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Abstract. The classical Selberg zeta function for the modular group Γ1 = SL2(Z)

relates the set of traces of hyperbolic elements of Γ1 and the set of eigenvalues of Maass
wave forms for Γ1. In recent years new connections have emerged relating these two
objects to two new objects: the spectrum (and in particular the eigenvalues ±1) of

a certain “transfer operator” Ls defined by D. Mayer and the analytic solutions of
the “three-term functional equation” ψ(x) = ψ(x + 1) ± x−2sψ(x−1 + 1) introduced
by J. Lewis. We will give a short survey of these connections and also briefly discuss

numerical aspects and extensions to other groups.

§1. The Selberg trace formula and the Selberg zeta function

If Γ is a discrete subgroup of cofinite volume of G = SL2(R), acting in the usual
way on the upper half-plane H, then we have two interesting associated sequences
of positive real numbers. The first is the “length spectrum” 0 < l1 ≤ l2 ≤ · · · ,
which can be defined for Γ torsion-free and cocompact as the set of lengths of all
closed geodesics in Γ\H (counting multiplicities), and in the general case as the set
of numbers logN(γ) for γ ranging over all conjugacy classes of hyperbolic elements

of Γ, where N(γ) is defined as ε2 for γ conjugate to ±
( ε 0

0 1/ε

)
with ε > 1. The

second is the set 0 = λ0 < λ1 ≤ λ2 ≤ · · · of eigenvalues of the hyperbolic Laplace
operator ∆ = −y2(∂2/∂x2 + ∂2/∂y2) on Γ\H. (Here x and y denote the real and
imaginary part of the coordinate z ∈ H as usual.) One has information about the
asymptotics of the set {λj}, but the eigenvalues themselves are in general quite
mysterious. For the full modular group Γ1 = SL2(Z), for instance, many eigenvalues
have been computed numerically (the first and third have the values λ1 = 91.14134 · · ·
and λ3 = 190.13154 · · · ), but not a single eigenvalue is known “in closed form.” The
length spectrum, on the other hand, is fairly easily computable and in the case of
Γ = Γ1 consists essentially of the logarithms of units of all real quadratic fields, with
multiplicities equal to the class numbers of these fields.

The Selberg trace formula relates these two invariants of the action of Γ. Roughly
speaking, it has the form

∞∑

j=0

H(λj) =
∞∑

j=1

H̃(lj) , (1)

where H is a sufficiently nice “test function” (analytic and of suitable decay in a

suitable neighbourhood of R+, but otherwise arbitrary) and H̃ an explicitly given
integral transform of H. (Actually, the formula is a little more complicated: the
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term H̃(λj) corresponding to the conjugacy class of a hyperbolic element which is
the nth power of a primitive element must be divided by n, and one has to add to
the right-hand side further contributions coming from the parabolic elements and the
elements of finite order of the group Γ.)

By choosing for H a suitable function depending on a complex parameter s and
exponentiating both sides of (1), one obtains the Selberg zeta function, ZΓ(s). The
expression for ZΓ(s) as a product over hyperbolic elements takes the form

ZΓ(s) =
∏

γ

∞∏

m=0

(
1 − N(γ)−s−m

)
(ℜ(s) ≫ 0), (2)

where γ in the first product ranges over all primitive hyperbolic elements of Γ (or
equivalently, all primitive geodesics of Γ\H), while the expression for ZΓ(s) as a
product over eigenvalues of the Laplace operator shows that ZΓ(s) has a meromorphic
continuation in s and has zeros (with the appropriate multiplicities) at all the spectral
parameters of Γ, defined as the numbers sj with sj(1− sj) = λj . (Notice that there
are two sj for each eigenvalue λj , the values corresponding to the two eigenvalues
given above for Γ = Γ1 being 1

2 ± 9.53369526 · · · i and 1
2 ± 13.779751 · · · i .)

In this note we will concentrate mostly on the case of the full modular group
Γ1 = SL2(Z) and its order 2 extension Γ+ = GL2(Z), which can be made to operate

on H by letting γ =
(
a b

c d

)
act by z 7→ (az̄ + b)/(cz̄ + d) if det(γ) = −1. The

eigenvalues of the Laplace operator for Γ+ are just the even eigenvalues for Γ1, i.e.,
those corresponding to eigenfunctions which are symmetric under z 7→ −z̄ (of the
two eigenvalues for Γ1 given above, the first corresponds to an odd eigenfunction and
the second to an even one), and the corresponding spectral parameters are zeros of
the Selberg zeta function ZΓ+

(s), which is defined by a formula like (2) but with
γ now ranging over the primitive hyperbolic elements of Γ+ and with the factor
1−N(γ)−s−m replaced by 1− (−1)mN(γ)−s−m whenever γ has determinant −1.

