S*T*M)) @ prj_, ,(VF)
on JFF. **More details*** O

3.2 Local maps
3.2.1 Local maps and differential operators

Definition 3.2.1. Let F =T'°(M, F) and F = I'*°(M, F’) be the sets of sections
of smooth fiber bundles ' — M and F' — M. A map f:F — F is called local of
jet order k if there is a smooth map fy : J*F — F, such that the following diagram
commutes:

F s ML g0y

jkl ljo (3.11)

Ly QR LR
Terminology 3.2.2. A local map in the sense of Def. is also called a differ-
ential operator, although this terminology is more commonly used when F' and
F' are trivial vector bundles, so that F and ' are function spaces.
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Example 3.2.3. The Laplace operator f = A : C®(R3) — C*®(R?) of exam-
ple descends to the map fj : J2(R® x R) — R? X R given by

Jo= ((37 2%, %), ury + uge + U33)
in terms of jet bundle coordinates.

Example 3.2.4. Let I/ = TM — M, so that ¥ = X(M) is the space of vector
fields. The product of the space of vector fields is the space of sections

X(M) x X(M) =2 T(M,TM %3 TM),

of the vector bundle F' := T'M x, TM. The Lie bracket of vector fields X(M) x
X(M) — X(M) is a local map, which descends to J'F

Example 3.2.5. A special case for a fibre bundle over M is the trivial bundle

=M% M , which is the terminal object in fibre bundles over M. The space of
fields is given by a point * = {idps}. The terminal map

F— %

descends to the bundle map J°F = F — M, so it is local of jet order 0. Similarly,
every point
Ly ¥ = F

mapping * to a field ¢ € F descends to the map ¢ : J°M = M — F, so it is also
local of jet order 0.

Example 3.2.6. The map f: C*°(R) — C*(R) given by

k

= ki;o 2k (arctan ngf>

is not local, since the value of f(p) at = depends on derivatives of arbitrarily large
order.

Example 3.2.7. A lagrangian L : F — QP (M) is local in the sense of Def. if
it is local in the sense of Def. 3.2.1]

The composition of differential operators on functions on some domain of R™
is again a differential operator. This suggests that the composition of local maps
f:F —=F and g : F — F” should be local as well. The map f; determines the
map f of sections uniquely by

f(@) = fooj*e, (3.12)

for all ¢ € F. Therefore, we can express the composition of f and g in terms of f
and go. The maps fy: J*F — F" and gy : J'F' — F”, to which f and ¢ descend by
Def. cannot be composed directly, since the target of fy and the source of gq
do not match. Instead we have to use Eq. (3.12] , which yields

(go @), =9(Ff@)]. = g(ih(£(®) = go(ih(fo 0 5*¢))
= (goojJ fo)(] (]kW)
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where we have used Prop. [3.1.20] The right hand side is not yet a function on some
jet bundle of F'. This issue is resolved by Lem. |3.1.27] which leads to the following

proposition.

Proposition 3.2.8. The composition of two local maps is a local map.

Proof. Let f:F — J" and g : 3 — F” be local maps, which descend to fy : JFF —
F' and gy : J'F" — F”, respectively. Let 1y, : JEHF — JY(J*F) be the injective

immersion of Lem. [3.1.27|and j'fy : J/(J*F) — J'F’ the I-th jet prolongation of f;.
Then we have the following commutative diagram,

Fx M fxida F o ML g g

- 1T

JkJrlF Yk Jl(JkF) Jlf() JZF/ g0 F,,
Jhp / fo I%L/

where J*HF — J*F JY(J*F) — J*F, and J'F' — F’ are the obvious forgetful
maps. Defining f; := j'fy o t1x, we see that (g o f) x idys descends to gy o f;. We
conclude that g o f is local. O]

Remark 3.2.9. Proposition [3.2.8|is a generalized version of the fact that the com-
position of a k-th order differential operator with an [-th order differential operator
is a differential operator of order k£ + [.

Corollary 3.2.10. Local maps of smooth sections of fibre bundles over a fized man-
ifold M form a category.

Let F — M a fibre bundle and I’ — M a vector bundle. Let fy : J¥F — F'
the map to which a differential operator f : F — F’ descends. For example, fo =
U1 + uga + ugy for the Laplace operator on R3. A field ¢ € JF is a solution of the
equation

flp) =0 (3.13)
if and only if

M2 g By
is the zero map. This shows that Eq. (3.13)) is a partial differential equation (PDE).

Remark 3.2.11. Finding solutions of a PDE is generally very difficult. It may be
casier to first try to find sections 1 : M — J*F of the jet bundle such that fyov) = 0.
Such sections are called formal solutions or non-holonomic solutions of the
PDE. In a second step, we can determine those formal solutions for which 1 = j*
is the k-th prolongation of a field ¢ € F, which are, therefore, sometimes called
holonomic solutions. The images of the tangent maps of the jet prolongations
Tk : TM — TJ*F of all fields ¢ define a distribution on J*F, called the Cartan
distribution. If we want to extend a point z € f~1(0) to a holonomic solution on
a neighborhood of m, the tangent space T, f~(0) C T,JX F must, therefore, be a
subspace of the Cartan distribution. Pursuing this approach leads to Cartan-Kéhler
theory [BCGT91].
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Remark 3.2.12. For some PDEs it can be proved that every formal solution is
connected by a homotopy to an actual solution. To show that the PDE has a
solution it then suffices to solve it formally, which is generally much easier. This
approach is called the homotopy principle, or h-principle [EMO02].

Proposition 3.2.13. The tangent map of a local map is local of the same jet order.

Proof. Let f : F — JF be a smooth map of fields. Let ¢t — v, € F be a smooth
path with 1)y = ¢ that represents the tangent vector &, := o € TF = (M, VF).
Then the smooth path ¢t — f(¢) represents the tangent vector (T'f)¢, € TF =
(M, VF).

Assume now that f descends to fy : J¥F — F’, so that f(¢;) = fo o j%;. In
local coordinates we obtain

(1,08 () = S (P ) @),
- GRGE

0 d
afz (140) S (250,
afo a|[|5a

aul (]x%p) 8 I

The right hand side depends only on derivatives of ¢* and £* at x up to k-th order,
i.e. only on jF&,. ]

Corollary 3.2.14. Let f : F — F' be a local map of jet order k. Let o € F. Then
the linear map T, f : T,F — T I is local of jet order k.

Terminology 3.2.15. The linear differential operator T, f is called the lineariza-

tion at ¢ of the differential operator f.

3.2.2 Local maps of products

Let E — M and FF — M be smooth fibre bundles. In example [2.3.14] we have
already noted that the product of the spaces of fields is itself a space of fields,

EXFET(M,E xy F).
The k-th jet bundle of E x,; F' is given by
JNE xp F) 2 JYE x5 JEF .

Lemma 3.2.16. Let E — M and F — M be smooth fibre bundles. Then the
projection € x F — &, the diagonal € — € X €, and the flip E X F — F x € descend
to smooth maps of the fibre bundles over M, i.e. they are local of jet order 0.

Proof. The projection is induced by the fibre-wise projection E x,; F — FE, the
diagonal by the fibre-wise diagonal £ — E x,; E and the flip is by the fibre-wise
flip Exy F— FxyFE. O



68 3. Locality

Lemma 3.2.17. Let E - M, F — M, E' — M, and F' — M be smooth fibre
bundles. Let f: & — & and g : F — F' be a maps of the spaces of fields. If f and

g are local, then the product map
fxg:ExF—ExTF
15 local.

Proof. By assumption, f descends to fy : J*E — E’ and ¢ descends to a map
go : J'F — F'. Without loss of generality let & > [. Then ¢ also descends to
the map g, = go o pry; : JFF — F'. Tt follows that f x ¢ descends to the map
ho : JE(E x ) F) — E x; F defined by

ho (G, (4, 9)) = (folint), 6o(ike)) »
which shows that f x g is local. ]

Lemma 3.2.18. Let E — M, F' — M, and F' — M be smooth fibre bundles. Let
f:EXF = F be a map of spaces of fields. If f is local then there is a k < oo, such

that the maps
f(A,QO) & — T

f<w7 *) T — 7
are local of jet order k for all o € F and ¢ € F.

Proof. The map f(_, ) is given by the composition

ide

Exgxx S o g I, g

where ¢, is the inclusion of ¢ of example [3.2.5| Since id¢ and ¢, are local, their
product is local by Lem. [3.2.17] Since idg X ¢, and f are local, their composition
f(=, ) is local by Prop.[3.2.8 An analogous argument shows that f(¢, _) is local,
too. [

3.2.3 Linear local maps of jet order 0 and 1

Assume that A — M and B — M are vector bundles. Let D : A — B be a k-th
order local map, so it descends to a map Dy : J*A — B for some k > 0. D is linear
if and only if Dy is in local jet coordinates of the general form

k
Dy => Di(z)uf,
|I|=0

where (z¢,u®) are local vector bundle coordinates on Aly for some U C M, where
(z*,v7) are coordinates on B|y, and where the D’ are smooth functions on U. The
linear map D is given in terms of these functions by

k
oMl ge
(Da)’ => " DI —. (3.14)
o Ox
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Proposition 3.2.19. A linear map D : A — B of sections of vector bundles is
induced by a map Dy : A — B of vector bundles if and only if it is C°(M)-linear,
1.€.

D(fa) = f Da
foralla e A and f € C®(M).
Proof. This can be deduced directly from Eq. (3.14)). ]

Proposition 3.2.20. A linear map D : A — B of sections of vector bundles is a
first order differential operator if and only if there is a vector bundle map P : A —
B®TM, such that

D(fa) = f Da+ (P(a),df) (3.15)

foralla e A and f € C®(M).

Proof. Assume that D is a linear first order local map. By Eq. (3.14)) it is given in

local coordinates by
i 0a”

Da)’ = Dfa® + DFi— . 3.16
(Da)? = Dia* + DI (316)
It follows that 94 o7
B_ pBf,a Bi a a npi

D =D D'— DI —— .

(D(fa))" = Difa® + DS + 0" DI 2%
So if we define P in local coordinates by

P(a)’ = i 9 (3.17)
© Oxt’

then Eq. (3.15)) follows.
Conversely, assume that Eq. (3.15) holds. Let o, be the basis of local sections

of A such that u®(o,) = 0% and let 73 be the basis of local sections of B such that
VP (1) = 52,. Let Df be the unique local functions, such that

D(o,) = DQTB.

P be given in local coordinates by (3.17)) for some local functions D?. A general
local section is of the form a = a“c,. Using Eq. (3.15)), we get

D(a) = D(a“0,) = a®D(0,) + (P(04),a®)
ﬁiE
ot

which has the form of a linear first order local map. O

=a*D + D

3.2.4 Generalized local maps

The class of local maps defined in Def. is not general enough for our purposes.
In a first step, we can relax the condition that fjy is a bundle map that covers the
identity on M, by replacing id,; in Def. with some diffeomorphism f3; on M.
But this is still not general enough to cover diffeomorphism symmetries, such as the
action of diffeomorphisms on differential forms by pullback.

23.04.19 (6)
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Let f: F — F be a map of fields. For f to be local in a generalized sense, the
first requirement is that it can be extended by some map fyy : Fx M — M’ to a
map .

f:FxM—F xM
(Qpa m) — (f((p)a fM’(QO’ m)) )
that descends to a map fy : J*F — F’ on a jet bundle. For every ¢ € F we have
the following commutative diagram

Mg{@}XM—>§XM—f>?/XM/

|»

which shows how the map fj;s can be reconstructed from fy.

Definition 3.2.21. Let 7 : F — M and 7’ : I/ — M’ be smooth fibre bundles. Let
fo : J)F — F' be a smooth map of jet manifolds, not necessarily a bundle map.

The map
fur 2 F— C°(M, M)

pr— 70 foojfp
will be called the base map induced by fy. The set of fields that are mapped by
far to a diffeomorphism on the base will be denoted by

Faiw = frp (DIff(M, M')).
Lemma 3.2.22. Let f, : J*F — F' be a smooth map of jet manifolds. Then
for: Fag — F
pr— foojfoo far()™,

18 the unique map that makes the diagram

(3.18)

(fﬂ"vfM’)
e

Faig X M F' x M’
jkl ljo
JEF fo £

commute.
Proof. The commutativity of the diagram means that for every ¢ € Fyg
Folite) = 3°(f3 (), far (@, m)) ,
which can be written as equality of smooth maps from M to F”,
fooj*¥o = fr(p)o far(p).

Since ¢ € Fgig, the map fir(¢) is a diffeomorphism, so we can compose with its
inverse on the right. This yields (3.18)). O
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Terminology 3.2.23. The map fy of lemma [3.2.22] will be called the lift of f.

Example 3.2.24. Let F = M x M’ — M and ' = M’ x M — M’ be trivial
bundles. The sets of sections are F = C*(M, M') and F = C>°(M’, M). Let now
fo: jJ°F — F’ be the flip fo(m,m’) = (m/,m). The base map induced by fy is the
identity fu(®) = @, so that Fge = Diff (M, M’). It follows that the lift of f; is
fff(q)) = o1

The map fy only lifts to a map on the subset Fqig or, more generally, on any
subset D C Fgg. When we restrict the domain of the map of fields to such D,
we can also restrict the domain of fy to a submanifold of D¥ C J*F as long as it
contains j*(D x M).

Proposition 3.2.25. Let F — M and F' — M’ be smooth fibre bundles and D C F
a subset. Let fy : D¥ — F' be a smooth map defined on an embedded submanifold
D* c J¥F, such that

(i) j*(D x M) C D¥;
(ii) For every o € D, the map far () = 7o fooj*o : M — M’ is a diffeomorphism.

Then there is a unique map fg : D — F', such that the diagram

D x M) gy

1 b

Dk fo F

commutes.

Proof. The maps fy; and fg are defined exactly as the base map of Def. |3.2.21| and
the lift of fy of Lem. |3.2.22] The proof of the commutativity of the diagram is as in
Lem. [3.2.22] ]

Terminology 3.2.26. The map fy of Prop. [3.2.25]is called the lift of f.

Let fo : J*F — F’ be a smooth map of manifolds. For every local section
¢ : U — F we have a map

far(p) =70 foojfp: U — M.

By the inverse function theorem, this map is a local diffeomorphism at m € U if and
only if its tangent map at m is a bijection. By the chain rule, this is a condition on
*+1p. We denote,

Jm
(J" P ag = {j*p € JFTEF | o is a local diffeomorphism at m} .
For [ > 1 we define

(Jk+lF)diff = prl;il,kJrl((‘]kHF)diff) :
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Definition 3.2.27. Let f; : J*F — F’ be a smooth map. The map
fi: (JMF)qg — J'F
o — 3L (fo o 550 o farr(p) ™)
is called the [-th prolongation of f.

The prolongations form a commutative diagram
JEF e (JFH ) gig e (JFF2E ) gig — - - -
lfo lfl lfz
Fle—— J'F'« J2F'
Furthermore, we observe that
PN Far x M) C (JF) aig -

Definition 3.2.28. Let 7 : FF — M and 7’ : F/ — M’ be smooth fibre bundles. Let
D C Fand D C F be subsets. A map f:D — D’ is called generalized local if

(i) fis thelift of a smooth map fy : D* — F’ defined on a submanifold D* C J*F;

(ii) DF+ = j* (D x M) C J*'F is a submanifold for all [ > 0.

Proposition 3.2.29. The composition of local maps in the sense of Def. 18
local.

Proof. Let f: D — D" and g : D' — D” be generalized local maps that are lifts of
fo:DF — F" and gy : D" — F”, respectively. Since D is by assumption a subset of
Faig it follows that D C (J*F)g, so that the I-th prolongation of fj is defined
on D**. Since f is the lift of fy, we have

fl(jffl%@) = jﬁ‘M/(cp,m) (f(‘ﬁ)) .

This implies that the image of f; lies in j/(D’ x M’) C D" and that the following
diagram commutes

DXMMD'XM’

jk+lJ/ J/]l

Dk+l fi D/l

We conclude that g o f is the lift of gg o f;. [

F*Continue™**
For example, the action of diffeomorphisms on differential k-forms by push-
forward is given by a map,

f: Diff (M) x QF(M) — QF (M)
(P, ) —> D v,

of (a subset of) sections of the bundle F' = (M x M) x3; A¥T*M to sections of
F' = A*T*M. The value of ®,a at m depends only on the first jet of (®,q) at
®~!(m). In fact f descends to a map

This suggests that descend to a map fy : J'F — F. However, this map cannot
be a morphism of bundles over M, since where the base-point of a j1(®,«) is is
mapped ®(m)
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3.3 The theorems of Peetre and Slovak
3.3.1 Locality in topology

In topology, “local” roughly means “compatible with the restriction to open sub-
sets”. In this sense, a map f : F — F of sections of fibre bundles is considered to
be local if the restriction of f(¢) to any open subset U € M depends only on the
restriction of ¢ to U. Let F denote the sheaf of sections, given by

FU) =T(U, Fly),

for every open U C M. The set of global sections is F = 3’”(]\/[ ). A morphism
of sheaves is given by a map fi : (U ) — F (U) for every open subset U € M
that commutes with the restrictions to every open subset V' C U, i.e. the following
diagram commutes.

~

F(U) 2 F(0)

resU’Vl lres’U v

Fv) L (V)

A map f : F — F ought to be considered to be local in the sense of topology if
there is a morphism of sheaves f F — F such that f= fM

Proposition 3.3.1. If f : F — F is local (in the sense of Def. , then it is
induced by a morphisms of sheaves.

Proof. Let fy: J*F — I’ be the map f descends to. Let

fu(@) = foo s

for all o € (U, F|yy). The restrictions of the jet prolongation j*|y; : T°(U, F|y) —
(U, J¥F|y) define a morphism of sheaves; and the morphism of fibre bundles f,
induces a morphism of the sheaves of sections. Therefore, the composition is a
morphism of sheaves. O

Let f:F — F be induced by a morphism of sheaves. Then for every m € M,
the restriction of f(¢) to a neighborhood U of m depends only on the restriction of
f to U. Since the neighborhood U is arbitrarily small, it follows that the value of
f(p) at m depends only on the germ of f at m.

Recall that the germ of a function ¢ at m is the equivalence class of functions
Y that have a the same restriction ¥|y = ¢|y to some neighborhood U of m. If
two functions have the same germ, then they have the same partial derivatives to all
orders. The converse is clearly not true. For example, the derivatives of the function
¢(z) = exp(—1/2?) on the real line are all zero at = = 0, so it has the same jets as
Y(x) = 0, but ¢ and and ¢ do not have the same germ at 0. The germ of a section
¢ of a fibre bundle at some point m contains more information about the function
than the jet j* o. Therefore, the condition that f(¢),, depends only on the germ of
¢ at m is weaker than the condition that it depends on a finite jet, as required by
the definition of locality.
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3.3.2 Peetre’s theorem

Surprisingly, with rather mild additional assumptions a map f : F — JF that is
induced by a morphism of sheaves is local (Def. [3.2.1)). We first consider the linear
case.

Theorem 3.3.2 (Peetre). Let A — M and B — M be vector bundles over a
compact base. Let D : A — B be a linear map. If D is induced by a map of sheaves
in vector spaces, then it is local.

Lem. [3.1.13implies that all jet evaluations j* : A x M — J*A are surjective. It
follows, that if the map D : A — B descends to a map J"A — B, then this map
must be given by

Dy:J*A — B
Jm® — (Dp)(m).
In the first step, we have to show that the map (3.19) is well defined. For this we

will use the following lemma.

(3.19)

Lemma 3.3.3. Let D : C*°(R",RP) — C°(R",RY) be a support non-increasing
linear map. Then for every point x € R™ and every real constant ¢ > 0 there is a
neighborhood U of x and a natural number r > 0, such that for ally € U\ {z} and
p € C*(R",R?) the condition jyp = 0 implies [|[(Dy)(y)| < c.

Proof. Assume that the statement is false. This means that there is a point x € R”
and a constant ¢ > 0, such that for every neighborhood U of z and every r > 0 there
isayeU,y#xandagpe C(R",RP), such that j¥¢ = 0 and ||(Dyp)(z)|| > c. By
choosing a sequence of shrinking neighborhoods Uy D Uy D ... with (", Uy = {z},
we can find a sequence y, — = and a sequence ¢ € A, such that j:k vr = 0 and
I(Dew) (i)l > c.

By selecting a suitable subsequence, the relations ||y, — z|| < 4||yx, — x;|| can be
satisfied for all £ > j. Let us choose smooth maps v, € COO(R", RP) that have the
same germ as ¢y at yr and are zero outside of the ball of radius = around yg. Since
the germs are the same, so are the jets j Uk = jyk wr = 0. Because the jets at y are
zero, the functions 1, can be chosen such that their partial derivatives are bounded
in the supremum norm by

0"
H Ox!

for all multi-indices I of order |I| < k. Due to this condition, the map defined

point-wise by
y) = vay)
1=0

for all y € R™ is smooth. By construction, the points y9;,11 lie outside of the support
of . By assumption, D is support non-increasing so that y9.1 also lies outside of
the support of D1,

2—k:

sup

(DY) (yar11) = 0.
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Since D is support non-increasing, (Dw)(y) only depends on the germ of vy at yo
which is equal to the germ of ¢g; at yo;, so that

(DY) (yar) = (D) (yar) -

It follows that y, — x is a convergent sequence, such that

(D))l > ¢, (DY) (yasa)ll = 0,

which shows that D1 is not continuous at x. This is a contradiction to the assump-
tion that the lemma does not hold. O

In order to show that the Dy is smooth, we will use Boman’s theorem.

Theorem 3.3.4. Let f : R™ — R" be a map, such that such that for every smooth
path v : R — R™ the path f o~ :R — R" is smooth. Then f is smooth.

Proof. The original proof is in [Bom67]. A more pedagogic proof is found in Thm. 3.4
in [KM97]. O

Proof of Thm.[3.3.9. Choose ¢ = 1 and apply Lem. in a coordinate neighbor-
hood of every point m € M. This yields a cover of neighborhoods U; with jet orders
r; as in the lemma. Since M is compact, we can choose a finite subcover. Let r < co
be the maximum of the r;. Then condition j,¢ = 0 implies |[(Df)(m)] < 1 for all
m e M.

Let jFy = 0 and assume that [|(Dg)(m)| = e > 0. Then jF(S¢) = 0, but
[(D2¢)(m)|| = 2 > 1, which is a contradiction, so that (Dg)(m) = 0. It follows,
that is a well defined fibre-wise linear map.

It remains to show that Dy is smooth. As can be easily seen in local coordinates,
every smooth path in J"A can be written as t — j; ¢, where t = ¢, is a smooth
family of sections of A and ¢ — m; a smooth path in M. Since D is linear, D, is
a smooth family of smooth maps. It follows that t — (Dy;)(m,) is a smooth path.
This shows that every smooth path TPt 10 J"A is mapped by Dy to a smooth
path in B. It now follows from Boman’s theorem that Dy is smooth. O

3.3.3 The nonlinear case

Theorem 3.3.5 (Slovék). Let FF — M, F' — M be smooth fiber bundles. Let
f:F = F be induced by a morphism of sheaves of diffeological spaces. Then for
every ¢ € F and every m € M there is an open neighborhood U 2 m and an open
subbundle E C F|y containing ¢(U), such that the restricted map f|e is local in the

sense of Def.|3.2.1,.

The original proof, which is quite involved, can can be found in [Slo88|. A more
pedagogic presentation is in [KMS93|. There is a somewhat modernized formulation
of the theorem in [NS|. For a recent discussion of the Peetre-Slovak theorem in
relation to field theory, we refer the reader to Appendix A in [KM16, Appendix A].

The original statement of Slovak is somewhat more general. It allows for the
basis of the target bundle F” to be a different manifold M’ # M and assumes that
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there is a map n : M’ — M such that f(¢)|,, depends only on the germ of ¢ at
n(m’) for all m’ € M’. But this is the same as saying that there is a morphism of
sheaves from the pullback sheaf n*F to F/. ***Is this true?***

The condition that f maps smooth families of sections to smooth families of
sections is called “regularity” in [Slo88 [KMS93|. Here, we just restated regularity
in terms of the natural diffeological structure on JF.

Corollary 3.3.6. Let F' — M, F' — M be smooth fiber bundles. Let F' be compact.
Then a map f: F — F is local if and only if it is induced by a morphism of sheaves
i diffeological spaces.

A casual way of rephrasing Cor. is by saying that for sections of compact
fibre bundles smooth sheaf-locality is the same as jet-locality. In the non-compact
case the jet order may be only locally but not globally finite, so that Def. is
a stronger version of locality. It is debatable, whether global or local finiteness of
the jet order is the more appropriate condition in field theory ***add references™**.
Ultimately, this will depend on and be justified by the application.

We will not give a proof of Thm. 3.3.5] But we will state an important technical
step, which is interesting in its own right: The Whitney extension theorem gives
the exact conditions for a collection of functions on a closed subset of R™ to be the
partial derivatives of a smooth function on R".

Theorem 3.3.7. Let K C R" be a closed set. Let o; : K — R be continuous
functions defined for all multi-indices I € Nij. The following are equivalent:

(i) For everyr >0
]' T
(b)) = D~ Sieres(a)(b—a)’ +o(jb —af") (3.20)
[J]<r
holds uniformly for |b —a| — 0, a,b € K.
(ii) There is a smooth function ¢ € C*°(R"™) such that

_ oMl
vr ox! |k’

Proof. The original proof where K was assumed to be compact is in [Whi34]. It
was first observed in [Bie80| that K being closed is sufficient. For a more pedagogic
proof see [HO3|. O

The condition (3.20]) for the functions ¢; imply that ¢; = aa‘g;p in the interior of

K. Conversely, if ¢ is a some smooth function and ¢; = %, then follows
from Taylor’s theorem. This shows that Eq. is always satisfied in the interior
of K.

When K = % is a point, condition is always satisfied, which implies that
any collection of real numbers ¢; for all multi-indices I can be realized as partial
derivatives of a smooth function. This is the content of the Borel lemma. In its
simplest form it can be stated as follows.

Lemma 3.3.8. For any infinite sequence of real numbers cg,cy,cs, ... there is a
smooth function p € C®(R), such that ¢, = 42
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3.4 Infinite jets

A local map of fields descends to a map on the manifold of jets of a finite but
arbitrarily large order. When two local maps are composed, their jet orders are
added. So even though we can describe a single local map in terms of a map on a
finite jet manifolds, we need the jet manifolds of all orders to deal with the category
of all local maps. This suggests the following definition.

Definition 3.4.1. Two local sections ¢ and ¢’ of a smooth fiber bundle F© — M
defined on a neighborhood of m have the same infinite jet or co-jet at m, denoted
by jop = joo¢’, if they have the same k-jet at m for all £ > 0.

Since having the same k-jet at m is an equivalence relation on the set of local
sections, having the same oo-jet is an equivalence relation as well. An oo-jet is an
equivalence class for this relation. The set of all co-jets will be denoted by J*F'.

Given local bundle coordinates (z',u®), 7% is uniquely determined by the co-
ordinates x’(m) of the base point and the jet coordinates

a0y _ OMle?
Uy (.]m QO) = ax[

m

for all a and all multi-indices I. Conversely, the Borel lemma tells us that
given numbers ¢¢ for all a and I, there is a local section such that u$(joy) = cf.
In this sense, the infinite collection {z*, u?, ug:, ...} of real valued functions on J*F
can be viewed as a set of coordinates.

For every k > 0, there are natural forgetful maps of sets pr, , : J*F — JFE,
7+ j* . The forgetful maps satisfy Pl k-1 © PTog g = Plog k1, SO they fit in to
the commutative cone

JXF

As can be easily seen in jet coordinates, any other cone over the diagram F' <
J'F < J?F « ... induces a unique map to J*F, which shows that J*F is the
categorical limit of the sequence of the sets of finite jets.

How do we equip J*°F with a differentiable structure? Since the dimension of
the jet manifolds J*F increases with k, the limit of the sequence of the jet manifolds
JFF cannot exist in the category of finite dimensional manifolds. In order to make
sense of this limit we, therefore, have to embed Mfld as subcategory into an ambient
category C in which such limits exist. Let us write down a wish list of some of the
properties this category should have.

Wish list 3.4.2. A good category € for J*°F should have the following properties:
(i) There is an injective and fully faithful functor 7 : Mfld — €.

(ii) For every infinite inverse sequence of manifolds Xy < X; < ... the limit

X = lim(/(Xo) « I(X1) < ...) exists in C.

30.04.19 (8)
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(iii) Given a limit X as in , every morphism X — I(Y) to a manifold Y factors

as X — I(Xy) 19, I(Y) through a smooth map f: X — Y.

(iv) There is a faithful functor U : € — Set, such that for every limit X asin
there is a natural isomorphism U(X) = lim;ey Homya(*, X;) of sets.

Let us motivate this wish list. Property |(i)|states that Mfld can be embedded as
full subcategory into C. Property [(ii)| ensures that the limit JF := lim(I(J°F) «
I(J'F) < ...) exists as a limit of smooth manifolds in €. Property means
that a morphism out of the limit object J*°F in C is given by a smooth map on
a finite jet manifold, so that the maps out of J*F are precisely the local maps.
Finally, property requires C to have the structure of a concrete category that
is compatible with the concrete structure on Mfld. This will ensure that the limit
object J*F in € has as underlying set the set of infinite jets as defined in Def. [3.4.1]
Constructing a category that satisfies these conditions is the goal of the next chapter.

Exercises

Exercise 3.1 (Dimension of jet manifolds). Let F' — M be a smooth fiber bundle
with dim F' = p + ¢ and dim M = p. Compute the dimension of J*F.

Exercise 3.2 (Jet bundles of vector bundles). Let A — M and B — M be smooth
vector bundles. Show the following:

(a) JFA — M and J*B — M are vector bundles.
(b) J*(A® B) > J*A® J*B

Exercise 3.3 (Cartan distribution). Let /' — M be a smooth fibre bundle. The
Cartan distribution C* C T(J*F) is spanned at every point j* ¢ € J*F by the
tangent vectors of the form & = T, (j*1) v,, for all v,, € T}, M and all local sections

W with jiyp = jo.
(a) Show that C* is regular.
(b) Compute the rank of C*.
(c) Show that C* is not integrable.

Exercise 3.4 (Diffeomorphisms and locality). Let M be a manifold and F :=
M x M — M the projection to the first factor. Let £ = F x,; F. Let fo: E — F
be the smooth map of manifolds defined by

fo((m,my), (m,my)) := (my,ms).
(a) Compute the induced base map fy : € — C°(M, M).
(b) Compute Eg4g = fﬂ}l (Diff(M, M))

(c) Compute the induced map f5 : Eqig — F.



Chapter 4

Pro-manifolds

4.1 Ind-categories and pro-categories

Let € be a category which is not cocomplete, that is, in which not all colimits exist.
A natural way of cocompleting the category by adding colimits is to embed it into
its category of presheaves by the Yoneda embedding

y:C— 8et®™, y(C):=Hom(_,C).

Set is cocomplete, so the category of presheaves 8et®” is also cocomplete, since
colimits in functor categories can be computed object-wise. If we add all colimits
to the image of the Yoneda embedding we obtain all of 8et®” since every presheaf
is a colimit of representable presheaves. However, the category of presheaves will
generally be too big for our purposes. For example, the category of presheaves on
smooth manifolds contains the category of topological spaces as subcategory, so it
is clear that none of the structures and theorems of differential geometry that make
essential use of the smooth structure will carry over to Set™14™ .

4.1.1 Filtered and cofiltered categories

The colimits we will now consider are those of infinite sequences like
Co—Cy — Cy — ...,
that is, a diagram w — € indexed by the smallest transfinite ordinal
w=0—=>1—-2—...).

Exercise 4.1.1. Let € be the partially ordered set (R, <), viewed as category. A
functor x : w — € is an increasing sequence rg < r; < x9 < ... of real numbers.
Show that the functor x has a colimit y € R if and only if the sequence of numbers
converges to y.

Even if we are primarily interested in diagrams indexed by w, studying only di-
agrams of type w and their colimits is not very natural. Many categorical construc-
tions involving w-diagrams will produce diagrams of different types. Exercise 4.1.1
also suggests that we may have to consider more general index categories. While
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every continuous map preserves limits of convergent sequences, the converse is true
only if the domain of the map is a first countable topological space. In spaces
that are not first countable we have to consider the convergence of filters instead of
sequences. The concept of filtered categories is a generalization of the concept of
filters.

Definition 4.1.2. A category J is filtered if the following three properties are
satisfied:

(i) Jis not empty.
(ii) For any two objects iy,is € J, there is a diagram,

i

=

12

(iii) For any two parallel morphisms f :i; — iy and g : i; — 9, there is a diagram

/
. s h .
21 T>22—>Z

such that hf = hg.

Example 4.1.3. Let U be a filter of a topological space X, that is, a non-empty
collection of open subsets such that for every pair U,V € U, UNV is also contained
in U. We can view U as a full subcategory of Open(X)°. By definition, U is non-
empty, and any two elements U;,U; € U contain Uy N Uy, so that (i) and (ii) of
Def. are satisfied. Since the morphism between any two U; and Us, i.e. the
inclusion U; C U, is unique, two parallel morphisms are equal, so that we can always
choose the morphism A of (iii) to be the identity. We conclude that U is a filtered
category.

