
Some properties of hypergeometric series

associated with mirror symmetry

Don Zagier and Aleksey Zinger

June 28, 2011

Abstract

We show that certain hypergeometric series used to formulate mirror symmetry for Calabi-Yau
hypersurfaces, in string theory and algebraic geometry, satisfy a number of interesting properties.
Many of these properties are used in separate papers to verify the BCOV prediction for the genus
one Gromov-Witten invariants of a quintic threefold and more generally to compute the genus
one Gromov-Witten invariants of any Calabi-Yau projective hypersurface.

1. Introduction

An astounding prediction for the genus zero Gromov-Witten invariants of (counts of rational
curves in) a quintic threefold was made in [CaDGP]. It was formulated in terms of the function F
defined in (1) below and related objects. This 1991 mirror symmetry prediction was mathematically
verified about five years later. The 1993 mirror symmetry prediction of [BCOV] for the genus one
Gromov-Witten invariants of a quintic threefold was recently verified in [Z1]. A generalization of
this prediction for a degree n hypersurface Xn in CPn−1, for an arbitrary n, is proved in [Z2]; X5

is a quintic threefold. The proofs in these two papers make use of the properties of F described by
Theorems 1–3 below. Theorem 4 explores related properties of F ; they appear to be of interest in
their own right and may also be of use in computation of higher genus Gromov-Witten invariants.
Some further conjectural properties are stated in Section 3.

We denote by
P ⊂ 1 + xQ(w)[[x]]

the subgroup of power series in x with constant term 1 whose coefficients are rational functions in
w which are holomorphic at w=0. Thus, the evaluation map

P → 1 + xQ[[x]], F (w, x) 7→ F (0, x) ,

is well-defined. We define a map M : P → P by

MF (w, x) =

{
1 +

x

w

∂

∂x

}
F (w, x)

F (0, x)
.

Our first result says that the hypergeometric functions arising in the mirror symmetry predictions
are periodic fixed points of the map M.
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Theorem 1. Let n be a positive integer and F ∈ P the hypergeometric series

F(w, x) =
∞∑
d=0

xd
∏r=nd
r=1 (nw+r)∏r=d

r=1((w+r)n−wn)
. (1)

Then MnF = F .

Note that we consider n as fixed and therefore omit it from the notations.

If we now define further power series Fp ∈ P and Ip ∈ 1 + xQ[[x]] for all p ≥ 0 by

Fp(w, x) = MpF(w, x) , Ip(x) = Fp(0, x) ,

so that Fp+1 = (1 + w−1x d/dx)(Fp/Ip), then Theorem 1 says that Fn+p = Fp and consequently
In+p = Ip for all p ≥ 0. The next result gives further properties of the functions {Ip}p∈Z/nZ .

Theorem 2. The power series Ip(x), 0 ≤ p ≤ n− 1, satisfy

I0(x) I1(x) · · · In−1(x) = (1− nnx)−1, (2)

I0(x)n−1I1(x)n−2 · · · In−1(x)0 = (1− nnx)−(n−1)/2 , (3)

Ip(x) = In−1−p (0 ≤ p ≤ n−1) . (4)

We note that (2) and the symmetry property (4) imply (3). However, (3) is simpler to prove
directly than (4) and will be verified together with (2) before we give the proof of (4).

The power series Ip describe the structure of F at w=0. We will also describe some of its structure
at w=∞. We begin with the following observation, which will be proved in Subsection 2.3.

Lemma 1. If F ∈ P and MkF = F for some k > 0, then every coefficient of the power series
logF (w, x) ∈ Q(w)[[x]] is O(w) as w →∞ .

Applying this lemma to F = F , which satisfies its hypothesis by Theorem 1, we find that logF(w, x)
has an asymptotic expansion

∑∞
j=−1 µj(x)w−j with µj(x) ∈ xQ[[x]] for all j ≥ −1 or equivalently,

that F(w, x) itself has an asymptotic expansion

F(w, x) ∼ eµ(x)w
∞∑
s=0

Φs(x)w−s (w →∞) (5)

for some power series µ = µ−1, Φ0 = eµ0 , Φ1 = Φ0µ1, . . . in Q[[x]].

