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Abstract. We verify the (first) Gamma Conjecture, which relates the gamma class of a Fano

variety to the asymptotics at infinity of the Frobenius solutions of its associated quantum differ-

ential equation, for all of the 17 deformation classes of rank one Fano 3-folds. Doing this involves

computing the corresponding limits (“Frobenius limits”) for the Picard–Fuchs differential equations

of Apéry type associated by mirror symmetry to the Fano families, and is achieved by two methods,

one combinatorial and one using the modular properties of the differential equations. The Gamma

Conjecture for Fano 3-folds always contains a rational multiple of the number ζ(3). We present

numerical evidence suggesting that higher Frobenius limits of Apéry-like differential equations may

be related to multiple zeta values.

Introduction

The goal of this paper is twofold. On the one hand, we will calculate certain coefficients of
the transition, or central connection, matrix for the Laplace transform of a number of Apéry-like
differential equations, finding the expansion coefficients of the most rapidly growing solution at
infinity in terms of the Frobenius basis at 0. On the other hand, these calculations, the result
of which involves the number ζ(3) each time, provides a verification of a prediction of mirror
symmetry called the (first) Gamma Conjecture for each of the 17 deformation classes from the
Iskovskikh classification of smooth Fano threefolds of Picard rank one.

We will present two approaches to computing the limits in question. One of them, which we
carry out for the differential equation satisfied by the generating function of the numbers used by
Apéry’s in his famous proof of the irrationality of ζ(3), is based on the explicit hypergeometric
formula that he gave for these numbers. This is the less satisfactory method, since it depends on
complicated formulas that were found experimentally and whose proofs are somewhat artificial, but
has nevertheless been included because it could apply also in other situations that are not modular,
like the differential equations associated to most Fano 4-folds. It also works almost automatically
whenever the differential equation is of hypergeometric type, which is the case for 10 of the 17
cases on Iskovskikh’s list. The second method is based on the modular parametrizations of the
differential equations in question, like the one found by Beukers many years ago for the Apéry
case. This method is much nicer and explains the crucial constant ζ(3) as a period of an Eisenstein
series. It works in a uniform way for each of the differential equations admitting a modular
parametrization, which holds for 15 of the 17 families, including all of the non-hypergeometric
ones. This gives our main result:

Theorem 1. The Gamma Conjecture holds for all Fano 3-folds of Picard rank one.

Since mes of the paper cover a wide spectrum and may not all be known to the same readers, we
will include in Chapter 1 a review of the main ingredients of the story (Fano varieties, Iskovskikh
classification, quantum differential equation, gamma class, Gamma Conjecture) for completeness.
However, the actual calculations of the limits, which are given in Chapter 2, involve only classical
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tools from number theory and can be read independently of this material. In the rest of this
introduction, we give a little more indication of the background of the problem and state the
explicit prediction made by the Gamma Conjecture in the Apéry case.

Mirror symmetry predicts, among other things, that to each of the 17 families of Fano varieties
in question there should be associated a family E of K3 surfaces over P1 (up to isogeny, it is the
so-called Landau–Ginzburg model) in such a way that the “quantum differential equation” on the
Fano side is the Laplace transform of the Picard–Fuchs differential equation satisfied by the periods
of E . These quantum differential equations, whose definition will be recalled briefly in §4, arise
from counting embedded holomorphic curves (Gromov–Witten invariants), so that this is the “A-
side” in the terminology of string theory (where one is usually interested in families of Calabi–Yau
3-folds), while the second family E with its Picard–Fuchs equation would be the “B-side.” One
further expects that the Picard rank of the Fano and that of the generic fiber of E add up to 20.
For the 17 cases we are considering, these mirror symmetry predictions were made precise in [15]
and proved in all cases in [15] and [27]. In each case, the family E is is a Kuga–Sato type family,
with the base space equal to the modular curve1 X∗0 (N) = X0(N)/WN classifying unordered pairs
(E,E′) of N -isogenous elliptic curves for some N , and fibre equal to the smooth resolution of the
quotient of E × E′ by (−1), with Picard number 19 = 20 − 1 as it should be (16 algebraic cycles
coming from the resolutions of the 16 singularities and 3 more from the classes of E, E′, and the
graph of the isogeny). The fact that these families are of Kuga-Sato type means precisely that the
solutions of their associated Picard–Fuchs differential equations have modular parametrizations.
More specifically, the differential equation has a unique holomorphic solution Φ(t) =

∑∞
n=0Ant

n at
t = 0 with A0 = 1, where t is a suitably chosen coordinate for the base space P1, and the modular
parametrization says that Φ(t(τ))2 is a modular form of weight 4 on Γ∗0(N) for some Hauptmodul
t(τ) on X∗0 (N). The Gamma Conjecture relates the asymptotics at infinity of the four Frobenius
solutions of the differential equation satisfied by Ψ(z) =

∑∞
n=0Anz

n/n! to the so-called gamma
class (a characteristic class in cohomology with real coefficients, whose definition will be recalled
in §5) of the corresponding Fano 3-fold.

We now describe the picture in more detail in the Apéry case, corresponding to N = 6. Here
we have

An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

, Φ(t) = 1 + 5 t + 73 t2 + 1445 t3 + · · · . (0.1)

The corresponding recursion and differential equation are

(n+ 1)3An+1 − P (n)An + n3An−1 = 0 ,
(
D3 − tP (D) + t2(D + 1)3

)
Φ(t) = 0 , (0.2)

where D = t
d

dt
and P (n) is the polynomial 34n3 + 51n2 + 27n + 5 = (2n + 1)(17n2 + 17n + 5),

while the modular parametrization, as found by Beukers [3], is given by

t =
( η(τ)η(6τ)

η(2τ)η(3τ)

)12
= q − 12q2 + 66q3 + · · · , Φ(t) =

(
η(2τ)η(3τ)

)7(
η(τ)η(6τ)

)5 = 1 + 5q + 13q2 + · · · .

where η(τ) is the Dedekind eta-function and q = e2πiτ as usual. For the Gamma Conjecture, we
consider, not Φ(t), but the related power series

Ψ(z) =

∞∑
n=0

An
zn

n!
= 1 + 5 z +

73

2
z2 +

1445

6
z3 + · · · .

It again satisfies a linear differential equation, this time of order 4, with no singularities on C∗,
a regular singularity at 0 and an irregular one at infinity. (This is what we called the “Laplace
transform” above, although “Borel transform” might be a better name.) The space of solutions of

1or a d–fold cover of it, where d is the “index”, but in the Introduction we assume d = 1.
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this transformed equation near z = 0 has the standard Frobenius basis Ψj(z) (0 ≤ j ≤ 3), where
Ψj(z) has a singularity like (log z)j/j! near the origin. We define the Frobenius limits κj by

κj := lim
z→∞

Ψj(z)

Ψ(z)
. (0.3)

The Gamma Conjecture gives their values in terms of ζ(3) and the Chern numbers of one of the
Fano varieties (the one called V12) from the Iskovskikh list. Specifically, it predicts that

κ1 = −γ , κ2 =
γ2

2
− 3

2
ζ(2) , κ3 = − γ3

6
+

3

2
γ ζ(2) +

5

2
ζ(3) (0.4)

where γ is Euler’s constant. (The easy explicit computation of the gamma class, here and for the
other 16 cases, is given in Proposition 2 in Section 5.) This will be proved as a special case of our
main theorem, Theorem 2 in Section 3, which gives the Frobenius limit in all seventeen cases.

We end by remarking that the Frobenius basis is part of a larger collection of functions Ψj(z)
for all j ≥ 0, still with a singularity of type (log z)j at the origin, but with Ψj for j ≥ 4 satisfying
an inhomogeneous version of the differential equation of Ψ(z). The limits κj defined in (0.3) still
exist and can be computed numerically to high precision by a method that will be explained in §9.
We find that for j ≤ 10 each of these ratios is again a polynomial in γ and Riemann zeta values,
but that this is false for κ11, which involves a multiple zeta value as well. This point, although
purely experimental at the moment, seems worth mentioning and will be described in more detail
in the last section of the paper.

Since the main ingredient of our story is the monodromy of Fuchsian differential equations, we
hope that it is a suitable homage to Andrei Andreevich Bolibrukh, who contributed so deeply to
this subject.

