
APPENDIX. THE MELLIN TRANSFORM

AND RELATED ANALYTIC TECHNIQUES

D. Zagier

1. The generalized Mellin transformation

The Mellin transformation is a basic tool for analyzing the behavior of many important functions
in mathematics and mathematical physics, such as the zeta functions occurring in number theory
and in connection with various spectral problems. We describe it first in its simplest form and then
explain how this basic definition can be extended to a much wider class of functions, important
for many applications.

Let ϕ(t) be a function on the positive real axis t > 0 which is reasonably smooth (actually,
continuous or even piecewise continuous would be enough) and decays rapidly at both 0 and ∞,
i.e., the function tAϕ(t) is bounded on R+ for any A ∈ R. Then the integral

ϕ̃(s) =

∫ ∞

0

ϕ(t) ts−1 dt (1)

converges for any complex value of s and defines a holomorphic function of s called the Mellin

transform of ϕ(s). The following small table, in which α denotes a complex number and λ a
positive real number, shows how ϕ̃(s) changes when ϕ(t) is modified in various simple ways:

ϕ(λt) tαϕ(t) ϕ(tλ) ϕ(t−1) ϕ′(t)
λ−sϕ̃(s) ϕ̃(s+ α) λ−sϕ̃(λ−1s) ϕ̃(−s) (1− s)ϕ̃(s− 1)

. (2)

We also mention, although we will not use it in the sequel, that the function ϕ(t) can be recovered
from its Mellin transform by the inverse Mellin transformation formula

ϕ(t) =
1

2πi

∫ C+i∞

C−i∞

ϕ̃(s) t−s ds ,

where C is any real number. (That this is independent of C follows from Cauchy’s formula.)

However, most functions which we encounter in practise are not very small at both zero and
infinity. If we assume that ϕ(t) is of rapid decay at infinity but grows like t−A for some real number
A as t → 0, then the integral (1) converges and defines a holomorphic function only in the right
half-plane ℜ(s) > A. Similarly, if ϕ(t) is of rapid decay at zero but grows like t−B at infinity
for some real number B, then ϕ̃(s) makes sense and is holomorphic only in the left half-plane
ℜ(s) < B, while if ϕ(t) has polynomial growth at both ends, say like t−A at 0 and like t−B at ∞
with A < B, then ϕ̃(s) is holomorphic only in the strip A < ℜ(s) < B. But it turns out that in
many cases the function ϕ̃(t) has a meromorphic extension to a larger half-plane or strip than the
one in which the original integral (1) converges, or even to the whole complex plane. Moreover,
this extended Mellin transform can sometimes be defined even in cases where A > B, in which
case the integral (1) does not converge for any value of s at all.
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Let us start with the frequently occurring case where ϕ(t) is of rapid decay at infinity and is
C∞ at zero, i.e., it has an asymptotic expansion ϕ(t) ∼ ∑∞

n=0 ant
n as t → 0. (Recall that this

means that the difference ϕ(t) − ∑N−1
n=0 ant

n is O(tN ) as t → 0 for any integer N ≥ 0; it is not
required that the series

∑
ant

n be convergent for any positive t.) Then for s with ℜ(s) > 0 and
any positive integer N the integral (1) converges and can be decomposed as follows:

ϕ̃(s) =

∫ 1

0

ϕ(t) ts−1 dt +

∫ ∞

1

ϕ(t) ts−1 dt

=

∫ 1

0

(
ϕ(t)−

N−1∑

n=0

ant
n

)
ts−1 dt +

N−1∑

n=0

an
n+ s

+

∫ ∞

1

ϕ(t) ts−1 dt .

The first integral on the right converges in the larger half-plane ℜ(s) > −N and the second for all
s ∈ C, so we deduce that ϕ̃(s) has a meromorphic continuation to ℜ(s) > −N with simple poles
of residue an at s = −n (n = 0, . . . , N − 1) and no other singularities. Since this holds for every n,
it follows that the Mellin transform ϕ̃(s) in fact has a meromorphic continuation to all of C with
simple poles of residue an at s = −n (n = 0, 1, 2, . . . ) and no other poles. The same argument
shows that, more generally, if ϕ(t) is of rapid decay at infinity and has an asymptotic expansion

ϕ(t) ∼
∞∑

j=1

aj t
αj (t → 0) (3)

as t tends to zero, where the αj are real numbers tending to +∞ as j → ∞ or complex num-
bers with real parts tending to infinity, then the function ϕ̃(s) defined by the integral (1) for
ℜ(s) > −minj ℜ(αj) has a meromorphic extension to all of C with simple poles of residue aj
at s = −αj (j = 1, 2, . . . ) and no other poles. Yet more generally, we can allow terms of the
form tα(log t)m with λ ∈ C and m ∈ Z≥0 in the asymptotic expansion of ϕ(t) at t = 0 and
each such term contributes a pole with principal part (−1)mm!/(s + α)m+1 at s = −α, because∫ 1

0
tα+s−1(log t)m dt = (∂/∂α)m

∫ 1

0
tα+s−1 dt = (−1)mm!/(α+ s)m+1 for ℜ(s+ α) > 0.

By exactly the same considerations, or by replacing ϕ(t) by ϕ(t−1), we find that if ϕ(t) is of
rapid decay (faster than any power of t) as t → 0 but has an asymptotic expansion of the form

ϕ(t) ∼
∞∑

k=1

bk t
βk (t → ∞) (4)

at infinity, where now the exponents βk are complex numbers whose real parts tend to −∞, then
the function ϕ̃(s), originally defined by (1) in a left half-plane ℜ(s) < −maxk ℜ(βk), extends
meromorphically to the whole complex s-plane with simple poles of residue −bk at s = −βk and
no other poles. (More generally, again as before, we can allow terms bkt

βk(log t)nk in (3) which
then produce poles with principal parts (−1)nk+1nk! bk/(s+ βk)

nk+1 at s = −βk.)

