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My principal aim in this paper is to present, in as simple a way and to as
wide a readership as possible, some of the beautiful ways in which differential
equations are related to number theory, algebraic geometry, and topology. But—
since this is the first of the “Hirzebruch Lectures” that are now planned to be
given at each future European Mathematical Congress—a secondary goal was to
present topics that would have appealed to Friedrich Hirzebruch and that are
related to some of his major discoveries. Three such topics that will appear are:
his resolution of the cusp singularities of Hilbert modular surfaces, which serve to
explain a puzzling integrality property of a differential equation connected with a
certain non-arithmetic modular curve (in Section 4); his theory of multiplicative
characteristic classes and genera, which are needed to define the Gamma Class and
formulate the Gamma Conjecture in the theory of mirror symmetry (in Section 9);
and, very briefly in Section 10, the study of ramified coverings of the projective
plane and surfaces with c21 = 3c2, which are related via his proportionality principle
to quotients of the complex 2-ball but also to the monodromy groups of certain
higher-dimensional hypergeometric differential equations. The last topic was of
particular interest to Hirzebruch in his later years, and together with Paula Beazley
Cohen (later Tretkoff) he wrote a long review of the monograph of Deligne and
Mostow on the subject [2] and also originally planned a joint book with her based
on a course that he gave in Zürich in 1996, though he eventually abandoned the
project and asked her to complete it alone [67].

In accordance with this double aim, I have tried to explain at least the basic
ideas of each topic occurring in as elementary a way as possible, and to include
even definitions that will be familiar to many readers. In particular, in the second
section, which is concerned with the relations of differential equations to algebraic
geometry, I include a discussion of differential forms and of the fact that the peri-
ods associated to a family of algebraic varieties always satisfy a linear differential
equation with integral monodromy (Picard-Fuchs equation), and in the following
section, which treats the relation of differential equations to modular forms, I in-
clude a brief review of the definitions and main features of modular forms. Also in
the case of some of the more advanced topics that are discussed later in the paper,
such as the theory of motives or mirror symmetry and quantum cohomology, I
have tried to explain the main concepts from scratch.

To whet the reader’s appetite, the paper begins with Apéry’s famous proof of
the irrationality of ζ(3) and a discussion, from six different points of view, of the
reasons for the “miraculous” integrality that makes it work. This example belongs
to our subject because the generating function of the Apéry numbers satisfies a dif-
ferential equation of Picard-Fuchs type, and in the main body of the paper, where
the links between differential equations and other fields of mathematics—algebraic
geometry, modular forms, number theory, mirror symmetry, and topology—are
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treated, each of these viewpoints reappears in a more general setting. Specifically,
the further sections of the paper are as follows. Section 2 discusses the notions of
periods and period functions and the proof that the latter always satisfy a linear
differential equation, with many examples. Section 4 contains a brief overview of
the theory of modular forms and a sketch of the proof that every modular form,
when written as a function of a modular function, also satisfies a linear differential
equation (in fact, of Picard-Fuchs type), again with many examples, including the
non-arithmetic one related to cusps on Hilbert modular surfaces that was men-
tioned in the opening paragraph. In the next two sections we turn to number
theory, with a discussion of the zeta function of a variety defined over a number
field and its conjectural relationship to periods and with a brief introduction to
the concept of motives. Here we illustrate the usefulness of the motivic point of
view by discussing in some detail three concrete predictions that it yields, each
of which could be verified numerically or theoretically or both. In the last two
sections of the paper proper, the central role is played by topology rather than
number theory, although both appear. Here we discuss mirror symmetry and the
way that the quantum cohomology of a variety (defined in terms of its Gromov-
Witten invariants, i.e., the counting functions of holomorphic embeddings of curves
into the variety) leads to a differential equation that is conjecturally equivalent to
the Picard-Fuchs equation of the “mirror” family of varieties. We also explain
the Gamma Conjecture, which makes a specific link between differential equations
(specifically, the asymptotics at infinity of the solutions of the quantum differen-
tial equation of a variety) and topology (specifically, the Hirzebruch characteristic
class of the variety defined using the power series expansion of Γ(1 + x)). A final
section treats a few miscellaneous topics, including a very brief discussion of the
connection between higher-dimensional hypergeometric differential equations and
the geometry of quotients of the complex 2-ball as mentioned above. With the
exception of some results proved in Section 7, the paper is entirely expository.

In preparing this paper I was helped by many people, and I would like to thank
Sasha Beilinson, Spencer Bloch, Philip Candelas, Alessio Corti, Boris Dubrovin,
Javier Fresán, Stavros Garoufalidis, Günter Harder, Albrecht Klemm, Maxim
Kontsevich, Anton Mellit, Martin Möller, Danylo Radchenko, Emanuel Scheideg-
ger, Fernando Rodriguez Villegas, Masha Vlasenko, Di Yang, Shing-Tung Yau,
Noriko Yui, Federico Zerbini, Wadim Zudilin and my wife Silke, as well as two
very careful anonymous referees, for their many suggestions and comments. I am
especially grateful to Duco van Straten and Vasily Golyshev, both of whom were
unstinting in sharing their deep insight and knowledge of the field with me. Goly-
shev’s influence is visible everywhere in the paper: several of the results (in partic-
ular those about the Gamma Conjecture in Section 9) were obtained jointly with
him, and all three of the “motivic predictions” discussed in Section 7 came from
him. But above all I would like to thank the late Friedrich Hirzebruch, my teacher
and friend, who taught me and a whole generation of mathematicians better ways
to think about mathematics and better ways to think about the world.
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1. Prelude: The Apéry integrality miracle

In 1978, Roger Apéry created a sensation in the mathematical world by proving
that the number

ζ(3) =

∞∑
n=1

1

n3
= 1.2020569031595 · · ·

is irrational. He obtained this as a consequence of the following three remarkable
facts. Let

{An}n≥0 = { 1, 5, 73, 1445, 33001, . . . }

and

{Bn}n≥0 = { 0, 6,
351

4
,

62531

36
,

11424695

288
, . . . }

be the solutions of the recursion

(n+ 1)3un+1 − (34n3 + 51n2 + 27n+ 5)un + n3 un−1 = 0 (1)

with initial conditions (A0, A1) = (1, 5) and (B0, B1) = (0, 6). Then

(a) An ∈ Z for all n ≥ 0 ;
(b) d3

nBn ∈ Z for all n ≥ 0, where dn = l.c.m.{1, 2, . . . , n} ;
(c) Bn/An → ζ(3) as n→∞ .

Together, these three facts quickly imply the irrationality of ζ(3): any solution
of (1) must behave asymptotically like a constant times n−3/2C±n as n → ∞,
where C = (1 +

√
2)4 = 33.97 · · · , so the difference between Bn/An and its lim-

iting value ζ(3) is O(C−2n) as n → ∞, and since the denominator of Bn/An is
O(e3nCn) = o(C2n) (because dn = en+o(n) and e3 < C) this degree of approxima-
bility is not compatible with the rationality of ζ(3). As a numerical illustration of
the rapidity of Apéry’s approximations, we have

B4

A4
=

11424695

288× 33001
= 1.2020569031578 · · · .

Thus (a)–(c) imply Apéry’s sensational discovery that ζ(3) is irrational. But
why are they true? In particular, where does the integrality statement (a) come
from? In computing An recursively from (1) we must divide by n3 at each stage
and hence should expect a priori that An has denominator n!3. So the integrality
assertion (a) (and to a somewhat lesser degree the denominator bound (b)) is very
surprising, and we will describe in a moment a numerical experiment showing that
this phenomenon is indeed exceedingly rare. In the rest of this section, which serves
as motivation for the rest of the paper, we will list some of the explanations for
the integrality that have been found, giving more details of each in later sections.

First, to justify the word “miracle” in the title of this section we should say
something about the numerical evidence showing how special the integrality is.
As well as his proof of the irrationality of ζ(3), Apéry had found a completely
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similar proof of that of ζ(2) (which was of course already known as a consequence
of Euler’s formula ζ(2) = π2/6) based on the 3-term recursion

(n+ 1)2un+1 − (11n2 + 11n+ 3)un − n2un−1 = 0 (2)

instead of (1), where the two solutions defined by the initial values (A0, A1) = (1, 3)
and (B0, B1) = (0, 5) satisfy the same properties as before, but now with d3

n

replaced by d2
n and ζ(3) by ζ(2). As part of his study of the congruence properties

of such recursions, about which we will say more later, Beukers [8] generalized (2)
to the 3-parameter family of “Apéry-like” recursions

(n+ 1)2un+1 − (An2 +An+B)un + Cn2un−1 = 0 (3)

with A, B, C ∈ Z. In [73], I looked at the first 100 million triples (A,B,C) and
found (up to scaling and assuming C(A2 − 4C) 6= 0 to avoid degenerate cases)
that only seven of them gave recursions with integral solutions: the initial one
(11, 3,−1) found by Apéry and the six further cases

(0, 0,−16), (7, 2,−8), (9, 3, 27), (10, 3, 9), (12, 4, 32), (17, 6, 72) ! (4)

So the phenomenon we are talking about is indeed an extremely rare one.

We now return to equation (1) and describe five different methods that can be
used to prove the integrality of the Apéry numbers An (and also in each case the
further properties (b) and (c), though we will not describe this), and one further
interpretation of these numbers.

• Apéry’s own proofs of (a)–(c) were based on his explicit formula

An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(5)

for An and a similar but more complicated expression for Bn. These two formulas
immediately implied all three of his assertions, but his explanation of where they
came from and why they were true was rather obscure and did not convince every-
body. (To quote from [4], “The proof was elementary but the complexity and
the unexpected nature of Apéry’s formulas divided the audience into believers and
disbelievers.”) A more standard proof was quickly found, and was presented by
Henri Cohen at the International Mathematical Congress in 1978 only two months
after Apéry’s announcement (the full story, in which I was peripherally involved,
is told very amusingly in the article [56] by Alf van der Poorten), and will be
reproduced and slightly generalized in Section 7. But it did little to dispel the
mystery and everybody felt that there had to be more enlightening explanations.

• The first such explanation was found by Frits Beukers, only three months
after the Helsinki congress. In [4], he showed that the difference Bn −Anζ(3) has
the integral representation

Bn − Anζ(3) =

∫ 1

0

∫ 1

0

∫ 1

0

(
x(1− x)y(1− y)z(1− z)

1− z + xyz

)n
dx dy dz

1− z + xyz
(6)
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and that all three properties (a)–(c) follow from this. Of course this formula
also has a somewhat “rabbit-out-of-a-hat” appearance (although it does fit better
into the framework of earlier known irrationality proofs than just the unmotivated
recursion (1) for the numbers (5)), but as we will see in the final bullet, it does in
fact have a clear algebraic-geometric meaning.

• A yet more beautiful explanation of what was “really” behind Apéry’s dis-
covery was found a few years later, again by Beukers, and relies on the theory of
modular forms. We will recall the definition and main properties of modular
forms in Section 4, and here merely reproduce the relevant formulas from [5]. Set

T (q) = q

∞∏
n=1

(1− qn)12(1− q6n)12

(1− q2n)12(1− q3n)12
= q − 12q2 + 66q3 − 220q4 + · · · ,

F (q) =

∞∏
n=1

(1− q2n)7(1− q3n)7

(1− qn)5(1− q6n)5
= 1 + 5q + 13q2 + 23q3 + · · · .

Then, as will be explained in Section 4, the theory of modular forms implies that

F (q) = 1 + 5T (q) + 73T (q)2 + 1445T (q)3 + · · · =

∞∑
n=0

An T (q)n , (7)

which gives the integrality of An since both F and T have integral coefficients.

• In 1984, Beukers and Chris Peters [11] returned to the integral representa-
tion (6) and understood its underlying geometry in terms of periods in a family
of algebraic varieties. The recursion (1) is equivalent to the statement that the
generating function

A(t) =

∞∑
n=0

Ant
n = 1 + 5 t + 73 t2 + 1445 t3 + · · ·

is a solution of the differential equation L(A) = 0, where L is the differential
operator

L = D3 − t (34D3 + 51D2 + 27D + 5) + t2 (D + 1)3
(
D = t

d

dt

)
. (8)

(It is of course this connection to differential equations that explains why we are
using the Apéry proof as entry point into the subject of this paper.) If we substitute
the integral representation (6) into this generating function, then we obtain an
integral expression for B(t)−A(t)ζ(3) (where B(t) =

∑∞
n=0Bnt

n is the companion
generating series to A(t)) in which the integrand has singularities along the surface

Vt : 1 − t
x(1− x)y(1− y)z(1− z)

1 − z + xyz
= 0 . (9)

Beukers and Peters showed that Vt for generic t is birationally equivalent to a K3
surface with Picard number 19 and that LA = 0 is the Picard-Fuchs differential
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equation corresponding to this family. (We will recall this notion in the next
section.) This is the point of view that will be the most important for this paper.

• Next, and as a consequence of the above, there is a simple description of
the numbers An in terms of Laurent polynomials. If we make the substitution
x→ (x+ z − 1)/yz in the defining equation of Vt, then the new equation has the
easy form 1− tL(x, y, z) = 0, where L(x, y, z) is the Laurent polynomial

L(x, y, z) =
(y − 1)(z − 1)(x+ z − 1)(yz − x− z + 1)

xyz
(10)

(“Landau-Ginzburg model”). The formula for An then becomes simply

An = c.t.
(
Ln
)
, (11)

where “c.t.” denotes the constant term in a Laurent polynomial in several vari-
ables. This expression gives the integrality of An instantly since L has integral
coefficients, and we also see by a short calculation that it reproduces Apéry’s for-
mula (5).

• Finally, the numbers An have an interpretation in terms of Gromov-Witten
theory. This is considerably less elementary to explain than the other points of
view, so we give only a brief description in words here, referring the reader to
Section 8 and the literature cited there for more definitions and explanations. To
any Fano variety F one can associate a sequence of rational numbers vn(F ) that
satisfy a linear recursion with coefficients that are determined by the Gromov-
Witten invariants of F (= enumeration of holomorphic maps P1(C) → F ; the
number vn(F ) is an appropriately defined volume of the moduli space of all such
maps of degree n). On the other hand, mirror symmetry predicts that F has an
associated “mirror manifold” (actually a family of algebraic manifolds) and that
the numbers n! vn(F ) agree with the Taylor coefficients of a period of this mirror.
If we take for F a particular Fano 3-fold called V12, then the mirror exists and is
precisely the Beukers-Peters family of K3 surfaces discussed above, so the numbers
n! vn(V12) coincide with the Apéry numbers An. This gives a completely different
explanation of the meaning of the Apéry numbers, and also another reason to at
least expect them to be integral, since for geometric reasons the invariants vn(F ) of
any Fano variety are believed (though not known) to have denominator at most n! .

2. Differential equations and algebraic geometry

The connections of differential equations with both arithmetic and topology arise
through the periods of algebraic varieties. By definition, a period on an algebraic
variety X defined over Q (or any number field, but in this paper we stick to Q for
simplicity) is a number defined by integrating an algebraic differential form on X
over a submanifold (either closed or with a boundary defined over Q). The class of
these numbers forms a countable subring P ⊂ C that contains all algebraic numbers
and many of the numbers of greatest interest in mathematics, such as π, log 2, ζ(n)
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(or more generally multiple zeta values, which will occur in Section 9), periods of
modular forms, Mahler measures of polynomials with rational coefficients, and
many others. They are also related to special values of motivic zeta functions (see
Section 6). A survey of periods was given in [49].

Just as the notion of algebraic numbers (numbers satisfying a polynomial equa-
tion over Q) can be generalized to the notion of algebraic functions (functions that
satisfy a polynomial equation over Q(t) and whose values at algebraic arguments
are then automatically algebraic), the notion of periods can be extended to that of
period functions (functions of t that are defined by the integral over a submanifold
of a differential form depending algebraically on a parameter t, and which then
automatically assume values in P at algebraic arguments). The key fact, whose
proof will be recalled below, is that any period function satisfies a linear differential
equation with algebraic coefficients (Picard-Fuchs differential equation). It is this
fact that creates the link between the three subjects constituting the title of this
paper.

In this section, after reviewing differential forms and the de Rham theorem,
we will discuss the definition and differential equation of period functions in a
little more detail and give a number of examples. These notions, and also these
examples, will then recur in the rest of the paper in connection with other more
specific topics like modular forms, zeta functions, and mirror symmetry. First,
however, we present a simple and prototypical example.

Example: The circumference of an ellipse. The historically earliest example
of the differential equation satisfied by a period function was given by Euler in
1733,1 who showed that the quarter-length E of an ellipse of eccentricity t < 1,

1

E

t

considered as a function of the parameter k =
√

1− t2, satisfies the differential
equation

k(k2 − 1)E′′(k) + (k2 − 1)E′(k) − k E(k) = 0 . (12)

1See pp. 85 ff. of [38]. Both this book by Christian Houzel and the book [33] by Jeremy Gray
contain a wealth of information about the early history of elliptic and hypergeometric functions,
and of differential equations in general. See also the very nice expository paper [66] by Burt
Totaro.
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This is a consequence of the following calculation

E(k) =

∫ π/2

0

√
cos2 θ + t2 sin2 θ dθ =

∫ π/2

0

√
1 − k2 sin2 θ dθ

=

∫ 1

0

√
1− k2x2

1− x2
dx (x = sin θ)

=
π

2

∞∑
n=0

(
1/2

n

)(
−1/2

n

)
k2n =

π

2

(
1 − k2

4
− 3k4

64
− 5k6

256
− · · ·

)
,

in which the first equation comes directly from the definition of E, the second ex-
presses E as a period, and the third expresses it as a power series in k2, from which
the differential equation (12) follows immediately by term-by-term differentiation.
The power series for 2

πE(k) occurring here is the special case F (− 1
2 ,

1
2 ; 1; k2) of the

Euler-Gauss hypergeometric function

F (a, b; c; t) =
∞∑
n=0

(a)n(b)n
(c)n n!

tn ( (a)n := a(a+ 1) · · · (a+ n− 1) ), (13)

a very important and beautiful class of special functions, which the reader can
learn more about from the wonderful book [71] by Masaaki Yoshida.

