Casson towers and filtrations of the smooth knot concordance group

Arunima Ray

AMS Central Sectional Meeting Washington University at St. Louis St. Louis, Missouri

October 19, 2013

Introduction	Goal	Casson towers	Results
00000000		0000	000
Definitions			

Definition

A knot is *slice* if it bounds a smoothly embedded disk Δ in B^4 .

Knots, modulo slice knots, form the smooth knot concordance group, denoted \mathcal{C} .

Introduction	Goal	Casson towers	Results
00000000		0000	000
Definitions			

Definition

A knot is *slice* if it bounds a smoothly embedded disk Δ in B^4 .

Knots, modulo slice knots, form the *smooth knot concordance* group, denoted C.

There exist infinitely many smooth concordance classes of topologically slice knots (Endo, Gompf, Hedden–Kirk, Hedden–Livingston–Ruberman, Hom, etc.)

Introduction	Goal	Casson towers	Results
oo●oooooo		0000	000
Approximating s	liceness		

A knot is slice if it bounds a disk in B^4 .

Introduction Goal Casson towers Resul 00 ●000000 00000 0000 0000 0000 0000	

A knot is slice if it bounds a disk in B^4 . Two ways to approximate sliceness:

• knots which bound disks in [[approximations of B^4]]

Introduction Goal Casson towers Resul 00 ●000000 00000 0000 0000 0000 0000	

A knot is slice if it bounds a disk in B^4 . Two ways to approximate sliceness:

- knots which bound disks in [[approximations of B^4]]
- knots which bound [[approximations of disks]] in B^4

Introduction	Goal	Casson towers	Results
00000000		0000	000
The n -solvable filt	ration of \mathcal{C}		

Definition (Cochran–Orr–Teichner, 2003)

For any $n \ge 0$, a knot K is in \mathcal{F}_n (and is said to be *n*-solvable) if K bounds a smooth, embedded disk Δ in [[an approximation of B^4]]

Introduction 00000000	Goal	Casson towers 0000	Results
The n -solvable f	iltration of ${\cal C}$		

Definition (Cochran–Orr–Teichner, 2003)

For any $n \ge 0$, a knot K is in \mathcal{F}_n (and is said to be *n*-solvable) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $H_1(V) = 0$,
- there exist surfaces $\{L_1, D_1, L_2, D_2, \cdots, L_k, D_k\}$ embedded in $V - \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,
- $\pi_1(L_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i,
- $\pi_1(D_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i.

Introduction 00000000	Goal	Casson towers 0000	Results
The n -solvable fi	tration of $\mathcal C$		

Definition (Cochran–Orr–Teichner, 2003)

For any $n \ge 0$, a knot K is in \mathcal{F}_n (and is said to be *n*-solvable) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $H_1(V) = 0$,
- there exist surfaces $\{L_1, D_1, L_2, D_2, \cdots, L_k, D_k\}$ embedded in $V - \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,
- $\pi_1(L_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i,
- $\pi_1(D_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i.

Clearly,

$$\cdots \subseteq \mathcal{F}_n \subseteq \mathcal{F}_{n-1} \subseteq \cdots \subseteq \mathcal{F}_0 \subseteq \mathcal{C}$$

Introduction			Goal		Casson towers	Results	
00000000					0000	000	
			C11		6.0		

The $n extsf{-solvable}$ filtration of ${\mathcal C}$

- $\mathcal{F}_0 = \{K \mid \mathsf{Arf}(K) = 0\}$
- $\mathcal{F}_1 \subseteq \{K \mid K \text{ is algebraically slice}\}$
- $\mathcal{F}_2 \subseteq \{K \mid \text{various Casson-Gordon obstructions vanish}\}$

Introduction 00000000			Goal		Casson towers	Results	
			C11		6.0		

The $n extsf{-}$ solvable filtration of ${\mathcal C}$

- $\mathcal{F}_0 = \{K \mid \mathsf{Arf}(K) = 0\}$
- $\mathcal{F}_1 \subseteq \{K \mid K \text{ is algebraically slice}\}$
- $\mathcal{F}_2 \subseteq \{K \mid \text{various Casson-Gordon obstructions vanish}\}$

$$\forall n, \mathbb{Z}^{\infty} \subseteq \mathcal{F}_n/\mathcal{F}_{n+1}$$

Introduction	Goal	Casson towers	Results
The grope filtration	of C		

Definition

For any $n \geq 1$, a knot K is in \mathcal{G}_n if K bounds a grope of height n in B^4 .