Chapter 1. Fano varieties, Apéry-like
differential equations, and mirror symmetry

In this chapter we will give a brief description of the Gamma Conjecture (see [23] and [12] for
more detail) and a complete statement of the prediction it makes for Fano 3-folds whose Picard
groups have rank 1. We also describe the associated Picard–Fuchs equations and their modular
parametrizations, following [15].

1. Fano varieties and the Iskovskikh classification. A Fano variety X means in this paper
a smooth complex projective algebraic variety with ample anticanonical class. The projective line
P1 is the only Fano in dimension 1. Fanos in dimension 2 are called del Pezzo surfaces; these are
either P1 × P1 or blowups of P2 in 0 ≤ d ≤ 8 points. By results of Mori and Mukai [25], there
exist 105 deformation families of Fano 3-folds.

We will be interested in Fano 3-folds whose Picard lattices have rank 1. (Since degree 2
cohomology classes here are algebraic, this simply means that H2(X,Z) ∼= Z.) According to
V. A. Iskovskikh [21, 22] (see also [20]), there are exactly 17 of these up to deformation. The
relevant numerical invariants for this classification are the index d = [H2(X,Z) : Z c1], where c1 is

the anticanonical divisor, and the level N =
1

2d2
〈c31, [X]〉, which is always a positive integer. The

17 possible pairs of invariants (N, d) are then

(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (11, 1),

(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (3, 3), (2, 4) .
(1.1)

For instance, (N, d) = (2, 4) corresponds to the Fano variety X = P3 (so here the deformation
family has a 0-dimensional base), for which the associated Picard–Fuchs differential equation is
hypergeometric, while (N, d) = (6, 1), which is the family called V12 (whose geometric definition
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plays no role for us and will be omitted), corresponds to the Apéry differential equation as described
in the Introduction and will be referred to hereafter as the “Apéry case.”

2. Apéry-like differential equations. We will describe the Picard–Fuchs differential equa-
tions associated to our 17 cases in this section, their modular properties in the following one, and
the relation of their Laplace transforms to the quantum cohomology of the Fano varieties in §4.

The differential operators occurring are of type D3. Here “type Dn” (the full name is “determi-
nantal differential equations of order n”) is a specific class of linear differential equations, introduced
in [16], that includes the Picard–Fuchs differential equations of certain families of Calabi–Yau vari-
eties of dimension n−1 and, in its Laplace-transformed version, the quantum differential equations
of certain n-dimensional Fano varieties. The operators of type D2, which have the shape

D2 + t
(
a1D(D + 1) + b1

)
+ a2t

2 (D + 1)2 + a3t
3 (D + 1)(D + 2) (D = t d/dt) ,

are precisely the ones appearing in the “Apéry-like differential equations” studied in [4] and [32],
of which the prototype was the order 2 differential equation coming from the coefficients used by
Apéry in his new proof of the irrationality of ζ(2). Since the D3 class also contains the order 3
differential equation corresponding to Apéry’s proof for ζ(3), we will use the terminology “Apéry-
like equations of order n” as an alternative name for the class Dn. The generic D3 operator, which
is the case that we will be studying, has the shape

L = D3 + t
(
D + 1

2

)(
a1D(D + 1) + b1

)
+ t2(D + 1)

(
a2(D + 1)2 + b2

)
+ a3t

3(D + 1)(D + 3
2 )(D + 2) + a4t

4(D + 1)(D + 2)(D + 3) .
(2.1)

This can also be written as tL where L is the differential operator

L = t2Q
d3

dt3
+

3

2

(
t2Q

)′ d2
dt2

+
( t2

2
Q′′ + 3tQ′ +R

) d

dt
+
( t

2
Q′′ + 1

2 R
′
)
, (2.2)

in which the polynomials

Q = Q(t) = 1 + a1t+ a2t
2 + a3t

3 + a4t
4 , R = R(t) = 1 + b1t+ b2t

2 (2.3)

of degree ≤ 4 and ≤ 2 describe the position of the singularities of the equation and the so-called
accessory parameters, respectively.

In general, a Dn equation is obtained from an (n+ 1)× (n+ 1) matrix A =
(
ai,j
)
0≤i,j≤n whose

coefficients (which in the quantum cohomology situation arise as correlators in a way recalled
briefly in §4) satisfy

ai,j = 0 for j < i− 1, ai,j = 1 for j = i− 1, ai,j = an−j,n−i (0 ≤ i, j ≤ n),

so that this family of equations has n2/4 + O(n) parameters. The differential operator L corre-

sponding to A and its Laplace transform L̃ (related to L by L̃Ψ = 0 ⇔ LΦ = 0 if Φ(t) =
∑
Ant

n

and Ψ(z) =
∑
Anz

n/n!) are then given by

L = D−1 detR

((
δi,j D − ai,j (D t)j−i+1

)
0≤i,j≤n

)
(2.4)

and (setting Dz = z d/dz)

L̃ = detR

((
δi,jDz − ai,jz

j−i+1
)
0≤i,j≤n

)
, (2.5)

respectively, where the “right determinant” detR of a matrix with non-commuting entries is defined
inductively as the alternating sum of the right-most entries multiplied on the right by the right
determinants of the corresponding minors. (The first formula makes sense because every term
in the right-most column of the corresponding matrix is left divisible by D.) We will consider
matrices A differing by a scalar cI as equivalent, because this corresponds merely to a translation
t−1 7→ t−1 + c on the t-side, or to multiplication by exp(cz) on the z–side, with no effect on the
Frobenius limits in (0.3). We remark that the operators Dn are self-dual in the sense that the
coefficient of ti is (−1)n−i-symmetric under D 7→ −D − i. The equations of type D3 are also
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symmetric squares, which is important for us because being the symmetric power of a second order
differential operator is a necessary condition for modularity. The corresponding assertion for higher
Dn’s is completely false, and indeed the D4 equations occurring as the Picard–Fuchs equations of
families of Calabi–Yau 3-folds are almost never modular.

The 4× 4 matrices corresponding to the 17 Iskovskikh families were listed in [15], e.g.
5 96 1692 12816
1 12 216 1692
0 1 12 96
0 0 1 5

 and


12/5 24 198 880

1 22/5 44 198
0 1 22/5 24
0 0 1 12/5


for the Apéry case (N, d) = (6, 1) and for the most complicated case (N, d) = (11, 1), in which
the differential equation corresponds to a 5-term recursion for the coefficients of its holomorphic
solution, and the scalar shifts are chosen so as to make the solutions become Eisenstein series.
Instead of giving the matrices for the remaining cases, we give in Table 1 the polynomials Q and R
as defined in (2.3) above, since these polynomials contain the same information and are much more
compact to write. We give the data only for d = 1, since there is a simple algebraic procedure to
deduce the differential equation satisfied by a power series Φ(td) from the one satisfied by Φ(t). (In
our cases, going from (N, 1) to (N, d) simply replaces Q(t) by Q(td), while the new R-polynomial
equals 1+(4b1−a1)t2 for d = 2 and just 1 for d = 3 or 4, where a1 and b1 are the linear coefficients
of the original Q and R.) The final three columns of the table contain certain invariants (fM )M |N ,

(hM )M |N , and µN = 1
2

∑
M MhM that will be defined and explained in the next section (eq. (3.7))

and used later for the proof of the Gamma Conjecture.

Table 1
N Q(t) R(t) {fM} {hM} µN

1 1− 1728t 1− 240t — — 62
2 1− 256t 1− 48t ( 24,−24 ) (−80, 80 ) 40
3 1− 108t 1− 24t ( 12,−12 ) (−30, 30 ) 30
4 1− 64t 1− 16t ( 8, 0,−8 ) (−16, 0, 16 ) 24
5 1− 44t− 16t2 1− 12t+ 4t2 ( 6,−6 ) (−10, 10 ) 20
6 1− 34t+ t2 1− 10t ( 5,−1, 1,−5 ) (−7, 1,−1, 7 ) 17
7 1− 26t− 27t2 1− 8t+ 3t2 ( 4,−4 ) (−5, 5 ) 15
8 1− 24t+ 16t2 1− 8t ( 4,−2, 2,−4 ) (−4, 1,−1, 4 ) 13
9 1− 18t− 27t2 1− 6t ( 3, 0,−3 ) (−3, 0, 3 ) 12
11 1− 68

5 t−
616
25 t

2 − 252
125 t

3 − 1504
625 t

4 1− 24
5 t−

56
25 t

2
(
12
5 ,−

12
5

)
(−2, 2 ) 10

3. Modular properties. That the operators we are studying are of type D3 is true by
construction, but in fact they also have very specific modularity properties, discovered in [15],
which we now describe.