Now we can use these ideas to define ϕ̃(s) for functions which are not small either at 0 or at ∞,
even when the integral (1) does not converge for any value of s. We simply assume that ϕ(t) is
a smooth (or continuous) function on (0,∞) which has asymptotic expansions of the forms (3)
and (4) at zero and infinity, respectively. (Again, we could allow more general terms with powers
of log t in the expansions, as already explained, but the corresponding modifications are easy and
for simplicity of expression we will assume expansions purely in powers of t.) For convenience we
assume that the numbering s such that ℜ(α1) ≤ ℜ(α2) ≤ · · · and ℜ(β1) ≥ ℜ(β2) ≥ · · · . Then, for
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any T > 0 (formerly we took T = 1, but the extra freedom of being able to choose any value of T
will be very useful later) we define two “half-Mellin transforms” ϕ̃≤T (s) and ϕ̃≥T (s) by

ϕ̃≤T (s) =

∫ T

0

ϕ(t) ts−1 dt
(
ℜ(s) > −ℜ(α1)

)
,

ϕ̃≥T (s) =

∫ ∞

T

ϕ(t) ts−1 dt
(
ℜ(s) < −ℜ(β1)

)
.

Just as before, we see that for each integer J ≥ 1 the function ϕ̃≤T (s) extends by the formula

ϕ̃≤T (s) =

∫ T

0

(
ϕ(t)−

J∑

j=1

ajt
αj

)
ts−1 dt +

J∑

j=1

aj
s+ αj

T s+αj

to the half-plane ℜ(s) > −ℜ(αJ+1) and hence, letting J → ∞, that ϕ̃≤T (s) is a meromorphic
function of s with simple poles of residue aj at s = −αj (j = 1, 2, . . . ) and no other poles.
Similarly, ϕ̃≥T (s) extends to a meromorphic function whose only poles are simple ones of residue
−bk at s = −βk. We now define

ϕ̃(s) = ϕ̃≤T (s) + ϕ̃≥T (s) . (4 1
2 )

This is a meromorphic function of s and is independent of the choice of T , since the effect of

changing T to T ′ is simply to add the everywhere holomorphic function
∫ T ′

T
ϕ(t) ts−1 dt to ϕ̃≤T (s)

and subtract the same function from ϕ̃≥T (s), not affecting the sum of their analytic continuations.

In summary, if ϕ(t) is a function of t with asymptotic expansions as a sum of powers of t (or of
powers of t multiplied by integral powers of log t) at both zero and infinity, then we can define in a
canonical way a Mellin transform ϕ̃(s) which is meromorphic in the entire s-plane and whose poles
reflect directly the coefficients in the asymptotic expansions of ϕ(t). This definition is consistent
with and has the same properties (2) as the original definition (1). We end this section by giving
two simple examples, while Sections 2 and 3 will give further applications of the method.

Example 1. Let ϕ(t) = tα, where α is a complex number. Then ϕ has an asymptotic expansion (3)
at 0 with a single term α1 = α, a1 = 1, and an asymptotic expansion (4) at ∞ with a single term
β1 = α, b1 = 1. We immediately find that ϕ̃≤T (s) = T s+α/(s + α) for ℜ(s + α) > 0 and
ϕ̃≥T (s) = −T s+α/(s + α) for ℜ(s + α) < 0, so that, although the original Mellin transform
integral (1) does not converge for any value of s, the function ϕ̃(s) defined as the sum of the
meromorphic continuations of ϕ̃≤T (s) and ϕ̃≥T (s) makes sense, is independent of T , and in fact is
identically zero. More generally, we find that ϕ̃(s) ≡ 0 whenever ϕ(t) is a finite linear combination
of functions of the form tα logm t with α ∈ C, m ∈ Z≥0. (These are exactly the functions whose
images ϕλ(t) = ϕ(λt) under the action of the multiplicative group R+ span a finite-dimensional
space.) In particular, we see that the generalized Mellin transformation is no longer injective.

Example 2. Let ϕ(t) = e−t. Here the integral (1) converges for ℜ(s) > 0 and defines Euler’s
gamma-function Γ(s). From the fact that ϕ(t) is of rapid decay at infinity and has the asymptotic
(here even convergent) expansion

∑∞
n=0(−t)n/n! at zero, we deduce that Γ(s) = ϕ̃(s) has a mero-

morphic continuation to all s with a simple pole of residue (−1)n/n! at s = −n (n = 0, 1, . . . )
and no other poles. Of course, in this special case these well-known properties can also be de-
duced from the functional equation Γ(s + 1) = sΓ(s) (proved for ℜ(s) > 0 by integration by
parts in the integral defining Γ(s)), N applications of which gives the meromorphic extension
Γ(s) = s−1(s+ 1)−1 · · · (s+N − 1)−1Γ(s+N) of Γ(s) to the half-plane ℜ(s) > −N .

From the first of the properties listed in (2), we find the following formula, which we will use
many times:

ϕ(t) = e−λt ⇒ ϕ̃(s) = Γ(s)λ−s (λ > 0) . (5)
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2. Dirichlet series and their special values

In this section we look at functions ϕ(t) for which the Mellin transform defined in Section 1 is
related to a Dirichlet series. The key formula is (5), because it allows us to convert Dirichlet series
into exponential series, which are much simpler.

Example 3. Define ϕ(t) for t > 0 by ϕ(t) = 1/(et − 1). This function is of rapid decay at infinity
and has an asymptotic expansion (actually convergent for t < 2π)

1

et − 1
=

1

t +
t2

2
+

t3

6
+ · · ·

=
∞∑

r=0

Br

r!
tr−1 (6)

with certain rational coefficients B0 = 1, B1 = − 1
2 , B2 = 1

6 , . . . called Bernoulli numbers. From
the results of Section 1 we know that the Mellin transform ϕ̃(s), originally defined for ℜ(s) > 1
by the integral (1), has a meromorphic continuation to all s with simple poles of residue Br/r!
at s = 1 − r (r = 0, 1, 2, . . . ). On the other hand, since et > 1 for t > 0, we can expand ϕ(t)
as a geometric series e−t + e−2t + e−3t + · · · , so (5) gives (first in the region of convergence)
ϕ̃(s) = Γ(s)ζ(s), where

ζ(s) =
∞∑

m=1

1

ms
(ℜ(s) > 1) (7)

is the Riemann zeta function. Since Γ(s), as we have seen is also meromorphic, with simple poles
of residue (−1)n/n! at non-positive integral arguments s = −n and no other poles, and since
Γ(s) (as is well-known and easily proved) never vanishes, we deduce that ζ(s) has a meromorphic
continuation to all s with a unique simple pole of residue 1/Γ(1) = 1 at s = 1 and that its values at
non-positive integral arguments are rational numbers expressible in terms of the Bernoulli numbers:

