Introduction	Tools	Our links	are new
•0000	0000	0000000	00

A new family of links topologically, but not smoothly, concordant to the Hopf link

> Arunima Ray (Brandeis University)

(Joint work with C. Davis (University of Wisconsin-Eau Claire))

December 5, 2015

Introduction	Tools	Our links	are new
00000	0000	0000000	OO
Preliminaries			

Definition

A link is an (oriented, ordered) embedding $\sqcup S^1 \hookrightarrow S^3$ considered up to isotopy. A knot is a 1-component link.

Introduction	Tools	Our links	are new
00000	0000	0000000	
Preliminaries			

Definition

A link is an (oriented, ordered) embedding $\sqcup S^1 \hookrightarrow S^3$ considered up to isotopy. A knot is a 1-component link.

Definition

Two links L_1 and L_2 are said to be **smoothly concordant** if they cobound a disjoint collection of properly embedded smooth annuli in $S^3 \times [0, 1]$.

Introduction	Tools	Our links	are new
00000	0000	0000000	
Preliminaries			

Definition

A link is an (oriented, ordered) embedding $\sqcup S^1 \hookrightarrow S^3$ considered up to isotopy. A knot is a 1-component link.

Definition

Two links L_1 and L_2 are said to be **smoothly concordant** if they cobound a disjoint collection of properly embedded smooth annuli in $S^3 \times [0, 1]$.

Definition

Two links L_1 and L_2 are said to be **topologically concordant** if they cobound a disjoint collection of properly embedded locally flat annuli in $S^3 \times [0, 1]$.

0000	0000	0000000	00	
Knot concordance groups				

Knot concordance groups

Smooth concordance classes of knots, under connected sum, form an abelian group called the **smooth knot concordance group**, denoted C.

If we consider concordance in a potentially exotic copy of $S^3 \times I$, we still get an abelian group, called the **exotic knot concordance** group, denoted C^{ex} .

Constant	the second s	uda na a	
00000	0000	0000000	00
Introduction	Tools	Our links	are new

Smooth vs. topological concordance

The differences between smooth and topological concordance model the differences between smooth and topological 4-manifolds, e.g. a knot which is topologically concordant to the unknot, but not smoothly concordant, gives rise to an exotic \mathbb{R}^4 .

There exist infinitely many examples of knots that are topologically concordant to the unknot but not smoothly concordant.

Introduction	Tools	Our links	are new
0000	0000	00000000	OO
Question			

Introduction	Tools	Our links	are new
00000	0000	00000000	OO
Question			

Davis: A 2-component link with (multivariable) Alexander polynomial one is topologically concordant to the Hopf link.

Introduction	Tools	Our links	are new
00000	0000	0000000	OO
Question			

Davis: A 2-component link with (multivariable) Alexander polynomial one is topologically concordant to the Hopf link.

Question (Davis)

Is there a 2-component link with Alexander polynomial one which is not smoothly concordant to the Hopf link, but each of whose components is smoothly concordant to the unknot?

Introduction	Tools	Our links	are new
00000	0000	0000000	OO
Question			

Davis: A 2-component link with (multivariable) Alexander polynomial one is topologically concordant to the Hopf link.

Question (Davis)

Is there a 2-component link with Alexander polynomial one which is not smoothly concordant to the Hopf link, but each of whose components is smoothly concordant to the unknot?

Answer: Yes, infinitely many (Cha-Kim-Ruberman-Strle)

Introduction	Tools	Our links	are new
00000	0000	0000000	OO
Question			

Davis: A 2-component link with (multivariable) Alexander polynomial one is topologically concordant to the Hopf link.

Question (Davis)

Is there a 2-component link with Alexander polynomial one which is not smoothly concordant to the Hopf link, but each of whose components is smoothly concordant to the unknot?

Answer: Yes, infinitely many (Cha-Kim-Ruberman-Strle)

We give another infinite family of examples, using different techniques. We also show that our examples are distinct from the above.

Introduction	Tools	Our links	are new
00000	●000	0000000	
Satellite knots			

Any 2-component link with second component unknotted corresponds to a knot inside a solid torus, called a **pattern**.

Introduction	Tools	Our links	are new
00000	●000	0000000	OO
Satellite knots			

Any 2-component link with second component unknotted corresponds to a knot inside a solid torus, called a **pattern**.

Any pattern acts on knots via the classical satellite construction.