Introduction	Goal	Casson towers	Results
000000000		0000	000
The grope filtration	h of ${\cal C}$		

Definition

For any $n\geq 1,$ a knot K is in \mathcal{G}_n if K bounds a grope of height n in $B^4.$

Introduction 000000000	Goal	Casson towers	Results 000
The grope filtration	on of ${\cal C}$		

Model Theorem (Cochran–Orr–Teichner, 2003)

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Introduction 0000000000	Goal	Casson towers 0000	Results
Topologically slice	knots		

Let \mathcal{T} denote the set of all topologically slice knots.

$$\mathcal{T} \subseteq \bigcap_{n=0}^{\infty} \mathcal{F}_n$$

Introduction	Goal	Casson towers	Results
000000000		0000	000
Topologically slice	knots		

Let \mathcal{T} denote the set of all topologically slice knots.

$$\mathcal{T} \subseteq \bigcap_{n=0}^{\infty} \mathcal{F}_n$$

How can we use filtrations to study smooth concordance classes of topologically slice knots?

00000000		0000	000
Positive and	agative filtrati	ons of C	

Definition (Cochran-Harvey-Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{P}_n (and is said to be *n*-positive) if K bounds a smooth, embedded disk Δ in [[an approximation of B^4]]

Introduction Goal		Goal	Casson towers 0000		Results
B				6.2	

Positive and negative filtrations of \mathcal{C}

Definition (Cochran-Harvey-Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{P}_n (and is said to be *n*-positive) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $\pi_1(V) = 0$,
- there exist surfaces $\{S_i\}$ embedded in $V \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus [1]$,
- $\pi_1(S_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i,

Introduction 00000000	Goal	Casson towers 0000	Results
Positive and ne	gative filtrat	tions of ${\cal C}$	

Definition (Cochran-Harvey-Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{N}_n (and is said to be *n*-negative) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $\pi_1(V) = 0$,
- there exist surfaces $\{S_i\}$ embedded in $V \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus [-1]$,
- $\pi_1(S_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i,

Introduction 00000000	Goal	Casson towers 0000	Results
Positive and ne	gative filtrat	tions of ${\cal C}$	

č

Definition (Cochran-Harvey-Horn, 2012)

For any $n \ge 0$, a knot K is in \mathcal{N}_n (and is said to be *n*-negative) if K bounds a smooth, embedded disk Δ in a smooth, compact, oriented 4-manifold V with $\partial V = S^3$ such that

- $\pi_1(V) = 0$,
- there exist surfaces $\{S_i\}$ embedded in $V \Delta$ which generate $H_2(V)$ and with respect to which the intersection form is $\bigoplus [-1]$,
- $\pi_1(S_i) \subseteq \pi_1(V \Delta)^{(n)}$ for all i,

These filtrations can be used to distinguish smooth concordance classes of topologically slice knots

Goal			
Introduction	Goal	Casson towers	Results
00000000		0000	000

Prove a version of the result relating the grope filtration and $n\mathchar`-solvable filtration, for the positive/negative filtrations$

Introduction	Goal	Casson towers	Results
000000000		•000	000
Casson towers			

Any knot bounds a kinky disk in $B^4, \, {\rm i.e.}$ a disk with transverse self-intersections.

Introduction	Goal	Casson towers	Results
00000000		●000	000
Casson towers			

Any knot bounds a *kinky disk* in B^4 , i.e. a disk with transverse self-intersections.

Any knot which bounds such a kinky disk with only *positive* self-intersections lies in \mathcal{P}_0 .

Introduction	Goal	Casson towers	Results
00000000		●000	000
Casson towers			

Any knot bounds a *kinky disk* in B^4 , i.e. a disk with transverse self-intersections.

Any knot which bounds such a kinky disk with only *positive* self-intersections lies in \mathcal{P}_0 .

A Casson tower is built using layers of kinky disks, so they are natural objects to study in this context.

C			
Introduction	Goal	Casson towers	Results
00000000		○●○○	000

Coccop towar			
Introduction	Goal	Casson towers	Results
000000000		○●○○	000

Casson towers			
00000000		0000	000
Introduction	Goal	Casson towers	Results

Introduction	Goal	Casson towers	Results
00000000		0●00	000
Casson towers			

A Casson tower of height n consists of n layers of kinky disks.

Introduction	Goal	Casson towers	Results
00000000		0●00	000
Casson towers			

A Casson tower of height n consists of n layers of kinky disks.

A Casson tower T is of height (2, n) if it has two layers of kinky disks, and each member of a standard set of generators of $\pi_1(T)$ is in $\pi_1(B^4 - T)^{(n)}$.

