Slice knots which bound Klein bottles

Arunima Ray

AMS Central Sectional Meeting University of Akron
Akron, Ohio

October 20, 2012

Theorem (R.)

If a slice knot K bounds a punctured Klein bottle F such that it has 'zero framing',

Theorem (R.)

If a slice knot K bounds a punctured Klein bottle F such that it has 'zero framing', we can find a 2-sided homologically essential simple closed curve J on F with self-linking zero which is slice in a $\mathbb{Z}\left[\frac{1}{2}\right]$-homology ball and hence, rationally slice (i.e. slice in a \mathbb{Q}-homology \mathbb{B}^{4}).

Introduction

Consider a knot K bounding a punctured torus F. Suppose we find a curve J which is homologically essential and has zero self-linking: we can surger the torus to get a slice disk for K. Such a curve on F is sometimes called a 'surgery curve' or 'derivative'.

Introduction

Consider a knot K bounding a punctured torus F. Suppose we find a curve J which is homologically essential and has zero self-linking: we can surger the torus to get a slice disk for K. Such a curve on F is sometimes called a 'surgery curve' or 'derivative'.

Introduction

Consider a knot K bounding a punctured torus F. Suppose we find a curve J which is homologically essential and has zero self-linking: we can surger the torus to get a slice disk for K. Such a curve on F is sometimes called a 'surgery curve' or 'derivative'.

Introduction

Consider a knot K bounding a punctured torus F. Suppose we find a curve J which is homologically essential and has zero self-linking: we can surger the torus to get a slice disk for K. Such a curve on F is sometimes called a 'surgery curve' or 'derivative'.

Kauffman's conjecture

Proposition

If a genus one knot K has a surgery curve which is slice, K is slice.

Kauffman's conjecture

Proposition

If a genus one knot K has a surgery curve which is slice, K is slice.

Conjecture (Kauffman, 1982)
If K is a slice knot and F is any genus one Seifert surface for K, there is a surgery curve J on F which is slice.

Slice knots of genus one

Theorem (Gilmer, 1983)

If K is algebraically slice and bounds a punctured torus F, then upto isotopy and orientation, there are exactly two homologically essential simple closed curves on F with zero self-linking.

Slice knots of genus one

Theorem (Gilmer, 1983)

If K is algebraically slice and bounds a punctured torus F, then upto isotopy and orientation, there are exactly two homologically essential simple closed curves on F with zero self-linking.

Evidence (Cooper, 1982)

If K is a genus one knot with $\Delta_{K}(t) \neq 1$, then at least one of the surgery curves (say J) satisfies

$$
\sum_{i=0}^{r-1} \sigma_{J}\left(c a^{i} / p\right)=0
$$

where $m(m+1)$ is the leading term of $\Delta_{K}(t), m \neq 0, c \in \mathbb{Z}_{p}^{*}$, $a=\frac{m+1}{m} \bmod p$ and r is the order of a modulo p, for all p coprime to m and $m+1$.

Slice knots of genus one

Evidence (Gilmer-Livingston, 2011)

The constraints on the Levine-Tristram signature function do not imply that $\sigma \equiv 0$

Slice knots of genus one

Evidence (Gilmer-Livingston, 2011)

The constraints on the Levine-Tristram signature function do not imply that $\sigma \equiv 0$

Evidence (Cochran-Davis, 2012)

There is a counterexample to Kauffman's conjecture, modulo the 4-dimensional Poincaré Conjecture.

Preliminaries

Suppose K bounds a punctured Klein bottle F. Let K^{F} be a pushoff of K into F.

Definition

We say that K bounds F with zero framing if $\operatorname{lk}\left(K, K^{F}\right)=0$.

Lemma (R.)

Given a knot K bounding a punctured Klein bottle F with zero framing, there exists a 2-sided homologically essential simple closed curve J on F such that

- J has zero self-linking
- J is unique upto orientation and isotopy.
J is the core of the 'orientation preserving band' if F is given in disk-band form.
We will refer to J as the surgery curve for K rel F.

Lemma (R.)

Given a knot K bounding a punctured Klein bottle F with zero framing, there exists a 2-sided homologically essential simple closed curve J on F such that

- J has zero self-linking
- J is unique upto orientation and isotopy.
J is the core of the 'orientation preserving band' if F is given in disk-band form.
We will refer to J as the surgery curve for K rel F.

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and has surgery curve J. If J is slice, so is K.

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_{K}(\omega)=\sigma_{J}\left(\omega^{2}\right)$ for all $\omega \in \mathbb{S}^{1}$. In particular, if K is slice, $\sigma_{J} \equiv 0$

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_{K}(\omega)=\sigma_{J}\left(\omega^{2}\right)$ for all $\omega \in \mathbb{S}^{1}$. In particular, if K is slice, $\sigma_{J} \equiv 0$

Proof: Such a K is concordant to $R(\eta, J)$, i.e. it is a satellite of J, where R is a ribbon knot.

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_{K}(\omega)=\sigma_{J}\left(\omega^{2}\right)$ for all $\omega \in \mathbb{S}^{1}$. In particular, if K is slice, $\sigma_{J} \equiv 0$

Proof: Such a K is concordant to $R(\eta, J)$, i.e. it is a satellite of J, where R is a ribbon knot.