Theorem 3. The first three coefficients µ(x), Φ0(x), and Φ1(x) in the expansion (5) are given by

µ(x) =

∫ x

0

L(u)− 1

u
du , Φ0(x) = L(x) , Φ1(x) =

(n−2)(n+1)

24n

(
L(x)− L(x)n

)
, (6)

where L(x) denotes the power series (1− nnx)−1/n ∈ Z[[x]] .
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The proof of this theorem in Subsection 2.3 can be systematized and streamlined to obtain an
algorithm for computing every Φs by a differential recursion, which we now state. For integers
m ≥ j ≥ 0 (and for our fixed integer n) we define Hm,j = Hm,j(X) ∈ Q[X] inductively by

H0,j = δ0,j , Hm,j = Hm−1,j + (X − 1)

(
X

d

dX
+
m− j
n

)
Hm−1,j−1 for m ≥ 1. (7)

For example, for 0 ≤ j ≤ 2 we find

Hm,0(X) = 1, Hm,1(X) =
1

n

(
m

2

)
(X − 1),

Hm,2(X) =
1

n2

(
m

3

)(
(n+ 1)X − 1

)
(X − 1) +

3

n2

(
m

4

)
(X − 1)2 .

(8)

For fixed j ≥ 1 and varying m, Hm,j has the form
∑j

k=1

(
m
j+k

)
Qj,k(X) with Qj,k ∈ Z[n−1, X] defined

inductively by

Q0,k = δ0,k, Qj,k = (X − 1)(XQ′j−1,k + (k Qj−1,k + (k + j − 1)Qj−1,k−1)/n for j ≥ 1.

We then define differential operators Lk (0 ≤ k ≤ n) on Q[[x]] by

Lk =
k∑
i=0

((
n

i

)
Hn−i,k−i(Ln)− (Ln − 1)

k−i∑
r=1

(
n− r
i

)
Sr(n)

nr
Hn−i−r,k−i−r(Ln)

)
Di , (9)

where D = x d/dx and Sr(n) denotes the rth elementary symmetric function of 1, 2, . . . , n (a Stirling
number of the first kind). Using (8), we find that the first two of these operators are

L1 = nD − (Ln − 1) = nLDL−1 , (10)

L2 =

(
n

2

)
D2 − 3(n− 1)

2
(Ln − 1)D +

n− 1

n

(
(n− 2)(n− 11)

24
Ln − 1

)
(Ln − 1) . (11)

Theorem 4. (i) The power series Φs ∈ Q[[x]], s ≥ 0, are determined by the first-order ODEs

L1(Φs) +
1

L
L2(Φs−1) +

1

L2
L3(Φs−2) + · · · +

1

Ln−1
Ln(Φs+1−n) = 0, s ≥ 0, (12)

(with the convention Φr = 0 for r < 0) together with the initial condition Φs(0) = δ0,s .
(ii) For fixed s and n, Φs(x) belongs to LQ[L] .
(iii) For fixed s, Φs(x) belongs to Q(n)[L,L−1, Ln] .

For example, from (12) for s = 0 and s = 1 together with equations (10) and (11) one finds the
second and third identity in (6), and continuing the same way one obtains

Φ2 =
(n+ 1)2(n− 2)2

2 (24n)2
(L− 2Ln + L2n−1) = Φ2

1

/
2LΦ0 ,

Φ3 =
(n+ 1)(n− 2)

30 (24n)3

{
(1003n4 − 2366n3 + 3759n2 − 1676n− 164)L3n−2

− 72 (n− 1)(3n− 1)(7n2 − 9n+ 14)L2n−2

+ 15 (n+ 1)2(n− 2)2
(
L2n−1 − Ln

)
+ 72 (n− 1)(7n3 − 17n2 + 22n− 24)Ln−2

+ (5n4 + 134n3 − 447n2 + 308n− 556)L

}
.
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illustrating parts (ii) and (iii) of the theorem. These expressions, and the similar formulas obtained
for s ≤ 7, suggest that in fact Φs for s fixed and n varying is an element of Q[n, n−1, L, L−1, Ln],
sharpening statement (iii), but we do not know how to prove this. Some further data and a further
conjecture concerning the functions Φs(x) is given in Section 3.

2. Proofs

2.1. Preliminaries

It will be convenient to introduce notations D and Dw for the first order differential operators
D = x d

dx and Dw = D+w on Q(w)[[x]]. (Here we think of w as a parameter rather than a variable

and write simply d
dx instead of ∂

∂x .) The effect of Dw on a power series
∑
cd(w)xd ∈ Q(w)[[x]]

is to multiply each cd(w) by w + d, so Dw has an inverse operator D−1w which replaces each cd(w)
by (w + d)−1cd(w) . The operator M defined above can be written in terms of Dw as F (w, x) 7→
w−1Dw

[
F (w, x)/F (0, x)

]
.