ζ(−n) = (−1)n
Bn+1

n+ 1
(n = 0, 1, 2, . . . ) . (8)

Example 4. To approach ζ(s) in another way, we choose for ϕ(t) the theta function

ϑ(t) =

∞∑

n=−∞

e−πn2t (t > 0) . (9)

(The factor π in the exponent has been included for later convenience.) We can write this out as

ϑ(t) = 1 + 2 e−πt + 2 e−4πt + · · · , (10)

and since the generalized Mellin transform of the function 1 is identically 0̃ by Example 1, we
deduce from (5) that ϕ̃(s) = 2 ζ∗(2s), where

ζ∗(s) = π−s/2 Γ(s/2) ζ(s) . (11)

To obtain the analytic properties of ζ(s) from the results of Section 1, we need the asymptotics of
ϑ(t) at zero and infinity. They follow immediately from the following famous result, due to Jacobi:
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Proposition 1. The function ϑ(t) satisfies the functional equation

ϑ(t) =
1√
t
ϑ
(1
t

)
(t > 0) . (12)

Proof. Formula (12) is a special case of the Poisson summation formula, which says that
∑

n∈Z

f(n) =
∑

n∈Z

f̂(n) (13)

for any sufficiently well-behaved (i.e., smooth and small at infinity) function f : R → C, where

f̂(y) =
∫∞

−∞
f(x) e2πixy dx is the Fourier transform of f . (To prove this, note that the function

F (x) =
∑

n∈Z
f(n+x) is periodic with period 1, so has a Fourier expansion F (x) =

∑
m∈Z

cme2πimx

with cm =
∫ 1

0
F (x)e−2πimxdx = f̂(−m). Now set x = 0.) Now consider the function ft(x) =

e−πtx2

. Its Fourier transform is given by

f̂t(y) =

∫ ∞

−∞

e−πtx2+2πixy dx = e−πy2/t

∫ ∞

−∞

e−πt(x+iy/t)2 dx =
c√
t
f1/t(y) ,

where c > 0 is the constant c =
∫∞

−∞
e−πx2

dx. Applying (13) with f = ft therefore gives ϑ(t) =

ct−1/2ϑ(1/t), and taking t = 1 in this formula gives c = 1 and proves equation (12). �

Now we find from (10) that ϑ(t) has the asymptotic expansions ϑ(t) = 1+O(t−N ) as t → ∞ and
ϑ(t) = t−1/2 + O(tN ) as t → 0, where N > 0 is arbitrary. It follows from the results of Section 1

that its Mellin transform ϑ̃(s) has a meromorphic extension to all s with simple poles of residue 1

and −1 at s = 1/2 and s = 0, respectively, and no other poles. From the formula ζ∗(s) = 1
2 ϑ̃(s/2)

we deduce that the function ζ∗(s) defined in (11) is meromorphic having simple poles of residue 1
and 0 at s = 1 and s = 0 and no other poles and hence (using once again that Γ(s) has simple
poles at non-positive integers and never vanishes) that ζ(s) itself is holomorphic except for a single
pole of residue 1 at s = 1 and vanishes at negative even arguments s = −2, −4, . . . . This is weaker
than (8), which gives a formula for ζ(s) at all non-positive arguments (and also shows the vanishing
at negative even integers because it is an exercise to deduce from the definition (6) that Br vanishes
for odd r > 1). The advantage of the second approach to ζ(s) is that from equation (12) and the
properties of Mellin transforms listed in (2) we immediately deduce the famous functional equation

ζ∗(1− s) = ζ∗(1− s) (14)

of the Riemann zeta-function which was discovered (for integer values 6= 0, 1 of s) by Euler in 1749
and proved (for all complex values 6= 0, 1 of s) by Riemann in 1859 by just this argument.

We next generalize the method of Example 3. Consider a generalized Dirichlet series

L(s) =

∞∑

m=1

cm λ−s
m (15)

where the λm are real numbers satisfying 0 < λ1 < λ2 < · · · and growing at least as fast as some
positive power of m. (This is an ordinary Dirichlet series if λm = m for all m.) Assume that
the series converges for at least one value s0 of s. Then it automatically converges in a half-plane
(for instance, if λm = m then the fact that cm = O(ms0) implies convergence in the half-plane
ℜ(s) > ℜ(s0) + 1) and the associated exponential series

ϕ(t) =

∞∑

m=1

cm e−λmt (t > 0), (16)

converges for all positive values of t. We then have:
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Proposition 2. Let L(s) be a generalized Dirichlet series as in (15), convergent somewhere, and

assume that the function ϕ(t) defined by (16) has an asymptotic expansion of the form

ϕ(t) ∼
∞∑

n=−1

an t
n (t → 0) . (17)

as t → 0. Then L(s) has a meromorphic continuation to all s, with a simple pole of residue a−1

at s = 1 and no other singularities, and its values at non-positive integers are given by

L(−n) = (−1)n n! an (n = 0, 1, 2, . . . ) . (18)

Proof. The function ϕ(t) is of rapid decay at infinity and has the asymptotic expansion (17) at
zero, so by the results of Section 1 we know that its Mellin transform ϕ̃(s) extends meromorphically
to all s, with simple poles of residue an at s = −n (n = −1, 0, 1, . . . ). On the other hand, ϕ̃(s) is
equal to Γ(s)L(s) by formula (5), and we know that Γ(s) has simple poles of residue (−1)nn! at
s = −n (n = 0, 1, . . . ), has no other zeros or poles, and equals 1 at s = 1. The result follows. �

Example 5. Consider the Dirichlet series defined by

L4(s) =
1

1s
− 1

3s
+

1

5s
− · · · (ℜ(s) > 1) . (19)

Here the function defined by (16) is given by

ϕ(t) = e−t − e−3t + e−5t − · · · =
1

et + e−t
=

1

2 cosh t
(geometric series). The asymptotic expansion of this function at t = 0 has the form

ϕ(t) =
1/2

1 + t2/2! + t4/4! + · · · =
1

2

∞∑

n=0

En
tn

n!

where the coefficients E0 = 1, E1 = 0, E2 = −1, . . . are certain integers called the Euler numbers.
It follows from the proposition that the function L4(s) has a holomorphic continuation to all s and
that L4(−n) = En/2 for all n ≥ 0. (We can omit the factor (−1)n because En = 0 for n odd.)
The same method works for any Dirichlet series of the form

∑∞
m=1 χ(m)m−s with coefficients

χ(m) which are periodic of some period (here 4), the most important case being that of Dirichlet
L-series, where the coefficients χ(m) also satisfy χ(m1m2) = χ(m1)χ(m2) for all m1 and m2.

