
LECTURES ON DIFFEOLOGICAL GROUPOIDS

CHRISTIAN BLOHMANN

Abstract. Diffeological groupoids appear inmany areas ofmathematics, such as infinite-
dimensional Lie theory, classical field theory, deformation theory, and moduli spaces.
The category of diffeological spaces, however, is too general and does not have a good
differential calculus, which would be needed for a Lie theory of diffeological groupoids.
I will introduce the notion of elastic diffeological spaces and show that these form a
subcategory with an abstract tangent structure in the sense of Rosicky. The tangent
structure yields a Cartan calculus consisting of vector fields, differential forms, the de
Rham differential, inner derivatives, and Lie derivatives, satisfying the usual relations.
Surprisingly, all diffeological groups are elastic. I then introduce the notion of diffeological
Lie algebroids, which is the structure of the space of invariant vector fields of a strongly
elastic diffeological groupoid form a diffeological Lie algebroid. As application, I will
revisit a diffeological groupoid that arises in lorentzian geometry whose diffeological Lie
algebroid encodes the Poisson brackets of the Gauss-Codazzi constraint functions. These
lectures were given as a minicourse at the “finite and infinite-dimensional meeting on Lie
groupoids, Poisson geometry and integrability” from August 16-20, 2021 in Vienna.

Contents

1. Beyond Lie groupoids 2
1.1. Groupoids 2
1.2. Lie groupoids 2
1.3. Groupoids modeled on function spaces 4
2. Differential calculus on elastic diffeological spaces 7
2.1. Diffeological spaces 7
2.2. The natural tangent functor 8
2.3. Abstract tangent functors 12
2.4. Elastic diffeological spaces 14
2.5. Examples of elastic diffeological spaces 16
2.6. The Cartan calculus on elastic spaces 18
3. Towards a Lie theory for diffeological groupoids 19
3.1. The infinitesimal object of an elastic diffeological groupoid 20
3.2. Application: Diffeological groupoids in general relativity 21
References 22

Date: August 22, 2021.
1



2 C. BLOHMANN

1. Beyond Lie groupoids

1.1. Groupoids. A groupoid is a category whose morphisms or arrows are all invertible.
Representing the morphisms by arrows, we can depict the basic structure in the following
way:

F G H I

5 6

5 6

ℎ

6ℎ

5 6ℎ

We will denote the maps from an arrow to its left and right endpoints by�0
;← �1

A→ �0.
Some people draw the arrows to the left, some to the right, but everybody agrees what is
left and right. (This is notation is due to A. Weinstein and would save the community a
lot of headaches about whether source and target are on the left or the right, e.g. in the
fibre product �1 ×�0 �1.) Groupoids encompass and, therefore, generalize a number of
familiar concepts.

Example 1.1. The most important guiding examples are the following:

• An equivalence relation �1 ⊂ �0 × �0 on the set �0 is a groupoid with endpoint
maps ; = pr1, A = pr2, composition (G, H) (H, I) = (G, I), identity 1G = (G, G), and
inverse (G, H)−1 = (H, G).
• A group is a groupoid with one object.
• A left group action U : � × - → - is the left endpoint map ; = U of a groupoid
�1 := � × - ⇒ - =: �0, with right endpoint map A = pr2, composition
(6, ℎ · G) (ℎ, G) = (6ℎ, G), and inverse (6, G)−1 = (6−1, 6 · G).

Depending on which of these three classes, relations, groups, or group actions, is
considered to be the guiding example for groupoids, we are often led to different concepts
and terminology for groupoids.

1.2. Lie groupoids. Just as for groups, many interesting groupoids are equipped with a
geometric structure. For example, we could equip a groupoid with a topology, such that
all structure maps are continuous. Such a groupoid is a groupoid internal to the category
of topological spaces. It is tempting do define a Lie groupoid in an analogous way as
groupoid internal to smooth (finite-dimensional) manifolds, but this is not quite right. The
first issue is that the composition is defined on the pullback �2 = �1 ×A,;�0

�1 which does
not generally exist in smooth manifolds. The second issue concerns the construction of
the Lie algebroid. We need an isomorphism

(1) )
(
�1 ×�0 �1

)
� )�1 ×)�0 )�1
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in order to have a smooth right �1-action on the A-vertical tangent bundle which we use
to smoothly identify right invariant vector fields with sections of the Lie algebroid. Both
issues are solved if we require the endpoint maps to be submersions. We thus arrive at the
following definition.

Definition 1.2. A Lie groupoid � is a groupoid such that �1, and �0 are smooth man-
ifolds, ;, A : �1 → �0 are submersions, and all structure maps (multiplication, identity,
multiplication, and inverse) are smooth.

;−1 (G) ;-fibersA−1 (H)A-fibers

G0

6 ℎ5

5 6 6ℎ

5 6ℎ

IHGF

Figure 1. A Lie groupoid �1 ⇒ �0

Example 1.3. Here are some examples of Lie groupoids:
• A Lie group is a Lie groupoid over a point.
• The smooth action of a Lie group on a smooth manifold gives rise to an action
Lie groupoid.
• An orbifold is a Lie groupoid such that the characteristic map (;, A) : �1 →
�0 × �0 is proper and A : �1 → �0 is a local diffeomorphism. Such Lie
groupoids are called proper étale.
• Every differentiable stack is presented by a Lie groupoid. For example, the action
Lie groupoid presents the quotient stack of the action.
• Let � × " → " be the smooth action of a Lie group � on the manifold "
and  ⊂ � a closed subgroup such that its induced action on " is free and
proper. Then  \� × " ⇒ "/ is a Lie groupoid, called the  -reduced Lie
groupoid [BW].
• By applying the tangent functor) : Mfld→Mfld to a Lie groupoid, we obtain the
tangent groupoid )�1 ⇒ )�0. In a similar way we can define jet groupoids.