We remark that instead of working with the functions Fp(w, x), we could have worked with
the functions Rp(w, t) = ewtFp(w, et), which are the objects that actually arise in the analysis of
the mirror symmetry predictions for Gromov-Witten invariants. If we had done that, then the
differential operator Dw = w+x d/dx would have been replaced by the simpler differential operator
d/dt, explaining why this operator plays such a ubiquitous role in our analysis. But it is easier, both
in the calculations and for purposes of exposition, to work with power series over Q(w) in a single
variable x rather than with objects in the less familiar space ewtQ(w)[[et]].

The following lemma and its corollary are the key to the proofs of the four theorems stated above.

Lemma 2. Suppose c0, . . . , cm, f, g, a are functions of t (with f not identically 0) satisfying

cm f
(m) + cm−1 f

(m−1) + . . . + c0 f = 0 ,

cm g
(m) + cm−1 g

(m−1) + . . . + c0 g = a ,
(13)

where f (k) = dkf/dtk . Then the function h := (g/f)′ satisfies

c̃m−1 h
(m−1) + c̃m−2 h

(m−2) + . . . + c̃0 h = a, (14)

where c̃s(t) =
∑m

r=s+1

(
r
s+1

)
cr(t) f

(r−1−s)(t) .

Proof: Using Leibnitz’s rule and (13), we find

a =

m∑
r=0

cr
(
f · g/f

)(r)
=

m∑
r=0

cr

(
f (r)g/f +

r−1∑
s=0

(
r

s+ 1

)
f (r−1−s)h(s)

)
=

m−1∑
s=0

c̃s h
(s) .

Corollary 1. Suppose F (w, x) ∈ P satisfies( m∑
r=0

Cr(x)D r
w

)
F (w, x) = A(w, x) (15)
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for some power series C0(x), . . . , Cm(x) ∈ Q[[x]] and A(w, x) ∈ Q(w)[[x]] with A(0, x) ≡ 0. Then(m−1∑
s=0

C̃s(x)D s
w

)
MF (w, x) =

1

w
A(w, x) , (16)

where C̃s(x) :=
∑m

r=s+1

(
r
s+1

)
Cr(x)Dr−1−sF (0, x) .

Proof: Apply the lemma with cr(t) =Cr(e
t), f(t) =F (0, et), g(t) = ewtF (w, et), a(t) = ewtA(w, et),

noting that then h(t) = wewtMF (w, et).

2.2. Proof of Theorem 2

For the proof of (2) and (3), it is convenient to define Fp(w, x) also for p = −1. Set

F−1(w, x) = wD−1w F(w, x) =

∞∑
d=0

xd
∏r=nd−1
r=0 (nw+r)∏r=d

r=1

(
(w+r)n−wn

) ∈ P . (17)

We have F−1(0, x)=1 and w−1DwF−1=F , so Fp = Mp+1F−1 for all p ≥ 0, justifying the notation.
It is straightforward to check that F−1 is a solution of the differential equation(

Dn
w − x

n−1∏
j=0

(
nDw + j

))
F−1 = wnF−1 . (18)

This has the form of (15) with F = F−1, A = wnF−1, m = n, and

Cn(x) = 1− nnx , Cr(x) = −nr Sn−r(n− 1)x (0 < r < n), C0(x) = 0 , (19)

where Sn−r(n− 1) as before denotes the (n− r)-th elementary symmetric function of 1, 2, . . . ,n− 1.
Applying Corollary 1 repeatedly, we obtain

n−1−p∑
s=0

C(p)
s (x)Ds

wFp(w, x) = wn−p−1F−1(w, x) (0 ≤ p ≤ n− 1), (20)

where C
(0)
s (x) = Cs+1(x) with Cr(x) as in (19) and C

(p)
s for p > 0 is given inductively by

C(p)
s =

n−p∑
r=s+1

(
r

s+ 1

)
C(p−1)
r (x)Dr−1−sIp−1(x) . (21)

In particular, by induction on p we find that the first two coefficients in (20) are given by

C
(p)
n−1−p = (1− nnx)

p−1∏
r=0

Ir(x) , (22)

C
(p)
n−2−p =

(
−n

n(n− 1)