§2. The Mayer transfer operator Ls

A surprising new interpretation of the Selberg zeta function was found by D. Mayer
[9]. LetD denote the open disc of radius 3/2 and center 1 andV the space of functions
which are holomorphic in D and extend continuously to its boundary. Then Mayer
defines an operator Ls : V → V by the formula

Lsφ(z) =
∞∑

n=1

1

(z + n)2s
φ
( 1

z + n

)
(φ ∈ V, z ∈ D) . (3)

The series converges for ℜ(s) > 1
2 for any φ ∈ V, and can be continued meromorphi-

cally to all s. (Write φ(z) as the sum of a polynomial of degree k and a function which
is O(zk+1) as z → 0; then the RHS of (3) is the sum of a finite linear combination
of Hurwitz zeta functions, whose meromorphic continuation is well known, and an
infinite sum which converges in the half-plane ℜ(s) > −k/2.) Mayer shows that this
operator has eigenvalues converging rapidly to zero (“nuclear”); in particular, Ls is
of trace class and 1 − Ls has a determinant in the Fredholm sense, and similarly
for L2

s. Mayer’s result is then:
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Theorem. We have the identities

ZΓ1
(s) = det(1− L

2
s), ZΓ+

(s) = det(1− Ls) . (4)

(Actually, Mayer gave the first of these statements, for the usual modular group. The
second statement, corresponding to the even eigenfunctions, was proved by Efrat [2].)

Mayer’s proof came from the theory of dynamical systems, and more specifically
from the dynamics of the Gauss map (continued fraction map) F : [0, 1) → [0, 1)
which assigns to any x > 0 the fractional part of 1/x. For each complex number s
with ℜ(s) > 1

2 and each positive integer n we then have the partition function

Zn(F, hs) =
∑

x∈[0,1), Fnx=x

hs(x)hs(Fx) · · ·hs(Fn−1x) ,

where hs is the weighting function hs(x) = x2s and the sum is over all periodic
points of F of order dividing n. The relationship with Mayer’s operator Ls (“transfer
operator”) comes from the fact that the inverse images of x ∈ [0, 1) are the points
(n+ x)−1 (n = 1, 2, . . . ), and using this one can show that

Zn(F, hs) = Tr(Ln
s ) − (−1)n Tr(Ln

s+1) .

On the other hand, the periodic points of F correspond to the periodic continued
fractions of real quadratic irrationalities and hence to closed geodesics in H/Γ+, and
using this correspondence one finds that the sub-product of (2) corresponding to
m = 0 for the group Γ = Γ1 is equal to exp(

∑∞
n=1 Z2n(F, hs)/n). (Here only even

indices occur because the map x 7→ (n+x)−1 has determinant −1. For Γ+ all indices
occur.) Putting these facts together, one obtains (4) after a short calculation. A
somewhat more elementary version of the proof, based on the reduction theory of
elements of Γ+, is presented in [4].

§3. Period theory and the Lewis correspondence

The final ingredient of our story is the discovery made some years ago by John
Lewis [3] that one can associate to an eigenfunction of the Laplace operator for Γ+

(i.e., an even eigenfunction for Γ1) with spectral parameter s a holomorphic solution
in Cr (−∞, 0] of the three-term functional equation

ψ(z) = ψ(z + 1) + z−2s ψ(1 + 1/z) . (5)

This result was extended in several ways in subsequent joint work [5]; in particular,
it was shown that the correspondence is reversible, that it is enough to consider real-
analytic solutions of (5) on the positive real axis, and that there is a similar result
for odd eigenfunctions of the Laplacian. The final result can be stated as follows.
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Theorem. Let s be a complex number with ℜ(s) = 1
2 . Then there is a canonical

isomorphism between the space of even or odd eigenfunctions of the Laplace operator
for Γ1 with eigenvalue s(1 − s) and the space of real-analytic functions ψ on (0,∞)
satisfying the even or odd three-term functional equation

ψ(x) = ψ(x+ 1) ± x−2s ψ(1 + 1/x) (6)

and the growth condition lim
x→∞

ψ(x) = 0.

