Introduction	Preliminaries	Main theorem	Interlude	Corollaries

Slice knots which bound Klein bottles

Arunima Ray

AMS Central Sectional Meeting University of Akron Akron, Ohio

October 20, 2012

Theorem (R.)

If a slice knot K bounds a punctured Klein bottle F such that it has 'zero framing',

Theorem (R.)

If a slice knot K bounds a punctured Klein bottle F such that it has 'zero framing', we can find a 2-sided homologically essential simple closed curve J on F with self-linking zero which is slice in a $\mathbb{Z}\left[\frac{1}{2}\right]$ -homology ball and hence, rationally slice (i.e. slice in a \mathbb{Q} -homology \mathbb{B}^4).

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	●०००	000	000	O	00
Intro	duction				

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	●०००	000	000	O	00
Intro	duction				

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	●०००	000	000	O	00
Intro	duction				

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	●○○○	000	000	O	00
Intro	duction				

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
	0000	000	000		00
Kauf	fman's conie	ecture			

Proposition

If a genus one knot K has a surgery curve which is slice, K is slice.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000		0	00
Kauf	fman's conie	ecture			

Proposition

If a genus one knot K has a surgery curve which is slice, K is slice.

Conjecture (Kauffman, 1982)

If K is a slice knot and F is any genus one Seifert surface for K, there is a surgery curve J on F which is slice.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
	0000				
Slice	knots of ge	nus one			

Theorem (Gilmer, 1983)

o

If K is algebraically slice and bounds a punctured torus F, then upto isotopy and orientation, there are exactly two homologically essential simple closed curves on F with zero self-linking.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
	0000				
Slice	knots of ge				

Theorem (Gilmer, 1983)

If K is algebraically slice and bounds a punctured torus F, then upto isotopy and orientation, there are exactly two homologically essential simple closed curves on F with zero self-linking.

Evidence (Cooper, 1982)

If K is a genus one knot with $\Delta_K(t) \neq 1$, then at least one of the surgery curves (say J) satisfies

$$\sum_{i=0}^{r-1} \sigma_J(ca^i/p) = 0$$

where m(m+1) is the leading term of $\Delta_K(t)$, $m \neq 0$, $c \in \mathbb{Z}_p^*$, $a = \frac{m+1}{m} \mod p$ and r is the order of a modulo p, for all p coprime to m and m+1.

Evidence (Gilmer-Livingston, 2011)

The constraints on the Levine-Tristram signature function do not imply that $\sigma\equiv 0$

Evidence (Gilmer-Livingston, 2011)

The constraints on the Levine-Tristram signature function do not imply that $\sigma\equiv 0$

Evidence (Cochran-Davis, 2012)

There is a counterexample to Kauffman's conjecture, modulo the 4-dimensional Poincaré Conjecture.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	●○○	000	O	00
Prelimi	naries				

Suppose K bounds a punctured Klein bottle F. Let K^F be a pushoff of K into F.

Definition

We say that K bounds F with zero framing if $lk(K, K^F) = 0$.

Introduction	Preliminaries	Main theorem	Interlude	Corollaries
	000			

Lemma (R.)

Given a knot K bounding a punctured Klein bottle F with zero framing, there exists a 2-sided homologically essential simple closed curve J on F such that

- J has zero self-linking
- J is unique upto orientation and isotopy.

 ${\cal J}$ is the core of the 'orientation preserving band' if ${\cal F}$ is given in disk-band form.

We will refer to J as the surgery curve for K rel F.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
		000			

Lemma (R.)

Given a knot K bounding a punctured Klein bottle F with zero framing, there exists a 2-sided homologically essential simple closed curve J on F such that

- J has zero self-linking
- J is unique upto orientation and isotopy.

 ${\cal J}$ is the core of the 'orientation preserving band' if ${\cal F}$ is given in disk-band form.

We will refer to J as the surgery curve for K rel F.

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and has surgery curve J. If J is slice, so is K.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	○○●		O	00
Pr	oposition (R.)				

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_K(\omega) = \sigma_J(\omega^2)$ for all $\omega \in \mathbb{S}^1$. In particular, if K is slice, $\sigma_J \equiv 0$

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	○○●		O	00
Pr	oposition (R.)				

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_K(\omega) = \sigma_J(\omega^2)$ for all $\omega \in \mathbb{S}^1$. In particular, if K is slice, $\sigma_J \equiv 0$

Proof: Such a K is concordant to $R(\eta,J),$ i.e. it is a satellite of J, where R is a ribbon knot.

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_K(\omega) = \sigma_J(\omega^2)$ for all $\omega \in \mathbb{S}^1$. In particular, if K is slice, $\sigma_J \equiv 0$

Proof: Such a K is concordant to $R(\eta,J),$ i.e. it is a satellite of J, where R is a ribbon knot.

Proposition (R.)

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_K(\omega) = \sigma_J(\omega^2)$ for all $\omega \in \mathbb{S}^1$. In particular, if K is slice, $\sigma_J \equiv 0$

Proof: Such a K is concordant to $R(\eta,J),$ i.e. it is a satellite of J, where R is a ribbon knot.