2
x + (1− nnx)

p−1∑
r=0

(n− r − 1)
I ′r(x)

Ir(x)

) p−1∏
r=0

Ir(x) . (23)
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Equations (20) and (22) for p = n− 1 give

(1− nnx)

n−2∏
r=0

Ir(x)Fn−1(w, x) = F−1(w, x) . (24)

Setting w = 0 in this relation and using F−1(0, x) = 1 gives equation (2). Then substituting (2)
back into (24) gives Fn−1/In−1 = F−1 and hence, applying w−1Dw to both sides, Fn = F , proving
also part (i) of Theorem 2. Similarly, taking p = n − 2 in equations (20), (22), and (23) and then
setting w = 0 gives

n−2∑
r=0

(n− r − 1)
I ′r(x)

Ir(x)
=

n− 1

2

nn x

1− nnx
,

and integrating this and exponentiating gives (3).

Finally, we must prove the reflection symmetry (4). For this purpose, it is useful to construct the
power series Ip in another way. Define a function F̃0 ∈ P by

F̃0(w, x) =

∞∑
d=0

xd
∏r=nd
r=1 (nw+r)∏r=d
r=1(w+r)n

(25)

and set F̃p(w, x) = MpF̃0(w, x) for all p ≥ 0. Since F̃0(w, x) is congruent to F(w, x) modulo wn,

we find by induction that F̃p(w, x) is congruent to Fp(w, x) modulo wn−p for all 0 ≤ p ≤ n− 1 and

hence that Ip(x) = F̃p(0, x) in this range. We now argue as above, using F̃0 instead of F−1. This
function satisfies the differential equation(

Dn−1
w − nx

n−1∏
j=1

(
nDw + j

))
F̃0 = wn−1 .

Applying Corollary 1 repeatedly, we obtain

n−1−p∑
s=0

C̃(p)
s (x)Ds

wF̃p(w, x) = wn−p−1

for 0 ≤ p ≤ n− 1, where the coefficients C̃
(p)
s (x) ∈ Q[[x]] can be calculated recursively, the top one

being given by

C̃
(p)
n−1−p(x) = (1− nnx)I0(x) · · · Ip−1(x).

Specializing to p = n − 1 and using (2), we find that F̃n−1(w, x) = In−1(x) is independent of w.
Now by downwards induction on p, using the equation F̃p = IpwD

−1
w F̃p+1, we can “reconstruct” all

of the power series F̃p(w, x) (n − 1 ≥ p ≥ 0) from their special values Ip(x) = F̃p(0, x) at w = 0,
obtaining in particular the formula

w1−n F̃0(w, x) = I0D
−1
w I1D

−1
w · · · In−2D−1w In−1

for the initial series F̃0. Comparing the coefficients of xd on both sides of this equation, we find

n−1
∏nd
r=0(nw + r)

[w(w + 1) · · · (w + d)]n
=

∑
d0,...,dn−1≥0

d0+···+dn−1=d

c0(d0) · · · cn−1(dn−1)
(w + d1 + · · ·+ dn−1)(w + d2 + · · ·+ dn−1) · · · (w + dn−1)
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for all d ≥ 0, where cp(d) denotes the coefficient of xd in Ip(x). Splitting up the sum on the right into
the subsum over n-tuples (d0, . . . , dn−1) with max{dr} ≤ d− 1 and the sum over the n-tuples which
are permutations of (d, 0, . . . , 0), and using that cp(0) = 1 for all p, we can rewrite this equation as

n−1∑
p=0

cp(d)

wn−p−1(w + d)p
=

∏nd
r=0(nw + r)

n
∏d
r=0(w + r)n

−
∑

0≤d0,...,dn−1<d

d0+···+dn−1=d

c0(d0) · · · cn−1(dn−1)
(w + d1 + · · ·+ dn−1) · · · (w + dn−1)

Now suppose by induction that cp(d
′) = cn−p−1(d

′) for all d′ < d and all 0 ≤ p ≤ n − 1. (Notice
that this is true for d′ = 0 because cp(0) = Ip(0) = 1 for all p, providing the starting point for the
induction.) Then both terms on the right are (−1)n−1-invariant under the map w → −w − d, as
one sees for the second term by making the renumbering dr → dn−1−r. It follows that the left-hand
side has the same invariance and hence that cp(d) = cn−1−p(d) for all 0 ≤ p ≤ n− 1, completing the
inductive proof of the desired symmetry In−1−p = Ip.

