4-dimensional analogues of Dehn's lemma

Arunima Ray Brandeis University Joint work with Daniel Ruberman (Brandeis University)

Joint Mathematics Meetings, Atlanta, GA

January 5, 2017

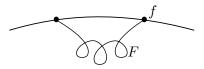
Theorem (Dehn's lemma)

Any nullhomotopic embedded circle in the boundary of a 3-manifold extends to a map of an embedded disk.

Theorem (Dehn's lemma)

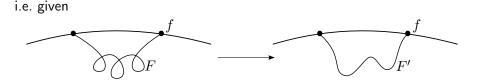
Any nullhomotopic embedded circle in the boundary of a 3-manifold extends to a map of an embedded disk.

i.e. given



Theorem (Dehn's lemma)

Any nullhomotopic embedded circle in the boundary of a 3-manifold extends to a map of an embedded disk.



Theorem (Dehn's lemma)

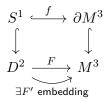
Any nullhomotopic embedded circle in the boundary of a 3-manifold extends to a map of an embedded disk.

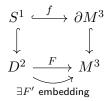
i.e. given

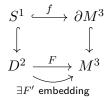
Theorem (Dehn's lemma)

Any nullhomotopic embedded circle in the boundary of a 3-manifold extends to a map of an embedded disk.

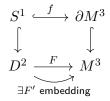
i.e. given



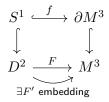




1910: stated by Dehn



1910: stated by Dehn 1929: error found in Dehn's proof by Kneser



1910: stated by Dehn

- 1929: error found in Dehn's proof by Kneser
- 1957: correct proof given by Papakyriakopoulos

Is there an analogue of Dehn's lemma in four dimensions?

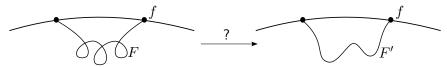
Is there an analogue of Dehn's lemma in four dimensions?

Possibility 1: Consider embedded circles in the boundary of 4-manifolds.

Is there an analogue of Dehn's lemma in four dimensions?

Possibility 1: Consider embedded circles in the boundary of 4-manifolds.

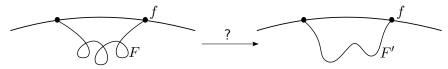
That is, if an embedded circle in the boundary of a 4-manifold is nullhomotopic in the interior, does it bound an embedded disk?



Is there an analogue of Dehn's lemma in four dimensions?

Possibility 1: Consider embedded circles in the boundary of 4-manifolds.

That is, if an embedded circle in the boundary of a 4-manifold is nullhomotopic in the interior, does it bound an embedded disk?



This is a question about *slice knots*, which are widely studied.

Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres.

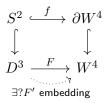
Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres.

$$\begin{array}{ccc} S^2 & \stackrel{f}{\longrightarrow} & \partial W^4 \\ & & & \downarrow \\ D^3 & \stackrel{F}{\longrightarrow} & W^4 \end{array}$$

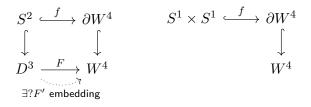
Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres.



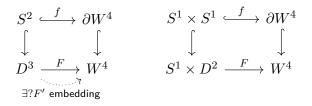
Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres or tori.



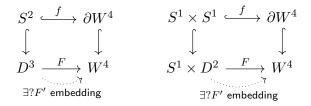
Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres or tori.



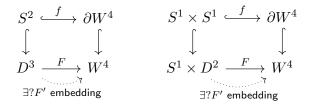
Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres or tori.



Is there an analogue of Dehn's lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of 4-manifolds, e.g. spheres or tori.



Moreover, we can ask whether these embeddings exist *smoothly* or merely *topologically* (i.e. locally flat).

For embedded spheres/tori in the boundary of 4-manifolds, Dehn's lemma

does not hold in general

For embedded spheres/tori in the boundary of 4-manifolds, Dehn's lemma

- does not hold in general
- In holds under certain broad hypotheses

For embedded spheres/tori in the boundary of 4-manifolds, Dehn's lemma

- does not hold in general
- In holds under certain broad hypotheses
- sometimes holds topologically but not smoothly

There exists a sphere $S \subseteq \partial W^4$ where W is smooth and simply connected and S is nullhomotopic in W, but S does not bound a topological ball in W.