For any integer N ≥ 1, we have the modular curve X0(N), defined over C as H/Γ0(N)∪ {cusps},
the completed quotient of the upper half-plane by the level N congruence subgroup, and X∗0 (N),
the quotient of X0(N) by the Fricke involution WN sending τ ∈ H to −1/Nτ . We denote, as
usual, the group generated by Γ0(N) and WN by Γ∗0(N). As moduli spaces, X0(N) and X∗0 (N)
parametrize the ordered and unordered pairs, respectively, of elliptic curves related by a cyclic
isogeny of degree N . The involution WN acts of the space Mk(Γ0(N)) of holomorphic modular
forms of weight k on Γ0(N) by (f |kWN )(τ) = Nk/2τkf(−1/Nτ) and splits this space into two
eigenspacesM±k (Γ0(N)), withM+

k (Γ0(N)) = Mk(Γ∗0(N)) andM−k (Γ0(N)) = Mk(Γ∗0(N), χ), where
χ : Γ∗0(N) → {±1} is the homomorphism sending Γ0(N) to +1 and WN to −1. If N = 1, then
WN = S =

(
0 −1
1 0

)
belongs to Γ0(N) = SL(2,Z), so that WN has only the eigenvalue +1. In this
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case, by abuse of notation we will write F ∈M−k (Γ0(1)) if F
√
E4 is a modular form of weight k+2

on Γ0(1), where E4(τ) = 1+240q+ · · · is the normalized Eisenstein series of weight 4. In that case

F is not a one-valued function in H, since E4 has simple zeros at τ = ±1+i
√
3

2 , but it is well-defined
and holomorphic in the union of the closed standard fundamental domain of SL(2,Z) and its image
by S, which is closed under S and contains the fixed point i, and it satisfies the functional equation
(F |kS) = −F in that domain.

We now formulate the main result describing the modular properties of the differential equations
associated to the 17 families of the Iskovskikh list. The first statement in this theorem was proved
in [15], which also contained the formulation of the second statement and a sketch of its proof
in some cases. The remaining harder cases were checked by Przyjalkowski [27]. The ingredients
used were the Quantum Lefschetz Theorem of Givental [14] together with the computations of the
quantum multiplication by the first Chern class in grassmannians by Przyjalkowski [26] and by
Fulton and Woodward [9], as well as Kuznetsov’s calculation of GW invariants for varieties V22
(private communication) and Beauville’s result on V5 [2].

Theorem ([15], [27]). Let N and d be natural integers, and suppose that Γ∗0(N) has genus 0 and
that there is some modular form in M2(Γ0(N))− whose differential equation with respect to the d-th
root of a Hauptmodul of Γ∗0(N) is of type D3. Then (N, d) belongs to the list (1.1) and the Laplace
transform of this differential equation is, up to equivalence, the quantum differential equation (see
Section 4 below) of the corresponding Fano variety from the Iskovskikh classification.

The modular form F and Hauptmodul t occurring in this theorem can be given by a (nearly)
uniform formula. If N > 1, we define a modular form FN ∈M2(Γ0(N))− as the unique Eisenstein
series of weight 2 on Γ0(N) that takes on the values +1 at τ = ∞, −1 at τ = 0, and 0 at all
other cusps. If N = 1, this definition makes no sense, but we can set F1 =

√
E4 and this again

belongs to M−2 (Γ0(1)) in the sense just introduced. Then in every case the modular form F = FN,d
and Hauptmodul t = tN,d whose existence is asserted by orem are given (after normalization by
F (τ) = 1 + O(q) and t(τ) = q + O(q2), and up to equivalences t 7→ t/(1 + ct), F 7→ (1 + ct)F ) by
the uniform formulas

FN,d(τ) = FN (dτ) , tN,d(τ) = tN (dτ)1/d (3.1)

for all N and d, where tN (τ) is the power series in q defined by

FN (τ) tN (τ)
N+1
12 = η(τ)2 η(Nτ)2 . (3.2)

Conversely, it is an elementary exercise to show that the only pairs (N, d) ∈ N2 for which the
function t = tN,d defined by (3.1) and (3.2) is a modular function on Γ0(dN) are those listed
in (1.1). We sketch the argument. If N is sufficiently large then the well-known “valency formula”
(the formula giving the number of zeros of a holomorphic modular form in a fundamental domain
for the group) implies that the function FN has at least one zero in H of order not divisible
by N+1

(N+1,12) , and then the function tN (τ) defined for Im(τ) large by (3.2) does not even extend

to a single-valued meromorphic function in the upper half-plane, let alone a modular function.
Checking the remaining cases by computer, we find that the only N for which the needed root can
be extracted are the ten values N = 1, . . . , 9, 11 occurring in (1.1) and four further values N = 12,
16, 18 and 36, but in each of the latter cases the function tN (τ) defined by (3.2) is not modular
on Γ0(N). (In each of these four cases the function FN is an eta-product and tN+1 is also an
eta-product and is a modular function on Γ∗0(N) but t itself is not. For instance, for N = 12 then
we find

F12(τ) =
η(2τ)4η(3τ)η(4τ)η(6τ)4

η(τ)3η(12τ)3
, t12(τ) =

(
η(τ)60η(12τ)60

η(2τ)48η(3τ)12η(4τ)12η(6τ)48

)1/13

, (3.3)

so t13 is a modular function on Γ0(12), but t itself is only invariant under a non-congruence
subgroup of Γ0(12) of index 13.) This fixes the possible values of N , and then for each N a similar



GAMMA CONJECTURE FOR RANK 1 FANO 3-FOLDS 7

argument shows that for all values of d except those occurring in (1.1) the function tN,d defined
by (3.1) is only a root of a modular function on Γ0(dN).

As a side remark we mention that there are exactly eight values of N for which the modular
form FN ∈M−2 (Γ0(N)) can be written as a quotient of products of eta-functions, namely

N 4 6 8 9 12 16 18 36

FN
220

1848
2737

1565
2646

1484
310

1333
24314164

13123
214681

12162
21336391

22182
416491

11361

where the notation is clear if one compares the N = 12 entry with the formula for F12 given in (3.3)
or the N=6 entry with the formula for Φ(t) in the Apéry case that was given in the Introduction.

Now in each case we write the modular form F = FN,d as a power series Φ(t) in the Haupt-
modul t = tN,d, where Φ = ΦN,d is a power series with integral coefficients and with leading
coefficient 1. (This integrality, which is clear from the modular description, is not at all obvious
from the recursion for these coefficients coming from the differential equation of Φ, which was
one part of the “Apéry miracle” that was demystified by Beukers’s modular interpretation). The
operator L annihilating Φ then has the form tL with L as in (2.2), as explained in the previous
section. The following proposition expresses it in purely modular terms.

Proposition 1. The differential operator L is given in terms of the modular variable τ by

L =
1

H(τ)

(
1

2πi

d

dτ

)3
1

F (τ)
, (3.4)

where F = FN,d ∈M−2 (Γ0(N) is the form defined above and H = HN,d is a modular form belonging
in M4(Γ0(N))−. This form is given explicitly by HN,d(τ) = HN (dτ), where HN for N > 1 is the
unique Eisenstein series of weight 4 on Γ0(N) that takes on the values +1 at τ =∞, −1 at τ = 0,
and 0 at all other cusps, and H1 = E6/

√
E4.

