December 5,2020 Tech topology 10

Embedding surfaces in 4-manfolds
joint with
Daniel Kapprouski
mark Powell
Peter Teichner

Embedding smfaces in 4-manifolds
(joint w. Kasprowski, Powell, Teichner)

Q: Given a map of a smface in a 4-ufled, when is it homotopic to a (lac. flat or smooth) embedding?

- an embedding $\Sigma C M$ is bloc. flat if each pt in Σ has a mad U st. $(U, U \cap \Sigma) \approx\left(\mathbb{R}^{4}, \mathbb{R}^{2}\right)$ home o

- generically the image of $\Sigma^{2} \rightarrow M^{4}$ has isolated double point singularities $(2+2=4)$

Why is this an interesting_question?
Example:

- By Poincavé duality, every closed 4-mfld has an bilinear, mi modular intersection form

$$
Q_{M}: H_{2}(M ; 7 L) \times H_{2}(M ; 7 L) \longrightarrow T L
$$

- eeg. $Q s^{2} \times s^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

- $E 8:=\left[\begin{array}{llllllll}2 & 1 & & & & & \\ 1 & 2 & 1 & & & & & \\ & 1 & 2 & 1 & & & & \\ & 1 & 2 & 1 & & & \\ & & 1 & 2 & 1 & 0 & 1 \\ & & 1 & 2 & 1 & 0 \\ & & & 1 & 2 & 0 \\ & & 0 & 0 & 2\end{array}\right]$

Q: IS ER $\oplus E 8$ the intersection form of a closed, simply connected 4-mfed?

Idea:
The $k 3$ surface $:=\left\{[x, y, z, w] \in \mathbb{C} \mathbb{P}^{3} \mid x^{4}+y^{4}+z^{4}+w^{4}=0\right\}$

$$
\begin{gathered}
\pi_{1}(k 3)=1 \Longrightarrow \pi_{2}\left(k_{3}\right) \cong H_{2}\left(k_{3}\right) \\
Q_{k 3} \cong E 8 \oplus E 8 \oplus\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

Goal: realise algebra by geometry.

Spoiler: this is possible topologically but not smoothly
[Freedman]
[Donaldson]

The whitney trick

$t=-\varepsilon$

$t=0$

$t=\varepsilon$

The whitey trick

- if \exists (framed) embedded whitney disc, can remove the pair of intersections
- using the whitey trick, Small proved the smooth h-cob theorem in dim $\geqslant 5 \Rightarrow$ Poincare 'unjectrine
- what about dimension 4?

Intersection numbers

$$
\lambda(f, g):=\sum_{p \in f \pitchfork g} \varepsilon(p) \gamma(p) \in \Pi L[\pi, M]
$$ well-defined if f, g simply connected

[modulo the choice of whiskers]
$\lambda(f, g)=0 \Leftrightarrow$ are pts $p \in f \pitchfork g$ pained by gen boll.
of wo discs $\left\{\begin{array}{l}\text { gen-imunersed we discs } \\ w \text {. framed, cursedded, pairwise } \\ \text { disjoint boundaries }\end{array}\right.$
Self.intusection umber $\mu(f)=0 \Longleftrightarrow$ all $p^{\text {ts }} \in f i f$ are pained by gen. coll. of Th discs
f, g are alg. Aral if $\lambda(f, g)=1 \Longleftrightarrow$ all but one pt in f ing are pained
fig are geom. dual if $f \lambda g=\{p t\}$

Breakthingh result: Disc embedding theorem (Casson, Aneedman'82, freedman - Quiun'go)
M^{4} connected, topological manifold. π, M good $\Sigma=L \Sigma_{i}$ compact smface, each \sum_{i} simply connected $\Sigma_{i}=D^{2}$ or s^{2}

generic immersion

$$
F=\omega f_{i} \quad f_{i}: \Sigma_{i} \rightarrow M
$$

such that - algebraic intersection numbers of F vanish $\lambda\left(f_{i}, f_{j}\right)=\mu\left(f_{i}\right)=0$

- $\exists G: U S^{2} \longrightarrow M$ framed alg. dual to F norm idle.

$$
\lambda\left(f_{i}, g_{j}\right)=\delta_{i j}
$$

Then F is (reg.) lentic vel ∂ to a loc. flat emp \bar{F} $[\text { with geom dual spheres } \bar{G} \text { with } G \simeq \bar{G} \text {.] }]_{\pi_{1} \neq 1}^{\text {Pomell.R.R.Teichnerko }}$

Conseqnences of the disc embedding theorem

- h-cobondism theonen, s.cobondirm thm (good π_{1})
- smgen requence exact (ood π_{1})
- Poincané conjecture

Quiun: annulus thm \Rightarrow conneched srum of TOP 4-urfeds well.defined.

Good groups

- abclian gps, finite gpes, solvable groups,...
- gps of subexp growth [Kmshkal-Quiun, Freedman-Teichnev]
- closed under sneggs, quotients, divect limits, extensions.
- open e.g. whether M/ */7 good

Disk enbedding theorem (Casson, freedman'82, freedman-Quimn'90 Surface Stong, Kasprowski-Pomell-R. Teichner'20t
M^{4} connected, topological manfold. π, M good
$\Sigma=L \Sigma_{i}$ compact smface,

generic inmmersion
such that algebraic intersection mumbers of F vanish

- $\exists G: U S^{2} \rightarrow M$ fronted alg.dual to F

Then F is (reg.) entpic vel ∂ to a loc. flat emb \bar{F} with geom dual spheres \bar{G} with $G \simeq \bar{G}$
iff $k m(F) \in \Pi / / 2$ vamishes
Kervaine. Milnor invanant.

Corollary 1: $F: \Sigma^{2} \longrightarrow M^{4}$ with

- \sum connected
- alg int numbers vanisher
- $\exists G$ alg dual sphere
$F^{\prime}:=F \cup$ hivial tube
Then f^{\prime} is (neg) htpic to an embedding
Corollary 2:F: $\Sigma^{2} \longrightarrow M^{4}$ with
- \sum connected, $g(\Sigma)>0$

- alg int numbers vanisher
- $\exists G$ alg dual sphere
- $\pi_{1} M=1$

Then f is (neg) htpic to an embedding
Conollany: $g_{\text {sh, } \pm 1}^{\text {TOP }}(K) \leqslant 1 \forall K$
[FMNOPR'20] $\quad\left[\ln\right.$ fact, $\left.g_{s u, \pm 1}^{\text {TOP }}(k)=\operatorname{Arg}(k) \forall k\right]$

Definition of invariants:

$\lambda(f, g)$ not well defined in $\Pi[\pi, M]$!
$\lambda(f, g)=0 \Leftrightarrow$ all pts in f ti paired

$$
:=\sum_{l}\left|\ln t w_{l}^{\infty} \wedge F^{c s}\right|
$$

mod 2 by gen inum. coll of whee discs

In general, $\lambda(F, F)=\mu(F)=0$
$\Rightarrow \exists\left\{W_{l}\right\}$ gen coll. of th disco for F MF
$F^{C s} \subseteq F$ subsurface w. Misted dual spheres $\left\{w_{l}^{c s}\right\} \subseteq\left\{w_{l}\right\}$ pairing ints of $F^{c \infty}$

$$
\operatorname{Rm}\left(F ;\left\{W_{l}\right\}\right):=\sum_{l}\left|h+w_{l}^{c_{l}} n F^{c}\right| \bmod 2
$$

Thanks for you attention!