000000000	Goal	Casson towers 00●0	Results 000
Casson towers			

• A knot is in \mathfrak{C}_n if it bounds a Casson tower of height n in B^4

Introduction	Goal	Casson towers	Results
00000000		00●0	000
Casson towers			

- A knot is in \mathfrak{C}_n if it bounds a Casson tower of height n in B^4
- A knot is in C⁺_n if it bounds a Casson tower of height n in B⁴ such that all the kinks at the initial disk are positive
- A knot is in C_n⁻ if it bounds a Casson tower of height n in B⁴ such that all the kinks at the initial disk are negative

Casson towars			
00000000		0000	000
Introduction	Goal	Casson towers	Results

- A knot is in $\mathfrak{C}_{2,\,n}$ if it bounds a Casson tower of height $(2,\,n)$ in B^4

Introduction	Goal	Casson towers	Results
00000000		000●	000
Casson towers			

- A knot is in $\mathfrak{C}_{2,\,n}$ if it bounds a Casson tower of height $(2,\,n)$ in B^4
- A knot is in $\mathfrak{C}^+_{2,n}$ if it bounds a Casson tower of height (2, n) in B^4 such that all the kinks at the initial disk are positive
- A knot is in $\mathfrak{C}_{2,n}^-$ if it bounds a Casson tower of height (2, n) in B^4 such that all the kinks at the initial disk are negative

Introduction 00000000	Goal	Casson towers	Results ●00
Results			

Model Theorem (Cochran–Orr–Teichner, 2003)

For all $n \ge 0$,

$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$

Introduction	Goal	Casson towers	Results	
00000000		0000	●00	
Results				

Model Theorem (Cochran-Orr-Teichner, 2003)

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Theorem (R.)

For all $n \ge 0$,

•
$$\mathfrak{C}_{n+2}^+ \subseteq \mathcal{P}_n$$

•
$$\mathfrak{C}_{n+2}^{-} \subseteq \mathcal{N}_{n}$$

Doculto				
Introduction	Goal	Casson towers	Results	
000000000		0000	●00	

Model Theorem (Cochran-Orr-Teichner, 2003)

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Theorem (R.)

For all $n \ge 0$,

• $\mathfrak{C}_{n+2}^+ \subseteq \mathcal{P}_n$

•
$$\mathfrak{C}_{n+2}^{-} \subseteq \mathcal{N}_n$$

•
$$\mathfrak{C}^+_{2,n} \subseteq \mathcal{P}_n$$

•
$$\mathfrak{C}_{2,n}^{-} \subseteq \mathcal{N}_n$$

Reculte				
Introduction	Goal	Casson towers	Results	
000000000		0000	●00	

Model Theorem (Cochran-Orr-Teichner, 2003)

For all $n \ge 0$,

$$\mathcal{G}_{n+2} \subseteq \mathcal{F}_n$$

Theorem (R.)

For all $n \ge 0$,

- $\mathfrak{C}_{n+2}^+ \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{n+2}^{-} \subseteq \mathcal{N}_n$
- $\mathfrak{C}^+_{2,n} \subseteq \mathcal{P}_n$
- $\mathfrak{C}_{2,n}^- \subseteq \mathcal{N}_n$
- $\mathfrak{C}_{n+2} \subseteq \mathcal{G}_{n+2} \subseteq \mathcal{F}_n$
- $\mathfrak{C}_{2,n} \subseteq \mathcal{F}_n$

Introduction 000000000	Goal	Casson towers	Results 0●0
Results			

Proposition (R.)

For *m*-component links, let $\mathfrak{C}_n(m)$, $\mathfrak{C}_{2,n}(m)$, $\mathcal{F}_n(m)$, $\mathcal{P}_n(m)$, and $\mathcal{N}_n(m)$ denote the Casson tower, *n*-solvable, *n*-positive and *n*-negative filtrations respectively. For all *n* and $m \geq 2^{n+2}$,

$\mathbb{Z} \subseteq \mathcal{F}_n(m)/\mathfrak{C}_{n+2}(m)$	$\mathbb{Z} \subseteq \mathcal{F}_n(m)/\mathfrak{C}_{2,n}(m)$
$\mathbb{Z} \subseteq \mathcal{P}_n(m)/\mathfrak{C}_{n+2}^+(m)$	$\mathbb{Z} \subseteq \mathcal{P}_n(m)/\mathfrak{C}^+_{2,n}(m)$
$\mathbb{Z} \subseteq \mathcal{N}_n(m)/\mathfrak{C}_{n+2}^-(m)$	$\mathbb{Z} \subseteq \mathcal{N}_n(m)/\mathfrak{C}^{2,n}(m)$

Reculte			
Introduction	Goal	Casson towers	Results
00000000		0000	00●

Proposition (R.)

Let ${\mathcal T}$ denote the set of all topologically slice knots. Then

$$\mathcal{T} \subseteq \bigcap_{n=1}^{\infty} \mathcal{G}_n$$