Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	0000000	0	000

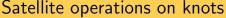
Satellite operations and fractal structures on knot concordance

Arunima Ray Brandeis University

Cochranfest

June 2, 2016

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
0000	0000	000000	0000000	0	000
Satallita	operations	on knote			



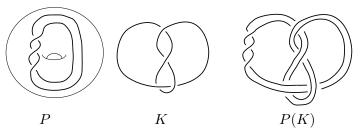


Figure: The satellite operation on knots

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	0000000	0	000
Satellite	operations	on knots			



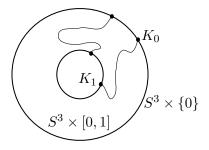
Figure: The satellite operation on knots

Any knot P in a solid torus gives a function on the set of knots.

$$P: \mathcal{K} \to \mathcal{K}$$
$$K \mapsto P(K)$$

Background ○●○○○	Questions	Injectivity	Surjectivity	Other results O	Fractals
Knot cor	ncordance				

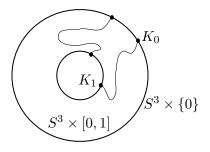
Knots K_0 , K_1 are concordant if they cobound a smoothly embedded annulus in $S^3 \times [0,1]$. Knots modulo concordance form the *knot* concordance group C.



A knot is *slice* if it is concordant to the unknot.

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	0000000	0	000
Tenslaw	cal knot co				
	cal knot co	ncordance	7		

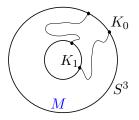
Knots K_0 , K_1 are topologically concordant if they cobound a locally flat, topologically embedded annulus in $S^3 \times [0, 1]$. Knots modulo topological concordance form the topological knot concordance group C_{top} .



A knot is topologically slice if it is topologically concordant to the unknot.

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	0000000	0	000
Exotic k	not concor	dance			

Knots K_0 , K_1 are exotically concordant if they cobound a smoothly embedded annulus in a smooth manifold M homeomorphic to $S^3 \times [0,1]$, i.e. a possibly exotic $S^3 \times [0,1]$. Knots modulo exotic concordance form the exotic knot concordance group C_{ex} .



If the smooth 4–dimensional Poincaré Conjecture holds, then $C = C_{ex}$. A knot is *exotically slice* if it is exotically concordant to the unknot.

Arunima Ray (Brandeis)

Satellite operations and fractals

Any knot in a solid torus gives a well-defined map on knot concordance classes, called a *satellite operator*. That is, we have the following commutative diagram.

for any $* \in \{\emptyset, top, ex\}$.

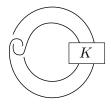


Figure: The untwisted Whitehead double of a knot \boldsymbol{K}

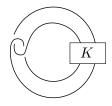


Figure: The untwisted Whitehead double of a knot \boldsymbol{K}

Long-standing conjecture: Wh(K) slice $\Rightarrow K$ slice.

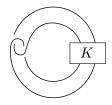


Figure: The untwisted Whitehead double of a knot K

Long-standing conjecture: Wh(K) slice $\Rightarrow K$ slice. This can be restated as: what is the 'kernel' of $Wh : C \to C$?

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	00000000	0	000

Given a satellite operator $P: \mathcal{C}_* \to \mathcal{C}_*$,

() is P 'weakly injective'? That is, if P(K) = 0, is K = 0?

Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals

Given a satellite operator $P: \mathcal{C}_* \to \mathcal{C}_*$,

- **()** is P 'weakly injective'? That is, if P(K) = 0, is K = 0?
- **2** is P injective? That is, if P(K) = P(J), is K = J?
- **3** does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Background	Questions ○●○○	Injectivity 000000	Surjectivity	Other results O	Fractals

Given a satellite operator $P:\mathcal{C}_*\to\mathcal{C}_*$,

- **()** is P 'weakly injective'? That is, if P(K) = 0, is K = 0?
- **2** is P injective? That is, if P(K) = P(J), is K = J?
- **3** does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?
- Note: Satellite operators are not generally homomorphisms.