Review of differential forms and de Rham’s theorem. The fact that period
functions satisfy a differential equation is closely related to the de Rham theorem
describing the cohomology of a manifold in terms of differential forms, so we begin
by giving a brief review of this. This material is standard and can be skipped by
any reader who is familiar with it.

Let X be a (compact, smooth, oriented) manifold of real dimension m. Then for
every integer r between 0 and m we have the rth homology group Hr(X;Z), which
is an abelian group of finite rank br(X) (called the rth Betti number of X) whose
elements are represented by closed r-dimensional “chains” modulo boundaries of
(r+1)-dimensional chains. (For an intuitive picture, one can think of r-dimensional
oriented submanifolds of X modulo the relation that such a submanifold is equated
to 0 if it is the boundary of an oriented (r+1)-dimensional submanifold of X.) We
also have the corresponding cohomology group Hr(X;Z), which is an abelian group
of the same rank that up to torsion can be identified with the dual of Hr(X;Z),
as well as the br(X)-dimensional vector space Hr(X;C) = Hr(X;Z) ⊗Z C =
Hom(Hr(X;Z),C) (rth cohomology group with complex coefficients).

Differential forms constitute the language that is needed to formulate the clas-
sical theorems of many-variable calculus for general manifolds. Let X and m be
as above. By definition, a 0-form on X is a smooth function on X, represented in
local coordinates x = (x1, . . . , xm) on X by a C∞-function f(x) = f(x1, . . . , xm),
a 1-form is a formal linear combination

∑n
i=1 fi(x) dxi, where each fi is C∞ and

“dxi” is a formal symbol meant to suggest a small change of the coordinate xi
with all of the other coordinates being kept constant, and an r-form for arbi-
trary 0 ≤ r ≤ m is a formal linear combination of r-fold products dxi1 · · · dxir
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with C∞-functions of x as coefficients, where the multiplication of the symbols
dxi is required to satisfy the anticommutativity property dxi dxj = −dxj dxi. (In
particular, (dxi)

2 = 0, so that the iν have to be distinct and one can assume
that 1 ≤ i1 < · · · < ir ≤ m.) The basic operation on differential forms is the
“exterior derivative” d, which sends r-forms to (r + 1)-forms. It is defined on
0-forms by the formula d(f) =

∑n
i=1

∂f
∂xi

dxi (corresponding to the gradient in
multi-variable calculus), on the special 1-forms dxi by d(dxi) = 0, and then in-
ductively on all forms by requiring d to be linear and to satisfy the derivation
property d(ω1ω2) = d(ω1)ω2 ± ω1d(ω2) for any two differential forms ω1 and ω2

on X. A simple calculation then shows that d(dω) = 0 for any differential form ω.
In particular, if we define an r-form ω to be closed if dω = 0 and exact if ω = dη
for some (r − 1)-form η, then all exact forms are closed.

The key fact about differential forms is Stokes’s theorem
∫
A
dη =

∫
∂A
η, which

generalizes the fundamental theorem of calculus
∫ b
a
f ′(x)dx = f(x)

∣∣x=b

x=a
as well as

many classical theorems of multivariate calculus like the divergence and curl theo-
rems. This shows immediately that the integral of a closed r-form ω over a closed
r-dimensional submanifold C of X depends only on the homology class [C] of C in
Hr(X;Z) (because if C = ∂B is homologous to 0 then

∫
C
ω =

∫
∂B

ω =
∫
B
dω = 0),

and that this integral vanishes if ω is exact (because
∫
C
ω =

∫
C
dη =

∫
∂C

η = 0).
In other words, every closed form on X represents a cohomology class with com-
plex coefficients, and this cohomology class is unchanged if the form is changed
by the addition of an exact form. De Rham’s theorem is the converse statement,
that every class in Hr(X;C) can be obtained by integrating a closed r-form on X
which is uniquely determined up to an exact form. In more formal language, de
Rham’s theorem expresses Hr(X;C) as the (finite-dimensional) quotient of the
(infinite-dimensional) space of closed complex-valued r-forms on X by its (infinite-
dimensional) subspace of exact r-forms.

The Picard-Fuchs differential equation. We first give a rough and not quite
correct explanation of this to give the main idea, and then a more careful one.
The situation we are now interested in is when the manifold denoted X above is
replaced by a family {Xt}t∈U of manifolds depending smoothly on a parameter t
in some “base space” U and we have a closed r-form ωt on each Xt depending
smoothly on t. We can then think of the Xt as the pre-images π−1(t) of a smooth
map π from some larger “ambient space” X to U and take ωt to be the restriction
ωt = ω|Xt of some (not necessarily closed!) r-form ω on X to Xt. The statement
we want to make is a local one, so we can assume that t moves in a small open
subset of U over which the mapping π is locally a product. Then the fibres Xt

are smooth and diffeomorphic to each other, so the homology groups Hr(Xt;Z)
can be canonically identified with one another and we can speak (locally) of a
“constant” cycle Y , meaning a smoothly varying family of submanifolds Yt ⊂ Xt

with [Yt] ∈ Hr(Xt;Z) constant. We denote by P (t) the integral of our chosen
r-form ωt over the submanifold Yt. The argument producing a differential equation
satisfied by P (t) then runs as follows. Since our map is locally a product, we can
take t and a coordinate system x = (x1, . . . , xm) on Xt as local coordinates on X,
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and then ∂/∂t commutes with the partial derivatives ∂/∂xi and hence with the
exterior derivative d on Xt as introduced above. It follows that if the r-form
ωt(x) is closed, then so is the r-form ∂iωt(x)/∂ti for i ≥ 0, so by de Rham’s
theorem these forms for i = 0, 1, . . . , b, where b = br(Xt) = dimCH

r(Xt;C), have
a linear combination (with coefficients that are smooth functions of t) that is exact.
The integral over Y of this linear combination is then 0, and this is our desired
differential equation:

b∑
i=0

ai(t)
∂iωt(x)

∂ti
= d(ηt) ⇒

b∑
i=0

ai(t)
diP (t)

dti
= 0 .

If ωt depends algebraically on t as well as on the coordinates in Xt, then the
coefficients ai(t) are also algebraic functions and we get the desired Picard-Fuchs
differential equation. In our examples, the base space U will always be a complex
curve, but in practice it will usually be the complex line C or projective line P1(C),
in which case the coefficients of the differential equation will be rational functions
and hence, after multiplying by a common denominator, polynomials in t, implying
that the Taylor coefficients of any local (power series) solution of the differential
equation will satisfy a recursion of finite order with polynomial coefficients.

In fact the argument just given is not correct as it stands, for two reasons.
First of all, the classical de Rham theorem applies to real manifolds and C∞ forms,
while we want to work with algebraic manifolds over C and holomorphic (algebraic)
forms. If X is a smooth complex variety of complex dimension n, so real dimension
m = 2n, we can choose local complex coordinates z = (z1, . . . , zn) and take x to
be (x1, y1, . . . , xn, yn), where zj = xj + iyj . Then we can take dzj = dxj + i dyj
and dz̄j = dxj − i dyj rather than dxj and dyj as our basis of 1-forms over the
algebra of smooth functions on, and similarly dzj1 . . . dzjpdz̄k1 · · · dz̄kq (with p, q ≥
0, p+ q = r) as our basis of r-forms. The cohomology classes represented by linear
combinations of such forms with given p and q are said to be of Hodge type (p, q), the
complex subspace of Hr(X;C) consisting of such classes is denoted Hp,q(X), and a
fundamental theorem of Hodge says that for a smooth projective variety X the full
cohomology group Hr(X;C) is the direct sum of the spaces Hp,q(X) with p+q = r.
(If X is not smooth or not compact, then there is still a Hodge theory but it has a
more complicated structure, due to Deligne, that we will not describe.) When we
speak of an “algebraic” r-form on X, we mean a form of type (r, 0) with algebraic
(and in particular holomorphic) coefficients, but then we are only getting part of
the cohomology. For instance, if X is a compact Riemann surface of genus g, then
the first cohomology group H1(X;C) has dimension 2g, while the part H1,0(X)
representable by algebraic forms has dimension only g.

The second problem is that if our variety X belongs to a family {Xt} and we
have an algebraically vanishing family of closed r-forms ωt on Xt, then when we
differentiate with respect to the parameter t we can create poles, as we will see
explicitly in Example 1 (Legendre elliptic curve) in the next section. This is in fact
connected with the first point, since if all derivatives diωt/dt

i were holomorphic
then we would find a differential equation of order dimHr,0(X), rather than the
correct dimHr(X), for the periods. In the case of curves (which is the context of
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the classical Picard-Fuchs differential equation) there is a simple solution. If X is
a Riemann surface (complex curve), then instead of using the de Rham theorem
to represent H1(X) in terms of holomorphic and antiholomorphic 1-forms we can
represent it by meromorphic forms ω of the second kind modulo exact forms df ,
where “second kind” means that the residue of ω at each of its poles vanishes.
Such a form represents a well-defined cohomology class on X because the value of
its integral over a closed real curve Y ⊂ X does not change as Y moves across a
singularity of ω and hence depends only on the homology class of Y , and the class
of meromorphic 1-forms of the second kind is also closed under differentiation with
respect to a parameter in an algebraically defined family, so that everything is okay.
For higher-dimensional varieties there is still a notion of differentials of the second
kind (locally the sum of a smooth form and an exact one; see pp. 454–6 of [34]),
but it is no longer sufficient to work with these, and one needs instead a general
algebraic de Rham theory, in which the non-algebraically defined space Hp,q(X) is
replaced by qth cohomology group ofX with coefficients in the sheaf of holomorphic
r-forms, which is defined algebraically. (In general, one needs hypercohomology
to define it correctly, but if X is affine—i.e., a subvariety of some CN defined by
polynomial equations—then ordinary cohomology suffices.) The requisite algebraic
de Rham theorem was proved by Alexander Grothendieck [35], and a full algebraic
treatment of Picard-Fuchs differential equations in arbitrary dimensions and over
arbitrary fields was given by Nicholas Katz (cf. [41], whose introduction gives a
very clear overview of the problems involved, and also [42], [45] and [43]).

Properties of Picard-Fuchs differential equations. The derivation sketched
above shows that the Picard-Fuchs differential equation of the function t 7→

∫
[Y ]

ωt
depends only on the form ωt and not on the homology class [Y ] over which it is
integrated, and this is just as it should be: a linear differential equation of order b
has a precisely b-dimensional space of solutions at a generic point (Cauchy), and
by varying [Y ] over the b-dimensional space Hr(Xt;Z) ⊗ C we obtain all of these
solutions. This has a very important consequence. For any linear differential
equation of order b, say defined with respect to a parameter t ranging over C
minus a finite set S of singular points, we can choose a basis of b solutions at some
non-singular point t0 and analytically continue them around any path in CrS. If
we choose a closed path, then the b analytically continued solutions again belong
to the space of solutions at t0, so they are linear combinations of the original
solutions. This gives a b× b matrix depending only on the homotopy class of the
closed path and hence a homomorphism from π1(CrS, t0) to GL(b,C), called the
monodromy representation. In the case of the Picard-Fuchs differential equation
of a period function, the basis of solutions can be chosen by integrating over a
Z-basis of Hr(Xt0 ;Z), and it follows that the monodromy representation of the
differential equation that we have found is always integral, i.e., with respect to
a suitable basis of the space of solutions at a given point it takes values in the
subgroup GL(b,Z) of GL(b,C). However, we should warn the reader explicitly
that the minimal differential equation satisfied by a period function may not have
integral monodromy, because this equation may arise from a lower-dimensional
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subspace of the cohomology (we will see examples below) and this piece may not
be defined over Q. In such a case, the monodromy matrices of the Picard-Fuchs
differential equation (in a suitable basis) may have entries with values in a number
field rather than in Q.

As well as this integrality (or near-integrality) of the monodromy, Picard-Fuchs
differential equations have several other special properties among the class of all
linear differential equations with polynomial coefficients:

• They have only regular singular points. We recall the definition: if we write
the equation as y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0, where y(i) = diy/dxi

and a1(x), . . . , an(x) are rational functions, then a point x0 ∈ C is called a
singular point of the equation if some ai(x) has a pole at x0 and is regular
if the pole of every ai at x0 has order at most i. The same definitions apply
also to x0 =∞ ∈ P1(C) after making the change of variables x 7→ 1/x in the
differential equation.

• Their local monodromy around any singular point (i.e., the matrix represent-
ing the analytically continued solutions in terms of the original ones when
we analytically continue a basis of solutions near the singular point around a
small loop circling it) is quasiunipotent (all its eigenvalues are roots of unity).

• The numerators and denominators of the Taylor coefficients of a solution of
the differential equation around a singular point have at most exponential
growth, i.e., they satisfy the same integrality or near-integrality as we saw
for the Apéry sequences {An} and {Bn} at the beginning of this paper.

It is believed that these properties characterize Picard-Fuchs differential equations.
For a detailed discussion and more precise conjectures, see Simpson’s article [64].

3. Examples

In this section we give several examples of Picard-Fuchs differential equations.

Example 1: The Legendre elliptic curve. Consider the elliptic curve given
by the Legendre equation

Et : y2 = x (x− 1) (x− t) , (14)

where t is a complex parameter. On this curve, like on any elliptic curve given
by a Weierstrass equation over C, there is a unique (up to a constant multiple)
holomorphic 1-form, given by

ωt =
dx

y
=

dx√
x(x− 1)(x− t)

.

This form is automatically closed because it is a holomorphic 1-form and our variety
has complex dimension 1. With a little bit of experimentation one finds an exact
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form that is a combination of partial derivatives of ωt with respect to t, namely

−2 d

(
x1/2 (x− 1)1/2

(x− t)3/2

)
=

(x− t)2 + 2(2t− 1)(x− t) + 3t(t− 1)

x1/2 (x− 1)1/2 (x− t)5/2
dx

=
(

1 + 4(2t− 1)
∂

∂t
+ 4t(t− 1)

∂2

∂t2

)
ωt ,

(15)

and from this it follows that the integral P (t) =
∫
γ
ωt for any closed curve γ on Et

2

satisfies the Legendre differential equation(
1 + 4(2t− 1)

d

dt
+ 4t(t− 1)

d2

dt2

)
P (t) = 0 .

The integral basis of the space of solutions that we discussed at the end of
Section 2 can be seen clearly in this example. Suppose for concreteness that t
is a real number between 0 and 1. As a basis of the rank 2 group H1(Et;Z)
we take the classes [Ci] of the two curves C1 and C0 on Et given by the double
cover y = ±

√
x(x− 1)(x− t) of the real interval [1,∞) and the double cover

y = ±i
√
|x|(|x|+ 1)(|x|+ t) of the real interval (−∞, 0], respectively. Then∫

C1

ωt = 2

∫ ∞
1

dx√
x(x− 1)(x− t)

= 2

∞∑
n=0

(
−1/2

n

)
(−t)n

∫ ∞
1

dx

xn+1
√
x− 1

= 2π

∞∑
n=0

(
−1/2

n

)2

tn = 2π F ( 1
2 ,

1
2 ; 1; t) (16)

by a term-by-term expansion-and-integration calculation exactly similar to the one
used for Euler’s equation (12), while a similar but messier computation gives∫

C0

ωt =
2

i

∞∑
n=0

(
−1/2

n

)2 (
log
( t

16

)
+ 4

( 1

n+ 1
+ · · · +

1

2n

))
tn (17)

for the integral of ωt over the other basis element. These two functions of t are
then a Z-basis of the canonical Z-lattice of solutions of the differential equation
whose existence was explained in the last section, and the monodromy matrices
obtained by analytically extending them around a closed loop in C r {0, 1} lie
in the subgroup SL(2,Z) of GL(2,C). This statement is closely related to the
modular interpretation of the Legendre family that will be discussed in Section 5.

Example 2: The Dwork quintic pencil. Our next example, which we will see
again several times later in this paper, is the subvariety Qψ ⊂ P4(C) given by the
homogeneous equation

Qψ : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = ψ x1x2x3x4x5 , (18)

2Note that both ∂ωt/∂t and ∂2ωt/∂t2 have poles at x = t, but are meromorphic 1-forms of
the second kind (vanishing residues), in accordance with the discussion in the previous section.
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where ψ is a complex parameter. For ψ 6= 0, 5 this is a smooth quintic hypersurface
in P4 and as such a Calabi-Yau 3-fold. The family {Qψ}ψ is very famous because
it was the starting point of the whole field of “mirror symmetry” (to which we
will return in Section 8) in the famous 1991 paper [14] by Candelas, de la Ossa,
Green and Parke, in which its Picard-Fuchs differential equation was related to the
problem of counting rational curves on generic quintic hypersurfaces in P4(C).

