Background	Genus of a knot	Knot concordance	Fractals
0000000	0000	00	0000

Knots, four dimensions, and fractals

Arunima Ray Brandeis University

SUNY Geneseo Mathematics Department Colloquium

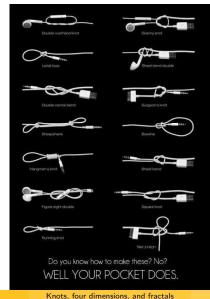
January 29, 2016

Background •0000000 Genus of a knot

Knot concordance

Fractals

Examples of knots



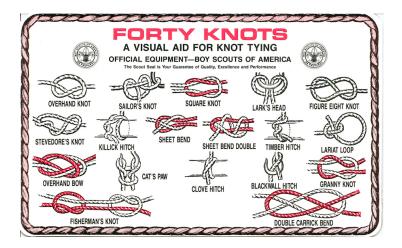
Background
0000000

Genus of a knot

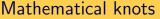
Knot concordance

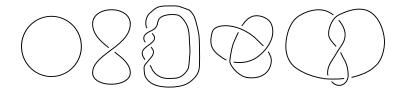
Fractals

Examples of knots



Background	Genus of a knot	Knot concordance	Fractals 0000
Mathomatic	al knots		





Take a piece of string, tie a knot in it, glue the two ends together.

Definition

A (mathematical) knot is a closed curve in space with no self-intersections.

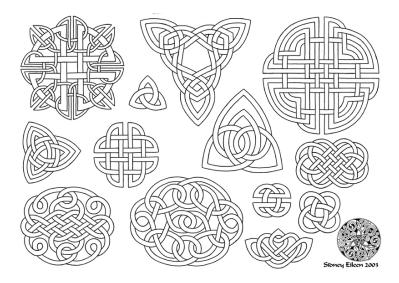
Background
00000000

Genus of a knot

Knot concordance

Fractals

Examples of knots



Background
00000000

Genus of a knot

Knot concordance

Fractals

Examples of knots

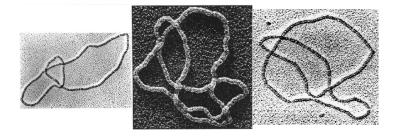


Figure: Knots in circular DNA.

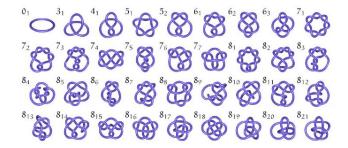
(Images from Cozzarelli, Sumners, Cozzarelli, respectively.)

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	0000
	6 I.I.		
I he origins	of mathematical k	not theory	

1880's: The æther hypothesis. Lord Kelvin (1824–1907) hypothesized that atoms were 'knotted vortices' in æther.

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	0000
The origins	of mathematical k	not theory	
THE UTGHS	u mathematical n		

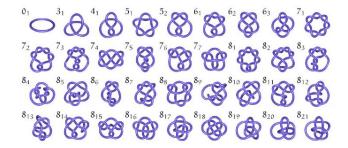
1880's: The æther hypothesis. Lord Kelvin (1824–1907) hypothesized that atoms were 'knotted vortices' in æther. This led Peter Tait (1831–1901) to start tabulating knots.



Tait thought he was making a periodic table!

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	0000
	C	1. A	
I he origins	of mathematical k	not theory	

1880's: The æther hypothesis. Lord Kelvin (1824–1907) hypothesized that atoms were 'knotted vortices' in æther. This led Peter Tait (1831–1901) to start tabulating knots.



Tait thought he was making a periodic table! This view was held for about 20 years (until the Michelson–Morley experiment).

Arunima Ray (Brandeis)

Background	Genus of a knot	Knot concordance	Fractals
Modern knot			

Nowadays knot theory is a subset of the field of topology.

Theorem (Lickorish–Wallace, 1960s)

Any 3-dimensional 'manifold' can be obtained from \mathbb{R}^3 by performing an operation called 'surgery' on a collection of knots.