Proof: We first note that, since the space of solutions of the differential equation is spanned by F (τ),
τ F (τ) and τ2F (τ), it consists of precisely those functions whose quotient by F (τ) is annihilated
by (d/dτ)3, so L must have the form (3.4) for some function H(τ). By comparing the symbols
(coefficient of (d/dt)3) on the two sides of (3.4), using (2.2), we find that

t(τ)2Q(t(τ)) =
1

H(τ)

t′(τ)3

t(τ)F (τ)
, (3.5)

where t′ = 1
2πi

dt
dτ , and this is at least a meromorphic modular form of weight 4 on Γ0(N) with

WN -eigenvalue −1. On the other hand, a purely algebraic calculation shows that, because the
differential operator is of type D3, one also has the formula

H(τ) = F (τ)
t′(τ)

t(τ)
, (3.6)

and by comparing these two formulas one finds that the modular form H (for N > 1) is holo-
morphic and has the given values at the cusps, which suffices since S4(Γ0(N))− here is always 0.
Alternatively, one can simply check case by case that the right-hand side of either of the above
equations agrees with E−4,N if N > 1 and with E6(τ)/

√
E4(τ) if N = 1. The d > 1 cases follow

easily from the d = 1 cases, with H(τ) = HN,d(τ) defined as HN (dτ). �

Note that the equality of the equations (3.5) and (3.6) for H implies that the curve u2 = Q(t),
which is either rational or elliptic depending on the degree of Q, has a modular parametrization
by t = t(τ), u = t′/tF , and in particular gives the Taniyama–Weil/Taylor–Wiles parametrization
when deg Q > 2 (which here happens only in four cases, (N, d) ∈ {(11, 1), (5, 2), (3, 3), (2, 4)}).
In this case the function f = tF is the cusp form of weight 2 for which f(τ) dτ = t′(τ)/u(τ) is the
Weierstrass differential dt/u on the elliptic curve, and hence is a Hecke eigenform with multiplicative
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coefficients. In this connection we mention also the joint paper [17] of one of us with Masha
Vlasenko, which contains among other things a classification of all D3 equations with 5 distinct
singularities for which the function tΦ(t) has an expansion with respect to exp(Φ1/Φ0) with
multiplicative coefficients (which in the modular case again means that it is a Hecke eigenform).

If N > 1, then, since all Eisenstein series on Γ0(N) for the cases in question come from level 1,
the functions FN and HN are given by formulas of the form

FN (τ) =
∑
M |N

M fM G2(Mτ) , HN (τ) =
∑
M |N

M2 hM G4(Mτ) , (3.7)

where

G2(τ) = − 1

24
E2(τ) = − 1

24
+

∞∑
n=1

n qn

1− qn
, G4(τ) =

1

240
E4(τ) =

1

240
+

∞∑
n=1

n3 qn

1− qn

are the Hecke-normalized Eisenstein series of level 1 and weights 2 and 4 and where fM , hM (M |N)
are rational coefficients satisfying the antisymmetry property

fN/M = −fM , hN/M = −hM (M |N ) , (3.8)

since F and H are in the (−1)-eigenspace of WN . (Note that the function G2(τ) itself is only
quasimodular, but since (3.8) implies that

∑
fM vanishes, the right-hand side of the formula

for FN in (3.7) is modular.) It is these coefficients fM and hM that were tabulated in §2 together
with the coefficients of the corresponding D3 operators. These coefficients, or rather the numbers

µN =

 62 if N = 1
1
2

∑
M |N

MhM if N > 1 (3.9)

(which were also tabulated there), appear in the following theorem giving the values of the Frobe-
nius limits occurring in the Gamma Conjecture.

Theorem 2. Let Ψ0 = Ψ, Ψ1, Ψ2, Ψ3 be the Frobenius solutions of the fourth order linear
differential equation satisfied by Ψ(z) =

∑
Anz

n/n!, where FN,d(τ) =
∑
AntN,d(τ)n for one of the

17 pairs (N, d) from (1.1). Then the Frobenius limits κj (j = 1, 2, 3) defined by (0.3) are given by

κ1 = −γ, κ2 =
γ2

2
−
( 12

d2N
− 1

2

)
ζ(2), κ3 = −γ

3

6
+
( 12

d2N
− 1

2

)
γζ(2) +

( µN
d3N

− 1

3

)
ζ(3) ,

where µN is defined by equation (3.9).

orem will be proved in Chapter 2, Sections 7 and 8. We remark that the formula in its statement
can be written in the simpler-looking form

Γ(1 + ε)−1
∞∑
j=0

κjε
j = 1 +

2

d2N
π2ε2 +

µN
d3N

ζ(3) ε3 + O(ε4) . (3.10)

In fact, the expression which is naturally computed from the modular side is the expression on
the left-hand side of this equation, which describes certain limits associated to the Frobenius
solutions of the differential equation of Φ itself, rather than of its inverse Borel transform Ψ. On
the topological side, this is related to the “modified gamma class” defined in (5.2) below.

4. Quantum differential equations of Fano manifolds. In this section we explain briefly
how the differential equation whose asymptotic properties play a role in the Gamma Conjecture is
defined. We first describe the meaning of the coefficients of the 4× 4 matrix A = (ai,j) specifying
the quantum differential equation via equation (2.5) and then for the benefit of the interested
reader also explain very briefly how this determinantal equation arises.

Very roughly, the coefficient ai,j for j ≥ i (the other coefficients of A are 0 or 1 by definition) is
meant to be the (correctly interpreted) “number” of rational curves of anticanonical degree j−i+1
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that intersect algebraic cycles of codimensions specified by i and j. We state this a little more
precisely in the case of interest to us when X is a Fano 3-fold with H2(X;Q) = Q c1. One defines
the three-point correlator

〈
α1, α2, α3

〉
of three (effective and homogeneous) classes a1, α2, α3 in

H∗(X) as the polynomial
∑
cnz

n, where cn is the expected number of holomorphic maps P1 −→ X
of anticanonical degree n sending three fixed generic points Pi of P1 to cycles representing the
Poincaré duals of the αi. Using this correlator, one can define the quantum cohomology ring of X
as H∗(X) ⊗ C[z] together with a quantum multiplication ?, where α1 ? α2 is defined by viewing
〈α1, α2, · 〉 as a linear functional on H∗(X)⊗C[z] with values in C[z] and dualizing it with respect
to the Poincaré pairing:

∫
[X]

(α1 ? α2) ∪ α3 = 〈α1, α2, α3〉. Then the matrix G(z) = (gi,j(z)) of

the operator c1? with respect to the basis c = (1, c1, c
2
1, c

3
1) has the form gi,j = ai,jz

j−i+1 for

some matrix A, and the fourth order differential operator L̃ that we want is the one associated

to the system of first-order differential equations Dz
~ζ(z) = ~ζ(z)G(z) in the usual way (with 1

as the cyclic vector). The Frobenius basis {Ψi} of solutions of the differential equation L̃Ψ = 0
then corresponds to the basis of H∗(X,Q) that is Poincaré-dual to c. The expressions giving

the coefficients of L̃, or the expansion coefficients of the Frobenius solutions, in terms of the
Gromov–Witten invariants of X can be found in [28].

We can now consider the linear functional Ψ 7→ lim
z→∞

Ψ(z)

Ψ0(z)
on the solution space of the

differential equation L̃Ψ = 0 as a cohomology class AX (called the “principal asymptotic class”
of X) via the identification just described. In our case, it is given explicitly by

AX =

3∑
j=0

κj c
j
1 ∈ H∗(X;C) ,

where the numbers κj are the Frobenius limits as defined in (0.3). The Gamma Conjecture, which
we now describe, says that it should coincide with a certain characteristic class of X called its
gamma class.

5. The gamma class and the Gamma Conjecture. The gamma class of a holomorphic
vector bundle E over a topological space X is the multiplicative characteristic class, in the sense

of Hirzebruch, associated to the power series expansion Γ(1 + x) = 1 − γx + γ2+ζ(2)
2 x2 + · · ·

of the gamma function at 1; in other words, it is the function that associates to a holomorphic

bundle E/X the cohomology class Γ̂(E) =
∏
i Γ(1 + τi) ∈ H∗(X,R), where the total Chern class

of E has the formal factorization c(E) =
∏

(1 + τi) with τi of degree 2. If E is the tangent bundle

of X, we write simply Γ̂X for Γ̂(E). Its terms of degree ≤ 3, which are the only ones that will be
needed for our purposes, are given by

Γ̂(E) = 1 − γ c1 +
(
−ζ(2) c2 +

ζ(2) + γ2

2
c21

)
+
(
−ζ(3) c3 +

(
ζ(3) + γ ζ(2)

)
c1c2 −

2ζ(3) + 3γ ζ(2) + γ3

6
c31

)
+ · · · ,

(5.1)

where ci = ci(TX) ∈ H2i(X) are the Chern classes of X. This formula becomes much simpler if

we introduce the modified gamma class Γ̂0
X , defined by

Γ̂X = Γ(1 + c1) Γ̂0
X , (5.2)

in which case it reduces to

Γ̂0
X = 1 − ζ(2) c2 + ζ(3) (c1c2 − c3) + · · · . (5.3)

(The passage from Γ̂X to Γ̂0
X in the cases that we will study reflects the relationship between the

topology of the Fano variety to that of its K3-surface hyperplane sections, while for the other side of
the Gamma Conjecture—as we already mentioned in connection with Theorem 2—it corresponds
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to the relation between the Frobenius limits for the quantum differential equation associated to
the Fano 3-fold and the Frobenius limits of the Picard–Fuchs differential equation of its mirror
dual.) The gamma class of a variety can be regarded as a “half” of the Todd class occurring in the

Hirzebruch–Riemann–Roch theorem, or more precisely of the A-hat class ÂX = e−c1TdX occurring
in the Atiyah–Hirzebruch theorem, since the Γ-function identity Γ(1 + z) Γ(1− z) = πz

sinπz implies

that we can factorize the A-hat class as µ+(Γ̂X)µ−(Γ̂X), where µ± denote the rescaling operators
of multiplication by a factor (±2πi)−m in H2m(X;C).

