Introduction	The satellite construction	Main theorem	Tools	Proofs

There exist infinitely many unknotted winding number one satellite operators on knot concordance

> Arunima Ray Rice University

2013 Lehigh University Geometry and Topology Conference

May 25, 2013

Droliminarios		0000
Preliminaries		

A knot is a smooth embedding $S^1 \hookrightarrow S^3$ considered upto isotopy.

●000	00000	0	00000000	0000
Prelimina	ries			

A knot is a smooth embedding $S^1 \hookrightarrow S^3$ considered upto isotopy.

 $S^{3} \times [0, 1]$

Definition

Two knots K and J are said to be **concordant** if they cobound a a properly embedded smooth annulus in $S^3 \times [0, 1]$.

The knot	concordance grou	n		
0000	00000		00000000	0000
Introduction	The satellite construction	Main theorem	Tools	Proofs

Б

Definition

Let
$$C = \frac{Knots}{concordance}$$

 ${\cal C}$ is a ${\it group}$ under the connected-sum operation and is called the ${\it knot}$ concordance ${\it group}.$

The knot co	ncordance group			
	00000	o Nain theorem	00000000	0000

Let
$$C = \frac{Knots}{concordance}$$

 ${\cal C}$ is a group under the connected-sum operation and is called the knot concordance group.

The identity element in C is the class of the unknot. That is, the class of knots which bound smoothly embedded disks in B^4 , called **slice knots**.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		0	00000000	0000
Variants of	the knot concorda	nce group		

Two knots are concordant if they cobound a smoothly embedded annulus in a manifold diffeomorphic to $S^3 \times [0,1]$. Concordance classes of knots form the knot concordance group, denoted C.

Variante of	the knot concord	anco group		
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	00000	0	00000000	0000

Two knots are concordant if they cobound a smoothly embedded annulus in a manifold diffeomorphic to $S^3 \times [0,1]$. Concordance classes of knots form the knot concordance group, denoted C.

Definition

Two knots are **topologically concordant** if they cobound a **topologically embedded** annulus in a manifold **homeomorphic** to $S^3 \times [0, 1]$. Topological concordance classes of knots form the **topological knot concordance group**, denoted C^{top} .

Variants d	of the knot concor	dance group		
0000	00000			
Introduction	The satellite construction	Main theorem	Tools	Proofs

Two knots are concordant if they cobound a smoothly embedded annulus in a manifold diffeomorphic to $S^3 \times [0,1]$. Concordance classes of knots form the knot concordance group, denoted C.

Definition

Two knots are **topologically concordant** if they cobound a **topologically embedded** annulus in a manifold **homeomorphic** to $S^3 \times [0,1]$. Topological concordance classes of knots form the **topological knot concordance group**, denoted \mathcal{C}^{top} .

Definition

Two knots are exotically concordant if they cobound a smoothly embedded annulus in a smooth manifold homeomorphic to $S^3 \times [0, 1]$. Exotic concordance classes of knots form the topological knot concordance group, denoted C^{ex} .

Variants o	of the knot concor	dance group		
0000	00000	0	00000000	0000
Introduction	The satellite construction	Main theorem	Tools	Proofs

Two knots are concordant if they cobound a smoothly embedded annulus in a manifold diffeomorphic to $S^3 \times [0,1]$. Concordance classes of knots form the knot concordance group, denoted C.

Definition

Two knots are **topologically concordant** if they cobound a **topologically embedded** annulus in a manifold **homeomorphic** to $S^3 \times [0,1]$. Topological concordance classes of knots form the **topological knot concordance group**, denoted \mathcal{C}^{top} .

Definition

Two knots are exotically concordant if they cobound a smoothly embedded annulus in a smooth manifold homeomorphic to $S^3 \times [0, 1]$. Exotic concordance classes of knots form the topological knot concordance group, denoted C^{ex} .

If the 4–dimensional (smooth) Poincaré Conjecture is true, $\mathcal{C} = \mathcal{C}^{ex}$.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	●0000	O	00000000	0000
The satellite	e construction			

A **satellite operator**, or **pattern**, is a knot inside a solid torus, considered upto isotopy within the solid torus.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	•0000	O	00000000	0000
The satelli	te construction			

A **satellite operator**, or **pattern**, is a knot inside a solid torus, considered upto isotopy within the solid torus.

Definition

The **winding number** of a pattern is the signed count of its intersections with a meridional disk of the solid torus.