Proposition 4.1.4. A category J is filtered if and only if every finite diagram D
d — J has a cocone.

Proof. Recall that a cocone over a diagram D is an object ¢ € J and a natural
transformation 7 : D — A, where A : § — J, j — i denotes the constant functor
with value ¢. This means that for every j € J there is a morphism 7; : D; — i such
that for every f:j — 5/ in J we have 7;; o Df = 7;. There are three basic examples
for cocones:

When J = (), then a cocone is an object ¢ in J, so that J is non-empty. When
d has two objects with no arrows between them, then a J-diagram consists of a
diagram of type (ii) in Def. . When J consists of two parallel morphisms from
J1 to jo, then a cocone is a diagram of type (iii) in Def. . We conclude that if J
has cocones on all finite diagrams, then J is filtered.

Conversely, assume that J is filtered and let D : § — J be a finite diagram. If
J =0, then D has a cocone since J is not empty by property (i) in Def. . Now,
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assume that J is not empty and let {ji, ..., j,} be its set of objects. Then, for every
Jk,Ji in g, there is a diagram

D(jr) D

in J by property (ii) in Def. 4.1.2l Furthermore, for every r < ¢ — s in J, there
exists an element ¢ € J and morphisms r — ¢ and s — ¢ such that the diagram

I\
N\

commutes by properties (ii) and (iii) of Def. All in all, we get the following
commutative diagram

D(jl) ]2) D(jn)

~,
\

/\/
/\/\
\

Lastly, for all f : 7, — j; in J, one can choose the element 7;; such that the diagram

D(ji) —=— D)

N,

commutes again by the properties of a filtered category. As a conclusion ¢ € J is a
cocone for the finite diagram D.
*x Conversely... finish me*** ]

Definition 4.1.5. A category J is cofiltered if J°P is filtered.

Definition 4.1.6. The colimit (limit) of a diagram D : J — € is called filtered
(cofiltered), when 7 is.

Example 4.1.7. The sequence
R —R' — R —
of the inclusions R" < R" @ R = R"™! is a filtered diagram. Its colimit is [[)7 R,

the countably infinite coproduct of R, the elements of which are finite but arbitrarily
long sequences of real numbers.
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Example 4.1.8. The sequence
R +— R!' «— R? «— ...

of the projections R = R™ x R — R" is a cofiltered diagram. Its limit is [[°7 R,
the countably infinite product of R, the elements of which are infinite sequences of
real numbers.

Example 4.1.9. Let F: Open(M)°® — Set be a presheaf on the topological space
M. Let Open(M,m) C Open(M) be the subcategory of open sets containing the
point m € M. (This is called the neighborhood filter of m.) The colimit of the
functor Open(M, m)° — Open(M )P — Set,

Fm = colimF(U),
U>m
is the stalk at m, that is, the set of germs at m. (Recall that two elements p € F(U),
¢ € F(U’) have the same germ at m if they have the same restriction to some open
neighborhood of m.)

Given a functor ® : J — J and an object j € J, the comma category j | ® has
as objects pairs (7,7 — ®(7)) and as morphisms commutative triangles j — ®(i) —
®(i'). A category is called connected if every two objects are connected by a finite
zigzag of arrows.

Definition 4.1.10. A functor ® : J — 7 is final if for every object j € J the comma
category j | ® is non-empty and connected.

Let @ :J — J and X : J — C be functors. If the colimit of X exists, the maps
to (X o ®@); = Xg@;) — colim X are a cocone under the diagram X o ®. So if the
colimit of X o ® exists as well, the cocone induces by the universal property of the
colimit a unique morphism

colim(X o &) — colim X . (4.1)

Proposition 4.1.11. A functor ® : I — J s final if and only if for every functor
X : J — C for which colim(X o®) exists, colim X also ezists and the morphism (4.1)
18 an isomorphism.

Proof. See Thm. 1 and exercise 5 in Sec. IX.3 of [ML9§]. O

Example 4.1.12. Let I = w = J and ® : w — w be a functor such that the sequence
(®(0), ®(1),...) is unbounded. Then for every j in the target, there is some i such
that j < ®(i), which shows that j | ® is non-empty. Moreover, if j < ®(¢') then
either ®(i) < ®(¢’) or ®() < (i), so that j| P is connected. We conclude that ¢
is final in the sense of Def. L. 1.10l

Example 4.1.13. Let J = w and J = w X w. The diagonal functor ® : w — w X w,
i — (i,7) is final. In order to see this, observe that there is a morphism in w from
(1,7) to (¢',7") iff i < i and 7 < j'. We can then argue as in the last example to
show that & is final.
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Definition 4.1.14. A functor ® : J — [ is initial if for every object 7 € J the
comma category ® | j is non-empty and connected.

Proposition 4.1.15. A functor ® : I — J is initial if and only if for every functor
X : J — C for which im(X o ®) exists, lim X also exists, and the natural morphism

lim X — lim(X o @)
18 an isomorphism.
Proof. The proposition is dual to Prop. |4.1.11} O

Terminology 4.1.16. Final functors are sometimes called “cofinal” and initial func-
tors are sometimes called “co-cofinal”, e.g. in [KS06|. This can be quite confusing,
since “cofinal” is sometimes also used as synonym for “initial” in the sense used
here. We will generally adhere to the terminology of [ML9§|. And besides, in cate-
gory theory “coco-x” should always mean the same as “x”, which is why there is no
category theoretical difference between a coconut and a nut.

Let J and J be index categories and X : J x J — € a functor to a complete and
cocomplete category. The morphisms of the limit cone

lim X (i, 5) — X (4,7)

J€d
are natural in ¢, so they induce a morphism of the colimits over i,

i Jim X (4. 1) —s colim X (4. 7).
colim lim (i,7) colim (i,7)

These morphisms form a cone over the diagram j — X (7, ), so by the universal
property of the limit this induces a unique morphism

colim lim X (4, 7) — lim colim X (4, 7). (4.2)
i€l jed Jjed i€l

Definition 4.1.17. Let X : J x § — € be a functor to a complete and cocomplete
category. If the morphism (4.2]) is an isomorphism then the limit and colimit are
said to commute.

Proposition 4.1.18. Let J be a small category. The following are equivalent:
(i) J is filtered.

(ii) For any finite category J and any functor X : I x § — Set the colimit over J
and the limit over J commute.

Proof. See Theorem 3.1.6 in [KS06]. Cf. also Theorem 1 in Sec. IX.2 of [ML9g|. [

Corollary 4.1.19. Filtered colimits and small limits preserve monomorphisms. Du-
ally, small colimits and cofiltered limits preserve epimorphisms.
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Proof. In general, a morphisms f : S — T is a monomorphism if and only

sd.gq

J ]

S —T

is a pullback diagram, which is a finite limit diagram. Since by Prop. 4.1.20| filtered
colimits commute with finite limits, filtered colimits preserve monomorphisms. Since
limits commute with limits, limits preserve monomorphisms, as well. O

Prop. [4.1.18| can be viewed as the most important feature of filtered categories.
For more on commuting classes of limits and colimits see [BJLS15]. For completeness

and later reference we state the dual of Prop. 4.1.18|
Proposition 4.1.20. Let J be a small category. The following are equivalent:
(i) J is cofiltered.

(ii) For any finite category J and any functor X : I x J — Set the limit over I and
the colimit over J commute.

4.1.2 Definition of ind/pro-categories

Definition 4.1.21. A presheaf is called ind-representable if it is isomorphic to
the filtered colimit of representable presheaves.

~ Let us spell out this definition. A presheaf X € 8et® is ind-representable if
X = colimy y(X;) for some functor X : J — € from a small filtered category J. We

A

then say that X is ind-represented by X.

Definition 4.1.22 (1.8.2 in [Art72]). Let € be a category. The ind-category Ind(C)
is the full subcategory of 8et®" of ind-representable presheaves.

The concept dual to ind-categories is that of pro-categories. For the pro-category,
we want to enlarge € by cofiltered limits. Let X : J — € be a cofiltered diagram.
Then X°P : J°P — C°P is a filtered diagram. The limit of X is the colimit of X°P.
So in order to add the limit of X to € we first embed C°P in its presheaf category
by the Yoneda embedding,

Yeor : QP — SetC” = St

An object in Set® is called a copresheaf. The Yoneda embedding of C' € € is
given explicitly by

(yeor (C))(A) = Homeon (4, C) = Home(C, A)

for all A € €. The functor Hom(C,_) : € — S8et is called a representable co-
presheaf or the copresheaf represented by C. Now we can take the colimit of
Yeor 0 X°P inside Set®.
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Definition 4.1.23. A copresheaf X € Set® is pro-representable if there is a
cofiltered diagram X : J — € such that X is isomorphic to the colimit of the filtered
diagram yeer 0 X°P : I — Set®.

Definition 4.1.24. Let C be a category. The pro-category Pro(C) is the full
subcategory of pro-representable copresheaves in (Sete)OP.

Proposition 4.1.25. There is an isomorphism of categories Pro(C) = (Ind(C°P))"".
Proof. This isomorphism follows directly from the definition. m

Remark 4.1.26. Prop. |4.1.25| is sometimes taken as definition of pro-categories,
e.g. In 1.8.10 of [Art72].

Terminology 4.1.27. The prefixes “ind” and “pro” derive from the historic names
“inductive limit” for colimit and “projective limit” for limit. By abuse of language,
an object X e Ind(C) is called an ind-object in C, even though it is not an object
of €. Analogously, X € Pro(C) is called a pro-object in €. When the objects in the
category are named, ind and pro are added as prefixes. For example, a pro-object
in the category of finite groups is called a pro-finite group, a pro-object in manifolds
a pro-manifold, etc.

Lemma 4.1.28. X := colim;e y(X;) and Y = colimjey y(Y;) presheaves on C
represented by the diagrams X :J — C and Y : J — €. Then there is a natural
1somorphism

Homg.,cor (X,Y) = lim colim Home (X;,Y;) .

. ) i
i€l jed J

Proof. We have the natural isomorphisms
HomSeteOp (Xv }A/) = HomSetec’p (COthl y(Xi>> }A/)
1€

= 111131 Homy,eor (y(X5), Y)
1€
fé?(cﬁ)elz}ny( ]))( )
=i li Y;) (X,
ilgcgelgn(y( 7)(X0))

= lim colim Home(X;,Y;) .

€] jed
In the first step we have used the colimit representation of X , in the second step
the universal property of colimits, in the third step the Yoneda lemma, in the fourth

step the colimit representation of Y, in the fifth step that colimits of presheaves are
computed object-wise, and in the last step the Yoneda lemma again. O

Proposition 4.1.29. Let € be a category. Let X,Y € Ind(@) be ind-represented by
the diagrams X :J — C and Y : § — €. Then there is a natural isomorphism

Homyppnq(e) (X, Y) = lim colim Home (X, Y;) . (4.3)

i€l jed
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Proof. Ind(@) is defined to be a full subcategory of 8et®”, which means that
HOHlInd(e) (X, YA') = Homsetcop (X, Y) .
The proposition now follows from Lem. O

Corollary 4.1.30. Let C be a category. Let X,Y € Pro(@) be pro-represented by
the diagrams X : 3 — C and Y : J — C. There is a natural isomorphism

Homp,o(e) (X, Y) 2 lim colim Home (X, Yj) . (4.4)

jed i€l

Proof. Using Props. [4.1.25| and [4.1.29] we can express the hom-set in Pro(C) as

HOl’Ilpro(@) (X, Y) = Homlnd(@op)OP (X, Y)
= HOHlInd(eop) (Y, X)

= lim colim Homeor (Y}, X;)
jed i€l

= lim colim Home (X}, Y;),
jeqd i€l
which proves the corollary. O]

The Yoneda embedding maps € as full subcategory into the category Ind(C).
If C is a category in which all filtered colimits exist, then the Yoneda embedding
y : € — Ind(C) has a retract, which is the colimit functor

U:Ind(C) — €

X — colim X
icd

(4.5)

for X represented by the diagram X : J — C.

Definition 4.1.31. An ind-object (pro-object) in € is called strict if it is repre-
sented by a diagram in which every arrow is a monomorphism (epimorphism).

Proposition 4.1.32. Let C be a category in which all filtered colimits exist. Let
X,Y € Ind(C). IfY is strict, then the map

Homlnd(@)(f(, Y) — Hom@(UX, U?)
1S injective.
Proof. Let X and Y be represented by diagrams X :J — C and Y : J — €, where
all morphisms of Y are monomorphisms. By Cor. [4.1.19] monomorphisms commute
with filtered colimits. Therefore, the morphisms of the colimit cone

Y; — colim Yy
j'ed

**Explain this morphism better®**

induced morphisms

are all monomorphisms. It follows that the

Hom(X,Y;) — Hom(X, colim Yj/)

j'€d
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are monomorphisms for any X € €. Using again that monomorphisms commute
with filtered colimits, we infer that

colim Hom(X,Y;) — Hom(X, colim Yj)

j€d j€d

is a monomorphism. Similarly, monomorphisms commute with limits. Therefore,

lim colim Hom(Xj;, Y;) — lim Hom(X;, colim Y;) = Hom(colim X, colim Y;)
i€l jed i€d JE€d i€J JE€d

is a monomorphism. Using Eq. (4.3)) and the definition (4.5]) of U we conclude that
Homlnd(@)(X, Y) — Hom@(UX, UY)
is an injective map. O

Remark 4.1.33. Prop. implies that the colimit functor U, if it exists, is
faithful on strict ind-objects. However, it is generally not full. This means that
there may be morphisms UX) = U (17) that do not come from a morphism of
the ind-objects X — Y. Moreover, U is generally not essentially injective. This
means that non-isomorphic ind-objects XzY may have isomorphic colimit-objects

U(X) 2 U(Y). The upshot is that even if all cofiltered limits in € exist, the objects
in Ind(€) have a richer structure with fewer morphisms between them than those in
C.

4.1.3 Functoriality

Let @ : @ — D be a functor. Since Set”” is cocomplete, the functor ypo® has a left
Kan extension along the Yoneda embedding of € into Set®” ***Add reference™**,

® := Lany, (yp o @) : Set®” — Set®”

which we will call the Yoneda extension of ®. The evaluation of ® on X =
colim(ye o X) = colim;eg ye(X;) for some diagram X : J — € is given explicitly by

d(X) = coiéijm yp (P(X;)) .

By the Yoneda lemma, € is dense in 8et®”, i.e. every presheaf is the colimit of
representable presheaves. It follows that the following diagram commutes:

e—2
J

Set®” 2, get?™

Moreover, if J is filtered, so that X is ind-represented by X, then CiD(X ) is ind-
represented by ® o X : J — D. We can draw the following conclusion.

Proposition 4.1.34. The Yoneda extension of a functor ® : € — D restricts to a
functor of the ind-categories

Ind(®) : Ind(€) — Ind(D).
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Corollary 4.1.35. The Yoneda extensions of functors ® : € — D and ¥ : ¢ — DP
restrict to functors
Pro(®) : Pro(€) — Pro(D

(D)
Ind(¥) : Ind(€) — Pro(D)°P
Pro(¥) : Pro(€) — Ind(D)°".
where Pro(®) := Ind(P°P)°P and Pro(V¥) := Ind(WeP)°P,

Remark 4.1.36. Prop. and Cor. [4.1.35|tell us that mapping a category to its
ind-category or its pro-category is functorial, i.e. there are functors Ind : Cat — Cat
and Pro : Cat — Cat.

Example 4.1.37. Consider the sequence of euclidean spaces R — R! — ... from
example 4.1.7, which represents an ind-object in the category of finite-dimensional
vector spaces. The composition with the dual yields that sequence (R%)* < (R')* <

.., which represents a pro-object in finite dimensional vector spaces. Taking the
dual again, we get back the ind-object we started with.

The reflexivity of ind/pro-finite dimensional vector spaces is one of the advan-
tages of working in ind- and pro-categories. Taking the algebraic dual of an infinite
dimensional vector space always raises the cardinality of the dimension. For exam-
ple, the dual of the colimit of the sequence R — R — .. is (02, R)* = [~ ,R*,
which is the limit of the sequence (R°)* +— (R!)* <— .... But taking the dual again,
yields a vector space of the unwieldy dimension 2( 2 0) Adding a Banach structure
and taking bounded duals can make an infinite dimensional vector space reflexive.
But when we only have a Fréchet structure, as in the example of smooth sections of
a vector bundle, we are out of luck: The dual of a Fréchet space is again a Fréchet
space if and only if it was a Banach space to begin with.

Proposition 4.1.38. For any two categories € and D, there are natural equivalences

Ind(€ x D) ~ Ind(€) x Ind(D)
Pro(€ x D) ~ Pro(€) x Pro(D).

Proof. Let (X,Y) € Ind(C) x Ind(D) a pair of ind-objects represented by diagrams
X:J—=CandY :J— D. It is straight-forward to show that the product of two
filtered categories is filtered (Prop. 3.2.1 (iii) in |[KS06]). Therefore, the product
functor X xY :J x J — € x D represents an ind-object in € x D. We thus obtain
a map

Ind(€) x Ind(D) —s Ind(€ x D). (4.6)

Because the product of functors X x Y is natural in both the domain and the
target, the map is a functor. And since the Yoneda embedding commutes with
products, this functor is fully faithful.

Consider an object Z in Ind(€ x D) represented by a functor Z : I — € x D,
i— X; XY;, where X :J — Cand Y : J — D are the two components of Z. Since
the diagonal functor A : J — J x J is final (exercise[1.2), X x Y : IxJ — €x D and
Z represent isomorphic ind-objects. This shows that the fully faithful functor
is essentially surjective, so it is an equivalence of categories.
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There is an isomorphism (€ x D) = C°P x D for any pair of categories. We
thus obtain

IIZ

Pro(€ x D) = (Ind((€ x D))))™
(Ind(C x D))

~ ( d(C°P) x Ind(@"p))
= Ind(C°P)°P x Ind(D°P)°P
~ Pro(€) x Pro(D),
which finishes the proof. O

4.1.4 Finite limits and colimits in ind/pro-categories

Even finite limits and colimits in ind/pro-categories can be difficult to compute.
Matters become easier if for a diagram D : A — Ind(€) the objects D(a) € Ind(€)
can be ind-represented by diagrams D(a) : J — € indexed by the same filtered
category J and the morphisms of the diagram are all represented by natural trans-
formations D(a) — D(b). Such a D is called a level-representation of D. If a
level-representation of D exists, then its limit and colimit can be computed level-
wise, which is the statement of the following result, first proved in [AMG69].

Proposition 4.1.39. Let J be a small filtered category. Then the functor

€’ — Ind(C)

X — quijrn y(X;) (4.7)
1€

commutes with finite limits and finite colimits.

Proof. Let D : A — €, a — D(a) be a diagram indexed by a finite category
A. Assume that the colimit of D exists. Since colimits in functor categories are
computed object-wise this means that the colimit of the functor A — €, a — D(a);
exists for all ¢ € J.

Let us denote the functor by F. The image of this diagram under F is

FD: A —s Ind(€)

ar— C(zleljmy(D( a);) .

Let YV e Ind(€) be ind-represented by the filtered diagram Y : J — €. We have the
natural bijections

Homp,g(e) (coli}ln FD(a),Y) = lim Homlnd(@ (FD(a),Y
ac ae

\_/\/

= lim lim colim Home(D(a
acA €] jE]

i»Yj)

~—
.

.

~—

(
= lim lim colim Home(D(a);
i€] acA jE€d
(

= lim colim lim Home(D(a
€] jeg acA

~—
.

. :
~—

= lim colim Home/(colim D(
i€l j€Ed acA
)

= Homppnq(e) (F(cggrln D(a)
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where we have used the universal property of the colimit of F'D, the commutativity
of limits, formula for the morphisms in an ind-category, the commutativity
of finite limits with filtered colimits stated in Prop. [£.1.18, the universal property
of the colimit of the functor D(_); : A — €, and formula again. Since this
bijection holds for all }A/, we conclude that F' commutes with the colimits over A.
Assume now that the limit of D exists. Then we have the natural bijections

Homug(e) (}A/, linj} FD(a)) = lirﬁ Homu,a(e) (Y, FD(a))
ac ac

= lim lim colim Home/(Y;

a);
acA jeJ i€l

= lim lim colim Home/(Y;

a);
JEJ acA  i€]

j€J €] a€cA

= lim colim Home(Y}, hm D(a);
jed i€l

D(a);)
D(a);)

= Jim colim lim Home(Y;, D(a);)
(a);)
)

=~ Hompuaee) (V' F(lim D(a) )

which shows that F' commutes with the limits over A. O

Example 4.1.40. Let X, Y be ind- objects in a category € with finite products,
that are represented by the filtered diagrams X,Y : J — €. Then the product XxY
exists and is represented by J — C, 1 — X; x Y.

Remark 4.1.41. The map €” — Ind(€) does in general not commute with infinite
limits or colimits. In fact, it does not even commute with filtered colimits, even
though Ind(€) is a cocompletion of € by filtered colimits. In example we will

give an example for this phenomenon.

A finite diagram D can fail to have a level-representation only if A has “loops”,
i.e. no non-trivial endomorphisms [Isa02]. For example, a level-representation exists
for every diagram consisting of a finite number of ind-objects without morphisms
between them or for every diagram consisting of a pair of parallel morphism between
a pair of ind-objects [KS06, Cor. 6.3.15] since the (co)limits of such diagrams are
(co)products and (co)equalizers, Prop. implies that all finite (co)products
and (co)equalizers exist in Ind(C) if they exist in €. Since every finite (co)limit
can be obtained by a (co)equalizer of a finite (co)product we arrive at the following
corollary.

Corollary 4.1.42. If C has all finite coproducts, coequalizers, colimits, products,
equalizers, or limits then so does Ind(C@).

This result can be slightly improved. In Prop. 6.1.18 of [KSO06| it is shown that
having finite coproducts in € implies that Ind(€) has small coproducts. As a conse-
quence, if € has finite colimits, then Ind(€) has small colimits. For later reference,
we state the dual of Prop. for pro-categories, which follows immediately from

Prop. [£.1.39

Proposition 4.1.43 (Prop. 4.1 in App. A of [AMG69]). Let I be a small cofiltered
category. Then the natural functor G’ — Pro(C) commutes with finite limits and
finite colimits.



4.1 Ind-categories and pro-categories 91

4.1.5 Concrete categories

Most categories we will deal with are concrete, that is, the objects can be viewed as
sets with additional structure.

Definition 4.1.44 (***ref***). A category € together with a faithful forgetful func-
tor U : € — Set is called concrete.

A category can be concrete for different choices of the forgetful functor, so being
concrete is a structure and not a property. In many categories the objects are
by definition sets with additional structure, such as groups, rings, algebras, vector
spaces, topological spaces, manifolds, etc. In that case, there is the obvious forgetful
functor that discards the additional structure.

Proposition 4.1.45. Let (C,U) be a concrete category. Let

A~

U := Lane_maee) U : Ind(€) — Set

be the left Kan extension of U to Ind(€). Then (Ind(€),U) is a concrete category.

Proof. Let X,V € Ind(€) be ind-represented by X : 3 — C and Y : J — €,
respectively. First, we observe that the Yoneda extension of the forgetful functor is
given by UX = colim;c; UX;. It follows that

Homget(ﬁX, UY) = lim colim Homsge (U X;, UYj) . (4.8)

i€l jed

Since U is faithful, the forgetful map Home(X;, Y;) — Homge (U X;, UY)) is injective
for all i € J, 5 € J. By Cor. 4.1.19 filtered colimits preserve monomorphisms. It
follows that the forgetful map

colim Home(X;,Y;) — cqlign Homge (UX;, UY)) (4.9)
je

j€d

is a monomorphism. By Cor. 4.1.19[small limits preserve monomorphisms. It follows
that the map

lim colim Home (X, Y;) — lim colim Homge (U X;, UYj) (4.10)

i€l jed i€l jed

is a monomorphism. Using the isomorphisms (4.3]) and (4.8]), we conclude that the
map o o
Homyyq(e)(X,Y) — Homge (UX,UY)

is a monomorphism as well, i.e. U is faithful. O]

Corollary 4.1.46. Let (C,U) be a concrete category. Let

U= Rane_pro(e) U : Pro(€) — Set
be the right Kan extension of U to Pro(€). Then (Pro(@),U) is a concrete category.

Proof. The proof follows from Prop. O
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Remark 4.1.47. The category of presheaves on any category € is concrete with the
forgetful functor X — | |,.e X(C). But this functor is quite different from the one

of Prop. 4.1.45

) Cor. [4.1.46| states that if C is a concrete category then there is a faithful functor
U on Pro(C) such that for every X € Pro(€) pro-represented by X : J — € we have
UX =1limUX;.

i€d
In many categories the forgetful functor is the functor of morphisms
U(C) = Home(1,C)

out of a test object I. Such a U is called the functor of /-points. The Kan
extension of U is now given by

UX = Hompyo(e) (y(1), X)

where we have used formula for the hom-sets in Pro(€). This shows that U
is also the functor of I-points, where we identify [ with the presheaf it represents.
In geometric categories, such as topological spaces and smooth manifolds, the test
object is typically the terminal object I = %. Since the Yoneda embedding commutes
with limits y(x) is the terminal object in Ind(€). In the category of vector spaces,
the test object is I = RR.

4.1.6 Tensor products, algebras, derivations

The tensor product of vector spaces is an example for a closed symmetric monoidal
structure. We recall that a monoidal structure on a category C consists of a
functor ® : € x € — €, called the tensor product and an object 1 € €, called the
tensor unit, that equip C with a weakly associative and unital multiplication. That
means that there are natural isomorphisms aspc: (A® B)®C - A® (B® C),
lp:1®A— Aandry : A®1 — A satisfying certain coherence axioms. The tensor
product is called symmetric if there is a natural isomorphism 74 5 : AQB — B®A
with 74 5 0 7 4 = idagp, satisfying additional coherence axioms involving a, [, and
r. A monoidal category is called closed if for every B € C the functor _ ®B : A —
A ® B has a right adjoint C'+— Hom(B, C), i.e. there is a natural isomorphism

Home(A @ B, C) = Home (A, Hom(B, C)) .

For the full definition of closed symmetric monoidal categories see for example
Ch. VII in [ML98] or Sec. 1 in [Kel05].

Terminology 4.1.48. The object Hom(A, B) is called the internal or inner hom-
object. It is also denoted by [A, B] or AP.

Example 4.1.49. The category V = Vec with the tensor product ® of vector spaces,
the tensor unit 1 = R, and the usual vector space of linear maps Hom(V, W) is a
closed symmetric monoidal category.
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By Prop. 4.1.34|the functor ® induces a functor Ind(®) on Ind(€x €). Composing
this functor with the equivalence of Prop. we obtain a functor
& : Ind(€) x Ind(€) = Ind(€ x €) 2 mq(e), (4.11)
which maps ind-objects A, B represented by diagrams A:J — Cand B:J — C to
the ind-object represented by J x § — C, (i,7) — A; ® B;.

Proposition 4.1.50. Let (C,®,1) be a monoidal category. Then the functor @ of
Eq. (4.11)) and the object 1 := y(1) € Ind(C) are a monoidal structure on Ind(C).

Proof. The associativity of & follows from the associativity of ® and of the product
in categories. That 1 is the unit of @ follows immediately from 1 being the unit of
®. ***Reference to Kashiwara/Shapira*** O

Remark 4.1.51. Eq. (4.11) is an example for the Day convolution product of
functors on a monoidal category [Day70].

A special case for a monoidal structure is the biproduct & of an additive category
such as Vec. In fact, it can be shown that not only the biproduct, but the entire
structure of an abelian category extends to the ind-category.

Proposition 4.1.52 (Thm. 8.6.5 in [KS06|). Let C be an abelian category, then
Ind(C) is an abelian category, such that the embedding C — Ind(C) is exact.

When we have a tensor product on a category, we can define many algebraic
structures internal to this category. In fact, any algebraic structure that is given by
an operad or a prop can be generalized to any monoidal category. For example a
monoid internal to (€, ®, 1) consists of an object A € €, a multiplication morphism
i A® A — A, and a unit morphism e : 1 — A, such that the following diagrams
commute:

AR A® A 4 oA A" A1
M®idl l# e®idl J{id lid@e
A—H" o4 AR A LNy | QA

Terminology 4.1.53. A monoid in (Set, X, *) is a monoid in the usual sense, which
motivates the terminology. A monoid in (Vec, ®,R) is an algebra. So when Vec or,
more generally, the category of modules over a ring is the basic category, a monoid
internal to (€, ®, 1) is also called an algebra in C.

Definition 4.1.54. A monoid internal to a monoidal category (C,®,1) will be
called an algebra in C. The category of algebras in € is denoted by Alg(€). When
C = Vec, we abbreviate Alg = Alg(Vec).

Let us spell out the structure of an algebra on an ind-object A represented by
the diagram A : J — Vec. The tensor square A& A is represented by the diagram
IxJ—=Vec, (i,5) = A ®A;. Amap p: A® A — A is represented by a family of
morphisms

it A, ® Aj — Ak(i,j) . (4.12)
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This map is an associative multiplication if the families of morphisms
Mivia i = Hi(ir iz) iz © (Hirio ®1d) + Ajy @ Ajy @ Aiy — Ak(i(inin) i)
Nil,i2i3 = ,uil,k:(ig,i:g) o (1d ® ,uig,ig) : Ail ® Aig ® Ai3 — Ak(i1,k(i2,i3))

for all iq,19,73 € J represent the same morphism in Ind(Vec). This is the case if
there are commutative diagrams

A’i1 0% AiQ X Ai3

MliV %{L‘2i3

Ak(k(il,z‘z i Ak(il,k(ig,ig)) (4.13)

NS

)+i3)
Ay

where the unmarked arrows are morphisms of the diagram A : J — Vec. Similarly,
the unit of the algebra is given by amap e : R — A;, such that there are commutative
diagrams

RoA« 4, "5 AR

e®idJ lid@e

uml lﬂj,i
Ak(ig) Ay Ak(ja)

where again the unmarked arrows are some morphisms of the diagram A : J — Vec.

Example 4.1.55. Let A be a vector space with a filtration Ay C 4; C Ay C ... C
A, which can be viewed as a sequence A : w — Vec of monomorphisms with colimit
A. An associative multiplication i : A® A — A is filtered if u(A; ® A;) C Aiyj.
Then the restrictions

Mij = flaea; @ Ai @ Aj — A

for all 4,5 € w and k(i,7) = @ + j represent an associative multiplication on the
ind-vector space A represented by the diagram A. The unit e € Ay of f is also a
20.05.19 (11) unit of the multiplication on A.

Proposition 4.1.56. Let (C,®,1) be a monoidal category. Let Fe : Alg(C) — €
denote the natural functor that forgets the structure morphisms of an algebra object.
Then there is an injective and faithful functor I : Ind (.Alg(@)) — Alg (Ind((?)), such
that the diagram

Ind (Alg(€)) ——— Alg(Ind(€))

\ / (4.15)
Ind(Fc) FInd(e)

Ind(C)

commutes.
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Proof. The diagonal functor 3 — J x J, ¢ — (,4) is final (exercise [£.2). This
implies that the diagram J x J — Vec, (i,7) — A; ® A; and the diagram J — Vec,

i — A; ® A; represent the same ind-vector space A ® A. More precisely, the family
of maps id : A; ® A; — A; ® A; induces an isomorphism of presheaves

colimy(4; ® 4;) — colim y(A; ® Aj). (4.16)
i€ (i,5)€TxT

For every pair i,j € I x g, let m(7, 5) be in J such that there are maps i — m(%, j)

and j — m(i, 7). Then there are morphisms A; — A, ;) and A; — A, in the

filtered diagram A : J — Vec. Their tensor product yields a family of morphisms

Aiji Ai ® Aj — Amiig) ® Amig) »

which represents the inverse of .

Let A,, € Ind(Alg(€)) be represented by I — Alg(C), i — (A;, i, e;). The
family of morphisms u; : A; ® A; — A; defines a morphism p : A® A — A of ind-
objects in €. Composing the morphisms with A, ; yields the family of morphisms

JAVE Hm(i,5)
fig A @ Aj =5 Apgig) ® Amiig) = Amig) -

which represents p on the diagram (7, j) — A; ® A;. From the associativity of y; and
the fact that all maps in the diagram A : J — € are homomorphisms of algebras, it
follows that there is a commutative diagram for all i1, 19,13 € J. We conclude
that p is an associative multiplication on A.

Since any arrow o : Ay — A; of the diagram A is a homomorphism of unital
algebras, we have e; = o(eg). This implies that the morphisms e : y(1) — A of
ind-objects in € that is represented by ey : 1 — Ay makes the diagrams
commutative, so that e is the unit of p.

So far we have shown that the structure morphisms y;, e; of any A, € Ind(Alg(€))
represent the morphisms of an algebra structure on the underlying ind-object Ae
Ind(C). A morphism f : flalg — Balg of ind-algebras is a represented by a family
fi + Ay — B; of morphisms of algebra objects in €. The morphisms f; induce a
morphism f : A — B of the underlying ind-objects in C. It is straight-forward
to check that f is compatible with the induced algebra structures on A and B,
i.e. f is a morphisms of algebras in Ind(€). We conclude that we have a functor
I: Ind(Alg((i’)) — Alg(lnd(@)).

