Casson towers and filtrations of the smooth knot concordance group

Arunima Ray

Doctoral defense Rice University

April 8, 2014

Introduction •000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Knots				

Take a piece of string, tie a knot in it, glue the two ends together.

Introduction •000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Knots				

Take a piece of string, tie a knot in it, glue the two ends together. A knot is a closed curve in space which does not intersect itself anywhere.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Equivalen	ce of knots			

Two knots are **equivalent** if we can get from one to the other by a continuous deformation, i.e. without having to cut the piece of string.

Figure: All of these pictures are of the same knot, the unknot or the trivial knot.

Introduction	Knot concordance and filtrations	Goal	Casson towers	Results 000000
12	· · · · · · · · · · · · · · · · · · ·	1 A A A A A A A A A A A A A A A A A A A		

Knot theory is a subset of topology

Topology is the study of properties of spaces that are unchanged by continuous deformations.

Introduction	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Knot th	oorvis a subset of t	pology		

Knot theory is a subset of topology

Topology is the study of properties of spaces that are unchanged by continuous deformations.

To a topologist, a ball and a cube are the same.

Introduction	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Knot th	eory is a subset of to	pology		

Knot theory is a subset of topology

Topology is the study of properties of spaces that are unchanged by continuous deformations.

To a topologist, a ball and a cube are the same.

But a ball and a torus (doughnut) are different: we cannot continuously change a ball to a torus without tearing it in some way.

Introduction 000	Knot concordance and filtrations	Goal	Casson towers	Results
'Adding'	two knots			

Figure: The connected sum operation on knots

The (class of the) unknot is the identity element, i.e. K # Unknot = K.

Introduction 000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
'Adding'	two knots			

Figure: The connected sum operation on knots

The (class of the) unknot is the identity element, i.e. K # Unknot = K.

However, there are no inverses for this operation. In particular, if neither K nor J is the unknot, then K#J cannot be the unknot either.

(In fact, we can show that K # J is more complex than K and J in a precise way.)

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
A 4-dime	ensional notion of a	knot being	'trivial'	

A knot K is equivalent to the unknot **if and only if** it is the boundary of a disk.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
A A dir	monsional notion of a	knot hoin	e (trivial)	

A 4–dimensional notion of a knot being 'trivial'

A knot K is equivalent to the unknot **if and only if** it is the boundary of a disk.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results
A 4 dim	oncional notion of a	knot hoin	a 'trivial'	

A 4–dimensional notion of a knot being 'trivial'

A knot K is equivalent to the unknot \mathbf{if} and only \mathbf{if} it is the boundary of a disk.

We want to extend this notion to four dimensions.

Figure: Schematic picture of the unknot

Figure: Schematic pictures of the unknot and a slice knot

Definition

A knot K is called **slice** if it bounds a disk in four dimensions as above.

A 4-dimensional notion of a knot being 'trivial'

Figure: Schematic picture of a slice knot

Definition

A knot K is called **slice** if it bounds a disk in four dimensions as above.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
A 4 11		and the second second	6	

A 4-dimensional notion of a knot being 'trivial'

Figure: Schematic picture of a slice knot

Definition

A knot K is called **slice** if it bounds a disk in four dimensions as above.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers 000	Results
Knot con	cordance			
		\bigcirc		
			2	
			$S^3 \times [0,1]$	

Definition

Two knots K and J are said to be **concordant** if they cobound a smooth annulus in $S^3\times [0,1].$

Arunima Ray (PhD defense)

Casson towers and filtrations of $\ensuremath{\mathcal{C}}$

April 8, 2014 9 / 29

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Knot cond	cordance			

Definition

Two knots K and J are said to be **concordant** if they cobound a smooth annulus in $S^3\times [0,1].$

Arunima Ray (PhD defense)

Casson towers and filtrations of $\ensuremath{\mathcal{C}}$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The knot	concordance group			

The set of knot concordance classes under the connected sum operation forms a group (i.e. for every knot K there is some -K, such that K # - K is a slice knot).

We call the group of knot concordance classes the (smooth) **knot** concordance group and denote it by C.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The knot	concordance group	l -		

The set of knot concordance classes under the connected sum operation forms a group (i.e. for every knot K there is some -K, such that K # - K is a slice knot).

We call the group of knot concordance classes the (smooth) **knot** concordance group and denote it by C.