The sete		U		0000
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	○●○○○	o	00000000	0000

 $\boldsymbol{P}\text{, the pattern}$

 $K, \, {\rm a} \, \, {\rm knot} \, \, {\rm in} \, \, S^3$

Figure : The satellite operation on knots in S^3 .

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	0●000	O	00000000	0000
The satell	ite construction			

 $\boldsymbol{P}\text{, the pattern}$

K, a knot in $S^3 \qquad {\cal P}(K),$ the satellite knot

Figure : The satellite operation on knots in S^3 .

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	0●000	O	00000000	0000
The satelli	te construction			

 $\boldsymbol{P}\text{, the pattern}$

K, a knot in $S^3 \qquad {\cal P}(K)$

P(K), the satellite knot

Figure : The satellite operation on knots in S^3 .

Remark

Any satellite operator P gives a function $P : \mathcal{C} \to \mathcal{C}$.

Introduction	The satellite construction	Main theorem	Tools	Proofs
	00000			
Strong	inding number one	oporators		

Strong winding number one operators

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	00●00	O	00000000	0000
Strong w	inding number one	operators		

0000	OO●OO	o O	0000000	0000
Strong wi	inding number one	operators		

Consider P in S^3 instead of the solid torus. Call this \widetilde{P} .

Strong wind	ling number one	operators		
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	00●00	O	00000000	0000

Consider P in S^3 instead of the solid torus. Call this \widetilde{P} .

Definition

If η , the meridian of the solid torus, normally generates $\pi_1(S^3 \setminus \tilde{P})$, then P is said to have strong winding number one.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	00●00	O	00000000	0000
Strong wind	ling number one o	operators		

Consider P in S^3 instead of the solid torus. Call this \widetilde{P} .

Definition

If η , the meridian of the solid torus, normally generates $\pi_1(S^3 \setminus \tilde{P})$, then P is said to have strong winding number one.

For a P such that \tilde{P} is unknotted, P is strong winding number one if and only if it is winding number one.

Injectivity	of satellite operat	tors		
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		0	00000000	0000

Theorem (Cochran–Davis–R.,'12)

If P is a strong winding number one pattern, then

 $P: \mathcal{C}^{top} \to \mathcal{C}^{top} \text{ and } P: \mathcal{C}^{ex} \to \mathcal{C}^{ex}$

are injective. That is, for any two knots K and J,

 $P(K) = P(J) \Leftrightarrow K = J$

		0	0000000	0000
Injectivity	of satellite operat	tors		

Theorem (Cochran–Davis–R.,'12)

If P is a strong winding number one pattern, then

 $P: \mathcal{C}^{top} \to \mathcal{C}^{top} \text{ and } P: \mathcal{C}^{ex} \to \mathcal{C}^{ex}$

are injective. That is, for any two knots K and J,

 $P(K) = P(J) \Leftrightarrow K = J$

If the 4-dimensional Poincaré Conjecture is true, $P : C \to C$ is injective.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	0000
Is $\mathcal C$ a fracta	al?			

A fractal can be defined as a set which 'exhibits self-similarity on many scales'.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	0000●	O	00000000	0000
Is $\mathcal C$ a fract	al?			

A fractal can be defined as a set which 'exhibits self-similarity on many scales'. Each strong winding number one satellite operator gives a 'self-similarity' of C^{top} and C^{ex} (and maybe even of C).

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000	0000●	O	00000000	0000
Is $\mathcal C$ a fracta	al?			

A fractal can be defined as a set which 'exhibits self-similarity on many scales'. Each strong winding number one satellite operator gives a 'self-similarity' of C^{top} and C^{ex} (and maybe even of C).

Question

How many strong winding number one operators are there?

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		●	00000000	0000
Main theo	rem			

There is a strong winding number one satellite operator P and a large family of knots K such that $P^i(K) = P(P(\cdots(P(K))\cdots))$ are all distinct in C^{ex} and C. That is, $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Therefore, each P^i gives a distinct function on the smooth knot concordance group.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		●	00000000	0000
Main theo	rem			

There is a strong winding number one satellite operator P and a large family of knots K such that $P^i(K) = P(P(\cdots(P(K))\cdots))$ are all distinct in C^{ex} and C. That is, $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Therefore, each P^i gives a distinct function on the smooth knot concordance group.