To aLie groupoidwe can associate an infinitesimal object as follows. First, we generalize
the notion of right invariant vector fields from groups to groupoids. Using Eq. (1), we can
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restrict the tangent map of the groupoid multiplication as

)�1 ×)�0 )�1 )�1

)�1 ×)A,);◦0)�0
�1 )�1 ×)A,0)�0

�0

(id,0) id◦pr1

Using

)�1 ×)�0 �0 � ker)A

)�1 ×)�0 �1 � ker)A ×�0 �1 ,

we obtain a smooth right �1-action

ker)A ×�0 �1 −→ ker)A ,

which is the right groupoid translation on the A-vertical tangent bundle. The smooth
sections of ker)A → �1 that are invariant under the right translation are called right
invariant vector fields on �1. The following two observations are in analogy to the case
of Lie groups:

First, the right invariant vector fields can be identified with the sections of the A-vertical
bundle at the identity bisection,

� := ker)A ×�1 �0 ,

which is a vector bundle over �0. Second, the right invariant vector fields are invariant
under the bracket of vector fields. In this way we obtain a bracket on the sections of �.
The new phenomenon is that the bracket satisfies the Leibniz rule

[0, 5 1] = (d(0) · 5 )1 + 5 [0, 1] ,

for 0, 1 ∈ Γ(�0, �), 5 ∈ �∞(�0), where d := ); |�0 : �→ )�0 is called the anchor.

1.3. Groupoids modeled on function spaces. There are many interesting and relevant
groups and groupoids that have some kind of differentiable structure but are not modeled
on finite-dimensional smooth manifolds. The first example that comes to mind is the
diffeomorphism group Diff (") of a smooth manifold " . Another example is the group
of automorphisms of a �-principal bundle over " , which is the set �∞(", �) with
pointwise group structure. Both are examples of bisection groups of groupoids.

Definition 1.4. Let �1 ⇒ �0 be a Lie groupoid. A smooth section f : �0 → �1 of
A : �1 → �0 is called a bisection if Φf := ; ◦ f : �0 → �0 is a diffeomorphism.
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The bisections of a groupoid form a group with multiplication, identity, and inverse
defined by

(2)

(fg) (G) = f
(
Φg (G)

)
g(G)

4G := 1G

f−1(G) = f
(
Φ−1
f (G)

)−1
.

We will denote the bisection group of a groupoid � by G.

Example 1.5. Let �1 := " × " ⇒ " =: �0 be the pair groupoid of a smooth manifold.
A section of A = pr2 is of the form f(<) =

(
Φ(<), <

)
, where Φ : " → " is a smooth

map, which is a bisection if and only if Φ is a diffeomorphism. This shows that the
bisection group is isomorphic to Diff (").

Definition 1.6. Let �1 ⇒ �0 be a Lie groupoid. Let * ⊂ �0 be an open subset. A local
sectionf : * → �1, A◦f = id* is called a local bisection ifΦf := ;◦f |* : * → ;

(
f(*)

)
is a diffeomorphism.

The set of all local bisections of a groupoid is itself a groupoid over the set Open(")
of open subsets of " . The structure maps are given by the formulas (2).

Example 1.7. The groupoid of local bisections of the pair groupoid " × " is the group-
oid of local diffeomorphisms of " . A pseudogroup is a subgroupoid with sheaf-like
properties.

We have already seen that bisection groups of groupoids include diffeomorphism groups
and the groups of local gauge transformations. In fact, most local symmetries in classical
field theory are given by the action of a bisection group G of a groupoid � ⇒ " on the
“space” of fields F = Γ(", �), where � → " is the configuration bundle of the field
theory and " the spacetime manifold. The action groupoid G × F ⇒ F can be viewed
as the basic symmetry structure of the field theory. Since fields are considered to be
physically equivalent if they are related by a symmetry, this groupoid can also be viewed
as the differentiable stack of the physical (but off-shell) degrees of freedom.

Example 1.8. Let Lor(") be the “space” of Lorentz metrics on " . The groupoid of the
action of Diff (") on Lor(") by pushforward is the basic symmetry structure of general
relativity on " .

The groups and groupoids in this section have as objects sets of smooth functions
between smooth manifolds, such as a subset of �∞(�0, �1) for the bisection group.
These sets come equipped with a natural notion of smooth families given by smooth
homotopies. For example, a smooth family in Diff (") parametrized by an open subset
* ⊂ R= is a smooth map

Φ : * × " −→ "
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such thatΦD : " → " , < ↦→ Φ(D, <) is a diffeomorphism. A smooth pathΦ : R×" →
" is a flow generated by a vector field E given by

E : < ↦−→ 3

3C
Φ(C, <)

��
C=0 ∈ )" ,

where the right hand side is to be understood by the kinematic notion of tangent vectors on
" as equivalence classes of smooth paths. We can also derive the Lie algebra of Diff (")
by considering the right action on �∞(") by pullback. By differentiating the action of
the flow ΦE generated by E, we obtain the Lie derivative

(3)
3

3C
Φ∗C 5

��
C=0 = LE 5 .

By taking the second derivative of the group commutator we obtain

(4)
3

3B

3

3C

(
ΦEBΦ

F
C (ΦEB )−1(ΦFC )−1)∗ 5 ��

C,B=0 = −[LE,LF] 5 .

(The minus sign on the right hand side comes from the fact that the pullback is a right
action. It is the origin of a number of annoying sign issues in differential geometry.) The
upshot is the following proposition:

Proposition 1.9. The Lie algebra of Diff (") is X(")op.

Proof. The Lie derivativeL : X(") → End
(
�∞(")

)
, E ↦→ LE is a faithful representation

of the Lie algebra of vector fields X. From Eq. (3) we conclude that the tangent space of
Diff (") at id" can is given by X("). Eq. (4) together with [LE,LF] = L[E,F] shows that
−[E, F] is the Lie bracket of Diff ("). �

This can be generalized to the following statement, which shows that the relation between
Lie groupoids and Lie algebroids, can be viewed as relation between infinite dimensional
Lie groups and Lie algebras.