There exists a sphere $S \subseteq \partial W^4$ where W is smooth and simply connected and S is nullhomotopic in W, but S does not bound a topological ball in W.

Theorem (R.–Ruberman)

If $Y = Y_1 \#_S Y_2 = \partial W^4$ where Y_2 is an integer homology sphere, $\pi_1(W)$ is "good", and $\pi_1(Y_2) \to \pi_1(W)$ is the trivial map, then S bounds a topologically embedded ball in W.

There exists a sphere $S \subseteq \partial W^4$ where W is smooth and simply connected and S is nullhomotopic in W, but S does not bound a topological ball in W.

Theorem (R.–Ruberman)

If $Y = Y_1 \#_S Y_2 = \partial W^4$ where Y_2 is an integer homology sphere, $\pi_1(W)$ is "good", and $\pi_1(Y_2) \to \pi_1(W)$ is the trivial map, then S bounds a topologically embedded ball in W.

Corollary (R.–Ruberman)

Any sphere $S \subseteq Y = \partial W^4$ where Y is an integer homology sphere and $\pi_1(W)$ is abelian bounds a topologically embedded ball in W.

Corollary (R.–Ruberman)

Any sphere $S \subseteq Y = \partial W^4$ where Y is an integer homology sphere and $\pi_1(W)$ is abelian bounds a topologically embedded ball in W.

Corollary (R.–Ruberman)

Any sphere $S \subseteq Y = \partial W^4$ where Y is an integer homology sphere and $\pi_1(W)$ is abelian bounds a topologically embedded ball in W.

Theorem (R.–Ruberman)

There exists a sphere $S \subseteq Y = \partial W^4$ with W smooth and simply connected and Y an integer homology sphere such that S bounds a topologically embedded ball in W but no smooth ball in W.

Corollary (R.-Ruberman)

Any sphere $S \subseteq Y = \partial W^4$ where Y is an integer homology sphere and $\pi_1(W)$ is abelian bounds a topologically embedded ball in W.

Theorem (R.–Ruberman)

There exists a sphere $S \subseteq Y = \partial W^4$ with W smooth and simply connected and Y an integer homology sphere such that S bounds a topologically embedded ball in W but no smooth ball in W.

Example: Let P be the Poincaré homology sphere with a disk removed and γ a curve that normally generates $\pi_1(P)$. Let W be the 4-manifold obtained from $P \times [0,1]$ by doing surgery along γ pushed into the interior. Then $\partial W = -P \# P$, where the connected-sum is performed along a sphere S.

There exists an incompressible torus $T \subseteq Y = \partial W^4$ where W is contractible such that T extends to a map of the solid torus to W, but does not bound an embedded solid torus in W.

There exists an incompressible torus $T \subseteq Y = \partial W^4$ where W is contractible such that T extends to a map of the solid torus to W, but does not bound an embedded solid torus in W.

Proposition (R.-Ruberman)

Let $T \subseteq Y = \partial W$ be a separating torus, $\gamma \subseteq T$ a simple closed curve, and e the surface induced framing. If

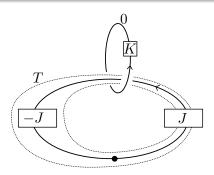
- γ is non-trivial in $H_1(T)$,
- 2 γ is smoothly (resp. topologically) slice in W with respect to e, and
- **3** the surgered manifold $Y_e(\gamma)$ is irreducible,

then T bounds a smoothly (resp. topologically) embedded solid torus in W.

Results for tori

Theorem (R.–Ruberman)

There exists a contractible W and an incompressible torus $T \subseteq Y = \partial W$ such that T extends to a topological embedding of a solid torus in W, but not a smooth embedding.



Here J is the right-handed trefoil and K is the positive untwisted Whitehead double of the right-handed trefoil.

Arunima Ray (Brandeis)

4-dimensional analogues of Dehn's lemma