Background	Questions ○●○○	Injectivity 000000	Surjectivity	Other results O	Fractals

Given a satellite operator $P:\mathcal{C}_*\to\mathcal{C}_*,$

- **()** is P 'weakly injective'? That is, if P(K) = 0, is K = 0?
- **2** is P injective? That is, if P(K) = P(J), is K = J?
- **3** does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.

5 is P surjective?

Background	Questions ○●○○	Injectivity 000000	Surjectivity	Other results O	Fractals

Given a satellite operator $P:\mathcal{C}_*\to\mathcal{C}_*$,

- **()** is P 'weakly injective'? That is, if P(K) = 0, is K = 0?
- **2** is P injective? That is, if P(K) = P(J), is K = J?
- **3** does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.

- $\mathbf{\mathbf{5}}$ is P surjective?
- **6** what are the 'dynamics'?

Background	Questions ○●○○	Injectivity 000000	Surjectivity	Other results O	Fractals

Given a satellite operator $P:\mathcal{C}_*\to\mathcal{C}_*$,

- **()** is P 'weakly injective'? That is, if P(K) = 0, is K = 0?
- **2** is P injective? That is, if P(K) = P(J), is K = J?
- **3** does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.

- **5** is *P* surjective?
- **6** what are the 'dynamics'?
- **7** any other question you might ask about functions.

Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals
Connecte	ed-sum				

Connected-sum is a satellite operation.

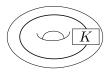


Figure: The pattern for connected-sum with the knot \boldsymbol{K}

Connected-sum is both injective and surjective on any \mathcal{C}_* .

Background	Questions ○○○●	Injectivity 000000	Surjectivity	Other results O	Fractals
Previous	results				

Hedden (2007): if $\tau(K) > 0$, then $Wh^i(K)$ is not slice for any $i \ge 0$.

Cochran–Harvey–Leidy (2011): large classes of 'robust doubling operators' (winding number zero) injectively map large infinite subgroup of C to an independent set.

Hedden–Kirk (2012): the Whitehead doubling operator preserves the linear independence of an infinite independent set of torus knots. (later generalized by Juanita Pinzón-Caicedo)

Background	Questions	Injectivity ●○○○○○	Surjectivity	Other results O	Fractals
Injectivity	of satelli	te operator	S		

Theorem (Cochran–Davis–R.)

Any 'strong winding number ± 1 ' satellite operator is injective on \mathcal{C}_{top} and $\mathcal{C}_{ex}.$

Thus, modulo smooth 4DPC, any strong winding number ± 1 satellite operator is injective on $\mathcal{C}.$

Background	Questions	Injectivity ●○○○○○	Surjectivity	Other results ○	Fractals
Injectivity	v of satelli	te operato	rs		

Theorem (Cochran–Davis–R.)

Any 'strong winding number ± 1 ' satellite operator is injective on \mathcal{C}_{top} and $\mathcal{C}_{ex}.$

Thus, modulo smooth 4DPC, any strong winding number ± 1 satellite operator is injective on $\mathcal{C}.$

Corollary: if $\tau(K) \neq 0$, then $P^i(K)$ is not slice for any winding number ± 1 satellite operator P with P(U) slice, for any $i \geq 0$.

(There are analogous results for other non-zero winding numbers w, in terms of concordance in $\mathbb{Z}[\frac{1}{w}]$ -homology $S^3 \times [0,1]$; in particular, any winding number ± 1 satellite operator is injective on concordance classes in integral homology $S^3 \times [0,1]$. For brevity, we will not discuss this much more.)

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	0000000	0	000
Strong w	inding nur	mber ± 1			

Figure: The Mazur pattern

A pattern P is 'strong winding number ± 1 ' if the meridian of the solid torus normally generates $\pi_1(S^3 - P(U))$.

cf. P is winding number ± 1 if the meridian of the solid torus generates $H_1(S^3 - P(U))$.

