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Satellite operators

Definition

A satellite operator is a knot in the solid torus S1 ×D2 considered
up to isotopy.

Satellite operators act on knots in S3 via the classical satellite
construction.

P K P (K)
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Satellite operators form a monoid

P Q P ? Q

Proposition

The satellite operation gives a monoid action on knots, i.e.

(P ? Q)(K) = P (Q(K))
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Strong winding number one operators

This talk focuses on winding number one satellite operators,
particularly so-called strong winding number one satellite
operators; there exist infinitely many such operators. In particular,
any unknotted winding number one operator is strong winding
number one.
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Knot concordance

Definition

Knots K0, K1 are concordant if they cobound a smoothly
embedded annulus in S3 × [0, 1]. Knots modulo concordance form
the knot concordance group C.

K0

S3 × {0}
S3 × [0, 1]

K1
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Topological knot concordance

Definition

Knots K0, K1 are topologically concordant if they cobound a
locally flat, topologically embedded annulus in S3 × [0, 1]. Knots
modulo topological concordance form the topological knot
concordance group Ctop.

K0

S3 × {0}
S3 × [0, 1]

K1
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Exotic knot concordance

Definition

Knots K0, K1 are exotically concordant if they cobound a
smoothly embedded annulus in a smooth manifold M
homeomorphic to S3 × [0, 1], i.e. a possibly exotic S3 × [0, 1].
Knots modulo exotic concordance form the exotic knot
concordance group Cex.

K0

S3

M

K1

If the smooth 4–dimensional Poincaré Conjecture holds, then
C = Cex.
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Satellite operators act on knot concordance classes

The classical satellite construction descends to a well-defined
function on knot concordance classes, i.e. if K and J are
concordant, then P (K) and P (J) are concordant, for any P .
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Question

What can we say about the action of satellite operators on knot
concordance classes?

• Do they act by injections? i.e. for a given operator P , if
P (K) = P (J) does it imply that K=J?

Theorem (Cochran–Davis–R., 2012)

Any strong winding number one satellite operator gives an injective
function on Ctop and Cex (and therefore, modulo the smooth
4–dimensional Poincaré Conjecture, on C).

• Do they act by surjections? i.e. for a given operator P and
knot J , is there a K such that P (K) = J?
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Goal

We show that satellite operators are (naturally) a subset of a
group, Ŝ.

This group acts on concordance classes of knots in
homology 3–spheres in a manner that is compatible with the
classical satellite construction.

This observation allows us to give a new (easier) proof of the
Cochran–Davis-R. result about injectivity, and gives a new
approach to the question of surjectivity.
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Main theorem

Theorem (Davis–R.)

Let S be the monoid of strong winding number one satellite
operators. Let Ĉtop and Ĉex be the groups of topological and exotic
concordance classes of knots in homology 3–spheres.

There exist homomorphisms E : S → Ŝ, Ψ : C∗ ↪→ Ĉ∗ such that
the following diagrams commute for each P ∈ S.

Cex Cex

Ĉex Ĉex

P

Ψ Ψ

E(P )

Ctop Ctop

Ĉtop Ĉtop

P

Ψ Ψ

E(P )

Since E(P ) is a group element, it acts on Ĉ∗ by a bijection. The
Cochran–Davis–R. result follows.
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Homology cylinders

Let T be the torus S1 × S1. A homology cylinder on T is a triple
(V, i+, i−) where

• V is a compact, connected, oriented 3–manifold

• For ε = ±1, iε : T → ∂V is an embedding

• i+ is orientation-preserving and i− is orientation-reversing

• ∂V = i+(T ) t i−(T )

• (iε)∗ : H∗(T )→ H∗(V ) is an isomorphism

A homology cylinder (V, i+, i−) is called a strong cylinder if π1(V )
is normally generated by each of Im(i+)∗ and Im(i−)∗.
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Homology cylinders form a group

i−(T )

V

i+(T )

i+(T ) j−(T ) j+(T )

WV W

i−(T ) i+(T ) = j−(T ) j+(T )

Stacking gives a monoid operation on homology cylinders. Under
homology cobordism, homology cylinders form a group (Levine).
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Satellite operators yield homology cylinders

Given a satellite operator P in a solid torus V , carve out a
neighborhood of P inside V . The resulting 3–manifold has two
toral boundary components, with canonical maps to the torus
T = S1 × S1.

A strong winding number one satellite operator yields a strong
homology cylinder.
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Homology cylinders act on knots in homology 3–spheres

Given a knot K in a homology 3–sphere Y , carve out N(K), a
solid torus neighborhood of K.

Y −N(K)

∂N(K)

∂N(K)
i−(T ) i+(T )

VY −N(K) V

∂N(K) = i−(T )
i+(T )

We obtain a 3–manifold with a single torus boundary component.
We can canonically glue in a solid torus to get a homology
3–sphere. The core of this solid torus is the new knot.
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Surjectivity of satellite operators

For each strong winding number one satellite operator P , the
following diagram commutes.

C∗ C∗

Ĉ∗ Ĉ∗

P

Ψ Ψ

E(P )

Since E(P ) is an element of the group Ŝ, it has an inverse
E(P )−1.

If E(P )−1(C∗) ⊆ C∗ then P is surjective on C∗.
The following is an example of a bijective satellite operator.
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