2.3. Proof of Theorem 3

We now turn to the expansion of F(w, x) near w =∞. We first prove Lemma 1, which said that
any periodic fixed point of the map M : P → P has a logarithm which belongs to wQ[[x,w−1]].

Proof of Lemma 1: The effect of M on logarithms is given by M
(
eH(w,x)

)
= eH

∗(w,x) , where

H∗(w, x) = H(w, x)−H(0, x) + log

(
1 +

DH(w, x)−DH(0, x)

w

)
; (26)

here, as before, D denotes x ∂
∂x . Suppose that H(w, x) := logF (w, x) is not O(w), and let e be the

smallest integer such that the coefficient of xe in H(w, x) is not O(w) as w →∞. Then

H(w, x) = CxewN + xOw(w) + xeOw(wN−1) + O(xe+1) (w →∞) (27)

for some C 6= 0 and N ≥ 2, where Ow(wν) denotes a polynomial in x with coefficients that grow at
most like wν as w →∞ and O(xe+1) denotes an element of xe+1Q(w)[[x]]. From (26) and (27),

H∗(w, x) = H(w, x) + CexewN−1 + xOw(1) + xeOw(wN−2) + O(xe+1).

This has the same form as (27) with the same C, e, and N . Iterating, we find that

log
(
MkF (w, x)

)
= H(w, x) + kCexewN−1 + xOw(1) + xeOw(wN−2) + O(xe+1),

and this contradicts the assumption that MkF = F , since C 6= 0 and N ≥ 2.

As already mentioned in the introduction, Lemma 1 implies that F(w, x) has an asymptotic
expansion of the form (5). From the proof of the lemma, we see that each Fp(w, x) = MpF(w, x)
has an asymptotic expansion

Fp(w, x) ∼ eµ(x)w
∞∑
s=0

Φp,s(x)w−s (w →∞) (28)

of the same form, with the same function µ(x) in the exponent. The equation Fp+1=MFp gives

Φ0,s = Φs, Φp+1,s =
1 + µ′

Ip
Φp,s +

{(
Φp,s−1/Ip

)′
if s ≥ 1,

0 otherwise,
(29)
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where f ′ denotes Df = x df/dx . We want to solve these equations by induction on p for small s.

Before doing this, we begin with the following observation. Let L(x) = (1 − nnx)−1/n as in
Theorem 3. Then (2) says that the product of the functions Ip(x)/L(x) (p ∈ Z/nZ) equals 1, so if
we define

Hp(x) =
L(x)p

I0(x) · · · Ip−1(x)
(p ≥ 0), (30)

then we have the properties

H0 = 1, Hp/Hp+1 = Ip/L, H1H2 · · ·Hn = 1, Hp+n = Hp, Hn−p = H−1p , (31)

where the last equality is originally true for 0 ≤ p ≤ n but then, in view of the periodicity of {Hp},
holds for any p ∈ Z/nZ. A number of identities below are simpler to state in terms of the functions
Hp(x) than in terms of the original functions Ip(x).

The case s = 0 of (29) gives by induction the formula Φp,0 = (1 +µ′)p/I0 · · · Ip−1. Combining this
with the formulas Fn = F and (2), we obtain (1 + µ′)n = Ln , from which the first equation in (6)
follows since µ(x) is a power series in x with no constant term. This also gives us the formula

Φp,0(x) = Hp(x) Φ0(x) for all p ≥ 0,

with Hp as in (30). Now substituting this into the case s = 1 of (29) we find inductively

Φp,1(x) = Hp(x)

(
Φ1(x) + p

Φ′0 − L′

L
+

Φ0

L

p∑
r=1

H ′r
Hr

)
for all p ≥ 0.

Setting p = n in this relation and using the third and fourth of equations (31) and Fn = F , we
deduce that Φ0 = L, which is the second assertion of Theorem 3. At the same time we can refine
the last two equations to

Φp,0 = Hp L, Φp,1 = Hp

(
Φ1 +

p∑
r=1

H ′r
Hr

)
(p ≥ 0). (32)

The proof of the third identity in (6) is similar, but the calculations are more complicated. The
case s = 2 of (29) gives by induction the formula