Background	Genus of a knot	Knot concordance	Fractals
000000●0	0000		0000
Modern kno	ot theory		

Nowadays knot theory is a subset of the field of topology.

Theorem (Lickorish–Wallace, 1960s)

Any 3-dimensional 'manifold' can be obtained from \mathbb{R}^3 by performing an operation called 'surgery' on a collection of knots.

Modern knot theory has applications to algebraic geometry, statistical mechanics, DNA topology, quantum computing,

Background	Genus of a knot	Knot concordance	Fractals
0000000●	0000		0000
Big questions in	knot theory		

Background	Genus of a knot	Knot concordance	Fractals
0000000●	0000	00	0000
Big questions in	knot theory		

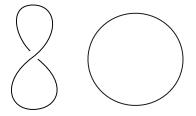


Figure: These are all pictures of the same knot!

Background	Genus of a knot	Knot concordance	Fractals
0000000●	0000	00	0000
Big questions in	knot theory		

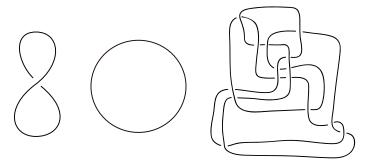


Figure: These are all pictures of the same knot!

Background	Genus of a knot	Knot concordance	Fractals
0000000●	0000	00	0000
Big questions in	knot theory		

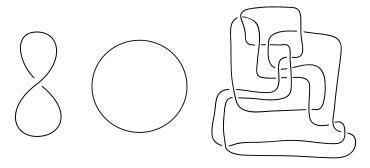


Figure: These are all pictures of the same knot!

2 How can we tell if two knots are distinct?

Background	Genus of a knot	Knot concordance	Fractals
0000000	0000	00	0000
D:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Big dijestio	ns in knot theory		

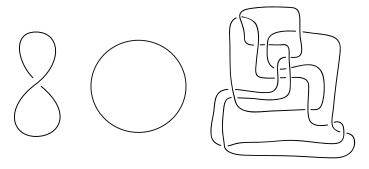


Figure: These are all pictures of the same knot!

2 How can we tell if two knots are distinct?

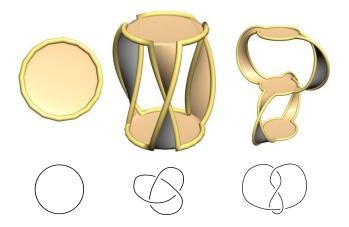
3 Can we quantify the 'knottedness' of a knot?

Arunima Ray (Brandeis)

Background	Genus of a knot	Knot concordance	Fractals
0000000	●000	00	0000
Genus of a knot			

Proposition (Frankl-Pontrjagin, Seifert, 1930's)

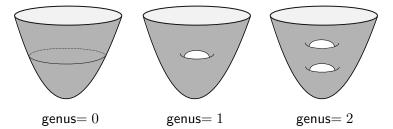
Any knot bounds a surface in \mathbb{R}^3 .



Background	Genus of a knot	Knot concordance	Fractals
00000000	⊙●○○	00	0000
Genus of a knot			

Fundamental theorem in topology

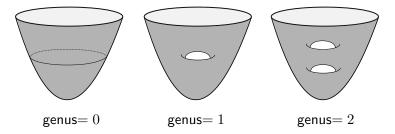
Surfaces are classified by their genus.



Background	Genus of a knot	Knot concordance	Fractals
00000000	○●○○	00	0000
Genus of a knot			

Fundamental theorem in topology

Surfaces are classified by their genus.



Definition

The genus of a knot K, denoted g(K), is the least genus of surfaces bounded by K.

Arunima Ray (Brandeis)

Knots, four dimensions, and fractals

January 29, 2016 11 / 19

Background	Genus of a knot	Knot concordance	Fractals
0000000	0000	00	0000
Genus of a	knot		

If K and J are equivalent knots, then g(K) = g(J).

Background	Genus of a knot	Knot concordance	Fractals
00000000	00●0	00	0000
Genus of a	knot		

If K and J are equivalent knots, then g(K) = g(J).