Proposition 1.10 ( [CdSW99, SW15]). The Lie algebra of the bisection group of a Lie
groupoid is the Lie algebra of sections of its Lie algebroid.

At the first glance it seems that the derivation of the Lie algebra of Diff (") relies
only on the notion of smooth families, which are given in functions spaces by smooth
homotopies. At second thought, however, we get the uneasy feeling that all this may have
worked so well due to the fact, that we have some underlying structure on Diff (") that
we ignored but profited from unwittingly:

• The smooth families of Diff (") seem to have additional sheaf-like properties. For
example the restriction of smooth family of diffeomorphisms is a again a smooth
family. Does our computation rely on this?
• Diff (") has the structure of a Fréchet manifold modeled onX("). Is it necessary
to ensure that the tangent space at the identity is a vector space?
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• We have used that Diff (") has an action on�∞(") and that the induced infinites-
imal representation of X(") is faithful. In the case of bisection groups we have a
faithful representation on �∞(�1). Do we need that such a representation exists?
• How does this construction work for groupoids?

One goal of the following lectures is to show that these questions have satisfactory answers
in the framework of diffeological spaces.

2. Differential calculus on elastic diffeological spaces

2.1. Diffeological spaces. The notion of diffeological spaces formalizes the sheaf prop-
erties of smooth families parametrized by real parameters, such as smooth homotopies of
function spaces.

Definition 2.1 (e.g. Def. 1.5 in [IZ13]). Let - be a set. A diffeology on - is a map � that
assigns to every open subset * ⊂ R= for all = ≥ 0 a set � (*) ⊂ HomSet(*, -) of maps
called plots, such that the following conditions are satisfied:
(D1) Every constant map ? : * → ∗ → - is a plot.
(D2) A map ? : * → - is a plot if all restrictions ? |*8 : *8 → - to an open cover

{*8 ↩→ *}8∈� are plots.
(D3) The composition ? ◦ 5 of a plot ? : * → - with a smooth map 5 : + → * is a

plot.
A set with a diffeology is called a diffeological space. A map of sets 5 : - → . is
smooth if for every plot ? : * → - the map 5 ◦ ? : * → . is a plot. The category of
diffeological spaces and smooth maps will be denoted by Dflg.

Example 2.2. The following are natural and useful examples of diffeological spaces
derived from differentiable structures:

(a) Every smooth finite-dimensional manifold " is equipped with the manifold dif-
feology given by � (*) = �∞(*, "), i.e. the plots are the infinitely often differ-
entiable maps.

(b) Let ] : ( ↩→ " a subset of a smooth manifold. A plot of the subspace diffeology
on ( is a map ? : * → ( such that ] ◦ ? : * → ( ↩→ " is smooth. The subspace
diffeology is the largest diffeology such that ] is smooth.

(c) Let c : " → ( a surjective map from a manifold to a set. A plot of the quotient
diffeology on ( is a map ? : * → ( such that every D ∈ * has a neighborhood
+ 3 D, such that ? |+ has a smooth lift to " , i.e. ? |+ = c ◦ @ for as smooth map
@ : + → " . The quotient diffeology is the largest diffeology such that c is smooth.

(d) Let " and # be smooth manifolds. The functional diffeology on �∞(", #) is
defined by

� (*) = �∞(* × ", #) ⊂ Set
(
*,�∞(", #)

)
,

i.e. the plots are smooth homotopies of maps.
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Example 2.3. The cases that first piqued my interest in diffeological structures are the
following:

(e) The bisection group of a Lie groupoid �1 ⇒ �0 equipped with the subspace
diffeology of the functional diffeology �∞(�0, �1) is a diffeological group, i.e. a
group internal to the category of diffeological spaces.

(f) The action groupoid of a local action of the bisection group of �1 ⇒ �0 on a
space of sections of a smooth bundle � → �0 is a diffeological groupoid, i.e. a
groupoid internal to the category of diffeological spaces.

Example 2.4. The following examples show that the diffeological notion of smoothness
is very general:

(g) The discrete diffeology or fine diffeology on a set ( is the diffeology for which
the plots are the locally constant maps.

(h) The trivial diffeology or coarse diffeology on a set ( is given by� (*) = Set
(
*, (

)
,

i.e. all maps are plots.
(i) Every topological space - is equipped with the continuous diffeology given by

� (*) = Top(*, -), i.e. the plots are the continuous maps.
(j) The constructions of subspace diffeologies, quotient diffeologies, and functional

diffeologies still works if we replace the smooth manifolds " and # with arbitrary
diffeological spaces.

The last set of examples shows that the category of diffeological spaces is too general
as to allow for strong geometric results. From my experience diffeology is the most useful
in applications to geometry if we start from a genuinely differential geometric situation
and allow from incremental generalizations. For example the diffeology on the quotient
of the torus by a free R-action, i.e. the leaf space of the Kronecker foliation, contains as
much information as the �∗-algebras of the corresponding noncommutative torus [DI85].

If we want to develop a general theory on diffeological spaces, such as a Lie theory of
diffeological groupoids, the task is to identify additional properties that enable us to define
the structures and prove the propositions that we need. The difficult part is to find the
weakest assumptions possible, so that we do not simply come back to standard differential
geometry. For our purposes, we want to figure out on what kind of spaces we have a Cartan
calculus, i.e. the tangent functor, vector fields, differential forms, the de Rham differential,
the inner derivative, and the Lie derivative, all satisfying the usual relations.

2.2. The natural tangent functor. The first structure we need for a differential calculus
on diffeological spaces is a tangent functor. Unfortunately, a whole zoo of inequivalent
definitions can be found in the literature. (For a an overview see [CW16]). Why?