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	00000	0000000	0	000
Strong w	inding nur	mber ± 1			

Figure: The Mazur pattern

A pattern P is 'strong winding number ± 1 ' if the meridian of the solid torus normally generates $\pi_1(S^3 - P(U))$.

cf. P is winding number ± 1 if the meridian of the solid torus generates $H_1(S^3-P(U)).$ If P(U) is unknotted, strong winding number ± 1 is the same as winding number ± 1 .

Arunima Ray (Brandeis)

Satellite operations and fractals

Background	Questions	Injectivity ○○●○○○	Surjectivity	Other results O	Fractals
Proof of	injectivity				

First we prove weak injectivity for slice patterns.

Recall that a knot K is (topologically or exotically) slice if and only if the zero surgery M_K bounds a 4-manifold W where W is a homology circle and the meridian of K normally generates $\pi_1(W)$.

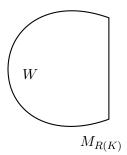
Background	Questions	Injectivity ○○●○○○	Surjectivity	Other results O	Fractals
Proof of	injectivity				

First we prove weak injectivity for slice patterns.

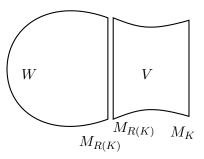
Recall that a knot K is (topologically or exotically) slice if and only if the zero surgery M_K bounds a 4-manifold W where W is a homology circle and the meridian of K normally generates $\pi_1(W)$.

Lemma: If R is strong winding number ± 1 with R(U) (topologically or exotically) slice then $M_{R(K)}$ is homology cobordant to M_K via a 4-manifold V where $\pi_1(V)$ is normally generated by the meridian of K.

Background	Questions	Injectivity ○○○●○○	Surjectivity	Other results O	Fractals
Proof of i	njectivity				



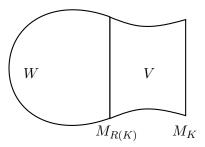
Background	Questions	Injectivity ○○○●○○	Surjectivity	Other results O	Fractals
Proof of i	njectivity				



Background	Questions	Injectivity ○○○●○○	Surjectivity	Other results O	Fractals
Proof of i	njectivity				



Background	Questions	Injectivity ○○○●○○	Surjectivity	Other results O	Fractals
Proof of	injectivity				



By the previous lemma, K is slice, and thus slice strong winding number ± 1 satellite operators are weakly injective.

Background	Questions	Injectivity ○○○○●○	Surjectivity	Other results O	Fractals
Proof of i	njectivity				

Background	Questions	Injectivity 0000●0	Surjectivity	Other results O	Fractals
Proof of	injectivity				

Since K# - K is slice, J = K# - K# J, and thus,

P(J) = P(K # - K # J)

Background	Questions	Injectivity 0000●0	Surjectivity	Other results O	Fractals
Proof of i	injectivity				

Since K# - K is slice, J = K# - K# J, and thus,

$$P(J) = P(K\# - K\#J)$$

and so,

$$P(K) = P(K \# - K \# J)$$

Background	Questions	Injectivity 0000●0	Surjectivity	Other results O	Fractals
Proof of i	injectivity				

Since K# - K is slice, J = K# - K# J, and thus,

$$P(J) = P(K\# - K\#J)$$

and so,

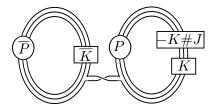
$$P(K) = P(K \# - K \# J)$$

and then,

$$-P(K)\#[P(K\# - K\#J)] = 0$$

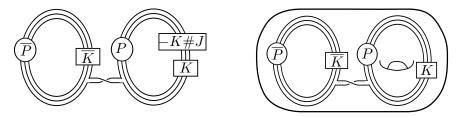
Background	Questions	Injectivity ○○○○○●	Surjectivity	Other results O	Fractals
Proof of	injectivity				

We know that $-P(K)\#\left[P(K\#(-K\#J))\right]$ is slice. This knot is shown below.