Example 6. As a final example, consider the Hurwitz zeta function, defined by

ζ(s, a) =
∞∑

n=0

1

(n+ a)s
(a > 0, ℜ(s) > 0) . (20)

Here ϕ(t) =
∑∞

n=0 e
−(n+a)t =

e−at

1 − e−t
. But for any x we have the expansion

ext

et − 1
∼

∞∑

n=0

Bn(x)

n!
tn (t → 0) , (21)

where the Bn(x) are the Bernoulli polynomials

Bn(x) =
n∑

r=0

(
n

r

)
Br x

n−r (22)

(B0(x) = 1, B1(x) = x− 1
2 , B2(x) = x2 − x+ 1

6 , . . . ). We deduce that ζ(s, a) has a meromorphic
continuation in s with a simple pole of residue 1 (independent of a) at s = 1, and, generalizing (8),
that its values at non-positive integers are given by

ζ(s,−n) = − Bn+1(a)

n+ 1
(n = 0, 1, 2, . . . ) . (23)
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3. Application: the Casimir effect

In the study of the Casimir effect, described in Chapter 6 of this book, one encounters the
“function” defined by the series

F (λ) = − 2π
∑

ℓ,m, n∈Z

√
ℓ2 +m2 + λ2n2 , (24)

where λ is a positive real variable; the factor −2π here has been included for later convenience.
Of course the series is divergent. There are several natural questions:

A. How can F (λ) be defined rigorously?
B. How can F (λ) be computed effectively for a given λ > 0 ?
C. How does F (λ) behave asymptotically as λ → 0 and as λ → ∞ ?

(For the analysis of the Casimir effect, it is the asymptotics at λ → ∞ which are important.) Using
the ideas explained in the previous two sections, we will show that the answers are as follows:

A. For complex s with ℜ(s) > 3
2 , define

Z(λ, s) =
∑′

ℓ,m, n∈Z

1

(ℓ2 +m2 + λ2n2)s
(λ > 0, s ∈ C, ℜ(s) > 3

2
) (25)

(the prime on the summation sign means that the term (ℓ,m, n) = (0, 0, 0) is to be omitted), a
so-called Epstein zeta function. Then Z(λ, s) has a meromorphic continuation to all s, with a
simple pole of residue 2π/λ at s = 3/2 and no other poles, and satisfies the functional equation

Z∗(λ, s) =
1

λ
Z∗

( 1
λ
,
3

2
− s

)
, (26)

where
Z∗(λ, s) := π−s Γ(s)Z(λ, s) . (27)

Then one makes sense of (24) by setting F (λ) = Z∗(λ,− 1
2 ). (Note that π1/2 Γ(− 1

2 ) = −2π.)

B. The value of the function F (λ) is given for any positive real number T by

F (λ) =
1√
T

∑

ℓ,m, n

γ− 1
2

(
πT (ℓ2 +m2 + λ2n2)

)
+

1

λT 2

∑

ℓ,m,n

γ2
( π
T
(ℓ2 +m2 + λ−2n2)

)
, (28)

where the sums are taken over all triples (ℓ,m, n) ∈ Z3 and the functions γ− 1
2
(x) and γ2(x) are

defined by the formulas

γ− 1
2
(x) =

∫ ∞

1

e−xt dt

t3/2
(x ≥ 0) (29)

(a variant of the error function) and

γ2(x) =





( 1
x
+

1

x2

)
e−x if x > 0,

−1

2
if x = 0,

(30)

respectively. Since both γ− 1
2
(x) and γ2(x) are O(e−x) as x → ∞, formula (28) makes F (λ) rapidly

computable. More precisely, if we choose T = λ−2/3 then there are (uniformly in λ) only O(M3/2)
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terms in the two sums in (28) for which the arguments of γ− 1
2
or γ2 are ≤ M , so that a relatively

small number of terms suffices to compute F (λ) to high precision. Here are some sample values:

t F (t)
.1 6.21115704963445320831277821363781739171176675371 . . .
.5 1.74490666842235054522002968176940979179901592336 . . .
1 1.67507382139216375677378965854995727774709002078 . . .
2 3.19240228274691182863701405594738286405890947611 . . .
10 220.762287791317835036587359031113282945900247337 . . .

(31)

Each of these numbers was computed independently using (28) for several different values of T .
The fact that the answers agreed to the precision given, even though the individual terms of the
sums are completely different, gives a high degree of confidence in the correctness of the theoretical
and numerical calculations.

Of course we could also use the functional equation (26) to give a much simpler convergent
series expansion for F (λ) than (28), namely

F (λ) =
1

λ
Z∗

( 1
λ
, 2
)

=
λ3

π2

∑′

ℓ,m, n

1

(λ2ℓ2 + λ2m2 + n2)2
, (32)

but this formula would be useful for practical purposes because of the slow convergence: summing
over |ℓ|, |m|, |n| ≤ N involves O(N3) terms and gives an error of the order of 1/N , so that we
would need some 1010 terms to achieve even three digits of precision.

C. The value of F (λ) is given for small λ by

F (λ) =
2C

3
λ−1 +

π

3
λ + O(λe−π/λ

)
(λ → 0) (33)

and for large λ by

F (λ) =
π2

45
λ3 + C ′ + O(

√
λ e−πλ

)
(λ → ∞) (34)

where C = 1− 1
9+

1
25−· · · = L4(2) (with L4 as in (̃19)) is Catalan’s constant and C ′ = 2

π ζ(
3
2 )L4(

3
2 ).

The values obtained for λ = .1 and λ = 10 by retaining only the first two terms in equations (33)
or (34), respectively, are

F (.1) ≈ 6.21115704963445320831277821232521083463423480852 ,

F (10) ≈ 220.762287791317835036587358989193358212711493834 ,

extremely close to the exact values for these two numbers given above.

Let us now prove each of these assertions.