By definition, flalg and [ (flalg) have the same underlying = Ind(€), which
means that the diagram commutes. A morphism in Ind(Alg(€)) is given by
a morphism in Ind(C) that satisfies compatibility conditions with the algebra struc-
tures. This implies that the forgetful morphism Ind(Alg(C)) — Ind(C) is faithful.
Since diagram (4.15)) commutes, I must be faithful as well. Finally, if the morphisms
i, gy 2 Ay @ Ay — A; and e;, e 0 1 — A, represent the same ind-algebra Aalg, then
the induced morphisms u, 1/ : A®@ A — A, e, e : y(1) — A of ind-objects in € are
equal. We conclude that I is injective on objects. O]

Proposition 4.1.57. (V,®,1) be a closed symmetric monoidal category that has
all filtered colimits. Then the colimit functor U : Ind(V) — 'V defined in Eq. (4.5)
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preserves tensor products, i.e. there is a natural isomorphisms

UA@B)=UA)@U(B),
for all A, B € Ind(Vec).

Lemma 4.1.58. The tensor product of a closed symmetric monoidal category com-
mutes with colimits in each factor.

Proof. Let V be a closed symmetric monoidal category. Let A : J — V be a diagram
that has a colimit. We have natural isomorphisms

Hom((colim A;) ® B, C) = Hom(colim A;,Hom(B, C))
iel icl
= liler? Hom(Ai7 Hom(B, C’))
= Hom(c%llm(/li ® B),C),
for all B,C' € V. It follows that
(colim A;) ® B = colim(A4; ® B).
iel icl

By the symmetry of ® it follows that the tensor product commutes with colimits in
the second factor, as well. [

Proof of Prop[{-1.57. Let A, B € Ind(\?) be represented by diagrams A : J — € and
B :J — €. The tensor product A& B is represented by I x g — V, (i,7) = A; ® B;.
Therefore,

U(A® B) = colim A; ® B;
(4,7)€I%J

= colim cohm(A ® B;)
i€J jed

= colim( A; lim B;
QA @ (cofn 1)
= (colim A;) ® (colim By)
i€d Jed
>~ U(A) e U(B),
where we have used Lem. L.1.58 twice. O
Corollary 4.1.59. The colimit functor U : Ind(V) — V induces a functor

Alg(Ind(V)) — Alg(V).

Example 4.1.60. It follows from Cor.[4.1.32 that the colimit functor U : Ind(Vec) —
Vec is faithful on strict ind-objects. Cor. then implies that an algebra struc-
ture on the strict ind-vector space A can be identified with an algebra structure on
the underlying vector space A := U (A) Note, however, that U is neither essentially
injective nor full (Rmk. [£.1.33). This means that non-isomorphic ind-vector spaces
A 2 B can have 1somorph1c underlying vector spaces A = B, and that there may

be algebra structures on A that do not arise from an algebra structure on A.
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Example 4.1.61. The category V = gr'Vec of Z-graded vector spaces is closed
symmetric monoidal. The tensor product of two graded vector spaces V, and W, is
given by
VeW),= @ V,eW,.
ptq=n

The tensor unit is R viewed as graded vector space concentrated in degree 0. The
symmetric structure is 7(v ® w) = (—=1)"/*ly ® v. The inner hom-object is the
graded vector space

Homgr\?ec<v W H Hom\?ec(‘/lﬂ WP+”> :

PEZL

By Cor. the colimit functor U : Ind(grVec) — gr'Vec on ind-vector spaces is
faithful on strict ind-objects. Cor. then shows, that an algebra structure on a
strict ind-graded vector space A can be identified with an algebra structure on the
graded vector space U(A). An algebra in graded vector spaces is the same thing as
a graded algebra.

Definition 4.1.62. Let (€, ®, 1) be an additive monoidal category. Let (A, i, e) be
an algebra object in €. A derivation of A is a morphism ¢ : A — A such that the
diagram

Ao ALt

A
5®id+id®5J Ja
A

A A1t

(4.17)

commutes.

Proposition 4.1.63. Let A be an algebra in an additive monoidal category C. Then
Der(A) is closed under the commutator of composition.

Proof. This is shown by a direct calculation, which is analogous to the case of
algebras is Vec. m

4.1.7 Enrichment

In the definition of an enriched category C the hom-sets are replaced by hom-
objects in a monoidal category (V,®,1). More precisely, a category enriched
over V consists of a class of objects €, a hom-object Hom(A, B) € V for every pair
A, B € €, and morphisms of the composition and the identities

o: Hom(B, () ® Hom(A, B) — Hom(A, C)
idg : 1 — Hom(A, A),
for all A, B,C' € €, that satisfy axioms that generalize the axioms of a category up

to isomorphisms, together with coherence axioms involving the morphisms a, [, and
r of the monoidal structure. For the full definition see e.g. [Kel05].

Example 4.1.64. Every additive category is enriched over the category of abelian
groups.
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To every enriched category we can associate an ordinary category by applying
the functor of 1-points,
U:V — Set

A — Homy(1, A)

to the hom-objects. This functor is monoidal, i.e. there is a natural map U(A) x
U(B) - U(A® B) for all A, B € V. It follows that the sets

Hom(A, B) := Homy(1, Hom(A, B))

satisfy the axioms of a (non-enriched) category. When U is faithful, the enrich-
ment can be viewed as structure on the hom-sets of the underlying category that
is compatible with the composition of morphisms. For example, this is the case for
V = Vec, where Homy..(V, W) has the structure of a vector space and the compo-
sition f o ¢ is linear in f and g. We have all been using this long before we even
knew what a category, let alone an enriched category is. This is the low-brow point
of view we want to adopt here.

Proposition 4.1.65. Every closed symmetric monoidal category is enriched over
itself by the internal hom-objects.

Proof. ***Reference*** O

Proposition 4.1.66. Let V be a closed symmetric monoidal category that has all
filtered colimits and all cofiltered limits. Then Ind('V) is enriched over V with the
hom-objects

H A, B) 2 lim colim Homy(A;, B;
Homy, ) (4, B) = lim cgel(,}nﬂv( , Bj),
for A, B € Ind(@) represented by diagrams A :J — € and B : § — C.

Proof. ***Reference®**, O

Let € be a monoidal category enriched over an additive closed symmetric monoidal
category V. For every object V € V with a point e : 1 — V' we have a linear map
A:V =V ®YV given by

V

diag

VeV

r-igl!
Vel)e(leV)

(idv ®e)®(e®idy)
(VeV)e (Vel)

+

VeVv
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In a concrete category this map is given by
Av)=v®@e+e®.
Consider now the object End(A) := Hom(A, A) in V for some A € € with the point

e = id4, so that the linear map A is defined. By definition of a monoidal enriched
category, the tensor product of € is an enriched functor, i.e. there are morphisms

Hom(A, B) @ Hom(A', B)) -2 Hom(A® A', B® B'),
For all A, A’, B, B’ € C. In particular, we have a morphism

End(A) ® End(4) = End(A® A).

Let now (A, u,e) be an algebra in €. The multiplication p : A ® A — A induces
composition morphisms

ps cEnd(A® A) — Hom(A® A, A)
p* :End(A) — Hom(A® A, A).

Now we can define the enriched derivation object of the algebra A as the equalizer

Der(A) —— End(A) = Hom(A ® A, A) . (4.18)
UxO0®0A

Proposition 4.1.67. The enriched derivation object Der(A) as defined in Eq. (4.18)
18 a Lie algebra object in V.

4.2 Sequential ind/pro-objects

Definition 4.2.1. An ind-object (pro-object) is called sequential if it is represented
by a diagram indexed by w (w°P).

Spelling out this definition, we see that a strict sequential ind-object in € is
represented by a sequence

Xo 2 X, I X, 2y

I

such that every o; is a monomorphism. Dually, a strict sequential pro-object in C is
represented by a sequence

Xo & X, & X, &,

such that every o; is an epimorphism. Many of the ind-objects and pro-objects we
are interested in arise from such diagrams, so we will study them in more detail.
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4.2.1 Representation of morphisms

There is an explicit description of the set of morphisms between sequential ind-
objects.

Proposition 4.2.2. Let X and Y be sequential ind-objects in C represented by the
sequences Xo = X1 3 ... and Yo 2 Y71 5 ... A morphism in Homp,g(e) (X Y) 18

represented by a diagram
Xo X Xs e (4.19)

NN

Yiop— Yi0)— Yieg — -

where j(i) < j(i + 1) for all i € w.
Moreover, if all target indices j(i) are chosen to be minimal in the sense that no
fi factors like
Xi

f! l
fi

Y.

Y; 3G)

](1’)_1 Tj(i)—1
and z'ff/ 1s strict, then every f; is unique.

Proof. In the first step we calculate the inner colimit of Eq. (4.3). The set colim; Hom (X}, Yj)
is the quotient of the disjoint union of all Hom (X}, Y;), j > 0 modulo the equivalence
relation that is generated by f ~ ;0 f for all f € Hom(X,,Y;), 7 > 0,

colim Hom(X;, ¥;) = HHom LY~ (4.20)

Since the index category w is ordered and bounded from below every element of the
quotient has a representative f; : X; — Yj(;) for which j(¢) is minimal. From the
minimality it follows that j(7) < j(i + 1).

In the second step we construct the limit of Eq. . The diagram of which we
have to compute the limit is

*

Co &0y Ty &
where C; := colim; Hom(X},Y;) and
o; @ colim Hom(X;;1,Y;) — colim Hom(Xj;, Y;)
j j

[fixr] = [fiz1 0 0i].

Every equivalence class in C; has a representative f; : X; — Yj(;) for which j() is
minimal. An element in the limit is given by a sequence

([fol, [fal, [fo]s ) € HcogimHom(Xl, Y;)
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with the property that of[f; 1] = [f] for all <. This means that for every f; : X; —
Y and fir1 @ Xip1 — Yj41) we have a commutative square

oi
Xi ? Xi-‘rl

lfi lfiJrl

Yy — Yjgir)
where
Ti(i Tj(i+1)—1
7Y = Vs — oo Yy -

The commutativity of the infinite diagram of the proposition is equivalent to the
commutativity of these squares for all i.

We have already seen that the target indices j(i) can be chosen to be minimal.
Assume now that Y is strict, i.e. all morphisms 7; are monomorphisms. This implies
that if two morphisms f, f : X; — X; with the same domain and target represent
the same equivalence class [f : X; — Y;] = [f’ : X; = Y;] in the colimit (4.20), then
they are equal f = f’. In particular, the morphism f; : X; — Yj(;) that represents
[f:] is unique. O

The composition of an ind-morphism X 3 Yasin Prop. with another ind-
morphism g : Y — Z of sequential ind-objects represented by a family g : Y; — Yy
is represented by the family of morphisms obtained by stacking the two diagrams of

type (4.19).

X, X, X,
lfo lfl sz
Yio) — X X2 o (4.21)

lgj(O) lgj(l) lgj@)

Z(j(0)) = Zr(j(1) — Zr(j(2)) — -

Note that, even if i — j(7) and j + k(j) are minimal in the sense of Prop. 4.2.2]
the numbers ¢ — k(j(7)) may not.

Corollary 4.2.3. Let X bea sequential ind-object in C represented by the sequence
Xo B X, B ... and let C be an object in C.

(1) A morphism in Hompge) (X,C’) is represented by a unique family of mor-
phisms {fi : X; = Clic, satisfying fir100; = fi.

(i) A morphism in Homlnd(e)(C,X) is represented by a morphism f : C — X;.
Moreover, if © is minimal and X s strict, then f 1s unique.

Warning 4.2.4. The Yoneda embedding commutes with limits but does not com-
mute with all colimits. This means that even if a diagram X = (Xy - X; — ...)
does have a colimit colim; X; in € it is generally not true that colim; X; viewed as
constant ind-object is isomorphic to the ind-object represented by X. The next
example illustrates this phenomenon.
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Example 4.2.5 (Exhaustion of the real line). Let € = Mfld be the category of
smooth finite-dimensional manifolds. Consider the sequence of embeddings of open
intervals,

X =((-1,1) = (=2,2) = (=3,3) = ...) .

On the one hand, a morphism of ind-manifolds from the constant ind-object R to the
ind-manifold X represented by this sequence is, according to Prop. , given by
a smooth map from R to one of the intervals (—n,n), in other words, by a bounded
function on the real line. On the other hand, the colimit of X is given by the real
line R, so that a morphism from R to the colimit of X is, therefore, a smooth, not
necessarily bounded function.

Corollary 4.2.6. Let X and Y be sequential pro-objects in C represented by the
sequences Xo & X1 & ... and Yo & X1 & ... A morphism in Homp,oe) (X,Y) is
giwen by a diagram

lfo lfl lh

Yo Y Ys

where all i(j) <i(j+1) for all j € w.
Moreover, if all source indices i(j) are chosen to be minimal and if X is strict,
then every f; is unique.

Proof. The corollary is obtained from Prop. by using the isomorphism of

Prop. [£.1.25 O
Corollary 4.2.7. Let X be as in Cor. and let C' be an object in C.

(i) A morphism in Hompyoe)(C, X) is uniquely given by a family of morphisms
{fi: C = Xi}ico satisfying o; 0 fi1 = fi.

(i) A morphism in Hompro(@)(X,C) is represented by a morphism [ : X; — C.
Moreover, if © is minimal and X s strict, then f is unique.

4.2.2 Sections, retractions, isomorphisms, derivations

Choosing the target indices j(i) to be minimal makes the family of morphisms repre-
senting an ind-morphism unique, the minimal choice may be difficult or not natural.
For example, the identity morphism of a sequential ind-object X, is naturally rep-
resented by the family id : X; — X, even though j(i) = i is not the minimal choice
when o;_1 : X;_1 — X is an isomorphism. The price we have to pay is that different
families of morphisms may represent the same ind-morphism. The next proposition
gives a criterion to decide when this is the case.

Proposition 4.2.8. Let X and Y be sequential ind-objects as in Prop. . Two
families of morphisms f; © X; — Yju) and f] : X; — Y, with j(i) and j'(i) not
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necessarily minimal, represent the same morphism of ind-objects if and only if for
every © € w one of the following two diagrams commutes,

le ¢ or fi l X
Yio)y —Yjq) Yoy — Yju)

depending on whether j(i) < j'(i) or j(i) > j'(3).
Proof. ***needed?*** O

Corollary 4.2.9. Let X be a strict sequential ind-object in C represented by the
sequence Xo =% X1 5 ... . A family of morphisms f; + X; — Xy represents
the identity morphism ofX if and only if for every i € w one of the following two
conditions is satisfied.

(i) If i < j(i), then f; is equal to X; > Xy
(ii) If i > j(i), then X — X, is an isomorphism and f; its inverse.

Proof. We apply Prop. @ to the case Y = X and f! :=idy,. When i < j(i), the
second diagram of Prop. @ must commute, which is equivalent to condition (i).

When ¢ > j(i), the first diagram of diagram of Prop. |4.2.8 must commute, that
is, 0 o f; = idx,. Composing on the right with o yields o0 o f; o0 = o. By the
assumption of strictness of X, the morphism o : Xt — X; is a monomorphism,
so it follows that f; o 0 = idx, (), i.e. f; is the left and right inverse of o, which is
condition (ii). O

Corollary 4.2.10. Let X be a strict sequential ind-object in C represented by the
sequence Xo =3 X1 55 ... in which none of the arrows is an isomorphism. Then
the family of morphisms idx, : X; — X; is the unique representative of the identity
morphism with minimal target indices.

With Cor. and the composition of ind-morphisms in terms of the represent-
ing families by diagram , we can easily determine the conditions for families of
morphisms to represent sections, retractions, or isomorphisms in the ind-category.
Spelling these conditions out would be highly redundant, though.

Example 4.2.11. Let X be the strict sequential ind-object in C represented by the
diagram X : w — €. In example 4.1.12) we have seen that every unbounded order
preserving map ® : w — w is final, which implies that the ind-object X’ represented
by X o ® is isomorphic to X. The isomorphism I X' = X is represented by the
family of morphisms X = Xg; LY Xog).-

Exercise 4.2.12. Find a family of morphisms representing the inverse of the iso-
morphism f of example

As before, we can use the isomorphism of ind- and pro-categories of Prop.
to obtain the dual propositions for pro-objects. We give just one example, because
we will need it later for the description of vector fields on pro-manifolds as sections
on the pro-tangent bundle.
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Proposition 4.2.13. Let X and Y be sequential pro-objects in C represented by
XX, & . andYy, & X, & Letf - X — Y be a morphism which is
represented by the family (fi : Xi — Yi)icw-

A morphism §: Y — X represented by a family (g; : Yiu — Xi)icw 5 a section
of f if and only if for every i € w one of the following two conditions is satisfied.

(i) If i < j(i), then fio g; is equal to Yju) — Y.

(i) If i > j(i), then Y; = Y@ is an isomorphism and f; o g; its inverse.

Remark 4.2.14. When in the sequence X, <& X; <~ ... a morphism 7; is an isomor-
phism, we can skip X;,; and replace 7; with 7; 0 7,41 : X;12 — X; without changing
the pro-object. Unless the sequence is stably constant, i.e. 7; is an isomorphism for
all ¢ > 0, we obtain by reiterating this procedure a reduced sequence for which
none of the connecting isomorphisms 7; is an isomorphisms. If we assume further
that the sequence is strict, i.e. all 7; are epimorphisms, it follows that no compo-
sition of connecting morphisms is an isomorphism. In that case, condition (ii) of
Prop. cannot occur.

Example 4.2.15. Let Xy & X; & ... be a sequence representing the pro-object
X. By condition (i) of Prop. , the morphism & : X — X represented by the
family oy : X1 — Xj is a section of the identity morphism, which is represented
by idx, : Xi — Xj. We conclude that & represents the identity morphism of X.

Proposition 4.2.16. Let Ag 2% A; 5 ... be a sequence of algebras. Then a deriva-
tion of the algebra in ind-vector spaces we obtain from Prop. is represented
by a family of linear maps d; : A; — Aju), © € w, such that for alli and all a,b € A;,

d;(ab) = (0;a) o (b) + o(a) (6;b),
where o : A; — Ajqy is the linear map of the diagram A.

Proof. By Prop. a morphism ¢ : A= Ais represented by a family of morphisms
0; + Aj = Aj). Let a,b € A; and let 0 : A; — Aj(;) denote the map of the diagram
A w — Vec. If the diagram (4.17)) commutes, then

di(ab) = (0; o pi)(a ® b)
= (po(6; ®id+id® d; 0 p))(a®b)
= (6,0) o(b) + o(a) (6:b) .

Let a € A; and b € A; be elements that live in different levels of the ind-algebra.
The product of @ and b in the algebra A is given by first mapping them to a higher
level Ay, k > 7,5 by the maps A; — A and A; — A, in the diagram A : w — Vec
and multiplying them there. O
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4.3 Differential geometry on pro-manifolds

A pro-manifold is a pro-object in the category Mfld of smooth finite-dimensional
manifolds. In our wish list we have given conditions for a category to be
a good setting for the differential geometry of infinite jets. Our wishes have been
granted.

Proposition 4.3.1. The category Pro(Mfld) satisfies the conditions of the wish
list[3.4.3

Proof. The Yoneda embedding y : Mfld — Pro(Mfld) is injective and fully
faithful. An infinite inverse sequence X, ¢ X; ¢ ... of manifolds is a diagram
X : w — Mfld indexed by the cofiltered category w°P. The limit of y o X exists,

because it is the copresheaf X represented by X. was shown in Cor. 4.2.7,
The functor U : Pro(Mfld) — Set of Cor. 4.1.46| has the required properties. O]

As shown in Sec. 4.1.5, the forgetful functor U on Pro(Mfld) is given by the
functor of points, UX = Hom(x, X), where * = y(R?) is the terminal object in
Pro(Mfld). So a point of a pro-manifold X is a morphism x : * — X

Proposition 4.3.2. Let X be a strict sequential pro-manifold represented by Xo &
X1 & ... Then every point x : x — X is given by a unique sequence xq,T1,Ts,. ..
of points x; € X; such that x; = o;(x;11) for all i > 0.

Proof. The proposition is a special case of Cor. [4.2.6] O

4.3.1 Tangent bundle and vector fields
Prop. and Cor. state that covariant and contravariant functors extend

to functors between the ind /pro-categories. Therefore, all functorial constructions
on smooth manifolds generalize to the pro-manifolds in a straight-forward way. Since
pro-manifolds typically arise via cofiltered diagrams of manifolds that fail to have a
limit in Mfld, we will describe the generalized geometric structures in terms of these
diagrams.

The first case we will consider is the tangent functor T from finite-dimensional
smooth manifolds to vector bundles, which assigns to every M € Mfld the tangent
bundle TM — M and to every smooth map f : M — N the tangent map Tf :
TM — TN. According to Cor. T induces a functor from pro-manifolds to
pro-vector bundles.

Definition 4.3.3. Let X be a pro-manifold represented by X : J — Mfld. The
tangent bun(zlle of X is the pro-vector bundle represented by T o X, which will be
denoted by T'X.

The tangent bundle of a sequential pro-manifold is represented by the diagram

TXo 2 TX, & TXy e

lpro lpﬁ lprz

Xo+ 22— X 2 — X,
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This diagram can be viewed as morphism pr : TX — X of the total pro-manifold
of the tangent bundle to the pro-manifold X. Just as for ordinary bundles, it will
usually be clear from the context whether X denotes the total pro-manifold of the
tangent bundle, or the tangent bundle as pro-object in vector bundles.

A single tangent vector of X is a point v : ¥ — TX of the total pro-manifold
of the tangent bundle. Every tangent vector v projects to its base point pr(v) :=
prov : % — X. The tangent space T, X at a point z : * — X is defined as the
pull-back

T.X —TX

-

—r X

which exists by Prop. 4.1.43| because the pullback (T,X); = * xXXPTX; =2 Ty, X
exists for every ¢ € J of the index category of a representing diagram X : J — Mfld.
This also shows that T, X is a pro-finite-dimensional vector space represented by
the diagram ¢ — T}, X;. Let Y be a pro-manifold represented by Y : § — Mfld and
f: X — Y a morphism of pro-manifolds represented by the family i Xy = Y.
Then the tangent morphism Tf : TX — TY is the morphism of pro-manifolds
(or pro-vector bundles) represented by the family T'f; : T X — TY;. It maps a
tangent vector v : * — T'X to the tangent vector va =Tfov:x—>TY.

A vector field on X is a section of pr : TX — X. The value of a vector field
v: X — TX at the point z : * — X is the tangent vector v, := voz : * — TX. The
following proposition describes vector fields on a sequential pro-manifold in terms
of the representing sequences.

Proposition 4.3.4. A vector field v on the sequential pro-manifold represented by
Xo & Xy & ... is represented by a family of smooth maps (v; : Xgay — TX:)icw
such that the diagram

Tog Toq

TX()(—TXl TXQ

Xk(O) #Xk(l) #Xk(g) — ...

commutes and for all 1 > 0 we have:
(i) If i < k(i), then pr; o v; is equal to Xy — X;.

(ii) If i > k(i), then o : X; = Xy is an isomorphism and pr; o v; its inverse.
Proof. The proposition follows immediately from Cor. and Prop. [4.2.13, [

All functors on vector bundles, such the functors mapping a vector bundle E
to the sum E @ E, the tensor square E ® E, exterior powers AFE, etc. extend
by Cor. to pro-vector bundles. Composing them with the tangent functor
extends these constructions to the tangent bundle of a pro-manifolds. For example,
A*T X is the pro-vector bundle represented by the sequence

AN TO'U AN TO'1

AT Xy E22 NFTX E228 NPT X —
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A section of ATX is a k-vector field on the pro-manifold X.

Remark 4.3.5. Constructions that are not functorial, do generally not extend to
pro-vector objects by applying them to every object of a representing diagram. For
example, mapping a vector bundle to its dual or to its space of sections is not
functorial.

A vector field v on a manifold M can be identified with its action on smooth
functions, which is a derivation of the R-algebra of smooth functions C*(M), i.e. a
linear map

C*(M) — C*(M)
fr—u-f,

that satisfies the Leibniz rule

v-(fg) = -flg+f(v-g).

The algebraic description of vector fields is typically the best for working with al-
gebraic structures in differential geometry. For example, it is easy to check that the
commutator of two derivations is a derivation, which shows that the space of vector
fields is equipped with a Lie bracket. Therefore, we would like to generalize this
point of view to the pro-manifold setting.

Mapping a smooth manifold to its algebra of smooth functions is a functor C*° :
Mfld — Alg°?, which by Cor. [4.1.35|induces a functor

C* : Pro(Mfld) — Ind(Alg)°?,

which maps the pro-manifold represented by X : J — Mfld to the ind-algebra
represented by (C* o X)P : J°? — Alg. Since mapping an algebra to its vector
space of derivations is not functorial, there is no derivation functor that we could
extend by Prop. to a functor on ind-algebras. Instead, we will show that an
ind-algebra can be viewed as an algebra object (i.e. a monoid) internal to ind-vector
spaces.

4.3.2 Vector fields as derivations

Proposition 4.3.6. Let X be the pro-manifold represented by the cofiltered diagram
X :J — Mfld. Then there is a natural bijection between sections of the tangent
bundle TX — X in pro-manifolds and the derivations of the algebra of smooth
functions C=(X) in ind-vector spaces.

For ordinary manifolds, the map from vector fields to derivations is obvious,
mapping the tangent vector at every point to its directional derivative. The difficult
part is to show that this map has an inverse, for which Hadamard’s lemma is used.
For pro-manifolds the situation is similar. The map from vector fields to derivations
is straight-forward, while for the inverse map we need the following lemma.
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Lemma 4.3.7. Let 7 : Y — X be a smooth map of manifolds. Let § : C*(X) —
C>(Y) be a linear map such that 6(fg) = (0f) (t%g) + (7*f) (0g) for all f,g €
C>®(X). Then there is a unique map v : Y — T X making the diagram

Y —TX

N

X
commutative, such that (0f)(y) =wv, - f for all f € C*°(X) andy €Y.

Proof. Let f € C*(X) and y € Y. Let (x',...,2") be local coordinates centered
at (7(y))" = 0. By Hadamard’s lemma f(z) = f(0) + hy(z)2", for some functions

h; € C*(X). At x = 0 we have h;(0) = gj,- (0). We thus obtain

of
oxt (0)

(6)(y) = {(hs)(r"a") + (7"h:) (02"}, = (2)(y)
= Uy I

where v, = (627)(y) . O

Proof of Prop.[{.3.6. We give the proof for a sequential pro-manifold X represented
by the diagram X, & X; & .... Furthermore, we will assume for simplicity that
the sequence is strict and reduced, every morphisms 7; is an epimorphism but not
an isomorphism. This is the case we will need later. The proof for a general pro-
manifold is analogous.

Let v : X — TX be a vector field on X. By Prop. m is represented by a
family of smooth maps v; : Xy — X;, ¢ € w such that

Xy —— TX;
Tiem lpr (422)
Xi
commutes. This defines a map
fr—=(y=uv, - f).

for every 7 € w. Since by Prop. the maps v; satisfy T'7; 0 v; = Vi1 © Th(i—1)k(i)
the maps 9; satisfy 9; o 7" = T,:(i_l) (i) © Gi—1- This shows that the family d; repre-
sents an endomorphism of the ind-vector space C'*° (X ), which is represented by the
diagram

O%(Xo) 25 C=(X,) T O%(Xs) 5 ...
The Leibniz rule for the directional derivative states that

vy fg=(vy- f)ar() + f(r(y)) (vy - 9),

were T = T j(;). Lhis shows that (J;)ic represents a derivation of C>(X).
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Conversely, let § be a derivation of C*°(X) represented by maps d; : C®(X;) —
C*®(Xk@))- Then lemma tells us that every d; is the directional derivative
given by a unique smooth map v; : X4 — TX;. Since the family d; represents a
morphism of ind-vector spaces, the family vl represents a morphism v : X — TX of
pro-manifolds. Moreover, since diagram (4 vcommutes, Prop. m implies that
v is a section of the bundle projection TX — X. O]

Corollary 4.3.8. The set of vector fields on a pro-manifold is a Lie algebra object
in Ind(Vec).

Proof. This follows directly from Props. and Prop. [£.1.63] O

To get a better intuition for vector fields on graded manifolds we will spell out
in local coordinates the structures we have on the pro-manifold represented by the
diagram

R? +— R! ¢— R? <—
where R — R’ is the projection to the first i-factors (cf. example [4.1.8)). Let
us denote this pro-manifold by R*. In local coordinates every submersion is a
composition of such projections, so that R* is the local model for a large class of
pro-manifolds. ***Ref to |[GP17]***

Let (z',...,2%) be the canonical local coordinates of R?. Then a point p : * — R™
can be identified with the infinite sequence (x!(p), z%(p), . ..). In fact, the underlying

set 1s -
=II®.
i=1
A function f : * — C®(R®) is a smooth function f € C(R?) for some 4, that is, a

function f = f(z!,...,z%) that depends smoothly on a finite number of coordinates.
A tangent vector is an element of the set

U(TR>) IITR

Let (32,...,7%) be the coordinate vector fields on R’. Then a tangent vector
Uy x> T]RC>o at the point p = (p!,p?,...) is given by an infinite sequence

0 0 0
HTR9<p8x1 2 , ..)Ev;%pl—i—zﬁ

Upwpl p@;ﬂ_‘_“'
for v;’; € R, where the infinite sum on the right hand side is a somewhat abusive

but more suggestive notation. A vector field v € X(R*) represented by the maps
v; : RF®D — TR? where we recall that k(i) < k(i + 1), is given by the infinite sum

RN
v=0v'— +1v*— -
Ox! Ox? Y oa
where v' € C=(R*®)) are the component functions of v. Note that the v* are different
from the maps v; representing the morphism of pro-manifolds, which are given by

0
ozt

K C AN O

21.05.19 (13)
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The action of v on f € C(R?) is given by

9]
v f—v—f+ to af.,
Oz!

which is a function in C=(R¥®). Let w be a vector field represented by the maps
w; : RO — TR, The Lie bracket of v and w is given by

o = (402w 2

The difference to the usual formula is that the sum over ¢ is infinite. While the
index j runs from 1 to co as well, the condition that all component functions v* and
w' are smooth functions on a finite-dimensional manifold ensures that the sum over
j is finite.

4.3.3 Cartan calculus

Assigning to a manifold the complex of differential forms is a functor 2 : Mfld —
dgAlg®® to differential graded algebras. By Cor. |4.1.35| this induces a functor

2 = Pro(2) : Pro(Mfld) — Ind(dgAlg)°?

When X € Pro(Mfld) is represented by the cofiltered diagram X : J — Mfld, then
Q(X) is represented by the filtered diagram J°P — dgAlg, i — Q(X;).

The category of graded vector spaces is a closed symmetric monoidal category
(see example m So by Prop. m Ind(grVec) is enriched over grVec. A
differential form on X is then given by a graded linear map o : R — Q(X). The
graded vector space of all differential forms is given by

Homy,g(grvec) (R Q(X>) = c%iij(X) = U(Q(X)) € grvec,
which is the underlying graded vector space defined in Eq. . Every differential
form « is represented by an element a € Q0’(X;), where p is the degree of a.
Q(X) is a ind-graded algebra. By Prop. we can view Q(X) as an algebra
in the category Ind(grVec) of ind-Z graded vector spaces. The product on Q(X)
will be denoted as usual by A. Let o, 3 € Q(X) be represented by a € Q(X;)

and f € Q9(X;). Since the index category J is cofiltered, there is are morphisms
t < k — 7 in J. They are mapped by the functor X to morphisms

Tik Tjk

Xi+— X — X
The product a A § is then represented by
Trew@ A TS € PT(XG) . (4.23)
This shows that A is graded commutative.

Proposition 4.3.9. The graded vector space Der(Q(X)) of enriched derivations
defined in Eq. (4.18) is a Lie algebra in grVec, i.e. a graded Lie algebra.
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Proof. This follows from Prop. [4.1.67 O

Proposition 4.3.10. The family of de Rham differentials d; : Q°*(X;) — Q*TH(X;)
represents a degree 1 derivation d in Der(Q(X)).

Proof. Each de Rham differential d; represents a degree 1 element in End(Q2(X;)), so
the family {d;} represents an degree 1 element d in End(Q(X)). Let o, 5 € Q(X) be
represented by o € QP(X;) and 8 € Q9(X;). Their A-product is represented by [4.23]

so d(a A () is represented by

dk(ﬁ:—ka A T;‘Z—kﬁ) = dkTit—kO‘ A Tj”;kﬁ + (_1)p7i*<—k;a VAN dkTJi—kﬁ

) J o ! (4.24)
= i pdia AT/ B+ (1)1 pa AT dsB

where we have used that the de Rham differentials commute with pullbacks. The
right hand side of Eq. (4.24]) represents da A 5+ (—1)Pa A df, which shows that d
is a derivation. O

For every tangent vector v,,, on a manifold M, let ¢, : Q' (M) — R, i, @ = (@, v,,)
denote the evaluation of 1-forms on v,,. Let f : M — N be a smooth map. Recall
that the pullback f*a of a 1-form « € Q'(N) is defined by ¢,,, f*@ = t1f4,, . This
means that for a tangent vector on the pro-manifold X represented by Vgt * — T'X;,
we have commutative diagrams

QLX) Q1(X;)

J
L'Uw,i
bog, 5

R

where 7 : X; — X, is a morphism of the diagram X : J — Mfld, so that v,; =
TT v, ;. This shows that the family of maps ¢, ; : 2'(X;) — R represents a morphism
of ind-vector spaces

CONX) — R,

by

T

which is the evaluation of 1-forms on X on the tangent vector v,. Let now v : X —
TX be a vector field represented by the smooth maps v; : Xjy;) — TX;. For every
a € Q1(X) we have the family of smooth maps

('L.UOé)Z' . Xk(l) — R
T +—— by, X

which defines a morphism of ind-manifolds ¢, : X — R. If « is represented by
o € Q1(X;), then ¢« is represented by (1,a0); € C™(Xy(;)), which is given explicitly
by

(Lv()é)i(l') = <a7(z)7 Ui,:c> .
where 7 : Xj;) — X is a smooth map of the diagram X. This map depends linearly
on «, so we obtain a morphism of ind-vector spaces

Lyt QX)) — C®(X),
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which is the pairing of 1-forms with the vector field v in the setting of pro-manifolds.