Proposition

A knot is the unknot if and only if it is the boundary of a disk.

That is, K is the unknot if and only if g(K) = 0.

Background	Genus of a knot	Knot concordance	Fractals
00000000	00●0	00	0000
Genus of a	knot		

If K and J are equivalent knots, then g(K) = g(J).

Proposition

A knot is the unknot if and only if it is the boundary of a disk.

That is, K is the unknot if and only if g(K) = 0.

If T is the trefoil knot, g(T)=1. Therefore, the trefoil is not equivalent to the unknot.

Composted	sum of knots		
0000000	0000	00	0000
Background	Genus of a knot	Knot concordance	Fractals

Connected sum of knots

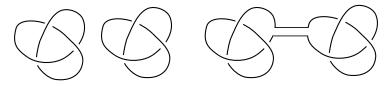


Figure: The connected sum of two trefoil knots, T#T

Company	sum of knots		
0000000	0000	00	0000
Background	Genus of a knot	Knot concordance	Fractals

Connected sum of knots

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J) = g(K) + g(J).

Background	Genus of a knot	Knot concordance	Fractals
00000000	000●	00	0000
Connected sum	of knots		

Figure: The connected sum of two trefoil knots, T#T

Given two knots K and J, g(K#J) = g(K) + g(J).

Therefore,
$$g(\underbrace{T \# \cdots \# T}_{n \text{ copies}}) = n$$

Company	sum of knots		
0000000	0000	00	0000
Background	Genus of a knot	Knot concordance	Fractals

Connected sum of knots

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J) = g(K) + g(J).

Therefore,
$$g(\underline{T \# \cdots \# T}) = n$$

Corollary: There exist infinitely many distinct knots!

background Genus of a knot Not concordance Fractals 00000000 000● 00 0000 0000 0000 0000 0000 00000 00000 00000 000000 000000 000000 000000 0000000 000000 0000000 00000000 000000000000 000000000000000000000000000000000000	Connected	61 .		
	Background	Genus of a knot	Knot concordance	Fractals

Connected sum of knots

Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J) = g(K) + g(J).

Therefore,
$$g(\underline{T \# \cdots \# T}) = n$$

n copies Corollary: There exist infinitely many distinct knots! Corollary: We can never add together non-trivial knots to get a trivial knot.

Arunima Ray (Brandeis)

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	●○	0000
Slice knots			

Recall that a knot is equivalent to the unknot if and only if it is the boundary of a disk in \mathbb{R}^3 .

Definition

A knot K is slice if it is the boundary of a disk in $\mathbb{R}^3 \times [0,\infty)$.

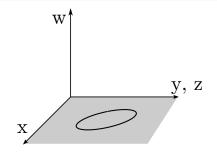


Figure: Schematic picture of the unknot

Arunima Ray (Brandeis)

Knots, four dimensions, and fractals

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	●○	0000
Slice knots			

Recall that a knot is equivalent to the unknot if and only if it is the boundary of a disk in \mathbb{R}^3 .

Definition

A knot K is slice if it is the boundary of a disk in $\mathbb{R}^3 \times [0,\infty)$.

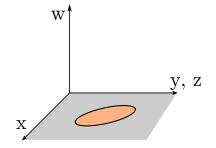


Figure: Schematic picture of the unknot

Arunima Ray (Brandeis)

Knots, four dimensions, and fractals

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	●○	0000
Slice knots			

Recall that a knot is equivalent to the unknot if and only if it is the boundary of a disk in \mathbb{R}^3 .

Definition

A knot K is slice if it is the boundary of a disk in $\mathbb{R}^3 \times [0,\infty)$.

