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Classical Dehn’s lemma in three dimensions

Theorem (Dehn’s lemma)

Any nullhomotopic embedded circle in the boundary of a 3–manifold
extends to a map of an embedded disk.

i.e. given
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S1 ∂M3

D2 M3
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Classical Dehn’s lemma in three dimensions

S1 ∂M3

D2 M3

f

F

∃F ′ embedding

1910: stated by Dehn
1929: error found in Dehn’s proof by Kneser
1957: correct proof given by Papakyriakopoulos
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Goal

Question

Is there an analogue of Dehn’s lemma in four dimensions?

Moreover, we can ask whether these embeddings exist smoothly or merely
topologically (i.e. locally flat).
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Is there an analogue of Dehn’s lemma in four dimensions?

Possibility 1: Consider embedded circles in the boundary of 4–manifolds.

That is, if an embedded circle in the boundary of a 4–manifold is
nullhomotopic in the interior, does it bound an embedded disk?
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This is a question about slice knots, which are widely studied.

Moreover, we can ask whether these embeddings exist smoothly or merely
topologically (i.e. locally flat).
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Goal

Question

Is there an analogue of Dehn’s lemma in four dimensions?

Possibility 2: Consider codimension one submanifolds of the boundary of
4–manifolds, e.g. spheres.

or tori.

S2 ∂W 4

D3 W 4
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∃?F ′ embedding
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Results

Theorem (R.–Ruberman)

For embedded spheres/tori in the boundary of 4–manifolds, Dehn’s lemma

1 does not hold in general

2 holds under certain broad hypotheses

3 sometimes holds topologically but not smoothly
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Results for spheres

Theorem (R.–Ruberman)

There exists a sphere S ⊆ ∂W 4 where W is smooth and simply connected
and S is nullhomotopic in W , but S does not bound a topological ball
in W .

Theorem (R.–Ruberman)

If Y = Y1#SY2 = ∂W 4 where Y2 is an integer homology sphere, π1(W ) is
“good”, and π1(Y2)→ π1(W ) is the trivial map, then S bounds a
topologically embedded ball in W .

Corollary (R.–Ruberman)

Any sphere S ⊆ Y = ∂W 4 where Y is an integer homology sphere and
π1(W ) is abelian bounds a topologically embedded ball in W .
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Any sphere S ⊆ Y = ∂W 4 where Y is an integer homology sphere and
π1(W ) is abelian bounds a topologically embedded ball in W .

Theorem (R.–Ruberman)

There exists a sphere S ⊆ Y = ∂W 4 with W smooth and simply
connected and Y an integer homology sphere such that S bounds a
topologically embedded ball in W but no smooth ball in W .

Example: Let P be the Poincaré homology sphere with a disk removed
and γ a curve that normally generates π1(P ). Let W be the 4–manifold
obtained from P × [0, 1] by doing surgery along γ pushed into the interior.
Then ∂W = −P#P , where the connected-sum is performed along a
sphere S.
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Results for tori

Theorem (R.–Ruberman)

There exists an incompressible torus T ⊆ Y = ∂W 4 where W is
contractible such that T extends to a map of the solid torus to W , but
does not bound an embedded solid torus in W .

Proposition (R.–Ruberman)

Let T ⊆ Y = ∂W be a separating torus, γ ⊆ T a simple closed curve, and
e the surface induced framing. If

1 γ is non-trivial in H1(T ),

2 γ is smoothly (resp. topologically) slice in W with respect to e, and

3 the surgered manifold Ye(γ) is irreducible,

then T bounds a smoothly (resp. topologically) embedded solid torus in
W .
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Results for tori

Theorem (R.–Ruberman)

There exists a contractible W and an incompressible torus T ⊆ Y = ∂W
such that T extends to a topological embedding of a solid torus in W , but
not a smooth embedding.

J−J

K

0

T

Here J is the right-handed trefoil and K is the positive untwisted
Whitehead double of the right-handed trefoil.
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