The first reason for this variety is that equivalent definitions for manifolds become
inequivalent for diffeological spaces. On manifolds, there are three common definitions of
tangent vectors: a) In terms of local coordinates. On* ⊂ R= a tangent vector is an element
of )* = * × R=, transforming appropriately under a coordinate change. b) In terms of
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equivalence classes of paths. This is usually called the kinematic definition. c) In terms of
derivations of the ring of smooth functions. This is often called the algebraic definition.
Moving between these definitions requires bona fide analytic tools like Hadamard’s lemma
and the mean value theorem, which we no longer have for general diffeological spaces.

The second reason is that some authors force the fibres of the tangent bundle to be
vector spaces. Since a diffeological space is not locally modeled on a vector space,
such constructions usually consist of the construction of a free diffeological vector space
generated by the real cone of tangent vectors. Only the generating cone reflects the
infinitesimal structure of the diffeological space. Moreover, different cones can generate
the same vector space, so that we even lose geometric information by this construction.

The third reason for the variety of tangent functors is that some authors start by defining
tangent fibres at points and then equip the union of all tangent spaces with a diffeology in
rather ad hoc ways. This can lead to inequivalent definitions and even to outright mistakes.

In order to find a definition of the tangent functor that serves our purpose, the construc-
tion of a differential calculus, it is helpful to move from the toad perspective, defining a
diffeology by maps between sets with properties, to the eagle perspective of the following
categorical definition:

Proposition 2.5 ( [BH11]). A diffeological space is a concrete sheaf on the site Eucl of
open subsets of all R=, = ≥ 0 and open covers.

The only term which needs some explanation here is “concrete”. A concrete structure
on a category C is a faithful forgetful functor C→ Set,� → |� | by which every object in C
can be viewed as a set with structure and every morphism as a map of sets with properties.
For many categories with terminal object ∗, the concrete structure is the functor of points,
|� | = C(∗, �). In geometry and topology it is common to not spell out the forgetful
functor. For example, when in the definition of diffeologies we say that ? : * → - is a
map of sets, we really mean ? : |* | → - .

A site is concrete if the functor of points is faithful, hence a concrete structure, and if it
maps covers to surjective maps. Eucl is concrete. A sheaf � : Euclop → Set is concrete
if � (*) is a subset of the set of all maps {|* | → � (∗)}. From this, it is straightforward
to recover the definition 2.1 in terms of plots.

Once we have established that Dflg is a category of concrete sheaves, we can turn to
a handbook of category theory [Joh02] and find that it has a number of nice properties,
which would be really hard to show explicitly with plots:

Proposition 2.6. The category of sets is a quasitopos with a strict initial object i.e. every
morphism - → ∅ is an isomorphism. In particular, it has the following properties:

• Dflg has all small colimits.
• Dflg has all limits.
• Dflg has all exponential objects, i.e. internal homs or mapping spaces.
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• Dflg is locally cartesian closed, i.e. for every object - in Dflg the overcategory
Dflg↓ - is cartesian closed.
• Strong monomorphisms (inductions) and strong epimorphisms (subductions) are
effective.
• Strong monomorphisms and strong epimorphisms are stable under pullback.
• Dflg is quasiadhesive, i.e. the pushout of a strong monomorphism is a strong
monomorphism and the pushout square is a pullback square.
• Coproducts are disjoint, i.e. - → -t. ← . are monomorphisms and -×-t.. �
∅.
• The faithful functor of points Dflg→ Set, - → Dflg(∗, -) has a left and a right
adjoint.

Moreover, we have the Yoneda embedding

H : Eucl −→ Dflg

which is faithful and dense, i.e. every diffeological space - is the colimit

- � colim
H*→-

H*

of its plots. This is a generalization of the statement that every smooth manifold is the
colimit of the charts of an atlas, the colimit being the categorical formulation of the gluing
of the charts.

Let � : Eucl → Eucl be an endofunctor. The (pointwise) left Kan extension of H�
along the Yoneda embedding,

(5) (LanH H�)- = colim
H*→-

H�* .

is the unique extension of � that preserves these colimits. Because H is faithful, the
diagram

Eucl Eucl

Dflg Dflg

H

�

H

LanH H�

commutes. This means that if we identify the elements of Eucl with their images under the
Yoneda embedding, then the Kan extension of � restricts to � on Eucl. Moreover, the left
Kan extension maps natural transformations to natural transformations and is monoidal
with respect to the composition of endofunctors. The nice properties of the Kan extension
can be summarized as follows:

Proposition 2.7. The functor of categories of endofunctors,

(6) LanH H(__ ) : End(Eucl) −→ End(Dflg) ,

is fully faithful and monoidal.
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Let us give an interpretation of this proposition in more explicit terms. A construction
on manifolds is local if it can be defined a functor � : Eucl→ Eucl on the charts. A good
example is the tangent functor )* = * × R=. Its left Kan extension along Eucl ↩→ Mfld
is the tangent functor of manifolds. A map like the tangent projection c* : )* → *

must be compatible with coordinate changes in order to be well defined on manifolds. In
categorical language it must be natural in*, i.e.

)* )+

* +

c*

) 5

c+

5

must commute for all smooth maps 5 : * → + . The functor (6) generalizes this local to
global principle from charts of a manifold to the plots of a diffeological space.

Definition 2.8. The left Kan extension of the tangent functor )̂ : Eucl→ Eucl of euclidean
spaces will be denoted by

) := LanH H)̂ : Dflg→ Dflg

and called the natural tangent functor of diffeological spaces.

How do we describe and compute )- of a diffeological space explicitly? We have to
spell out the colimit formula (5) for the Kan extension. The upshot is the following: The
set )- is the set of equivalence classes

(7) )- =
∐

?:*→-
()*)?