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_{K}(\omega)=\sigma_{J}\left(\omega^{2}\right)$ for all $\omega \in \mathbb{S}^{1}$. In particular, if K is slice, $\sigma_{J} \equiv 0$

Proof: Such a K is concordant to $R(\eta, J)$, i.e. it is a satellite of J, where R is a ribbon knot.

$$
\sigma_{K}(\omega)=\sigma_{R(\eta, J)}(\omega)=\sigma_{R}(\omega)+\sigma_{J}\left(\omega^{2}\right)
$$

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_{K}(\omega)=\sigma_{J}\left(\omega^{2}\right)$ for all $\omega \in \mathbb{S}^{1}$. In particular, if K is slice, $\sigma_{J} \equiv 0$

Proof: Such a K is concordant to $R(\eta, J)$, i.e. it is a satellite of J, where R is a ribbon knot.

$$
\sigma_{K}(\omega)=\sigma_{R(\eta, J)}(\omega)=\sigma_{R}(\omega)+\sigma_{J}\left(\omega^{2}\right)
$$

Notice that if K is slice, $\sigma_{J} \equiv 0$. This is already more than the genus one case.

Main theorem

Theorem (R.)

Suppose a knot K bounds a punctured Klein bottle F with zero framing, and J is the surgery curve. K is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice if and only if J is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.
(A knot is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice if it bounds an embedded disk in a $\mathbb{Z}\left[\frac{1}{2}\right]$-homology \mathbb{B}^{4}.)
Note that in particular if K is slice, J is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.

Main theorem

Theorem (R.)

Suppose a knot K bounds a punctured Klein bottle F with zero framing, and J is the surgery curve. K is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice if and only if J is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.
(A knot is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice if it bounds an embedded disk in a $\mathbb{Z}\left[\frac{1}{2}\right]$-homology \mathbb{B}^{4}.)
Note that in particular if K is slice, J is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice. Note also that the only known examples of $\mathbb{Z}\left[\frac{1}{2}\right]$-slice knots which are not also slice are satellites of strongly negatively amphichiral knots.

Proof:

Proof:

Proof:

Here M_{*} denotes the zero-surgery manifold on the knot $*$

This gives a $\mathbb{Z}\left[\frac{1}{2}\right]$-homology cobordism between M_{J} and M_{K}.

Theorem (Cochran-Franklin-Hedden-Horn, 2011)

M_{K} is smoothly $\mathbb{Z}\left[\frac{1}{2}\right]$-homology cobordant to M_{U} if and only if K is smoothly $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.

Interlude: an application

Hedden-Livingston-Ruberman (2011) used knots which bound Klein bottles as examples of topologically slice knots (not smoothly slice) which do not have Alexander polynomial one.

Here p is a prime number such that $p \equiv 3 \bmod 4$ and J_{p} is the connected sum of $p-1$ copies of the untwisted double of the trefoil knot.

Interlude: an application

Hedden-Livingston-Ruberman (2011) used knots which bound Klein bottles as examples of topologically slice knots (not smoothly slice) which do not have Alexander polynomial one.

Here p is a prime number such that $p \equiv 3 \bmod 4$ and J_{p} is the connected sum of $p-1$ copies of the untwisted double of the trefoil knot. Using our main theorem, we can quickly conclude that the above knots are not smoothly slice, since the knots J_{p} have non-zero τ-invariant.

Corollaries

Corollary (R.)

Given knots K and $J, K_{(2, p)}$ is $\mathbb{Z}\left[\frac{1}{2}\right]$-concordant to $J_{(2, p)}$ if and only if K is $\mathbb{Z}\left[\frac{1}{2}\right]$-concordant to J.

In particular, if $K_{(2, p)}$ is concordant to the $(2, p)$ torus knot, then K is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.

Corollaries

Corollary (R.)

Given knots K and $J, K_{(2, p)}$ is $\mathbb{Z}\left[\frac{1}{2}\right]$-concordant to $J_{(2, p)}$ if and only if K is $\mathbb{Z}\left[\frac{1}{2}\right]$-concordant to J.

In particular, if $K_{(2, p)}$ is concordant to the $(2, p)$ torus knot, then K is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.

Corollary (R.)
Given a knot K, if $K_{(2,1)}$ is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice (or slice), then K is $\mathbb{Z}\left[\frac{1}{2}\right]$-slice.

Proof: The concordance inverse of $J_{(2, p)}$ is $(-J)_{(2,-p)}$.

Proof: The concordance inverse of $J_{(2, p)}$ is $(-J)_{(2,-p)}$. $K_{(2, p)}$ and $(-J)_{(2,-p)}$ bound Möbius bands with framing $2 p$ and $-2 p$ respectively.

Proof: The concordance inverse of $J_{(2, p)}$ is $(-J)_{(2,-p)}$. $K_{(2, p)}$ and $(-J)_{(2,-p)}$ bound Möbius bands with framing $2 p$ and $-2 p$ respectively.

Proof: The concordance inverse of $J_{(2, p)}$ is $(-J)_{(2,-p)}$.
$K_{(2, p)}$ and $(-J)_{(2,-p)}$ bound Möbius bands with framing $2 p$ and $-2 p$ respectively.

If As a result, $K_{(2, p)} \#(-J)_{(2,-p)}$ bounds a Klein bottle with 0 framing, with a disk band form where the orientation preserving band has knot type $K \#-J$. We can then apply our main theorem.