We now have all the ingredients necessary to state the Gamma Conjecture. Let AX ∈ H∗(X) be
the principal asymptotic class of the quantum differential equation associated to a Fano variety X

as explained in Section 4, and Γ̂X ∈ H∗(X) its gamma class.

Definition. If the equality

AX = Γ̂X (5.4)

holds, then we will say that the Gamma Conjecture2 holds for X.

Theorem 1 says that the Gamma Conjecture holds for the 17 Iskovskikh cases. To prove it, we
will compute both sides of equation (5.4) independently and check that they agree in each case.
The result on the Picard–Fuchs side was given in Theorem 2 above and will be proved in Chapter 2.
The computation on the cohomology side is straightforward and will be given here.

Proposition 2. The modified gamma class of a rank one Fano 3-fold X is given by

Γ̂0
X = 1 − 12

d2N
ζ(2) c21 +

h1,2 + 10

d2N
ζ(3) c31 ,

where c1 denotes the first Chern class of X and h1,2 the dimension of H1,2(X).

Proof. The three Chern numbers of X are given by 〈c31, [X]〉 = 2d2N (by the definition of N),
〈c1c2, [X]〉 = 24 (essentially because the hyperplane section of X is a K3-surface and because
〈c2, [S]〉 = e(S) = 24 for all K3-surfaces S) and 〈c3, [X]〉 = e(X), the Euler characteristic of X.
Here e(X) = 4 − 2h1,2 because all Hodge numbers of X except hi,i = 1 and h1,2 = h2,1 vanish.

Since ci ∈ Hi,i
alg(X;Q) = Q ci1, this gives c2 =

12

d2N
c21 and c1c2 − c3 =

h1,2 + 10

d2N
c31. Substituting

these values into (5.3) gives the desired assertion. �

Proof of Theorem 1. The numbers h1,2 for the 17 Iskovskikh families are given in the table below,
which we took from the comprehensive source on Fano varieties [20]. We check that in all cases we

N 1 2 3 4 5 6 7 8 9 11 1 2 3 4 5 3 2

d 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 4

h12 52 30 20 14 10 7 5 3 2 0 21 10 5 2 0 0 0

have h1,2 + 10 = µN/d, where µN is the integer tabulated in §2 and defined in (3.9). Combining
Theorem 2 from §3 with Proposition 2, we obtain Theorem 1. �

Chapter 2. Computation of the Frobenius limits

In this chapter we will give two different approaches to calculating the Frobenius limits, one
using the combinatorial description of the coefficients of the holomorphic solution as sums of
binomial coefficients (like Apéry’s formula in the V12 case or Landau–Ginzburg models in general)
and one using the modular description of this solution. We will carry out the first one in detail for

2This is called “Gamma Conjecture I” in [12], but we will not discuss “Gamma Conjecture II” and will therefore
simply speak of the “Gamma Conjecture”
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the V12 case in §7, where the prediction of the Gamma Conjecture in the (easier) hypergeometric
cases is also checked. The modular approach, which works uniformly in all of the cases with N > 1,
will be treated in §8. In the final section, we describe briefly numerical calculations suggesting that
the higher Frobenius limits beyond the dimension of the Fano variety are also interesting, with the
next few still being polynomials in Riemann zeta values but the further values apparently involving
more complicated kinds of periods like multiple zeta values.

6. The two Frobenius bases and their relationship. In this section we define the higher
Frobenius functions for both the Picard–Fuchs type differential equations and their Laplace trans-
forms. We will illustrate everything using the Apéry numbers, but the definitions given here work
the same way for all cases.

The definition and recursion relation of the Apéry numbers A0 = 1, A1 = 5, A2 = 73, . . .
were already given in the Introduction and will not be repeated here. We consider the Frobenius
deformation of Apéry’s recursion, i.e., the sequence of power series

An(ε) =

∞∑
j=0

A(j)
n εj ∈ Q[[ε]] (n = 0, 1, . . . )

defined by the initial condition A−1(ε) = 0, A0(ε) = 1 and the recursion

(n+ ε+ 1)3An+1(ε) − P (n+ ε)An(ε) + (n+ ε)3An−1(ε) = 0 , (6.1)

with P (x) as in (0.2). We assemble the rational numbers A
(j)
n into further power series

Φan
j (t) =

∞∑
n=0

A(j)
n tn , Φan(t, ε) =

∞∑
j=0

Φan
j (t)εj =

∞∑
n=0

A(ε)
n tn , (6.2)

with the beginnings of the first few power series Φj(t) being given by

Φan
0 (t) = Φ(t) = 1 + 5 t+ 73 t2 + 1445 t3 + 33001 t4 + 819005 t5 + · · · ,

Φan
1 (t) = 12 t + 210 t2 + 4438 t3 + 104825 t4 + 13276637

5 t5 + . . . ,

Φan
2 (t) = 72 t2 + 2160 t3 + 59250 t4 + 1631910 t5 + · · · ,

Φan
3 (t) = −7 t− 1011

8 t2 − 522389
216 t3 − 90124865

1728 t4 − 264872026721
216000 t5 + · · · ,

Φan
4 (t) = 9 t+ 1437

16 t2 + 182489
144 t3 + 5753277

256 t4 + 663266820361
1440000 t5 + · · · .

(6.3)

Putting tε = exp(ε log t), we define the Frobenius functions Φj(t) for all j ≥ 0 by the expansions

Φ(t, ε) = tε Φan(t, ε) =

∞∑
j=0

Φj(t) ε
j , Φj(t) =

j∑
i=0

Φan
i (t)

(log t)j−i

(j − i)!
. (6.4)

Then the recursion satisfied by the An(ε) translates into the statement that the power series Φj(t)
and Φ(t, ε) satisfy the differential equations

L
(
Φ(t, ε)

)
= ε3tε , L

(
Φj(t)

)
=

(log t)j−3

(j − 3)!
, (6.5)

respectively, where

L = D3 − t P (D) + t(D + 1)3
(
D = t

d

dt

)
is the differential operator that annihilates Φ(t) and where the right-hand side of the second
equation in (6.5) is to be interpreted as 0 if j < 3. In particular, Φ0, Φ1 and Φ2 are solutions of
the original differential equation LΦ = 0 and constitute, of course, the well-known Frobenius basis
for the space of its solutions, but, as already mentioned in the Introduction, the higher Φj are also
of interest. In any case, however, even for the Gamma Conjecture we will need Φ3, which satisfies
the inhomogeneous differential equation LΦ = 1, because under the Laplace transform there is
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a relationship between {Φ0, . . . ,ΦJ} and {Ψ0, . . . ,ΨJ} for all J , as we will now discuss, and the

operator L̃ has order four and thus four Frobenius solutions Ψ0, . . . ,Ψ3.

We now do the same things on the Laplace transform side. The modified numbers an = An/n!
satisfy the modified recursion relation

(n+ 1)4an+1 − P (n)an + n2an−1 = 0 , (6.6)

with the same polynomial P (n) as before, and their generating function Ψ(z) =
∑
anz

n therefore
satisfies the modified differential equation (Laplace transform of L)

L̃(Ψ) = 0 , L̃ = D4
z − z P (Dz) + z2(Dz + 1)2 ,

where D = z d
dz as before. The Frobenius deformation in this case is given by

(n+ 1 + ε)4 an+1(ε) + P (n+ ε)an(ε) + (n+ ε)2 an−1(ε) = 0 (6.7)

for n ≥ 0, with initial condition a−1(ε) = 0 and a0(ε) = 1. Again we set an(ε) =
∑
j a

(j)
n εj and

define power series Ψan
j (z) =

∑
n a

(j)
n zn and Ψan(z, ε) =

∑
j Ψan

j (z) εj =
∑
n an(ε)zn, the first

values being given this time by

Ψan
0 (z) = Ψ(z) = 1 + 5 z + 73

2 z
2 + 1445

6 z3 + 33001
24 z4 + 163801

24 z5 + · · · ,
Ψan

1 (z) = 7 z + 201
4 z2 + 10733

36 z3 + 432875
288 z4 + 47115959

7200 z5 + · · · ,
Ψan

2 (z) = −7 z − 461
8 z2 − 92323

216 z3 − 9220085
3456 z4 − 6108294133

432000 z5 + · · · ,
Ψan

3 (z) = − 15
8 z

2 + 169
4 z3 + 4285465

6912 z4 + 3811075
768 z5 + · · · ,

Ψan
4 (z) = 9 z + 2449

32 z2 + 441925
864 z3 + 52564099

18432 z4 + 259795048429
19200000 z5 + · · · .