/
∼ ,

where the index ? distinguishes the different copies of )* for plots with the same domain.
The equivalence relation is given as follows. We say that a vector ZD ∈ ()*)? is )-related
to a vector [E ∈ ()+)@ if there is a smooth map 5 : * → + such that @ ◦ 5 = ? and
) 5 ZD = [E. Two vectors are related by ∼ iff they are connected by a finite zigzag of
)-relations. The diffeology of )- is the quotient diffeology of (7)

Moreover, since every tangent vector [D ∈ )* can be represented by a smooth path,
every tangent vector in )- is also represented by a smooth path, i.e. by a plot R → - .
The conclusion is that elements of )- are kinematic tangent vectors. However, the fibres
)G- do not generally have the structure of a vector space (figure 2.2).

Proposition 2.9. Let " and # be smooth manifolds. Then

)�∞(", #) � �∞(",)#) ,

where the right hand side is equipped with the functional diffeology.

Every reasonable differential geometer would expect this result, so that this proposition
seems to confirm what we already knew. However, the proof of the proposition 2.9 is
surprisingly hard. In fact, in the literature it had only been proved under the assumption
that " is compact [CW16].
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Figure 2. Diffeological subspaces of R2 with points marked in white
where the tangent fibre is not a vector space.

2.3. Abstract tangent functors. Let us take stock of the natural structure of the tangent
functor of euclidean spaces. We will denote the :-fold fibre product of the tangent bundle
by

)̂:* := )̂* ×* )̂* ×* . . . ×* )̂*︸                           ︷︷                           ︸
: factors

for every open subset* ⊂ R=. The tangent functor, its powers, and fibre products is given
explicitly by

)̂* = * × R=

)̂2* = * × R= × R= × R=

)̂ :* = * × (R=)2:−1

)̂2* = * × R= × R=

)̂:* = * × (R=): .
On a smooth map 5 : * → + ⊂ R< the functors are given by

)̂ 5 : (D, D81) ↦−→
(
5 (D), m 5

0

mG8
D81

)
(8)

)̂2 5 : (D, D81, D
8
2, D

8
12) ↦−→

(
5 (D), m 5

0

mG8
D81,

m 5 0

mG8
D82,

m 5 0

mG8
D812 +

m2 5 0

mG8mG 9
D81D

9

2

)
(9)

)̂2 5 : (D, D81, D
8
2) ↦−→

(
5 (D), m 5

0

mG8
D81,

m 5 0

mG8
D82

)
.

The formulas for )̂ : and )̂: are analogous. We have the following natural transformations
between these functors:

bundle projection:

ĉ* : )̂* −→ *

(D, D1) ↦−→ D

zero section:

0̂* : * −→ )̂*

D ↦−→ (D, 0)
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addition:

+̂* : )̂2* −→ )̂*

(D, D1, E1) ↦−→ (D, D1 + E1)

inverse:

−̂* : )̂* −→ )̂*

(D, D1) ↦−→ (D,−D1)

vertical lift:

_̂* : )̂* −→ )̂2*

(D, D1) ↦−→ (D, 0, 0, D1)

flip of differentiation

ĝ* : )̂2* −→ )̂2*

(D, D1, D2, D12) ↦−→ (D, D2, D1, D12) .

Out of these natural transformations we can construct new ones. For example, ) can be
equipped with the structure of a monad whose algebras are an interesting class of singular
foliations [Jub12]. The natural transformations satisfy a number of compatibility relations,
which are encoded in the definition of an abstract tangent functor:

Definition 2.10 ( [Ros84, CC14]). A tangent structure (with inverses) consists of a
functor ) : C → C together with natural transformations c- : )- → - , 0- : - → )- ,
+- : )2- → )- , _- : )- → )-2, and g- : )2- → )2- , such that the following axioms
holds:

• Fibre products: The fibre products ):- exist for all : ≥ 0 and are preserved by
) , i.e. )):- � ):)- .
• Group structure: c- : )- → - with neutral element 0- and addition +- is a
natural group bundle, i.e. an abelian group object in C↓ - .
• Symmetric structure: g : )2 → )2 is a symmetric structure on ) , such that

(10)
)2- )2-

)- )-

g-

c) - )c-

id

is a morphism of natural group bundles, i.e. ()+) ◦ (g × g) = g ◦ (+)).
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• Vertical lift: The diagrams

(11)
)- )2-

- )-

_-

c- )c-

0

)- )2-

)2- )3-

_-

_- _) -

)_-

commute. Moreover, the first diagram is a morphism of natural group bundles,
i.e. ()+) ◦ (_ × _) = _ ◦ +.
• Vertical lift is a kernel: The diagram

(12)
)- )2-

- )2-

_-

c- (c) - ,)c- )

(0- ,0- )

is a pullback.
• Compatibility of vertical lift and symmetric structure: The diagrams

(13)
)-

)2- )2-

_- _-

g-

)2- )3- )3-

)2- )3-

)_-

g-

g) -

)g-

_) -

commute.
A category together with a tangent functor is called a tangent category (with inverses).

It is easy to check that the tangent functor of Eucl satisfies the conditions of the
definition 2.10. In addition we have the fibrewise scalar multiplication R × )- → )- ,
which is was not made part of the definition since most categories do not have R as object.

2.4. Elastic diffeological spaces. We will now Kan extend the tangent structure of Eucl
to Dflg. Due to the proposition 2.7, taking powers of )̂ is compatible with the left Kan
extension, so that we have the natural isomorphism

) :- � (LanH H)̂ : )-

By applying the functor (6), we obtain the natural transformations

c- := (LanH Hĉ)- : )- −→ -

0- := (LanH H0̂)- : - −→ )-

−- := (LanH H−̂)- : )- −→ )-

_- := (LanH H_̂)- : )- −→ )2-

g- := (LanH Hĝ)- : )2- −→ )2- .