A. From (5) and the fact that the generalized Mellin transform of the constant function 1 vanishes,
we deduce that the function Z∗(λ, s) defined by (27) equals the Mellin transform ϕ̃λ(s) of the
function

ϕλ(t) =
∑

ℓ,m, n∈Z

e−π(ℓ2+m2+λ2n2)t = ϑ(t)2 ϑ(λ2t) (λ, t > 0) ,

where ϑ(t) is the theta series defined in (9). The functional equation (12) of ϑ(t) implies the
functional equation ϕλ(t) = λ−1t−3/2ϕ1/λ(t

−1) of ϕλ(t), and the meromorphic continuation, de-
scription of poles and funcctional equation (26) of Z∗(s) then follow as in Example 4 above.

8



B. Since the function ϕ(t) = ϕλ(t) equals 1 to all orders in t as t → ∞ and (by virtue of its func-
tional equation) equals λ−1t−3/2 to all orders in t as t → 0, the two pieces of the decomposition (r 1

2 )
of its Mellin transform are given by

ϕ̃λ,≥T (s) =

∫ ∞

T

(
ϕλ(t) − 1

)
ts−1 dt − T s

s
(35)

and

ϕ̃λ,≤T (s) =

∫ T

0

(
ϕλ(t) − λ−1 t−3/2

)
ts−1 dt +

λ−1 T s− 3
2

s− 3
2

respectively. Using the functional equation of ϕλ(t), we see that these are exchanged when we
replace λ, s and T by λ−1, 3

2 − s and T−1, respectively (again making the functional equation of
Z∗(λ, s) = ϕ̃λ(s) evident), so we only have to study ϕ̃λ,≥T (s). Substituting the definition of ϕλ(t)
into (35), we find

ϕ̃λ,≥T (s) = T s
∑′

ℓ,m,n

γs
(
πT (ℓ2 +m2 + λ2n2)

)
− T s

s
,

where γs(x), essentially the incomplete gamma function, is defined for x > 0 by

γs(x) =

∫ ∞

1

ts−1 e−xt dt (x > 0) .

The extra term −T s/s in this formula can be omitted if we drop the prime from the summation
signs and define the value of γs(0) as −1/s (which is indeed the limiting value of γs(x) as x → 0
if ℜ(s) < 1). The final result, with this convention for γs(0), is therefore

Z∗(λ, s) = T s
∑

ℓ,m,n

γs
(
πT (ℓ2 +m2 + λ2n2)

)
+

[
s 7→ 3

2
− s, λ 7→ λ−1, T 7→ T−1

]
.

The special case s = − 1
2 gives the expansion (28).

C. The leading term in the expansion of F (λ) when λ is very big or very small can be obtained
from equation (32): if λ is small then the dominating terms in (32) are those with n = 0, so
F (λ) is asymptotically equal to π−2λ−1

∑′
ℓ,m(ℓ2 + m2)−2 = 4π−2ζ(2)L4(2)λ

−1 (here we have

used that 1
4

∑′
ℓ,m(ℓ2 + m2)−s is the Dedekind zeta function of the field Q(i), which factors as

ζ(s) times L4(s)), while for large λ the dominating terms are those with ℓ = m = 0 and we get
F (λ) ∼ 2π−2ζ(4)λ3. To get a more precise estimate, we use equation (28).

Consider first the case λ → 0, and choose T in (28) so that T → ∞, λ2T → 0. (The best
choice will turn out to be T = λ−1.) Then in view of the exponential decay γs(x) = Os(x

−1e−πx)
of γs(x) when x → ∞, we find that the only terms in (28) which are not exponentially small are
those with (ℓ,m) = (0, 0) in the first sum and those with n = 0 in the second one. Hence

F (λ) =
1√
T

[
f1(λ

2T ) + O

(
1

T

∑′

ℓ,m

e−πT (ℓ2+m2) ·
∑

n

e−πλ2Tn2

)]

+
1

λT 2

[
f2
( 1
T

)
+ O

(∑

ℓ,m

e−π(ℓ2+m2)/T · λ2T
∑′

n

e−πn2/λ2T

)]

=
1√
T

f1(λ
2T ) +

1

λT 2
f2
( 1
T

)
+ O

( 1

λT 2
e−πT + λ e−π/λ2T

)
, (36)
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where
f1(ε) =

∑

n∈Z

γ−1/2(πεn
2) , f2(ε) =

∑

ℓ,m∈Z

γ2(πε(ℓ
2 +m2)) .

From the definition (29) and the functional equation of ϑ(x) we find (for ε small)

f1(ε) =

∫ ∞

1

t−3/2 ϑ(εt) dt =
√
ε

∫ ∞

ε

ϑ(t)
dt

t3/2
=

√
ε

∫ 1/ε

0

ϑ(x) dx

=
1√
ε
+

√
ε

∫ 1/ε

0

(
ϑ(x)− 1

)
dx =

1√
ε
+

√
ε

(
π

3
+ O

(
e−π/ε

))
,

since ∫ ∞

0

(
ϑ(x)− 1

)
dx = 2

∞∑

n=1

∫ ∞

0

e−πn2x dx =
2

π

∞∑

n=1

1

n2
=

π

3
.

Similarly, noting the exceptional case x = 0 in the definition (30) of γ2(x), we find

f2(ε) +
1

2
=

∫ ∞

1

t
(
ϑ(εt)2 − 1

)
dt =

1

ε2

∫ ∞

ε

x (ϑ(x)2 − 1) dx

=
1

ε2

(∫ ∞

0

x (ϑ(x)2 − 1) dx −
∫ ε

0

(1− x+O(e−π/x)) dx

)

=
2C

3
ε−2 − ε−1 +

1

2
+ O(e−π/ε) ,

where this time we have used

∫ ∞

0

x
(
ϑ(x)2 − 1

)
dx =

∑′

ℓ,m

∫ ∞

0

xe−π(ℓ2+m2)x dx =
1

π2

∑′

ℓ,m

1

(ℓ2 +m2)2
=

4

π2
ζ(2)L4(2) .

Inserting these formulas into (36), we find

F (λ) =
1√
T

[
1

λ
√
T

+
π

3
λ
√
T + O(λ

√
T e−π/λ2T )

]

+
1

λT 2

[
2C

3
T 2 − T + O(e−πT )

]
+ O

( 1

λT 2
e−πT + λ e−π/λ2T

)

=
2C

3
λ−2 +

π

3
λ + O

( 1

λT 2
e−πT + λ e−π/λ2T

)
.

(Note how the two non-exponentially small terms which depend on T cancel, as they have to.)
Taking T = 1/λ gives (33).