Background	Questions	Injectivity ○○○○○●	Surjectivity	Other results O	Fractals
Proof of i	njectivity				

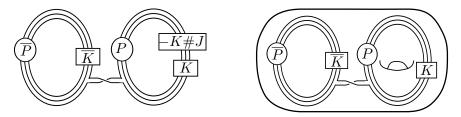
We know that -P(K)#[P(K#(-K#J))] is slice. This knot is shown below.



Note that this is a satellite with a ribbon pattern and companion -K#J. The pattern is strong winding number one.

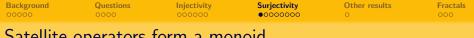
Background	Questions	Injectivity ○○○○○●	Surjectivity	Other results O	Fractals
Proof of i	njectivity				

We know that -P(K)#[P(K#(-K#J))] is slice. This knot is shown below.

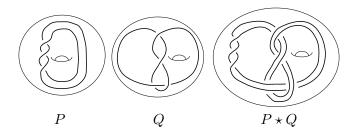


Note that this is a satellite with a ribbon pattern and companion -K#J. The pattern is strong winding number one.

Thus, by weak injectivity for satellite operators with slice patterns, -K#J is slice, and thus K = J.



Satellite operators form a monoid



Proposition

The satellite operation gives a monoid action on knots, i.e.

$$(P \star Q)(K) = P(Q(K))$$

Background	Questions	Injectivity	Surjectivity	Other results ○	Fractals
Patterns	and homo	logy cylind	lers		

Given a pattern P in a solid torus ST, let E(P) denote the complement ST-P.

 ${\cal E}(P)$ is a 3–manifold with two toral boundary components, specifically a homology cylinder.

Background	Questions	Injectivity	Surjectivity	Other results O	Fractals
Patterns	and homo	logy cylind	lers		

Given a pattern P in a solid torus ST, let E(P) denote the complement ST-P.

 ${\cal E}(P)$ is a 3–manifold with two toral boundary components, specifically a homology cylinder.

Homology cylinders, modulo homology cobordism, form a group under stacking (J. Levine).

Let $\widehat{\mathcal{S}}_*$ be the group of the 'strong' homology cylinders under 'strong' homology cobordism.

Background	Questions	Injectivity	Surjectivity	Other results O	Fractals
Patterns	and homo	logy cylind	lers		

Given a pattern P in a solid torus ST, let E(P) denote the complement ST-P.

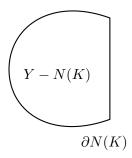
 ${\cal E}(P)$ is a 3–manifold with two toral boundary components, specifically a homology cylinder.

Homology cylinders, modulo homology cobordism, form a group under stacking (J. Levine).

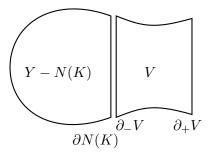
Let $\widehat{\mathcal{S}}_*$ be the group of the 'strong' homology cylinders under 'strong' homology cobordism.

There is a monoid homomorphism from the monoid of strong winding number ± 1 patterns to the group $\widehat{\mathcal{S}}_*.$

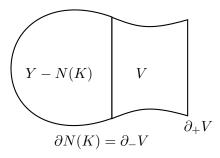
Let V be a homology cylinder. Given a knot K in a homology 3–sphere Y, carve out N(K), a solid torus neighborhood of K.



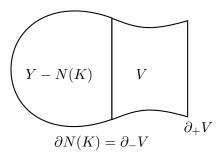
Let V be a homology cylinder. Given a knot K in a homology 3-sphere Y, carve out N(K), a solid torus neighborhood of K.



Let V be a homology cylinder. Given a knot K in a homology 3-sphere Y, carve out N(K), a solid torus neighborhood of K.



Let V be a homology cylinder. Given a knot K in a homology 3–sphere Y, carve out N(K), a solid torus neighborhood of K.



We obtain a 3-manifold with a single torus boundary component. We can canonically glue in a solid torus to get a homology 3-sphere. The core of this solid torus is the new knot.