Similarly, we can define the *topological* knot concordance group, by only requiring a topological, locally flat embedding of an annulus.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The knot	concordance group	l de la companya de l		

The set of knot concordance classes under the connected sum operation forms a group (i.e. for every knot K there is some -K, such that K # - K is a slice knot).

We call the group of knot concordance classes the (smooth) **knot** concordance group and denote it by C.

Similarly, we can define the *topological* knot concordance group, by only requiring a topological, locally flat embedding of an annulus.

There exist infinitely many smooth concordance classes of topologically slice knots (Endo, Gompf, etc.)

$\frac{\mathsf{Knots}}{\mathsf{Isotopy}} \Longleftrightarrow \mathsf{Classification} \text{ of } 3\text{-manifolds}$

 $\frac{\mathsf{Knots}}{\mathsf{Concordance}} \Longleftrightarrow \mathsf{Classification} \text{ of } 4\text{-manifolds}$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Approxi	mating sliceness			

A knot is slice if it bounds a disk in B^4 .

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Approxi	mating sliceness			

A knot is slice if it bounds a disk in B^4 . Two ways to approximate sliceness:

• knots which bound disks in [[approximations of B^4]].

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Approxi	mating sliceness			

A knot is slice if it bounds a disk in B^4 . Two ways to approximate sliceness:

- knots which bound disks in [[approximations of B^4]].
- knots which bound [[approximations of disks]] in B^4 .

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The <i>n</i> -s	olvable filtration of (С		

Definition (Cochran–Orr–Teichner, 2003)

For any $n \ge 0$, a knot K is in \mathcal{F}_n (and is said to be *n*-solvable) if K bounds a smooth, embedded disk Δ in [[an approximation of B^4]].

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The <i>n</i> -s	olvable filtration of	С		

Definition (Cochran–Orr–Teichner, 2003)

For any $n \ge 0$, a knot K is in \mathcal{F}_n (and is said to be *n*-solvable) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

•
$$H_1(V) = 0$$

• there exist surfaces $\{L_1, D_1, L_2, D_2, \cdots, L_k, D_k\}$ embedded in $V - \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,

•
$$\pi_1(L_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i ,

•
$$\pi_1(D_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i .

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The <i>n</i> -s	olvable filtration of	С		

Definition (Cochran–Orr–Teichner, 2003)

For any $n \ge 0$, a knot K is in \mathcal{F}_n (and is said to be *n*-solvable) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

•
$$H_1(V) = 0$$
,

• there exist surfaces $\{L_1, D_1, L_2, D_2, \cdots, L_k, D_k\}$ embedded in $V - \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,

•
$$\pi_1(L_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i ,

•
$$\pi_1(D_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i .

Clearly,

$$\cdots \subseteq \mathcal{F}_n \subseteq \mathcal{F}_{n-1} \subseteq \cdots \subseteq \mathcal{F}_0 \subseteq \mathcal{C}$$

		0		
Introduction	Knot concordance and filtrations	Goal	Casson towers	Results 000000

The n-solvable filtration of C

- $\mathcal{F}_0 = \{K \mid \mathsf{Arf}(K) = 0\}$
- $\mathcal{F}_1 \subseteq \{K \mid K \text{ is algebraically slice}\}$
- $\mathcal{F}_2 \subseteq \{K \mid \text{various Casson-Gordon obstructions to sliceness vanish}\}$

0000	000000000000		000	000000
	and the first filter of the second	0		

The n-solvable filtration of ${\mathcal C}$

- $\mathcal{F}_0 = \{K \mid \mathsf{Arf}(K) = 0\}$
- $\mathcal{F}_1 \subseteq \{K \mid K \text{ is algebraically slice}\}$
- $\mathcal{F}_2 \subseteq \{K \mid \text{various Casson-Gordon obstructions to sliceness vanish}\}$
- ∀n, Z[∞] ⊆ F_n/F_{n+1} (Cochran–Orr–Teichner, Cochran–Teichner, Cochran–Harvey–Leidy)

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The grop	e filtration of ${\mathcal C}$			

Definition

For any $n \ge 1$, a knot K is in \mathcal{G}_n if K bounds a grope of height n in B^4 .

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The grop	e filtration of ${\cal C}$			

Definition

For any $n \ge 1$, a knot K is in \mathcal{G}_n if K bounds a grope of height n in B^4 .