Note that the theorem implies in particular that the space of real-analytic solutions
of (6) satisfying the growth condition ψ(x) = o(1) as x → ∞ is finite-dimensional
for all s, and non-zero only for countably many s. This is especially surprising
since, as is shown in the paper, the space of real-analytic solutions of (6) satisfying
the apparently only slightly weaker condition ψ(x) = O(1) as x → ∞ is infinite-
dimensional for every s. We also mention that there is also a uniform version of the
bijection of the theorem, including both the even and odd cases, in which the two
functional equations (6) are replaced by the “unified” functional equation ψ(x) =
ψ(x+ 1) + (x+ 1)−2s ψ(x/(1 + x)).

The above theorem is the exact analogue of the classical theory of Eichler, Shimura
and Manin of period polynomials of modular forms, according to which one can
canonically associate to a classical cusp form f(z) of weight 2k on Γ1 two poly-
nomials, one even and one odd, which satisfy the above even and odd three-term
functional equations (in the opposite order) with s = 1− k, obtaining in this way an
isomorphism between the space of cusp forms and the spaces of polynomial solutions
of each of the two functional equations. (More precisely, for the even polynomi-
als one obtains a codimension one subspace of the space of polynomial solutions of
the odd functional equation, the full space being obtained only if one includes an
Eisenstein series.) The correspondence is obtained by associating to f(z) its Eich-
ler integral f∗(z), defined most easily by the formula f∗(z) =

∑∞
n=1 n

1−kan e
2πinz,

where f(z) =
∑∞

n=1 ane
2πinz is the Fourier expansion of f ; then the function ψ(z) =

f∗(z)− z2k−2f∗(−1/z) turns out to be a polynomial satisfying the above-mentioned
“unified” three-term functional equation with s = 1− k, and its even and odd parts
are the desired polynomials satisfying the two equations (6).

The construction here proceeds similarly, although the formulas are somewhat
more complicated and the proof is considerably longer. If f(z) is an eigenfunction of
the Laplace operator for Γ1 (a so-called Maass wave form) with spectral parameter s,
then, as is well known, f has a Fourier expansion of the form

f(z) =
√
y

∞∑

n=1

AnKs− 1
2
(2πny) cos(2πnx) (z = x+ iy ∈ H) (7)

in the even case and a similar expansion with “sin” instead of “cos” in the odd
case, where Kν(t) is the usual K-Bessel function and the coefficients An are complex
numbers which grow at most polynomially in n. Although this function is non-
holomorphic, we define its “Eichler integral” to be the holomorphic function f∗ in
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the upper half-plane given by

f∗(z) =
∞∑

n=1

ns−
1
2 An e

2πinz (z ∈ H) . (8)

We extend this function to C r R by setting f∗(−z) = −f∗(z) in the even case
(resp. f∗(−z) = f∗(z) in the odd case). Then by relating the Mellin transforms of
the two functions f∗(±iy) (y ∈ R+) to the L-series of f and using the functional
equation of this L-series, one shows that the function ψ(z) defined in C r R by the
formula ψ(z) = f∗(z) − z−2sf∗(−1/z) (i.e., by exactly the same formula as in the
classical case, with k replaced by 1−s) extends holomorphically from CrR to the cut
plane Cr(−∞, 0]. The function ψ of the theorem is then simply the restriction of this
extended function to the positive real axis. That ψ satisfies the three-term functional
equation in C r R is a trivial consequence of its definition and the periodicity of f ,
and would be true for any function in H with a Fourier expansion of the form (7),
i.e., for any eigenfunction of the Laplace operator which is invariant merely under
z 7→ z + 1 rather than under the whole modular group. The non-trivial property,
which holds only if the function defined by (7) is invariant under the full group Γ1,
is the fact that ψ extends analytically across the positive real axis.

For the converse direction, if ψ is a real-analytic solution of (6) satisfying the
growth condition in the theorem, one first shows by a “bootstrapping” argument
(successive extension of ψ to larger and larger domains) that the function ψ extends
holomorphically from R+ to all of C r R and satisfies a suitable growth condition
near the cut; then the functional equation of ψ shows that the function f∗(z) defined
by the formula f∗(z) = ψ(z) + z−2sψ(−1/z) is periodic with period 1, and hence
has a Fourier expansion of the form (8) for some coefficients An ∈ C, and one then
shows that the function f(z) defined by the Fourier expansion (7) with the same
coefficients An is indeed Γ1-invariant. The key fact here, which has no analogue
in the classical case, is the simple algebraic identity that the two transformations
ψ(z) = f∗(z) − z−2sf∗(−1/z) and f∗(z) = ψ(z) + z−2sψ(−1/z) are inverses of one
another up to a non-zero scalar factor for any s ∈ Cr Z.