To say that Qψ is a Calabi-Yau 3-fold means that there is a nowhere vanishing
holomorphic 3-form Ω on it. Using non-homogeneous coordinates (w : x : y : z : 1)
rather than (x1 : · · · : x5) on P4(C), we can give this form explicitly by

Ω =
dx dy dz

∂F/∂w

∣∣∣∣
F=0

=
dx dy dz

xyz − 5ψ−1w4

∣∣∣∣
F=0

, (19)

where F = Fψ(w, x, y, z) = wxyz − ψ−1(w5 + x5 + y5 + z5 + 1) . (A similar for-
mula would apply to any smooth hypersurface F = 0 of degree n in Pn−1(C), such
a hypersurface always being a Calabi-Yau manifold.) To find the corresponding
Picard-Fuchs differential equation, we compute the integral of this form over a suit-
ably chosen 3-cycle in Qψ and then, imitating Euler’s derivation of the differential
equation (12), find the differential equation satisfied by this integral. The 3-cycle
we choose is the deformed 3-torus given (for |ψ| > 5) by

T : |x| = 1, |y| = 1, |z| = 1, w = w(x, y, z) (|ψ| large) ,

where w(x, y, z) denotes the “small” solution of the equation Fψ(w, x, y, z) = 0
(i.e., the one given asymptotically by w ≈ (1 + x5 + y5 + z5)/ψxyz, as opposed
to the four “large” solutions w ≈ iν 4

√
ψxyz with ν ∈ Z/4Z). From the Lagrange

inversion formula we obtain the two power series expansions

w =

∞∑
n=0

(
5n
n

)
4n+ 1

(1 + x5 + y5 + z5)4n+1

(ψxyz)5n+1
,

1

1 − 5w4/ψxyz
=

∞∑
n=0

(
5n

n

)
(1 + x5 + y5 + z5)4n

(ψxyz)5n
,

and combining the second of these with the Cauchy integral formula we obtain

1

(2πi)3

∫
T

Ω =
1

(2πi)3

∫
T

1

1 − 5w4/ψxyz

dx

x

dy

y

dz

z

=

∞∑
n=0

(
5n

n

)
c.t.

(
(1 + x5 + y5 + z5)4n

(ψxyz)5n

)
(“c.t.” as in (11))

=

∞∑
n=0

(
5n

n

)
(4n)!

n!4
ψ−5n =

∞∑
n=0

(5n)!

n!5
ψ−5n . (20)

This formula, in which the sum on the right satisfies a hypergeometric differential
equation (see the next subsection), is the celebrated result of Candelas et al.

We make two further comments in connection with this example. First of all,
the differential equation satisfied by the function (20) has order only 4, whereas the
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third Betti number of Qψ is the much larger number 204. In fact, there is an obvious
abelian group of order 125 (given by multiplying the coordinates xi in (18) by 5th
roots of unity), and the invariant part of H3(Qψ) under the action of this group has
dimension 4. In other words, our differential equation corresponds to a “natural
piece” of the cohomology group rather than to the whole group, a phenomenon that
we already mentioned in the previous section. Such “natural pieces” are precisely
Grothendieck’s motives, to which we will come back in Section 6.

Secondly, there is the question of the integrality of the monodromy. Here
the monodromy group is in fact integral (even though the differential equation
corresponds to only part of the full cohomology group) and a complete description
of it was given in [14], who also gave the transition matrices between the “Frobenius
bases” of solutions of the hypergeometric equation at 0 and ∞ and the integral
base. We will discuss this in more detail in Example 2 of Section 7.

Example 3: Hypergeometric functions. An extremely important class of
differential equations are the ones satisfied by the Euler-Gauss hypergeometric
function (13) and its generalization

F (a1, . . . , ar; b1, . . . , bs; t) =

∞∑
n=0

(a1)n · · · (ar)n
(b1)n · · · (bs)n n!

tn , (21)

sometimes also denoted rFs

(a1, . . . , ar
b1, . . . , bs

∣∣∣ t). We will be most interested in the case

when s = r−1 and all the a’s and b’s are rational numbers, a typical example being
the function appearing in (20), which can be written F ( 1

5 ,
2
5 ,

3
5 ,

4
5 ; 1, 1, 1; (5/ψ)5).

Under these assumptions the hypergeometric differential equation is always a
Picard-Fuchs equation. (An explicit expression of the function (21) in this case as
a period integral is given by its classical expression as the integral over [0, 1]d−1 of
a monomial in x1, . . . , xd−1, 1 − x1, . . . , 1 − xd−1, and 1 − x1 · · ·xd−1t.) Here the
condition r = s − 1 is equivalent to the condition that the three singular points
x = 0, 1, ∞ of the differential equation are regular, and the rationality condition
says that the local monodromy matrices at these singularities are quasiunipotent.

If we write the expansion (21) as
∑
unt

n, then we see from the definition of
the “ascending Pochhammer symbol” (a)n as a(a + 1) · · · (a + n − 1) that the
coefficients un satisfy the two-term recursion

b(n)un+1 = a(n)un

with polynomials a(x) =
∏r
i=1(x+ ai) and b(x) =

∏s+1
i=1 (x+ bi) (bs+1 = 1). This

translates into the differential equation LF = 0 satisfied by (21), where L is the
hypergeometric differential operator L = a(D)t − b(D − 1), with D = t d/dt as
in (8). The fact that the recursion has only two terms corresponds to the fact that
the differential equation has only three singular points at 0, 1 and ∞ ; three-term
recursions like the ones (1) and (2) satisfied by the Apéry sequences correspond to
differential equations with four singularities (two of them again at 0 and ∞), and
more generally Picard-Fuchs differential equations with singularities at 0, ∞, and
` finite points typically correspond to recursions with `+ 1 terms (or “length `”).
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Example 4: Algebraic functions. Any algebraic function, i.e., any function
y(x) satisfying a polynomial equation P (x, y(x)) = 0 with complex coefficients,
satisfies a linear differential equation with polynomial coefficients. Indeed, all
derivatives of y belong to the function field K = C(x, y)/(P (x, y) = 0), as we

see from the formula dy
dx = −∂P/∂x∂P/∂y and induction, and since this field has di-

mension d over C(x), where d is the degree of P with respect to y, we see that
the derivatives y, y′, . . . , y(d) must be linearly dependent over C[x]. This differen-
tial equation always has regular singularities and is in fact always a Picard-Fuchs
differential equation, because evaluating an algebraic function at a point is just
the special case r = 0 of integrating an algebraic r-form over an r-dimensional
manifold. The monodromy group is given by permutation matrices.

Sometimes hypergeometric functions are algebraic, and these cases are espe-
cially interesting. The criterion for an Euler-Gauss hypergeometric function (13)
to be algebraic was found by Schwarz in the 19th century, and the corresponding
criterion for the general case (21) by Frits Beukers and Gert Heckman in 1989 [10].
A particularly nice case is that of hypergeometric functions

F (t) = Fc,d(t) =

∞∑
n=0

(c1n)! · · · (cpn)!

(d1n)! · · · (dqn)!
tn (22)

involving only factorials, like (20). Here Villegas found that the Beukers-Heckman
criterion is equivalent to the three conditions q = p + 1,

∑
i ci =

∑
j dj , and

Fc,d(t) ∈ Z[[t]]. A simple example is the binomial coefficient series

BM,N (t) =

∞∑
n=0

(
Mn

Nn

)
tn =

∞∑
n=0

(Mn)!

(Nn)! ((M −N)n)!
tn (23)

(M ≥ N ≥ 0), which we will discuss in §7. Three more complicated examples are

∞∑
n=0

(6n)!n!

(3n)! (2n)!2
tn,

∞∑
n=0

(10n)!n!

(5n)! (4n)! (2n)!
tn,

∞∑
n=0

(30n)!n!

(15n)! (10n)! (6n)!
tn . (24)

The integrality of the coefficients of the last of these series (equivalent to the state-
ment that the periodic and integer-valued function [30x]+[x]−[15x]−[10x]−[6x] is
non-negative) is a famous discovery of Chebyshev, who used it to prove the weaker
version c x

log x < π(x) < 6c
5

x
log x (c = log(30−1/3021/231/351/5) = 0.921 · · · ) of the

prime number theorem almost half a century before the full theorem was proved
by Hadamard and de la Vallée Poussin. The first two of the functions (24) have
degree 6 and 30 over Q(t), respectively, whereas the expected degree of the last
one, according to Villegas, is a whopping 483840.

4. Differential equations and modular forms

Modular forms are a wonderful mathematical theory because they give an especially
clear link between complex analysis and arithmetic. (The same holds also for
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higher-dimensional modular objects, a prime example being the Hilbert modular
surfaces and Hilbert modular forms studied by Hirzebruch.) Specifically, on the
one side they have an arithmetic nature associated with words like

• Hecke theory, eigenvalues, L-functions, Galois representations, . . .

and on the other side an analytic nature associated with words like

• periods, special values, differential equations, . . .

They thus fit particularly well into the subject matter of this paper, and many of
our examples—including of course the Apéry numbers with which we started—have
a modular nature.

In this section we recall the definitions and main properties of modular forms,
with many examples, and say something about their arithmetic side (Hecke theory
and L-functions), but only briefly since we will return to this in the next section.
Our main goal will be to explain and sketch the proof of the following

Key Fact: A modular form of positive integral weight k, written as
a function of a modular function on the same group, satisfies a linear
differential equation of order k + 1 with algebraic coefficients.

We refer to [13] for more details, examples, and applications of all of these topics.

Modular forms and modular functions. We denote by H the complex upper
half-plane {τ ∈ C | =(τ) > 0}, on which the group SL(2,R) acts in the usual
way by Möbius transformations:

(
a b
c d

)
τ = aτ+b

cτ+d . Let Γ be a discrete subgroup of
SL(2,R) (Fuchsian group) for which the quotient H/Γ has finite area. We can visu-
alize this quotient by choosing a fundamental domain for this action, as illustrated
in the figure (which shows the fundamental domains for the standard modular
group Γ1 = SL(2,Z), for a so-called triangle group, and for the non-arithmetic
group that will be discussed at the end of this section), but the important object

is the quotient H/Γ, not the fundamental domain. This quotient is a Riemann
surface that is either compact (as in the middle picture) or else can be compactified
by the addition of finitely many “cusps” (one in the first picture, three in the third)
and then becomes a projective curve XΓ = H/Γ. A modular function on Γ is then
a meromorphic function on XΓ, i.e., a Γ-invariant meromorphic function in H
together with appropriate growth properties at the cusps if H/Γ is non-compact,
whereas a modular form of (integral) weight k on Γ is a holomorphic function in H
satisfying the more general transformation equation f

(
aτ+b
cτ+d

)
= (cτ + d)k f(τ) for

all τ ∈ H and
(
a b
c d

)
∈ Γ, again together with a restriction on the growth of f(τ)
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at the cusps if H/Γ is non-compact. This restriction is most easily stated in terms
of the Fourier expansion of f . If Γ has cusps, then without loss of generality we
can assume that one of them is at infinity and that the stabilizer of ∞ in Γ is
generated by the matrix T =

(
1 1
0 1

)
(which pictorially means that the part of the

fundamental domain above a certain height is a strip of width 1); then f(τ) has
a Fourier expansion f(τ) =

∑
n∈Z a(n)e2πinτ and the growth assumption is that

the Fourier coefficients a(n) = af (n) are bounded by a polynomial in n. This
(non-obviously) implies that a(n) vanishes for n < 0, so we can also think of this
Fourier expansion as the Taylor expansion

∑
a(n)qn of f with respect to the local

parameter q = q2πiτ of XΓ at infinity. The modular functions that we consider
will also always be holomorphic in H, so they also have expansions

∑
a(n)qn, but

now possibly with non-zero coefficients a(n) for finitely many negative values of n
and with the weaker growth property a(n) = O(C

√
n) rather than a(n) = O(nC).

In the rest of this subsection we give examples of modular forms and modular
functions, concentrating mostly on the full modular group Γ1. Our first and very
important example is the Dedekind eta-function

η(τ) = q1/24
∞∏
n=1

(1− qn) = q1/24
(
1− q − q2 + q5 + q7 − · · ·

)
. (25)

This is not quite a modular form as defined above, but instead a modular form
of weight 1/2 with non-trivial multiplier system on Γ1. We omit the definition of
these words, but here they mean that η(τ) satisfies the transformation properties
η(τ + 1) = eπi/12 η(τ) and η(−1/τ) =

√
τ/i η(τ) with respect to the generators

T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
of Γ1. It follows that the 24th power

∆(τ) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − · · · − 6048q6 + · · · (26)

of η(τ), the so-called discriminant function, is a true modular form of weight 12.
We also have the weight k Eisenstein series Ek(τ) on Γ1 of any even weight k ≥ 4,
the first three of which are given by

E4(τ) = 1 + 240

∞∑
n=1

n3qn

1− qn
= 1 + 240q + 2160q2 + 6720q3 + · · · , (27)

E6(τ) = 1 − 504

∞∑
n=1

n5qn

1− qn
= 1− 504q − 16632q2 − 122976q3 − · · · ,

E8(τ) = 1 + 480

∞∑
n=1

n7qn

1− qn
= 1 + 480q + 61920q2 + 1050240q3 + · · · .

One shows fairly easily that the ring M∗(Γ1) of all modular forms on Γ1 is the
free algebra on two generators E4 and E6, and this immediately implies identities
like E8 = E2

4 or 1728∆ = E3
4 − E2

6 that would be completely mysterious from an
elementary point of view, showing at a very simple level the power of modularity.
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We also mention the weight 2 Eisenstein series

E2(τ) =
∆′(τ)

∆(τ)
= 1 − 24

∞∑
n=1

n qn

1− qn
= 1− 24q − 72q2 − 96q3 − · · · .

(Here and from now on f ′(τ) for a holomorphic function f in H will denote the
derivative of f with respect to 2πiτ ; this is convenient as it preserves the rationality
or integrality of the Fourier expansion of f .) It is not a modular form but a so-called
quasimodular form on Γ1, meaning that it satisfies the modified transformation
property E2

(
aτ+b
cτ+d

)
= (cτ + d)2E2(τ)− 6i

π c(cτ + d) for τ ∈ H and
(
a b
c d

)
∈ Γ1. The

ring M̃∗(Γ1) of all quasimodular forms (we omit the definition) on Γ1 is generated
freely by E2, E4 and E6 and is closed under differentiation, with E′2 = 1

12 (E2
2−E4),

E′4 = 1
3 (E2E4 − E6), E′6 = 1

2 (E2E6 − E2
4) (Ramanujan’s formulas).

As the basic example of a modular function we have the modular j-invariant

j(τ) =
E4(τ)3

∆(τ)
= q−1 + 744 + 196884 q + 21493760 q2 + · · · , (28)

which is invariant under Γ1 because both E3
4 and ∆ are modular forms of weight 12.

This function gives a holomorphic isomorphism between H/Γ1 and C and between
the compactification XΓ1

= H/Γ1 ∪ {∞} and P1(C). Such a modular function (on
any Fuchsian group of genus 0) is called a Hauptmodul.

One can also give explicit examples of modular functions and modular forms
for other Fuchsian groups Γ. The most important for arithmetic purposes are the
so-called “congruence subgroups” of Γ1 such as the group Γ0(N), which is defined
for any integer N ≥ 1 as the set of matrices

(
a b
c d

)
∈ Γ1 with c divisible by N ,

or the principal congruence subgroup Γ(N), defined as the set of matrices in Γ1

that are congruent to the identity modulo N . For instance, on Γ0(2) we have the
modular form of weight 2

E2,2(τ) = 2E2(2τ) − E2(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + · · · , (29)

and on the principal congruence group Γ(2) (whose associated modular curve
X(2) = XΓ(2) again has genus 0) the Hauptmodul

λ(τ) = 16
η(τ/2)8η(2τ)16

η(τ)24
= 1− η(τ/2)16η(2τ)8

η(τ)24
=

(
ϑ2(τ)

ϑ3(τ)

)4

. (30)

Here ϑ2, ϑ3 are the Jacobi theta functions

ϑ2(τ) =
∑
n∈Z

q(n+ 1
2 )2/2 , ϑ3(τ) =

∑
n∈Z

qn
2/2 (31)

which are modular forms of weight 1/2, again with a multiplier system that we
omit, for Γ(2). Further examples will be given in the next subsection when we
discuss Hecke eigenforms.
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Modular forms with multiplicative Fourier coefficients. The observant
reader may have noticed, as Ramanujan did in 1916, that the coefficient −6048 of
q6 in (26) is the product of the coefficients −24 and +252 of q2 and q3, respec-
tively. This is a special case of the more general property that the coefficients of ∆
are multiplicative, meaning that the coefficient of qmn is the product of those of
qm and qn whenever m and n are coprime, as Ramanujan also observed and as
Mordell proved the following year. This was later generalized by Hecke to all k
by showing that the space Mk(Γ1) is uniquely spanned by modular forms having
this same multiplicative property. These are called Hecke eigenforms (or simply
Hecke forms) because the multiplicativity is equivalent to the statement that the
form is a simultaneous eigenvector of an infinite collection of operators on Mk(Γ1)
called Hecke operators, whose definition we omit. The Eisenstein series 1

240E4,
− 1

504E6 and 1
480E8 also have multiplicative Fourier coefficients and are also Hecke

eigenforms, but for reasons that we will see in the next section they are much less
interesting than ∆, which is a cusp form. (A cusp form of weight k is a modular
form of weight k that is bounded in the upper half-plane by =(τ)−k/2.) Hecke’s
result shows that the space Sk(Γ1) of weight k cusp forms on Γ1 has a unique basis
consisting of Hecke forms, the next example after ∆ being the form

∆16(τ) = E4(τ) ∆(τ) = q + 216q2 − 3348q3 · · · − 723168q6 + · · · .

of weight 16. Here, as for k = 12, the coefficients of the eigenform belong to Z,
but we should warn the reader that for weight 24 and all weights k ≥ 28 the space
of cusp forms on Γ1 has dimension d > 1 and the Hecke cusp forms may (and
conjecturally always do) have coefficients in a number field of degree d over Q
rather than in Q itself. For instance, the two Hecke cusp forms of weight 24 have
coefficients in Q(

√
144169), as Hecke himself showed.