Figure: A grope of height 2

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
The grop	e filtration of $\mathcal C$			

Model Theorem (Cochran–Orr–Teichner, 2003) For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Topologie	cally slice knots			

Let ${\mathcal T}$ denote the set of all topologically slice knots.

$$\mathcal{T} \subseteq \bigcap_{n=0}^{\infty} \mathcal{F}_n$$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Topologic	ally slice knots			

Let ${\mathcal T}$ denote the set of all topologically slice knots.

$$\mathcal{T} \subseteq \bigcap_{n=0}^{\infty} \mathcal{F}_n$$

How can we use filtrations to study smooth concordance classes of topologically slice knots?

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Positive a	and negative filtration	ons of C		

Definition (Cochran–Harvey–Horn, 2012)

 \circ

For any $n \ge 0$, a knot K is in \mathcal{P}_n (and is said to be *n*-positive) if K bounds a smooth, embedded disk Δ in [[an approximation of B^4]].

Introduction	Knot concordance and filtrations	Goal	Casson towers	Results
0000	0000000000		000	000000
D 111	1	50		
	and nogative tiltrati	Anc At /		

Positive and negative filtrations of ${\cal C}$

Definition (Cochran–Harvey–Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{P}_n (and is said to be *n*-positive) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $\pi_1(V) = 0$,
- there exist surfaces $\{S_i\}$ embedded in $V \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus [1]$,

•
$$\pi_1(S_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Positive a	nd negative filtration	ons of \mathcal{C}		

Definition (Cochran–Harvey–Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{N}_n (and is said to be *n*-negative) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $\pi_1(V) = 0$,
- there exist surfaces $\{S_i\}$ embedded in $V \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus [-1]$,

•
$$\pi_1(S_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Positive a	and negative filtrati	ons of ${\cal C}$		

Definition (Cochran–Harvey–Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{N}_n (and is said to be *n*-negative) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $\pi_1(V) = 0$,
- there exist surfaces $\{S_i\}$ embedded in $V \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus [-1]$,

•
$$\pi_1(S_i) \subseteq \pi_1(V - \Delta)^{(n)}$$
 for all i

These filtrations can be used to distinguish smooth concordance classes of topologically slice knots.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Goal				

Model Theorem (Cochran–Orr–Teichner, 2003)For all
$$n \ge 0$$
, $\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$

 $\ensuremath{\textbf{Goal}}$: Prove a version of the model theorem for the positive/negative filtrations.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers •00	Results 000000
Casson t	owers			

Any knot bounds a *kinky disk* in B^4 , i.e. a disk with transverse self-intersections.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers OO	Results 000000
Casson t	owers			

Any knot bounds a *kinky disk* in B^4 , i.e. a disk with transverse self-intersections. Any knot which bounds such a kinky disk with only *positive*

self-intersections lies in \mathcal{P}_0 .

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers ●00	Results 000000
Casson t	cowers			

Any knot bounds a *kinky disk* in B^4 , i.e. a disk with transverse self-intersections.

Any knot which bounds such a kinky disk with only *positive* self-intersections lies in \mathcal{P}_0 .

A **Casson tower** is built using layers of kinky disks, so they are natural objects to study in this context.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson	towers			

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers ○●○	Results 000000
Casson	towers			

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson	towers			

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson t	towers			

A Casson tower of height n consists of n layers of kinky disks.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson	towers			

A Casson tower of height n consists of n layers of kinky disks.

A Casson tower T is of height (2, n) if it has two layers of kinky disks, and each member of a standard set of generators of $\pi_1(T)$ is in $\pi_1(B^4 - T)^{(n)}$.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson to	owers			

Suppose we build a Casson tower with infinitely many stages. Call this a **Casson handle**.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson to	owers			

Suppose we build a Casson tower with infinitely many stages. Call this a **Casson handle**.

An amazing result of Mike Freedman says that any Casson handle is homeomorphic to $D^2 \times \mathbb{R}^2$.

(It is worth noting that this is not true in the smooth category: there are infinitely many diffeomorphism classes of Casson handles.)

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Casson to	wers			

Suppose we build a Casson tower with infinitely many stages. Call this a **Casson handle**.