Due to the functoriality of the Kan extension, these satisfy all the commutative diagrams
as before: the diagrams of the monoidal structure, diagram (10), (11), and (13). The Kan
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extension of the fibre product )̂: , : ≥ 0 will be denoted by

Θ: := LanH H)̂: : Dflg −→ Dflg .

The left Kan extension does not commute with pullbacks, so that Θ:- is not naturally
isomorphic to ):- . More precisely, the Kan extension of the projections pr8 : )̂:- → )-

are morphisms Θ:- → )- , which induce a morphism

(\: )- : Θ:- −→ ):- ,

which is generally not an isomorphism.
The natural transformation of the tangent structure of Eucl involving )̂:* are, therefore,

mapped by the Kan extension to diagrams involving Θ:-: The fibrewise addition +̂* :
)̂2* → )̂* is mapped to a natural transformation

(LanH H+̂)- : Θ2- −→ )- .

For this reason, the natural tangent bundle )- of a diffeological space does generally not
have the structure of an abelian monoid or group. The natural transformation (ĉ)̂* , )̂ ĉ*) :
)̂2* → )̂2* that appears in the diagram (12) is mapped to a natural transformation

)2- −→ Θ2- .

Themap (c)- , )c-) : )2- → )2- still exists due to the universal property of the pullback
)2- = )- ×- )- , but the diagram (12) is no longer commutative in Dflg. The search
for the conditions that ensure that the natural tangent of diffeological spaces satisfies the
properties of an abstract tangent structure in the sense of Def. 2.10 leads to the following
concept.

Definition 2.11. A diffeological space - is called elastic if

(\: )) ;- : Θ:) ;- −→ ):)
;-

is an isomorphism for all :, ; ≥ 0. The full subcategory of elastic diffeological spaces will
be denoted by Elst.

The geometric intuition of elastic spaces and the reason for the terminology is the
following. Every tangent vector EG ∈ )G- is represented by a path. One can picture this
by stretching out G in the direction of EG to a smooth path W : (−Y, Y) → - of short but
non-zero length through W(0) = G, such that the coordinate tangent vector m

mC
at the origin

of the interval is mapped by )0W to EG . In this sense, every point of - is elastic in every
infinitesimal direction.

However, we generally cannot stretch out G in the direction of several tangent vectors
E1
G , . . . , E

:
G ∈ )-G . That is, we cannot always find a plot ? : * → - with ?(0) = G such

that ()0?) mmC8 = E
8
G , where (C1, . . . , C: ) are the canonical coordinates of* ⊂ R: . And even

if we can find such a plot, it may happen that the tangent map ) ? is not injective at 0, such
that we cannot identify the tangent vectors on - with the coordinate vectors on *. This
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identification is possible if and only if (Θ:-)G → ()-G): � ():-)G is a bĳection. If this
is the case for all : ≥ 0, we call the point G elastic.

If all points of a diffeological space are elastic, then (\: )- is a bimorphism. Since the
category of diffeological spaces is not balanced, however, this does not imply that (\: )- is
an isomorphism. For a good definition of elastic diffeological spaces, it must be required
by definition that (Cℎ4C0: )- has a smooth inverse. Moreover, we have to require that the
(\: )) ;- has the same property, so that elastic spaces are closed under the tangent functor.

Theorem 2.12. Elastic diffeological spaces are closed under the following operations:
(i) Coproducts of elastic spaces are elastic.
(ii) Finite products of elastic spaces are elastic.
(iii) Retracts of elastic spaces are elastic.

Theorem 2.13. The category of elastic diffeological spaces is a tangent category (with
inverses).

2.5. Examples of elastic diffeological spaces.

2.5.1. Manifolds. For finite dimensional vector spaces we have

Θ: HR
= � H)̂:R

= � (H)̂):R= � ): HR= ,

where we have used that the Yoneda embedding commutes with limits. Since being elastic
is a property that is local with respect to the diffeological topology on amanifold, it follows
that every space locally modeled on R= is elastic.

2.5.2. Manifolds with corners. Consider the set [0,R) ⊂ ∞ equipped with the subspace
diffeology. Every smooth map ? ∈ * → R with image ?(*) ⊂ [0,∞) has vanishing
derivatives to all orders at every point D0 with ?(D0) = 0. It follows that

)0 [0,∞) = 0 .

The tangent space at an interior point G ∈ (0,∞) is given by )G [0,∞) = R.
We want to show that [0,∞) is elastic. For this, we consider the maps

c : R −→ [0,∞)

G ↦−→ G2

and

f : [0,∞) −→ R

G ↦−→
√
G ,

which satisfy c ◦ f = id[0,∞) as maps of sets. We have to show that f is smooth. Let
? : * ↦→ [0,∞) be a plot. Since f is smooth on the interior (0,∞), f ◦ ? is smooth at a
all points in * that are mapped to the interior (0,∞). Assume that ?(D0) = 0. Since all
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�

Figure 3. Squeezing a corner by multiplying the H-coordinate with the
function 5 (G) = G 3

2 . The boundary of the resulting diffeological subspace
of R2 is the curve G2 = H5 with a cusp at (0, 0).

derivatives of a plot ? vanish at D0, ? vanishes to all orders at D0, i.e.
?(D)

‖D − D0‖:
D→D0−−−−→ 0 ,

for all : ≥ 0. This implies that
√
?(D) = (f ◦ ?) (D) vanishes to all orders at D0 as well, so

that f ◦ ? is differentiable at D0. We conclude that f is smooth, so that [0,∞) is a smooth
retract of R.

By Thm. 2.12, we conclude that the retract [0,∞) is elastic and that any finite product
R=
:

:= [0,∞): × R=−: is elastic. Since the diffeological tangent functor commutes with
products, the tangent spaces are given by

(14) )(G1,...,G=)R
=
: = )G1 [0,∞) × . . . )G: [0,∞) × R=−: .