A similar, though more complicated, statement (“theory of newforms”) is true
also for the congruence subgroups Γ0(N). In particular, if the space Sk(Γ0(N))
of cusp forms of weight k on Γ0(N) happens to be 1-dimensional, then its unique
generator is (if properly normalized) automatically a Hecke form, which we will
then denote by fk,N . Four cases besides Ramanujan’s original example f12,1(τ) =
∆(τ) = η24(τ) where this happens are the cusp forms

f2,11(τ) = η(τ)2 η(11τ)2 = q − 2q2 − q3 + 2q4 + q5 + · · · , (32)

f4,9(τ) = η(3τ)8 = q − 8q4 + 20q7 − 70q13 + 64q16 + · · · , (33)

f4,8(τ) = η(2τ)4 η(4τ)4 = q − 4q3 − 2q5 + 24q7 − 11q9 − · · · , (34)

f4,25(τ) = η(5τ)4
4∑
i=0

ai η(τ)4−i η(25τ)i = q + q2 + 7q3 − 7q4 + · · · , (35)

where in the last line a = (1, 5, 20, 25, 25). Each of these will reappear later in this
paper. Note that each of these forms has been expressed in terms of the Dedekind
eta-function, but for most Hecke forms this is not possible.

Hecke eigenforms (in particular, cuspidal Hecke eigenforms) are the most im-
portant objects in the theory of modular forms from the arithmetic point of view,
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and the whole modern theory of automorphic forms via the representation theory
of adelic groups (Jacquet-Langlands theory) can be seen as a vast generalization
of the theory of Hecke operators. We mention here two fundamental (and related)
properties of Hecke eigenforms, both of which will play a role later. The first is
that the multiplicativity of the Fourier coefficients an = an(f) of a Hecke form f
translates into the fact that the corresponding L-series L(f, s) =

∑
n≥1 an(f)n−s

has an Euler product, and in fact a strengthening of this multiplicativity property
(also already observed by Ramanujan for the coefficients of ∆ in 1916 and proved
by Mordell in 1917) says that this Euler product has only quadratic factors and
more specifically is of the form

L(f, s) =
∏

p prime

1

1 − af (p) p−s + χ(p) pk−1−2s
(36)

for some Dirichlet character χ. The other is that a Hecke form has two associated
“periods” ω±(f) such that the value of L(f, s) at any integral argument s between 0
and the weight k is an algebraic multiple of a power of π times either ω+(f) or
ω−(f). (This statement makes sense because the analytic properties of cusp forms
imply that the L-function L(f, s) of any cusp form f has an analytic continuation
to all s, as well as satisfying a functional equation, so that we can talk about its
values even for arguments outside of the domain of absolute convergence of its
defining series or Euler product representation.) These are typical properties of
motivic L-functions, as we will see in Section 6, but are only conjectural in general,
whereas in the case of modular forms they are theorems.

Modular forms satisfy differential equations. Modular forms and quasimod-
ular forms always satisfy non-linear differential equations of order 3 with constant
coefficients as functions of the variable τ in the upper half-plane. The reason is
simply that the ring of all quasimodular forms on any Fuchsian group Γ has tran-
scendence degree 3 (for instance, for Γ1 it is the free algebra on E2, E4 and E6)
and is closed under differentiation, so if f belongs to this ring then there must
be a polynomial relation among f , f ′, f ′′ and f ′′′. (A nice example is the Chazy

equation E′′′2 − E2E
′′
2 + 3

2E
′
2
2

= 0 satisfied by E2(τ).) However, these non-linear
differential equations do not have many applications in arithmetic precisely be-
cause they are non-linear.3 Much more useful—and surprisingly little known, even
to specialists, although it was the starting point for the whole theory in its early
years in the late 19th and early 20th centuries—is the “key fact” stated that at
the beginning of the section, which says that a modular form of positive integral
weight satisfies a linear differential equation (of order one greater than the weight)

3An exception is a theorem proved by Villegas and myself [70] which says that, modulo the
Birch–Swinnerton-Dyer conjecture, a prime p of the form 9m+1 is a sum of two rational cubes if
and only if p|A3m, where

∑
Anxn/n! is the Taylor expansion (in suitable coordinates) of η(τ) at

the point τ = e2πi/3 in H. The non-linear differential equation of the power series is then equiv-
alent to a non-linear recursion for the coefficients An, but even here there is a more convenient
method of calculating these numbers based on a different parametrization using the expansions
of integral weight modular forms as hypergeometric series with respect to a Hauptmodul.
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if it is expressed in terms of a modular function of τ rather than in terms of τ
itself.

So let t(τ) be a (meromorphic) modular function for some Γ and f(τ) a (mero-
morphic) modular form of positive integral weight k on the same group. We want
to show that if we express f(τ) as ϕ(t(τ)), then the function ϕ(t) satisfies a lin-
ear differential equation of order k + 1 with algebraic coefficients. But of course
we cannot express f this way globally, since t(τ) is invariant under substitutions
τ 7→ γ τ with γ ∈ Γ while f(τ) is not. However, we can do so locally, say in a
small neighborhood of a cusp or of a point of H, and then the many-valuedness
of ϕ when we leave this neighborhood and then come back to it is precisely the
monodromy representation that we want from the solution of a linear differential
equation. This observation is in fact the key to the proof of our assertion, because
the k + 1 linearly independent functions τ if(τ) (i = 0, . . . , k) form a basis for the
space of solutions of the differential equation satisfied by ϕ.

More explicitly, let ~f : H → C be the (column) vector-valued function with
entries τ if(τ) (in reverse order). From the equation f(γτ) = (cτ + d)kf(τ) we get

~f(γ τ) =

(aτ + b)kf(τ)
...

(cτ + d)kf(τ)

 =

a
k · · · bk

. . .

ck · · · dk


τ

kf(τ)
...

f(τ)

 = Sk(γ) ~f(τ)

for all γ =
(
a b
c d

)
∈ Γ, where Sk(γ) ∈ SL(k+1,C) is the kth symmetric power of γ.

The point is that this matrix is independent of τ , so we can differentiate the
equation ~f ◦ γ = Sk(γ)~f without obtaining any extra terms, as we would have if
we simply differentiated (cτ +d)kf(τ). However, the derivative of γτ is (cτ +d)−2,

so the differentiated equation would have the form ~f ′ ◦ γ = (cτ + d)2 Sk(γ)~f ′,
which again contains a multiplicative factor depending on τ . Since we want to
go to higher derivatives, we cannot iterate this procedure. But we actually want
to differentiate with respect to t = t(τ), and since dt := d/dt equals t′(τ)−1d/dτ
and t′(τ) is a (possibly meromorphic) modular form of weight 2 and therefore also
acquires a factor (cτ + d)2 when we replace τ by γτ , everything is all right after

all: we have (dt ~f) ◦ γ = Sk(γ)(dt ~f) and by induction (dit
~f) ◦ γ = Sk(γ)(dit

~f) for
all i ≥ 0. Writing down these equations for i = 0, 1, . . . , k + 1 and noting that
k+ 2 vectors of length k+ 1 are linearly dependent, we get an identity of the form∑k+1
i=0 mi d

i
t
~f = 0 where each mi = mi(τ) is the determinant of a (k+ 1)× (k+ 1)

matrix that transforms under τ 7→ γτ by multiplication on the left by Sk(γ), so
that its determinant mi is a modular function of τ . Since every such function is
an algebraic function of the chosen modular function t(τ), we obtain our desired
differential equation. (A more detailed exposition of this proof, and two other
elementary proofs of the “key fact”, are given on pages 61–62 of [13].)

Note that this differential equation has algebraic coefficients of t in general,
but if H/Γ has genus 0 and t(τ) is a Hauptmodul, then every modular func-
tion on Γ is a rational function of t and therefore the equation, after multiplying
through by a common denominator, in fact has polynomial coefficients, implying
that we have a linear recursion for the coefficients of any power series solution. We
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also see from the proof that the monodromy group is the kth symmetric power
Sk(Γ) ⊂ SL(k + 1,C) of the original Fuchsian group Γ and in particular is in-
tegral if Γ is a subgroup of the full modular group Γ1. On the other hand, in
the last section we saw that Picard-Fuchs differential equations also have integral
(or nearly integral) monodromy representations. This is not a coincidence, since
the differential equations associated to subgroups of SL(2,Z) are the Picard-Fuchs
equations associated to families of elliptic curves. We will see explicitly how this
works in Example 1 of the next section.

The “key fact” is illustrated by a classical result of H.A. Schwarz (see[71],
Chapter III) that the monodromy group of the hypergeometric differential equation
of the function (13) for special values of the parameters a, b and c (with each of
1− c, c− a− b and a− b equal to 0 or to the reciprocal of an integer) is a triangle
group in SL(2,R), i.e., a Fuchsian group Γ whose fundamental domain is either a
hyperbolic triangle as pictured at the beginning of this section or else a union of two
such triangles. In this case one can take the parameter t in (13) to be a modular
function t(τ) (in fact, a Hauptmodul) for Γ, the function f(τ) = F (a, b; c; t(τ)) to
be a modular form of weight 1 on Γ, and the second solution of the differential
equation to be τf(τ), the (many-valued) map t 7→ τ formed by the quotient of
these two solutions then being the classical Schwarz map. We will give many
further examples, of a more arithmetic nature, in the next section.

5. Examples

In this section we illustrate the theorem discussed above by describing a number
of triples “Fuchsian group – modular form – modular function” and the associated
differential equations.

Example 1: Jacobi theta series. Our first example is classical. We take as
our Fuchsian group the principal congruence subgroup Γ = Γ(2) of Γ1, as our
modular form f the square of the Jacobi theta function ϑ3 defined in (31), and as
our modular function t the Hauptmodul λ defined in (30). Here k = 1, so ϑ3(τ)2

should satisfy a differential equation of order 2 with respect to λ(τ), and indeed

ϑ3(τ)2 =

∞∑
k=0

(
−1/2

k

)2

λ(τ)k (37)

for |λ(τ)| ≤ 1. This is the same hypergeometric function F
(

1
2 ,

1
2 ; 1; t) that we

saw in Section 3 when computing the Picard-Fuchs differential equation of the
Legendre elliptic curve (14), and indeed the Z-basis

(∫
C0
ωt,

∫
C1
ωt
)

of solutions

that we computed in equations (17) and (16) is (up to a factor 2π) the same as the
Z-basis (τf(τ), f(τ)) coming from the proof in the last section, as we can check
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numerically by inverting the q-expansion of λ(τ) and taking logarithms:

t = λ(τ) = 16 q1/2
(
1 − 8 q1/2 + 44 q − 192 q3/2 + · · ·

)
,

q1/2 =
t

16

(
1 +

t

2
+

21 t2

64
+

31 t3

128
+ · · ·

)
,

πiτ = log
(
q1/2

)
= log

( t

16

)
+

t

2
+

13 t2

64
+

23 t3

192
+ · · ·

= log
( t

16

)
+

4
∑∞
n=1

(−1/2
n

)2 ( 1
n+1 + · · ·+ 1

2n

)
tn∑∞

n=0

(−1/2
n

)2
tn

= πi

∫
C0
ωt∫

C1
ωt

.

Example 2: The function E4. Another classical example, this time for the
full modular group Γ1, is an identity of Fricke and Klein expressing the Eisenstein
series (27) in terms of the modular invariant (28) as

E4(τ) = 1 +
60

j(τ)
+

39780

j(τ)2
+ · · · = F

( 1

12
,

5

12
; 1;

1728

j(τ)

)4

,

where F (a, b; c;x) once again denotes the hypergeometric function. This is indeed
the solution of a differential equation of order five (one more than the weight of E4),
since the fourth symmetric power of a two-dimensional space is five-dimensional,
but in fact we see in this example that the 4th root 4

√
E4(τ) satisfies a second order

differential equation, even though it is not a modular form (or even a holomorphic
function in the upper half-plane) and therefore not strictly covered by the state-
ment of the “key fact” as given in the previous section. Actually this behavior is
generic: if f(τ) is any modular form of integral weight k > 0, then its kth root,
expressed in terms of a modular function on the same group, always satisfies a
differential equation of order 2, and the equation of order k+ 1 satisfied by f itself
is the one derived from this by the kth symmetric power operation.

As a related example we mention the expansion

t(τ) =
1

864

(
1 − E6(τ)

E4(τ)3/2

)
⇒ 4

√
E4(τ) =

∞∑
n=0

(6n)!

(3n)!(2n)!n!
t(τ)n , (38)

in which the coefficients (6n)!
(3n)!(2n)!n! are a solution of the Apéry-like recursion (3)

with (A,B,C) = (432, 60, 0); this is another one of the “miraculous” cases when
this recursion has an integral solution, but is not contained in the list (4) because
we excluded “degenerate” (= hypergeometric!) cases where C = 0.

Example 3: The Apéry numbers. Here we take

t(τ) =
η(τ)12 η(6τ)12

η(2τ)12 η(3τ)12
, f(τ) =

η(2τ)7 η(3τ)7

η(τ)5 η(6τ)5
, (39)

which are a modular function and a modular form of weight 2, respectively, on the
congruence group Γ0(6). Then f(τ) = A(t(τ)), where A(t) = 1 + 5t+ 73t2 + · · · is
the generating function for the Apéry numbers for ζ(3) as discussed in Section 1.
This is just Beukers’s identity (7), but now written in standard modular notation.
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Examples 4–18: Apéry-like numbers. The generating series of the Apéry
numbers for ζ(2) defined by his recursion (2) also has a modular parametrization,
again due to Beukers: here we take for Γ the group Γ1(5) of matrices congruent
to
(

1 ∗
0 1

)
modulo 5, for t(τ) the 5th power of Ramanujan’s modular function

r(τ) = q1/5
∞∏
n=1

(
1 − qn

)(n
5

)
=

q1/5

1 +
q

1 +
q2

1 + · · ·

(in which the equality of the two expressions on the right, without the factor
q1/5, is sometimes called “the most beautiful formula in mathematics”), which is
a Hauptmodul for Γ1(5), and for f(τ) the function η(5τ)5/2/t(τ)1/2η(τ)1/2, which
is a modular form (Eisenstein series) of weight 1 on the same group.

There are similar modular parametrizations for the other six cases listed in (4)
when the recursion (3) has integral solutions. All are given explicitly in [73]. (See
also [68].) Apart from these seven, there exist eight further “degenerate” triples
(A,B,C) (up to rescaling) for which the generating series of the solution of (3) has
a modular parametrization: four “hypergeometric” cases with C = 0 and (A,B) =
(16, 4), (27, 6), (64, 12) or (432, 60) and four “Legendrian” ones with C = A2/4 and
(A,B) = (32, 12), (54, 21), (128, 52) or (864, 372). The modular parametrization
for the case (A,B,C) = (432, 60, 0) was already given in (38). Another example,
corresponding to (A,B,C) = (27, 6, 0), is the differential equation satisfied by the

generating series
∑ (3n)!

n!3 tn : on the one hand this is the Picard-Fuchs differential
equation of the family of plane cubic curves x3

1 + x3
2 + x3

3 = ψx1x2x3 (with t =
(3ψ)−3) by a calculation identical to the one given in Example 2 of Section 3 but
with “5” replaced by “3” everywhere, and on the other hand the series can be
parametrized by the modular function t and modular form f of weight 1 given by

t(τ) =
η(3τ)12

η(τ)12 + 27 η(3τ)12
, f(τ) =

∑
a, b∈Z

qa
2+ab+b2 .

Examples 19–34: Mirrors of Fano 3-folds. In connection with the predictions
of mirror symmetry, Vasily Golyshev found a specific collection of 17 families of
K3 surfaces, corresponding to the 17 smooth Fano 3-folds of Picard rank 1 (details
will be given in Section 8), each of which has a period with Taylor coefficients given
by a formula of the form (11) for some Laurent polynomial L and each of which
admits a modular parametrization. One of these families is the Beukers-Peters
family (9) with the modular parametrization (39) (which is why we numbered this
subsection “Examples 19–34” rather than “Examples 19–35” !). Another is the
family of quartic surfaces x4

1 + x4
2 + x4

3 + x4
4 = ψx1x2x3x4, whose period is given

by the hypergeometric series
∑ (4n)!

n!4 tn (with t = (4ψ)−4) by the same calculation
as the ones for the corresponding families with “4” replaced by “5” or “3” and has

a modular parametrization given by taking t(τ) = ∆(τ)∆(2τ)
(∆(τ)+64∆(2τ))2 and f(τ) the

Eisenstein series of weight 2 on Γ0(2) defined in (29).
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Example 35: An integrality enigma. Our last example is of a somewhat
different nature, and serves both as an illustration of the arithmetic subtleties
involved in the relation between modular forms and differential equations and as
our first specific application of the mathematics of Friedrich Hirzebruch.

In connection with the theory of Teichmüller curves, Irene Bouw and Martin
Möller [12] studied a Picard-Fuchs differential equation associated to a specific
family of genus 2 curves over the projective line defined over the real quadratic
field Q[

√
17] and showed that its power series solution, which begins

ϕ(t) = 1 + 81−15
√

17
16 t + 4845−1155

√
17

64 t2 + 3200225−775495
√

17
2048 t3 + · · · ,

has integral coefficients (apart from a power of 2 in the denominators that can be
removed by rescaling t), even though the recursion defining these coefficients (which
here has length 3 rather than 2 as in the Apéry cases) begins (n+ 1)2un+1 = · · · ,
so that a priori the denominator of the nth coefficient could be as large as n!2.
This example, which was taken up again by Möller and myself in [54], has the
mysterious property that it has a modular parametrization, for a specific cofinite
Fuchsian group Γ17 (the one whose fundamental domain is depicted in the third of
the pictures at the beginning of Section 4), but that this parametrization, unlike
the parametrization (7) used by Beukers to explain the integrality of the Apéry
numbers, does not imply the corresponding integrality here in any obvious way.
(The proof of integrality given by Bouw and Möller was completely different and
used p-adic techniques.) The reason is that the group Γ17 is not an arithmetic one
and therefore, although the power series ϕ can be parametrized as ϕ(t(τ)) = f(τ)
for an explicitly computable Hauptmodul t and modular form f of weight 1, the
q-expansions of t and f do not have integral coefficients and hence the argument
that implied the integrality of the An as a consequence of the parametrization (39)
fails. In fact, the q-expansions of t and f do not even have algebraic coefficients,
but instead belong to the power series ring Q[

√
17][[Aq]] for some real constant

A = −7.483708229911735369 · · · that we eventually recognized (first numerically

and then theoretically) as −2 (3 +
√

17)
(

5−
√

17
2

)(√17−1)/4
, which is transcenden-

tal by the Gelfond-Schneider theorem. What’s more, even the power series in Aq,
although its coefficients are now algebraic, has infinitely many primes in its denom-
inators. The solution of the mystery turned out to be that one had to embed the
base curve of the Bouw-Möller family (Teichmüller curve) into the Hilbert modular
surface for Q[

√
17], and thus also to embed the non-arithmetic group Γ17 into the

corresponding Hilbert modular group, which is arithmetic. The q-expansions of t
and f can then be understood using Hirzebruch’s description of the geometry of
Hilbert modular surfaces near their cusps [37], and the integrality follows.