Each P^i is strong winding number one. So we have infinitely many self-similarities of $\mathcal{C}^{\rm ex}.$

Introduction	The satellite construction	Main theorem	Tools 00000000	Proofs
		•		
Main the	eorem			

There is a strong winding number one satellite operator P and a large family of knots K such that $P^i(K) = P(P(\cdots(P(K))\cdots))$ are all distinct in C^{e_x} and C. That is, $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Therefore, each P^i gives a distinct function on the smooth knot concordance group.

Each P^i is strong winding number one. So we have infinitely many self-similarities of C^{ex} .

We can choose K to be topologically slice and \tilde{P} to be unknotted, in which case the set $\{P^i(K)\}$ is an infinite family of topologically slice knots that are distinct in smooth concordance.

	00000	0	0000000	0000
au–invarian	t of knots			

Ozsváth–Szabó defined the τ -invariant of a knot. This gives homomorphisms $\tau : \mathcal{C} \to \mathbb{Z}$ and $\tau : \mathcal{C}^{ex} \to \mathbb{Z}$.

$\tau_{-invariant}$	of knote			
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	●0000000	0000

Ozsváth–Szabó defined the τ -invariant of a knot. This gives homomorphisms $\tau : \mathcal{C} \to \mathbb{Z}$ and $\tau : \mathcal{C}^{ex} \to \mathbb{Z}$.

Proposition (Ozsváth–Szabó)

Start with a knot K_+ . If K_- is the knot obtained by changing a single positive crossing of K_+ , then

$$\tau(K_+) - 1 \le \tau(K_-) \le \tau(K_+)$$

C		0		0000
Introduction	The satellite construction	Main theorem	Tools	Proofs

Figure : The monoid operation on patterns.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	oo●ooooo	0000
Legendrian	front diagrams			

Every knot has a Legendrian front diagram, i.e. a diagram with no vertical tangencies wherein all crossings are of the following type:

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00●00000	0000
Legendrian	front diagrams			

Every knot has a Legendrian front diagram, i.e. a diagram with no vertical tangencies wherein all crossings are of the following type:

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	oooooooo	0000
Classical inv	variants of Legendr	ian knots		

 $\begin{array}{l} \mathsf{tb}(K) = (\# \mathsf{positive\ crossings\ } - \# \mathsf{negative\ crossings\ }) - \frac{1}{2} \# \mathsf{cusps\ }\\ \mathsf{rot}(K) = \frac{1}{2} (\# \mathsf{down\ cusps\ } - \# \mathsf{up\ cusps\ }) \end{array}$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	ooo●oooo	0000
Classical inv	variants of Legendr	ian knots		

 $\begin{aligned} \mathsf{tb}(K) &= (\# \mathsf{positive\ crossings\ } - \# \mathsf{negative\ crossings\ }) - \tfrac{1}{2} \# \mathsf{cusps\ } \\ \mathsf{rot}(K) &= \tfrac{1}{2} (\# \mathsf{down\ cusps\ } - \# \mathsf{up\ cusps\ }) \end{aligned}$

$$\mathsf{tb}(K) = (3-0) - \frac{1}{2}(4) = 1$$
, $\mathsf{rot}(K) = \frac{1}{2}(2-2) = 0$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	oooo●ooo	0000
Classical inv	variants for Legend	rian patterns		

$$\mathsf{tb}(P) = 2 \text{ and } \mathsf{rot}(P) = 0$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		0	ooooooooo	0000
The Logon	drian catallita and	oration		

The Legendrian satellite operation

For a knot K, suppose we have a Legendrian diagram with $\mathsf{tb}(K)=0.$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	ooooooooo	0000
The Legen	drian satellite ope	eration		

For a knot K, suppose we have a Legendrian diagram with ${\rm tb}(K)=0.$ We can obtain the satellite knot P(K) by taking parallels of K

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		0	oooooooo	0000
The Logo	ndrian catallita an	oration		

he Legendrian satellite operation

For a knot K, suppose we have a Legendrian diagram with tb(K) = 0. We can obtain the satellite knot P(K) by taking parallels of K and then inserting the pattern.