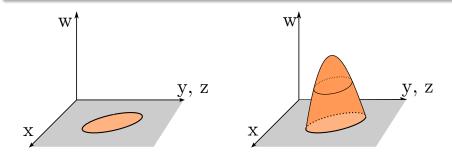
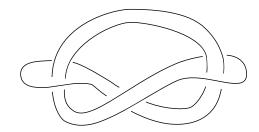
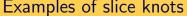


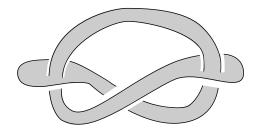
Figure: Schematic picture of the unknot and a slice knot

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	○●	0000
Examples of sli	ce knots		

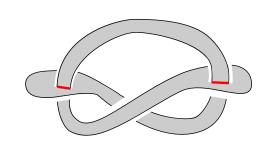


0000000	0000	0•	0000
Background	Genus of a knot	Knot concordance	Fractals

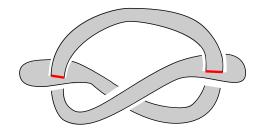




Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	○●	0000
Examples of	slice knots		

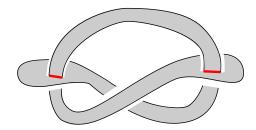


Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	O	0000
Examples of	slice knots		



Knots of this form are called *ribbon knots*.

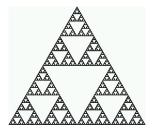
Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	○●	0000
Examples of	slice knots		



Knots of this form are called *ribbon knots*. Knots, modulo slice knots, form a group called the *knot concordance group*, denoted C.

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	•000
Fractals			

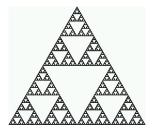
Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	000
Fractals			

Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Conjecture (Cochran-Harvey-Leidy, 2011)

The knot concordance group C is a fractal.

Background	
00000000	

Genus of a knot

Knot concordance

Fractals

Satellite operations on knots

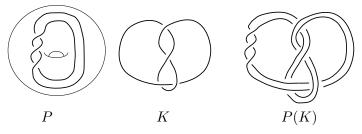


Figure: The satellite operation on knots

C	1		
0000000	0000	00	0000
Background	Genus of a knot	Knot concordance	Fractals

Satellite operations on knots

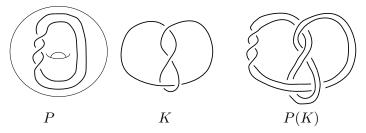


Figure: The satellite operation on knots

Any knot ${\cal P}$ in a solid torus gives a function on the knot concordance group,

$$P: \mathcal{C} \to \mathcal{C}$$
$$K \mapsto P(K)$$

These functions are called satellite operators.

Arunima Ray (Brandeis)

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	0000
		C	

The knot concordance group has fractal properties

Theorem (Cochran–Davis–R., 2012)

Large (infinite) classes of satellite operators $P : C \to C$ are injective.

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000	00	00●0

The knot concordance group has fractal properties

Theorem (Cochran–Davis–R., 2012)

Large (infinite) classes of satellite operators $P : C \to C$ are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots K such that $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Background	Genus of a knot	Knot concordance	Fractals
0000000	0000	00	0000

The knot concordance group has fractal properties

Theorem (Cochran–Davis–R., 2012)

Large (infinite) classes of satellite operators $P : C \to C$ are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots K such that $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Theorem (Davis-R., 2013)

There exist satellite operators that are bijective on \mathcal{C} .

Background	Genus of a knot	
0000000	0000	

Knot concordance

Fractals

The knot concordance group has fractal properties

Theorem (Cochran–Davis–R., 2012)

Large (infinite) classes of satellite operators $P : \mathcal{C} \to \mathcal{C}$ are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots K such that $P^i(K)\neq P^j(K)$ for all $i\neq j$.

Theorem (Davis-R., 2013)

There exist satellite operators that are bijective on C.

Theorem (A. Levine, 2014)

There exist satellite operators that are injective but not surjective.

Arunima Ray (Brandeis)

Knots, four dimensions, and fractals

Background	Genus of a knot	Knot concordance	Fractals
00000000	0000		000●
Fractals			

What is left to show?

In order for C to be a fractal, we need some notion of distance, to see that we have smaller and smaller embeddings of C within itself.

That is, we need to exhibit a metric space structure on C. There are several natural metrics on C, but we have not yet found one that works well with the current results on satellite operators. The search is on!