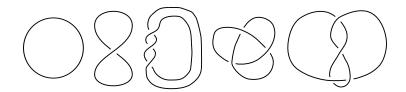
Satellite operations and knot concordance

Arunima Ray Brandeis University

San Francisco State University

February 18, 2016



Definition

A knot is an embedding $S^1 \hookrightarrow \mathbb{R}^3$.

Definition

Two knots are said to be isotopic if one can be deformed into another through embeddings in \mathbb{R}^3 .

Isotopy is a 3-dimensional equivalence relation.

Definition

Two knots are said to be isotopic if one can be deformed into another through embeddings in \mathbb{R}^3 .

Isotopy is a 3-dimensional equivalence relation.

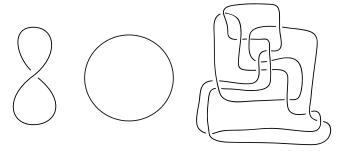


Figure: These are all pictures of the same knot, called the **unknot**.

Theorem (Lickorish-Wallace, 1960s)

Any closed, connected, orientable manifold can be obtained from \mathbb{R}^3 by performing an operation called 'surgery' on a collection of knots.

Theorem (Lickorish-Wallace, 1960s)

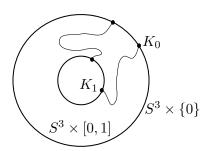
Any closed, connected, orientable manifold can be obtained from \mathbb{R}^3 by performing an operation called 'surgery' on a collection of knots.

Knot theory also has applications to algebraic geometry, statistical mechanics, DNA topology, quantum computing,

Knot concordance

Definition

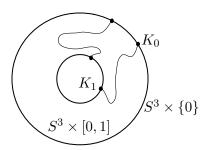
Knots K_0 , K_1 are concordant if they cobound a smoothly embedded annulus in $S^3 \times [0,1]$. Knots modulo concordance form the *knot concordance group* C.



Topological knot concordance

Definition

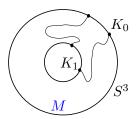
Knots K_0 , K_1 are topologically concordant if they cobound a locally flat, topologically embedded annulus in $S^3 \times [0,1]$. Knots modulo topological concordance form the topological knot concordance group C_{top} .



Exotic knot concordance

Definition

Knots K_0 , K_1 are exotically concordant if they cobound a smoothly embedded annulus in a smooth manifold M homeomorphic to $S^3 \times [0,1]$, i.e. a possibly exotic $S^3 \times [0,1]$. Knots modulo exotic concordance form the exotic knot concordance group \mathcal{C}_{ex} .



If the smooth 4-dimensional Poincaré Conjecture holds, then $\mathcal{C} = \mathcal{C}_{\mathsf{ex}}$.

Proposition

A knot is the unknot if and only if it is the boundary of a disk.

That is, K is the unknot if and only if g(K) = 0.

Proposition

A knot is the unknot if and only if it is the boundary of a disk.

That is, K is the unknot if and only if g(K) = 0.

If T is the trefoil knot, g(T)=1. Therefore, the trefoil is not equivalent to the unknot.

Figure: The connected sum of two trefoil knots, T#T

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J)=g(K)+g(J).

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J)=g(K)+g(J).

Therefore,
$$g(\underbrace{T\#\cdots\#T}_{n \text{ copies}}) = n$$

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J)=g(K)+g(J).

Therefore,
$$g(\underbrace{T\#\cdots\#T}_{n \text{ copies}}) = n$$

Corollary: There exist infinitely many distinct knots!

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J)=g(K)+g(J).

Therefore,
$$g(\underbrace{T\#\cdots\#T}_{n \text{ copies}}) = n$$

Corollary: There exist infinitely many distinct knots!

Corollary: We can never add together non-trivial knots to get a trivial knot.

Slice knots

Recall that a knot is equivalent to the unknot if and only if it is the boundary of a disk in \mathbb{R}^3 .

Definition

A knot K is *slice* if it is the boundary of a disk in $\mathbb{R}^3 \times [0, \infty)$.

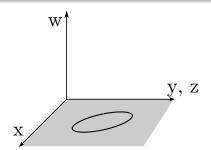


Figure: Schematic picture of the unknot

Slice knots

Recall that a knot is equivalent to the unknot if and only if it is the boundary of a disk in \mathbb{R}^3 .

Definition

A knot K is *slice* if it is the boundary of a disk in $\mathbb{R}^3 \times [0, \infty)$.