An amazing result of Mike Freedman says that any Casson handle is homeomorphic to $D^2 \times \mathbb{R}^2$.

(It is worth noting that this is not true in the smooth category: there are infinitely many diffeomorphism classes of Casson handles.)

This highly technical result led to a wealth of results about topological 4-manifolds, including the topological *h*-cobordism theorem in 4 dimensions (which implies the 4-dimensional topological Poincaré Conjecture) and Freedman's complete classification of topological 4-manifolds.

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results ●00000
New filt	rations			

• A knot is in \mathfrak{C}_n if it bounds a Casson tower of height n in B^4

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results •00000
New filt	rations			

- A knot is in \mathfrak{C}_n if it bounds a Casson tower of height n in B^4
- A knot is in \mathfrak{C}_n^+ if it bounds a Casson tower of height n in B^4 such that all the kinks at the initial disk are positive
- A knot is in \mathfrak{C}_n^- if it bounds a Casson tower of height n in B^4 such that all the kinks at the initial disk are negative

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 00000
New filtr	rations			

• A knot is in $\mathfrak{C}_{2,n}$ if it bounds a Casson tower of height (2, n) in B^4

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
New filt	rations			

- A knot is in $\mathfrak{C}_{2,n}$ if it bounds a Casson tower of height (2, n) in B^4
- A knot is in $\mathfrak{C}^+_{2,n}$ if it bounds a Casson tower of height (2, n) in B^4 such that all the kinks at the initial disk are positive
- A knot is in $\mathfrak{C}_{2,n}^-$ if it bounds a Casson tower of height (2, n) in B^4 such that all the kinks at the initial disk are negative

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000000
Results				

For all $n \ge 0$,

$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 00●000
Results				

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Theorem (R.)

For all $n \ge 0$,

- $\mathfrak{C}_{n+2}^+ \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{n+2}^{-} \subseteq \mathcal{N}_n$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 00●000
Results				

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Theorem (R.)

For all $n \ge 0$,

- $\mathfrak{C}_{n+2}^+ \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{n+2}^{-} \subseteq \mathcal{N}_n$
- $\mathfrak{C}^+_{2,n} \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{2,n}^{-} \subseteq \mathcal{N}_n$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 00●000
Results				

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Theorem (R.)

For all $n \ge 0$,

- $\mathfrak{C}_{n+2}^+ \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{n+2}^{-} \subseteq \mathcal{N}_n$
- $\mathfrak{C}^+_{2,n} \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{2,n}^- \subseteq \mathcal{N}_n$
- $\mathfrak{C}_{n+2} \subseteq \mathcal{G}_{n+2} \subseteq \mathcal{F}_n$
- $\mathfrak{C}_{2,n} \subseteq \mathcal{F}_n$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 000●00
Results				

Proposition (R.)

For *m*-component links, let $\mathfrak{C}_n(m)$, $\mathfrak{C}_{2,n}(m)$, $\mathcal{F}_n(m)$, $\mathcal{P}_n(m)$, and $\mathcal{N}_n(m)$ denote the Casson tower, *n*-solvable, *n*-positive and *n*-negative filtrations respectively. For all *n* and $m \geq 2^{n+2}$,

 $\mathbb{Z} \subseteq \mathcal{F}_{n}(m)/\mathfrak{C}_{n+2}(m) \qquad \mathbb{Z} \subseteq \mathcal{F}_{n}(m)/\mathfrak{C}_{2,n}(m)$ $\mathbb{Z} \subseteq \mathcal{P}_{n}(m)/\mathfrak{C}_{n+2}^{+}(m) \qquad \mathbb{Z} \subseteq \mathcal{P}_{n}(m)/\mathfrak{C}_{2,n}^{+}(m)$ $\mathbb{Z} \subseteq \mathcal{N}_{n}(m)/\mathfrak{C}_{n+2}^{-}(m) \qquad \mathbb{Z} \subseteq \mathcal{N}_{n}(m)/\mathfrak{C}_{2,n}^{-}(m)$

Introduction 0000	Knot concordance and filtrations	Goal	Casson towers	Results 0000●0
Results				

Figure: Kirby diagram for a general Casson tower of height two

				00000
Introduction	Knot concordance and filtrations	Goal	Casson towers	Results

Results

Figure: Kirby diagram for the first two stages of a simple Casson tower with a single positive kink at each stage