§4. Interrelationships and generalizations

We now consider the relationship between the various objects we have described.
In §1 we saw how the length spectrum of Γ\H can be encoded in an infinite product,
the Selberg zeta function, whose meromorphic continuation has zeros at the spectral
parameters sj of Γ. In §2 we saw how this zeta function, for Γ = Γ+ or Γ1, could be
written as the Fredholm determinant of 1−Ls or 1−L

2
s, respectively. But this Fred-

holm determinant is given by a convergent product
∏

ν(1−βν(s)) or
∏

ν(1−βν(s)2),
where βν(s) are the eigenvalues of the operator Ls, so its vanishing is equivalent
to the statement that Ls has the eigenvalue 1 or ±1. We thus obtain as a direct
corollary of the theorem in §2 the following statement: If s is the spectral parameter
for an even (resp. odd) eigenfunction of the Laplace operator for SL2(Z), then there
exists a non-zero function φ ∈ V satisfying Lsφ = φ (resp. Lsφ = −φ).
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The relationship between this statement and the period theory of Maass wave
forms which we described in the last section is now very simple: It is obvious from
the definition (3) that the operator Ls satisfies the functional equation Lsφ(x) =
(x + 1)−2sφ(1/(x + 1)) + Lsφ(x + 1), so if φ ∈ V is an eigenfunction of Ls with
eigenfunction ±1 then we have the identity φ(x) = φ(x+1)± (x+1)−2sφ(1/(x+1)),
and after the simple change of variables φ(x) = ψ(x+1) this is precisely equation (6).

We can therefore summarize the whole story by saying that there are very close
relationships between four a priori very different objects, as indicated in the following
diagram,

A. Set of lengths of

geodesics on Γ1\H
//

��

B. Spectrum of the

Laplace operator ∆

��

oo

C. Spectrum of the

Mayer operator Ls

//

OO

D. Lewis’s three-term

functional equation

OO

oo

with (A) and (B) being related by the Selberg trace formula, (A) and (C) by the
theory of transfer operators applied to the dynamical system associated to continued
fractions, (B) and (D) by a generalization to the case of Maass wave forms of the
classical theory of periods of modular forms, and (C) and (D) by the fact that an
eigenfunction of Ls with eigenvalue ±1 is, up to a shift by 1, a solution of the
functional equation (6).

It is also natural to ask what happens when Γ1 is replaced by some other discrete
group Γ ⊂ SL2(R). The relationship between the lengths of geodesics and the eigen-
values of the Laplacian for Γ\H given by the Selberg trace formula works equally
well, as discussed in §1, but both the Mayer operator and the three-term functional
equation depend on the special properties of the group Γ1, and specifically on the
fact that it is generated by the two transformations S : z 7→ −1/z and T : z 7→ z+1.
If Γ is a subgroup of Γ1 of finite index N , then we can reduce to the case of Γ1 by re-
placing the functions on which Ls acts and the function ψ by vector-valued functions
of length N , with coordinates indexed by the set of cosets Γ\Γ1, and with the appro-
priate modifications of the equations (for instance, in the functional equation (6) the
coordinates of the two terms on the right must be permuted according to the actions
of the two matrices

( 1 1

0 1

)
and

( 1 0

1 1

)
on Γ\Γ1), and everything goes through. This is

the point of view adopted in the thesis of Martin [8], in which a theory analogous to
the one in [5] is developed for the case of holomorphic modular forms of weight 1, a
case not covered by the classical period theory of Eichler-Shimura-Manin, and also
in the recent work of Manin and Marcolli [7]. However, there is also a more intrinsic
approach which works also if the group Γ is not contained in, or even commensurable
with, the modular group Γ1. In the case of the Mayer operator, this requires con-
sidering the analogue of the continued fraction expansion appropriate to the group
Γ, based on the geometry of a chosen fundamental domain for Γ, and replacing Ls
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by the transfer operator appropriate to this new continued fraction. For example, if
we observe that Ls is really attached to Γ+ rather than to Γ1 (as seen by the fact
that the Selberg zeta function for Γ1 corresponds to the determinant of 1−L

2
s rather

than 1 − Ls), then we should already modify Ls even for the case of the subgroup
Γ1; the right modification of (3) is the operator φ(z) 7→ ∑∞

n=2(n−z)−2sφ(1/(n−z)),
whose fixed points correspond via φ(z) = (1− z)−2sψ(1/(1− z)) to the solutions of
the “unified” functional equation mentioned above. For the Lewis correspondence,
the most convenient language in which to describe the generalization to arbitrary Γ
is that of cohomology of groups. We indicate here very briefly how this works. (The
details will be given in [6].)