(6.8)

Then just as before, putting zε = exp(ε log z), we find that the Frobenius functions defined by

Ψ(t, ε) = zε Ψan(z, ε) =

∞∑
j=0

Ψj(z) ε
j , Ψj(z) =

j∑
i=0

Ψan
i (z)

(log z)j−i

(j − i)!
(6.9)

satisfy the inhomogeneous differential equations

L̃
(
Ψ(z, ε)

)
= ε4zε , L̃

(
Ψi(t)

)
=

(log t)j−4

(j − 4)!
, (6.10)

with the same convention as before. In particular, Ψ0, . . . ,Ψ3 give a basis (again called the Frobe-
nius basis) of solutions of the transformed differential equation.

The Gamma Conjecture concerns the limits κj defined by (0.3), but to calculate these it is

more convenient to work with the numbers A
(j)
n and functions Φj(t), which have better properties

(regular singularities, modular parametrization). We therefore have to look how the two sequences
of numbers and of functions are related. From the recursions we obtain

an(ε) =
An(ε)

(1 + ε)n
=

An(ε)

n!

n∏
k=1

(
1 +

ε

k

)−1
.

Here (1 + ε)n denotes the ascending Pochhamer symbol (1 + ε)(2 + ε) · · · (n + ε). We insert into
this expression the expansion

n∏
k=1

(
1 +

ε

k

)−1
= exp

(
−Hn ε + H(2)

n

ε2

2
− H(3)

n

ε3

3
+ . . .

)
,
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where Hm = 1 + 1
2 + . . .+ 1

m , H
(2)
m = 1 + 1

4 + . . .+ 1
m2 , etc., and find

n! a(0)n = A(0)
n

n! a(1)n = A(1)
n − HnA

(0)
n ,

n! a(2)n = A(2)
n − HnA

(1)
n +

H 2
n +H

(2)
n

2
A(0)
n ,

...

(6.11)

Now if we use that Hn = log n+ γ + O(1/n) and H
(m)
n = ζ(m) + O(1/n) for m > 1 and that the

maximum of a
(j)
n zn for large z and j fixed occurs for n ≈ Cz with C = (1 +

√
2)4 = 17 + 12

√
2

(because An ∼ const ·Cn/n3/2, as discussed in more detail in §9), then we see that we simply have

to replace Hn by log(Cz)+γ and H
(m)
n by ζ(m) for m > 1 to get the asymptotics of the Frobenius

solutions. This means that if we define a sequence of Frobenius limits κ0j and the corresponding

generating function κ0(ε) for the regular case by

κ0j =

j∑
i=0

(− logC)j−i

(j − i)!
lim
n→∞

(
A

(i)
n

An

)
, κ0(ε) =

∞∑
j=0

κ0j ε
j = C−ε lim

n→∞

(An(ε)

An

)
(6.12)

then the relationship between the two generating functions κ0(ε) and

κ(ε) =

∞∑
j=0

κj ε
j = lim

z→∞

Ψ(z, ε)

Ψ(z)
, (6.13)

is given simply by

κ0(ε) =
1

Γ(1 + ε)
κ(ε) , (6.14)

exactly the same relationship (if we replace ε by c1(X) ) as that between the gamma class and
modified gamma class of a Fano variety X as explained in §5. We will explain in §9 how the limits in
both (6.12) and (6.13) (which in any case determine one another by (6.14)) can be computed quickly
and to very high accuracy, and will discuss some of the results of the numerical computations.

7. Frobenius limits from the hypergeometric point of view. In this section we give a
proof of the formula (0.4) for the Frobenius limits in the Apéry case based on Apéry’s original
formula (0.1) for his numbers as finite sums of products of binomial coefficients, or terminating
hypergeometric series. This method is quite computational and uses identities that were found
experimentally and whose proofs are not particularly enlightening, but has the advantages of
being completely elementary and of applying in principle to any linear differential equations of this
type, even if they are not modular. It also gives very easy proofs of the Gamma Conjecture for
the 10 cases from the Iskovkikh list corresponding to hypergeometric differential equations.

The idea is to mimic Apéry’s original proof of the irrationality of ζ(3), in which he studied the
second solution A∗n of the recursion (0.2) with initial values A∗0 = 0, A∗1 = 1 (whose generating
function again satisfies an inhomogeneous version of the original differential equation, though this
time with right-hand side t rather than 1) and proved that the limiting ratio limnA

∗
n/An is equal

to 1
6 ζ(3) by finding an explicit formula for A∗n of the form

∑n
k=0

(
n
k

)2(n+k
k

)2
Q(n, k) for a suitably

chosen elementary function Q(n, k) involving partial sums of ζ(3). (See [1] and [31].) Looking for

similar formulas for the numbers A
(i)
n for small values of i, we found experimentally a number of

identities of this type that gave the correct values for 1 ≤ i ≤ 3 and for all n up to some large
limit, and any of which could be used to evaluate the Frobenius limit in question. One choice,
which had an especially simple form, is reproduced in Proposition 3 below together with its proof
by the standard method of telescoping sums. To find both the identities and their proofs, we
made an Ansatz for the functions denoted Qi(n, k) and Rn,k(ε) in Proposition 3 that had the form
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given there, but with unknown coefficients (the three numerical coefficients of H
(i)
n+k, H

(i)
k and

H
(i)
n in the case of Qi(n, k) and the four coefficients in Q(n, k) of εi in the case of Rn,k(ε)) and

then determined the necessary values of these coefficients by a computer calculation. This proof is
therefore not very aesthetic, but—as alredy mentioned—has the advantage that the method can in
principle be applied to the Frobenius deformations of other differential equations, not necessarily
having a modular parametrization.

Proposition 3. For n, k ≥ 0 set

an,k(ε) =

(
n

k

)2(
n+ k

k

)2

exp

( 3∑
i=1

Qi(n, k)
εi

i!
+ O(ε4)

)
,

where Q1(n, k) = 4Hn+k−4Hk, Q2(n, k) = 4H
(2)
k −8H

(2)
n+k, and Q3(n, k) = 32H

(3)
n+k−H

(3)
k −14H

(3)
n .

Then

An(ε) =

n∑
k=0

an,k(ε) + O(ε4) .

Proof. Define Rn,k(ε) ∈ Q(n, k)[ε]/ε4 by

Rn,k(ε) = 4(2n+ 1)(2k2 + k − (2n+ 1)2) +
(
16k2 + 8(4n+ 3)k − 4(2n+ 1)(12n+ 5)

)
ε

+16(2k − 5n− 2)ε2 +
(
−16 + 14(2n+1)k

3n2(n+1)2 (2n2 + 2n− k)
)
ε3 +O(ε4).

Using the easily checked identity

(n+ 1 + ε)3
an+1,k(ε)

an,k(ε)
− P (n+ ε) + (n+ ε)3

an−1,k(ε)

an,k(ε)
= Rn,k(ε)−Rn,k−1(ε)

an,k−1(ε)

an,k(ε)

in Q(n, k)[ε]/ε4 and induction on K, we find that

K∑
k=0

(
(n+ 1 + ε)3an+1,k(ε)− P (n+ ε)an,k(ε) + (n+ ε)3an−1,k(ε)

)
= Rn,K(ε)an,K(ε)

for all K ≥ 0. Taking K > n shows that
∑n
k=0 an,k(ε) satisfies the defining recursion of An(ε),

and since it also has the same initial values (0 for n = −1, 1 for n = 0), they are equal. �

Corollary. One has

lim
n→∞

An(ε)

CεAn
= exp

(
−2ζ(2)ε2 +

17

6
ζ(3)ε3 + O(ε4)

)
.

