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Multiple zeta values are the numbers defined by the convergent series
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where k1, . . . , kn are positive integers with kn > 1. Despite this simple-looking
definition, these numbers have deep properties and have appeared in recent years
in connection with a surprising diversity of topics, including knot invariants, Ga-
lois representations, periods of mixed Tate motives, and calculations of integrals
associated to Feynman diagrams in perturbative quantum field theory.

We will call the number (1) a multiple zeta value of depth n and weight k, where

k = k1 + · · · + kn. Clearly 0 < n < k. There are
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of given weight k and depth n and 2k−2 altogether of given weight k, but the
vector space they generate over Q turns out to have a much smaller dimension. For
example, there are 1024 multiple zeta values of weight 12, but, according to our
high-precision numerical calculations, only 12 linearly independent ones. The main
goal of the theory (still very far from being achieved!) would be to understand all
the linear relations over Q among the multiple zeta values of a given weight. More
precisely, products of multiple zeta values can be expressed as a finite integral linear
combination of other multiple zeta values, so that the Q-vector space R spanned
by all multiple zeta values forms a Q-algebra, graded by the weight and filtered by
the depth, and one would like to find its structure as an algebra.

The double zeta values (n = 2) were already studied by Euler, who—as well
as his famous evaluation of the simple zeta values ζ(k) as rational multiples of
πk when k is even—discovered empirically, and proved in many cases, that these
numbers could be written as rational linear combinations of products of two simple
zeta values whenever k1 + k2 is odd. Many special identities can be proved. Two
of these, which were conjectured by Hoffman and proved by the author and several
other people, are a “duality formula” saying that ζ(k1, . . . , kn) = ζ(k′

1
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for a certain involution (k1, . . . , kn) → (k′

1
, . . . , k′

n′) on index sets, and a “sum
formula” saying that the sum of the multiple zeta values of weight k and depth n
is equal to ζ(k) for any integers 0 < n < k. There are also formulas describing
the value of ζ(m, . . . ,m
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,m) for all positive integers n and m. Yet

another identity, which I had conjectured a few years ago and which was proved
only a few weeks ago by D. Broadhurst, says that
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A simple proof of this using hypergeometric functions is sketched in the lecture.
The general theory, as already stated, is far from complete. One general result

is that any multiple zeta value ζ(k1, . . . , kn) with k1 + . . . + kn 6≡ n (mod 2) is a
rational linear combination of products (of the same total weight) of multiple zeta
values of depth less than n (this includes the two results of Euler for n = 1 and
n = 2 mentioned above). In general, one can show that the number of generators of
the ring of multiple zeta values of weight k and depth n is bounded by Nn(k − n),
whereNn(d) (d > 0) is defined as the dimension of a certain explicitly defined vector
space Vn(d) of homogeneous polynomials of degree d in n variables. For example,
V3(d) is the space of homogeneous polynomials f(x, y, z) of degree d satisfying the
two relations

f(x, y, z) + f(x, z, y) + f(z, x, y) = 0, f̃(x, y, z) + f̃(x, z, y) + f̃(z, x, y) = 0 ,

where f̃(x, y, z) := f(x, x+y, x+y+z). The proof of this upper bound comes from
the interaction between two sets of multiplicative relations (the “double shuffle
relations”). For n = 2 and n = 3 the dimensions Nn(d) are nearly completely
known: for n = 2 (and d even; all Nn(d) for d odd vanish) is equal to ⌊d/6⌋ and
for n = 3 it is ≥ ⌊(d2 − 1)/48⌋, with conjectural equality. The first of these two
assertions, though it has an elementary proof, is intimately related to modular forms
on PSL(2,Z) and to the cohomology of this group, and one expects that the theory
for general n will be related in a similar way to the cohomology of PSL(n,Z). The
connection between double zeta functions and modular forms can be interpreted in
several different ways and is one of the most intriguing aspects of the whole theory;
it is closely related to the contents of Goncharov’s lecture in this conference.
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