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Knots

Take a piece of string, tie a knot in it, glue the two ends together.

A knot is a closed curve in space which does not intersect itself anywhere.
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Equivalence of knots

Two knots are equivalent if we can get from one to the other by a
continuous deformation, i.e. without having to cut the piece of string.

Figure : All of these pictures are of the same knot, the unknot or the trivial
knot.
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‘Adding’ two knots

K J K#J

Figure : The connected sum operation on knots

The (class of the) unknot is the identity element, i.e. K#Unknot = K

However, there are no inverses for this operation. In particular, if neither
K nor J is the unknot, then K#J cannot be the unknot either.

(In fact, we can show that K#J is more complex than K and J in a
precise way.)
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A 4–dimensional notion of a knot being ‘trivial’

A knot K is equivalent to the unknot if and only if it is the boundary of
a disk.

We want to extend this notion to four dimensions.
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A 4–dimensional notion of a knot being ‘trivial’

y, z

x

w

Figure : Schematic picture of the unknot

Figure : Schematic pictures of the unknot and a slice knot

Definition

A knot K is called slice if it bounds a disk in four dimensions as above.
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Knot concordance

R3 × [0, 1]

Definition

Two knots K and J are said to be concordant if they cobound a smooth
annulus in R3 × [0, 1].
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The knot concordance group

The set of knot concordance classes under the connected sum operation
forms a group!

A group is a very friendly algebraic object with a well-studied structure.
For example, the set of integers is a group.

This means that for every knot K there is some −K, such that K#−K
is a slice knot.

We call the group of knot concordance classes the knot concordance group
and denote it by C.
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Goal

Goal: study the knot concordance group C by studying functions on it.

In particular, this will show that C has the structure of a fractal.
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Fractals

Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of ‘injective’ functions from the set to smaller and
smaller subsets.
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Satellite operations on knots

P K P (K)

Figure : The satellite operation on knots

The satellite operation is a generalization of the connected sum operation.

Here P is called a satellite operator, and P (K) is called a satellite knot.
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Satellite operations on knots

Any knot P in a solid torus gives a function on the set of all knots

P : K → K
K → P (K)

These functions descend to give well-defined functions on the knot
concordance group.

P : C → C
K → P (K)
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The knot concordance group has fractal properties

Recall that a fractal is a set which admits self-similarities at arbitrarily
small scales, i.e. there exist infinitely many injective functions from the set
to smaller and smaller subsets.

Theorem (Cochran–Davis–R., 2012)

For large (infinite) classes of satellite operators P , P : C → C is injective
(modulo the smooth 4–dimensional Poincaré Conjecture).

Theorem (R., 2013)

There exist infinitely many satellite operators P and a large class of knots
K such that P i(K) 6= P j(K) for all i 6= j.
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Summary

1 Knots are closed curves in three-dimensional space which do not
intersect themselves

2 There is a four-dimensional equivalence relation on knots, called
‘concordance’, which gives the set of knots a group structure

3 By studying the action of ‘satellite operators’ on knots, we can see
that the knot concordance group has fractal properties
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