In order to extend the pairing to the inner derivative on higher degree differential

forms we use that (X)) is generated as graded commutative algebra by functions
and 1-forms. For every function f € C*°(X) we set

Lf:=0.
For a, 3 € Q'(X) we define
L(aAB):=t,aNB—aAb. (4.25)

Note that in order to represent the right hand side by a 1-form on X; we have to
first pull-back all factors along some smooth maps

X
Xy X Xi X

7

in the diagram X and then multiply and add them in Q(Xj;). Iterating (4.25)), we

obtain a derivation of (X). Let us summarize the result.

Proposition 4.3.11. Let v € X(X) be a vector field on the pro-manifold X. Then
the pairing extends to a unique degree —1 derivation in Der(Q(X)).

Proposition 4.3.12. In the graded Lie algebra M(Q(X)) let
Ly = [ty,d].
denote the Lie derivative with respect to the vector field v € X(X). Then
(Lo, tw] = L] s Lo, Lw] = Lo
[d, d] = [to, tw] = [£0,d] = 0,

Proof. The proof is completely analogous to the proof for ordinary manifolds. The

relations only have to be checked on the generators of the algebra 2(X'), which are
functions f and exact 1-forms a = df. Since d is a differential, [d,d] = 2d* = 0.
Since tylyf = 0 and e, = 0 for degree reasons, [i,,t,] = 0. Using the graded
Jacobi identity, we obtain

[Lvy d] = [[Lva d]a d] = [Lva [dv d“ - [[Lva d]a d]
= _[Lva d] )
which implies [d, £,] = 0. On functions, we have £, f = t,df =v- f. It follows that
(Lo, woldf =v-(w- f) —w-(v- f) =[v,w]- f
= L[v,w]df

Moreover, for degree reasons we have [£,, ty|f = 0 = ¢y f. Together this implies
the relation [£,, ty] = t[p,w)- Finally, we compute

[L'Uv Lw] = ['C’m [Lun d]] = [[va Lw]v d] - [Lv’ [Lw d]] = [L[v,wb d]
= '[J[U,w] )
which finishes the proof. O
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Terminology 4.3.13. The graded Lie subalgebra of m(Q(X )) generated by d, ¢,,
L, for all v € X(X) is called the Cartan calculus on the pro-manifold X.

Let us spell out the Cartan calculus on the pro-manifold represented by R? <
R! < ... in terms of local coordinates (z',z?%,...) as at the end of . Let
dx' denote the coordinate 1-forms. They are dual to the coordinate vector fields
Lo dx) = (53 . Every 1-form « is given by a finite sum

a=omdzt + ...+ a,dz" = a,da”,

where o;; € C®°(RF(). Let [ be the maximum of all indices {n, k(1),...,k(i)}. Then
we can view all functions as functions on C*°(R!) and therefore view a as a 1-form
on R!. Similarly, a general p-form is given by a finite sum

w = E Wiy, dx™ N N dT'

0<i1<...<p<n

where o, i, € C*(R*) for some k. The de Rham differential of a function f on
R"™ is given by by the finite sum
of of

df = =—da' + ... + =—da".

if B T+ + py= x
Since the sums are finite, the inner derivative with respect to a vector field, which
is given by an infinite sum v = v 8‘; is well-defined. For example, the pairing of v
with the 1-form « is given by the finite sum

Ly =vtag + ...+ 0"y, .

The upshot is that in local coordinates the de Rham calculus is given by the usual
formulas. The difference is that a vector field is generally given by an infinite
sums of partial derivatives. But since, functions depend only on a finite number of
coordinates and forms are given by finite sums over products of coordinate 1-forms,
all operations are well-defined.

4.3.4 Relation with Fréchet manifolds

Exercises
Exercise 4.1. Show that every category with a terminal object is filtered.

Exercise 4.2. Show that for every filtered category the diagonal functor J — J x J,
i~ (7,1) is final.

Exercise 4.3. Let ® : J — J be a final functor. Show that if J is filtered, then J is
filtered.

Exercise 4.4. Let D : Mfld — Difflg denote the functor that maps a manifold to
its natural diffeology. Consider the functor D : Pro(Mfld) — Difflg that maps a
pro-manifold X represented by X : J — Mfld to

D(X) := lim D(X;)

1€]
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Show that there is a natural isomorphism
Hompro(Mﬁd)(M, X) = HOIIeriﬂqg(DM, DX) s

for all M € Mild and X e Pro(Mfld). Is there an similar relation between statement
for Hompo(veaay (X, M) and Homopige (DY, DM)?



Chapter 5

The variational bicomplex

Heuristically, let us assume that we have a good functorial notion of a complex of
differential forms on the diffeological space F x M. Assume further that F' has
connected fibres and F is non-empty, so that j* is surjective by Prop. Then
we can identify the de Rham complex of J>*°F with the subcomplex

Qoe(F x M) := (X)) QI®F) ¢ UF x M).

Even though we will not describe this point of view in a mathematically rigorous
way, it provides us with a useful geometric intuition. Since the de Rham complex
on a product manifold is a bicomplex, viewing Q(J*F') as the subset of local forms
on F x M suggests that Q(J*F) ought to be a bicomplex as well.

5.1 The de Rham complex of the infinite jet bundle

Definition 5.1.1. Let F' — M be a smooth finite-dimensional fibre bundle. The
infinite jet manifold J*°F is the pro-object in the category of smooth fibre bundles
over the fixed base manifold M that is represented by the sequence

Jople pp e e,

The morphism of pro-manifolds 7 : J*F — M represented by the bundle projec-
tions m; : J'F — M is called the infinite jet bundle.

Remark 5.1.2. Since the functor of points U : Mfld — Set, M — Homyqa (%, M)
is faithful, so is its right Kan extension to pro-manifolds U : Pro(Mfld) — Set,
U(X) = Homp,o(da) (*, X), as we have shown in Cor. The underlying set of
the infinite jet manifold

Hompm(Mﬂd)(*, JOOF)  lim HomMﬁd(*, JlF)

=)

is the set of infinite jets of F' defined in Def. |3.4.1]
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5.1.1 Vertical and horizontal tangent vectors

The diagram of all jet evaluations

Fx M
lj(\x
JOF JF J*F

represents a morphism of pro-objects 7 : F x M — J*F, where F x M is the
constant pro-object. But in what category do the objects and morphisms live? In
a first step, we could view JF as a discrete manifold, so that 7°° is a morphism of
pro-manifolds. But this completely ignores the geometry of F. We will show that
the functional diffeology of J is the smooth structure that will be the most useful
for our purposes.

Recall that the functor Mfld — Difflg that maps a smooth manifold to its
natural diffeology is injective, faithful, and full. In other words, the category of
smooth manifolds is a full subcategory of the category of diffeological spaces. This
functor induces an embedding Pro(Mfld) — Pro(Difflg) that is also injective, full,
and faithful. ***Justify*** By this embedding, we can view a pro-manifold as a
pro-diffeological space.

Definition 5.1.3. The morphism of pro-diffeological spaces
JCFX M — JFF

represented by the jet evaluations j* : F x M — J*F (which are smooth by
Prop. |3.1.15)) will be called the diffeological infinite jet evaluation.

In Sec. we have seen that the tangent bundle of a product of two spaces of
fields decomposes into the fibre product of fibre-wise linear diffeological bundles. It
follows that the tangent bundle of F x M splits as

T(FxM)=(TFx M) Xgup (FxTM)

= (TF x M) @® (F x TM), (5.1)

where we use the Whitney sum notation for the fibre product, as it is standard for
ordinary vector bundles. By Thm. [2.3.2] the fibres of TF — F are vector spaces, so
that the isomorphism ({5.1)) splits every fibre of T'(F x M) — F x M into the direct
sum of vector spaces,

Tiom)(Fx M) =T, T T, M. (5.2)

We will call T, the vertical tangent space and 7,,M the horizontal tangent
space.

Since the infinite jet evaluation is a morphism of pro-diffeological spaces it has
a tangent map

T(F x M) 25 TJ*F

|

Fx My JoF
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which is a morphism of pro-diffeological vector bundles. The main result of this
section is that the splitting ((5.1)) descends along 75> to a splitting of 7J>°F. This
can be stated as follows.

Theorem 5.1.4. There is a commutative diagram of pro-objects in the category of
fibre-wise linear diffeological bundles

(TF x M) @ (F x TM) ———T(F x M)

a@ﬁl lTj‘X’

J®(VF)@® (J®F X3y TM) ——— T J>®F
where « is the infinite jet evaluation of TF and where B maps (¢, vVm) = (JS2©, V).

Terminology 5.1.5. J*(VF) < TJ*F is called the vertical tangent bundle
and J®F Xy TM — T J*F the horizontal tangent bundle of J*F.

The proof of Thm. [5.1.4] is constructive and the basis for the cohomological
formulation of the calculus of variations. First, we recall from Thm. that the
tangent bundle of J is given by T'F = I'*°(M, V F'), so that a tangent vector £, € TF
consists of a field ¢ € F together with a section £ of ©*V F. In local coordinates
&(m) = £%(m)32 o(m)» Where £ are local functions on M. There are induced jet
coordinates (z,u$,1%) on JF*VF, where

o amfa
ag (jng) = al

)
m

for |I| < k. This notation is motivated by the jet coordinates of a tangent vector
represented by a path ¢t — ¢;, which are given by

d
caf ko af -k
U =—u .
](ijO0> dt ( I(jmgot)>t:0
In terms of these jet coordinates we can compute the tangent map of the jet evalu-
ations explicitly.

Proposition 5.1.6. The tangent map Ty mi* + T,F x T, M — sz%soJkF of the
k-th jet evaluation at (p,m) € F x M is given in local coordinates by

k

) ; b )
-k _ sk if 7 a k41
(Tiomi*)ortm) = 32 i3 0hE) 5z + 0 (g + S WUl )5) - (53)

|7]=0 |I]=0

Proof. In Eq. (3.7) we have expressed the k-jet of a smooth path ¢t — (s, m;) in
terms of local jet coordinates. To compute the tangent map in terms of coordinates,
we have to compute the time derivative of the coordinates of these paths. This
yields

d

%xi (jk(¢t,mt)) = mé? (5.4)

”
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for the coordinates of M. For the fibre coordinates of J*F — M we obtain

d d (0l
dt uj (7* (g m ))‘t:07%< ox! (t’mt)>t=0

aa'l‘gpa aall‘gpa .

— (= S ( 5.5

( otox! (t,1m4) + oziox! (¢, 1) mt)t:O (5:5)
0H|¢3 a|1\+1¢84 i

= a0t gri (M) o,

where we have used the chain rule and that partial derivatives commute. Egs. ([5.4))
and ([5.5)) show that the tangent map is given by

k
deng e ;0 0
(Tigoamod") (o 1i0) =ty + D (u (T 20) + it 4 s 00) o
|1]=0 1

<_ + Z ug; (it eo) 83 )

[1]=0

= uf(jk, o) e

where first summand depends linearly on ¢ and the second linearly on 7. Using
the notation &, := (¢, ¥o) and v, = (mo, 1) for the tangent vectors represented
29.05.19 (15) by the paths, we obtain Eq. (5.3)). ]

Notation 5.1.7. Writing an element (§,,v,) € T,F x T, M as sum (£,,v,) =
§p + U, the tangent map on each summand can be written as

(Tom 3" = (Tomi®) (Eps Om)
(T(go,m)]k)vm = (Tgo,m] )(Otpa Um) :
When it is clear what the domain is, we will, therefore, denote the restriction of

T3 to the vertical and horizontal tangent spaces and tangent bundles simply by
T'7%°, for example in the following corollaries [5.1.8 and [5.1.9

Corollary 5.1.8. The restriction of Tj* to the vertical tangent bundle factors as

TFx M

Tk
Qg

JFVF) s TJPF

|

Jkp 4 gkp

where ay, = jhg is the k-th jet evaluation of TF = T°(M,VF) and where 73, is a
morphism of fibre-wise linear diffeological bundles given by

d
T (Jmspo) = 7 —(Jhet) 1y

for every smooth path t — @y of local sections of F'.
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Corollary 5.1.9. The restriction of T'j* to the horizontal tangent bundle factors as

FxTM
| X
Br+1

JHUE ) TM -2 TJFF

| |

Jetip L gkp

where By sends (o, vy,) = (j¥ o, vy,) and where oy is a morphism of fibre-wise

linear diffeological bundles given by

. . d .
0k (im0 110) = 7 (Jme$) 1o

for all smooth paths t — m; € M.

Proof of Thm.[5.1.4 First, we recall that for any sequential pro-object represented
by the diagram X, & X; & ..., the family of morphisms v}, : X1 — X} repre-
sents the identity morphism of X (see example . In particular, the family of
forgetful maps pry,;; : J k1EF — JFF represent the identity of J°F and the family
Pryi1 g 0 STV E) — J¥(VF) represents the identity of J>°(V F). This shows that
the family 7, : J*VF — T J*F and the family

TkOPIk4+1,k

JHYVF) TJ[’F
Jeetp PR gkp

represent the same morphism of pro-vector bundles covering the identity of J*F.
The Whitney sum of the pro-vector bundles J*(VF) — J*F and J*F xy,
TM — J*F is given by the pull-back over J*F. By Prop. 4.1.43| the pullback can

be computed level-wise. That is, the pro-vector bundle
JOVEF)® (JPF xpy TM) := J°(VF) X joop (JF X3 TM)
is represented by the sequence of the pullbacks of vector bundles indexed by k € w,
JFVF)@ (JYF < TM) = JX(VF) X jip (JF x30 TM)

with the obvious forgetful maps from level (k + 1) to level k. The map f; :=
(Tk © Prgy1 k) @ 0x is @ morphism of vector bundles

JHYVEY @ (JFF s TM) -2 TJ*F

| |

JEHLE ST JEF
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The family (fx)re, represents a morphism of pro-objects in the category of fibre-wise
linear diffeological bundles,

(TF x M) & (Fx TM) ——T(F x M)

| -

JXVE @ (J®F x5 TM) ——TJ®F

where the left vertical map is given according to Cor. and Cor. by a @ 5.
It remains to show that f is an isomorphism, which we will do by constructing
an inverse. First, we note that

JEVF) X i (JVF X0y TM) =2 JY(VF) x5 TM .
Let gy : TJ*EF — JX(VF) x 3y TM be defined by

L .0 - a i k+1 9 i 0
<(Z e m@xl’)jr’;ﬂw) B (Z (&7 = vhi (p))a_wf’vmaxi%ﬁ@f

[]=0 []=0

The family g represents a morphism of pro-vector bundles

g:TJ®F — J®°(VF)® (J°F xy TM).
The composition g o f is represented by the family (g o f)r = gx © frs1. In local
coordinates this map is given by

k+2

L9, 0
(g © frs1) ((Zfza ) maxz) ) = (%gla_u%,vmaxi>j%@7

which shows that (g o f)x is a morphism of the diagram representing J>(VF') &
(J® Xy TM). It follows that go f is the identity morphism. Similarly, we can show
using local coordinates that fj o gry1 is a morphism of the diagram representing
TJ*F, so that f o g is the identity morphism as well. We conclude that f is an
isomorphism. O

Warning 5.1.10. The morphisms f; that represent the splitting f of the pro-vector
bundle TJ*F — J*F are surjective but not injective, so that f; does not induce
a splitting of TJ*F — J*F for any k < co. This is one of the main reasons why we
have to work with the infinite jet bundle.

Remark 5.1.11. A vector v € Ty ,JFF is in the image fi,(J*M'F x5 TM) of the
(k + 1)-level of the horizontal tangent bundle if and only if there is a local section
such that v = (T,,,5%1) X, for some X,, € TM. (This implies that j% ¢ = j* ¢, but
v will generally depend on the (k + 1)-jet of ©.) The span at every fibre of T J*F of
all vectors in the image of f; is called the Cartan distribution on J*F.

A tangent vector v : x — TJ*F is called vertical, if it factors as * —
J®(VF) — TJ*F through the vertical tangent bundle. Analogously, v is called
horizontal if it factors as x — J¥F x,y TM — TJ*F through the horizontal
tangent bundle. A vector field is called vertical (horizontal) if all its values are. As
corollary to Thm. we obtain the following statement.
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Corollary 5.1.12. The vector space of vector fields on J*F decomposes as
X(J®F) = Xyert (JCF) @ Xpor (JCF) (5.6)

into the spaces of vertical and horizontal vector fields. Moreover, we have the natural
isomorphisms of vector spaces

Xvert(JPF) 2 T(J®F, J®(VF))

Xhor(J*F) =2 Hom(J*F,TM).
Cor. [5.1.12] means that every vector field v € X(J*°F') has a unique decompo-
sition v = Vyert + Unor iNto a vertical and a horizontal vector field. Let us compute

this decomposition in local jet coordinates, in which a vector field v € X(J*F') has
the general form

v—v—+z (5.7)
[1]=0

where the components v* and v$ are functions on J*F', that is, each is a smooth
function on some finite jet manifold. From Eq. (5.3) we deduce that the tangent
map of the infinite jet evaluation is given by

(T5%) (v vm) = 3 @0(55€) (f (2~ > %a)

[1]=0 [1]=0

From this equation we can read off an explicit formula for the decomposition of
Cor. 5.1.12] The horizontal component is given by

7
Uhor = U Dia

where

D; = W+Z ”8 . (5.8)

[1]=0
For the vertical component vyery = v — oy We obtain

- a i,,Q 9
Uvert = - il A o
t Z('UI v'ug;) ous
|7]=0
Since v¢ and v* are arbitrary, a vertical vector field is of the general form Z| Ij=0 &7 Bu
with arbitrary coefficient functions £ € C*°(J>*F).
Remark 5.1.13. Let f € C®°(J*F) be a local function. Then D;f is a function

defined on a local coordinate neighborhood of J**1F. When we evaluate it at a jet
represented by a local section ¢, we obtain

0 "9 e 9
(DE ) = 0 + Y (5 T ) i)

|7|=0
0 ,

In other words, D; acts on holonomic sections of the jet bundle as the partial deriva-
tive with respect to z°.

(5.9)
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Remark 5.1.14. The space of vertical vector fields is involutive, i.e. closed under
the Lie bracket. A straightforward calculation shows that [D;, D;| = 0, which im-
plies that the space of horizontal vector fields is involutive, as well. The horizontal
distribution is called the Cartan distribution on J*F'

Remark 5.1.15. The map o : J®F Xy TM — TJ*F can be viewed as the
horizontal lift of a connection on T'J*°F', which is called the Cartan connection.

5.1.2 The variational bicomplex

The splitting of pro-vector bundles of Thm. induces a splitting of the ind-vector
space of 1-forms. More precisely, the statement is the following.

Corollary 5.1.16. Let gy : TJ*F — JY(VF) @ (J¥F x5 TM) be the morphisms
of vector bundles defined in the proof of Thm. that represent an isomorphism of
pro-vector bundles. Let J*(V*F) — J*F denote the dual vector bundle of J*(VF) —
JFE. Then the family of linear maps

g T(JPF, J*(V*F)) @ T(J*F, J'F x 3 T*M) — QY(J*'F)
represents an isomorphism of ind-vector spaces.

Proof. Every isomorphism of pro-vector bundles induces an isomorphism of sections
of the dual bundles. Therefore, the corollary follows from Thm. O]

The maps g, are surjective but not injective. Therefore, g; is injective but not
surjective, so that g; does not induce a splitting of Q!(J*F) for any k > 0. This is
the dual statement to what we have pointed out in warning for the tangent
bundles. But since gj is injective, we can identify the two summands of the domain
of g; with their images under g; in Q'(J*F).

Definition 5.1.17. The vector spaces
QYR = gi T(JFF, JH(VF))
QU(JFEY = i T(J*F, JAF x5y T*M) .
for all £ > 0 are the vector spaces of vertical and horizontal 1-forms.

From Def. |5.1.17| we obtain for the subspace of (p, ¢)-forms

QPUJVF) = gi D(JVE, NP JF(VEF) X gep (JVF xp AT M)

5.10
= gy D(J*F, AP JF(VFF) x NT*M)) . (5.10)

We point out once more that Q°(J*F) Q%1 (J*¥F) is a proper subspace of Q(J*F)
for every k > 0, so that

P oIt F) ¢ Q(JFF)
n=p+q

is a proper subspace as well. In other words, there is no natural splitting of the
space of 1-forms and no natural bigrading of the space of forms on any of the finite
jet manifolds J*F.
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Let QP4(.J>°) denote the ind-vector space represented by the sequence
QPI(F) C QPUJIF) C QPI(JPF) C ... .
Then Cor. implies that we have a decomposition of ind-vector spaces
O"(J¥F)= @ Q(J*F). (5.11)

n=p+q

For calculations we need to determine the local coordinate form of vertical and
horizontal forms. We begin with the following observation.

Lemma 5.1.18. A I-form p € QY(J®F) is vertical if and only if t,u = 0 for all
v € Xpor(J®F). It is horizontal if and only if Loy = 0 for all v € Xy (JCF).

Proof. This follows from the non-degeneracy of the pairing of vector fields and 1-
forms on J*F'. [

Lem. [5.1.18| can be used to compute the local form of vertical and horizontal
1-forms in jet coordinates. Let d denote the de Rham differential of Q(J*1F). A
1-form p € Q(J*LF) is given locally by

k+1

p= pdz’ + Z pl duf (5.12)
17]=0

where we have written out the sum to emphasize that it is finite. As C®(J®F)-
module, Xy (J*F') is locally spanned by the basis of local vector fields {D; } defined
in Eq. (5.8). The condition for i to be vertical is therefore

k+1

0=tpp=pi+ > ufuf.
\1]=0

We can write this condition as

k
pit D ufani = Y ufng

[1]=0 [T|=k+1

The left hand side does only depend on jet coordinates up to order k£ + 1, whereas
the right hand side also depends linearly on the jet coordinates of order k+ 2. Since
the equation must hold for all values of jet coordinates of order k+ 2, it follows that
both sides must vanish independently. The right hand side vanishes if u§ = 0 for
|I| = k + 1. The vanishing of the left hand side yields an expression for y; by the
1. We conclude that p is vertical if and only if it is of the local form

k
po=Y_ pf(duf —uf da’) = pg0}

[]=0

where

o, «@ @ 7

The 1-forms 0% € Q(JI+1F) are linearly independent at every point, so that they
are a local basis of the C°(J/F! F)-module Q'°(JII1F).
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Terminology 5.1.19. In the language of variational calculus the 1-forms 6 are
called contact forms.

As C*(J*F)-module, Xyer (J®F) is locally spanned by the infinite sums of the
vertical coordinate vector fields {%}. This shows that the conditions
I

0=t 0.1=tq

for 11 to be horizontal are satisfied if and only if p is of the form pu = p;dzt. We
have shown the following.

Lemma 5.1.20. A local 1-form p € QY (J®F) given in local coordinates by Eq. (5.12)
decomposes as [t = [iyert + fnor tNL0 its vertical and horizontal components

Hvert = /jlie? ) Hhor = (Mz + ,U,éu?’i)dxi . (513)

A form w € QP9(J*F) is given in local coordinates by a finite sum

I,

W= walw"apajl?"':jp

0% A AT AR AL A

I

: I, L
where the coefficients w,\""," . . are functions in C*°(J*F).

Let propq : Q(J®F) — QP4(J*F) denote the projection onto the vector space
of degree (p, q)-forms. The vertical component ¢ and the horizontal component d of
the differential d are given by the linear maps

P QPA(JOF) — QPTLI(J®F) | 6P = propess o d|gpa
dP9: QP JOF) — QP J®F) | dP? = propgr o dlgea .

Proposition 5.1.21. The bigraded vector space with the vertical differential § and
the horizontal differential d is a differential bicomplex.

Proof. This is a standard argument. We must show that d = § 4+ d which implies
that 02 = 0, d*> = 0, and dd = —dé. For d acting on functions this is clear by
definition. For d|qo: we have

d|Q0,1 = (prQQ,O + Proiz + pI'Q(),Q) o) d|Q0,1
= Prgz20 © d’QO,l +0+d,

so we have to show that prgzo o d|gor = 0. Let u € Q%1(J°F). Evaluated on two
vertical vector fields v, w € X(J®F)yer the differential can be written as

(du)(v,w) = v - p(w) —w - p(v) = p(fv,w))
= — (v, w]),

where we have used that u(v) = 0 = p(w) because p is horizontal and v, w vertical.
We see that praeo o dlgor = 0 iff X(J®F)yey is involutive. Analogously, prgeez o
d|gor = 0 iff X(J®F )y is involutive. The spaces of vertical and horizontal vector
fields are both involutive (Rmk. [5.1.14)), so that dw = éw + dw for an arbitrary 1-
form w. Since functions and 1-forms generate the graded algebra Q(J>°F), it follows
that d = § + d. O
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We can depict the variational bicomplex by the diagram

Ql’O(JOOF> d Ql’l(JooF) d .. _d OL.top JooF) (5.14)

N a

QO’O(JOOF) d QO,l(JooF) d ... _d QO,top(JooF)
where top = dim M.

Terminology 5.1.22. The vertical differential ¢ is also called the variation. The
horizontal differential d is also called the spacetime differential.

Let us compute the differentials in local coordinates. From Eq. (5.13]) we obtain

62" = (da')yery = 0

dz’ = (dz")per = da’
uf = (du)yers = 07
duf = (duf)nor ug ;dx’

For a function f € Q%°(J*F) we thus obtain

of of of
= = @ 1
5f ( d _'_ ou ad )vert au? 5u1 ’ (5 53)
of f of of .
d -dz' + ——du ——dx" ~dx = (D, f)dx". .15b
[ = (Garde' + g ih),,, = s’ +iiggde’ = (D). (5150)
Using the relations 6> = 0, d> = 0, and 6d = —dd, we can easily compute the

differentials of the coordinate 1-forms,

§(dz") = —déz' =0

d(dz") =0

d(oug) =0

d(0ug) = =6(duf) = —0(uf dz") = —duf,; A da'.

Using the formulas for the differentials of functions and coordinate 1-forms, as well

as the fact that 0 and d are derivations, we can compute the differentials of an

arbitrary form w € QP(J*F') which can be expressed in local coordinates as
w=wi Sug! A AGupt Adxt AL A dat (5.16)

a1...0p11...0q

Here the coefficients willfo’jpnl are functions on J*°F. Note that the sum is finite,

i.e. there is a k such that the terms vanish for |I| > k.

04.06.19 (16)
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The inner derivatives of the differentials with respect to the coordinate vector
fields are

Lo drt = 5;
ozJ
Lo dz' =0
Oug
Lo duf = —uj;

oxJ

sug = 0967 .
L% U’I 891

BuJ

5.1.3 Strictly vertical and horizontal vector fields

So far we have seen that the product structure of ¥ x M induces a splitting of
the tangent bundle of J*F into a horizontal and vertical subspace. The product
structure F x M also enables us to lift vector fields on F and vector fields on M
to vector fields on &F x M, using the trivial connection of the bundles F x M — F
and F x M — M, respectively. These lifts can be characterized infinitesimally as
follows.

Proposition 5.1.23. Let X XY be a product of manifolds. Let dx and dy be the
differentials of the bicomplex Q(X x Y). A wvector field v € X(X x Y) is the lift of
a vector field on X if and only if [1,,dy] = 0.

Proof. In local coordinates (z',... 2P, y', ..., y7) a vector field v is of the form

Y I
U_a(‘rvy)gxi +b<m7y)a_yza

which is the lift of a vector field on X iff the functions 376”,1 =0 and b' = 0. For any
function f € C*°(X xY') we have

of

ror ] = vy [ =V 5

This shows that [i,,dy|f = 0 for all functions f iff ¥ = 0. For a l-form pu =
a;(z,y)dz" + Bi(z,y)dy’ we have

[y, dy i = (Lody + dyty)p

—_ (ga?‘ Y’ : 8@ dy’ A dy’ ) +dy(a'a; + b'3;)
- (go‘;(w i gidy’) + *BZ (b7dy b"dyj))

<g—;ai +a ga; + S—Zﬁi +b 2[3’;)
— ZZ] aidy’ + (gj’bfdxi — g—ijbidyj o = Bidy J) :

The first term vanishes for all 1-forms  iff a* does not depend on the 3*. The second
term vanishes iff b = 0.
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We conclude that v is a lift of a vector field on X iff [i,,dy] annihilates all
functions and 1-forms. Since functions and 1-forms generate Q(X x Y') as R-algebra
and since [i,, dy] is a derivation, this is the case iff [i,,dy] = 0. O

Definition 5.1.24. A vector field v € X(J*F) will be called strictly vertical if
[ty,d] = 0 and strictly horizontal if [¢,, ] = 0.

Remark 5.1.25. For a strictly vector field v as in the proof Prop. [5.1.23| we obtain
0 = [ty, d]x® = 1,dz®, which shows that it is vertical. Analogously, a strictly hori-
zontal vector field v satisfies 0 = [1,, 0]uy = 1,0ug, which shows that it is horizontal.

Proposition 5.1.26. We have the following graded Lie brackets:

e, 0] = Le,  [Leste] = ey, [Les Lol = Liger
[0,0] = [te, ter] = [Lg, 6] =0,

for all strictly vertical vector fields &, £,

[LX7 d] =Lx, [LX, LX'] = UX,X"> [[/X7LX’] = [J[X,X’] )
[d7d] - [LX,LX'] = [LXad] = 07

for all strictly horizontal vector fields X, X', and

6,d) =[5, 1x] = 5, £x] = 0
[te, d] = [te, tx] = [1e, £x] =0
[Lf’d] = [L&LX] = [L&LX] =0.

In other words, we have two commuting Cartan calculi, the vertical and the hori-
zontal Cartan calculus on Q(J*F), each satisfying the relations of Prop. |4.3.12

Proof. The relations follow directly from the relations of Prop. 4.3.12] from the fact
that we have a bicomplex (Prop. [5.1.21)), and from the definition [5.1.24] of strictly

vertical and horizontal vector fields. O

Lemma 5.1.27. A vector field v € X(J*®F) is strictly horizontal if and only if it is
of the local form
v='(z)D;,

for smooth functions v* € C*°(M).

Proof. Since [i,,0] is a derivation, it is zero if it vanishes on functions f and the
coordinate 1-forms dz' and duf, which generate the algebra Q(J*F) locally. In

7

local coordinates v is given by Eq. (5.7]), so we obtain

of « .
(Lo, 0] f = Lvﬁ_u?(sul

of

= 8_u?<v? —ug '),

3
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where we have used that duf = 67 = duf — u¢;dz’. This vanishes for all functions
iff vff = ug ;' ie. iff v is of the form

v="0" + ug v’ =v'D;,

oxt 8_11?

which means that v is horizontal. Next, we obtain
Ly, 0]da" = 1,6da" + Ou,da’

i

_Ov o

= —buf,
oug

which vanishes iff v* does not depend on the fibre coordinates u¢. Finally, we get
[y, 0]0UuT = dtyuf + d(L,0us),

which vanishes when v is horizontal such that the expression in parentheses van-
ishes. This shows that the last equation does not yield an additional condition. We
conclude that v is strictly horizontal if it is horizontal with the coefficient functions
v® depending only on the base coordinates z°. O

Conceptually, strictly horizontal vector fields in X(J*°F') play the role of the lifts
of vector fields on M to vector fields on F x M. This interpretation can be made
rigorous by observing that the Cartan distribution can be viewed as Ehresmann
connection on J*F — M. The corresponding lift of vector fields is given in local

coordinates by
X(M) — X(J*F)

v (z) — v (2)D; .

ox’
The analogous interpretation of strictly vertical vector fields as lifts of vector fields
on JF is more subtle, since J*°F is not a bundle over F.

5.1.4 Equivalence of strictly vertical and local vector fields

Definition 5.1.28. A vector field € : F — TF projects to a vector field on J*F
if there is a diagram of pro-diffeological spaces

Fx M0 1« M
jml lij (5.17)
JXF — 2 TJ>®F
where TF x M C TF x T'M is the subspace embedded by the zero section of T'M.

The diagram ([5.17)) is similar to the condition for £ to be a local map. In fact,
in Thm. we have shown that TF = T'>°(M, V'F), so that a vector field on JF is
given by a map

E:T°(M,F) —T>*(M,VF), (5.18)

such that (prp).& = idy, where prp : VF — F is the bundle projection.
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Definition 5.1.29. A vector field on JF is called local if the map ([5.18) is local in
the sense of Def. B.2.11

Terminology 5.1.30. ***Other uses of local vector field***

Remark 5.1.31. Lem.|[6.1.18|shows that there is a good supply of local vector fields.