Legendrian	patterns and L	egendrian satel	lites	
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	ooooooooo	0000

Proposition (Ng)

$$tb(P(K)) = tb(P) + w(P)^{2}tb(K)$$

$$rot(P(K)) = rot(P) + w(P)rot(K)$$

Legendrian p	patterns and Legen	drian satellite	es	
Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	ooooooooo	0000

Proposition (Ng)

$$tb(P(K)) = tb(P) + w(P)^{2}tb(K)$$

$$rot(P(K)) = rot(P) + w(P)rot(K)$$

Proposition

$$tb(P * Q) = tb(P) + w(P)^{2}tb(Q)$$
$$rot(P * Q) = rot(P) + w(P)rot(Q)$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	oooooooo●	0000
The slice-	-Bennequin inequa	lity		

Slice-Bennequin inequality (Rudolph)

For any knot K, we have that

$$tb(K) + |rot(K)| \le 2\tau(K) - 1$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	●000
Proof				

$$\mathsf{tb}(P) = 0$$
 and $\mathsf{rot}(P) = 2$

For any knot K with tb(K) = 0, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	●000
Proof				

$$\mathsf{tb}(P) = 0$$
 and $\mathsf{rot}(P) = 2$

For any knot K with tb(K) = 0, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K. **Proof:** tb(P(K)) = tb(P) + tb(K) = 0 and $rot(P(K)) = rot(P) + rot(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	●000
Proof				

$$\mathsf{tb}(P) = 0$$
 and $\mathsf{rot}(P) = 2$

For any knot K with tb(K) = 0, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K. **Proof:** $\operatorname{tb}(P(K)) = \operatorname{tb}(P) + \operatorname{tb}(K) = 0$ and $\operatorname{rot}(P(K)) = \operatorname{rot}(P) + \operatorname{rot}(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$ But $\operatorname{tb}(P(K)) + |\operatorname{rot}(P(K))| \le 2\tau(P(K)) - 1$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	●000
Proof				

$$\mathsf{tb}(P) = 0$$
 and $\mathsf{rot}(P) = 2$

For any knot K with tb(K) = 0, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots
$$K$$
.
Proof: $\operatorname{tb}(P(K)) = \operatorname{tb}(P) + \operatorname{tb}(K) = 0$ and
 $\operatorname{rot}(P(K)) = \operatorname{rot}(P) + \operatorname{rot}(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$
But $\operatorname{tb}(P(K)) + |\operatorname{rot}(P(K))| \le 2\tau(P(K)) - 1$
So $0 + 2\tau(K) + 1 \le 2\tau(P(K)) - 1$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	●000
Proof				

$$\mathsf{tb}(P) = 0$$
 and $\mathsf{rot}(P) = 2$

For any knot K with tb(K) = 0, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K. **Proof:** $\operatorname{tb}(P(K)) = \operatorname{tb}(P) + \operatorname{tb}(K) = 0$ and $\operatorname{rot}(P(K)) = \operatorname{rot}(P) + \operatorname{rot}(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$ But $\operatorname{tb}(P(K)) + |\operatorname{rot}(P(K))| \le 2\tau(P(K)) - 1$ So $0 + 2\tau(K) + 1 \le 2\tau(P(K)) - 1 \Rightarrow \tau(K) + 1 \le \tau(P(K))$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	●000
Proof				

$$\mathsf{tb}(P) = 0$$
 and $\mathsf{rot}(P) = 2$

For any knot K with tb(K) = 0, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots
$$K$$
.
Proof: $\operatorname{tb}(P(K)) = \operatorname{tb}(P) + \operatorname{tb}(K) = 0$ and
 $\operatorname{rot}(P(K)) = \operatorname{rot}(P) + \operatorname{rot}(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$
But $\operatorname{tb}(P(K)) + |\operatorname{rot}(P(K))| \le 2\tau(P(K)) - 1$
So $0 + 2\tau(K) + 1 \le 2\tau(P(K)) - 1 \Rightarrow \tau(K) + 1 \le \tau(P(K))$
 $\Rightarrow P(K) \ne K$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	0●00
Proof				

$P^{i}(K) \neq K$ for any i > 0 in C (and therefore, in C^{ex}).

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	0000000	0●00
Proof				

 $P^{i}(K) \neq K$ for any i > 0 in C (and therefore, in C^{ex}).

Proof:

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	0●00
Proof				

 $P^i(K) \neq K$ for any i > 0 in C (and therefore, in C^{ex}).

Proof:

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	0●00
Proof				

 $P^{i}(K) \neq K$ for any i > 0 in C (and therefore, in C^{ex}).

Proof:

Figure : The operator P^2

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	0●00
Proof				

 $P^{i}(K) \neq K$ for any i > 0 in C (and therefore, in C^{ex}).