Φp,2 = Hp

(
Φ2 + p

(Φ1

L

)′
+

( p∑
r=1

H ′r
Hr

)
Φ1

L
+

1

L

p∑
s=2

s−1∑
r=1

H ′r
Hr

H ′s
Hs

+

(
1

L

p−1∑
r=1

(p−r)H
′
r

Hr

)′)
for all p ≥ 0. Taking p = n, observing that

n∑
s=2

s−1∑
r=1

H ′r
Hr

H ′s
Hs
≡ 1

2

(( n∑
p=1

H ′p
Hp

)2

−
n∑
p=1

(
H ′p
Hp

)2
)

= −1

2

n∑
p=1

(
H ′p
Hp

)2

by the third equation in (31), and using Fn = F , we find that

n
(Φ1

L

)′
=

1

2L

n∑
p=1

(
H ′p
Hp

)2

+

(
1

L

n−1∑
p=0

p
H ′p
Hp

)′
= −(n+ 1)(n− 2)

24

(
Ln−1

)′
,

the last equation being Lemma 3 below. Integrating and using Φ1(0) = 0 gives the last identity
in (6).
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Lemma 3. The functions {Hp(x)}p∈Z/nZ satisfy

1

2L

∑
p (mod n)

(
H ′p
Hp

)2

= −
(

(n+ 1)(n− 2)

24
Ln−1 +

1

L

n−1∑
p=0

p
H ′p
Hp

)′
. (33)

The proof consists of expressing the left-hand side of (33) in terms of the functions I0, I1, . . . , In−1
and their derivatives, getting rid of all square terms via the product rule, and then eliminating In−1,

In−2, and In−3. The last elimination is achieved by computing the coefficients C
(n−3−p)
p inductively

by (20), starting with

C
(0)
n−3 = −nn−2 S2(n− 1)x = −(n− 1)(n− 2)(3n− 1)

24
L′/Ln+1 ,

and then setting p = n − 3, exactly as we did with C
(n−1−p)
p and C

(n−2−p)
p in Subsection 2.2 to

prove eqs. (2) and (3). At this stage, all terms involving products of two functions Ip cancel, and
the resulting expression can be integrated. We omit the details, which are somewhat tedious, since
the last identity in (6) also follows easily from Theorem 4.

2.4. Proof of Theorem 4

We set X = Ln and Y = (Ln − 1)/n. Note that

D(µ) = L− 1, D(L) = LY, D(X) = X2 −X, D(Y ) = XY. (34)

The first identity implies that Dw e
µw = eµw D̃w, where D̃w = D + Lw. By induction on k, the

powers of the differential operator D̃w are given by

D̃k
w =

k∑
m=0

(
k

m

)
D̃m
w (1)Dk−m

= Dk + k LwDk−1 +
k(k − 1)

2

(
(Lw)2 + Y (Lw)

)
Dk−2 + . . . .

(35)

A second induction gives the formula

D̃m
w (1) =

m∑
j=0

Hm,j(X) (Lw)m−j , (36)

with Hm,j ∈ Z[X,Y ] ⊆ Q[X] given by (7).

The function F(w, x) satisfies the ODE(
Dn
w − wn − x

n∏
j=1

(
nDw + j

))
F = 0 .

Since Dw e
µw = eµw D̃w, the function F̃(w, x) = e−µ(x)wF(w, x) satisfies the differential equation

LF̃ = 0, where L is the differential operator

L = Ln
(
D̃n
w − wn − x

n∏
j=1

(
nD̃w + j

))

= D̃n
w − (Lw)n − (Ln − 1)

n∑
r=1

Sr(n)

nr
D̃n−r
w .
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Using (35) and (36), we can expand L as L =
∑n

k=1(Lw)n−kLk, with Lk defined by (9). Combining

the differential equation LF̃ = 0 with the asymptotic expansion F̃(w, x) ∼
∑

s≥0 Φs(x)w−s for
large w, we obtain (12).

We will next use (12) to prove by induction Φs belongs to LQ[L]. Since L1(LQ[L]) = L2YQ[L],
it suffices to show that

Lk(LQ[L]) ⊆ Lk+1Y Q[L] (2 ≤ k ≤ n). (37)

Let I ⊂ Q[L] be the ideal generated by XY . Since D and Y commute modulo I by (34) and
(D − rY )Lr = 0, we have

(D − Y )(D − 2Y ) . . . (D − kY )Lr ∈

{
Lr I if 1 ≤ r ≤ k ,
LrY Q[L] if r ≥ k + 1 .

Therefore (37) is a consequence of the following lemma.

Lemma 4. For all k > 1,

Lk ≡
(
n

k

)
(D − Y )(D − 2Y ) · · · (D − kY ) (mod I) .

