Satellite operators as group actions on knot concordance

Arunima Ray, Rice University (Joint work with Christopher Davis, University of Wisconsin–Eau Claire)

AMS Central Sectional Meeting Washington University at St. Louis

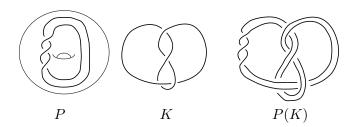
October 20, 2013

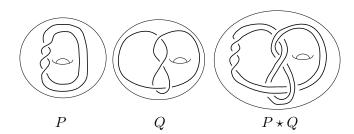
Satellite operators

Definition

A satellite operator is a knot in the solid torus $S^1 \times D^2$ considered up to isotopy.

Satellite operators act on knots in ${\cal S}^3$ via the classical satellite construction.





Proposition

Background

0000000

The satellite operation gives a monoid action on knots, i.e.

$$(P \star Q)(K) = P(Q(K))$$

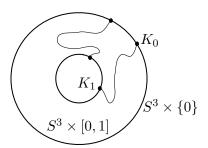
Strong winding number one operators

This talk focuses on winding number one satellite operators, particularly so-called *strong winding number one* satellite operators; there exist infinitely many such operators. In particular, any *unknotted* winding number one operator is strong winding number one.

Knot concordance

Definition

Knots K_0 , K_1 are concordant if they cobound a smoothly embedded annulus in $S^3 \times [0,1]$. Knots modulo concordance form the knot concordance group \mathcal{C} .



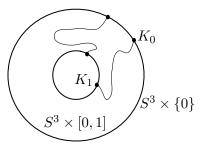
Topological knot concordance

Definition

Background

00000000

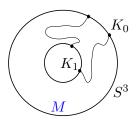
Knots K_0 , K_1 are topologically concordant if they cobound a locally flat, topologically embedded annulus in $S^3 \times [0,1]$. Knots modulo topological concordance form the topological knot concordance group \mathcal{C}_{top} .



Exotic knot concordance

Definition

Knots K_0 , K_1 are exotically concordant if they cobound a smoothly embedded annulus in a smooth manifold Mhomeomorphic to $S^3 \times [0,1]$, i.e. a possibly exotic $S^3 \times [0,1]$. Knots modulo exotic concordance form the exotic knot concordance group $C_{\rm ex}$.



If the smooth 4-dimensional Poincaré Conjecture holds, then $\mathcal{C} = \mathcal{C}_{ox}$

The classical satellite construction descends to a well-defined function on knot concordance classes, i.e. if K and J are concordant, then P(K) and P(J) are concordant, for any P.

Background

0000000

What can we say about the action of satellite operators on knot concordance classes?

• Do they act by injections? i.e. for a given operator P, if P(K) = P(J) does it imply that K=J?

Question

What can we say about the action of satellite operators on knot concordance classes?

Surjectivity

• Do they act by injections? i.e. for a given operator P, if P(K) = P(J) does it imply that K = J?

Theorem (Cochran–Davis–R., 2012)

Any strong winding number one satellite operator gives an injective function on \mathcal{C}_{top} and \mathcal{C}_{ex} (and therefore, modulo the smooth 4–dimensional Poincaré Conjecture, on \mathcal{C}).

Question

What can we say about the action of satellite operators on knot concordance classes?

• Do they act by injections? i.e. for a given operator P, if P(K) = P(J) does it imply that K = J?

Theorem (Cochran–Davis–R., 2012)

Any strong winding number one satellite operator gives an injective function on \mathcal{C}_{top} and \mathcal{C}_{ex} (and therefore, modulo the smooth 4–dimensional Poincaré Conjecture, on \mathcal{C}).

• Do they act by surjections? i.e. for a given operator P and knot J, is there a K such that P(K) = J?

Goal

We show that satellite operators are (naturally) a subset of a group, $\widehat{\mathcal{S}}.$

Background

We show that satellite operators are (naturally) a subset of a group, \widehat{S} . This group acts on concordance classes of knots in homology 3–spheres in a manner that is compatible with the classical satellite construction.

This observation allows us to give a new (easier) proof of the Cochran–Davis-R. result about injectivity, and gives a new approach to the question of surjectivity.

Main theorem

Theorem (Davis-R.)

Let $\mathcal S$ be the monoid of strong winding number one satellite operators. Let $\widehat{\mathcal C}_{top}$ and $\widehat{\mathcal C}_{ex}$ be the groups of topological and exotic concordance classes of knots in homology 3–spheres.

Main theorem

Theorem (Davis–R.)

Let \mathcal{S} be the monoid of strong winding number one satellite operators. Let $\widehat{\mathcal{C}_{\text{top}}}$ and $\widehat{\mathcal{C}_{\text{ex}}}$ be the groups of topological and exotic concordance classes of knots in homology 3–spheres.

There exist homomorphisms $E: \mathcal{S} \to \widehat{\mathcal{S}}$, $\Psi: \mathcal{C}_* \hookrightarrow \widehat{\mathcal{C}}_*$ such that the following diagrams commute for each $P \in \mathcal{S}$.

$$\begin{array}{ccc} \mathcal{C}_{\mathsf{ex}} & \xrightarrow{P} \mathcal{C}_{\mathsf{ex}} & & \mathcal{C}_{\mathsf{top}} & \xrightarrow{P} \mathcal{C}_{\mathsf{top}} \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

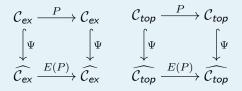
Main theorem

Theorem (Davis–R.)