Proof:

$$\mathsf{tb}(P^2) = \mathsf{tb}(P) + \mathsf{tb}(P)$$

$$\mathsf{rot}(P^2) = \mathsf{rot}(P) + \mathsf{rot}(P)$$

Figure : The operator P^2

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	00●0
Proof				

$$\operatorname{tb}(P^i) = 0$$
 and $\operatorname{rot}(P^i) = 2i$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	00●0
Proof				

$$\begin{aligned} \mathsf{tb}(P^i) &= 0 \text{ and } \mathsf{rot}(P^i) = 2i \\ \mathsf{tb}(P^i(K)) &= 0 \text{ and } \mathsf{rot}(P^i(K)) = 2\tau(K) - 1 + 2i \end{aligned}$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	00●0
Proof				

$$\begin{aligned} \mathsf{tb}(P^i) &= 0 \text{ and } \mathsf{rot}(P^i) = 2i \\ \mathsf{tb}(P^i(K)) &= 0 \text{ and } \mathsf{rot}(P^i(K)) = 2\tau(K) - 1 + 2i \end{aligned}$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	00●0
Proof				

$$\label{eq:tb} \begin{array}{l} \mathsf{tb}(P^i)=0 \mbox{ and } \mathsf{rot}(P^i)=2i \\ \\ \mathsf{tb}(P^i(K))=0 \mbox{ and } \mathsf{rot}(P^i(K))=2\tau(K)-1+2i \end{array}$$

$$\mathsf{tb}(P^i(K)) + |\mathsf{rot}(P^i(K))| \le 2\tau(P^i(K)) - 1$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	00●0
Proof				

$$\label{eq:tb} \begin{array}{l} \mathsf{tb}(P^i)=0 \mbox{ and } \mathsf{rot}(P^i)=2i \\ \\ \mathsf{tb}(P^i(K))=0 \mbox{ and } \mathsf{rot}(P^i(K))=2\tau(K)-1+2i \end{array}$$

$$\begin{aligned} \mathsf{tb}(P^i(K)) + |\mathsf{rot}(P^i(K))| &\leq 2\tau(P^i(K)) - 1 \\ 0 + |2\tau(K) - 1 + 2i| &\leq 2\tau(P^i(K)) - 1 \end{aligned}$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	00●0
Proof				

$$\label{eq:tb} \begin{array}{l} \mathsf{tb}(P^i)=0 \mbox{ and } \mathsf{rot}(P^i)=2i \\ \\ \mathsf{tb}(P^i(K))=0 \mbox{ and } \mathsf{rot}(P^i(K))=2\tau(K)-1+2i \end{array}$$

$$\begin{aligned} \mathsf{tb}(P^i(K)) + |\mathsf{rot}(P^i(K))| &\leq 2\tau(P^i(K)) - 1 \\ 0 + |2\tau(K) - 1 + 2i| &\leq 2\tau(P^i(K)) - 1 \end{aligned}$$

Therefore, $\tau(K) + i \leq \tau(P^i(K))$ and $P^i(K) \neq K$ for i > 0.

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	000●
Proof				

 $P^{i}(K) \neq P^{j}(K)$ for any $i \neq j$ in C (and therefore, in C^{ex}). Additionally, $\tau(P^{i}(K)) = \tau(K) + i$ for all $i \geq 0$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	000●
Proof				

 $P^{i}(K) \neq P^{j}(K)$ for any $i \neq j$ in C (and therefore, in C^{ex}). Additionally, $\tau(P^{i}(K)) = \tau(K) + i$ for all $i \geq 0$

Proof: We can change $P^i(K)$ to $P^{i-1}(K)$ by changing a single positive crossing to a negative crossing. Therefore, we know that

$$\tau(P^{i-1}(K)) \le \tau(P^{i}(K)) \le \tau(P^{i-1}(K)) + 1$$

Introduction	The satellite construction	Main theorem	Tools	Proofs
0000		O	00000000	000●
Proof				

 $P^{i}(K) \neq P^{j}(K)$ for any $i \neq j$ in C (and therefore, in C^{ex}). Additionally, $\tau(P^{i}(K)) = \tau(K) + i$ for all $i \geq 0$

Proof: We can change $P^i(K)$ to $P^{i-1}(K)$ by changing a single positive crossing to a negative crossing. Therefore, we know that

$$\tau(P^{i-1}(K)) \le \tau(P^{i}(K)) \le \tau(P^{i-1}(K)) + 1$$

Therefore,

 $\tau(P^{i}(K)) \le \tau(P^{i-1}(K)) + 1 \le \tau(P^{i-2}(K)) + 2 \le \dots \le \tau(K) + i.$

$$\Rightarrow \tau(P^i(K)) = \tau(K) + i \text{ for all } i > 0$$