Remark 5.1.32. By definition, a local vector field £ : F — T3F descends to a
smooth map vy : J¥F — V' F covering the identity on M. Since (prp).¢ = idp, the
map vy covers the identity on F.

Terminology 5.1.33 (***Ref to Anderson™**). A smooth map vy : J*F — VF
covering the identity of F'is called an evolutionary “vector field”.

Remark 5.1.34. An evolutionary “vector field” vy : J*F — VF is not a vector
field on J*°F', which is why we put quotes around it. But it induces a vector field £
on F given by &, := vy o j¥p for all ¢ € 7.

In order to view a local vector field on F as a vector field on J*F', we have to
prolong the corresponding evolutionary “vector field” vy : J*F — V F. In Prop.
we have used the maps

JHHE SRRy I gy R (5.19)

Where uy : JFTF — JY(J*F) is the embedding (3.9), that maps j. ™ to jl (7%¢),
and jlvg : JY(J*) — J'VF is the I-th prolongation of vo defined in Prop.|3.1.20, The
maps represent a morphism of pro-manifolds J*F — J*VF. In order to
obtain a map to T'J*°F', we need to use the map of Cor. |5.1.8|

Definition 5.1.35. Let vy : J*F — VF be a map of bundles over F, i.e. an
evolutionary “vector field”. The the smooth map

o s JEHE S R Ry I gy Ry T TR
for [ > 0, is called the [-th prolongation of vy.

Proposition 5.1.36. Let vy : J*F — VF be a smooth map covering the identity
of F, i.e. an evolutionary “vector field”. Then the family v, : J*"F — TJ'F
of smooth maps represents a vector field v : J*F — TJ®F, which is called the
infinite prolongation of v.

Proof. We have the following row of commutative squares

JhHiHLp LR Lt1,k Jl+1(JkF) JlJerF Ti+1 TJHIE
e
g gy I iy i

where the unmarked vertical arrows are the obvious forgetful maps. The commuta-
tivity of the outer rectangle shows that the prolongations v; represent a morphism
v:JOF — TJ*F of pro-manifolds.
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In order to show that v is a section of TJ*F — J*F we consider the following
diagram:

TR gy 2 gy i

Jprkﬂ,l ljlprk,o ljler lprﬂF

JF—2 gp 4 L gpp 4, JF
It follows from the definition of ¢ of Lem. that the first square commutes.
By assumption, vy covers the identity, i.e. prp o vg = pry . By applying the [-th
prolongation functor we obtain j'prp o jlug = j'pry o, which is the commutativity of
the second square. The commutativity of the third square follows from the definition
of 7 of Cor.[5.1.8] From the commutativity of all squares follows the commutativity
of the outer rectangle, which is the condition of Prop. for the maps v; to
represent a section of TJ*F — J>®F. O]

Theorem 5.1.37. Let F' — M be a smooth fibre bundle. Let v : J®°F — T J®F be
a vector field on the pro-manifold J*F'. The following are equivalent:

(i) v is strictly vertical.
(ii) v is the infinite prolongation of an evolutionary “vector field”.

(11i) There is a local vector field on F that projects to v.
Moreover, the local vector field projecting to v is unique.

The situation of [5.1.37] can be summarized in the following diagram of pro-
diffeological spaces:

Fx M-8 g

- I

JXF —Y  J°(VF)

| |

JVFP—2 S VF

Here, we have used that a vertical vector field v : J*F — TJ*F takes its val-
ues in the horizontal tangent space V(J®F) < TJ*F as defined in Thm. [5.1.4]
Thm. [5.1.37| states that given a strictly vertical vector field v, there is a unique &
that makes this diagram commutative. The map vy is not determined uniquely by
v. It is unique only if we require the jet order k to be minimal. In general, a local
vector field ¢ does not determine v or vy uniquely. In fact, if F = (), then any vy
and its prolongation v will make the diagram commutative. If we assume the jet
evaluations to be surjective (see Lem. , then v is uniquely determined by &
and vy if we require k to be minimal. The proof of Thm. relies on the following
technical lemmas.

Notation 5.1.38. For every multi-index [ = ([y, ..., [,) and n = dim M, we denote
D;:=Dhpl...p

In particular, D;, ;. = D;, ---D

k i
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Lemma 5.1.39. A vector field v € X(J®F) is strictly vertical if and only if it is of

the form
0

v= (D% ——,

(D1 )0u?

for some functions v® € C®(J®F).

Proof. Let v = ’U?% be an arbitrary vector field on J*F'. Locally, the variational
I

bicomplex is generated by the coordinate functions x?, u¢ and the coordinate 1-forms
dxz, du¢. The operator [i,,d] is a derivation, so that it suffices to check the relation
[ty, d] = 0 on the generators. On z’ we obtain the condition

Ly, d]2" = t,da’ =v' =0,

so that v must be vertical, as already noted. On u§ we obtain [¢,, dJuf = t,duf =
wuf da’ = ufw' = 0, which follows from the first condition. On the horizontal
coordinate one forms we have [, d]dx" = di,dx’ = dv' = 0 which also follows from
the first equation. On the vertical coordinate 1-forms we get

[y, d)0uT = t,déug + d(1,0u?)
= 1,(=0uf; A dzx') + dvf
= —of; da’ + v'6uf,; + (Dif) da’ .
Assuming that v* = 0 we obtain the condition
vf; = Dt

By induction, this implies that (S D;, ---D; v = D, ;v* This proves the
lemma. O
Lemma 5.1.40. Let f : F — F be a map of smooth fibre bundles over M cover-
ing the identity of M. Let x' be local coordinates on a neighborhood U of m, u®
fibre coordinates of F, and @° fibre coordinates of F', both over U. Then the k-th

prolongation j* f - J*F — J*F is given in the induced jet bundle coordinates by
I/ =Dif?,
for all multi-indices I with |I| < k, where f¥ = af o j*f.
Proof. In Prop. the k-th prolongation j* f was defined as the map that sends
g% o to j% (f o ). In local coordinates we have
(5, 03N se) = ;i ((*1)(G50))
= ﬂzu (]laf(f © 90))
_ d(fPoy)
Jxh - .. Qxh
07t 0(ffoy)
ox® .- Qrh—1 Ok

= W[(anﬂ) o j'¢]

= g (D Dif?) 0 %]

= (Di, - Diyf*) (Ga0)
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where we in the last step we have repeatedly applied Eq. (5.9). Note, that while the
right hand side depends only on the [-jet of ¢, it can be viewed as function on the
k-jet. O

Lemma 5.1.41. Let £ : F — TF be a local vector field that descends to a smooth
map vy : JEF — VF. Then € projects to the infinite prolongationv : J*F — T J®F

of vg.

Proof. As we have already noted in Rmk. [5.1.32] vy is an evolutionary “vector field”,
i.e. it covers the identity of F'. Moreover, as we have noted in Rmk. [5.1.32] £ is given
in terms of vy by the relation

Eq(m) = vo(Ginp) (5.20)

for all (p,m) € F x M. Let §, € T,J be represented by the path t — ¢, in T,
i.e. &, = ¢. Then the tangent map of j' : I*°(M,VF) — VF is given by

(T5)(€prm) = (T3 (g0, m) = (o)
= T1(Jp0) = (&)
= 711 (ji(vo 0 j*¢))
= (110 j'v 0 5" (%)) (m)
= (10 j'vo 0wk 0 5 (g, m)
= u(jn"0),

where we have used the definition of 7; from Cor. and the definition of ¢ ; from
Lem. [3.1.27], This shows that the diagram

F o M-S pg oy

jk+lJ JTJZ

JHE 2 S TJF
commutes for all [ > 0. We conclude that £ descends to the vector field on J*®F

that is represented by the prolongations v;. O

Proof of Thm.[5.1.37 Let vy : J*F — VF be an evolutionary “vector field” given

in local bundle coordinates by vy = US‘%. It follows from Lem. |5.1.40| that the

infinite prolongation v = v?% of vy is given by v¢ = Dv§. Lem. |5.1.39 now
I

implies that (i) and (ii) are equivalent.

Let £ : F = T3, £ — &, be alocal vector field that descends to the smooth map
vy : JEF — VF. In Rmk. we have already noted that v, is an evolutionary
“vector field”. Conversely, we have noted in Rmk. that for every evolutionary
“vector field” vy, there is a unique vector field £ on F that descends to vy. Moreover,
we have shown in Lem. that & projects to the infinite prolongation of vy. We
conclude that (ii) and (iii) are equivalent. O
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5.1.5 Basic forms

Definition 5.1.42. A differential form w € Q(J*F) is called vertically invariant
if Lew = 0 for all vertical vector fields £ € X(J*F). A horizontal form that is
vertically invariant is called basic.

Proposition 5.1.43. A differential form w € Q(J*F) is basic if and only if it is
the pullback of a form on the base manifold M by the projection J*F — M.

Proof. Let w € Q%¢(J*) be a horizontal form. In local coordinates we have w =

----------

the Lie derivative with respect to a vertical coordinate vector field we get

Liw:i —(d+0)w

9 i\ da i
_ % - ((Djwu ,,,,, iq)d‘r AdTTNde
I
S | PSP ; '
o ou';
111
B 0 Wuo,[.--ﬂq dr™ A ... A dxte
oug

We conclude that, in local coordinates, w = w;,, ,;, (z)dz™ A ... Adz's, that is, w is

.....

the pullback of a form on M. For a general vertical vector field & = 5?6%, we have
I
Lew = tedw = £8(3% — dw) = 0, so we do not obtain an additional condition on
I
w. [

Remark 5.1.44. We can define a form w € Q(J*F) to be horizontally basic if
Lxw = 0 for all horizontal vector fields X € X(J*°F). However, it turns out
that this condition is only satisfied by constant functions, so that it is not a useful
concept.

5.2 Cohomology of the variational bicomplex

In our setup, the variational bicomplex consists of a bigraded commutative ind-
algebra (J*F') with the vertical and horizontal derivations J, which are elements
of the graded Lie algebra of internal derivations Der(Q2(J*°F')). In cohomology it is
more common to view the ind-bigraded algebra, which is represented by the sequence
Q(J°F) = Q(J'F) = Q(J*F) — ..., as filtration

QUF) c QU'F) c Q(JPF) C ... C QJ>F),
of bigraded algebras, where
Q(J®F) := colim Q(J*F)

kew

is the colimit in bigraded algebras. The multiplication of the algebra satisfies
QIFFYQ(J'F) c QuGh(JOF)
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and the differentials satisfy
SQPU(JFE) C QPEY(JER)  dQPY(JFE) C QPO TR R

as can be deduced from the local coordinate expressions for § and d. Viewing the
variational ind-bicomplex as filtered bicomplex makes allows us to apply the method
of spectral sequences without modification, although we will need only a very simple
version of it.

5.2.1 Cohomological partial integration

Let o, 5 € Q(M) be compactly supported differential forms, such that da A g €
QfP(M) is a form of degree top = dim M, so that it can be integrated over M.
Then d(a A B) = da A B+ (—1)I*la A dB, so that by Stokes’ theorem

/Mdoz/\ﬁz—/M(—l)o‘|oz/\dﬁ+/aMa/\5.

If OM = 0, then the second term on the right hand side vanishes, so that we obtain
the coordinate free version of partial integration. The procedure does not depend
on taking the integrals and can be stated in terms of the integrands as

[do A B] = —[(=1)a A dp]

where the brackets denote the cohomology classes. This formula, which holds for
forms with arbitrary support and in all degrees, can be viewed as cohomological
version of partial integration. It generalizes to the d-cohomology classes of the
variational bicomplex and is an important step in the computation of its horizontal
cohomology classes.

Using the local coordinate formulas for d, we get

Lp,6uf = (1p,d+ dup,)ouf = vp,(—uf; A dz’)
= oug; .

(5.21)

Notation 5.2.1. For every multi-index I = (I3, ..., I,) and n = dim M we denote
Lp, = (£p,)" (Lpy)" - (Lp,)"™.
=Lp, - Lp, -

From Eq. (5.21])) we deduce the formula

In particular, £p,

ouf = Lp,ou”.
A form w € QP*P(J*F) for p > 0 can be written locally as
w=oug AL,

where the (p — 1, top)-forms 7! are given by

- %(a(z? 40.)) , (5.22)
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Using the derivation property of the Lie derivative we get

ous g ATL = = (£p,, 0us,

11500yl
.
11,08 i1, Zk—1>/\ o

_ « 81 4e eyl a 1] 5eeeylf
= —ougy . NLp, Ty +Lp,, (Oug, o [ NTo ),

Vlyeeslfe—1

(5.23)

where there is no summation over repeated indices. Since 7. is of top horizontal

degree, the second term on the right hand side is exact, so that Eq. (5.23]) can
be viewed as a cohomological version of partial integration. Applying Eq. ([5.23])
recursively to the first term on the right hand side, we obtain

oud /\T“’ =y A (— 1)k(LD. o Lp, Tt

L] 4eeey? 11 i

L (524)
+Z k ZL 117 i1 /\(LDiH_l . ,CleTalv ,k))

We will now rewrite this equation in multi-index notation. Using Eq. (3.3]), we get
[il,...,ik]! o i
ZZ—M Uy i NTe 7 =w.
The sum of the first term on the right hand side of Eq. (5.24)) is given by

i, ]! ) §
Pw Z:Z Z IT(—l)kéu /\(£ i LDsza’ ot )

ko i1,.50k

=ou” A (~1)ep, 7.
T
Using Eq. (5.22)), we can write this as
Pw = du®* A ! Z(—l)mLD (i —'w) . (5.25)
P4 "\ ouy

Since the second term of the right hand side of Eq. is exact, the sum is also
exact. We conclude that in local coordinates every form w € QP*P(J>*F) p > 0,
can be written as

w= Pw+dn,

for some n € QPP (J>F).

Theorem 5.2.2 (Thm. 2.12 in [And89|). There is a unique family of linear operators
P QPIP(JOF) — QPYP(J®F) p > 0, which is defined in local coordinates by
Eq. (5.25)). It has the following properties:

(i) w — Pw is locally d-exact for all w € QP*P(J®F), p > 0.
(ii) P is a projection, P* = P.
(iii) Pd = 0.
(iv) (P5)? =
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Lemma 5.2.3. Let £ € X(J®F) be purely vertical. Then

Define a linear operator F! : QP4 — QP~14 by

Flw) = i(—l)"”LDJ( 0 —‘w),

ou?
|J]=0 7

so that Pw = du® A F,(w).
If w € QP17 then

Proof.

Now let

where FL: QP4 — QP~19 is the degree (—1,0) linear operator defined by

Lo oI o
Falw) = _;(_1) (I+J)!LDJ<8 @ “’)'

p Uy g

Summing over the multi-indices and using Egs. (3.3]) and (3.4)), we obtain

W= <_1)|I|5ua A LDITi
k
t Z(—l)k—ZLDil (5%0; ..... iq N\ (LDZ-Z+1 x '[’Di,ﬂ'il ----- lk)) '

=1

Define linear operators F! : QP4 — QP~14 by

0
! — (I —
a(w) . ( 1) LDJ (au?ﬁ] w) s

where a summation over J is implied by the summation convention.
so that Pw = du® A F,(w).
The first term on the right hand side can be written in multi-index notation as

P(6u$ A7) = (—D)Hsu® A Lp,7. (5.26)
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With this we can write a form w € QP4(J>*F), p > 0 can be written locally as

— «a 1
w=Lp,ou* N1, ,

1

where 7, are (p — 1,n)-forms given by

Ti:%(&i% )

Applying this formula recursively, we obtain

ougy i AT = (=1)F6u* A (Lp, -+ Lp, T)
k
+ Z( )k ZL (6 Wiy vy A <LD1'1+1 o .LDikT>) ’

=1

The first term on the right hand side can be written in multi-index notation as
P(ous A7) = (=D)Msu A Lp, 7. (5.27)

Extending P linearly to a general form w = du$ A 71 of degree (1,n) we obtain the
formula

Pw = du® A i(—l)'”ﬁm (a%a AM) . (5.28)
I

|1]=0

This formula makes still sense when w is an arbitrary form of degree (p,n).

Lemma 5.2.4. The operators F1 satisfy

Fl(dw) =Y FJ(da’ Aw) (5.29a)
Ji=I
Fo(dw) =0. (5.29b)

[%’Dk} - [au?’axk Z uKk } = ﬂk%

|K[=0 K

This implies

a;z?_‘Dkw:Dk<8uI > Zé <

This implies

) ) L0
a—uj dw = a—uJ (da: AN DkUJ) —dx" A <_a DkCU)

NS Dk(% ) - 5 (5o =)}
K|=0
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A short calculation shows that for |I| > 0 we have

oo

0
Fo(dw) = ;0(_1)J|DJ<6_W Adw)
- 0 0
= da* ~1)ID;d =D —w) =8 -
A |%::0( ) J{ k(@uf} w) Kk(@u?( w)}
= 0 = 0
= da” { —1)*p —w) — —1)IE+ D - }
A ;0( ) J’f(aug ) u;o( ) Kk(@u?( )
=0.
A short calculation shows that for |I| > 0 we have
= 0
FI(dw) = Z(_”Jl%(au_;{, Adw)
1J]=0
= dz* A Z (—1)|J‘L£(—LDk ((91?0‘ 4w> - 5?]“(8% 4w))
[J|=0 IJj K
— 0 0
A (|J|Z:0( ) b (8U?J w) KkZ]J D"(@uﬁ‘( w)

Definition 5.2.5. The operator QP'P(J®[F) — QPTLP(JXF) s Pdw is called
the Euler operator and denoted by E := PJ.

Property (iv) states that E is a differential operator. Forms in PQ"*P(J>*E) are
called source forms. More generally, forms in the image of P are sometimes called
functional forms [And89]. Properties (i)-(iv) are local. We have the following
important global property (see e.g. Theorem 5.1 in [And89)):

The operators F! satisfy

Fl(dw) =Y FJ(da’ Aw) (5.30a)
Fo(dw) =0 ) (5.30b)

5.2.2 The acyclicity theorem

Theorem 5.2.6 (Thm. 5.1 in |[And89]). For p > 0, the augmented horizontal com-
plex

0 — QPO(JXF) =5 QP JF) =5 =5 QPP F) 5 ORI (JFF) — 0

fun

18 exact.
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Corollary 5.2.7. Let P be the partial integration operator of Thm.[5.2.7; let w €
Qptor(JFY) forp > 0. Then w — Pw is d-ezact.

The rest of this section is devoted to the proof of this theorem. We first prove
local exactness by the construction of explicit homotopy operators. In a second step
we use a partition of unity and the generalized Mayer-Vietoris sequence to deduce
global exactness.

Proposition 5.2.8. Let ' = R" x R™ — R® = M a trivial vector bundle. Then
the complex of Thm.|[5.2.6] is exact.

5.2.3 The cohomology of the Euler-Lagrange complex
Theorem 5.2.9. The cohomology of the Fuler-Lagrange complex

0 — QWOJ>F) -4 QO (J>F) -L
L Qo) —L (g ) 22 gle

fun

(JF) 22 02n

fun

(JCF) — ...

where n = dim M, is isomorphic to the de Rham cohomology of the manifold F', that
18,

HY(Q"(J®F),d) = H(F), 0<g<n-1 (5.31a)

ker (P8 : QO™ (J®F) — Qu (J®F
er( ) = Qu(I2F) oy (5.31b)
d(QOr-1(J*F))
HP Qi (J®F), P§) = H™P(F), p>1. (5.31c)

Warning 5.2.10. In equation (5.26a) of Thm. 5.9 of [And89] it is is erroneously

claimed that (5.31a]) holds for n. (This would imply that the horizontal cohomology
of closed forms in Q%"(J*F) for a vector bundle F' over a non-compact manifold
M vanishes.) The correct statement is Eq. (5.31bj).

Exercises

Exercise 5.2.11. Let £ — M and FF — M be smooth fibre bundles. Show that
there is a natural isomorphism of pro-manifolds

JO(E Xy F) = J°E X JF.



Chapter 6

Local diffeological forms

6.1 Local forms on & x M
6.1.1 Local forms as 2(M)-valued forms on F
In Sec. we have defined differential forms on a diffeological space of fields J.

This definition extends to a product of fields F x €. In this section, we will consider
the case that £ = M — %, so that £ = M is the base manifold. A differential
n-form v € Q(F x M) is a fibre-wise multilinear and antisymmetric morphism of
diffeological spaces

v (T(F x M)geu)” — R.
Analogously, an n-form on J>*F' can be viewed as a fibre-wise multilinear morphism
of pro-manifolds
The precomposition of w with the tangent map 75> : T(F x M) — T J¥F on every
factor of the fibre product,

(T(F x M) jgns)" 224 R
<Tj°°>”J ;w

(TJ®F)yr)"

is an n-form (j°)'w € Q"(F x M) called the pullback of w by the infinite jet
evaluation.

Definition 6.1.1. A differential form on F x M is called local if it is the pullback
of a form on J*°F' by the infinite jet evaluation. The bigraded vector space of local
forms is denoted by Qjoc(F x M).

Theorem 6.1.2. Let Q(J*®F) := colim;, Q(J*F) denote the colimit of bigraded al-
gebras. The pullback of forms on J>®F by the infinite jet evaluation,

(5%°) : QJ®F) — Qoo (F x M),

is a surjective morphism of bigraded algebras. Moreover, if j° : F x M — F is
surjective then (7°°)* is an isomorphism.
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Proof. Let w € QP4(J*°F). This means that w is is a (p + ¢)-form on some finite jet
bundle J*~1F, that factors like

(Jk(VF)/JkF)p XJkF ((JkF XM TM)/JkF)qL) (TjkilF/kalp)p+q

through i,, = f{_; % fi_,, where f;_ is defined as in the proof of Thm. [5.1.4, We

also have the commutative diagram

((T? X M)/(gXM))p XFx M ((? X fr]\4>/(1T><M))q_>(,-T(9j X M)/(?XM))]H_Q

aixﬁZl l(Tjkl)p”

(JRVE) ) pep)? X gep (JEF X0 TM) jgup) ! ——— (TJ*LF) s )P

where a4, is defined in Cor. and S, in Cor. [.1.9] This shows that of x ] is
the restriction of T'j*~1 applied to every factor of the fibre-product. Combining the
two diagrams, we see that the pullback of a (p, ¢)-form on J*F is a (p, ¢)-form on
F x M. In other words, (7°°)* is a morphism of bigraded ind-vector spaces.

The wedge product on both Q(J*F) and Q(F x M) is defined as antisymmetriza-
tion of the point-wise multiplication. This shows that (j°°)* is an homomorphism
of rings.

Assume that j° is surjective. This implies by Lem. that all jet evaluations
j* are surjective. Moreover, we can see from the local coordinate expression of 7'j*
given in Prop. that j* is a submersion. It follows that the precomposition with
Tj* and, hence, with (Tj*)? is injective. Since (j*°)* is a surjection onto its image
Qoc(F x M), it is follows that it is an isomorphism. O

By definition, a (p, ¢)-form on Fx M is a fibre-wise multilinear and antisymmetric
map of diffeological spaces

|2 (Tg?/?)p X (TM/M)q — R.
where we recall the notation (2.16)) for the fibre product. The domain
(T?/g)p X (TM/M>q gF(M,VF Xm oo XM VF) X (TM XM .- XMTM)

is is a fibre-wise linear diffeological bundle over ¥ x M. As we have shown in
Thm. [2.3.2] the fibre over (p,m) € F x M is the diffeological vector space

(TF 5" x (TMpg)?), = T(M, " VFY @& (T,,M)"

(p,m)

Every (p, q)-form can be equivalently viewed as a Q4(M)-valued p-form on &, i.e. as
fibre-wise multilinear and antisymmetric map of diffeological spaces defined by

v (TT)5)P — QUM)
(ﬂ( ;,...,fﬁ))(vin,...,vfn) =y ;,...,ﬁfz,v}n,...,vfn),

for all (p,m) € F x M, all 5@,...,5@ € 7,5 and all v},...,v% € T,,M. The
advantage of this point of view is that (6.1)) is a map of sections of fibre bundles, so
that we can impose the usual condition of locality.

(6.1)
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Proposition 6.1.3. A form v € QPY(F x M) is local in the sense of Def. if
and only if the associated map v defined in (6.1)) is local in the sense of Def.|3.2.1|

Lemma 6.1.4. A (p,q)-form on F x M is local if and only if it is the pullback by
the infinite jet evaluation of a (p,q)-form on J¥F.

Proof. The map v of (6.1 is local in the sense of Def. if and only if there is a

commutative diagram

DXid]\/j

(TTF)5)P x M QM) x M
l J (6.2)
(JE(VF) ) gep)P —2— NIT*M

where w covers the identity on M and where the vertical arrows are the jet evalu-
ations. Since v is fibre-wise multilinear and antisymmetric, © can be chosen to be
fibre-wise multilinear and antisymmetric as well. The map @ gives rise to a fibre-wise
multilinear and antisymmetric map

w: (JYVE)geep)? X (TMp)? — R,
which is defined by

w(n};ﬂnw,...,ni,w,v}n,...,vgl) = ((Z)(n}fnw...,niﬁqw))(vin,...,vgl).

It follows that
1 1 o1 o 1
V(&0 Uy s Uh) = W& JmEls Vs U ) -

where j* : TF 2 T(M,VF) — J*(VF) denotes the jet evaluation at m € M. We
have the commutative diagram

((T? X M)/(gXM))p XFw M ((St X TM)/(gXM))qi) (T?/(f)p X (TM/M)q
aixﬂil l(jéi)pXid%M
(J*VE) pgip)? X gip (JVF 53 TM) i) = (JHVE) )P X ar (TMyag)

where «ay, is defined in Cor. and [ in Cor. 5.1.9] Identifying the isomorphic

bundles in this diagram, we obtain the following commutative diagram

((TF % M) j5an)” X <(?WR
ozZXﬁgl w

(JE(VF) o) X gep ((JFF x TM)/JkF)q

Moreover, a straightforward generalization of the proof of Thm. yields the
commutative diagram

((Tﬁ"~ X M)/(gXM))p XFx M ((SF X TM)/(:}‘XM))qH(T(? X M)/(ffo))p+q

opest| lmklw

(Jk(VF)/JkF)p XJkF ((JkF XM TM)/JkF)q—)(Tjk_lF/kalp)erq
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which shows that o} x B} is the restriction of T'j*~! applied to every factor of the

fibre-product. We conclude that v = (j*°)*w.
Conversely, if w € QP(J*F), then v := wo (o x B}) = (j*°)'w is a local
(p, q)-form on F x M. This concludes the proof. ]

6.1.2 Evaluation of forms at fields

The bundle T'F can be restricted to any subset X C F. When we equip X with the
subspace diffeology we can form the pullback in diffeological spaces

X x4 TF -2 TF

wl

In Prop. we have shown that prgs is a subduction. It then follows from
Cor. that pry is an subduction. In other words, X x5T3F — X is a diffeolog-
ical bundle. By definition of the subspace diffeology, i is an induction. Cor. [2.1.2]]
then implies that ¢ is an induction. Moreover, the subbundle X x¢T3F — X inherits
a fibre-wise linear structure from 7'F.

The restriction of a form v € QP4(F x M) to the subbundle over X x M,

Vlx i (X X5 (TF)5)") x (TMp)? — (TF)5)? x (TMp)? — R,
is a smooth fibre-wise multilinear and antisymmetric map. When X = {¢}, then
{¢} x5 TF = T,T is the tangent space at ¢ € F.

Definition 6.1.5. Let v € QP9(F x M) and ¢ € F. The restriction of v to the
subbundle over {¢} x M will be denoted by

Vot (ToF)P x (TM)p)? — R
and called the evaluation of v at ¢.

Terminology 6.1.6. When v, = 0 is the zero map, v is said to be zero at ¢ or to
vanish at ¢. When v|x = 0 is the zero map, v is said to vanish on X.

Remark 6.1.7. The evaluation of v at ¢ can be equivalently viewed as the smooth
multilinear and antisymmetric map

D, (T,F)P — (TF5)” -5 QUM).
When v € Q%4(F x M), then the evaluation at ¢ is given by 7, = ().
An n-form on J*®F is given by a fibre-wise linear and antisymmetric map
w: (TJ®F) )" — R.

For a local version of the evaluation of w at ¢ € F we restrict the domain of w to the
subbundle over the image of the infinite jet prolongation (j*¢)(M) = M, which is
isomorphic to the pullback bundle

n

M X Jo R ((TJOOF)/JOOF)TL;) ((TJOOF)/JOOF)

| I

M ik J®F
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Definition 6.1.8. Let w € Q*(J*F) and n € I'(M, J*F). The restriction of w to
the pullback bundle along 1 will be denoted by

wy : M XD (TI®F) yeep)” = (TJ®F) ) =r)" —> R
and called the evaluation of w at 7.

Terminology 6.1.9. Let ¢ € F. The evaluation of w € Q(J*F) at j¥¢p is called
the evaluation of w at ¢. A form w € Q(J>®F) is said to be zero at ¢ or to
vanish at ¢ when wje, = 0.

The following lemma shows that the notions of evaluation of forms on F x M
and forms on J>*F at fields are compatible.

Lemma 6.1.10. Let w € Q"(J®F) and let v',... 0" € T,F x TM. Then
((5%)w)

Proof. We have the following commutative diagram:

sO(vl, ) = Wi (TG0 T%0™).

({} x M) xgps (T(F x M) jgps)" — (T(F x M) jgnr)”
idMX(Tjoo)nl (Tjoo)nl (5%°)*w

M <7282 (TJ®F) yeor)" — (TJ®F)joer)" ——R

The evaluations of the forms at ¢ are given by
wmp=woi, (%)W), = ((F)w) o
so that the lemma follows from the commutativity of the diagram. O

Lemma 6.1.11. Let w € Q%(J*F) and ¢ € F. Then

holds in Q4(M).

Proof. This is Lem. [6.1.10] for p = 0. O]

Lemma 6.1.12. Let w € Q(J*F) and ¢ € F. Then w vanishes at ¢ if and only
(7°°)*w does.

Proof. Let © € Ty, ,J*F. By working in a tubular neighborhood of ¢(M) C F we
can find a path t — (¢, my) € F x M such that ¢y = ¢ and %jfn(t)zbt = v. This

shows that v := (&0, o) € T, x M is mapped by T'j* to ¢. It follows that for all
o', ..., 0" € Ty ,JFF there are o', ..., 0" € T,F x TM such that

Wik, (01, ..., 0") = win (T5*0', ... Tj*™).
The lemma now follows from Lem. [6.1.100 O
Remark 6.1.13. Note that Lem. |6.1.12| holds even when (j*)* is not injective.
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6.1.3 The PDE of a local form

Let us now view w € Q"(J*F) as a section w : J¥F — A"T*J*F. Let us denote
precomposition of the form with a section n € T'(M, J¥F) of the k-th jet bundle by

wy: M JFF s AMTHJRE (6.3)

We have the following commutative diagram,

.)

M X g (A"T*JFF) —— APT* JFF

e

M 1 JkE
\ lprkl
M

which is analogous to the diagram (2.12). It shows that w, is a section of the
bundle A"T*J*F — M and that prjep o w, = 1. When n = j®¢ is the infinite jet
prolongation of a field ¢ € F, we obtain the section

wik, € T(M, N"T*J*F)
which can be identified with the evaluation of w at ¢. The map
D(M,AN"T*J*F) — T'(M, J*F) (6.4)
O PrkpO0
is a fibre-wise linear diffeological bundle and the map
(M, J*F) — T (M, \"T* J*F)
N — Wy

is a section of this bundle. When we restrict this section to prolongations of fields
by precomposition of with the jet prolongation j* : F — I'(M, J*F), we obtain a
differential operator on J.

Definition 6.1.14. Let w € Q(J*F). The local map

D,:F — T(M,A"T*J*F)

(6.5)
O Wik,
is called the differential operator associated to w. The equation

is called the k-th order PDE associated to w.
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Warning 6.1.15. If F — M is a vector bundle, the bundle A"T*J*F — M is a
vector bundle, so that the target T'(M, A"T*J*F) of the differential operator ¢
wjk, is a vector space. But the 0 on the right hand side of the PDE (§6.6) must not be
viewed as the zero in this vector space. It is to be viewed as the evaluatlon 0= 0jk,

of the zero section of the fibre-wise linear diffeological bundle (6.4)). Eq. . is then
properly understood as the equality wjr, = 0;x, in the Vector space (M, (55@)* A"

T*J*F).

In local coordinates a form w € QP4(J*F) is given by (5.16)), so that the PDE is
given by a system of equations

e te ( o 09" 0" ) =0.

a1...0p171...0q ) axil T 8xi1 v axzk

Definition 6.1.16. Let w € Q*(J*F) and p € F. The PDE
(Twa)feo =0
for £, € I'(M, ¢*V'F) is called the linearization at ¢ of the PDE wjx, = 0.