6. Differential equations and arithmetic

One of the great developments in 20th century mathematics was the discovery
by Artin, Weil, Dwork, Grothendieck, Deligne and many other mathematicians of
deep links between number theory and topology. This connection starts with a
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relation between counting solutions of algebraic equations in finite fields and the
topology of the corresponding algebraic variety over C, but then extends to many
further topics like global L-functions, variations of Hodge structures and periods,
etc. that give rise to the interconnections referred to in the title of this paper.

From point counting to cohomology. We begin by giving a very abbreviated
account (omitting all technicalities and occasionally oversimplified) of the passage
from point-counting to topology. Let X be a smooth projective variety defined
over Q. Such a variety is given as a subspace of some projective space by equations
with rational coefficients. If we multiply by a suitable integer, we can take the
defining equations to have coefficients in Z and can then reduce them modulo any
prime p, leading to a variety Xp = X/Fp defined over the finite field Fp that is
again smooth for all but finitely many p. (The remaining “bad” primes will be
ignored in our simplified discussion here.) We then have as a basic invariant the
number #Xp(Fp) of solutions of the defining equations with the variables taking
their values in the field of p elements, or more generally the number #Xp(Fpn)
of solutions over the finite field Fpn for any integer n ≥ 1. These numbers for a
given p can be put together in the form of the local zeta-function

Z(X/Fp, T ) = exp

( ∞∑
n=1

#Xp(Fpn)
Tn

n

)
. (40)

As the three simplest examples, for X equal to a point, the projective line, or an
elliptic curve one finds that

Z({pt.}/Fp, T ) =
1

1− T
, Z(P1/Fp, T ) =

1

(1− T )(1− pT )
,

Z(E/Fp, T ) =
1− ap(E)T + pT 2

(1− T )(1− pT )

(
ap(E) ∈ Z

)
,

where in the last case ap(E) can be calculated in terms of Legendre symbols by

ap(E) = p+ 1−#E(Fp) = −
∑

x∈Z/pZ

(
x3 +Ax+B

p

)
(41)

if p 6= 2 and E is given by the Weierstrass equation y2 = x3 + Ax + B with
A, B ∈ Z, as one sees by noting that the number of solutions of y2 ≡ N (mod p)
equals 1+

(
N
p

)
for any N ∈ Z. More generally, the right-hand side of (40), which a

priori is just a power series in T with coefficients in Q, is in fact a rational function
and has integral coefficients, as was proved in Emil Artin’s thesis (1923) for some
hyperelliptic curves, by F.K. Schmidt in 1931 for arbitrary smooth curves, and
by Dwork in the 50’s for varieties of arbitrary dimension. For instance, if X is a

curve of genus g then Z(X/Fp, T ) has the form P (T )
(1−T )(1−pT ) where P (T ) ∈ Z[T ]

is a polynomial of degree 2g with all roots of absolute value p−1/2, as was proved
by Deuring and Hasse for elliptic curves and by André Weil in 1949 for curves
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of arbitrary genus. We can write this expression in the form P1(T )
P0(T )P2(T ) where

Pi(T ) ∈ Z[T ] is a polynomial of degree bi(X), the ith Betti number of X (equal
to 1, 2g, 1 for i = 0, 1, 2) and where the roots of Pi(T ) have absolute value p−i/2,
and this and other examples led Weil to conjecture that in general the local zeta
function of a d-dimensional smooth projective variety should have the form

Z(X/Fp, T ) =

2d∏
i=0

Pi(X/Fp, T )(−1)i−1

(42)

where each Pi(X/Fp, T ) is a polynomial of degree bi(X) with integral coefficients
and with all roots of absolute value p−i/2 (“Riemann hypothesis”), and further that
it should be possible to prove this by finding an appropriate cohomology theory
that could apply to the variety Xp over the finite field Fp. These statements
imply a very deep link between arithmetic and topology, including in particular
the statement that the dimensions of the homology and cohomology groups of the
complex manifold X(C) can be read off from the cardinalities of the finite sets
X(Fpn) for even a single (good) prime p.

Weil’s proposal for a cohomology theory for varieties over Fp was realized
through the work of Alexander Grothendieck, Michael Artin and others, except
that there was not just one such cohomology theory, but infinitely many. More
specifically, for a smooth projective variety X defined over any field K and for any
integer n prime to the characteristic of K one can define finite “(geometric) étale
cohomology groups” Hi

ét(X;Z/nZ) via the étale coverings of X of degree n (étale
coverings, the analogue in the algebraic context of unramified coverings in topol-
ogy, are maps between algebraic varieties that induce an isomorphism of tangent
spaces at every point), where X (usually denoted X ⊗K K) means X thought of
as a variety over K together with the natural action of Gal(K/K). The `-adic
cohomology group Hi(X;Q`) is then defined for any prime ` different from the
characteristic of K as the inverse limit of Hi

ét(X;Z/`kZ) as k → ∞, tensored
with Q`, the field of `-adic numbers, and by construction carries an action of the
Galois group of K over K. In the case K = Fp this Galois group contains (and
is topologically generated by) the Frobenius element Frp, defined on Fp by the
formula x 7→ xp and on Xp(Fp) by applying the same formula to every coordinate.
The fixed points of the nth power of Frp on Xp(Fp) are precisely the points of X
over the finite field Fpn , and then by the analogue of the classical Lefschetz trace
formula, proved in this context by Grothendieck, one gets

#Xp(Fpn) = #Xp(Fp)Frnp =

2d∑
i=0

(−1)i tr
(
(Fr∗p)

n, Hi(Xp;Q`)) .

This formula translates after a short calculation into the formula (42), but with
the polynomial Pi(X/Fp, T ) replaced by the characteristic polynomial

Pi,`(X/Fp, T ) = det
(
1 − Fr∗p T, H

i(Xp,Q`))

of the action of Frobenius on the `-adic cohomology. This is a priori a polynomial
with coefficients in Q` and depending on `, but in fact it belongs to Z[T ] and is in-
dependent of `, as follows (in this case, for smooth projective varieties—for general
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varieties it is still only conjectural!) from Deligne’s proof of the “Riemann hypoth-
esis” part of Weil’s conjectures, because if the ith polynomial in the alternating
product in (42) has roots of absolute value p−i/2 then there can be no cancellation
among the factors and we can read off each Pi separately from the left-hand side,
which does not depend on `.

Global zeta functions. The above considerations were all local and would have
applied to any smooth projective variety defined over Fp, not just to the reduc-
tion Xp = X/Fp of a “global” variety X defined over Q. In the global situation
the `-adic cohomology groups Hi(X;Q`) are isomorphic as Q`-vector spaces to
Hi(X(C);Q)⊗QQ` for all ` (“comparison theorem”) and also to Hi(Xp;Q`) for all
(good) primes p 6= ` (“base change”). For such primes the element Frp corresponds
to a well-defined conjugacy class (also denoted Frp) in the action of Gal(Q/Q)
on Hi(X;Q`) whose characteristic polynomial is equal to Pi(X/Fp, T ). The facts
that all of the local zeta functions Z(X/Fp, T ) come from the same variety X/Q
and that all of the polynomials P (X/Fp, T ) come from a single cohomology group
Hi(X;Q`) are reflected in the expected analytic properties of the global zeta and
L-functions associated to X. Specifically, one defines the Hasse-Weil zeta function
of X by the formula

ζ(X/Q, s) =
∏
p

Z(X/Fp, p−s) (<(s)� 0),

which by virtue of (42) is the alternating product of the global L-functions

Li(X/Q, s) =
∏
p

Pi(X/Fp, p−s)−1 (<(s)� 0),

where in both cases the product is over all primes p but the description of the Euler
factors at “bad” or ramified primes (those where the reduction of X modulo p is no
longer a smooth variety over Fp) is different from the one for “good” or unramified
primes. (For instance, the degree of Pi(X/Fp, T ) in T for bad primes is strictly
less than the ith Betti number of X.) The basic conjecture, which can perhaps
be considered the single most outstanding open problem in arithmetic algebraic
geometry, is that the L-function Li(X/Q, s), initially defined only for s in some
right half-plane, has a holomorphic (or sometimes just meromorphic, but with
specified and very simple pole behavior) continuation to all complex values of s
and satisfies a functional equation with respect to the symmetry s 7→ i + 1 − s
in which the necessary gamma-factor is given by an explicit recipe (due to Serre)
involving the Hodge decomposition of Hi(X(C);C). The function Li(X/Q, s) is
also expected to satisfy a Riemann hypothesis (all zeros on the line <(s) = i+1

2 ),
but this is not known even if X is a point and i = 0, when it reduces to the
usual Riemann hypothesis. Finally, there is a marvelous conjecture of Deligne [23]
relating the special values of Li(X/Q, s) at “critical” values of s (those integers
for which neither s nor i+ 1− s is a pole of the gamma-product occurring in the
functional equation of Li) to the periods of X obtained by comparing the Betti
and de Rham rational subspaces of Hi(X(C);C).
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For points, projective spaces, Grassmannians and a few other varieties (“Tate
motives”), the Hasse-Weil zeta functions are multiplicative combinations of shifted
Riemann zeta functions and the meromorphic continuation and functional equation
are therefore known, but in almost all other cases they are conjectural. In 1955
Taniyama observed that the Euler factors of the L-functions L1(E/Q, s) of elliptic
curves E over Q and the L-functions (36) of Hecke cusp forms of weight 2 had
exactly the same form, and raised the question whether they sometimes coincided,
and in 1969 Weil showed that the expected analytic properties of Hasse-Weil zeta
functions would imply that the L-function of any elliptic curve over Q is in fact
equal to the L-function of a weight 2 cusp form. The conjecture that this aways
holds became particularly famous after it was shown by the work of Frey, Serre and
Ribet that it would imply Fermat’s Last Theorem, but it remained open until the
spectacularly difficult proof by Andrew Wiles in 1994 of the special cases needed
for the Fermat theorem and its extension to the general case by Breuil, Conrad,
Diamond and Taylor during the next few years. The Taniyama-Weil conjecture
is now a special case of the “Langlands program,” which predicts that the L-
functions coming from algebraic varieties will always coincide with L-functions of
appropriate automorphic forms, from which the desired analytic properties would
follow. But this is only known in isolated cases, and the analytic continuation
and functional equation of the L-functions associated even to H1 of curves of
genus bigger than 1, let alone to arbitrary cohomology groups of varieties of higher
dimension, remain conjectural even today. Surprisingly, however, these properties
can be verified numerically, because there is a method, observed by several people
and worked out in detail both theoretically and in the form of a software package
by Tim Dokchitser [24], to calculate a Dirichlet series with an assumed functional
equation to arbitrarily high precision even outside its domain of convergence and
at the same time to test the functional equation numerically. This method is self-
verifying in the sense that it involves a free parameter and that if the final result
of the calculation turns out to be independent of the choice of this parameter then
one has convincing evidence both of the correctness of the presumed functional
equation and of the accuracy of the numerical evaluation, and in all of the many
cases that have been tested the predicted analytic properties and special values
were verified.

The idea of a motive. We have seen that one can associate to a (smooth, projec-
tive) algebraic variety X/Q several different kinds of cohomology groups: the Betti
cohomology H∗B(X) = H∗(X(C),Q), the algebraic de Rham cohomology H∗dR(X)
defined in terms of differential forms, and the `-adic cohomology groups H∗(X;Q`)
on which the Galois group of Q over Q acts, and that these are interrelated in many
ways: the complexifications (tensor product over Q with C) of the Betti and de
Rham cohomology are canonically identified with one another and with the com-
plex cohomology group H∗(X(C);C), which in turn has a Hodge decomposition
as the direct sum of complex subspaces Hp,q(X), the `-adic cohomology groups
are isomorphic as Q`-vector spaces with the tensor product of H∗B(X) with Q`
and are related among each other by the fact that the characteristic polynomial
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of the Frobenius element Frp for a (good) prime p 6= ` is independent of `. The
coefficients of the transition matrix coming from the passage between the Q-bases
of H∗(X(C);C) coming from Betti and de Rham cohomology are the periods of X,
which are arithmetically interesting numbers if X is fixed and give rise to the arith-
metically interesting Picard-Fuchs differential equation if X varies algebraically in
a family, while the `-adic Galois representations provide the deep arithmetic infor-
mation that leads from point counting over finite fields to the global L-functions
with their mysterious and still mostly conjectural analytic properties. The word
“motive” is used to describe a purely linear-algebra structure that has all of these
properties (Q-vector spaces labelled by the names “Betti” and “de Rham” whose
complexifications are isomorphic and have a Hodge decomposition and families of
`-adic Galois representations that satisfy the above-mentioned compatibilities) but
is not explicitly required to come from the cohomology of any specific algebraic
variety. The idea is due to Grothendieck, who gave a concrete way to produce
such objects as a piece of a cohomology group cut out by algebraic correspon-
dences. (More precisely, if X is a variety defined over Q then any correspondence
Z ⊂ X ×X defined over Q induces an endomorphism of each of the cohomology
groups associated to X, and if one has a Q-linear combination P of such induced
maps that is a projector, i.e., that satisfies P 2 = P , then the image of P gives a
collection of subspaces of the Betti, de Rham, and `-adic cohomology groups that
has all of the above-named properties.) More generally, the same is true of any
“natural piece” of the cohomology of X, meaning a collection of Q-subspaces of
the Betti and de Rham cohomology whose complexifications are equal and that
are the direct sums of their intersections with the Hodge spaces Hp,q(X), and of
Q`-subspaces of the `-adic cohomology groups that correspond to these under the
comparison maps and are stable under the action of Gal(Q/Q). If the Hodge and
Tate conjectures are true, then these two classes of motives coincide.

In the early years there was no clear way to establish the existence of a well-
defined category of motives having all the desired properties, and there were (and
still are) mathematicians who deprecated the whole subject as mere castles in the
air lacking both definitions and theorems. That situation has changed over the
years and there are now well-defined theories of motives and motivic cohomology
due to the work of Tate, Deligne, Bloch, Beilinson, Voevodsky, André, Nori and
many others, even though the full theory, in the sense of having a well-defined
abelian category of motives in full generality satisfying all the expected properties,
is still not in its final shape. The fact that there are rival and not necessarily
equivalent candidates for the “right” definition is not in itself a problem, just as
there are many ways to define cohomology groups (singular, de Rham, Čech, . . . )
that are all valid and useful in various settings. But even if there were no general
definitions or theorems at all, there would still be plenty of perfectly well-defined
examples, either as pieces of actual cohomology groups (like the 4-dimensional piece
of the 204-dimensional H3(Qψ) defined as its invariant part under a group action)
or else by various specific constructions, like polylogarithmic motives or the motives
discussed in Examples 1 and 2 below. There are two main points to be made here.
The first is that, even though conjecturally there are no other motives than the
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Grothendieck ones (pieces of cohomology groups cut out by geometrically defined
correspondences), the realization of a given motive in this form is not unique or
in any sense canonical and it is extremely useful to think of it as an object “in
its own right” that can be studied and used independently of any such realization.
The second is that, even if certain expected properties are still conjectural and no
proof is in sight, they can nevertheless often be used to make concrete predictions
that can be tested numerically or proved by classical methods but that might be
hard to discover without the motivic way of thinking. We will give illustrations of
the first point in the two examples below (modular and hypergeometric motives)
and of the second in the three examples treated in the next section.

Example 1: Motives associated to modular forms. To any Hecke cusp
form f (= cusp form with multiplicative Fourier coefficients, as discussed in §4) of
weight k there is an associated 2-dimensional motive Mf of weight k−1 and Hodge
type (dimensions of the pieces of the Hodge decomposition) hk−1,0 = h0,k−1 = 1.
For k = 2 this follows from the work of Eichler and Shimura, who showed that L1 of
the modular curve X0(N) (the algebraic curve over Q whose complex version is the
compactification of H/Γ0(N)) for any N ≥ 1 is the product of the L-functions (36)
of Hecke forms of weight 2 and level N , with each factor L(f, s) being the L-series of
a 2-dimensional subspace ofH1(X0(N)/Q) defined as the intersection of the kernels
of Tp − ap(f) for all (or sufficiently many) primes p - N , where Tp denotes the pth
Hecke operator (a correspondence of degree (p+1, p+1) from X0(N) to itself) and
ap(f) the coefficient of qp in the Fourier development of f . For k > 2 the motivic
nature of f was proved by Deligne, who showed that for each p - N the coefficient
ap(f) coincides with the trace of the Frobenius Frp on a particular 2-dimensional
subspace (again cut out by the Tp − ap(f)) of the (k − 1)st cohomology group of
the associated (k − 1)-dimensional Kuga variety (a compactification of the total
space of the fibre bundle over H/Γ0(N) whose fibre over any point is the (k−2)nd
symmetric power of the corresponding elliptic curve). Ramanujan’s conjecture
|ap(∆)| ≤ p11/2 (or more generally |ap(f)| ≤ 2p(k−1)/2 for any Hecke cusp form
of weight k) followed by combining this result with Deligne’s later proof of the
“Riemann hypothesis” part of the Weil conjectures, and has therefore sometimes
been referred to by Serre as the “theorem of Deligne and Deligne.” An explicit
construction of Mf as a Grothendieck motive was given by Scholl [61].