Define V∞
s to be the space of C∞ functions ψ : R → C such that the function

|x|−2sψ(1/x) on R r {0} extends to a C∞ function on R (or equivalently, that the
function Ψ(x, y) := |y|−2sψ(x/y) on R2r{(0, 0)} is C∞), and let V ω

s be the subspace
defined the same way but with “C∞” replaced by “real-analytic.” We define an

intermediate space V
ω/2
s as the space of functions in V∞

s which are real-analytic
except at a finite subset of P1(R). The group G = SL2(R) acts on all three spaces by

(ψ|g)(x) = |cx+d|−2sψ(g(x)) for g =
(
a b

c d

)
∈ G (or equivalently, by Ψ 7→ Ψ◦g). In [5]

it is shown that the function ψ occurring in the theorem in §2, if extended from R+ to
Rr{(0, 0)} by ψ(x) = ∓ψ(−x) (or equivalently by ψ(x) = −|x|−2sψ(−1/x)), belongs

to V∞
s and hence also to V

ω/2
s , and now the three-term functional equation implies

exactly that this extended function satisfies the equations ψ+ψ|S = ψ+ψ|U+ψ|U2 =
0, where U = ST is the standard element of Γ1 of order 3 which together with the
involution S generates this group. These equations say that the map S 7→ ψ, T 7→ 0

extends to a cocycle on Γ with values in V
ω/2
s , and the fact that T maps to 0 says

that this is a parabolic cocycle (one which sends every parabolic element γ ∈ Γ to
an element in the image of 1 − γ). The theorem of §2 can then be reformulated as

the statement that the parabolic cohomology group H1
par(Γ1, V

ω/2
s ) is isomorphic to

the space of Maass wave forms with spectral parameter s for all complex numbers s
with real part 1/2, and the generalization to other Γ is simply the same assertion for

H1
par(Γ, V

ω/2
s ) and the spectral parameters for Γ. (If Γ is contained in Γ1 and one

uses the point of view of vector-valued functions mentioned above, then one would

look instead at H1
par(Γ1, (V

ω/2
s )Γ\Γ1); this is the form in which the corresponding

theorem for holomorphic forms of weight 1 occurs in [8].) Finally, it turns out that
one can change the above cocycle by a coboundary to obtain a new cocycle, no
longer sending T to 0, with values in the smaller space V ω

s ; these new cocycles are
no longer parabolic, but satisfy the weaker “semi-parabolic” condition that their

value at every parabolic element γ of Γ belongs to V
ω/2
s |(1− γ), and the cohomology

group H1
par/2(Γ, V

ω
s ) defined by such semi-parabolic real-analytic cocycles modulo

coboundaries is again isomorphic to the space of Maass wave forms on Γ with spectral
parameter s.

§5. Computational aspects

We end this survey by discussing to what extent the new points of view on the
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Selberg zeta function are usable from a practical or computational point of view.
The usual Selberg trace formula, both in its general form and in the special case
defining the Selberg zeta function, has the drawback that it is very hard to use
computationally: both the product (2) and the Weierstrass product expressing ZΓ(s)
in terms of its zeros and poles are either divergent or only slowly convergent, and it is
not easy to calculate actual values of the Selberg zeta function or to use the Selberg
trace formula to get explicit information about the eigenvalues of the Laplace operator
from the lengths of geodesics or vice versa. On the other hand, as we mentioned
in §4, the eigenvalues βν(s) of the operator Ls tend to zero rapidly, so that the
infinite products

∏
(1−βν(s)) and

∏
(1−βν(s)2) defining the Fredholm determinants

det(1− Ls) = ZΓ+
(s) and det(1− L

2
s) = ZΓ1

(s) are rapidly convergent. Hence if we
have a good algorithm to compute the eigenvalues βν(s) then we also have a good
method to compute both the values and the zeros of these Selberg zeta functions.