Finally, we conclude that every diffeological space modeled locally on R=
:
is elastic. In

other words, manifolds with corners are elastic.

2.5.3. Manifolds with cusps. Consider the following subset of R2,

- :=
{
(G, H) | G ≥ 0 ∧ |H | ≤ G

}
,

with the subspace diffeology. We can squeeze or stretch the corner at (0, 0) by multiplying
the H coordinate by a smooth function 5 ∈ �∞

(
[0,∞)

)
(see Fig. 3),

i : - −→ - 5

(G, H) ↦−→
(
G, 5 (G) H

)
,

where
- 5 :=

{
(G, H) | G ≥ 0 ∧ |H | ≤ 5 (G)

}
.

Assume that 5 (G) > 0 for G > 0. Then i has an inverse map given by i−1(0, 0) = (0, 0)
and

i−1(G, H) =
(
G,

H

5 (G)

)
otherwise. Let us equip - 5 with the pullback diffeology of i−1. Since i−1 is surjective,
i is an isomorphism of diffeological spaces. - is [0,∞) × [0,∞) rotated by minus 45
degrees, so it is elastic. Since i is an isomorphism - 5 is elastic, too.
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Figure 4. Elastic diffeological subspaces of R2. The tangent spaces are 0
at the marked points, R at points on the black lines, and R2 at gray points
in the interior.

2.5.4. Function spaces.

Theorem 2.14. Let � → " be a smooth fibre bundle. The set of sections F = Γ(", �)
equipped with the subspace diffeology of the functional diffeology on�∞(", �) is elastic.

Corollary 2.15. Let " and # be smooth manifolds. Then �∞(", �) with the functional
diffeology is elastic.

2.5.5. Pro-finite dimensional manifolds. Pro-objects in Mfld are elastic, e.g. the infinite
jet bundle �∞�.

2.6. The Cartan calculus on elastic spaces. A vector field on a diffeological space is a
section E : - → )- of the bundle projection c- : )- → - . For differential forms, there
are two natural definitions. The first is as the left Kan extension of the de Rham functor,

Ω(-) := colim
H*→-

Ω(*) .

A form l ∈ Ω(-) is a family of forms

l? ∈ Ω(*)

for every plot ? : * → - , such that l? = 5 ∗l@ for every plot @ : + → - and smooth
map 5 : * → + satisfying ? = @ ◦ 5 . Ω(-) is equipped with a differential, which is given
by applying the de Rham differential to every element of the family, (3l)? = 3l?.
The second definition of a differential form is as antisymmetric, fibrewise multilinear

map
l : ):- −→ R .

For these kind of forms we have the inner derivative with respect to a vector field which
is given by precomposition

]El : ):−1-
(E,id):−1- )−−−−−−−−−→ ):-

l−−→ R .

Proposition 2.16. The two definitions of differential forms are naturally isomorphic if and
only if \: : Θ:- → ):- is an isomorphism for all : ≥ 0.

If - is elastic, so that ) satisfies the properties of a tangent structure, then we can define
the Lie bracket of two vector fields E, F : - → )- as follows. First we construct the
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morphism
-

- × -

)- ×- )-

)2- ×)- )2-

)2- ×)- )2-

)2-

Δ

E×F

)F×)E

id×)−

)+

which we denote by V(E, F) : - → )2- . Then we check that this map takes values in
the kernel of (c)- , )c-) : )2- → )2- . It follows from the universal property of the
pullback diagram (12) of an abstract tangent structure, that there is a unique vector field
[E, F] : - → )- such that V(E, F) = _ ◦ [E, F]. It is quite involved to show that [E, F]
is is indeed a Lie bracket satisfying the Jacobi identity [CC15].

Theorem 2.17. Let - be an elastic diffeological space. Then the differential calculus
consisting of differential forms, the de Rham differential, vector fields, the inner derivative,
the Lie bracket of vector fields, and the Lie derivative defined by Cartan’s magic formula
satisfies the relations of a Cartan calculus.

3. Towards a Lie theory for diffeological groupoids

Definition 3.1. A diffeological groupoid is a groupoid internal to the category of diffeo-
logical spaces.

To my best knowledge, there is no Lie theory for general diffeological groupoids, nor
can there be. The category of diffeological groupoids is too general as to allow for a
good infinitesimal object, its yet to be defined diffeological Lie algebroid, that would
retain useful structural information. This could be fixed if we require our diffeological
groupoids to be diffeological manifolds, i.e. to be locally modeled on diffeological vector
spaces, but this would exclude many interesting examples and give away too much of the
convenience of the category of diffeological spaces. (An example is the action groupoid
of the action of a symmetry bisection group on the space of solutions of Euler-Lagrange
equation of a field theory, which usually has singularities.) It seems to me that what is
really needed is a good differential calculus, as provided by the tangent structure of elastic
diffeological spaces.
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3.1. The infinitesimal object of an elastic diffeological groupoid.

Definition 3.2. A diffeological groupoid is called elastic if

�: � �1 ×A,;�0
�1 ×A,;�0

. . . ×A,;
�0
�1︸                             ︷︷                             ︸

: factors

is elastic for all : ≥ 0.

How strong is this condition? Let us first consider the group case:

Theorem 3.3. Every diffeological group is elastic.

I find this result quite surprising. It explains in hindsight whywe never ran into technical
problems computing the Lie algebras of bisection groups such as Diff (") using only the
diffeological structure. As a corollary we obtain the following proposition:

Proposition 3.4. The action groupoid of the smooth action of a diffeological group on an
elastic diffeological space is elastic.

Action groupoids over elastic spaces are the starting point for the construction of many
groupoids that are relevant in classical field theory. The tangent structure of elastic
diffeological spaces is sufficient to construct a well-behaved infinitesimal object of any
higher elastic diffeological groupoid given by a Kan simplicial elastic diffeological space
� : �op → Dflg.

