A surface embedding fliedrem joint with Daniel Kasprowski Mark Powell Peter Teichner

O: Given a map of a surface in a 4-myld, when is IT
homotopic to a (loc-flat) embedding?
$$(u, u \cap Z) \approx (\mathbb{R}^4, \mathbb{R}^2)$$

e.g. which elements of $\pi_2(M^4)$ are nep. by embedded sphere?

• when does a knot in S³ bound an embedded disc in B⁴?

Prototypical result: Disc embedding theorem Casson Casson, Freedman'82, Freedman-Quinn'90 M⁴ connected topological mild, π, Mgood. Z = LZ; compact sonface, each Z; simply connected F: Z ~ M 1 J a generic immersion Me C ZC • the algebraic intersection numbers of F vanish such that • IG: US² => M framed, alg. dual spheres for F Then F is (neg.) htpic rel ∂ to a loc. flat embedding \overline{F} [with geom dual spheres \overline{G} s.t. $\overline{G} \simeq G$.] $\overline{\pi_1 \pm 1}$ Powell-R-Teichner'zo.

Intersection numbers
$$f(f,g) := \sum_{\substack{p \in f, hg}} \mathcal{E}(p) Y(p) \quad \mathcal{E}(T_{L}, M]$$

 $f(f,g) := \sum_{\substack{p \in f, hg}} \mathcal{E}(p) Y(p) \quad \mathcal{E}(T_{L}, M]$
well defined if f, g are ning. connected
(no dubo whiskers)
 $\chi(f,g) = 0 \iff all points in f hg are$
 $gen coll.$
 $gen co$

The Whitney hick

IR4 = IR3 x ftime }

The whitney hick

RHT is not slice i.e. I emb disc bounded
by K.
Every KS³ bounds an emb. disc in
$$\# CP^2 \# CP^2$$

given K, min Ms.t.
given K, min Ms.t.
K mel-hom slice in $\# CP^2 - \# S^2 \tilde{\chi} S^2$
K mel-hom slice in $\# CP^2 - \# S^2 \tilde{\chi} S^2$
S' χS^2

Intersection numbers

λ(fig) not well defined in 7/L[π,M]! but court in a double coset space

The Kervaire - Milnor invariant [for disco/spheres, due to FQ90 §10+Stong]

^ ^

Let
$$W^{cs} = \{W_e^{cs}\} \subseteq W$$
 subset poiring introd F^{cs} .
Then $Rm(F, W) := \sum_{R}^{r} |IntW_e^{cs} \cap F^{cs}| \mod 2$.

$$km(f,w) = 1$$

$$km(f_{a},w) = 0 \in \pi L/a$$

Question: When is
$$km(F, W)$$
 independent of W ?
(Spoiler: when F is b-characteristic)

Proof outline: Suppose ZW s.t. Rm (F, W)= DE76/2

Step5: Whitney more Foren Ever toget desired F.

Thomks!

When is km(F, W) independent of W? • For convenience, assume Σ connected; M, Σ oriented; $\Sigma = \Sigma^{cs}$

Otherwise, Fis called s-characteristic.

When is km(F, W) independent of W? • For convenience, assume Σ connected; M, Z oriented; $\Sigma = \Sigma^{cs}$

When is km (F, W) independent of W?

· For convenience, assume 2 connected; M, 2 oriented.

If Jz[2B(F) hivial, for a band B and A a collection of what for F, Θ_A(B) := M_Z(2B) + 2B AA + BAF + e(B) mod 2 Suppose JA, B s.t. Θ_A(B) = 0 When is km(F, W) independent of W? • For convenience, assume Σ connected; M, Σ oriented; $\Sigma = \Sigma^{convenience}$

Let
$$B(F) \subseteq H_2(M, \mathbb{Z}; \mathbb{Z}|2)$$
 the subset rep by maps of annuli
or Möbius bands

Suppose the
$$76/2$$
 int form λ_z on $H_1(\Sigma; 76/2)$ is non-hivid on $\partial B(F)$.

When is km(F, W) independent of W? • For convenience, assume Σ connected; M, Σ oriented; $\Sigma = \Sigma^{cs}$

Lemma $\Theta_A(B)$ depends only on the homology class of B. If $\lambda_Z |_{\partial B(F)}^{=0}$, then Θ_A does not depend on A.

Dépinition: Fis b-characteristic if $\lambda_Z | \partial B(F)^{=0} \& \Theta = 0$

When is km(F, W) independent of W? • For convenience, assume Σ connected; M, Z oriented; $\Sigma = Z^{cs}$

Definition:
$$km(F) = 0$$
 if F not b-char
 $km(F) = km(F, W)$ if F b-char.