Background	Questions	Injectivity	Surjectivity	Other results O	Fractals
Generaliz	zations of I	knot conco	rdance		

Let \widehat{C}_* be the group of knots in homology spheres modulo concordance in 'strong' homology cobordisms.

Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals
Generaliz	zations of I	knot conco	rdance		

Let $\widehat{\mathcal{C}}_*$ be the group of knots in homology spheres modulo concordance in 'strong' homology cobordisms.

There are injective homomorphisms $\mathcal{C}_* \hookrightarrow \widehat{\mathcal{C}}_*$.

(Davis–R.): $\widehat{\mathcal{S}}_*$ acts on $\widehat{\mathcal{C}}_*$ by a group action.

Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals
Satellite	operators	as group a	ctions		

Theorem (Davis–R.)

For * = ex or top, and any strong winding number one satellite operator P, the following diagram commutes.

$$\begin{array}{ccc} \mathcal{C}_* & \stackrel{P}{\longrightarrow} \mathcal{C}_* \\ & & \downarrow \\ \widehat{\mathcal{C}}_* & \stackrel{E(P)}{\longrightarrow} \widehat{\mathcal{C}}_* \end{array}$$

Since \widehat{S}_* gives a group action on \widehat{C}_* , each $E(P) \in \widehat{S}_*$ acts via a bijection. The Cochran–Davis–R. injectivity result for strong winding number ± 1 satellite operators follows.

Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals
Satellite	operators	as group a	ctions		

Thus, the classical satellite operation on \mathcal{C}_* is a restriction of a group action on $\widehat{\mathcal{C}}_*.$

Background	Questions	Injectivity 000000	Surjectivity ○○○○●○○	Other results O	Fractals
Satellite	operators	as group a	ctions		

Thus, the classical satellite operation on \mathcal{C}_* is a restriction of a group action on $\widehat{\mathcal{C}}_*.$

Since E(P) is an element of a group, it has an inverse $E(P)^{-1}$.

Background	Questions	Injectivity 000000	Surjectivity ○○○○●○○	Other results O	Fractals
Satellite	operators	as group a	ctions		

Thus, the classical satellite operation on \mathcal{C}_* is a restriction of a group action on $\widehat{\mathcal{C}}_*.$

Since E(P) is an element of a group, it has an inverse $E(P)^{-1}$.

P is surjective on \mathcal{C}_* if and only if $E(P)^{-1}(\mathcal{C}_*) \subseteq \mathcal{C}_*$.

		Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	00000000	0	000
Satallita or			attende i		

Satenite operators as group actions

Thus, the classical satellite operation on \mathcal{C}_* is a restriction of a group action on $\widehat{\mathcal{C}}_*.$

Since E(P) is an element of a group, it has an inverse $E(P)^{-1}$.

P is surjective on \mathcal{C}_* if and only if $E(P)^{-1}(\mathcal{C}_*) \subseteq \mathcal{C}_*$.

Theorem (Davis–R.)

Let $P \subseteq ST = S^1 \times D^2$ be winding number one. If the meridian of P is in the normal subgroup of $\pi_1(E(P))$ generated by the meridian of ST, then P is strong winding number one and there exists a strong winding number one pattern \overline{P} such that $E(\overline{P}) = E(P)^{-1}$ as homology cylinders.

In particular, $\overline{P}(P(K))$ is (exotically or topologically) concordant to K for any knot K.

Background	Questions	Injectivity	Surjectivity	Other results	Fractals
00000	0000	000000	00000000	0	000
Catallita	operators		attende i		
	anaratore	ac aroun a	CTIONC		

Satellite operators as group actions

Thus, the classical satellite operation on \mathcal{C}_* is a restriction of a group action on $\widehat{\mathcal{C}}_*.$

Since E(P) is an element of a group, it has an inverse $E(P)^{-1}$.

P is surjective on \mathcal{C}_* if and only if $E(P)^{-1}(\mathcal{C}_*) \subseteq \mathcal{C}_*$.