Proof: The recursion (7) for Hm,j shows that Hm,j ≡ hm,j Y
j (mod I), where hm,j ∈ Z is given

recursively by
h0,j = δ0,j , hm,j = hm−1,j + (m− j)hm−1,j−1 ∀ m ≥ 1 . (38)

Thus hm,j = S
(m−j)
m , where S

(k)
m denotes a Stirling number of the second kind (the number of ways

of partitioning a set of m elements into k non-empty subsets). We also note (1−Ln)n−r ≡ (−1)rY r

(mod I) for all r ≥ 1. Combining these facts with (9), we find that

Lk ≡
k∑
i=0

( k−i∑
r=0

(−1)r
(
n− r
i

)
Sr(n)S

(n−k)
n−r−i

)
Y k−iDi (mod I) .

The desired congruence for Lk now follows from the generating series calculation

k∑
i=0

( k−i∑
r=0

(−1)r
(
n− r
i

)
Sr(n)S

(n−k)
n−r−i

)
ti

=

n∑
i=0

( n−i∑
r=0

(−1)r
(
n− r
i

)
Sr(n)

[
1

(n− k)!

n−k∑
j=0

(−1)n−k−j
(
n− k
j

)
jn−r−i

])
ti

=
1

(n− k)!

n−k∑
j=0

(−1)n−k−j
(
n− k
j

) n∑
r=0

(−1)rSr(n)

n−r∑
i=0

(
n− r
i

)
jn−r−iti

=
1

(n− k)!

n−k∑
j=0

(−1)n−k−j
(
n− k
j

) n∑
r=0

(−1)rSr(n)(j + t)n−r

=
n!

(n− k)!

n−k∑
j=0

(−1)n−k−j
(
n− k
j

)(
j + t− 1

n

)

=
n!

(n− k)!

(
t− 1

k

)
=

(
n

k

)
(t− 1)(t− 2) · · · (t− k) ,
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where the first equality follows from the well-known fact that the expression in square brackets equals

S
(n−k)
n−r−i if i + r ≤ k and 0 for i + r > k and the second-to-last equality is obtained by expanding

(1 + u)t−1((1 + u)− 1)t−1 by the binomial theorem and equating coefficients of tn.

3. Further discussion of the large w expansion of F(w, x)

In this final section we give some further information and conjectures about the power series
Φs(x) defined by equation (5). We begin by giving the numerical values for n ≤ 5 and s ≤ 4. For
this purpose it is convenient to divide Φs/L by ((n− 2)(n+ 1)/24n)s/s! and write the result as the
sum of (1− Ln−1)s and a correction term, because the coefficients then become much simpler than
without this renormalization:

n = 3 : s = 1 : 1− L2

s = 2 : (1− L2)2

s = 3 : (1− L2)3 + 144 (1− 5L3 + 4L6)
s = 4 : (1− L2)4 + 576 (1− 94L2 − 5L3 + 245L5 + 4L6 − 151L8)

n = 4 : s = 1 : 1− L3

s = 2 : (1− L3)2

s = 3 : (1− L3)3 + 36
25 (4 + 72L− 297L5 + 221L9)

n = 4 (1− L3)4 + 144
125 (884 + 360L− 20L3 − 19584L4 − 1485L5

+44253L8 + 1105L9 − 25513L12)

n = 5 : s = 1 : 1− L4

s = 2 (1− L4)2

s = 3 : (1− L4)3 + 32
45 (7 + 134L2 − 504L7 + 363L12)

s = 4 : (1− L4)4 + 16
135 (168 + 8576L+ 3216L2 − 168L4 − 127568L6

−12096L7 + 270144L11 + 8712L12 − 150984L16)

Table: List of values of s!
(

24n
(n−2)(n+1)

)s
Φs/L for s = 1, 2, 3, 4 and n = 3, 4, 5

This suggests that the series
∑

s(Φs/L)w−s is given to a first approximation by a pure exponential

exp
( (n−2)(n+1)

24n (1 − Ln−1)/w
)

and hence that the formulas for the coefficients of the expansion (5)
may become simpler if we take the logarithm. Doing this, we find an expansion which begins

logF(w, x) = µ(x)w + logL(x) +
(n− 2)(n+ 1)(1− L(x)n−1)