The proof of (34) is completely analogous. From (28) and the exponential decay of γs(x) we get

F (λ) =
1√
T

f3(T ) +
1

λT 2
f4
( 1

λ2T

)
+ O

( 1

λ2T 5/2
e−πλ2T +

1

T 1/2
e−π/T

)

as λ → ∞, where T → 0 with λ2T → ∞ and where f3(ε) are f4(ε) are defined by

f3(ε) =
∑

ℓ,m∈Z

γ−1/2(πε(ℓ
2 +m2)) , f4(ε) =

∑

n∈Z

γ2(πεn
2) .
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This time we find the expansions

f3(ε) =
2

3
ε−1 + C ′ ε1/2 + O(e−π/ε) , f4(ε) =

π2

45
ε−2 − 2

3
ε−1/2 + O(

√
ε e−π/ε)

for ε small, the non-exponentially small terms which depend on T again cancel, and taking T = 1/λ
to make the error as small as possible we obtain (34). The details are left to the reader.

As a final comment, we mention that the constants C and C ′ occurring in (33) and (34) can
be evaluated rapidly by the same method as in B, with ϑ(t)2 instead of ϑ(t)2ϑ(λt), using the fact
that the Dirichlet series 4ζ(s)L4(s) is the Mellin transform of ϑ(t)2. Their numeical values are

C = 0.915965594177219015054603514932384110774149374281672134 · · · ,
C ′ = 1.437745544887643506932003436389999650184840340379933997 · · · .

4. Asymptotics of sums of the form
∑

f(nt)

In this section we describe an extremely useful, and not sufficiently well known, asymptotic
formula for functions given by expansions of the form

g(t) = f(t) + f(2t) + f(3t) + · · · , (37)

where f : (0,∞) → C is a smooth function of sufficiently rapid decay to ensure the convergence
of the series (say f(t) = O(t−1−ε) as t → ∞) and having a known asymptotic expansion at t = 0.
In the simplest situation, we assume that f has a power series expansion (which may be only
asymptotic rather than convergent, i.e. f need only be differentiable rather than analytic at the
origin)

f(t) ∼
∞∑

n=0

bn t
n (t → 0) . (38)

First, let us try to guess what the answer should be. On the one hand we can argue à la
Euler, simply substituting the expansion (38) into (37) and interchanging the order of summation,
without worrying about convergence problems. This gives

g(t) ∼
∞∑

m=1

∞∑

n=0

bn (mt)n =
∞∑

n=0

bn

( ∞∑

m=1

mn

)
tn =

∞∑

n=0

bn ζ(−n) tn . (39)

Of course this calculation is meaningless, since not only is the interchange of summation not per-
mitted, but each of the interior sums

∑
m mn is divergent. Nevertheless, we know from Section 2,

and Euler knew non-rigorously in 1749, that the numbers ζ(−n) do make sense and are certain
rational numbers given by equation (8), so that at least the final expression in (39) makes sense
as a formal power series. Alternatively, we can proceed à la Riemann and consider (37) for t small
as 1/t times an approximation to the integral

If =

∫ ∞

0

f(t) dt . (40)

This suggests instead that the correct asymptotic expansion of g(t) near 0 should be given by

g(t) ∼ If
t

(t → 0) , (41)
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and indeed this formula is true, by the very definition of Riemann integrals as limits of sums, if
we interpret the symbol of asymptotic equality “∼ ” in its weak sense, as saying simply that the
ratio of the expressions on its left and right tends to 1 as t → 0. However, we are using “∼ ” in
its strong sense, where g(t) ∼ ∑

λ aλt
λ means that the difference between g(t) and the finite sum∑

λ<C aλt
λ is O(tC) as t → 0 for any value of C, no matter how large. In this stronger sense,

neither (39) nor (41) gives the correct asymptotic development of g. Remarkably enough, however,
their sum does give the right answer:

Proposition 3. Let f be a C∞ function on the positive real line which has the asymptotic devel-

opment (38) at the origin and, rogether with all its derivatives, is of rapid decay at infinity. Then

the function g(t) defined by (37) has the asymptotic development

g(t) ∼ If
t

+
∞∑

n=0

bn
Bn+1

n+ 1
(−t)n (42)

as t → 0, where If is defined by equation (40).

Remark. The relationship of Proposition 3 to the discussion of the Mellin transform in §§1–3 is
very easy to describe. Suppose for simplicity that f(t) is of rapid decay as t → ∞. Then (38)

implies that the Mellin transform f̃(s), defined for ℜ(s) > 0 as
∫∞

0
f(t)ts−1dt, has a meromorphic

continuation to all s with simple poles of reside bn at s = −n (n = 0, 1, 2, . . . ) and with no
other singularities. But the transformation rules (2) of the Mellin transform imply that the Mellin

transform g̃(s) of g(t) equals ζ(s)f̃(s), so it has (at most) simple poles of residue f̃(1) = If at s = 1
and residue ζ(−n)bn at s = −n (n = 0, 1, 2, . . . ). Since g(t) is small at infinity, it follows that, if
g(t) has an asymptotic expansion as t → 0 of the form

∑
j ajt

αj (or even
∑

j ajt
αj (log t)mj ), then

this expansion is necessarily given by eq. (42).

Proof. We begin by describing the Euler-Maclaurin summation formula. To state it, we need
the Bernoulli polynomials Bn(x), which can be described by the generating function (22), by
the explicit formula (23) in terms of Bernoulli numbers, or, most beautiful, by the property that∫ a+1

a
Bn(x)dx = an for every a. (It is easy to see that there is only one polynomial Bn(x) with

this property for each n.) From any of these definitions we can deduce without difficulty that
B′

n(x) = nBn−1(x) and that Bn(x+ 1)−Bn(x) = nxn−1.