If we want to generalize the usual construction of Lie algebroids in terms of invariant
vector fields, we have to strengthen the conditions on our groupoids somewhat. The
following definition is tentative:

Definition 3.5. An diffeological groupoid is called strongly elastic if it is elastic and if

)�: � )�1 ×)�0 )�1 ×)�0 . . . ×)�0 )�1

for all : ≥ 0.

Definition 3.6. A diffeological R-module bundle over " is an R-module object �→ "

in Dflg↓" .

AnR-module bundle consists of morphisms c : �→ " , 0 : " → �, + : �×" �→ �,
− : � ×" � → �, and · : R × � → �, all covering id" , that satisfy the usual relations
expressed by commutative diagrams. The diffeological space of sections A := Γ(", �)
is an abelian group with pointwise group structure and a Dflg(",R)-module given by
( 5 0) (<) = 5 (<) · 0(<).

Definition 3.7. Adiffeological Lie algebroid consists of anR-module bundle �→ " such
that � is elastic and a smooth bilinear Lie bracket on the space of sections A = Γ(", �),
and a morphism d : �→ )" of R-module bundles such that

[0, 5 1] = (]d(0)35 ) + 5 [0, 1] .
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The definition looks almost identical to that of a Lie algebroid, so let us point out the
differences. The bundle � → " has no local trivializations and the Dflg(",R)-module
A is generally not locally free. Therefore, it seems to me that it cannot be deduced from
the Leibniz rule that d is a homomorphism of Lie algebras. I am not sure at this point
whether this property should be added to the definition, as in the old definitions of a Lie
algebroid.

Proposition 3.8. The right invariant vector fields of a strongly elastic diffeological group-
oid form a diffeological Lie algebroid in the sense of Def. 3.7.

3.2. Application: Diffeological groupoids in general relativity. The following appli-
cation of diffeological groupoids arose in the study of the initial value problem of general
relativity [BFW13]. The basic symmetry of (vacuum) general relativity, i.e. the theory
of Ricci flat lorentzian metrics on a given background manifold " is Diff ("). This is a
symmetry in the sense of lagrangian field theory, i.e. Diff (") leaves the Hilbert-Einstein
action invariant and, therefore, maps solutions of the field equation to solutions. As is the
case for any classical field theory, the initial value formulation of general relativity requires
the choice of an initial time slice Σ ↩→ " , an embedded codimension 1 submanifold. The
issue is, that such a submanifold is not invariant under Diff ("). In physics terminology,
it breaks the symmetry.

This problem is the source of fundamental problems of the theory and leads to a
number of undesirable phenomena. For example, the constraint functions of the initial
value problem, which arise from Noether’s theorem and can be viewed as functions on
)∗Riem(") have Poisson brackets that do not close. This shows that the constraints
cannot be interpreted as momenta or charges of a hamiltonian action of Diff (") or any
other group. The whole problem “smells” like groupoids and Lie algebroids, at least for
someone used to working with them.

There are several groupoids that we can associate to the geometric situation at hand.
The first groupoid has as objects all lorentzian manifolds that admit an embedding of Σ
as spacelike codimension 1 submanifold. (Let us call these Σ-adapted.) The arrows are
the isometries between Σ-adapted lorentzian manifolds. Note that this groupoid is not
small. This can be interpreted as the groupoid presenting the moduli stack of Σ-adapted
spacetimes. We will denote it by �stack(Σ).

The second groupoid encodes the choice of initial time slice and is constructed as
follows. Let (", 6, 8 : Σ ↩→ ") be a lorentzian manifold with a (spacelike cooriented)
embedding of Σ. Two such triples ("1, 61, 81) and ("2, 62, 82) are isomorphic if there
is a diffeomorphism i : "1 → "2 such that i∗61 = 62 and i ◦ 81 = 82. An object of
the groupoid is an isomorphism class of such triples. The arrows consist of isomorphism
classes of (", 6, 8, 9), where (8, 9) is a pair of embeddings. The groupoid structure is
induced by the pair groupoid structure of the pairs of embeddings. We have called this the
groupoid of evolutions and denoted by �evol(Σ).
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The third groupoid arises in the following way. Let Diff (") n Lor(") be the action
groupoid of the action of diffeomorphisms on lorentzian manifolds by pushforward. Let
Σ ⊂ " be a submanifold. Let us denote by Diff (")Σ the subgroup of diffeomorphisms
that fix all points of Σ. Note that the subgroup is not normal. The third groupoid is the
reduction

�red(Σ, ") = Diff (")Σ\Diff (") ×Diff (")Σ Lor(")/Diff (")Σ

of the action groupoid by Diff (")Σ [BW].
All three groupoids are equipped with a diffeological structure that comes from the

functional diffeology on the space of metrics and the spaces of Σ-embeddings.

Proposition 3.9. Let �stack(Σ), �evol(Σ), and �red(Σ, ") be the diffeological groupoids
we have just defined.

• �stack(Σ) and �evol(Σ) are Morita equivalent.
• �red(Σ, ") is a diffeologically connected component and subgroupoid of�evol(Σ).
• The objects of�red(Σ, ") and�evol(Σ) are represented by unique gaussianmetrics
on a neighborhood of Σ × {0} in Σ × R.
• The Lie algebroid of �evol(Σ) is a trivial vector bundle with fibre X(Σ) × �∞(Σ).
The bracket of constant sections is the Poisson bracket of the constraint functions.

[(-, i), (., k)] =
(
[-,. ], - · k − . · i + i gradℎ k − k gradℎ i

)
,

where 6 = −1
23C

2 + ℎC for ℎC ∈ Riem(Σ) is a gaussian metric.

Remark 3.10. The construction of�red generalizes to the action of any bisection groupoid
on a space of sections F = Γ(", �).
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