Let $\mathcal S$ be the monoid of strong winding number one satellite operators. Let $\widehat{\mathcal C}_{top}$ and $\widehat{\mathcal C}_{ex}$ be the groups of topological and exotic concordance classes of knots in homology 3–spheres.

Surjectivity

There exist homomorphisms $E: \mathcal{S} \to \widehat{\mathcal{S}}$, $\Psi: \mathcal{C}_* \hookrightarrow \widehat{\mathcal{C}}_*$ such that the following diagrams commute for each $P \in \mathcal{S}$.



Since E(P) is a group element, it acts on $\widehat{\mathcal{C}}_*$ by a bijection. The Cochran–Davis–R. result follows.

6) -).....

Let T be the torus $S^1 \times S^1$. A homology cylinder on T is a triple (V,i_+,i_-) where

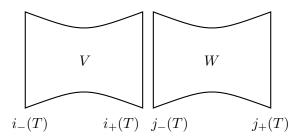
- V is a compact, connected, oriented 3-manifold
- For $\epsilon = \pm 1$, $i_{\epsilon}: T \to \partial V$ is an embedding
- ullet i_+ is orientation-preserving and i_- is orientation-reversing
- $\partial V = i_+(T) \sqcup i_-(T)$
- $(i_{\epsilon})_*: H_*(T) \to H_*(V)$ is an isomorphism

A homology cylinder (V,i_+,i_-) is called a *strong cylinder* if $\pi_1(V)$ is normally generated by each of ${\rm Im}(i_+)_*$ and ${\rm Im}(i_-)_*$.

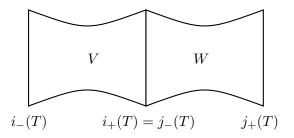
Homology cylinders form a group



Homology cylinders form a group

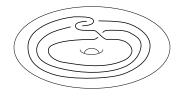


Homology cylinders form a group



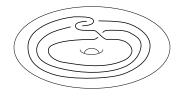
Stacking gives a monoid operation on homology cylinders. Under homology cobordism, homology cylinders form a group (Levine).

Satellite operators yield homology cylinders



Given a satellite operator P in a solid torus V, carve out a neighborhood of P inside V. The resulting 3–manifold has two toral boundary components, with canonical maps to the torus $T=S^1\times S^1$.

Satellite operators yield homology cylinders

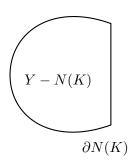


Given a satellite operator P in a solid torus V, carve out a neighborhood of P inside V. The resulting 3-manifold has two toral boundary components, with canonical maps to the torus $T=S^1\times S^1$.

A strong winding number one satellite operator yields a strong homology cylinder.

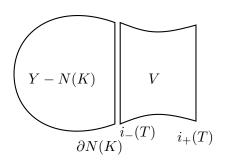
Homology cylinders act on knots in homology 3-spheres

Given a knot K in a homology 3–sphere Y, carve out N(K), a solid torus neighborhood of K.



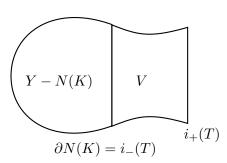
Homology cylinders act on knots in homology 3-spheres

Given a knot K in a homology 3–sphere Y, carve out N(K), a solid torus neighborhood of K.

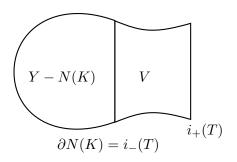


Homology cylinders act on knots in homology 3-spheres

Given a knot K in a homology 3–sphere Y, carve out N(K), a solid torus neighborhood of K.



Given a knot K in a homology 3–sphere Y, carve out N(K), a solid torus neighborhood of K.



We obtain a 3-manifold with a single torus boundary component. We can canonically glue in a solid torus to get a homology 3-sphere. The core of this solid torus is the new knot.

Surjectivity of satellite operators

For each strong winding number one satellite operator P, the following diagram commutes.

$$\begin{array}{ccc}
\mathcal{C}_* & \stackrel{P}{\longrightarrow} \mathcal{C}_* \\
\downarrow^{\Psi} & \downarrow^{\Psi} \\
\widehat{\mathcal{C}}_* & \stackrel{E(P)}{\longrightarrow} \widehat{\mathcal{C}}_*
\end{array}$$

Since E(P) is an element of the group $\widehat{\mathcal{S}}$, it has an inverse $E(P)^{-1}$.

Surjectivity of satellite operators

For each strong winding number one satellite operator P, the following diagram commutes.

$$\begin{array}{ccc}
\mathcal{C}_* & \xrightarrow{P} & \mathcal{C}_* \\
\downarrow^{\Psi} & & \downarrow^{\Psi} \\
\widehat{\mathcal{C}}_* & \xrightarrow{E(P)} & \widehat{\mathcal{C}}_*
\end{array}$$

Since E(P) is an element of the group $\widehat{\mathcal{S}}$, it has an inverse $E(P)^{-1}$.

If $E(P)^{-1}(\mathcal{C}_*) \subseteq \mathcal{C}_*$ then P is surjective on \mathcal{C}_* .

The following is an example of a bijective satellite operator.