The comparison of the Betti and de Rham Q-bases of the 2-dimensional complex
realization of Mf gives rise to periods ω±(f) ∈ R that are related to the values
of the L-series L(f, s) at s = 1, 2, . . . , k − 1, in accordance with Deligne’s general
conjecture on special motivic L-values. For example, these two periods for the
cusp form ∆ ∈ S12(SL(2,Z)), in a suitable normalization, have the numerical
values ω+ = 0.046346 · · · , ω− = 0.045751 · · · and are related to the special values

of the completed L-function L̂(∆, s) := (2π)−sΓ(s)L(∆, s) = L̂(∆, 12− s) by

s 6 6± 1 6± 2 6± 3 6± 4 6± 5

L̂(∆, s) ω+

30
ω−
28

ω+

24
ω−
18

2ω+

25
90ω−
691
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As a concrete example, the motive Mf for the form f = f2,11 defined in (32) is
given by H1 of the elliptic curve E11/Q with Weierstrass equation y2−y = x3−x2,
meaning that the number of solutions of this equation in F2

p equals p − ap(f) for
all p. But it is also equal to H1 of the modular curve X0(11)/Q by the Eichler-
Shimura theory, and the elliptic curves X0(11) and E11 are isogenous but not
isomorphic. Already this simple example illustrates the point made above that a
motive should be thought of “in its own right” and not as a specific subspace of
the cohomology of some specific variety, since there are typically many realizations
of the same motive and we do not necessarily know or need an explicit geometric
correspondence between them. A more striking example is given by the Hecke form

f = f4,10 = q + 2q2 − 8q3 + 4q4 + 5q5 − 16q6 + · · ·

of weight 4 and level 10. An old paper of Ron Livné [50] showed that the L-function
of f is a factor of the Hasse-Weil zeta function of the smooth 7-dimensional variety
W10 defined as the set of points (x1 : · · · : x10) in P9(C) satisfying

∑
xi =

∑
x3
i = 0

(more specifically: the number of points of W10 over Fp for p - 10 equals −p2ap(f)
plus a polynomial in p, so the Hasse-Weil zeta function is a multiplicative combi-
nation of shifts of ζ(s) and of L(f, s)), and a recent paper of Matthias Schütt [63]
shows that the same modular form f also occurs in the zeta-function of a certain
Calabi-Yau threefold Ŵ 3. In both cases the result is established purely arithmeti-
cally (by counting points modulo p for small p and using theorems of Faltings
and Serre to deduce that if the desired equality of Frobenius traces is true for
sufficiently many p, then it is always true), without exhibiting any explicit cor-

respondence between the algebraic variety W10 or Ŵ 3 and any variety having a
modular parametrization. There are many more examples in the literature, a par-
ticularly nice collection being given by the modularity theorem [32] (previously the
modularity conjecture) for “rigid” Calabi-Yau threefolds (those with b3 = 2) de-
fined over Q, of which Schütt’s example is a special case. We refer to Noriko Yui’s
survey article [72] and Christian Meyer’s book [52] for more detailed discussions.

Example 2: Hypergeometric motives. The starting point here is an old ob-
servation of Deuring. Consider the Legendre elliptic curve (14) for some rational
value of t and reduce modulo a prime p not dividing the numerator or denominator
of t or 1− t. Then from (41) we find that the integer ap(Et) = p+ 1−#Et(Fp) is
given modulo p by

ap(Et) = −
∑

x (mod p)

(
x(x− 1)(x− t)

p

)
≡ −

∑
x (mod p)

(
x(x− 1)(x− t)

)(p−1)/2

≡ Coefficient of xp−1 in
(
x(x− 1)(x− t)

)(p−1)/2
(mod p)

because the sum of xm over x ∈ Z/pZ equals −1 for m = p − 1 and 0 for other

values of m between p−1
2 and 3(p−1)

2 . Calculating by the binomial theorem, we find

(−1)(p−1)/2 ap(Et) ≡
(p−1)/2∑
n=0

(
(p− 1)/2

n

)2

tn ≡
(p−1)/2∑
n=0

(
−1/2

n

)2

tn (mod p) ,
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which (as was later observed by Igusa) is just a truncated version of the hypergeo-
metric series in (16) giving the period function for the Legendre family as t varies.
This observation led to a vast development, begun by Dwork, continued by Katz,
and now being systematically developed by Villegas and his collaborators [58]. To
any pair a = (a1, . . . , ar), b = (b1, . . . , br) of tuples of rational numbers of the
same length r and to each rational number t one associates an r-dimensional mo-
tive M(a,b; t) whose complex realization in the case br = 1 has periods coming
from the hypergeometric function (21) with r = s + 1 and whose L-function is
defined by an Euler product whose Euler factors are given by a beautiful explicit
formula in terms of Gauss and Jacobi sums at the “unramified” primes (those not
dividing the denominator of any ai or bi or of t, 1

t or of 1
1−t ) that can also be

written in terms of truncated p-adic hypergeometric series. (There is also a much
more complicated recipe, discussed in detail in [58], for the Euler factors at the
ramified primes.) These motives are well-defined objects and can be realized geo-
metrically as part of the cohomology of some variety, as was shown by Katz [44]
(and more explicitly in [9], where varieties are constructed whose number of points
is given by the p-adic hypergeometric function when we are in the situation (22),
when M(a,b; t) is defined over Q). But the real point is that these are intrinsi-
cally defined motives, whose complex and `-adic parts can be written down directly
in terms of the defining data (a,b, t) without needing the geometric realizations
(which are neither canonical nor particularly natural).

The prototypical and motivating example of a hypergeometric motive is the
one associated to a = ( 1

5 ,
2
5 ,

3
5 ,

4
5 ) and b = (1, 1, 1, 1), which is the motive given by

the same 4-dimensional piece of the 204-dimensional third cohomology group of
the Dwork quintic Qψ (with t = (5/ψ)5) that led to the Picard-Fuchs differential

equation and period function F (a; b; t) =
∑ (5n)!

55nn!5 t
n that we found in Exam-

ple 2 of §3. A detailed discussion of this case and of the way that one can obtain
the L-function by first counting points on Qψ and then subtracting the contribu-
tions from the unwanted 200-dimensional part of the cohomology, is given in the
paper [15] by Candelas, de la Ossa, and Villegas, where an explicit expression for
the number of points in terms of p-adic gamma functions is derived (penultimate
formula on p. 46 of [15]. To quote Candelas: “The fact that you can count the
numbers of Fp-rational points using periods is very interesting.” Here and in [58]
the L-functions are calculated, and their analytic continuation and functional equa-
tion (which are in general still conjectural) verified numerically, for many rational
values of t. These degree 4 L-functions should have an automorphic meaning as
the spinor L-functions of certain Siegel modular forms of degree 2 and weight 3.

7. Examples

In this section we will describe in detail three examples, all of which I heard
about from Golyshev, where a motivic argument suggested a concrete mathemat-
ical statement that could then be checked numerically and/or theoretically.
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Example 1. Apéry numbers of fractional index. Our first example has to
do with the interpolation to non-integral values of n of the Apéry numbers An.
Golyshev pointed out that Apéry’s hypergeometric closed formula (5), slightly
rewritten, makes sense also for n 6∈ Z and, on the basis of motivic considerations
that will be indicated below, predicted that the real number A−1/2 should be a
simple multiple of a special value of the L-series of the modular form f4,8 defined
in equation (34). This turned out to be true (Proposition 2 below), and in fact we
learned subsequently from Wadim Zudilin that an equivalent result (but as a purely
hypergeometric formula for the L-value, not from the point of view of interpolating
the An) had also just been proven by Rogers, Wan and Zucker (eq. (32) of [59],
where many other examples of similar type are given). However, the main point
here is not the proof of the identity, which is a nice illustration of the connection
between modular forms and period integrals but is not particularly difficult, but
rather the power of the way of thought that made it possible to predict that such
an identity had to hold in the first place.

We define a number Ax for any x ∈ C by the absolutely convergent series

Ax =

∞∑
k=0

(
x

k

)2(
x+ k

k

)2

. (43)

For x = n ∈ Z≥0 this series terminates at k = n and agrees with Apéry’s for-
mula (5) for the Apéry numbers {An} = {1, 5, 73, . . . }, so (43) gives a natural
interpolation of these numbers to arbitrary complex arguments. A small surprise
here was that this interpolation does not satisfy the original recursion (1) of the
Apéry numbers, but only a modified version of it:

Proposition 1. The sum (43) defines a holomorphic function which for all x ∈ C
satisfies the symmetry property Ax = A−x−1 and the functional equation

(x+ 1)3Ax+1 − (34x3 + 51x2 + 27x+ 5)Ax + x3Ax−1 =
8

π2
(2x+ 1) sin2 πx .

This will be proved below. (I mention here that Golyshev and I have now
found a way different from (43) to interpolate {An} to complex values that satisfies
the original recursion (1), based on the method of Frobenius limits that will be
discussed in Section 9. This will be presented in a later paper.)

Now we consider A−1/2. The series (43) converges too slowly to be used directly,
but by convergence acceleration techniques one can calculate the value

A−1/2 = 1.11863638716418706834961925752564091679485755152936119148 · · ·

and verify numerically that it satisfies the statement of the next proposition.

Proposition 2. The value of the function An at its point of symmetry is given by

A−1/2 =
16

π2
L(f4,8, 2) , (44)

where f4,8(τ) is the normalized Hecke eigenform in S4(Γ0(8)) defined in (34).
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This too will be proved below, but first we explain what lay behind Golyshev’s
prediction that an identity of this sort was to be expected. At first sight it looks
very strange, since the modular interpretation of the numbers An that we have
seen so far has to do with the modular form f of weight 2 on Γ0(6) occurring
in (39), while (44) involves the completely different modular form f4,8 of weight 4
on Γ0(8). The connection between them occurs through the congruence

A(p−1)/2 ≡ γp (mod p) (p > 2 prime) (45)

proved by Beukers in [7], where γn denotes the coefficient of qn in f4,8(τ). In an
earlier paper [6] he had showed that the numbers Ampr−1 have a p-adic limit as
r → ∞ for any prime p and any positive integer m, and formal group methods
that Stienstra and he developed in [65] give a kind of fusion of these two results,
namely that the p-adic limit of A(mpr−1)/2/A(mpr−1−1)/2 exists for any odd prime p
and odd positive integer m and that its value up is independent of m and related
to γp by γp = up + p3/up. All of these results show that there is a deep connection
between the Apéry numbers An and the L-series of f4,8 as defined in (36) (here
with χ the trivial Dirichlet character modulo 2). Already in [7], in connection with
the congruence (45), Beukers had written “Although we do not know all the details
yet, this congruence must arise from the interplay between the numbers An and the
ζ-function of a certain algebraic threefold.” In fact the connection, as suggested
by the factor 1

2 in the index of An in (45), is with the double covering W of the
Beukers-Peters family of K3 surfaces given by w2 = L(x, y, z), where L(x, y, z) is
the Laurent polynomial (10) defining this family, as we can test numerically by
verifying the formula∑

x, y, z ∈ F×
p

(
L(x, y, z)

p

)
= −p − γp (p > 2 prime) ,

in which the left-hand side (up to an additive term (p − 1)3) gives the number

of points (x, y, z, w) ∈ F×p
3 × Fp lying on W . This point-counting identity says

that the L-function of the cusp form f4,8 is part of the Hasse-Weil zeta function
of W , so if one believes the motivic philosophy then that means that the Galois
representation, and thus the motive, of f4,8 is contained in that of W and hence
(according to the Tate conjecture) that there must be an algebraic correspondence
over Q between the Kuga variety over X0(8) in which the former motive lives and
the variety W . Of course the Tate conjecture is not known in this generality, but
the existence of the predicted correspondence can in principle always be verified by
an actual construction (and in the case under consideration is presumably given
by a birational map found by van Straten and mentioned on p. 170 of [52]), and
even in cases where this cannot be carried out we can still formulate and test the
identity of periods that it implies, which here is precisely (44)

We end the subsection by giving proofs of the two propositions.

Proof of Proposition 1. Denote the kth summand in (43) by αk(x). The asymp-

totic formula
(
a
k

)
∼ (−1)k

Γ(−a)k
−a−1 (k → ∞) and the duplication formula of the
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gamma function give αk(x) ∼ sin2(πx)/(πk)2 = O(k−2) as k → ∞, so the
series (43) converges absolutely and locally uniformly and hence defines a holo-
morphic function in the entire complex plane. The symmetry under x 7→ −x−1 is
obvious since each term in (43) has this property. Finally, to prove the recursion,
we observe that by induction on K we have

K∑
k=0

((
x+ 1

)3
αk(x+ 1) −

(
34x3 + 51x2 + 27x+ 5

)
αk(x) + x3αk(x− 1)

)
= 4

(
K(2K + 1)(2x+ 1)− (2x+ 1)3

)
αK(x) ,

and the limiting value of this as K → ∞ has the value claimed because of the
asymptotic formula for αK(x). (This calculation is just a rewriting of the standard
proof by the method of telescoping series of Apéry’s original recursion formula.)

Proof of Proposition 2. Define a functionB(t) for |t| ≤ 1 byB(t) =
∑∞
k=0

(−1/2
k

)2
tk,

the hypergeometric series occurring in the period integral (16). Then we have

A−1/2 =

∞∑
k=0

(
−1/2

k

)4

=
1

2πi

∮
|t|=1

B(t)B(1/t)
dt

t
.

If we set t = λ(τ) with τ ∈ H, then from the modular parametrization (37) we
obtain B(t) = ϑ3(τ)2. Using the modular transformation properties

1

λ(τ)
= λ

( τ

1− τ

)
, ϑ3

( τ

1− τ

)2

= (1− τ)ϑ2(τ)2

and the modular form identity

1

2πi
ϑ3(τ)2 ϑ2(τ)2 λ

′(τ)

λ(τ)
= 2 f(τ/4) ,

with f = f4,8, we then find the integral representation

A−1/2 = 2

∫ 2

0

(1− τ) f(τ/4) dτ ,

where the integral is taken along the hyperbolic geodesic from 0 to 2 (= Euclidean
semicircle with center 1 and radius 1), which is mapped by λ isomorphically to
the unit circle. Since f is a cusp form, we can replace this path of integration by
the difference of the two vertical lines from 0 to i∞ and from 2 to i∞, and since
f(τ + 1

2 ) = −f(τ) (because f has a q-expansion containing only odd powers of q),
this gives finally

A−1/2 = 2
(∫ ∞

0

−
∫ ∞

2

)
(1− τ) f(τ/4) dτ = −4

∫ ∞
0

τ f(τ/4) dτ ,

which is equivalent to (44) by the standard integral representation of L(f, s).
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Example 2. Periods of the mirror quintic family. Our next example, again
involving the periods of a cusp form of weight 4, is connected with the Dwork
quintic Qψ studied in Example 2 of Section 3. There we gave the first calcula-
tion (20) of an explicit period on Qψ, following [14], finding that the integral of the
algebraic differential form (19) over an appropriate 3-cycle equals (2π)3Φ(ψ−5),

where Φ(t) denotes the hypergeometric function
∑∞
n=0

(5n)!
n!5 tn . This means that

(2πi)3Φ(t) is part of the Z-lattice in the 4-dimensional solution space of the cor-
responding hypergeometric differential equation obtained by integrating Ω over
a basis of H3(Qψ;Z), as discussed in Section 2. A natural question, here or for
any other differential equation with regular singular points, is to give the complete
transition matrices between the basis of the solution space obtained by local expan-
sions at each singular point and an integral basis of this lattice. In the case at hand
there are three singular points t = 0 (“point of maximum unipotent monodromy”),
t = ∞ (“orbifold point”), and t = 5−5 (“conifold point”). At t = 0 we have the
“Frobenius basis” {Φi(t)}0≤i≤3 (cf. (52) below), where each Φi(t) is a polynomial
of degree i in log t with coefficients in Q[[t]] and with leading term Φ(t)(log t)i/i!,
and at t = ∞ we have the basis given by choosing any four of the five functions∑

5-n
Γ(n)5

Γ(5n) ζ
nt−n/5 (ζ5 = 1), which sum to 0. Candelas et al. gave explicit formulas

for the 4× 4 transition matrices between each of these and the integral basis, and
a generalization applying to all hypergeometric differential equations was given by
Golyshev and Mellit in [30]. But for the conifold point only seven of the entries of
the corresponding transition matrix (namely, those of its last row and column in
appropriate bases) are known in closed form, and the remaining nine only numer-
ically to high precision (calculations by Albrecht Klemm, Emanuel Scheidegger,
and myself). Golyshev told us that among the remaining entries of this matrix
one should find both periods of the cuspidal eigenform f4,25 of weight 4 and level 25
given in (35). We checked this prediction, and also our own further prediction that
the “quasiperiods” as well as the periods of f4,25 should appear in the transition
matrix that we had already calculated numerically, and indeed simple rational
multiples or rational linear combinations of all four numbers appeared, at least
numerically to very high precision [48].