24n
w−1 + 0w−2 + · · ·

and in which, at least experimentally, the coefficient of w−j for j ≥ 0 is the sum of a term independent
of x and a term of the form L−j times a polynomial (without constant term) in Ln. This can be
stated more elegantly by applying the operator w−1D and adding 1, in which case it takes the form

1 +
x

w

∂

∂x
logF(w, x)

?
= L

∞∑
k=0

Pk(n,L
n)

(nLw)k
(39)
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where Pk(n,X) is a polynomial in X of degree k with coefficients in Q[n], the first values being

P0(n,X) = 1 ,

P1(n,X) = X − 1 ,

P2(n,X) = − (n+ 1)(n− 1)(n− 2)

24
(X − 1)X ,

P3(n,X) = 0 ,

P4(n,X) =
(n+ 1)(n− 1)(n− 2)

5760
(X − 1)(A3X

3 +A2X
2 +A1X) ,

P5(n,X) = − (n+ 1)(n− 1)(n− 2)

5760
(X − 1)(B4X

4 +B3X
3 +B2X

2 +B1X)

with

A1 = (n− 3)(7n3 − 17n2 + 22n− 24) ,

A2 = − (2n− 3)(3n− 1)(7n2 − 9n+ 14) ,

A3 = 3 (14n4 − 33n3 + 52n2 − 23n− 2) ,

B1 = − (n− 3)(n− 4)(7n3 − 17n2 + 22n− 24) ,

B2 = 2 (n− 1)(n− 2)(49n3 − 115n2 + 152n− 124) ,

B3 = −4 (n− 1)(3n− 1)(3n− 4)(7n2 − 9n+ 14) ,

B4 = 8 (n− 1)(3n− 2)(7n3 − 11n2 + 17n− 1) .

The coefficients of the polynomials Pk follow no apparent pattern apart from the divisibility by
(n+ 1)(n−1)(n−2)X(X−1): the common factors of A1 and B1 and of A2 and B3 are striking, but
nothing similar occurs for the next two polynomials. On the other hand, there is a simple formula
for the leading coefficient of Pk(n,X) with respect to n, namely (at least up to k = 7)

Pk(n,X) =

{
αj ek(X)n4j−1 + O(n4j−2) if k = 2j > 0;

(j − 1)αj ek(X)n4j + O(n4j−1) if k = 2j + 1,

where αj denotes the coefficient of u2j in u/2
sinhu/2 (α0 = 1, α1 = − 1

24 , α2 = 7
5760 , α3 = − 31

967680 , . . . )

and where e1 = X − 1, e2 = X2 −X, e3 = 2X3 − 3X2 +X, . . . are the polynomials defined by

ek(X) =

k∑
l=1

(−1)k−l (l − 1)!S
(l)
k X l ∈ Z[X]

with S
(l)
k as before a Stirling number of the second kind. This is interesting because the argument

X = Ln of Pk(n,X) in equation (39) is in fact (1−nnx)−1 and the functions ek((1− x)−1) have the
basic property

ek

(
1

1− x

)
=

∞∑
d=1

dk−1xd ∈ xZ[[x]] (k ≥ 1) .

There is also a possible intriguing connection with modular and elliptic functions since, for example,
the power series in two variables

∑
αje2j

(
1

1−x
)
u2j−1 is closely related to the expansion of the

Weierstrass ℘-function and related Jacobi forms.
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As a final remark, we observe that (39), if it is true, defines the power series F(w, x) even for
non-integral values of n and shows that this function is analytic in n as well as in w and x. This
seems surprising since F is defined as a hypergeometric function of order n and we would usually
not expect such series to have an interpolation with respect to the order of the differential equation
which they satisfy.

References

[BCOV] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomorphic Anomalies in Topological
Field Theories, Nucl. Phys. B405 (1993), 279–304.

[CaDGP] P. Candelas, X. de la Ossa, P. Green, L. Parkes, A Pair of Calabi-Yau Manifolds as an
Exactly Soluble Superconformal Theory, Nuclear Phys. B359 (1991), 21–74.

[Z1] A. Zinger, The Reduced Genus-One Gromov-Witten Invariants of Calabi-Yau Hypersurfaces,
math/0705.2397.

[Z2] A. Zinger, Standard vs. Reduced Genus-One Gromov-Witten Invariants, math/0706.0715.

Max-Planck-Institut für Mathematik, Bonn
zagier@mpim-bonn.mpg.de

Department of Mathematics, SUNY Stony Brook, NY 11794-3651
azinger@math.sunysb.edu

13