Proof. The maximum of an,k =
(
n
k

)2(n+k
k

)2
over 0 ≤ k ≤ n is sharply peaked at k = n(1/

√
2+O(1))

for n large, since the ratio an,k/an,k−1 equals (n+ k)2(n− k + 1)2/k4 ≈ (n2/k2 − 1)2. Hence
n∑
k=0

an,k(ε) ∼
( n∑
k=0

an,k

)
exp
(

4 log(1 +
√

2) ε − 2ζ(2) ε2 +
17

6
ζ(3) ε3 + O(ε4)

)
. �

By virtue of (6.12) and (6.14), the statement of the Corollary is equivalent to the formula (0.4)
predicted by the Gamma Conjecture, completing the proof of this conjecture for the Apéry case.

We mention that for each of our 17 families, and also for other DN equations arising as Picard–
Fuchs equations, there exist formulas like (0.1) expressing the coefficients An as simple or multiple
finite sums of products of binomial coefficients (terminating hypergeometric series), for example
the ones coming from the “Landau–Ginzburg models,” which express An as the constant term of
P (x, y, z)n for some Laurent polynomial P (x, y, z). One could therefore in principle study each of
the other cases using the same idea of inserting appropriate factors into these formulas. We did
not try to do this since the modular approach as discussed in the next section is much simpler and
works in a uniform way for all cases. We can, however, use the combinatorial approach to give an
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easy direct proof of Theorem 2 in all ten cases from the Iskovskikh list for which the corresponding
differential operators are hypergeometric, and this is useful since it includes the two N = 1 cases for
which the modular approach fails (or at least needs modification) because the function F1 =

√
E4

is not a holomorphic modular form. Note, however, that the case (N, d) = (2, 4) corresponds to the
Fano variety P3 and therefore is a special case of the result of Dubrovin [7] (see also [12]) proving
the Gamma Conjecture for all Pn, and in fact all of the hypergeometric cases are essentially known
by the work of Iritani (see §10). We nevertheless include a proof here since it is elementary and
fits with the other cases considered.

We begin with a remark that applies to all 17 cases, not only the hypergeometric ones, namely
that it suffices to prove Theorem 2 for the 10 cases of the Iskovskikh list with d = 1. Indeed,
comparing the statement of Theorem 2 in the version (3.10) with the formula (6.14) relating the

Frobenius limits for the differential operators L and L̃, we see that this theorem now takes on the
simple form

κ0N,d(ε) = 1 + 0 ε +
2

d2N
π2ε2 +

µN
d3N

ζ(3) ε3 + O(ε4) , (7.1)

where κ0N,d(ε) denotes the function κ0(ε) as defined by (6.12) for the (N, d) case from the list (1.1)

(so that the κ0 for the Apéry case that was used as an illustration in §6 would be κ06,1), but with

the constant C = 17+12
√

2 appearing in (6.12) replaced in the other 16 cases by lim
n→∞

A
1/n
n , which

is the reciprocal of the smallest positive root of Q(t). But the power series ΦN,d(t) corresponding
to this case is simply ΦN,1(td), so passing from (N, 1) to (N, d) replaces An and An(ε) by An/d and

An/d(ε), interpreted as 0 if d - n, and C by C1/d, and it therefore follows that κ0N,d(ε) = κ0N,1(ε/d)

to all orders, not just up to O(ε4) .

This remark reduces the number of hypergeometric cases to be proved from 10 to 4, namely the
cases 1 ≤ N ≤ 4 and d = 1. For these cases the coefficients of the power series Φ(t) =

∑∞
m=0Ant

n

are quotients of products of factorials, as given by the following table:

N 1 2 3 4

An
(6n)!

(3n)!n!3
(4n)!
n!4

(3n)!(2n)!
n!5

(2n)!3

n!6

We write the expression for An in each case as
∏
r(rn)!νr and notice that it makes sense also for non-

integral values of n if we interpret x! as Γ(1 +x). The Frobenius deformed numbers An(ε), defined
by the same recursion (here of length 2 rather than 3 as before) with initial value A0(ε) = 1,
can then be written simply as An(ε) = An+ε/Aε. On the other hand, since

∑
r rνr = 0 in all

cases (otherwise Φ(t) could not have positive radius of convergence), Stirling’s formula gives the
asymptotics Ax ∼ αxν/2Cx for x→∞, with α =

∏
r(2πr)

νr/2, ν =
∑
r νr, C =

∏
r r

rνr . Hence

κ0(ε) = C−ε lim
n→∞

An(ε)

An
= C−ε lim

n→∞

An+ε
AnAε

=
1

Aε
=
∏
r

Γ(1 + rε)−νr

= exp
(∑

r

νr

(
−γrε +

ζ(2)

2
r2ε2 − ζ(3)

3
r3ε3 + · · ·

))
,

and since
∑
rνr = 0,

∑
r2νr = 24/N and

∑
r3νr = 3µN/N in all four cases 1 ≤ N ≤ 4, this

completes the proof of Theorem 2 for the ten hypergeometric cases.

8. Frobenius limits from the modular point of view. The method described in the
preceding section for the Apéry case depended on a complicated and artificial-looking identity. We
now give a more natural proof using the modular parametrizations of our diffential equations as
discussed in §3. This approach works in a uniform way for all of the cases with N > 1 in the
Iskovksikh list, i.e., for 15 of the 17 cases, and since the two N = 1 cases are hypergeometric and
have already been proved, this completes the proofs of Theorem 2 and Theorem 1.
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By the remark made at the end of the previous section, it suffices to prove the 9 cases with d = 1
and N belonging to the list {2, . . . , 9, 11}, and after all of our preparation this is now fairly easy.
In each case the differential operator L has the form given in Proposition 1 (equation (3.4)). where
H(τ) = HN (τ) is the weight 4 Eisenstein series given by (3.7). By (6.5), the first four Frobenius
functions satisfy the differential equations LΦ0 = LΦ1 = LΦ2 = 0 and LΦ3 = 1, which then
translate on the modular side into (Φj(t(τ))/F (t))′′′ = δj,3H(τ) for 0 ≤ j ≤ 3. (Here ′ means
1

2πi
d
dτ , as in §3.) In view of the asymptotic form of the Frobenius functions Φj(t) near t = 0,

which corresponds to q = 0 with 2πiτ = log q = log t + O(t), this means that

Φj
(
t(τ)

)
=

(2πiτ)j

j!
F (τ) (j = 0, 1, 2), Φ3

(
t(τ)

)
= H̃(τ)F (τ) , (8.1)

where H̃(τ) is the Eichler integral of H(τ), defined by H̃ ′′′ = H and normalized by H̃(τ) =
(2πiτ)3

3! + O(q) as q → 0. But from (3.7), we have

H̃(τ) =
∑
M |N

hM
M

G̃4(Mτ) , (8.2)

where G̃4(τ) = (2πiτ)3

1440 +
∑
n≥1

n−3qn

1−qn is the correspondingly normalized Eichler integral of G4(τ).

But it is well known, and elementary to prove, that G̃4 satisfies the functional equation

G̃4(τ) − τ2 G̃4

(
−1

τ

)
=

ζ(3)

2

(
τ2 − 1

)
− π3i

6
τ .

for all τ ∈ H. (This follows from the transformation property G4|4S = G4 by threefold integration
using“Bol’s identity,” which gives that (F |−2γ)′′′ = F ′′′|4γ for any holomorphic function F and
any Möbius transformation γ, implying that the expression on the left is at most a quadratic
polynomial, which one then calculates using that the L-function ofG4 equals ζ(s)ζ(s−3).) Inserting
this into (8.2) and using the antisymmetry property (3.8), we get

Nτ2 H̃
(
− 1

Nτ

)
+ H̃(τ) =

∑
M |N

hM
2M

ζ(3)
(
M2τ2 − 1

)
=

µN
N

ζ(3) (Nτ2 + 1) (8.3)

with µN as in (3.9). (A similar calculation is given in [3], 1.2.) The calculation of the Frobenius limit
now follows. Indeed, from (8.1) and (8.3) and the anti-invariance of F under

∣∣
2
WN it follows that,

if we set (k0, k1, k2, k3) = (1, 0, 2π2

N , µN

N ζ(3)), then Φj(t(τ))−kjF (τ) is a WN -invariant function in
the upper half-plane for each j ∈ {0, 1, 2, 3}. But that means that, as functions of t = t(τ), which

is WN -invariant and hence has a double zero at the fixed point τN = i/
√
N of WN , they have no

singularities at the value t = t(τN ) = 1/C, so that they have a larger radius of convergence than
the radius of convergence 1/C of Φ(t). It follows that the Frobenius limit κ0j = limt→1/C Φj(t)/Φ(t)
equals kj , completing the proof of equation (3.10) in all cases with N > 1.