Introduction	Tools	Our links	are new
00000	o●oo	00000000	OO
Satellite operat	tors		

The satellite construction descends to well-defined functions on C and C^{ex} , called **satellite operators**, i.e. we get

$$P: \mathcal{C} \to \mathcal{C}$$

 $K \mapsto P(K)$

and

$$P: \mathcal{C}^{\mathsf{ex}} \to \mathcal{C}^{\mathsf{ex}}$$
$$K \mapsto P(K)$$

Introduction	Tools	Our links	are new
00000	00●0	00000000	OO
Link concordance	ce and satellite	operators	

Proposition (Cochran–Davis–R.)

If the 2-component links L_0 and L_1 with unknotted second component are concordant (or even exotically concordant), then the corresponding patterns P_0 and P_1 induce the same satellite operator on C^{ex} , i.e. for any knot K, $P_0(K)$ and $P_1(K)$ are exotically concordant.

Introduction	Tools	Our links	are new
00000	00●0	00000000	OO
Link concordance	e and satellite	operators	

Proposition (Cochran–Davis–R.)

If the 2-component links L_0 and L_1 with unknotted second component are concordant (or even exotically concordant), then the corresponding patterns P_0 and P_1 induce the same satellite operator on C^{ex} , i.e. for any knot K, $P_0(K)$ and $P_1(K)$ are exotically concordant.

Notice that the Hopf link corresponds to the pattern consisting of the core of a solid torus, which induces the identity satellite operator.

This translates the question of whether 2–component links are concordant to a question of whether a satellite operator is distinct from the identity function.

Introduction	Tools	Our links	are new
00000	000●	0000000	
Iterated patterns			

We can compose patterns as follows:

Introduction 00000	Tools 0000	Our links ●0000000	are new 00
Our links			
		$= \qquad \qquad$	

Introduction	Tools	Our links	are new
00000	0000	0000000	OO
Our links			

Let $L = (Q, \eta)$.

Introduction	Tools	Our links	are new
00000	0000	0000000	00
Our links			

Theorem (Davis-R.)

The links $\{(Q^i, \eta(Q^i))\}$ are each topologically concordant to the Hopf link, but are distinct from the Hopf link (and one another) in smooth concordance.

Introduction	Tools	Our links	are new
00000	0000	0000000	00
Topological c	oncordance to F	lonf	
i opological c		юрі	

Start with $L = (Q, \eta)$.

Method 1: Use the fact that the link " Wh_3 " is topologically slice (Freedman)

Method 2: Compute the Alexander polynomial using a C-complex.

00000	0000	00000000	00	
Introduction	Tools	Our links	are new	

Topological concordance to Hopf link

Introduction	Tools 0000	Our links 00000000	are new
— · · ·			

Topological concordance to Hopf link

We have that (Q, η) is topologically concordant to the Hopf link. We can modify the concordance by performing satellite operations on the annulus for the first component. This gives a topological concordance between (Q, η) and $(Q^2, \eta(Q^2))$. Iterate to see that each member of the family $\{(Q^i, \eta(Q^i))\}$ is topologically concordant to the Hopf link.

Introduction	Tools	Our links	are new
00000	0000	oooooo●o	OO
Distinctness in	smooth concord	dance	

We have a Legendrian diagram for the pattern Q.

 $\mathsf{tb}(\mathcal{Q}) = 2, \mathsf{rot}(\mathcal{Q}) = 0$

Introduction 00000	Tools 0000	r links ooooo●	are new OO

Distinctness in smooth concordance

Proposition (R.)

If P is a winding number one pattern such that P(U) is unknotted, where U is the unknot, and P has a Legendrian diagram \mathcal{P} with $tb(\mathcal{P}) > 0$ and $tb(\mathcal{P}) + rot(\mathcal{P}) \ge 2$, then the iterated patterns P^i induce distinct functions on \mathcal{C}^{ex} , i.e. there exists a knot K such that $P^i(K)$ is not exotically concordant to $P^j(K)$, for each pair of distinct $i, j \ge 0$.

Here P^0 is the identity satellite operator, so in particular, the above shows that our links are not smoothly concordant to the Hopf link.

	Our links are differ			
0	00000	0000	0000000	0
1	ntroduction	Tools	Our links	are new

Our links are different from previous examples

Proposition (Davis-R.)

The links $\{(Q^i, \eta(Q^i)) \mid i \ge 4\}$ are distinct from the links ℓ_J constructed by Cha–Kim–Ruberman–Strle.

Introduction	Tools	Our links	are new
00000	0000	0000000	⊙●
D .	and a second		

Previous examples

These are the patterns L_J corresponding to the previous examples.

We can compute that for RHT the right-handed trefoil,

$$-2 \le \tau(L_J(RHT)) \le 4.$$

In contrast, for our examples, $i + 1 \leq \tau(Q^i(RHT))$.