6.1.4 Extension of tangent vectors and forms

In the case of finite-dimensional manifolds, it is easy to show in local coordinates
that every tangent vector can be extended to a vector field. Dually, every linear
form at a single tangent space can be extended to a differential form on the entire
manifold. It is not clear, whether this property carries over to the diffeological space
of fields. Moreover, we can ask, whether every the extension can be chosen to be
local. We will now show that both questions have an affirmative answer. The main
technical lemma used for the proofs is the following:

Lemma 6.1.17. Let E — M be a fibre bundle and A — E a vector bundle. Let
o € T'(M,E) be an arbitrary section and c*A = M xZ™'F A the pullback. Let i :

0*A — A be the natural inclusion, which induces a map i, : T'(M,0*A) — T'(M, A).
Then for every T € I'(M,c*A) there is a T € I'(E, A) such that Too =ioT.

Proof. Consider the following commutative diagram:

7

/\

*A—>A|

[

M;HJ' M)——F

Using the isomorphisms in the left square, a section 7 of 0*A — M can be identified
with a section 7’ of the restriction of A — E to the image of 0. As is the case for
any section of a fibre bundle, o(M) is a closed embedded submanifold of £. And as
is the case for any vector bundle, the sheaf of sections of A — F is soft, i.e. a section
supported on a closed subset extends to a global section. In particular, the section
7" of Alg(my = 0(M) extends to some section 7 of A — E. From the commutativity
of the outer rectangle of the diagram we obtain the relation Too =io 7. O]
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Lemma 6.1.18. Every {, € T'F can be extended to a local vector field { : T — TT.

Proof. Recall that TF = I'°(M,VF) and that 7,3 = I'(M, ¢*VF). We can now
apply Lem. [6.1.17 for E == F - M, A:=VF = F, 0 = ¢ € J, 17:=§, €
['(M,VF). This shows that there is a 7 € I'(F,VF) extending &,. We can now
define the vector field £ : F — T'F by £(¢) = T o¢p. By construction, £(¢) = &, and

& descends to T so it is local. O]

Lemma 6.1.19. Let n € (M, J*F) and 7 € (M, n* A" T*J*F). Then there is an
n-form w € Q"(J*F), such that T = w,.

Proof. We apply Lem. [6.1.17/to £ := J*F — M, A := A\"T*JFF — JkF o
and 7 as it is. This shows that there is a section w € T'(J*F, A"T*J*F) = Q"(J

=1,
JF),
such that 7 =won = w,. [

Proposition 6.1.20. Let

A (TLF)P — QU(M)

be a local multilinear map. Then there is a local form v € QP9(F x M), such that T
1s the evaluation of v at .

Proof. Since 7 is local, it descends to a linear map
Aot APTF(Q*VF) — NT*M .
This map can be viewed as section of the bundle
AP JR(Q*VF*F) xa NTT*M =2 NP JH(M XS VEE) X0 NT*M

> (M X722 AP JR(VFF)) X0y AT M

(o) (V" F) xas NT*M).

12

We now apply Lem. [6.1.17| to E := J*F — M, A := NPJR(V*F) xy NT*M,

o := j*p, and 7 = ). This shows that there is a section
w € D(JFE,N\PJH(VFF) x 0 NT*M)

such that w o j¥p = \g. By Eq. (5.10)), we can view w as a form in QP9(J*F). Let
6.1.10

v = (j*)*w. It follows from Lem. that for all v',... vP* € T,F x TM we

have
I/(’Ul Up+q — ( ) ,UP-HI)
Zw((T <)t (T] )P )
= (Ty°° L (T5)r )
— v ’ Up+q)

We conclude that v, = A. O
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6.1.5 Evaluation of vector fields

The evaluation of a vector field £ : F — TF at ¢ € F has a counterpart for a vector
field v : J*F — T J*°F on the infinite jet bundle. Let us denote the precomposition
of v with a section n € I'(M, J>*F) by

vy M - J°F - TJ®F. (6.7)

We have the following commutative diagram,

M X JoF (TJOOF> ——TJ>®F

M—— "1 L JoF

\ lpr M
id

M
It shows that v, is a section of the bundle T'J*°F — M and that prjep o w, = 7.

Definition 6.1.21. Let v : J*F — T J*F be a vector field on J*F and ¢ € F a
field. The section vje, € I'(M,TJ*F) will be called the evaluation of v at ¢.

Definition 6.1.22. Let {, € T,,3. The map

gt M =5 {€} x M 25 TJ™F (6.8)
will be called the infinite prolongation of &,.

In local coordinates &, € I'(M, V' F) is given by &, = ga%’ where {5 € C°°(M).
From the local coordinate formula (5.3) for 7' we deduce that

B 3|I|§z o

Proposition 6.1.23. Let w € QP9(J>*F). Then
tep Ler (J7°)'w = ber, el W E QM)
forallo € F and all §, ... €8 € T,T.

Proof. This follows from Def. [6.1.22] and Lem. [6.1.10] O

Proposition 6.1.24. Let ( : M — TJ*F be a smooth map. The following are
equivalent:

(i) C is the infinite prolongation {Ajoo@ of a tangent vector {, € TF at p € F.

(11) ¢ is the evaluation v, of a strictly vertical vector field v € X(J*®F) at ¢.
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Proof. Assume (ii). By Thm.[5.1.37] v is the infinite prolongation of an evolutionary
“vector field” n : J*F — VF. Define &, := n ojrbp e I'(M,p*VF) =T,F. In local
coordinates v = (Dn® )—a and &, = (n® o j*¢) 5% It follows that

o _M@roghp) 0 Mg 9
u Ozt ouy Ozl Oug (6.10)

Vjeoy = (D™ 0 j*¢p) 5
= fjoocp )

where we have used Eq. (6.9). This shows that €500 = . We conclude that (ii)
implies (i)

Assume (i). By Lem. [6.1.18] &, can be extended to a local vector field £ € X(5).
By locality, ¢ descends to an evolutionary vector field n : J*F — VF. And since
¢ extends &,, we have &, = no j*p. The infinite prolongation of 7 is a strictly
vertical vector field on J*°F'| which We denote by v. In local coordinates we have

§o=(M%0yj go)—a and v = (Dm ) . It follows by Eq. (6.10) that vje, = (. We
conclude that (i) implies (ii). O

Theorem 6.1.25. Let £ be a vector field on F and v a vector field on J®F. The
following are equivalent:

(1) The evaluation vj=, is the infinite prolongation of &, for all ¢ € F.

(i) v is strictly vertical and & the unique local vector field that projects to v by
Thm.|[5.1.57.

Proof. ***prove me*** O

6.2 Cartan calculus
6.2.1 Inner derivative

We now turn to the Cartan calculus on local forms. Let v € QP9(F x M) and
X € X(F). The inner derivative ¢, v is (p — 1, ¢)-form, which is given by

(tyv )(f,...,{pl ...,vq)—u(x¢,§@,.. fpl L),

Similarly, for w € X (M) the inner derivative ¢,V is a (p, ¢ — 1)-form, which is given
by

(b)) (Er - ER U o 0 = (1)P0(ES, . 8w vy, vl )

Proposition 6.2.1. Let w € QPI(J®F). Let € be a strictly vertical vector field on
J®F and & the unique local vector field on F that projects to & by Thm. .
Then

e(J7)'w = (1) rew.
Proof. The vector field € projects to & : J°F — T'J®F, which means that

(Tlom) 3™V = EGimve)
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Let us denote 1" := T{, ,)j> for compact notation. Then

(Lﬁgo (]OO)*M) (X}o? cee 7X2717 U}n? s 7U$n>
= w(T&p, Tx}p, e ,Tngl, Tvk ... ,van)
= w(é(]ﬁw)’ TX}O? A 7TX§7717 TU})’L? AR 7Tvlgrl)
= (Lé(j,%fso)w) (szlo, o ,Txg_l, vk, ... ,van)

— ((joo)*Léw) (Xi,, o ,X’;_l, vl vl

for all xj,..., x5 " € T,F and all vy, ..., v4 € T, M. O

Corollary 6.2.2. If v is a local form on F x M and & a local vector field on F, then
tev 18 a local form.

Proposition 6.2.3. Let w € QP4(J®F). Let v be a vector field on M and v the
strictly horizontal vector field on J*®F to which v lifts by the Cartan connection.
Then

w(i%) w = (%) ww.

Proof. By Rmk. |5.1.15] the horizontal lift 0 € X(J>F') of a vector field v € X(M)
is defined by

(Tiom)i™)vm = 0(jp) -
The rest of the proof is analogous to the proof of Prop. [6.2.1 O]

6.2.2 Horizontal differential

Definition 6.2.4. Let v be a (p, ¢)-form on F x M. By dv we denote the (p, g+ 1)-
form F x M that is given by the map

—~

dv : (TF5)P — QM)

where 7 : (TF)5)P — Q4(M) is the map defined in (6.1)) and where dj, is the de
Rham differential on Q(M).

Lemma 6.2.5. Let v € Q(F x M) and £ € X(F). Then tedv = —duev.
Proof. Let v € QP9(F x M). Then

(ted) (xbs - X2

—~

(dv) (€ X - X5
(=1)Pdar (7(Eps X -+ X5))
(=1)Pdar ((2e7) (Xgy - - X5H)
= —(dier)(Xb, - XEY)

for all x,...,x% € T, and p € T. O

Proposition 6.2.6. Let w € QP4(J¥F). Then

(57) dw = d((j°)"w). (6.11)
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Proof. Let f € Q%9(J*F) be a function, v € X(M) a vector field, o € X(J>*F) its
horizontal lift, and ¢ € F a field. Then

e~

((5=)f) () = (5%¢)" [, (6.12)

for every ¢ € F, where j*¢ : M — J*F' is the infinite jet prolongation of ¢. It
follows from Eq. (5.9) that

v (%) f) = (%) (0 ). (6.13)

We then get

©p

= [(G%)* (eadf)
1o ((5%)*df) ]

%) Y

where we have used first Def. [6.2.4] then Eq. (6.12)), then Eq. (6.13)), and in the last
step Prop.|6.2.3] Since this relation holds for all v € X(M) and all ¢ € F, it follows

that Eq. (6.11]) holds for all functions f € Q%(J>*F).

Let now w € Q¥(J*®°F), let v,w € X(M) be vector fields, and 9,10 € X(J*F)
their horizontal lifts. Then

[Lwavd((joo)*w)} = LwLUdM((joocp)*w)

”
= (vt = tudiy = 1)) ((G79) ")
= 1, d((779) " 1aw) = d ((7°0) 1) = ((7°9)" o)
= 1, ((j70) digw) — 1w ((1F¢) drsw) — ((1%¢)*p,a)w)
= (J7¢) (tadry — tadiy — L) )w
= (J7¢) Lotedw
= Ll () dw
= [Lva(joo)*dw]<P7

where we have used the Chevalley-Eilenberg formula for the differential of a 2-
form, Prop. [6.2.1] and that d commutes with (j*°)* on functions. We conclude that
Eq. (6.11)) holds for all w € Q%1 (J>F).

Let w € QM(J*F) and let &, € T,F. By Lem. [6.1.18 we can extend &, to a
local vector field £ € X(F). Let £ € X(J*F) be a strictly vertical vector field to
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which & projects. Then

where we have used Prop. [6.2.1] that é is strictly vertical, that d commutes with
(j)* on the function tzw, and Lem. Since this relation holds for all £, € T'T,
it follows that Eq. holds for all w € QM (J>*F).

The algebra QP9(J> M) is generated by functions Q%°(J>*°F), horizontal 1-forms
QOL(J*F), and vertical 1-forms Q19(J>*F). We have shown, that Eq. holds
on this set of generators. Since the differential d on Q(J*F) is a derivation and
since by Thm. the pullback (j°°)* is a morphism of algebras, we conclude that
Eq. holds for all w € Q(J>*F). O

Corollary 6.2.7. The map d : QP4(F x M) — QPITYF x M) restricts to a degree
(0,1) differential on Qee(F x M).

Corollary 6.2.8. Let w € Q¥(J*®F) and ¢ € F. Then dp(7%°0)*w = (j¥¢)*dw.

Proof. The map @ : F — Q%(M) is given by @w(p) = (j®¢)*w. From Prop. we
obtain dy (7%°¢) 'w = [d(j*) W], = [(17°)*dw], = (j®¢)*dw. O

6.2.3 Vertical differential

Definition 6.2.9. Let v € Q%(F x M). The diffeological differential jv €
QOL9(F x M) is the form given by the linear map

ov: TF L5 TOQIM) = QU(M) x QI(M) 22 Q1(M),
where T'7 is the diffeological tangent map of o : F — QI(M).
Proposition 6.2.10. Let w € Q%I(J>®F). Then
(5°°) 6w = 0((j™) w). (6.14)

Proof. The diffeological tangent map is given by

. d _
(Too?)p0 = = 7(21)] g € Toen) ¥ (M),
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for every smooth path t + ¢, € F. First, we consider a function f € Q%°(J*F). In
local coordinates we have

d ., . d,,
— 0 f g = 7 (Fo i),
L Of g O s Of 9 ol
= {gutte; +|;] Jug 5 (o )
k
af .
= Z W(] o) U7 (o)
l1j=0 ~ 1
of .
= 8_1/{‘;‘(]]6900) LTjk¢05uI
=0 =1
LT]k¢06f

Since this holds for all £ > 0, we obtain

SN d, ——
(Tao (52) N0 = = (%) f) (1) g
d - 00 *
= %(] gpt) f ‘t:O
= LlTj®p 5f .
This shows that Eq. (6.14) holds for functions. For a d-exact (0, 1)-form df we have

%(] gpt) df }t:() = %dM(.] th) f |t=0

d 00 *
= dM%(] gpt) f |t=0
= dyr(tjee o0 f)
= —irjeoped(0f)
= trjeepe 0 (df )
This shows that Eq. (6.14) holds for all exact (0, 1)-forms df.

Eq. (6.14), which we want to prove, is local, so it suffices to check it locally,
i.e. when restricting the infinite jet bundle to an open subset U C M of the base.
Q0*(J*F) is generated locally by functions and exact 1-forms, for which we have
shown that Eq. (6.14)) holds. Since ¢ is a derivation and since by Thm. (7°°)*

is a homomorphism of ind-algebras, it follows that Eq. (6.14]) holds for all forms in
Q0% (J<F). O

Proposition 6.2.11. Let v € Q%(F x M). Then
dév = —ddv .

Proof. Since TQ(M) = QI(M)xQI(M) by Prop.[2.3.12} every tangent vector («, 3)
of Q9(M) is represented by an affine path t — a+¢f. Since the de Rham differential
is linear, dy (o + ) = dpra + tdys 3, the tangent map of dyy is

Ty = dyr X dyyr = QM) x QU(M) — QI (M) x Q7 (M)
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With this we obtain the following commutative diagram
T(d[wOl))

Tdp

TF L2 QM) x QI(M) =25 QrHL(M) x QItH(M)

> lprz Jpr2
ov

Q1(M) Qi (M)

dn

The commutativity of the outer quadrilateral diagram means that

—_~— —_~—

5(dv) = dys 0 6v = —d(0v)

where we have used the definition of d. Removing the tilde on both sides
finishes the proof. O

6.3 Cohomology of local forms
6.3.1 Local families of forms and vector fields

Let £ — M be another smooth fibre bundle. In Sec. [2.3.3] we have seen that the
product of spaces of fields is itself a space of field,

EXF=T(MExyF),

so that all statements we have proved about local forms on F apply to local forms on
€ x F. The additional structure we obtain is that the space of forms has Z2-grading.
A form v € QP27(E x F x M) can be equivalently viewed as a p-form on & with
values in Q%7 (F x M), i.e. as a fibre-wise multilinear and antisymmetric map

vy (T€ )P — QU7 (€ x M)

1

6.15
(Xw""vxi)'_)%f;'”bxi’/' (6.15)

Since this definition is graded symmetric in € and F we can exchange the roles of €
and JF, so that the form v can be equivalently viewed as a g-form on F with values
in QP7(E x M), i.e. as a fibre-wise multilinear and antisymmetric map

vy (TF)5)1 — QP (F x M)

(5}0,...,53,) — (1) v (6.16)

By definition, we have

1
Lea - L@(Vl(xw, . .be)) =Ll el LAY
= (—1)quxi .. -LX’:llpLé_qu .. -Lg;]j

_ in . "Lxllp (y2(§;7 . 754%)) .

which shows that the maps (6.15) and (6.16) amount to a change of notation.
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Proposition 6.3.1. Let v € QP97 (E x Fx M). If v is local, then there is a natural
number k < co, such that the forms

(X - - - Xy) € QP(F x M)
(€L, -+ ,E8) € QPT(E x M)

are local of jet order bounded by k for all ) € €&, X;, e ,le) € Ty€ and all p € F,

oo &y €TLT.
Proof. The proof follows directly from Lem. [3.2.18|replacing £ with (E/y)P, F' with
(Fyam)9, and F' with A"T*M. O

Definition 6.3.2. A family of differential forms
E— QM(Fx M)
will be called local, if it is local when viewed as differential form in Q%" (€ x F x M).

A family of forms v : € — Q9"(F x M) is local if there is a form
w € QT (J®(E xp F)) |

such that v = (j*°)*w. By Lem. locality of v implies that there is a k < oo,
such that the following two properties hold:

(a) v takes values in (j*)*Q@7(J*F) C Q4" (F x M).

(b) The map tgq -~ tav : € — QP(M) descends to JFE for all fields ¢ € F and all
tangent vectors &, € T,,7.

Remark 6.3.3. Properties (a) and (b) are generally not sufficient for the locality
of v.

In the spirit of Def. [6.3.2] we can also define a local family of vector fields. For
this we recall from Thm. that TF =I'(M,VF) is a space of sections over M.

Definition 6.3.4. A family £ : € — X(F), ¢ — &, of vector fields is called local if
the map 3
EEXTF —TTF

(¥, ) — &)

is a local map.

Proposition 6.3.5. Let & : € — X(F) be a family of vector fields. If € is local, then
there is a k < oo, such that the following two properties hold:

(i) For every ¢ € € the vector field & € X(F) is a local vector field that descends
to an evolutionary “vector field” ny : J*F — VF.

(ii) For every ¢ € F the map
E(p): € — T,F
W — &y(e)
descends to J*E.
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Proof. The proof follows directly from Lem. [3.2.18| for F’' = V' F. O

Proposition 6.3.6. Let v : & — Q¥ (F x M) be a family of differential forms and
&&= X(F) a family of vector fields. If v and & are both local, then

v & — QU (F x M)
77/} — ng Vy
18 a local family of differential forms.

Proof. The family of differential forms v can be viewed as map 7 : € x (T'F5)? —
Q"(M). Let Ag : & — & x & denote the diagonal map and pry : (TF5)?7 ' — F
the bundle projection. The family of differential forms ¢ can be viewed as a map
E X (TF5)"1 — Q"(M), which is given by the composition

. 1g—1
Ag x(prg,idd;

& x (T 5)1"! Ly & % & x F x (TF)5)0!

ingéde%}l . (ng/?)q (617)

2y Qi (M),

Assume that 7 and é are local. In Lem. we have shown that A is local, in
Lem. that the product of local maps is local, and in Prop. that the
composition of local maps is local. The map is defined by products and
compositions of local maps, so it is local. O

Definition 6.3.7. A family of differential forms v : &€ — Q%"(F x M) will be called
d-closed if dov = 0. It is called d-exact if there is a family of differential forms
p: & — QI F x M), such that v =do p.

Remark 6.3.8. It follows from the definition of the differential d that a family
of differential forms v : € — Q@"(F x M) is d-closed (d-exact) if and only if it is
d-closed (d-exact) when viewed as form in Q%97 (& x F x M).

Proposition 6.3.9. Let v : &€ — Q" (F x M) be a family of differential forms,
where ¢ > 0 and r < dim M. If v is d-closed and local, then v is d-ezact.

Proof. We can view v as form 7 € Q%" ((€ x F) x M). If v is local, then by
Lemma. 6.1.4) v = (j>)*w for some w € Q@ (J*®(E xy F)). If v is d-closed, then
by Prop. [6.2.6lw is d-closed. It now follows from the acyclicity theorem [5.2.6] that
w = dr. The pullback ji = (j)*7 defines a family p : & — Q4" 1(F x M) that
satisfies d o yu = v. O

6.3.2 Linear local families of forms

Let A — M be a vector bundle, so that the space of sections A is a diffeological
vector space. Then we can require smooth families of vector fields and forms to be
linear. When v : A — Q97 (F x M) is a linear family of forms and & : A — X(F) a
family of vector fields, then v as defined in Prop. W is linear as well.
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Proposition 6.3.10. Let v : A — Q@ (F x M) be a linear family of differential
forms and & : A — X(F) a linear family of vector fields. If both v and & are local,
then the linear family of local forms tev : A — QI (F x M) is local.

Proof. This follows from Prop. [6.3.6] O]

In Sec. 2.3.3] we have seen that multilinear and antisymmetric smooth maps
on AP can be viewed as constant p-forms on A. In particular, a linear family of
differential forms v : A — Q%" (F x M) can be viewed as constant 1-form on A with
values in Q%" (F x M) which is given by the map

vopry: TAXA XA 225 A 25 Q0 (F x M).

Conversely, a 1-form p : TA — Q@"(F x M) is local if it factors as u = v o pry
through a map v : A — Q%"(F x M), which is linear since a form is by definition
fibre-wise linear. We thus obtain a bijection between linear families and constant
1-forms.

Lemma 6.3.11. Let v : A — Q¢ (F x M) be a linear family of differential forms.
If v is local, then the form in QY97 (A x F x M) that is given by v o pry is local as
well.

Proof. The family of differential forms v can be viewed as map 7 : A x (T'F5)? —
Q" (M). The (1,q,r)-form defined by v o pr, is given by the composition

Uopry : TA X (TF)5)! — A x A x (TF5)?

id4
pro Xid g

A x (TF j5)1 (6.18)
2y Qr(M).

Assume that 7 is local. The projection pr, : A x A — A is induced by the fibre-wise
projection A x,; A — A onto the second factor, so that pr, is local. Since v o pr, is
given by products and compositions of local maps, it is local. O

Lemma 6.3.12. Let v : A — Q" (F x M) be a linear family of differential forms.
Then dyrov = 0 if and only if the form in QY% (A x F x M) that is given by v o pr,
15 d-closed.

Proof. By Def. and Def. [6.2.4] the form given by family v o pr, is d-closed if
and only if the map

0=dy o (Vopry) = (dar o) o (pry x idhy),

where we have used Eq. (6.18). Since pr, x id%; is surjective, this is the case if
and only if dy; o 7 = 0, which by Rmk. is the case if and only if the form in
QLo (A x F x M) that is given by o pr, is d-closed. O

Proposition 6.3.13. Let A — M be a smooth vector bundle of non-zero rank. Let
v:A—= Q(M) be a linear family of differential forms. Assume that the following
three conditions are satisfied:
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(i) v is local,

(i1) dpyov =0,
(1i1) r < dim M.
Then there is a local linear family of differential forms p: A — Q""1(M), such that
v =d o .

Proof. The linear family v gives rise to the (1,7)-form o := vopr, : TA — Q" (M)
on A x M. Assume that v is a local family of forms, then Lem. [6.3.11| shows
that o is a local form, i.e. the pullback o = (j)*w of a form w € QM (J>F).
Assume furthermore that djp; o v = 0. Then Lem. [6.3.12] shows that o is d-closed.
It follows from Prop. that d(j*°)*w = (7°°)*dw = 0. Since for a vector bundle
A — M the evaluation map j° : A x M — A is surjective, Thm. shows that
(7°°)* is injective. This implies that dw = 0. Finally, assume that r < dim M.
Then the acyclicity theorem implies that there is a form a € Q%" ~1(J*F)
such that w = da. The pullback 7 := (j®)*a € QY YF x M) then satisfies
dr = d(j™)*a = (j*)*da = (j*°)*w = V. Spelling out the definition of d, we
conclude that dy; o7 =0 = v o pr,.

Let the embedding of the fibre of TA — A over b € A be denoted by
i A—AxA=TA
ar— (b,a),
which is a section of pry. Since i, descends to A — A Xy A, @y — (b(m), ayy,), it is

local. Let pu := 7 0, Since 7 and ¢, is local, p is local. And since 7 is fibre-wise
linear, p is linear. We now have the following commutative diagram:

AL A x A—T QY (M)

pr d
N .

A—"—Q" (M)
This shows that v = dj; o u, which finishes the proof. O

Definition 6.3.14. Let A — M be a smooth vector bundle. A form w € Q07 (J>A)
will be called vertically linear if the map
(7°)w: A — Q(M)

is linear.

Proposition 6.3.15. Let w € Q% (J*A) be vertically linear and r < dim M. If w
18 d-closed, then it is d-exact.

P

Proof. Let v := (j*°)*w. By assumption w is vertically linear so that v is a d-
closed local linear family of forms. Prop. [6.3.13] implies that there is a a local
linear p : A — Q" 1(M) such that v = dj; o u. By definition of locality, this
means that there is an o € Q%" 1A x M), such that u = (j)*a. It follows that
() 'w =d(j*®)*a = (j)*da. Since A — M is a vector bundle, j: A x M — A is
surjective, so that by Thm. (7°°)* is injective. We conclude that w = da. [
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6.3.3 Closed and exact forms at fields

Definition 6.3.16. A form v € QP9(F x M) will be called d-closed at ¢ € JF if
(dv), = 0. It will be called d-exact at ¢ if there is a A\ € Q»9(F x M) such that
Vo = (dA),.

Remark 6.3.17. A form v € QP9(F x M) is d-closed if and only if it is d-closed
at all fields ¢ € F. If v is d-exact, then it is d-exact at all p € F. The converse of
the last statement, however, is not true. For example, consider the case that M is
non-compact, so that H*P(M) = 0. Then every lagrangian form £ € Q%%*P(F x M)
is exact at every ¢ € F, which of course does not imply that £ is d-exact.

Proposition 6.3.18. If v € QP9U(F x M) is d-exact at ¢ € F, then v is d-closed at
p.

Proof. Tt follows from Rmk. and the definition [6.2.4] of the differential d on
Q(F x M) that w is exact at ¢ if there is a form A such that

D€L, ... E8) = dA,(EL, ..., €D)
= dy (A€, ED))

for all £,..., &% € T,,F. It follows that

dwg (€L, ... €0) = dr (D (EL, .. ., €P))
= dy (dAp (€., €D))

= d3 (N (&pr -1 ED))
=0

for all £, ..., &% € T,,F. This shows that (dw), = 0. O

Definition 6.3.19. A form w € Q(J®F) is said to be d-closed at ¢ € F if dw
vanishes at ¢, (dw);~, = 0. It will be called d-exact at ¢ if there is an a € Q(J>F)
such that wjee, = (da)jec,.

Proposition 6.3.20. Let w € QP4(J®F) and p € F.
(i) w is d-closed at ¢ if and only if (7°°)*w € QP4(F x M) is d-closed at .
(ii) If w is d-exact at @, then (7°°)*w is d-exact at p.

Proof. Let w € Q*(J™®F), where n = p+ ¢, and let v := (7°)*w € Q"(F x M).
By Prop. we have dv = (j°°)*w = (j*°)*dw. Lem. implies that (j7°°)*dw
vanishes at ¢ if and only if dw vanishes at (. We conclude that dv vanishes at ¢ if
and only if dw vanishes at ¢, which proves (i).

Assume that there is a form « € QP41 (J>F), such that w — da vanishes at .
Let A := (j°)*a. Then v — d\ = (j°°)*'w — d(j*°)*a = (j*)*(w — da) vanishes at ¢
by Lem. [6.1.12] which proves (ii). O

Proposition 6.3.21. Let ¢ € F. The following are equivalent:



160 6. Local diffeological forms

(i) w e Q% (J>®F) is d-ezact at .
(ii) (7°°)*w € Q%(F x M) is d-exact at .
(113) (j°p)*'w € QM) is exact.

Proof. Assume (i). Then Prop. [6.3.20| implies (ii).
Assume (ii), i.e. v := (j*°)*w is d-exact at . This means that there is a A €

QY=Y F x M), such that v, = (d)\),. We have

(@) w = v, = (dN), = du (M) ,

where in the last step we have used Def. [6.2.4, We conclude that (iii) holds.
Assume (iii). By Lem. [6.1.11] this means that (j>°¢)*w = dy7 for some 7 €
Qi1 (M). Define a form o € Q¥4 H(J®F) by ojecys(vp,, - - -, L) = 7(v},, ..., v5,) for

all ¥ € F. By construction, the form « satisfies (j*°¢)*a = 7, which implies that

Nee)

(1P¢)'w = dut = dy (%) @) = (j%¢)"da,

where we have used Prop. [6.2.6, This shows that (iii) implies (i), which concludes
the proof. O

Proposition 6.3.22. If w € QP4(J®F) is d-exact at ¢ € F, then w is d-closed at
p.

Proof. Assume that wjs, = (da)je,. It follows from Prop. [6.3.20] that (j°°)*w is
d-exact at ¢. Prop. [6.3.18 then shows that (j°°)*w is d-closed at ¢, i.e. d(j®)*w =

(7°°)*w vanishes at ¢. With Lem. [6.1.12| we conclude that dw vanishes at ¢, i.e. w
is d-closed at . O

Proposition 6.3.23. Let w € QP4(J*F) forp >0 and ¢ < dim M. Ifw is d-closed
at ¢ € F, then w is d-exact at p.

Proof. As observed in Rmk [6.1.7, the evaluation of (7°°)*w at ¢ can be viewed as a

map

v (TLF)P — (TF 57 20 guary.
The domain of v is the space of sections of the vector bundle A4 := ((¢*VF) /M)p.
This map has the following properties:
e Since p > 0, the rank of A is non-zero.

e The map v is linear.

e The inclusion (T, F)? < (T'F5)? is local, since it is induced by the inclusion

—_—

of fibre bundles p*VF — VI of every factor of A. The map (j>)*w is local
by Prop.[6.1.3l Since the composition of local maps is local, v is local.

e By assumption w is closed at ¢. By Prop[6.3.20] (j°°)*w is closed at ¢, which
means that dy;ov = 0.
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e By assumption, ¢ < dim M.
This shows that all conditions of Prop. [6.3.13] are satisfied. It follows that there is
a local multilinear map i : A = (T,F)P — Q47 1(M) such that v = dy; o p.

By Prop. [6.1.20] there is a form a € QP9(J*F'), such that ((j‘”)*a)w = p. This
implies

=dy o

=dyo ((joo)*a)w

= (d(j>*)")

— ((™)'da),
In other words, (j>)*(w —da) vanishes at . By Lem. [6.1.12)this implies that w —da
vanishes at ¢, which concludes the proof. O

Proposition 6.3.24. Let w € QPP (J®F) where p > 0, let ¢ € F, and let P be the
interior Fuler operator. The following are equivalent:

(i) w is d-exact at ¢
(i) Pw vanishes at ¢.

For the proof of Prop. [6.3.24] follows from the following two technical lemmas,
which we will also need for the theory of generalized Jacobi fields.

Lemma 6.3.25. Let w € Q(J®F) and let v € X(J*®F) be a horizontal vector field.
If w vanishes at ¢ € F, then L,w vanishes at .

Proof. The condition (£,w);~, = 0 is local, so it can be checked in local coordinates
in which the vector field is of the form v = v’D; for some functions v* € C*®(J®F).
First, consider the case that f € Q%(J>F) a function. Then

(£of)ye = (WD) o, = (0 0 7¥0) (0 75).

If foj®p € C®(M) is zero, then the right hand side is zero, which proves the
statement for O-forms. Let w € QP(J*F). In local coordinates

w=wl PSS AL AU Ada A LA da
< Qpll..lg 1 P

Iy..Ip Qy...0p11...1g
al...apil,..iq ]1...]p Y

where
Q1...0p171...0

TRl = U AL AU Adat AL A dae

I

The form w vanishes at ¢ if and only if the functions wcltll‘:...apil...iq

the Lie derivative with respect to v we obtain

_ Il...Ip al...apil...iq Il...Ip Oq...apil...iq
Low = (vaal‘..apz‘l..‘z’q)7'11...1p t Wa..apii ..iq (LvTh..Jp )

vanish at ¢. For

Assume that the functions willg’pz ,..i, vanish at ¢. We have already shown that
their Lie derivatives with respect to v vanish at ¢, so that both terms on the right

hand side vanish at ¢. O
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Lemma 6.3.26. Let w € QP'P(J>F) where p > 0, let ¢ € F, and let P be the
interior Euler operator. If w vanishes at ¢, then Pw vanishes at .

Proof. The condition (Pw),«~, = 0 is local, so it can be checked in local coordinates,
in which Pw is given by Eq. (5.25)), that is

Pw = du* N — Z ‘”LDI( 0

Assume that w vanishes at ¢. Then ;2 — w vanishes at ¢. It follows from

ou
Lem. 6325 that !

(12 ) = (o0 - Eo ()

) . (6.19)

vanishes at ¢. Since each summand on the right hand side of Eq. (6.19) vanishes at
©, so does the sum Pw. O]

Proof of Prop.[6.3.2] Assume (i). Then there is a form a € QP971(J>®F), so that
w — da vanishes at ¢. By Lem. [6.3.26] it follows that P(w — da) = Pw vanishes at

©.
Conversely, assume (ii). By Cor. 5.2.7, w — Pw = da for some form a €
QPa=1(J>*F). Then
Wiy = (Pw + da) jooy, = (dav)jooys

which shows that w is exact at . O]

Lemma 6.3.27. Let w € QP'P(J®F). Let v = (j°)'w € QP*P(F x M). Let
p € F. If the base M of the fibre bundle F' — M s closed, then the following are
equivalent:

(i) [, 7( ij,...,fg) =0 for all 5;,...,52 eT,J.
(11) Pwje =0 is exact at .
Proof. Since w — Pw = da by Cor. [5.2.7, we obtain for the integral

[ et

Lep e (J7°) w

ber, Tl g»PWjL/MdMLQ?O%.”L%O%a

Pw

e
:L%%” .