Now let f be a smooth function on the positive reals. Integration by parts and the fact that
B1(0) =

1
2 = −B1(0) but Bn+1(1) = Bn+1(0) = Bn+1 for n ≥ 2 gives

∫ 1

0

f (n)(x)
Bn(x)

n!
dx = −

∫ 1

0

f (n+1)(x)
Bn+1(x)

(n+ 1)!
dx +

{
1
2 [f(0) + f(1)] if n = 0,
Bn+1

(n+1)! [f
(n)(1)− f (n)(0)] if n ≥ 1

and hence, by induction on N ,

∫ 1

0

f(x) dx =
1

2
[f(0)+f(1)] +

N−1∑

n=1

(−1)nBn+1

(n+ 1)!
[f (n)(1)−f (n)(0)] + (−1)N

∫ 1

0

f (N)(x)
BN (x)

N !
dx

for every integer N ≥ 1. Replacing f(x) by f(x+m− 1) and summing over m = 1, 2, . . . ,M gives

∫ M

0

f(x) dx =
f(0)

2
+

M−1∑

m=1

f(m) +
f(M)

2
+

N−1∑

n=1

(−1)nBn+1

(n+ 1)!
[f (n)(M)− f (n)(0)]

+ (−1)N
∫ M

0

f (N)(x)
B̄N (x)

N !
dx (43)
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where B̄N (x) = BN (x− [x]). This is the Euler-Maclaurin summation formula.

Now assume that f and each of its derivatives is of rapid decay at infinity, so that
∫∞

0
|f (N)(x)| dx

converges. Since B̄N (x) is periodic and hence bounded, we can let M → ∞ in (43) to get

∞∑

m=1

f(m) =

∫ ∞

0

f(x) dx +
N−1∑

n=0

(−1)nBn+1

(n+ 1)!
f (n)(0) − (−1)N

∫ ∞

0

f (N)(x)
B̄N (x)

N !
dx .

Replacing f(x) by f(tx) and then x by x/t with t > 0 changes this formula to

∞∑

m=1

f(mt) =
1

t

∫ ∞

0

f(x) dx +

N−1∑

n=0

(−1)nBn+1

(n+ 1)!
f (n)(0) tn + (−t)N−1

∫ ∞

0

f (N)(x)
B̄N (x/t)

N !
dx .

The last integral is bounded as t → 0 with N fixed for the same reason as before, so the final term
is ON (tN−1). Substituting f (n)(0) = n! bn from (38), we get the desired asymptotic formula (42).
�

Before giving examples of Proposition 3, we mention three extensions to more general sums.

1. First, instead of (37) we can look at shifted sums of the form g(t) =
∑∞

m=0 f((m+ a)t), where
a > 0. Here the “Riemann Ansatz” and the “Euler Ansatz” predict If t

−1 and
∑∞

n=0 bnζ(−n, a)tn

for the asymptotic expansion of g, and again the correct answer is the sum of these two:

∞∑

m=0

f((m+ a)t) ∼ If
t

+
∞∑

n=0

bn
Bn+1(a)

n+ 1
tn (44)

(cf. equation (23)). The proof is similar to that of Proposition 3 and will be omitted. By taking
rational values of a in (44) and forming suitable linear combinations, we can use this formula to
give the asymptotic development of

∑
m≥1 χ(m)f(mt) as t → 0 for any periodic function χ(m),

such as a Dirichlet character.

2. Next, we can allow non-integral exponents of t in (38). If the expansion of f(t) at the
origin contains terms bλt

λ with arbitrary real numbers λ > −1 (or complex numbers with real
part greater than −1), then the formula for g need only be modified by adding the corresponding
terms bλζ(−λ)tλ. Terms with λ < −1 are not interesting since they can simply be subtracted
from f(t), since the sum

∑
m bm(mt)λ then converges absolutely. The limiting case λ = −1 is of

interest because it occurs in various applications. Here the answer (proved most easily by taking
one function, like t−1e−t, which has a 1/t singularity at the origin and for which

∑
f(mt) can be

computed exactly) is

f(t) ∼
∑

λ≥−1

bλ t
λ ⇒

∞∑

m=1

f(mt) ∼ 1

t

(
b−1 log

1

t
+ I∗f

)
+

∞∑

λ>−1

bλ ζ(−λ) (−t)λ , (45)

where I∗f =
∫∞

0
(f(t)− b−1e

−t/t)dt.

3. Finally, we can also allow terms of the form tλ(log t)n in the expansion of f(t), the corre-
sponding contribution to g(t) being simply the nth derivative with respect to λ of ζ(−λ)tλ, e.g. a

term tλ log
1

t
in the expansion of f(t) at 0 leads to a term tλ

(
ζ(−λ) log

1

t
+ζ ′(−λ)

)
in the expansion

at 0 of g(t). In particular, using the known value ζ ′(0) = − 1
2 log(2π) we find

f(t) ∼ b log
1

t
+

∞∑

n=0

bnt
n ⇒

∞∑

m=1

f(mt) ∼ If
t

− b

2
log

2π

t
+

∞∑

n=0

bn ζ(−n) tn . (46)
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We end by giving four examples—two easy and two harder—to illustrate how these asymptotic
formulas work.

Example 1. Take f(t) = e−λt with λ > 0. This function is smooth, small at infinity, and has
an expansion (38) at t = 0 with bn = (−λ)n/n! . The integral If equals 1/λ. Hence (42) gives

g(t) ∼ 1

λt
+

∞∑
n=0

Bn+1

(n+ 1)!
(λt)n as the asymptotic expansion of g(t) =

∞∑
m=1

f(mt) =
1

eλt − 1
, in

accordance with the definition (6) of the Bernoulli numbers.

Example 2. Now take f(t) = e−λt2 with λ > 0. This function is again smooth and small at
infinity, and has an expansion (38) at t = 0 with b2n = (−λ)n/n! and bn = 0 for n odd. Since all
Bernoulli numbers with odd indices > 1 vanish, the asymptotic expansion in (42) breaks off after

two terms, and we find g(t) = If/t − 1/2 + O(tN ) for all N , with If =
√
π/4λ. In this case, of

course, we know much more, because g(t) is simply 1
2

(
ϑ(λt2/π) − 1

)
with ϑ(t) as in eq. (9), and

therefore equation (12) gives the much more precise statement g(t) = If/t−1/2+O
(
t−1e−π2/λt2

)
.

The same applies to any function f(t) whose expansion at t = 0 has only even powers of t. For such
a function, the expansion (42) collapses to g(t) ∼ If/t− b0/2, but this is always just a weakening
of the Poisson summation formula (13), because we can extend f(t) by f(t) = f(|t|) to a smooth
even function on the real line and use (14) to get the exact formula

2g(t) + f(0) =
∑

n∈Z

f(nt) =
1

t

∑

n∈ζ

f̂(nt) =
2If
t

+
2

t

∞∑

n=1

f̂(nt) ,

and the smoothness of f implies that the function f̂(y) decays at infinity more rapidly than any
negative power of y. The right way to think of Proposition 3 is therefore as a replacement for
the Poisson summation formula when one is confronted with a sum over only positive integers
rather than a sum over all of Z. Such sums are very much harder to study than sums over all
integers—just think of the special values of the Riemann zeta function, where the numbers ζ(2k)
can be obtained in closed form because they can be written as 1

2

∑′
n∈Z

n−k, while the numbers
ζ(2k + 1), which cannot be reduced to sums over all of Z in this way, are not known exactly.