Finally, we make a few remarks about the missing case N = 1. Here the function H1(τ) =

E6(τ)/
√
E4(τ) = 1 − 624q + 64368q2 − · · · is no longer a modular form, but by virtue of the

transformation property H1|4S = −H1 and Bol’s identity we still have

H̃1(τ) + τ2 H̃1

(
−1

τ

)
= µ ζ(3) (τ2 + 1) .

for some complex number µ, so that the only thing missing is the evaluation µ = µ1 = 62. This of
course follows from our alternative proof of the Frobenius limit in question via the hypergeometric
expansion of

√
E4, and we have also checked it numerically to high precision, but have not given a

purely modular proof. We note, however, that such a proof could probably be given by imitating the
calculations in [8], where the Eichler integral of the very similar almost-modular form ∆(τ)/

√
E6(τ)

of weight 3 is related to the zeros of the Weierstrass ℘-function.
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9. Higher Frobenius limits: beyond the Gamma Conjecture. In this final section we
discuss very briefly the values of the Frobenius limits κj (or rather of the equivalent limits κ0j )
for j > 3.

Since the results here are numerical only, we should first say briefly how to calculate κ0j and κj
to very high accuracy very quickly. (Of course one does not really need both, since they are related
by (6.14), but being able to do the calculations in two ways provides a nice verification of the
numerical correctness of the procedure.) For κj one simply uses (0.3) directly with a moderately
large value of z like z = 100 (actually, a much smaller value also suffices), and since the convergence
is exponential this works well. For κ0j one cannot use (6.12) directly because the ratio of C−εAn(ε)

to An converges to its limiting value κ0(ε) only like 1/n. Instead we use that An has an asymptotic
expansion (in the Apéry case; the others are of course similar) of the form

An ∼ A(n) := 2−9/4π−3/2
Cn+1/2

(n+ 1/2)3/2
P
( 1

64(n+ 1
2

√
2

)
for a certain power series P (X) = 1+30X+274X2−17132X3+· · · with easily computable rational
coefficients (determined by the property that A(n) has to satisfy the same recursion as An). Then
κ0(ε) = C−ε lim

n→∞
An(ε)/A(n) = lim

n→∞
An(ε)/A(n+ε), and in the latter expression the convergence

is faster than any power of n, so that now by taking a moderately large number of coefficients of P
and a moderately large value of n we get very precise values for the power series κ0(ε). (For
instance, using 100 terms of P and taking n = 100 gives the first 15 coefficients κ0j to 300 decimal
digits in under 10 seconds on a normal PC.)

We did these calculations (to 300 digits) for both κj and κ0j for V12 and several other cases,
each time finding agreement of the two series in (6.14) to the precision of the calculation. We then
tried to recognize the coefficients κ0j beyond the values j ≤ 3 that were predicted by the Gamma
Conjecture and proved by the calculations in the last two sections. It turned out that up to j = 10
(in the V12 case) these values were always polynomials in Riemann zeta values (or Riemann zeta
values and the Euler constant γ if we work with the κj instead). The results are cleaner if we use
the coefficients λj defined by the generating function

∑∞
j=1 λjε

j = log(κ0(ε)), in which case the

first ten values are given (within the precision of the calculation) by

λ1 = 0 , λ2 = −2 ζ(2) , λ3 = 17
6 ζ(3) , λ4 = −3 ζ(4) ,

λ5 = 7
3 ζ(5) , λ6 = − 2

3 ζ(6) − 1
72ζ(3)2 , λ7 = − 5

3 ζ(7) + 1
6ζ(3) ζ(4) ,

λ8 = 29
12 ζ(8) − 11

18 ζ(3) ζ(5) , λ9 = 8
9 ζ(9) + 5

3 ζ(3) ζ(6) + 11
3 ζ(4) ζ(5) + 17

648 ζ(3)3 ,

λ10 = − 147
5 ζ(10) − 59

18 ζ(3) ζ(7) − 121
18 ζ(5)2 − 17

36 ζ(4) ζ(3)2 ,

involving only Riemann zeta values, as already stated. But for the 11th coefficient we find

λ11 = 66 ζ(11) + 59
3 ζ(4)ζ(7) + 110

3 ζ(5) ζ(6) + 215
36 ζ(8) ζ(3) + 187

108 ζ(3)2ζ(5) + 2
3 ζ(3, 5, 3) ,

where the final term involves not an ordinary zeta value but rather the multiple zeta value

ζ(3, 5, 3) =
∑

0<`<m<n

1

`3m5n3
= 0.002630072587647 · · · .

This suggests that the higher Frobenius limits might be interesting periods in general, and that at
least in some cases they are connected with multiple zeta values. We make a few final remarks in
this direction. First of all, the first weight in which the ring of multiple zeta values is not generated
over Q by Riemann zeta values only is 8, the multiple zeta values space in both this weight and
in weight 10 being 1 bigger (more properly ≤ 1 bigger, since the required linear independence
statements are not actually rigorously known), but here neither of these values appear and the
first non-trivial multiple zeta value that we see in this example is the number ζ(3, 5, 3) in weight 11.
This suggests that there may be a connection with Brown’s “single-valued multiple zeta values” [6],
which also diverge from the ring of ordinary zeta values for the first time in weight 11. However,
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the connection is not quite clear since the new single-valued multiple zeta value in weight 11,
modulo polynomials in Riemann zeta values is not a rational multiple of ζ(3, 5, 3), but rather
a rational linear combination of ζ(3, 5, 3) and the product of ζ(3) with the non-trivial double
zeta value ζ(3, 5). However, a private communication from Brown suggests that there may be an
explanation connected with the duality property of the D3 equations (already mentioned in §2)
and with his older calculation [5]. Finally, we mention that in the other non-hypergeometric cases
we looked at we again found polynomials in Riemann zeta values for the Frobenius limits up to a
certain weight but not beyond, and that we could not always recognize the higher values (like κ7
for the case (N, d) = (9, 1)). This phenomenon is presumably related to the fact that Fano varieties
like V12 can be obtained as successive hyperplane sections of Fano varieties of higher dimension,
but only up to a certain point, so that it is only up to that limit that the Gamma Conjecture
for these higher Fano would predict values that can be expressed by polynomials in Riemann zeta
values. In the case of V12, which can be obtained as a 7-fold iterated hyperplane section of a certain
10-dimensional Fano with Picard rank one (namely, the orthogonal Grassmannian of isotropic 5-
planes in C10), we have checked that the prediction of the Gamma Conjecture indeed agrees with
the numerically found values of λj as given above for all j ≤ 10.

10. Related work/further references. The Gamma Conjecture in our hypergeometric
cases (which correspond to complete intersections in toric varieties) follows essentially from the
celebrated Quantum Lefschetz Theorem of Givental [13] and Iritani’s work [19]; we have given
a proof for the sake of completeness. Dubrovin [7] had computed the expansion of all other
asymptotics in the case of projective spaces; one can find a different treatment of this subject in
[23]. Przyjalkowski [29] defined weak Landau–Ginzburg models for Fano varieties, and proposed
candidates for weak Landau–Ginzburg models in our 17 cases. He discovered that the number of
the irreducible components in the resolution of the central fiber (which corresponds to the point
t = ∞ in our notation) is one more than the h1,2 of the respective Fano for all of his models.
The relation of the Hodge numbers of Fano varieties and the reducible fibers of their Landau–
Ginzburg models are explained in [24]. Galkin established modularity of “G-Fano varieties” [11].
He computed the “Apéry constants” for many homogeneous spaces and introduced what he called
the “Apéry class” in [10]. The work of van Enckevort and van Straten [30] pertains to the case
of Calabi–Yau, rather than Fano, 3-folds; there is an implicit relation to the topology of Fano
4-folds, again by the quantum Lefschetz principle. Finally, modularity for Fano threefolds of all
Picard ranks has been recently announced by C. Doran, A. Harder, L. Katzarkov, J. Lewis and
V. Przyjalkowski.
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