J, e

-/

€p o 51

for all tangent vectors 5&,, ..., &0 € T,F with infinite prolongations é}mw, e ,éfw@.
We first consider the case p = 1. Then

/Léj%sz/ Léw(J“)*Pw:/ wadMZ/ dar(tg, 1)
M M M M

=0.
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for all {, € T,,J, where éjoo@ is the infinite prolongation of £,. In local coordinates
Pw = Su“ APy dz A. . . Ada" where Py € C®(J®F), &, = £25% where £ € C°(M),
and &, is given by Eq. (6.9). The integral now takes the form

/Léjo%Pw—/ §z(x)Pa(j§°g0)dx1/\.../\dx”,
M M

which vanishes for all functions £ € C*°(M) if and only if P, (j;°¢) = 0 for all .
This is the case if and only if Pwjec, = 0. ***spell out argument for p > 1*** [

Proposition 6.3.28. Let w € QP*P(J®F) where p > 0 and let ¢ € F. If the base
M of the fibre bundle F' — M 1is a closed manifold, then the following are equivalent:

(i) (7°°)*w is d-exact at .
(i) w is d-exact at .

Proof. Let v = (j°°)*w. Assume (i), which means that there is a form A €
QLP=1(F x M), such that v, = (d\),. It follows that

/,;(g;,...,ggg):/ duA(EL, ..., €0)
M M
=0,

for all &L, ... &8 € T,F. Lem. |6.3.27 then implies that Pw vanishes at ¢. By
Prop. [6.3.24] it follows that w is exact at ¢. We conclude that (i) implies (ii). In
Prop. [6.3.20] it was already shown that (ii) implies (i), which finishes the proof [

6.3.4 Relative horizontal cohomology

***Explain why closed and exact forms at ¢ cannot simply be defined by relative
cohomology***
For every ¢ € F the form w induces a commutative diagram

wojkep

M ———= p\PraT* Jk

id]\/[l lpr

i*e
By the universal property of the pullback, this diagram can be viewed as a section
wjk, of the pullback bundle
(E Q)" (NPT JFF) i= M X7, 8P APHT*
which is a vector bundle over M. Let us denote the sections of this vector bundle
by
P JEF) e, =T (M, (j50)"(AT*J*F))

which are p + ¢ forms supported at the image of j¥¢. We have the smooth, linear,
and surjective map

eVin, t Q(JVEF) — Q(JFF) ;i

w r—>w]~k¢,.

©p
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Lemma 6.3.29. Let ¢ € F. Then there is a commutative diagram

QIFF) oy 5 QIFHE) i,

ev, ev.
ijwl l Viktl,

Q(JkF)jkcp E— Q(JkJrlF)jkﬂso

for every k > 0.

Let ' € QP4(J'F) for some [ > k. Then w’ and w represent the same form in
Qpa(J>) if and only if pry W' = w.
This yields a local map
ev: Q(J'F) x F — (M, T*J*F)
(w7 SO) — Wjky,

which we call the evaluation of forms at fields. When we fix the field ¢ or the form
w, we obtain the map

ev, = ev(_, ) QJFF) — T(M,ANT* J*F)
ev(w) ==ev(w, ) : F— (M, AT*J*F),

which are a local maps. The image of ev, will be denoted by
QJIFF), = ev,QJFF),

which is isomorphic to the vector space of all sections of the pullback vector bundle
over M,
-k
(@) (ANT*JFF) := M < 5P ANT* TV
The map
ev, : QI F) — Q(JFF),

is a linear map.



Chapter 7

The action principle

Recall from Sec. that a lagrangian is a smooth map £ : F — QP(M). When
M is closed we can define the action integral by

S(p) = /M (). (7.1)

The action principle states that the critical points of S are the solutions of the
equations of motion. If £ is a local map, then the critical points of the action are
the solutions of a PDE, the Euler-Lagrange equation. We will give a proof of this
statement in Thm. [7.1.6]

When M is not compact, the action integral will generally not be defined for all
fields. In order to obtain a mathematically rigorous action principle for this case,
the notions of lagrangian, action, critical points, etc. have to be rephrased in terms
of the cohomology of forms on ¥ x M and the variational bicomplex. In a first
attempt to sidestep integration over M by homological methods, we could look at

th
o F —s H'P(M)

p — [L(p)],
where the bracket denotes the de Rham cohomology class in H*P(M). When M
is a closed connected and orientable manifold, then H*P(M) = R. In this case,
can be thought of the usual action divided by the total volume of M. When
M is non-compact, however, H*P(M) = 0 so that is the zero map. A better
approach is to formulate the action principle in terms of the variational bicomplex,

using the relation between local Q(M)-valued forms on F and forms on J*F that
we have established in Sec. [6.1.1]

(7.2)

7.1 The action principle
7.1.1 Lagrangian form and Euler-Lagrange form

As we have seen in Sec. 2.3.3] a smooth map £ : F — Q™P(M) can be identified
with a differential form £ € Q%*P(F x M). In Prop. we have shown that the
map L is local if, when viewed as a differential form on F x M it is the pullback of
a form L € Q%°P(J°F). This means that £ is given by

L(p) = (179)"L
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for all ¢ € F. The form L will be the primary object by which we study a local
lagrangian field theory. In Thm. we have shown that L is generally not uniquely
determined by £, so that it is part of the data of a field theory.

Definition 7.1.1. A local lagrangian field theory is given by a manifold M, a
smooth fibre bundle F' — M, and a form L € Q%"P(J*F) called the lagrangian
form.

A lagrangian form is given in local coordinates by
L= L' u®, ... ,u® . )de' A...Ada",

where n is the dimension of M and k the jet order of the form L. When we evaluate
the lagrangian £ : F — Q"(M) at ¢ € F, we obtain

agpa akQOa
Or” 7 Qxin - Qi

which is the usual expression for the integrand of the action integral found in physics
textbooks.

L(cp):L(xi,goa, )dxl/\.../\d:c",

Definition 7.1.2. Let L be a lagrangian form. The form
EL € QM (J>*F),

where E = P¢ is the Euler operator (Def. |5.2.5)), is called the Euler-Lagrange
form of L.

Let EL be represented by a form in Q©PTL(JFEF) = T(JFEF, APTIT* JR ). We
can evaluate FL at every point of J¥F, in particular at every point of the prolon-
gation j¥¢ : M — J*F of a field ¢ € F. This yields a map

F — D(M, APTIT JE )
(%2 — (ELJk@ LM EL]yanD) .

If we do not want to specify the jet-order k, we can denote the map on the right
hand side also by ELje.,.

Definition 7.1.3. The equation
FELjx, =0 (7.3)
for ¢ € J is called the Euler-Lagrange equation.
In local coordinates, the Euler-Lagrange form is given by
EL = E,6u® Adx' A ... A dx™, (7.4)

where % = E“(yci,zﬁ,u’f1 e ,uﬁ 77777 ;) are functions on some finite jet manifold

J*F. The Euler-Lagrange equation is the k-th order PDE given in local coordinates
by

B k B
Ea <x17 <)067 a(p AR 8 90 ; >
Oxn Ox™ - - Ozt
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Using the local coordinate formula (5.15a]) for the vertical differential 6 and the
formula ([5.25)) for the interior Euler operator P, we see that F, is given in terms of

L by oL
E.= Z(—l)"DI(a—w) .

=k

The Euler-Lagrange equation then takes the local coordinate form

Notation 7.1.4. In the physics literature it is customary to use the same notation
for the coordinate functions u¢ and their evaluation at a field, i.e. u§ = ag%. With

this notation, the Euler-Lagrange equation is written as

7 oM oL
2 (01 <a(8'”_wa)> =0

[I1>k ozl

Definition 7.1.5. Let (M, F, L) be a local LET. The diffeological space of so-
lutions of the Euler-Lagrange equation will be denoted by Fgnen. That is, Fgpen =
{¢ € T | ELjw, = 0} C J equipped with the subspace diffeology.

7.1.2 The cohomological action principle

Theorem 7.1.6. Let (M, F, L) be a local lagrangian field theory over a closed man-
ifold M. Then ¢ € F s a diffeological critical point of the action if and only if ¢ is
a solution of the Euler-Lagrange equation.

Proof. The action S : § — R is the composition of the lagrangian £ : F — QP (M),
¢ + (j¢)*L with the integration [ : Q*P(M) — R. It follows from Prop. [6.2.10
that the diffeological tangent map of £ is given by

(T,L)8 = e, (7=)"0L .

Since M is compact, the integration is a smooth map. As we have shown in
Prop. , the diffeological tangent space of Q™P(M) at a form w is isomor-
phic to QP(M) itself. (Note, that this is not true for arbitrary diffeological vec-
tor spaces.) With this identification, the tangent map of the smooth linear map
Joy  QP(M) — R at w is isomorphic to [, itself, by way of the following commu-
tative diagram:

T (M) BTy R

Qtop (M) f]\{
Identifying the top and bottom rows of this diagram, we obtain for the tangent map
of the action

(T,5)(¢,) = /M e (7)5L . (7.5)
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Lem. [6.3.27| states that the right hand side vanishes for all £, € T,,J if and only if
(PSL)jeoy, = ELjo, = 0. We conclude that 7,5 = 0 if and only if ¢ is a solution of
the Euler-Lagrange equation. O

In order to recast the action in cohomological terms, we observe that when M
is compact, the integration of L£(¢) over M can be viewed as the duality pairing
of the the fundamental class [M]| € Hi,,(M) with the de Rham cohomology class
[L(p)] € H*P(M). When M is not compact, there is a pairing of [M] with the
compactly supported de Rham cohomology in top degree (see e.g. [BT82]). However,
for many important lagrangians £(p) is generally not compactly supported. The
idea is now that we view the lagrangian £ : F — Q"*P(M) as a (0, top)-form on Fx M
and replace the integration over M with the d-cohomology class of the integrand,

/ML ~ [La,

where the differential d was defined in Def.[6.2.4 The class [£]; can then be viewed
as a cohomological replacement for the action.

For the action principle, we have to determine the zeros of the differential of the
action. For closed M we have seen in Thm. that the diffeological derivative of
the action at ¢ € Fis given by T,F — R, &, — [, te, 0L, where 6L : TF — Q°P(M)
is the diffeological differential of £, as defined in Def. [6.2.9) In the cohomological
setting the condition for the integral to be zero at ¢ has to be replaced by the
condition for the integrand to be exact at . In a first attempt, we could require
te, 05 € Q'P(M) to be exact for all {, € T,,J. However, as we have already pointed
out, H*P(M) = 0 when M is not compact in which case this condition is vacuous.

The right notion of exactness of a form at a field was given in Def. 0L
is d-exact at ¢ if there is a A € QU"P~1(F x M) such that ¢ 0L = 1 d for all
&, € T,,F. It follows from the deﬁnitionof d that e, d\ = dpr(1e, A), so that the
exactness of 0L at ¢ implies that te 6L = dps(1e, M) for all &,. We can summarize the
translation of the basic ingredients of the action principle into homological language
by the following table:

differential geometry ‘ homology

smooth map £ : F — Q"P(M) | differential form £ € QU'P(F x M)
smooth function S = [, £ cohomology class [L]4

S has critical point at ¢ 0L is d-exact at ¢

In order to establish the relation between the action and the Euler-Lagrange equa-
tion, which is a PDE, we have to consider local lagrangians.

Terminology 7.1.7. Let (M, F,L) be a local LEFT. The horizontal cohomology
class [L]q € HY'P(J>F) will be called the action cohomology class or, short,
the action class.

Proposition 7.1.8. Let FF — M be a smooth fibre bundle. If two lagrangian form
L, L' € QYP(J®F) represent the same action class [L]q = [L']4, then they have the
same FEuler-Lagrange form EL = EL'.
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Proof. By definition, two lagrangian forms L and L’ define the cohomological action
if and only if they differ by a d-exact form, L — L' = da for a € QY*P(J>*F). It
follows that

EL — EL' = Eda = Pdda = —Pd(6a) =0,

where in the last step we have used Thm. [5.2.2] (iii). O

Remark 7.1.9. The converse of Prop. is not true in general. By Thm. [5.2.9]
the obstruction lies in H4™M (F) i.e. the converse holds if and only if this cohomol-
ogy class is zero. For example, this is the case when F' — M is a vector bundle and
M is non-compact.

Theorem 7.1.10 (Cohomological action principle). Let (M, F, L) be a local LFT.
Then 0L s exact at ¢ € F if and only if ¢ is a solution of the Fuler-Lagrange
equation.

Proof. By Prop. [6.3.24] dL is exact at ¢ if and only if P0L = EL vanishes at ¢,
that is, if and only if E'Lje, = 0. [l

We emphasize that the proof of Thm. [7.1.10] sidesteps integration altogether. It
only uses, via Prop. [6.3.24] very basic local properties of the interior Euler operator
P, which is the cohomological replacement for partial integration.

7.1.3 The Helmholtz problem

7.2 Symmetries and Noether’s theorems

Noether’s first theorem relates symmetries of the action and conserved currents.
Before we state the theorem we will define these concepts.

7.2.1 Symmetries of the action class

Assume that M is closed, so that the action function is defined. A vector field
¢ € X(F) is a symmetry of the action function if the diffeological derivative of
the function S : F — R with respect to £ vanishes, £ - S = 0. It follows from the
definition [6.2.9] of the diffeological differential and the linearity of the integral that
the diffeological derivative in the direction of the tangent vector &, is given by

L, 08 = /M(ng(w)(go).

Since M is closed, the right hand side vanishes if and only if the de Rham coho-
mology class of the integrand vanishes. When M is not closed we require that the
d-cohomology class of 1c0L € QU*°P(F x M) vanishes.

Definition 7.2.1. Let £ : F — Q™P(M) be a lagrangian. A vector field £ € X(F)
is a symmetry of the action class [£]; if there is a form v € QY°P~1(F x M)
such that (00 = dv.
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Remark 7.2.2. Prop.[6.2.11]states that § and d commute on (0, ¢)-forms, so that we
obtain ted(d\) = d(1ed ) for all A € QY*P~1(F x M). This shows that the condition
of Def. only depends on the d-cohomology class of £ as it is suggested by the
terminology.

Terminology 7.2.3. A symmetry of a local lagrangian £ is called local if both the
vector field ¢ and the form v in Def. are local.

The notion of symmetry of a local LFT, where the lagrangian form lives in the
variational bicomplex, has to be expressed in terms of vector fields and forms on
J*F. In Prop. 5.1.26| we have shown that the vertical and the horizontal Cartan
calculi on the infinite jet bundle commute. As a consequence, the action of the
vertical differential, the inner, and the Lie derivatives with respect to strictly vertical
vector fields on forms descend to actions on the d-cohomology classes. That is, the
actions

Slwla == [0w]a, telw]a = [rewla, Lelwla = [Lewla,

for w € Q(J*F) and a strictly vertical vector field £ € X(J*F) are well-defined.
The Lie derivative with respect to a strictly horizontal vector field also commutes
with the horizontal differential, so that we have a well defined action

Lx[a}]d = [LXW]d .
for every strictly horizontal vector field X € X(J®F).

Definition 7.2.4. Let (M, F,L) be an LFT. A strictly vertical vector field £ €
X(J>F) is called a symmetry of the action class if L¢[L]; = 0, i.e. if there is an
a € Q¥or=1((J°F) gsuch that L¢L = da.

Terminology 7.2.5. A symmetry of the action class in the sense of Def.
is often called a generalized symmetry of the lagrangian, where a non-generalized
or manifest symmetry is defined by L,L = 0 [Fre06]. Sometimes a symmetry £
is called generalized if is not the prolongation of a vertical vector field on F. In

this terminology, a non-generalized symmetry is the prolongation of an evolutionary

“vector field” of the form n = £%(a°, uo‘)a% on F' [O1v93].

Remark 7.2.6. The Lie derivative with respect to a strictly horizontal vector field
X on a lagrangian form L is given by

LxL = [Lx,d+ (5][/ = [LX,d]L == d(be> y

so that Lx[L]; = 0. This shows that every strictly horizontal vector field X is
trivially a symmetry of the action class.

Proposition 7.2.7. Let F — M be a smooth fibre bundle. Let L : F — Q*P(M) be
a local lagrangian, so that £ = (j°°)*L for some L € QUtP(J®F). If £ € X(J®F)
is a symmetry of the action class [L]q, then the corresponding local vector field £ €
X(F) given by Thm. is a symmetry of the action class [L]y. Moreover, if

§Y 1 F x M — F is surjective, then the converse statement holds as well.
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Proof. Conversely, assume that LééL = da.. Using Prop. and Prop. [6.2.10, we
obtain

L0l = 166(§°) 0L = 1¢(j™) 0L = (§°) 10 L
= () = d(*)"a
=dv,

where v := (j)*da.

Conversely, assume ¢ is a local symmetry, so that edL = dv, where v = (j*)*«a
for some a € QY*P~1(J>®F). An analogous calculation shows that (J*)"edL =
(7°°)*da. If we assume that jO is surjective, Thm. [6.1.2] states that (j°°)* is injective.
We conclude that ¢z0L = dov. O

Definition 7.2.8. Let £ € Q%°P(F x M) be a lagrangian form and P a set. A
family of symmetries of [£]; is a map £ : P — X(F), such that there is a map
v: P — QUPTH(F x M) satisfying t¢,0L = du, for all p € P.

When we want to impose additional conditions on a family of symmetries, such
as smoothness, locality, or linearity, we have to impose them on both & and v. This
leads to the following definition.

Definition 7.2.9. A family of symmetries as in Def. is called

(i) linear if P is a vector space and ¢ and v are linear maps;

(ii) local if £ is local, P is the space of sections of a smooth fibre bundle, & is
a local family of vector fields (Def. , and v is a local family of forms

(Def. [6.3.2));

(iii) linear local if P is the vector space of sections of a smooth vector bundle,
and £ is a linear and local family of symmetries.

Remark 7.2.10. If P in Def. is a vector space and £ a linear family of vector
fields such that every &, is a symmetry, we can always chose v to be linear by choosing
the values of v for a basis of the vector space and extending it linearly. Since the

condition L¢, £ = dv, is linear in both &, and v,, it holds for all linear combinations.
The condition in Def. (i) that v be linear was included for clarity.

If£: € — X(F) is a local symmetry, then by Prop. @ &, is a local vector field
for every e € &, which can be identified by Thm. [5.1.37 with a strictly vector field
£ € X(J®F). Similarly, the form v, is the pullback of a form a, € QO-P~1(J>F).
For a local family of symmetries of £ = (j*)*L we thus obtain maps

£:8 — X(J®F)
a: & — QUterTl( gy

From ¢, 04 = dv, it follows that (j*)*(t¢ 6L — da.) = 0. However, when (j>)* is

not injective we cannot conclude that ée is a symmetry of [L];. Therefore, we need a
separate definition of a local family of symmetries of the action class of a lagrangian
form on the infinite jet bundle.
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Definition 7.2.11. Let L € Q%*P(J>F) be a lagrangian form and P a set. A
family of symmetries of [L]; is a map & : P — X(J*F) with values in strictly
vertical vector fields, such that there is a map «a : P — Q%©P~1(J>*F) satisfying
Le¢, L = day, for all p € P.

Definition 7.2.12. A family of symmetries as in Def. [7.2.11|is called (linear) local
if P = € is the space of sections of a smooth fibre (vector) bundle £ — M, and the
induced maps & — X(F) and & — Q%P~1(F x M) are (linear) local families.

Remark 7.2.13. Note that X(J*F) is not the space of sections of any smooth
fibre bundle, so that we cannot impose the condition of locality on the map £ : € —
X(J°F). The notion of locality of Def. makes only sense for the induced map
EXTF =T7.

Remark 7.2.14. If we unpack Def. (ii) and Def.[7.2.12] we find that a family
of vector fields on J or of strictly vertical vector fields on J*°F'is local if it is induced
by a map

J'E xy JFF — VF.

Similarly, a family of n-forms on & x M or on J*F is local if it is induced by
JYE x o JFE — N'TFJRE.

The only difference between the Def. (ii) and Def. of local families of
symmetries is that, when (j°°)* is not injective, the condition that & € X(F) is a
symmetry does not imply that & € X(J®F) is a symmetry. When (5)* is injective,
the two notions are equivalent.

7.2.2 Currents and charges
Definition 7.2.15. A differential form j € Q%*P~}(F x M) is called a current.

Integrating a current j over a closed oriented and cooriented codimension 1
submanifold S C M yields a smooth map

g5 F—R, gs() :=/j@7 (7.6)
S

which is called the corresponding charge on S. Here j, = j(gp) is the evaluation of
j at ¢ € F (see Def. and Rmk. [6.1.7).
Assume that the spacetime manifold M is locally split into time and space,
i.e. there is an embedding
0 RxX— M,

where ¥ is a closed oriented manifold. Then we can integrate over the time slices,

Qt<§0) = QUt(E)(SO) ) (77>

which can be viewed is the total charge on ¥ as a function of time. Let ¢, z!,... 2"}

be local coordinates of R x . Then a local current has the local coordinate form

9,

. -k

Jo = po(t, x) voly + jo(t,x) dt A (@ —‘VOlg) :

where voly = dz' A ... Adz"" is the volume form on X, and where p, and j are
smooth local functions on M.
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Terminology 7.2.16. The smooth function p, € C*(M) is called the charge
density and the vector field jg% € X(M) the current density, e.g. the electric
charge density and the electric current density in Maxwell theory, or the mass density
and the material flow density in fluid dynamics.

Local currents can be viewed as representing in a coordinate independent way
local observables, i.e. locally defined physical quantities like charge densities and
their flows. If two currents differ by an exact current, j — j' = d3, the corresponding
charges are the same, gs = ¢5 (assuming that S is closed). In this case j and j’
represent the same physical quantity. As before, we also define the notion of current
in terms of the infinite jet bundle.

Definition 7.2.17. A form j € Q%P~1(J>*F) is also called a current.

A current j € QU°P~1(J* [} can be pulled back along the infinite jet evaluation
to a current n = (j*®)*j € QOP~L(F x M), where we apologize for the double
usage of the letter j. The charge of j is by definition the charge of 1 as given by

the integral

Definition 7.2.18. Let (M, F, L) be alocal LFT. A form in Q(Fx M) or in Q(J*F)
is called conserved if it is d-closed at all solutions ¢ € Fgey of the Euler-Lagrange
equation.

When a current j € Q%P~1(F x M) is conserved, then the corresponding charge
qs(¢) for p € Fgpen depends only on the homology class of S. In particular, t — ¢()
as defined in Eq. (7.7)) is constant. More generally, let M be a cobordism and
f: M —[0,1] a Morse function such that f~1(0) = (OM);, and f~1(1) = (OM)out-
This can be viewed as time parametrization of M where S; := f~!(¢) is the time ¢
slice. As before, ¢;(p) := gs,(p) is constant for ¢ € Fyen.

Proposition 7.2.19. Let j in Q¥P~Y(F x M) be a current and qs : F — R the
corresponding charge on the closed codimension 1 submanifold S C M. If dj = 0,
then qg is constant along any smooth path in JF.

Proof. ***rewrite me*** Prop. [6.2.10] implies that the diffeological differential of
J:F — QrP=1(M) is given by

0) = (5°)05 -
Integrating over a closed codimension 1 submanifold S C M, we see that the diffe-
ological derivative of the charge g5 : & — R is given by

(T,qs)(£,) = /5 () 1e.65

where we have used Prop. [6.2.1 Assume that dj = 0. This implies that d(dj) =
—ddj = 0, so that it follows from the acyclicity theorem [5.2.6| that ¢7 is d-exact.
FARAAK finish me *HHHHK m

Corollary 7.2.20. Let S C M be a closed oriented codimension 1 submanifold. If
a current j € QUOPTH(F x M) is closed and F is connected by piece-wise smooth
paths, then the charge qs : ¥ — R is constant.
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From the viewpoint of physics, Prop. [7.2.19]and Cor. [7.2.20] tell us that d-closed
currents do not represent particularly interesting observables. This also shows why
conserved currents are required to be d-closed on JFg,e only.

7.2.3 Noether’s first theorem

Proposition 7.2.21. Let (M, F, L) be a local LET. Then there is a~y € QLP71(J>F)
such that
0L =FEL —dy. (7.8)

Proof. This is Cor. for w = L. O

We will call v a boundary form of the LFT. It follows from the acyclicity
theorem that the boundary form is determined by the LFT up to an exact
form.

Theorem 7.2.22 (Noether’s first theorem). Let (M, F, L) be a local LFT and v a
boundary form. Let & € X(J*®F) be a symmetry of the action cohomology class L],
such that L¢L = do. Then the current

Ji=a— ey
s conserved.
Proof. Since ¢ is strictly vertical, we have L = 0 and diey = —tedy. We obtain
dj =d(ov —tgy) = LeL + tedy = 1(0L + dy) = 1 EL,
which vanishes on shell. O

Terminology 7.2.23. The current j of Thm. [7.2.22]is called a Noether current
and the corresponding charge a Noether charge of the symmetry &.

Remark 7.2.24. The Noether current of Thm. depends on the choice of both
a and 7. Two Noether currents j and j' for the same symmetry £ differ by a closed
current, d(je — j¢) = 0. It then follows from Prop. [7.2.19 that the Noether charge
is unique up to a charge that is locally constant, i.e. constant on the connected
components of F.

Definition 7.2.25. Let L be a lagrangian form, j € Q%*P=1(J*F) a current, and
¢ € X(J®°F) a strictly vertical vector field. If

dj = EL,
then (7,¢) is called a Noether pair.
Let (4,€) be a Noether pair. Then

Lel = 1660 = 1e(EL — dy) = dj + dugy
=da,
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where o = j + t¢y. This shows that £ is a symmetry of [L]; and j its Noether
current.

While the proof of Thm. makes Noether’s first theorem look deceptively
simple, it is the mathematical implementation of one of the most important prin-
ciples in physics, the relation between Lie group symmetries and the fundamental
physical quantities like momentum, energy, and charge. Here is a table:

conserved quantity
linear momentum
angular momentum
energy

external (spacetime) symmetry
space translations

space rotations

time translation

velocity transf. (Galilei group) = — x — vt

T—vt

Boosts (Lorentz group) x — —==2—
( zg p) \/m

internal (gauge) symmetry

center of mass
center of mass

conserved quantity

U(1) gauge symmetry
SU(2) gauge symmetry

electric charge
hypercharge

color charge

SU(3) gauge symmetry

7.2.4 Noether currents for linear local families of symmetries

We recall from definition |6.3.19|that a current n € QY*P~1(J>*F') is d-exact at ¢ € F
if there is a form 8 € Q%*°P~1( J>F) such that (;%°¢)*(n—dB) = 0. By Prop.[6.3.21],
this is the case if and only if (j®p)*n € QP71 (M) is exact.

Theorem 7.2.26. Let (M, F, L) be a local LF'T with boundary form ~; let A — M be
a smooth vector bundle of non-zero rank; let £ : A — X(J®F) be a linear local family
of symmetries, so that there is a linear local family of forms o : A — QUP=1(J>F)
satisfying Le¢, L = dag. Then for every a € A the Noether current j, = oq — te,Y 18
d-exact at every ¢ € Fghen-

Proof. Let ¢ € Fgpen. Since £ and « are linear local families, and since (j°°)*y is a
local form, the map
vyt A — QFPTH(M)
ar— (%) Ja -
is linear and local, as well. By Noether’s first theorem [7.2.22 v,,(a) is closed for all
a € A, so that dyov, = 0. This shows that v, satisfies all conditions of Prop.|6.3.13]
so that there is a local linear family p : A — QP~2(M) satisfying v, = dps o p. It
follows that for every a € A the form (j°°)*j, € Q%P~1(F x M) is exact at . With
Prop. |6.3.21 we conclude that j, is d-exact at ¢. O

Remark 7.2.27. Thm. was stated without proof in Thm. 15 b) of |[Zuc87],
where it was attributed to E. Noether’s original article [Noel8] of 1918. How-
ever, while the general idea may be extrapolated from §6 of [Noel§|, the proof of
Thm. for general background manifolds M and general fibre bundles F' relies
on concepts and technical results that were not available at the time. The proof uses
diffeology and variational cohomology, in particular Prop. [6.3.21] and Prop. [6.3.13]
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which in turn relies on Prop. 2.3.12) Thm. [2.3.2] and, crucially, on the acyclicity
theorem [5.2.6 The proof given here can be found in [Ber19).

Corollary 7.2.28. Assume the situation of Thm. [7.2.206. Let S C M be a closed
oriented codimension 1 submanifold. Then the charge q.() == [ ja() vanishes for

all ¢ € Fgpen and all a € A.

Remark 7.2.29. By adding to j, of Thm. a current 7 that is d-closed but
not d-exact at ¢, we obtain (&,,j, + ) a Noether pair. This shows that there may
be other Noether currents for &, that are not d-exact at ¢ € Fgep-

Remark 7.2.30. Thm. [7.2.26| states that, given a ¢ € Fgep, there is a form g €
QOtor=2( > ) such that (j*¢)*(n — dB) = 0. The form 3 generally depends on ¢,
so that Thm. [7.2.26| does not state that the pullback of j, to Fgen X M is d-exact.

7.2.5 Noether’s second theorem

Noether’s second theorem relates linear local families of symmetries with local linear
degeneracies of the Euler-Lagrange equation. ***Finish me***

Theorem 7.2.31 (Noether’s second theorem). Let (M, F, L) be a LFT. Let§ : A —
X(J®°F) be a local linear family of symmetries. Then

PLEL =0, (7.9)

where P is the interior Euler-Operator.

Eq.

7.3 Jacobi fields
7.3.1 Linearization of the Euler-Lagrange equation

In Sec. we have explained how a local form like F'L can be viewed as the
differential operator ¢ — Dgrp = ELj~,. The associated PDE, Dgrp = 0, is the
Euler-Lagrange equation. In Prop. [3.2.13| we have shown that the tangent map of a
local map like Dgy, is local of the same jet order. The tangent map T, Dgy, is called

the linearization of Dgy, at ¢ (Terminology |3.2.15). The PDE
(T,,Dgr)é, =0, (7.10)
is the linearization of the Euler-Lagrange equation at ¢ (Def. |6.1.16]).

Definition 7.3.1. The solution of the linearization (7.10) of the Euler-Lagrange
equation at some ¢ € Fyop is called a Jacobi field.

Before we give a more explicit description of Jacobi fields we recall from Lem.|[6.1.18
that every &, € T,,F can be extended to a local vector field £ on F and that § projects
to a strictly vertical vector field é € X(J°°F), which by Thm. is the infinite
prolongation of an evolutionary “vector field”.
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Lemma 7.3.2. Let w € QP4(J*F) and ¢ € F, such that wje, = 0. Let &, € T,F.

@eté be a strictly vertical vector field on J*F that extends the infinite prolongation
ooy 0f £ Then the evaluation of Lgw at ¢ depends only on &, and not on the

extension .

Proof. The form w on the pro-manifold J*F' is represented by a form on a finite
jet bundle J*F', k < oo, which we also denote by w. The sheaf of differential (p, q)-
forms on J*F is locally free, which means that locally w = w;7!, where {7} is a local
frame of (p, ¢)-forms and w; € C*°(J*F) the coefficient functions. The explicit form
of {7} can be deduced from the local coordinate form (5.16]), but does not matter
here. The assumption wj=, = 0 is equivalent to w; o j¥¢ = 0 for all I.

The Lie derivative of w with respect to a vector field & € X(J>*F) evaluated at
v is given locally by

(L wrt ) ngl 7+ w LETZ))JMW

(7.11)

Lw) l@

((
= (£ £W 1)joo soT ot (w0 j%p) (Lng)j""<P
(
(¢4

L 5wl)

£y e

This shows that the right hand side only depends on the infinite prolongation éjoow
of &,. O]

Notation 7.3.3. Let w be a form on J*F, let ¢ € J such that wje~, = 0, and let

f be a strictly vertical vector field on J>*F. Since by Lem. the evaluation of
Lew at ¢ € F depends only on &, we will use the notation

Lew = (Liw)joop -

Lemma 7.3.4. Let w € Q"(J*F) and let D, : F — T'(M,\"T*J*®F), ¢ — Wjooy,
the associated differential operator (Def. . Let ¢ € F be such that wje, = 0.
Then

(T, D) = Le,w . (7.12)

Proof. In local coordinates we have w = w;!, where {r;} is a local frame of (p, q)-
forms as in the proof of Lem. Assume that ¢ € F satisfies wjeo, = 0. This is
the case iff w; 0 7*°¢p = 0. Let t — 1y € F be a smooth path, such that 1)y = ¢. The
image of §, 1= Yo € T, F under the diffeological tangent map D,, is given by

d

(Twa)fw = %Doﬂﬁt‘tzo
d

= Ewﬂ"’o%‘t:o

Z((WZO] Vi) T wzpt) 0

—(i(wzoj %)) Tfm + (w0 w)(jt °°zpt> »

t=0
d
dt (Wl j wt |t 0
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where we have used that w o 7*°¢p = 0. In local coordinates, the first factor of the
right hand side can be written as

d = d, ow .
E(wl ©J wt)‘t:() = E(ul o wt)‘t:()(a_u(]i ©J ¢0>
_ d 8I¢? Owy .00
= T g o5z ©7700)
8'”&; 3001 .00
~ T oxl (8_u? °J gp)
= Léjo%éwl?

where éjoqp is the infinite prolongation of {, as introduced in Def. |6.1.22 Let é €
X(J*®F) be a local vector field that extends {j=,. We conclude that locally we have

(T, Du)ép = (1, 0w) 7" (7.13)
The right hand sides of Eq. (7.13|) and Eq. (7.11]) are equal, which implies Eq. (7.12)).
O

Proposition 7.3.5. Let (M, F, L) be a local LFT and ¢ € Fgpen. Then &, € T,TF is
a Jacobi field if and only if
Le,EL=0.