Example 3. As our next example, we consider the function

gk(q) =
∞∑

n=1

σk−1(n) q
n (0 < q < 1) ,

where k is an integer greater than 1 and σk−1(n) denotes the sum of the (k − 1)st powers of the
divisors of a natural number n. In the theory of modular forms, it is shown that if k is even and
larger than 2, then gk satisfies the functional equation

−Bk

2k
+ gk

(
e−2πt

)
=

(−1)k/2

tk

(
−Bk

2k
+ gk

(
e−2π/t

))
(k = 4, 6, 8, . . . ; t > 0).

In particular, gk(e
−2πt) has the terminating asymptotic expansion

gk(e
−2πt) = −(−1)k/2

Bk

2k
t−k +

Bk

2k
+ O(tN ) (∀N > 0) (47)

as t → 0 in these cases. Let us see how Proposition 3 permits us to recover this asymptotic formula
using without knowing the modularity, and at the same time tells us why (47) fails for k = 2 or
k odd and what replaces it in those cases.
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We first note that

gk(q) =
∞∑

n=1

(∑

m|n

mk−1

)
qn =

∞∑

m=1

mk−1
(
qm + q2m + · · ·

)
=

∞∑

m=1

mk−1 qm

1− qm

and hence that gk can be written after a change of variables in the form

gk
(
e−t

)
=

1

tk−1

∞∑

m=1

fk(mt) , fk(t) =
tk−1

et − 1
.

The function f = fk satisfies the hypotheses of Proposition 3, with integral

If =

∫ ∞

0

tk−1

et − 1
dt =

∫ ∞

0

tk−1
(
e−t + e−2t + · · ·

)
dt = (k − 1)! ζ(k)

and with Taylor expansion f(t) =
∞∑
r=0

Br

r!
tr+k−2 at zero. Proposition 3 therefore gives

gk
(
e−t

)
∼ (k − 1)! ζ(k)

tk
+

∞∑

r=0

(−1)r+k Br

r!

Br+k−1

r + k − 1
tr−1 (t → 0). (48)

If k is even and ≥ 4, then all products BrBr+k−1 with r 6= 1 vanish, since r and r + k − 1 have
opposite parity and all odd-index Bernoulli numbers except B1 are zero. Thereofre only two terms
of (48) survive, and replacing t by 2πt and using the well-known formula for ζ(k) in terms of Bk,
we recover (47). If k = 2, then the argument is the same except that now the r = 0 term also gives
a non-zero contribution, so that we find

g2
(
e−2πt

)
=

1

24t2
− 1

4πt
+

1

24
+ O(tN ) (∀N > 0),

instead of (47), in accordance with the known near-modularity property of g2. Finally, if k is odd
then we still get an explicit asymptotic formula with rational coefficients, but it now no longer
terminates. Thus for k = 3 we find the expansion

g3
(
e−t

)
∼ 2 ζ(3)

t3
− 1

12t
+

t

1440
+

t3

181440
+

t5

7257600
+

t7

159667200
+ · · ·

as t → 0, even though gk has no modularity properties in this case. We leave it as an exercise to the
reader to calculate the corresponding expansion when k = 1, where one has to use equation (45)
instead of equation (42).

Example 4. As our final example, consider the function

P (q) =
∞∏

m=1

1

1− qm
(|q| < 1) ,

the generating power series of the partition function. To study the behavior of the partition
function, we need to know how P (q) blows up as q approaches 1 from below (or, more generally,
any root of unity from within the unit circle). Here again the known modularity properties of the
function P (q) imply the non-trivial functional equation

eπt/12 P
(
e−2πt

)
=

√
t eπ/12t P

(
e−2π/t

)
(t > 0),
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from which one immediately obtains the asymptotic expansion

logP
(
e−2πt

)
=

π

12t
+

1

2
log t − π

12
t + O(tN ) (∀N > 0) . (49)

To obtain this formula without knowing anything about the modularity of P , we observe that
logP

(
e−t

)
has the form

∑∞
m=1 f(mt) with f(t) = − log(1 − e−t). This function is small at

infinity, has integral If = ζ(2) (as one sees by integrating by parts once and then calculating as in
Example 2), and has an asymptotic development

f(t) ∼ log
1

t
−

∞∑

n=1

Bn

n · n! t
n ,

as one sees easily by differentiating once. Hence equation (47) applies and gives

logP
(
e−t

)
∼ ζ(2)

t
+

1

2
log

t

2π
−

∞∑

n=1

(−1)n
Bn

n · n!
Bn+1

n+ 1
tn .

Again all terms except for the first in the sum on the right vanish because n and n+1 have opposite
parity, and replacing t by 2πt and using ζ(2) = π2/6 we recover (49). The same method using (44)
with rational values of a lets us compute the exact asymptotics of P (q) as q approaches any root
of unity, recovering precisely the same result as that given by the modularity. Moreover, just as
in the case of Example 2 for k odd, the method applies even when modularity fails. For example,
if we define

P2(q) =
∞∏

m=1

1

(1− qm)m
(|q| < 1) ,

a generating function that occurs in connection with the theory of plane partitions, then an analysis
like the one just given for P (q), but now with f(t) = −t log(1 − e−t), produces the complete
asymptotic expansion

P2(e
−t) = c t1/12 eζ(3)/t

2

(
1 − t2

2880
− 17t4

12902400
− · · ·

)
(t → 0)

with c = eζ
′(−1) = 0.847536694 · · · , and using (46) one can get the expansion of P2(αe

−t) for any
root of unity α. Furthermore, for reasons similar to those which applied to gk with k even, one

finds that the corresponding expansions for the logarithm of P3(q) =
∏
(1− qn)−n2

when q tends
to a root of unity are terminating, even though there are no modularity properties in this case.

Warning. Equations numbering have to be checked, e.g., two eqs. (5), one now changed to (4 1
2 ).
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