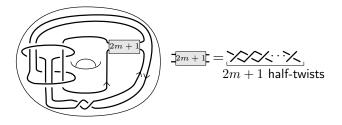
Theorem (Davis–R.)

Let $P \subseteq ST = S^1 \times D^2$ be winding number one. If the meridian of P is in the normal subgroup of $\pi_1(E(P))$ generated by the meridian of ST, then P is strong winding number one and there exists a strong winding number one pattern \overline{P} such that $E(\overline{P}) = E(P)^{-1}$ as homology cylinders.

In particular, $\overline{P}(P(K))$ is (exotically or topologically) concordant to K for any knot K.

Consequently, $P: \mathcal{C}_* \to \mathcal{C}_*$ is a bijection.

For each $m \ge 0$, the satellite operator P_m shown below has an inverse satellite operator $\overline{P_m}$ which can be explicitly drawn, i.e. $\overline{P_m}(P_m(K))$ is concordant to K for any knot K. Moreover, each $P_m : \mathcal{C}_* \to \mathcal{C}_*$ is bijective and P_m is distinct from all connected-sum operators in $\widehat{\mathcal{S}}_*$.



Note that it is still possible that, for some fixed knot J, $P_m(K) = J \# K$ for all K, i.e. it is not known whether patterns act faithfully.

Figure: The Mazur pattern

In contrast, recall from yesterday that the Mazur satellite operator is non-surjective on C (A. Levine).

In particular, Levine showed that no knot J with $\varepsilon(J)=-1$ is in the image of the Mazur satellite operator.

Note that it is not known whether the Mazur satellite operator is the identity function on $\mathcal{C}_{\text{top}}.$

Background	Questions	Injectivity 000000	Surjectivity	Other results •	Fractals
Other resu	ults				

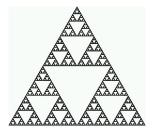
K. Park: $Wh(T_{2,2m+1})$ and $Wh^2(T_{2,2m+1})$ generate a $\mathbb{Z} \oplus \mathbb{Z}$ summand of the subgroup of topologically slice knots in \mathcal{C} .

R. : For several classes of strong winding number ± 1 patterns P (including the Mazur pattern) and infinitely many knots K, $P^i(K) \neq P^j(K)$ in $\mathcal{C}_{\mathsf{ex}}$ for any $i \neq j \geq 0$. (For the Mazur pattern, this can be improved by A. Levine's computation of τ -invariants.)

Feller–J. Park–R. : Let M be the Mazur satellite operator. There exists an infinite family of topologically slice knots $\{K_i\}$ such that for all $r \ge 0$, $\{M^r(K_i)\}$ generates a subgroup of C of infinite rank.

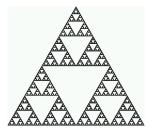
Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals •00
Fractals					

Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals •00
Fractals					

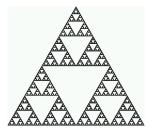
Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Background	Questions	Injectivity 000000	Surjectivity	Other results O	Fractals ●○○
Fractals					

Fractals are objects that exhibit 'self-similarity' at arbitrarily small scales.



i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Conjecture (Cochran-Harvey-Leidy, 2011)

The knot concordance group C is a fractal.

Arunima Ray (Brandeis)

Figure: The Mazur pattern M

Cochran–Davis–R. : M is injective on C_{ex} and C_{top} .

A. Levine: M is not surjective on C. Moreover,

$$Im(M) \supseteq Im(M^2) \supseteq Im(M^3) \supseteq \cdots$$

What about scale?

Arunima Ray (Brandeis)

Background	Questions	Injectivity 000000	Surjectivity	Other results ○	Fractals ○○●
The knot	concorda	nce group	has fractal	properties	

To properly address the question of scale we need some notion of distance on C_* . This was started by Cochran–Harvey, with further work by Cochran–Harvey–Powell (see talk on Saturday).