Where did these predictions come from? In the final example of the last section
we discussed how point counting on the Dwork quintic Qψ for generic ψ leads to a
polynomial P (T ) = P (M( 1

5 ,
2
5 ,

3
5 ,

4
5 ; 1, 1, 1, 1; (5/ψ)5)/Fp, T ) of degree 4 for every

good prime p. At the singular point ψ = 5, the degree of this polynomial drops
by 1 and it factors as

(
1 −

(
p
5

)
pT
)(

1 − cpT + p3T 2
)
, where cp is the coefficient

of qp in the cusp form f4,25, as was shown 30 years ago by Chad Schoen [61] by
computing the values in question for sufficiently many primes and then invoking the
results of Faltings and Serre to deduce their equality in general. This says that the
2-dimensional motive associated to f4,25 is contained in the third cohomology group
of Q5 (more precisely, that the corresponding `-adic Galois representation occurs
in H3(Q5;Q`)). Hence, if one believes the Tate conjecture, there should be an
actual correspondence, defined over Q, between the associated geometric objects,
and this in turn implies that the two periods of f4,25 must show up in the period
matrix of the Dwork pencil at the point ψ = 5 as claimed. A similar degeneration
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at the singular fiber of the generic fourth degree point-counting polynomial into
a linear factor and a quadratic factor associated to a modular form of weight 4
has been found by Villegas [69] for all 14 hypergeometric families of Calabi-Yau
threefold, e.g., the L-series of the cusp form (33) occurs in the L-series of the
motive M(( 1

4 ,
1
3 ,

2
3 ,

3
4 ); (1, 1, 1, 1); 1). One can then predict that the periods and

quasiperiods of these cusp forms will appear in the transition matrices between
the relevant bases of the spaces of solutions of the corresponding hypergeometric
differential equations.

Example 3. Hypergeometric algebraic units. The last example is of a some-
what different nature. In Example 4 of Section 3 we discussed hypergeometric
functions F (t) of the form (22) that are algebraic, giving Villegas’s criterion for
this and also the examples (23) and (24). Here Golyshev predicted, based on an
argument about extensions of motives that I will not reproduce, that the power

series Q(t) = exp
(∫ F (t)

t dt
)

= t exp
(∑

n>0 an
tn

n

)
, where an denotes the coeffi-

cient of tn in F (t), must always be an algebraic function in the field Q(t, F (t)),
and in fact always an algebraic unit over Z[1/t]. (This implies in particular that
the value of Q(t) if one substitutes for t the reciprocal of any integer bigger than
the inverse of the radius of convergence is an algebraic unit in Q.) Specifically, he
asked me whether I could prove this for the special case of the binomial series (23),
and this turned out not to be too hard, as shown in Proposition 3 and its proof
below. (Strangely enough, precisely this question had appeared quite recently in
various contexts in physics, e.g. in [19] and [25], as I was informed by Yan Soibel-
man.) I also checked Golyshev’s prediction for the first two power series in (24)
(Proposition 4 below), but in view of the huge degree I was not able to do the same
for the third example. Spencer Bloch sketched to me a proof of the algebraicity
of Q(t) whenever the curve defined by the algebraic hypergeometric function F (t)
is rational (as happens for BM,2(t) for all M and also for F(6,1),(3,2,2)(t); see below),
but as far as I know there is no proof yet for the general case.

Proposition 3. The function defined for |t| < 1 by the power series expansion

QM,N (t) = t exp

( ∞∑
n=1

(
Mn

Nn

)
tn

n

)
∈ Q[[t]]

is algebraic for all M > N > 0, and is a unit over Z[1/t].

Proof. For t small, the polynomial Pt(u) = t(1 + u)M − uN of degree M has N
“small” roots u1(t), . . . , uN (t) near the circle |u| = |t|1/N and K := M −N “large”
roots uN+1(t), . . . , uM (t) near the circle |u| = |t|−1/K . The function (23) is then
given explicitly as an algebraic function of t by

BM,N (t) =

N∑
i=1

1 + ui(t)

N − Kui(t)
, (46)
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as one can see by using the Cauchy residue theorem twice to write

BM,N (t) =

∞∑
n=0

(
1

2πi

∫
|u|=1

(1 + u)Mn du

uNn+1

)
tn

= − 1

2πi

∫
|u|=1

uN−1 du

Pt(u)
= −

N∑
i=1

ui(t)
N−1

P ′t (ui(t))
.

Differentiating the equation Pt(ui(t)) = 0 with respect to t, we find that the
ith summand in (46) equals tu′i(t)/ui(t), and then dividing by t, integrating and
exponentiating we get the formula

QM,N (t) = (−1)N−1
N∏
i=1

ui(t) (47)

for QM,N (t) in terms of the roots ui(t). This proves the proposition since the
polynomial t−1Pt(u) is monic of degree M over Z[1/t] and therefore each ui(t) is
an algebraic unit over this ring.

As an example of the proposition, the function Q5,2(t) is a root of the equation
(Q+ 1)10t2 − Q(Q+ 1)5(Q2− 5Q+ 1)t+Q7 = 0, which has degree 10 =

(
5
2

)
in Q.

In general the degree of the algebraic function BM,N (t) (or QM,N (t)) over Q(t)

equals
(
M
N

)
for M and N coprime, because its conjugates are given by replac-

ing u1, . . . , uN in (46) (or (47)) by any subset of {u1, . . . , uM} of cardinality N ,

while if (M,N) = d > 1 the degree equals
(
M/d
N/d

)d
. Another remark is that the

algebraic curve defined by the algebraic functions BM,N (t) or QM,N (t) has a ra-
tional parametrization, and hence has genus 0, if N = 1 or N = 2. Indeed,

for N = 1 equation (46) simplifies to BM,1(t) = 1+u(t)
1−Ku(t) , where u(t) is the solution

of u = t(1 + u)M in t + t2Q[[t]] (this formula also follows from the Lagrange in-
version formula) and equation (47) becomes simply QM,1(t) = u, so that we have
the rational parametrization t = u

(1+u)N
, BM,1(t) = 1+u

1−Ku , QM,1(t) = u. If N = 2

we denote by u = u1(t) and v = u2(t) the solutions of t = u2

(1+u)M
= v2

(1+v)M
with

u ∼
√
t, v ∼ −

√
t and set 1+u

1+v = x2. Then u
v = xM and we can solve to get

u =
xM−2 − xM

1− xM−2
, v =

1− x2

x2 − xM
, t =

x2M−4(1− x2)2(1− xM−2)M−2

(1− xM )M
,

BM,2(t) =
1 + xM

2(1 + xM ) +MxM−2(1− x2)
+

1 + xM

2(1 + xM )−M(1− x2)
.

When we divide this by t, integrate, and exponentiate, there is a huge cancellation
and the formula for QM,2(t) is much simpler, with two surprising factorizations:

QM,2(t) =
xM−4(1− x2)2

(1 + xM−2)2
, 1 + QM,2(t) =

(1 + xM−4)(1 + xM )

(1 + xM−2)2
.

Finally, we verify Golyshev’s prediction for the first two series in (24).
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Proposition 4. Each of the two power series

t exp

( ∞∑
n=1

(6n)!n!

(3n)! (2n)!2
tn

n

)
, t exp

( ∞∑
n=1

(10n)!n!

(5n)! (4n)! (2n)!

tn

n

)
(48)

is algebraic, and is a unit over the ring Z[1/t].

Proof. The proof is purely computational, using the first terms of each power series
to guess the algebraic equation and then verifying that it satisfies the correct differ-
ential equation, so we content ourselves with describing the structure of the equa-
tions of the hypergeometric series F (t) = Fc,d(t) and the corresponding unit Q(t)
in each case. The degrees of F (t) and Q(t) over Q(t) are 6 and 30, as already men-
tioned in §3, but in each case one of the conjugates of F is −F and the functions
F (t)2 and Q(t) + Q(t)−1 therefore have degree only 3 and 15, respectively. For
instance, in the first case the equation satisfied by G = (1 − 108t)F(6,1),(3,2,2)(t)

2

over Q(t) is G(4G − 3)2 = (1 − 216t)2 and that of H = Q(t) + 2 + Q(t)−1 is
H3t2 − (H2 − 27H + 108)t + 1 = 0. In this case the curve has genus 0 and

can be given parametrically by Q
(u(1−u)2(3−u)2(4−u)

432

)
= u(1−12u)

(1−3u)(1−4u) . In the sec-

ond case the equation satisfied by H = Q + 2 + Q−1 over Q(t) has the form
t6H15− t5H14 +432t5H13− (14500t−184)t4H12 + · · ·+64t(3125t−9)2 = 0, where
the intermediate coefficients are complicated and have been omitted.

8. Differential equations and mirror symmetry

The usual description of mirror symmetry involves two Calabi-Yau varieties (or
more properly families of Calabi-Yau varieties) and relates the Gromov-Witten
invariants (“A-side”) of one of them to the Picard-Fuchs equation (“B-side”) of
the other. A particularly clean class of examples, which is the only one we will
talk about in this paper, starts with the family of Calabi-Yau varieties arising
as anticanonical divisors of a Fano manifold of arbitrary dimension. In this sec-
tion we will discuss how this works, starting with the definition and examples of
Fano manifolds and then explaining the conjectured “mirror” correspondence and
describing a large number of examples for which it is known. In a few words,
Gromov-Witten theory associates to any complex symplectic manifold a collection
of invariants defined by counting holomorphic maps of curves into the variety with
prescribed homological data (like the genus and number of marked points on the
curves, the homology class in the target variety to which it maps, and constraints
on the images of the marked points). The genus 0 Gromov-Witten invariants are
used to construct a “quantum cohomology ring” that is a deformation of the usual
cohomology ring of the variety, and from this structure in turn one constructs an
explicit linear differential equation of finite order called the quantum differential
equation. The mirror correspondence is then characterized by the statement that
the quantum differential equation of the Fano variety is the Laplace transform of
the Picard-Fuchs differential equation of its mirror variety, meaning in particular
that the unique power series solution of the quantum differential equation (the
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so-called “quantum period”) is given by
∑
Anz

n/n!, where
∑
Ant

n is the power
series solution of the Picard-Fuchs equation on the mirror side. We will describe
this correspondence in detail for the case of the 17 rank one Fano 3-folds, for one
of which the numbers An are precisely the Apéry numbers with which we began
this article.

We will give only brief descriptions of Gromov-Witten theory, mirror symmetry,
quantum cohomology and quantum differential equations, referring the reader to
the expositions in [46, 20, 55, 28, 51] (in roughly increasing order of difficulty).

Fano manifolds and their mirrors. We recall that a Fano n-fold is by definition
a smooth n-dimensional complex manifold F whose anticanonical class −K is
ample. (For a topologist this would be expressed as the positivity of the first
Chern class c1 = c1(F ), since K = −c1.) Examples in all dimensions are given
by complex projective spaces (or more generally Grassmannians and flag varieties)
and their products. The only Fano curve is the projective line P1(C). There are
precisely ten Fano surfaces, otherwise known as del Pezzo surfaces, namely P1×P1

and dPn (the blow-up of the projective plane P2 in 9−n points in general position)
for 1 ≤ n ≤ 9. Notice that these are actually families of surfaces, since dPn for
n ≤ 4 has a positive-dimensional moduli space corresponding to the positions of
the points in the plane that are blown up. In dimension 3 there are exactly 105
Fano manifolds up to deformation, as was proved in the early 1980’s by Mori and
Mukai by a very subtle analysis (and as an extremely impressive illustration of the
power of Mori’s theory of extremal rays). The Fano 3-folds F with Picard rank ρ
(which here is equal to the second Betti number dimH2(F,Q)) equal to 1 had been
classified a few years earlier by Iskovskikh, who showed that there were precisely
17 of them (all but one of which had already been known to Fano). This will be
reviewed below. In dimension 4 thousands of examples are known but there is no
complete classification.

If F is a Fano n-fold, then the adjunction formula implies that its anticanonical
divisors (divisors whose homology class is the Poincaré dual of −K) are Calabi-Yau
manifolds. According to the mirror symmetry philosophy—the experts assure me
that it would be premature to call it a well-defined theory—there should be a mirror
dual familyX = {Xt}t∈S of Calabi-Yau (n−1)-folds whose associated Picard-Fuchs
differential equation is the Laplace transform of the quantum differential equation
of F , which we will describe in a moment. In the case n = 3 in which we will be
most interested, this will be a family of K3 surfaces of Picard number 20−ρ, where
ρ is the Picard number of F , which can range from 1 to 6. The dimension of the
moduli space of anticanonical divisors in F is also 20 − ρ, while the dimension of
the base space S of the mirror family is equal to ρ. For instance, the moduli space
of quartic hypersurfaces in P3 has dimension

(
7
3

)
− 42 = 19, and the mirror dual

is the quartic analogue in P3 of the quintic pencil (18) in P4 studied in Section 3.
In the ρ = 1 cases that we will be especially interested in, the base space S of
the mirror family is always P1(C) (or more correctly, since the periods here always
have a modular parametrization, a moduli curve of genus 0 that has been identified
with P1(C) by choosing a Hauptmodul).



Arithmetic and Topology of Differential Equations 43

We next have to describe the mirror of F , which should be a family of (n− 1)-
dimensional Calabi-Yau manifolds. In our case this family will always be given
by a Landau-Ginzburg model, i.e., there is a Laurent polynomial L in n variables
and the Calabi-Yau manifolds are the fibres of the map L : C∗n → C. The
relation between F and its mirror family can be described at many levels, e.g.,
as an isomorphism between the derived category of coherent sheaves on F and an
appropriate Fukaya category on the Landau-Ginzburg side. We will use a more
elementary description in terms of the differential equations associated to both
objects. On the Fano side this is the quantum differential equation, which we now
recall, and on the mirror side it is the Picard-Fuchs equation that we have been
studying throughout the paper.

The quantum differential equation associated to F is defined in terms of its
(“small”) quantum cohomology ring. We will not give the complete definitions,
since they play no role for us; a short description in the rank 1 case is given in
Section 4 of [31] and more detailed expositions can be found in [16] and in the
references listed at the beginning of the section. Very briefly and very roughly,
the quantum cohomology ring is the vector space H∗(F ;Q)⊗Q[z] (at least in the
cases with ρ = 1; if ρ > 1 then one has to take z to be a multi-variable of length ρ)
equipped with an associative multiplication ? extending the usual cup product (the
specialization to z = 0) that is defined in terms of the genus 0 Gromov-Witten
invariants of F (the counting functions of rational curves in F intersecting divisors
with given homology classes and having a given image in H2(F ;Z)). This data
can be encoded in the form of a first-order vector-valued differential equation on
H∗(F ;Q)[z] or in terms of an ordinary differential equation with respect to z. The
quantum period GF (z), which is the unique solution in Q[[z]] of this differential
equation, is then given by

∑∞
n=0 anz

n, where an can be thought of as some kind
of “volume” of the moduli space M = M0,1,n(F ) of morphisms f of anticanonical
degree n from a genus 0 curve with one marked point x0 to F . (Somewhat more
precisely, an =

∫
M
ψn−2ev∗([pt]), where ψ is the first Chern class of the line bundle

on M whose fibre at [f ] is given by the cotangent bundle of the curve at f(x0)
and ev : M → F is the evaluation map f 7→ f(x0).) The duality between the
Fano variety F and its mirror L : C∗n → C is then summarized in the equality
an = An/n!, where An is the constant term of Ln. Since the generating series∑
Ant

n, as we have seen, is then a period of the family {Xt = L−1(t)}t and
is a solution of the associated Picard-Fuchs differential equation, the relationship
between the two sides can also be expressed by saying that the quantum differential
equation is the Laplace transform of the Picard-Fuchs differential equation.

In [29] Golyshev made a precise conjecture giving the mirror duals for the 17
Fano 3-folds of the Iskovskikh classification, and all cases of this were proved in
that paper and in the subsequent article [57] by Przyjalkowski. We will describe
these results in the next subsection. The corresponding results for the remaining
88 Fano 3-folds of the Mori-Mukai classification were conjectured by Tom Coates,
Alessio Corti, Sergey Galkin and Alexander Kasprzyk together with Golyshev and
proved in all cases in their (physically and mathematically) huge article [16], which
gives new explicit descriptions of the Fano varieties as well as a Laurent polynomial
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defining the mirror family in every case. For example, opening [16] at random on
page 220, one finds that the Fano variety F = MM3–19 (= the 19th of the Fano
3-folds with Picard number ρ = 3 in the Mori-Mukai classification) has quantum
period given by

GF (z) = e−2z
∑

m≥`≥0

(
2m

m

)
zm+2`

`!3(m− `)!
.

If we write this as
∑
Anz

n/n!, where (A0, A1, . . . ) = (1, 0, 2, 12, 54, 240, 1280, . . . ),
then An is the integer defined by the constant-term formula (11) with

L = L(x, y, z) = xz + x + y + z +
1

x
+

1

yz
+

1

xyz
,

and the mirror family of F is given by the Landau-Ginzburg model t L(x, y, z) = 1.
Similar results are given for 738 Fano 4-folds in [17].

The 17 rank one Fano 3-folds and their mirrors. As already said above,
there are exactly 17 families of Fano 3-folds with Picard number ρ = 1, as classified
by Iskovskikh in 1977–78. The families are labeled by two numerical invariants,
the index d = [H2(F ;Z) : Z c1], where c1 = c1(F ) ∈ H2(F ;Z) is the first Chern
class of the tangent bundle of F , and the level N , defined as 〈c31, [F ]〉/2d2, which
is always a positive integer. The 17 possible pairs (d,N) are given by the table

d 1 2 3 4

N 1, . . . , 9, 11 1, . . . , 5 3 2

Each of the corresponding Fano varieties has a name and an algebraic description.
For instance, the projective space P3 corresponds to the last entry (d,N) = (4, 2)
of the table, while the Fano 3-fold corresponding to (d,N) = (1, 6), which is the
one related to the Apéry numbers, is called V12 and is defined by starting from
the Fano 10-fold G(10, 5) (orthogonal Grassmannian of 5-dimensional isotropic
subspaces in C10) and then taking generic hyperplane sections 7 times in a row to
reduce the dimension to 3.