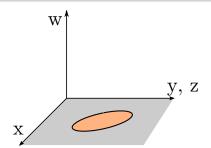


Figure: Schematic picture of the unknot

Slice knots

Recall that a knot is equivalent to the unknot if and only if it is the boundary of a disk in \mathbb{R}^3 .

Definition

A knot K is *slice* if it is the boundary of a disk in $\mathbb{R}^3 \times [0, \infty)$.

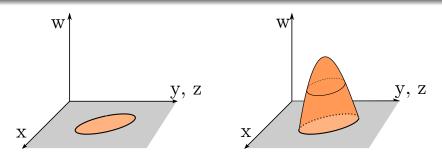
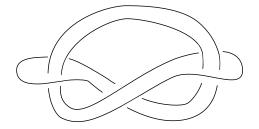
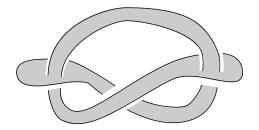
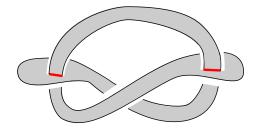
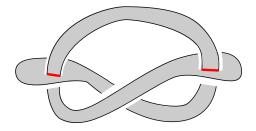


Figure: Schematic picture of the unknot and a slice knot

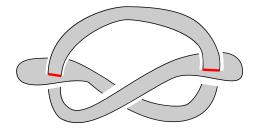








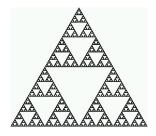
Knots of this form are called ribbon knots.



Knots of this form are called ribbon knots.

Knots, modulo slice knots, form a group called the *knot concordance* group, denoted C.

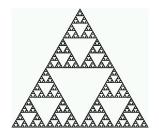
Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Fractals

Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Conjecture (Cochran-Harvey-Leidy, 2011)

The knot concordance group C is a fractal.

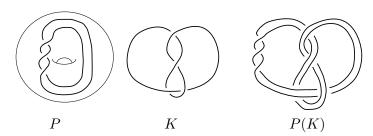


Figure: The satellite operation on knots

Satellite operations on knots

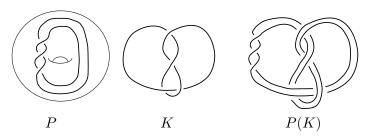


Figure: The satellite operation on knots

Any knot P in a solid torus gives a function on the knot concordance group,

$$P: \mathcal{C} \to \mathcal{C}$$
$$K \mapsto P(K)$$

These functions are called *satellite operators*.

Theorem (Cochran-Davis-R., 2012)

Large (infinite) classes of satellite operators $P: \mathcal{C} \to \mathcal{C}$ are injective.

Theorem (Cochran-Davis-R., 2012)

Large (infinite) classes of satellite operators $P: \mathcal{C} \to \mathcal{C}$ are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots K such that $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Fractals

Theorem (Cochran-Davis-R., 2012)

Large (infinite) classes of satellite operators $P: \mathcal{C} \to \mathcal{C}$ are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots K such that $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Theorem (Davis-R., 2013)

There exist satellite operators that are bijective on C.

Theorem (Cochran-Davis-R., 2012)

Large (infinite) classes of satellite operators $P: \mathcal{C} \to \mathcal{C}$ are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots K such that $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Theorem (Davis-R., 2013)

There exist satellite operators that are bijective on C.

Theorem (A. Levine, 2014)

There exist satellite operators that are injective but not surjective.

Fractals

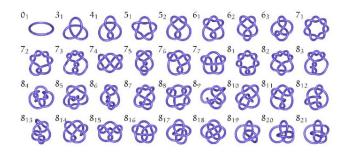
What is left to show?

In order for $\mathcal C$ to be a fractal, we need some notion of distance or size, to see that we have smaller and smaller embeddings of $\mathcal C$ within itself.

One way to do this is to exhibit a metric space structure on \mathcal{C} . There are several natural metrics on \mathcal{C} , but we have not yet found one that works well with the current results on satellite operators. The search is on!

The origins of mathematical knot theory

1880s: Kelvin (1824–1907) hypothesized that atoms were 'knotted vortices' in æther. This led Tait (1831–1901) to start tabulating knots.



Tait thought he was making a periodic table!

Examples of knots

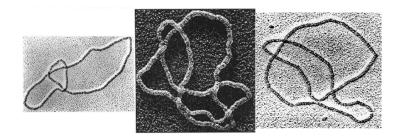


Figure: Knots in circular DNA.

(Images from Cozzarelli, Sumners, Cozzarelli, respectively.)