 $\sigma_K(\omega) = \sigma_{R(\eta,J)}(\omega) = \sigma_R(\omega) + \sigma_J(\omega^2)$

Suppose K bounds a punctured Klein bottle F with zero framing and surgery curve J. Then $\sigma_K(\omega) = \sigma_J(\omega^2)$ for all $\omega \in \mathbb{S}^1$. In particular, if K is slice, $\sigma_J \equiv 0$

Proof: Such a K is concordant to $R(\eta, J)$, i.e. it is a satellite of J, where R is a ribbon knot.

Notice that if K is slice, $\sigma_J \equiv 0$. This is already more than the genus one case.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	●○○	O	00
Main	theorem				

Theorem (R.)

Suppose a knot K bounds a punctured Klein bottle F with zero framing, and J is the surgery curve. K is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice if and only if J is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice.

(A knot is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice if it bounds an embedded disk in a $\mathbb{Z}\left[\frac{1}{2}\right]$ -homology \mathbb{B}^4 .) Note that in particular if K is slice, J is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	●○○	O	00
Main t	theorem				

Theorem (R.)

Suppose a knot K bounds a punctured Klein bottle F with zero framing, and J is the surgery curve. K is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice if and only if J is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice.

(A knot is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice if it bounds an embedded disk in a $\mathbb{Z}\left[\frac{1}{2}\right]$ -homology \mathbb{B}^4 .) Note that in particular if K is slice, J is $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice. Note also that the only known examples of $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice knots which are not also slice are satellites of strongly negatively amphichiral knots.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	○●○	O	00
Pr	roof:				

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	○●○	O	00
Pr	oof:				

Goal O	Introduction 0000	Preliminaries 000	Main theorem ○●○	Interlude O	Corollaries
Pr	roof:				
	M_J			M_U M_R	

Here M_{\ast} denotes the zero-surgery manifold on the knot \ast

Introduction	Preliminaries	Main theorem	Interlude	Corollaries
		000		

This gives a $\mathbb{Z}\left[\frac{1}{2}\right]$ -homology cobordism between M_J and M_K .

Theorem (Cochran-Franklin-Hedden-Horn, 2011)

 M_K is smoothly $\mathbb{Z}\left[\frac{1}{2}\right]$ -homology cobordant to M_U if and only if K is smoothly $\mathbb{Z}\left[\frac{1}{2}\right]$ -slice.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	000	•	00
Interl	ude: an app	lication			

Hedden-Livingston-Ruberman (2011) used knots which bound Klein bottles as examples of topologically slice knots (not smoothly slice) which do not have Alexander polynomial one.

Here p is a prime number such that $p\equiv 3\mod 4$ and J_p is the connected sum of p-1 copies of the untwisted double of the trefoil knot.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	000	•	00
Interl	ude: an app	lication			

Hedden-Livingston-Ruberman (2011) used knots which bound Klein bottles as examples of topologically slice knots (not smoothly slice) which do not have Alexander polynomial one.

Here p is a prime number such that $p\equiv 3\mod 4$ and J_p is the connected sum of p-1 copies of the untwisted double of the trefoil knot. Using our main theorem, we can quickly conclude that the above knots are not smoothly slice, since the knots J_p have non-zero τ -invariant.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000	000	O	●○
Coroll	aries				

Corollary (R.)

Given knots K and J, $K_{(2,p)}$ is $\mathbb{Z}\left[\frac{1}{2}\right]$ -concordant to $J_{(2,p)}$ if and only if K is $\mathbb{Z}\left[\frac{1}{2}\right]$ -concordant to J.

In particular, if $K_{(2,p)}$ is concordant to the (2,p) torus knot, then K is $\mathbb{Z}\left[\frac{1}{2}\right]\text{-slice.}$

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
	0000				•0
Corol	llaries				

Corollary (R.)

Given knots K and J, $K_{(2,p)}$ is $\mathbb{Z}\left[\frac{1}{2}\right]$ -concordant to $J_{(2,p)}$ if and only if K is $\mathbb{Z}\left[\frac{1}{2}\right]$ -concordant to J.

In particular, if $K_{(2,p)}$ is concordant to the (2,p) torus knot, then K is $\mathbb{Z}\left[\frac{1}{2}\right]\text{-slice}.$

Corollary (R.)

Given a knot K, if $K_{(2,1)}$ is $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ -slice (or slice), then K is $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ -slice.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
					0•

Proof: The concordance inverse of $J_{(2,p)}$ is $(-J)_{(2,-p)}$.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
O	0000	000		O	○●

Proof: The concordance inverse of $J_{(2,p)}$ is $(-J)_{(2,-p)}.$ $K_{(2,p)}$ and $(-J)_{(2,-p)}$ bound Möbius bands with framing 2p and -2p respectively.

0 0000	000	000	$\odot \bullet$

Proof: The concordance inverse of $J_{(2,p)}$ is $(-J)_{(2,-p)}$. $K_{(2,p)}$ and $(-J)_{(2,-p)}$ bound Möbius bands with framing 2p and -2p respectively.

Goal	Introduction	Preliminaries	Main theorem	Interlude	Corollaries
					00

Proof: The concordance inverse of $J_{(2,p)}$ is $(-J)_{(2,-p)}$. $K_{(2,p)}$ and $(-J)_{(2,-p)}$ bound Möbius bands with framing 2p and -2p respectively.

If As a result, $K_{(2,p)}\#(-J)_{(2,-p)}$ bounds a Klein bottle with 0 framing, with a disk band form where the orientation preserving band has knot type K#-J. We can then apply our main theorem.