Proof. Let ¢ € Fghen. By definition, &, € T,,J is a Jacobi field if it lies in the kernel
of T,Dpr. Lem. for w = EL states that (T,Dgr){, = L¢,EL. This shows
that &, is a Jacobi field if and only if £, FL = 0. m

In local coordinates EL = E,du® Avol, where vol = dz' A ... Adx™, n = dim M.
Let k be the jet order of EL. The Lie derivative with respect to &,, where ¢ € Fgpen,
is given by

Le, EL = (1, 0Eo)0u” A vol
k
OE,, 3|J|55 .
= Z E¥: (%) (%f du® A vol,

7]=0

which vanishes if and only if the Jacobi equation

k JI¢eB
anz -k al 69@ .
D 559 G =0 (7.14)

|7]=0

is satisfied.

7.3.2 Tangent vectors on shell

Proposition 7.3.6. Let (M, F,L) be a local LFT. If £, € TF is tangent to the
diffeological space Fgnen of solutions of the FEuler-Lagrange equation, then it is a

Jacobu field.
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Proof. By definition of the subspace diffeology of Fyen C F, every tangent vector
in &, € T,Fshen is represented by a smooth path ¢ +— 1)y € Fgpen. This means that
ELjoy, =0 for all ¢. It follows that

- d

(T, Dgr)é, = (T,Dpr)th = aEL]-oowt\t:O =0.
It follows from Prop. that &, is a Jacobi field. n

The converse of Prop. is not true in general, since not every solution of the
Jacobi equation is represented by a path in Fg,en. The first obstruction to extending
Jacobi fields to paths arises when the Euler-Lagrange equation viewed as function
on J*F is degenerate as in the following example.

Example 7.3.7. Let M =R and F' =R x Q — R with ) = R, so that the space
of fields is F = C'*° (]R) Consider the lagrangian L = %q'?’dt. The Euler-Lagrange
form is EL = —2q¢dq N dt, so the Euler-Lagrange equation is

294 =10,

that is %(f = 0, which is equivalent to ¢> = v? for some constant velocity v € R.

The solutions are the constant velocity paths,
Fanen = {¢ € C(R) | ¢(t) =z +vt, x,v € R}.

The tangent space of F at the constant path ¢(t) = 0 is given by T,F = C>*(R).
The subspace of vectors tangent to Fgpey is given by

ToF shen = {6 S COO(R) | f(t) =a+ft, a,p € ]R}
The Jacobi equation ([7.14)) for £ € T, F = C®°(R) is
vE=0.

When v = 0, the equation is trivially satisfied for every £ € C*°(R). We conclude
that every tangent vector at a constant path ¢(t) = x is a Jacobi field.

The essential property of example is that the component functions F,, :
J¥F — R of the Euler-Lagrange are degenerate in the sense that there are tangent
vectors to J¥F' that annihilate all £, but are not tangent to the zero locus of the
E,. As a consequence, the obstruction to extending Jacobi fields to paths in Fgep
is local. More precisely, there are Jacobi fields ¢ and points m € M where the
restriction £|y to any neighborhood U of m cannot be represented by a path of local
solutions of the Euler-Lagrange equation. There are also global obstructions as the
next example shows.

Example 7.3.8. Let M = R and F = R x @ — R with @ = (—1,1), so that
the space of fields is F = O (R, (—1, 1)), the space of smooth paths in the open
interval (—1,1). Let L = %q’th be the lagrangian of the free particle in ). The
Euler-Lagrange form is FL = —{dg A dt. Since any path of non-zero constant
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velocity would have to leave (—1,1) eventually, the space of solutions is the space
of constant paths,

Faoen={q€F | qt) =2, x € (—-1,1)}.
The tangent space at the constant path ¢ = 0 is given by
TyF = F(R,R x To(—1, 1)) = C*(R).
The subspace of vectors tangent to Fg,en is given by constant functions,
ToFemen = {€ € C(R) | £(t) = o, a € R}

The Jacobi equation (7.14) for € € C®(R) is £ = 0, the solutions of which are of the
form £ = a + Gt for a, 5 € R. We conclude that there are Jacobi fields with 8 # 0
that are not tangent vectors to Fgnen.

Remark 7.3.9. We could define the tangent spaces of the variety Fgnen to be given
by all Jacobi fields, as it is done in Def. 7 of [Zuc87]. In other words, we could
use the Zariski tangent space of algebraic geometry for the variety Fgen rather
than the diffeological tangent space. However, this would be inconsistent with the

diffeological description of the spaces of fields and obscure the interesting geometric
phenomena exhibited by examples [7.3.7] and [7.3.8]

Definition 7.3.10. Let (M, F, L) be a local LFT. A solution ¢ € Fy,ep of the Euler-
Lagrange equation for which T,,Fgen is equal to the space of Jacobi fields will be
called non-degenerate.

7.3.3 Symmetries and Jacobi fields

Proposition 7.3.11. Let (M, F, L) be a local LFT. If the local vector field & € X(F)
is a symmetry of the action class, then &, € T,,F is a Jacobi field for all ¢ € Fgpen-

Lemma 7.3.12. Let w € QYP(J®F) be a source form and x € X(J*F) a strictly
vertical vector field. If ¢ € F satisfies wjo, = 0, then
(Lxw)jmp = (P(Lyw)) i, - (7.15)

Proof. Eq. (7.15]) is local, so it can be checked in local coordinates. By assumption
w is a source form, so we have in local coordinates

w = 0u* N\ w,T,

where 7 = dax' A ... Adx™ for n = dim M is the volume form of the local coordinates.
For the Lie derivative we get

Lyw = 0u® A (Lywa)T + X A waT,

where we have used that y is strictly vertical. Using formula ((5.25)) for P we see
that the first term on the right hand side satisfies

P(6u® A (Lywa)T) = 0u® A (Lywa)T .
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For the second term we obtain
1 ox“
POy Awot) = 0u’ AT = —DMp (—wa>.
(5" Awar) ;DG

For any ¢ € J we have

(2u(Gy)) = ((Ggee) o)

gm ((ZXB 0 s@)( Oj°°s0)>,

where we have used Rmk. |5.1.13] Assume now that the field ¢ satisfies wj~, = 0.
This is the case iff w, 0 ¢ = 0, so that the right hand side of Eq. (7.16]) vanishes.
This implies that

(7.16)

(P(6x™ A wOﬂ_))jOOSO =0.
Putting things together, we obtain
(P(wa))joow = (P(6u® A (waa)T))jo% + (P(6x™ A waT))joog}
= (du™ A (waa)T)joow
= (6u®™ A (waa)T)jmg} + (OX A\ WaT)joog
= (Lyw)jegp
where we have used that (Ox® A waT) e, = 0 since w, 0 j®¢ = 0. O
Proof of Prop. [T.3.11 Let ¢ € X(F) be a local vector field and € € X(J®F) the
strictly vertical vector field to which £ descends by Thm. [5.1.37, Assume that & is
a symmetry of the action class, so that £ éL = da. Then
LEEL = LE(CSL —f- d’y)
= (5;551/ —f- dﬁé’}/
=dda +dLgy
= d(—6a + 0gy + 1g07)
=d(—dj + Lé(S’y) ,
where j = o — 1y is the Noether current. It then follows from Thm. m that

P(L¢EL) = 0. Assume that ¢ is a solution of the Euler-Lagrange equation L=, =
0. We now apply Lem. to w = F'L, which shows that

Le, EL = (LéEL)joog, = (P(LEEL))].OO@ =0,
i.e. & is a Jacobi field. O]

Remark 7.3.13. Prop. [7.3.11| was stated in Prop. 13 a) of |[Zuc87] which refers to
a forthcoming paper for the proof. To my best knowledge this announced paper
has never appeared. Nonetheless, the statement of Prop. 13 a) has been used sub-

sequently in the literature. For example, it is used as the first step in the proof of
Prop. 2.76 of [DF99.
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7.3.4 Presymplectic structures

The boundary form + is determined by the lagrangian only up to a closed form.

Proposition 7.3.14. Let (M, F,L) be a local LFT. The form 07, where v is a
boundary form, is unique up to a d-exact form.

Proof. The boundary form ~ is unique up to a closed form. So if 4 is another
boundary form 7 := ' —~ is d-closed. For 7 = §7' — dv we obtain doT = —ddr = 0.
It now follows from the acyclicity theorem that 07 is exact. O

Terminology 7.3.15. In [Zuc87] ¢ is called the universal current.

Lemma 7.3.16. Let ¢ € Fgpen. Let &, xp € T, F be Jacobi fields and éjoow fjoo%,
their infinite prolongations. Then

ngo%LonowéEL =0.
Proof. Let é , X be strictly vertical vector fields extending éjooso and fjm¢. We have
Letx0BEL = (1eL5 — tg0ug) EL

é les)

When we evaluate the right hand side at ¢, the first two terms vanish because é and
X are infinite prolongations of Jacobi fields. The last term vanishes because ¢ is a
solution of the Euler-Lagrange equation. ]

Proposition 7.3.17. Let ¢ € F, let &,, x, € T,F Jacobi fields, and let fjoo@, Xjou
be their infinite prolongations. Then

Léjoo(pexjmvd(éfy) =0.
Proof. We have
d(0y) = —o0dy = §(EL — L)
=J0FL.
The proposition now follows from Lem. m

Let v € QP9(F x M). And let S C M be closed embedded submanifold of
dimension ¢q. Then we can define a p-form on F by integrating over S, which is
defined by

us(fjo,...,ﬁf;) Z:/SLég---L&}?V

for all ¢ € F and all f}o,...,é‘g € TF. When v = (j®)'w, w € QPI(J*F). The
integrated p-form is given by

MS(gia,gg) ::/SLAZ) Léloo w.
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Let S C M be closed oriented codimension 1 submanifold. Integrating -+ over
S yields a 2-form wg on F, which is defined by

wS(&mch) ::/SLti[’&w(jooyé‘ﬁy:/;LXjOO‘PLéjOOsﬂ(SV

for all &,,x, € TF. It follows from Prop. that wg is independent of the choice
of the boundary form . While wg does depend on S, it follows from Prop.
that wg is conserved on shell in the following sense: For two Jacobi fields £, and .,
ws (€4, X)) depends only on the homology class of S.

Proposition 7.3.18. Let (M, F, L) be a local LF'T. Let (3, 5) be a Noether pair. Let
& be the unique local vector field on F that projects to 5 by Thm. . Let S C M
a closed oriented codimension 1 submanifold and qs the charge ij on S. Then

(tews —6gqs), =0
for all ¢ € Fgpen-
Proof. As shown in the proof of Prop. we have

d(Lg5’y —4dj) = LeEL.

Prop. [7.3.11] states that the right hand side vanishes at ¢ € Fgen. In other words,
1g0y — 07 is d-closed at ¢. Prop. [6.3.23 then implies that 1z0y — 07 is d-exact at .
We conclude that (tews — dgs),, fs 57 07)y m

Proposition 7.3.19. Let (M, F,L) be a local LFT with boundary form ~. Let
A — M be a smooth vector bundle of non-zero rank. Let £ : A — X(F) be a linear
local family of symmetries. Let S C M be a closed codimension 1 submanifold. Then

WS(&LWX%) =0
foralla € A, all ¢ € Fgpen, and all Jacobi fields x, € T,,F.

Proof. Let ¢ € Fgen. Let x, be a Jacobi field and xj~,, its infinite prolongation.
Let &, j~, be the infinite prolongation of &, ,. The map

viA— QBOPTI(M)
av— L)zjo%Léayjo%é'y
is linear and local. By Prop. (7.3.11)), &, ., is a Jacobi field. Prop.|7.3.17|implies that

(dyrov)(a) = dM(LonowLémjoow(S’}/) = L)ijwbéa,joowd(&}/)
=0.

We conclude that v satisfies the conditions of Prop. [6.3.13] so that v = d;; o v for
some local linear map p : A — Qb©P=L(M). Tt follows that

W5(Eagr Xp) = / A (u(a)) = 0,

which finishes the proof. O
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Remark 7.3.20. Prop. is stated as Thm. 13 b) in |[Zuc87]. The sketch of
a proof given there is not correct, however, as it requires the assumption that x,
be a diffeological tangent vector and not only a Jacobi field. With this stronger
assumption, we can give the following short proof as proposed in [Zuc87]:

By Thm. [7.2.26] the Noether charge ¢qs of £(a) vanishes on Fypen. It follows,
that ¢y,0q.s = 0 for any tangent vector x, € TFgen. From Prop. we deduce
that ws(&apr Xe) = by leaWs = by,0qa,s = 0.



Chapter 8

Examples

8.1 Classical mechanics

Let us consider classical mechanics, where we had

, d (0L B 0L\
i.(0L — EL) = 7 (8q'i€ ) dt =d (zsa—q_zﬁq) = —i.dy,

where
oL

g’
Let us consider the lagrangian L = (3mg'q' — V(q))dt = (T — V))dt of a particle of
mass m moving in a potential V', which is defined on the first jet bundle J*(Q x R) =
T x R.

Cosider time translation, i.e. the diffeomorphism ® : R — R, ¢ — t + ¢, which
acts on a path by push-forward. Since

(2.(¢)) (1) = (27'(1) = 't —e) = ¢'(t) — &¢'(t) + O(¢?),

The corresponding vector field on F = C*°(R, @) is given in jet coordinates by

5q" .

’y:

a0 50 g 0
q dq q dg Dt

£ =

We can check that this is a symmetry of the homological action,

av
oq* a

QLz—@M&— )ﬁ:-ﬂ:m%.

From Noether’s theorem we now obtain
je=ag —igy=-T+V+mi'qd =T+V,
which is the total energy of the mechanical system.

Example 8.1.1. Consider the lagrangian given by the length of a path in a rieman-

nian manifold ). Every vector field f (t)% of R induces a symmetry on paths by

reparametrization. The conserved current is given by j; = 0. [Exercise]
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Example 8.1.2. To the 1-form A = A;da’ can add an exact 1-form df without
changing the lagrangian of Maxwell theory. In coordinates the vector field is

of 0 oF 0

3

The conserved current is given by j = *(0'F;da?). [Exercise]

It can be shown that an infinitesimal symmetry of the homological action is
tangent to the variety of solutions Fgen = EL71(0). This means that on shell

0= /(—5]& + Z'g(;’y) = —(5(]5 + ig(swg .
S

In other words, on shell the infinitesimal symmetry £ is a hamiltonian vector field
generated by the Noether charge ge. If the Noether charge vanishes on-shell then
¢ lies in the kernel of wg. We conclude that if there is a family of symmetries
{&s} recoo () to which Noether’s second theorem applies then every & lies in the
kernel of wg.

8.2 Free particle on a curved background
8.3 Yang-Mills gauge theory
8.4 General relativity



Chapter 9

Local group actions

Consider the action of the diffeomorphism group Diff(M) on 1-forms on M by
pushforward,

[ Diff (M) x QY (M) — QY(M)
(D, 7) —> D7
QF(M) is the set of sections of the bundle F’' : T*M — M. Diff(M) is a subset of

the sections of the bundle of pairs P = M x M 2% M, the sections of which are
given by I'*(M, P) = C*°(M, M) D Diff(M). Denote the fibre product bundle by

(9.1)

F:=PxyF,

so that

Foup 1= Diff (M) x Q'(M)
is a subset of the set J of all sections of F'. Consider now the map

[T x M —F x M
(((1)7 T>7m) = (907 m) — (f(go), fM((:Ov TTL)) = ((I)*T, (I)(m)) .
Recall that the pushforward is defined as
(Do) = ((CID_I)*T)m = (Tm(I)_1>*Tq>71(m)

= ((Tq)—l(m)q))il)*ﬂl)q(m) .
The value of ®,7 at ®(m) is given by ((qu))*l)*Tm. This tells us that f is local in
the sense, that the value of f(¢) at fu(p, m) depends only on the 1-jet of ¢ at m.
We want to state this by a diagram like (3.11]).

A local section of P is a smooth map ® : U — M defined on some open subset

U C M. Tts first jet at m € U is given by the derivative j! ® = (T,,® : T,,M —
TomyM. It follows that the set of 1-jets is given by all linear maps

J'P={A:T,M — T,yM | m,m' € M}.
This contains the open subset

(le)sub = {A : TmM — Tm’M | m, m’ € M, A invertible}
—: GL(TM).
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This is a Lie groupoid, called the general linear groupoid of the vector bundle T'M.
The bundle map of the jet bundle is the source map of the groupoid. Let

(J'EF)gup := (J'P)gup, x JHT*M) C J'F .
The main observation is now that f descends to the smooth map

Jo: (J'F)gy — F'
(A: T M — Ty M, jL7) — (A7) 7, .

Before we generalize the notion of local maps, we make the following definition.

9.1 Lie groupoids
9.2 Bisection groups

9.3 Lie algebroids

9.3.1 Local group actions

For a local field theory we would like to have a compatible notion of local group action
which allows us to restrict the action in some sense to to open subsets, germs, or
jets. An example for a notion of local group action are local gauge transformations,
but this is not general enough for our purposes. We need a notion which includes
the action of the diffeomorphism group of M acting on a tensor bundle, as it is the
case for general relativity. The notion of locality for a group action which we use
here is suggested by the observation that the diffemorphism group of M is the group
of bisections of the pair groupoid of M.
Recall that a bisection of a Lie groupoid G over M is defined as a smooth section
o of the right moment map r : G — M such that loc = [ o ¢ is a diffeomorphism of
M, where [ : G — M is the left moment map. The product of two bisections ¢ and
o' is given
(00')(m) = o(lo’(m))o’(m), (9.2)
the inverse of ¢ is given by o 1(m) = o((lo)~!(m))~!. We denote by G the group
of bisections of G. The map § — Diff(M), o — lo, which is induced by the

homomorphism of groupoids (I,7) : G — M x M, is a group homomorphism. We
denote the corresponding action of 0 € Gon m € M by o -m.

Definition 9.3.1. Let ¥ = I'(M, F') be the set of smooth sections of a fiber bundle.
A local group action on ¥ is an action § x F — F, (0,¢) — o - ¢ of the group G of
bisections of a Lie groupoid G = M such that the map

GXFXM-—FxM, (0,9, m) — (o -, 0-m)
is local in the sense of Def. [3.2.1]

The underlying groupoid structure is used in two ways in order to state the
locality condition: First, we use that elements of the group G are given by smooth
sections of a fiber bundle r : G — M. Second, we use the natural action of bisections
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on M in order to extend the map § x F — F of the group action to the map
G xFx M — F x M needed for the definition of locality.

Spelled out, locality of a group action means that there is a commutative diagram

GXFxM-—FxM

| l (9.3)

JEG <y JIF—2 L F

for some integers k, I, where J*G = J*(r : G — M) denotes the k-th jet bundle of
the right moment map of G which is a submersion. When we evaluate the morphisms
of this diagram on (0,1, m) € § x F x M, the commutativity is expressed as

Ajm0 Jm®) = (0 - ¥)(o - m). (9.4)

Note that, if we choose the smallest integers k, [ for which such a diagram exists,
the map A is unique. The following proposition shows that a local group action can
be described in terms of A alone.

Proposition 9.3.2. Let \ : J*G x y; J'F — F be the map of Diagram (9.3)) to which
a local group action descends. Then X\ satisfies for all local sections ) of m: F — M,
all local bisections o, o' of G, and all points m € M the relations

(i) 7(A(ho,gnt)) = o - m,
(ii) A(jm1, jm) = ¥(m),
(iii) MJgrm@ (N (00", 310¥0)) = Ao, 51ath),
where 1 denotes the identity bisection of G and j'\ the I-th jet-prolongation of \.

Conversely, a smooth map A which satisfies (i) to (iii) comes from a unique local
group action.

Proof. Assume we are given a local group action as in Def. [9.3.1] Applying the
bundle projection 7 : F' — M to both sides of Eq. we obtain (i). The identity
bisection ¢ = 1 is the unit of the bisection group, so we have by definition of a group
action 1-v¢ =1 and o -m = m. Inserting this into Eq. , we obtain (ii). For (iii)
we first observe that the [-jets of o -1 can be expressed by the [-th jet prolongation

of Eq. as
G'N) (b0, dt) = Gomm(o - 2) | (9.5)

Now equation (iii) is proved by the following calculation,

Ao, G G0 5010)) = A5k 10 G (07 1))
= (0 (")) (o (0" m))
= (o0’ - ¥))
= A(gm(00"), 3 (V) ,
where we have used , , the asscociativity of the action, and again.

We conclude that a local group action induces a map A which satisfies (i) to (iii).
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Conversely, assume that we are given a smooth map A which satisfies (i) to (iii).
Equation (i) implies that

(- 9)(m) == A(jh,,00 5L ) (9.6)

is in the m-fiber of F'. Since A is smooth we thus obtain a map § x F — &,
(0,9) — o -1. For 0 = 1 we obtain (1-9)(m) = A(j% 1, 5L ¥) = ¢(m) by (ii). Using
first , then , then the associativity of the action of G on M, then (iii), and
finally again, we obtain

5‘1-m0-7 j(l;—l.m<0/ . w))

Ja-1m0s (G N G110 T2 (1) )
B 1m0 GN) Ulrory 1m0 Goon-1m®))
Glror) 1m0 s Hor-1.m (00" - 1))

This shows that Eq. defines a group action.

Finally, if A comes from a local group action, it has to satisfiy Eq. (9.4)), so the
group action must be defined by . It follows that the local group action is
unique. L]

Remark 9.3.3. For [ > 0 the map \ : J*G x; J'F — F, does not define an action
of the jet groupoid J*G on J'F or any other finite jet bundle. This is because the
[-jet of the action of a local bisection o on a local section 1 is given by the [-jet
prolongation of j'\ which depends on the (k+1)-jet of o and the 2I-jet of 1. Only if
| = 0 we obtain an action of the jet groupoid J*G on F. In the case that k =1 =0
a local group action is the same as a groupoid action of G on F.

This remark and the last proposition show that the notion of local group action is
a generaliztion of groupoid actions. Moreover, in the case that G is a group bundle,
we recover the usual notion of gauge transformation |Zuc87].

Example 9.3.4. Consider the tensor bundle F' = (TM)? @ (T*M)4. The push-
forward of a section ¢ of F' by a diffeomorphism o € Diff(M) evaluated at o(m)
depends only on the derivative of ¢ and the value of ¢ at m,

((o-9)(0-m),v) = (0:)o(m)(v) = ¥ ((Tn0) "0) = (A(jm0, Jm¥), V),

for all v € T, () F. This shows that the action of Diff (M) on tensors on M is a local
group action, which descends to the map A : J'G x J°F — F. By proposition [9.3.2]
and remark A is an action of the jet groupoid J'G on F', but it is not induced
by an action of the original groupoid . This reasoning applies also to subbundles
of tensor bundles such as the bundles of n-forms or the bundle of lorentzian metrics.

9.3.2 Local Lie algebra actions

From the notion of local group actions we obtain by differentiation the infinitesimal
notion of local Lie algebra actions. The Lie algebra A of G is given by the sections
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of the Lie algebroid A of G. The anchor p : A — T'M of the Lie algebroid is the
derivative of the natural action of G on M.
First, we note that there is an isomorphism

T(T(M, F)) 2 T(TM,TF),

as follows: An element (&,1)) € TF consists of a section ¢ € F and a section & of the
vertical tangent bundle of F' supported on the image of ¢ : M — F'. This induces
a section of TF' — T'M given by

TM 5 (v,m) — &(m) + (jm¥)(v) € TF,

where we view the 1-jet of ¢ at m € M as section of Ty, F' — T,,,M. Conversely,
a section W of TF — T'M descends to a section ¢ of F' — M and yields a vertical
vector field £(m) := W(0,m). Note that this isomorphism identifies the evaluation
map ['(TM,TF)xTM — TF with the tangent map of the evaluation map Fx M —
F.

Definition 9.3.5. Let ¥ = I'(M, F') be the set of smooth sections of a fiber bundle.
A local Lie algebra action on F is an action £ : A X F — TF, (a,v) — &(a, ) of the
Lie algebra A of sections of a Lie algebroid A — M with anchor p, such that the
map

AXFxM—TFxTM, (a, v, m) — (f(a,w),p(a(m))
is local in the sense of Def. [3.2.1]

We will write £, for the vector field on F given by &,(v) = &(a,v) and, analo-
gously, p, for the vector field on M given by p,(m) = p(a(m)).

Remark 9.3.6. Recall, that the Lie algebra of the group of bisections of a Lie
groupoid is the opposite of the Lie algebra of sections of the Lie algebroid. For
example, the Lie algebra of the group of diffeomorphisms of a manifold is the opposite
of the Lie algebra of vector fields. For this reason the structure map of an action of
A,

EA— XT, a—&,,

is by definition an anti-homomorphism of Lie algebras.

In terms of a commutative diagramm, locality of a Lie algebra action means

AXFxXM—TFxTM

l l (9.7)

JEA Xy JIF—2 S TF

for some integers k, [. The commutativity of this diagram is equivalent to to the
relation

Am@: ) = (&) (m) + (752) (pa(m)) , (9.8)
for all (o,,m) € G x F x M. If we choose the smallest integers k, [ for which

such a diagram exists, then the map A is unique. The following proposition is the
infinitesimal analog of Prop.[9.3.2;
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Proposition 9.3.7. Let \ : J*A xy J'F — TF be the map of Diagram (9.7) to
which a local Lie algebra action descends. Then A satisfies for all sections i of
m: F — M, all sections a, b of A, and all points m € M the relations

(i) Tr(ANjka, jL0)) = pa(m),
(ii) A(jka, (GN)(GEb, 3L0)) — A(GEb, N (Gha, jLa)) = =Gk [a, 0], L),

Conversely, a smooth map \ which is linear in J*A and satisfies (i) and (ii) comes
from a unique local Lie algebra action.

Proof. *** Not that obvious, so we should give a proof. *** O

9.3.3 Local current maps

Given a local Lie algebra action of A, Noether’s theorem states that to every vector
field &, there is a current j, such that (j,,&,) is a Noether pair. However, j, depends
on the choice of a, for every a € A (cf. Rmk. ??). It is not guaranteed that the
choice of a, and, hence, of j, can be made local. This property has to be required
in the definition of a local momentum map.

Definition 9.3.8. Let (M, JF, L) be a local lagrangian field theory, let £ : A x F —
TF be a local Lie algebra action. A local current map is a map

JiAXT — QOPI(A),

which is linear in A and local in the sense of Def. such that (j4,&,) is a Noether
pair for all a € A, where j,(¢) := j(a, ).

Remark 9.3.9. We can identify the current map j with the map
A — QUP=H(F 5 M) | a— jo=jla,_).

This is the field theoretic analog of the comomentum map g — C'*°(X) in the usual
setting of a Lie algebra g acting on a Poisson manifold X. The current map can
also be identified with the map

F — Hom(A, QP71 (M), o +—j(_,v),

where Hom denotes the set of linear maps. This is the analog of the usual momentum
map X — g* = Hom(g,R). In any case, the current map is local if the value of
j(a,v) at m € M depends only on a finite number of derivatives of a and i at m.

Recall, that the action of a Lie algebra g on X is called (weakly) hamiltonian
if it has a momentum map X — g* which is a Poisson map or, equivalently, if the
comomentum map g — C*(X) is a homomorphism of Lie algebras. We want to
define an analogous notion for local current maps. We also have to take into account
that the natural presymplectic form wg is generally degenerate (see Cor. ?77). First,
we make the following observation:
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Proposition 9.3.10. Let (M, F, L) be a local lagrangian field theory, £ : AXF — TF
be a local Lie algebra action, and j : A — QUP~Y(F x M) a local current map. View

the map
o A — QUOPTL (T M) | ala) = o + g,y

as 1-cochain in the Chevalley-Filenberg complex of the Lie algebra A with values
QUP=1(F x M) with the A-module structure a - w := —L¢,w. Then the Chevalley-
FEilenberg coboundary of o takes values in d-closed forms.

Proof. The Chevalley-Eilenberg coboundary of « is given by

(dop)(a,b) = a(la, b)) —a- a(b) +b- afa)
= (i[a,b} —+ Lgaib — Lsz'a)a
= Jlap) T Leado — LeyJa + (igag) + Le,ie, — Leie,)y
= j[a,b] + Lﬁajb + Lfbja + i&aifb(57 .
For a current map j we have by definition dj, = i¢, F'L for all a € A. It follows that

0= dj[a,b] — if[a,b] EL = dj[a,b} + i[ga,gb]EL
= dj[a,b] -+ (Lﬁaiﬁb - [’&,i&a - Z'gaigb(S)EL
= djlap) + Le,djy — Leydja — ig, g, 0dy
= d(jlap) + Leadb — Lg,Ja + ig,16,07)
= d[(dcp)(a,b)] .
Note, that this result does not depend on the choice of ~. O

Definition 9.3.11. A local current map will be called noetherian if the Chevalley-
Eilenberg coboundary of the 1-cochain « defined in Prop. [9.3.10] takes values in
d-exact forms.

We will now express the defining property of a noetherian current map in a
form which resembles somewhat the condition for a usual hamiltonian momentum
map g — C*®(M) to be a homomorphism of Lie algebras. For this we consider on
QUtop=1 5 XF the bracket

[(J1,€1), (J2. &2)] := (—Lerjo + Leyj2 — 07(&1, &1), —[€1. &) (9.9)

which is the bracket of the twisted semidirect product Q%*P=1(F x M) x5, (—XF).
It is essentially the same bracket as the one considered in Egs. (2.100) and (2.101)
of [DF99].

Remark 9.3.12. Since the twist —dv is a 2-coboundary, the twisted semi-direct
product is isomophic to the untwisted semidirect product by

QOPP1(F 5 M) g, (=XTF) — QUP1(F x M) x (=XF)
(7,6) — (7 + i, ).

If j is a current map for a local Lie algebra action £ this map sends (j,,&,) to
(a(a),&,), where « is the 1-form of Prop.9.3.10}
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Proposition 9.3.13. The vector space of Noether pairs is closed under bracket .
Proof. Let (j1,&1), (j2,&2) be Noether pairs. Then
—ife, el L = (—Leg i, + Leylie, +ig,ie,0) EL
= —L¢ djo + Le,djy + ig,1e,0dry
= d(—L¢ j2 + LeyJi — ig1,07)
from which we can read off the bracket . O]

Proposition 9.3.14. Let j be a current map for a local Lie algebra action &. Con-
sider the linear map

J A — QU HF 5 M) 3 gy (—XF),  ar— (Ju, &),

Then the current map j is noetherian if and only if J([a,b]) — [J(a), J(b)] is d-exact
for all a,b € A.

Proof. From (9.9) we read off
J([av b]) - [J(a), J(b>] = ((dCEa)(av b)? 0) )
and compare this with definition [9.3.11] of noetherian current maps. O]

We now pass from currents j, to their charges ¢, := |, ¢ Ja Dy integrating over a
closed hypersurface S. Integrating the bracket over S yields

[(q1,61), (22, 8)] = (Lo + Lyt — ws (&1, &), — 161, &), (9.10)
which is the bracket of the twisted semidirect product C*°F x_,, (—=XT).

Corollary 9.3.15. Let j be a noetherian moment map for the local Lie algebra
action £. Let S be a closed hypersurface and q, := fs Ja- Then the map

Q:A— C®F x_,, (-XF), ar— (qa, &),
1s a homomorphism of Lie algebras.

According to Cor. 7?7 the vector fields of Noether pairs are tangent to Fypen.
Therefore, the bracket descends to Fyuen. On shell (g1, &) is a hamiltonian pair, i.e.
dq1 = ig,wg, so that bracket (9.10]) takes the form

[(q1,61), (g2, &2)] = (ws(§1,§2)7 —[51,52]) on  Fepel -

Recall that for hamiltonian functions ¢;, ¢ the bracket

{q1, @2} == ws(&1,62)

is well-defined, i.e. does not depend on the choice of the hamiltonian vector fields
& and &. We thus obtain:

Corollary 9.3.16. The charge map A — C>*TF, a — q, salisfies

{qaa Qb} = {[a,b] on SFsheH )
for all a,b € A.

In other words, the map a — ¢, is an honest hamiltonian momentum map for
the presymplectic manifold Fg,ep. This result is mitigated somewhat by the fact,
that for a large class of examples the charges vanish on shell, anyway, as we will see
in the next section.
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