In fact such an algorithm exists. It was developed by Babenko (cf. [1]) to study the
case s = 1, corresponding to a famous problem of Gauss (in a letter to Laplace, 1812)
and Kuzmin (1928) concerning the distribution of the “tails” of the continued fraction
expansions of real numbers, and the method extends in a fairly straightforward way
to other values of s. On the one hand, one can obtain a good representation of the
operator Ls by showing that it is conjugate to (and hence has the same eigenvalues
as) the integral operator on an appropriate space of functions on (0,∞) given by the
kernel function

Ks(x, y) =
J2s−1

(
2
√
xy

)
√
(ex − 1)(ey − 1)

,

where Jν(x) is a J-Bessel function. (This is shown in Babenko’s paper for s = 1
and a modification of the same proof works in general. It also occurs, in a somewhat
different formulation, in Lewis’s paper [3].) This representation as an integral op-
erator can be used to establish the compactness and various other properties of the
operator Ls. On the other hand, the operator Ls sends the function Ak(x) = xk−1

(k = 1, 2, . . . ) to Bk(x) = ζ(x + 1, k + 2s − 1), where ζ(α, ν) =
∑∞

n=1(n + α)−ν

denotes the Hurwitz zeta function. If one takes m well-chosen points x1, . . . , xm in
[0, 1] (a good choice is the set of points xj = sin2((2j − 1)π/4m)), then it turns out
that the eigenvalues of the m ×m matrix A−1B, where A is the Vandermonde ma-
trix

(
Ak(xj)

)
1≤j,k≤m

and B the matrix
(
Bk(xj)

)
1≤j,k≤m

, are good approximations

to the desired eigenvalues βν(s) of Ls. (More precisely, the matrix AB−1 has some
eigenvalues βν,m(s) which tend exponentially rapidly to βν(s) as m→ ∞, as well as
some “spurious” eigenvalues which tend slowly, like a negative power of m, towards
zero as m goes to infinity.) As an example, we list in Table 1 the approximate values
of the first 19 eigenvalues βν = βν(1) of L1 obtained in this way using values up to
m = 50. (The first five of these, based on a calculation with m = 16 and correct
to about 8 digits, were already given in [1], p. 367, but the table given there also
contains one of the spurious eigenvalues which should be discarded.) As a check on
the accuracy of the computation, one can compare the sum of the numbers βν(s) and
the sum of their squares with the values of Tr(Ls) and Tr(L2

s), both of which can
be computed exactly.
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β1 = 1.0000000000000000000000000000,

β2 = −0.3036630028987326585974481219

β3 = 0.1008845092931040753056376425,

β4 = −0.03549615902165984540889163041,

β5 = 0.01284379036244026481516090344,

β6 = −0.004717777511571031073863594144,

β7 = 0.001748675124305511914510617525,

β8 = −0.0006520208583205029031816912077,

β9 = 0.0002441314655245138906981706362,

β10 = −0.00009168908376859566896987721814

β11 = 0.00003451654616347253214653427704,

β12 = −0.00001301769787581775595712876501,

β13 = 0.000004916782323649260641924415470,

β14 = −0.000001859377799671070019642381811,

β15 = 0.0000007038108595990962920678071171,

β16 = −0.0000002666477929249816513412730701,

β17 = 0.00000005079864542122092292865860954,

β18 = −0.00000003831081550679296190236314295,

β19 = 0.00000001400621008979342385785713695.

Table 1. Eigenvalues of L1

Applying this method with s of the form 1
2 + it with t real, we can compute the

eigenvalues βν(s) to high accuracy for small values of t. If we plot the curve of the
largest (in absolute value) eigenvalue β1(

1
2 + it) in the complex plane, then we indeed

find that within the accuracy of the computation it passes through the points −1
and +1 for t ≈ 9.53369526135355746 and t ≈ 13.77975135189074, respectively, in
accordance with Mayer’s theorem from §2 and the known numerical values of the
first odd and even spectral parameters for Γ1. An interesting point here would be
to find a direct argument showing that the curve really passes exactly through the
points −1 and +1, not just very near them. It ought to be possible to do this using
the functional equation of the Selberg zeta function, as one does for the analogous
statement for the zeros of the Riemann zeta function, but I have not seen how to do
this.

Finally, we mention that the numerical calculation described above could be used,
for instance, to calculate to high accuracy the value of the logarithmic derivative at
s = 1 of the Selberg zeta function for Γ1, an invariant which plays a role in the work
of Jorgenson and Kramer discussed at this conference.
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