We now give the description of the mirrors of these varieties as found by Goly-
shev, though in a somewhat modified form taken from [31]. This description is
completely modular. For every integer N ≥ 1 we have the congruence group Γ0(N)
and corresponding modular curve X0(N) = XΓ0(N), as described in Section 4. This
curve has an interpretation as the moduli space of ordered pairs (E,E′) of elliptic
curves together with a cyclic isogeny of degree N from E to E′. (In terms of τ ∈ H
these are given by E = C/(Zτ + Z) and E′ = C/(NZτ + Z), with the obvious
map.) There is an involution WN on X0(N) corresponding to interchanging E
and E′, given in terms of the parameter τ by τ 7→ −1/Nτ (Fricke involution), so
we can consider the quotient X∗0 (N) = X0(N)/WN , which is the moduli space of
unordered pairs of cyclically N -isogenous elliptic curves. To the point of X∗0 (N)
corresponding to such a pair {E,E′} we can associate the Kummer surface obtained
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by dividing the abelian surface E × E′ by the involution (u, u′) 7→ (−u,−u′) and
blowing up the 16 resulting singularities. These Kummer surfaces generically have
Picard number 19 as desired, because there are 3 linearly independent algebraic
cycles in E × E′ given by the classes of E and E′ and the graph of the isogeny
between them, and 16 further linearly independent cycles on the Kummer surface
coming from the blow-ups of the singularities (exceptional curves).

Next we must single out special values of N , as well as of an auxiliary integer d
corresponding to a covering of X∗0 (N). For every N > 1, there is a modular
form FN (τ) defined as the unique Eisenstein series of weight 2 that equals 1 at ∞
(i.e., has a q-expansion beginning 1 + O(q)), is anti-invariant under WN (meaning
that FN (−1/Nτ) = −Nτ2FN (τ)), and vanishes at all of the cusps of X0(N) other
than 0 and ∞. For N = 1 this definition makes no sense, since all modular forms
of level 1 are invariant under W1. In this case we set F1 =

√
E4 (which is not quite

a modular form, or even a well-defined function in H, but works well anyway;
cf. Example 2 of Section 5). We then consider the cases when X∗0 (N) has genus 0
and a Hauptmodul tN for Γ∗0(N) is given by the formula

tN (τ) =

(
η(τ)2 η(Nτ)2

FN (τ)

) 12
N+1

,

the strange-looking exponent 12
N+1 being forced by the requirement that tN (τ) has

an expansion at ∞ beginning q + O(q2). It turns out that there are precisely ten
values of N for which this happens, namely N = 1, . . . , 9 and 11, and precisely
17 pairs (d,N) for which also the Hauptmodul tN (τ) has a dth root, these being
exactly the 17 pairs of the Iskovskikh classification. The result conjectured by
Golyshev and proved by him and Przyjalkowski is that the corresponding families
of K3 surfaces, with periods ΦN,d(t) ∈ Q[[t]] defined by the modular parametriza-
tion FN (τ) = ΦN,d(tN (τ)1/d), are the mirror duals in the sense explained above of
the Fano 3-folds of the Iskovskikh classification. Each of the 17 power series ΦN,d(t)
has Taylor coefficients An given by the formula (11) for a suitable Laurent poly-
nomial L, and the differential equations that they satisfy are the ones that were
discussed in Examples 3 and 19–34 of Section 5.

9. Differential equations and topology

In this final main section of the paper we describe a conjecture due to Galkin,
Golyshev and Iritani relating the asymptotic behavior at infinity of the solutions
of the quantum differential equation of a Fano manifold with the so-called Gamma
class of this manifold. Its subject matter is thus a direct continuation of that of
Section 8, but we have put it into a section of its own because there is no direct
relation to mirror symmetry (both sides of the conjecture involve the Fano variety,
not its mirror manifold) and also because it makes a more direct connection with
the word “topology” in the title of the paper. Specifically, the Gamma class is a
universally defined multiplicative characteristic class in the sense of Hirzebruch, so
that this section also provides another link between our topic and his work.
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The Gamma class. We begin by recalling Hirzebruch’s definition of multiplica-
tive characteristic classes [36], one of his most beautiful and fruitful discoveries.
Let f(x) be a power series with constant term 1 and coefficients in a ring K (say
Q or R). Then for any complex vector bundle E over a base space X we define a
characteristic class χf (E) ∈ H∗(X;K) by the formula

χf (E) =
∏
j

f(αj) , (49)

where the αj are formal degree 2 cohomology classes such that the total Chern
class c(E) ∈ H∗(K) factors as

∏
(1 +αj). The αj can be interpreted topologically

to some extent by finding a pullback of E under some map X ′ → X that splits as
a sum of line bundles and thinking of the pull-backs of the αj as the first Chern
classes of these, but this is not necessary: if we simply multiply out the power
series on the right-hand side of (49), then the degree 2d part of the expansion
obtained is a symmetric homogeneous polynomial of degree d in the α’s and hence
a weighted homogeneous polynomial in their elementary symmetric polynomials
ci(E), with coefficients in K, and therefore belongs to H2d(X;K). If X is a
smooth complex manifold and we take for E its tangent bundle, we write simply
χf (X) instead of χf (T (X)). Hirzebruch showed that one can obtain important
topological invariants of X by evaluating χf (X) on the fundamental class of X
for suitable power series f (genera) or by multiplying it by the Chern character of
some bundle over X and then evaluating on [X] (as in the Hirzebruch–Riemann–
Roch theorem). The most important examples here were those associated to the
three power series f(x) = x

tanh x , giving the Hirzebruch L-class and the signature

theorem, f(x) = x
1−e−x , giving the Todd genus, and f(x) = x/2

sinh(x/2) , giving the

Â-genus. Note that the last two of these power series differ only by a factor ex/2,
so that the corresponding characteristic classes differ only by a factor ec1(E)/2.

If one now looks at the last of the above power series and remembers Euler’s
formula πx

sinπx = Γ(1 +x)Γ(1−x), then it is natural to introduce the Gamma class

Γ̂X ∈ H∗(X;R) associated to the power series f(x) = Γ(1 + x). Euler’s formula

then implies that the Â-class of X (or its Todd class, up to a factor ec1(X)/2) factors

as the product of Γ̂X(−1) and its complex conjugate, where the “jth Tate twist”
ξ(j) of a cohomology class ξ ∈ Hev(X) is defined by multiplying its degree d part
by (2πi)jd for all d. Thus we can think of the gamma class of X as some sort
of a square-root of its Todd class, and the authors of the paper [26] in which the
Gamma conjecture is formulated describe the conjecture as a kind of square-root
of the index theorem.

Since Γ(1 + x) has an expansion beginning

Γ(1 + x) = exp

(
−γx +

∑
n≥2

(−1)nζ(n)

n
xn
)

= 1 − γx +
γ2 + ζ(2)

2
x2 − γ3 + 3γζ(2) + 2ζ(3)

6
x3 + · · · ,
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we have

Γ̂X = 1 − γ c1 +
(
−ζ(2) c2 +

ζ(2) + γ2

2
c21

)
+
(
−ζ(3) c3 +

(
ζ(3) + γ ζ(2)

)
c1c2 −

2ζ(3) + 3γ ζ(2) + γ3

6
c31

)
+ · · · ,

where ci = ci(X) ∈ H2i(X) are the Chern classes of X. This formula simplifies a

lot if we introduce the modified gamma class Γ̂0
X , defined by

Γ̂X = Γ(1 + c1) Γ̂0
X , (50)

in which case it reduces to

Γ̂0
X = 1 − ζ(2) c2 + ζ(3) (c1c2 − c3) + · · · . (51)

Note that Γ̂X = Γ̂0
X if X is a Calabi-Yau manifold, since then c1(X) = 0. In

any case, there is a characteristic appearance of the number ζ(3) in any formula
involving threefolds and the Gamma class. Such formulas have played a role in
string theory in recent years, the process not having been entirely painless since
certain formulas that were thought to have been established turned out to be wrong
until they were corrected by incorporating the Gamma class.

The Gamma Conjecture for Fano varieties. We can now formulate the
Gamma Conjecture for Fano varieties (actually one of two “Gamma Conjectures”
stated in [26], but we will not discuss the other). We concentrate mainly on the
case of Fano 3-folds F of Picard rank one, for which the cohomology ring H∗(F ;Q)
is simply Q[c1]/(c41 = 0). The relationship between the quantum cohomology of F
and its quantum differential equation is such that the 4-dimensional space of so-
lutions of the latter can be canonically identified with the dual space H∗(F ;C) of
the cohomology ring of F , so any linear functional κ assigning to each element Ψ
of the solution space a complex number κ(Ψ) can be thought of as an element of
H∗(F ;C). In particular, since all solutions of the quantum differential equation
grow at infinity like the sum of a multiple of the holomorphic solution GF (z) and
a term of exponentially lower order, we can take κ to be the asymptotic limit func-

tional κ(Ψ) = lim
z→∞

Ψ(z)
GF (z) . The Gamma Conjecture then says that the cohomology

class of F corresponding to this functional is the Gamma class of F .
This statement can be made more explicit in the cases whereH∗(F ) is generated

by c1 by using the Frobenius basis of solutions.4 These are the four functions Ψi(z)
(0 ≤ i ≤ 3), where Ψi(z) ∈ Q[[z]][log z] is defined for all i ≥ 0 by the expansion

∞∑
n=0

an(ε) zn+ε =

∞∑
i=0

Ψi(z) ε
i , (52)

4The insight that the Gamma class gives the discrepancy between the Frobenius and the
integral basis of the solution space of a Picard-Fuchs differential equation, already mentioned
in §7 in the hypergeometric case, is due to Katzarkov–Kontsevich–Pantev [47] and Iritani [40].
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with an(ε) ∈ Q(ε) defined by the same recursion as that satisfied by the coef-
ficients an of the quantum period GF (z) =

∑
anz

n itself, but with n replaced
by n+ ε and with initial conditions a0(ε) = 1, an(ε) = 0 for n < 0. For instance,
in the Apéry case F = V12 one has

Ψ0(z) = GF (z) = 1 + 5z +
73z2

2
+

1445z3

6
+ · · · ,

Ψ1(z) = GF (z) log z + 7z +
201z2

4
+

10733z3

36
+ · · · ,

and in general Ψi(z) = GF (z)(log z)i/i! + (lower order terms) for all i ≥ 0. The ith
Frobenius limit κi is then defined as the limit of Ψi(z)/GF (z) as z →∞. (Thus κ0

is always 1, since Ψ0 = GF .) In terms of these numbers, the Gamma Conjecture

says simply that the Gamma class of F equals
∑3
i=0 κic

i
1. The Gamma class

is easily computed by purely topological considerations, so this gives an explicit

prediction for the values of the Frobenius limits, e.g. κ1 = −γ, κ2 = γ2−3ζ(2)
2 and

κ3 = −γ3+9γζ(2)+15ζ(3)
6 in the Apéry case. These formulas simplify to κ0

1 = 0, κ0
2 =

−2ζ(2) and κ0
3 = 17

6 ζ(3) if we replace the Frobenius limits by the corresponding
limits for the Laplace-transformed differential equation satisfied by the generating
function of the original Apéry numbers, in which case the Gamma Conjecture
becomes Γ̂0

F =
∑3
i=0 κ

0
i c
i
1.

The Gamma Conjecture was proved by its authors for projective spaces, toric
manifolds, and certain toric complete intersections and Grassmannians, and in [31]
for all of the Fano 3-folds with ρ = 1 (some cases of which were already known
previously by work of Dubrovin and others). Actually, two methods of proof were
given in [31]. The first is combinatorial and proceeds by giving explicit formulas for
the coefficients of the power-series parts of the Frobenius solution Ψi(z), involving
the harmonic numbers 1+ 1

2 +· · ·+ 1
n and the nth partial sums of ζ(k) for 2 ≤ k ≤ i,

while the second is based on the modular parametrizations of the power series
involved, and more specifically on the properties of Eichler integrals of weight 4
Eisenstein series. The first method works cleanly in all hypergeometric cases (which
includes 10 of the 17 Iskovskikh cases), but is messy in general and was only worked
out in detail in [31] for the case F = V12 corresponding to the Apéry numbers.
However, it has the advantage of working in the two cases (d,N) = (1, 1) or (2, 1)
of the Iskovskikh classification for which the modular proof fails because F1(τ) is
not a modular form, and also of being potentially applicable in higher-dimensional
situations, where modularity is almost never available. The modular proof is much
smoother and works in a completely uniform way in all 15 cases to which it applies.

These calculations contained one nice surprise. The Frobenius functions Ψi(z)
exist even for i > 3, even though they are then no longer solutions of the differ-
ential equation satisfied by the quantum period, and the Frobenius limits κi and
κ0
i are therefore well-defined real numbers also for these i. In the course of the

calculations with Golyshev, I calculated them numerically to high precision for
i ≤ 11 and looked whether they could also be written, like the numbers κ0

2 and
κ0

3, as polynomials in Riemann zeta-values with rational coefficients. This turned
out to be true for i up to 10, but false for κ0

11, which was instead a rational linear
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combination of products of zeta values and of the multiple zeta value

ζ(3, 5, 3) =
∑

0<`<m<n

1

`3m5n3
= 0.002630072587647 · · · .

Multiple zeta values are old friends of mine and I was very pleased to see one
show up here, but I could not understand why the first appearance was only in
weight 11, rather than in weight 8 (the first case where not all multiple zeta values
are expressible in terms of Riemann zeta values). I showed Golyshev my numerical
discovery and proffered the conjecture that this must be an extremely deep fact
and that it would probably take many decades until anybody could explain why
things changed only at the value 11. This turned out to be one of the least accurate
conjectures I had ever made, since he gave the answer within seconds rather than
decades: it had to be related to the fact that the corresponding Fano variety V12 can
be “unsectioned” seven times (cf. the geometric description of this variety as given
in the previous section) to give a Fano 10-fold, but cannot be unsectioned an eighth
time without introducing singularities. Since the Gamma conjecture is supposed to
be true for Fano varieties of any dimension and only involves Riemann zeta-values,
this explained the phenomenon that I had found numerically, and indeed in the
subsequent weeks Golyshev was able to compute the Gamma classes of G(10, 5)
and its successive sections and to verify that the numbers obtained were the same
as the ones that I had found on my computer. This also provides a numerical
verification of the Gamma conjecture for a number of Fano varieties of dimension
going up to 10 (though not a proof since the higher Frobenius limits have only been
evaluated numerically and not proved). In any case, the nature of the numbers κ0

i

for i ≤ 10 can now be considered to be understood, but the appearance of ζ(3, 5, 3)
in κ0

11 remains a mystery requiring new insights.

10. Miscellaneous examples, open questions, and remarks

In this section we describe a few miscellaneous topics that belong to our subject
but did not fit naturally into any of the main subjects treated so far, and also
mention a couple of open questions suggested by the results discussed here.

Two further connections with mirror symmetry. We start by describing two
specific results that relate between mirror symmetry or Gromov-Witten theory
to differential equations and therefore could in principle have been included in
Section 8, but that are of an entirely different nature from the material there.

The first is a rather odd statement that was needed by Aleksey Zinger for his
proof of the Bershadsky–Cecotti–Ooguri–Vafa mirror symmetry predictions for the
genus 1 Gromov-Witten invariants of a quintic 3-fold in P4 (or more generally of
a hypersurface of degree d in Pd−1 for any d > 0), and that we proved in our joint
paper [76]. Let P be the group of power series in t with coefficients in Q(ε) that
have constant term 1 and no pole at ε = 0. Then the hypergeometric deformation
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of the power series
∑ (5n)!

n!5 tn given by

∞∑
n=0

∏5n
r=1(r + 5ε)∏n

r=1((r + ε)5 − ε5)
tn

is a fixed point of the 5th power of the non-linear map

F (t, ε) 7→
(

1 +
t

ε

∂

∂t

)
F (t, ε)

F (t, 0)

from P to itself, and similarly with “5” replaced by any positive integer d.

The second example comes from the paper [3] by Marco Bertola, Boris Dubrovin,
and Di Yang in which the authors find power series satisfying linear differential
equations whose coefficients are defined by integrals over suitable moduli spaces,
but now with the summation being over genera rather than over the degrees of
maps from a genus 0 curve to a target space as in the case of the quantum period
that we discussed in Section 8. One of their series begins

∞∑
n=0

cn t
n = 1 − 161

21035
t +

26605753

22331252
t2 + · · · ,

where cn is defined by an integral over a moduli space (more precisely, up to a
simple factor it is the integral over the moduli space M5n,1 of stable 1-pointed
curves of genus 5n of the product of ψ12n−2 with a so-called Witten 5-spin class)
and satisfies the four-term recursion relation

80352000n(5n− 1)(5n− 2)(5n− 4)cn − 25(2592000n4 − 6220800n3 + 4903920n2

− 350928n+ 24955) cn−1 + 20 (4500n2 − 900n− 61) cn−2 + cn−3 = 0 .

When I saw these numbers, which decay roughly like 1/n!2, I naturally asked
whether they might share with the coefficients of the quantum periods discussed
in Section 8 the property that when they are multiplied by n!2, or possibly by
the product of two Pochhammer symbols, they become integers (which would
then potentially be the coefficients of the power series solution to some Picard-
Fuchs differential equation). This indeed turned out to be the case, but somewhat
surprisingly in two different ways: Yang and I found a formula showing that the
numbers an := (2103552)n

(
3
5

)
n

(
4
5

)
n
cn are integers of exponential growth (and

hence can be expected to have a generating series that is a period, although we
have not succeeded in finding it), and Dubrovin and Yang found that the numbers
bn := (2123554)n

(
2
5

)
n

(
− 1

10

)
n
cn are also integral and that in this case the generating

function
∑
bnt

n is not only of Picard-Fuchs type, but is actually algebraic! So this
is a very mysterious example from both the mirror symmetry point of view and
from the point of view of the elementary number-theoretical (divisibility) properties
of numbers defined by recursions with polynomial coefficients.
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Some open questions. We next list a few questions, some well known and some
less so, that are suggested by the results and observations discussed in the main
body of the paper.

1. How can one recognize whether a given differential equation is geometric
in origin, i.e., whether it can arise as the Picard-Fuchs equation of the periods in
some algebraic family? In particular, if {An} is a sequence of integers of at most
exponential growth satisfying a linear recursion of finite length with polynomial
coefficients, is it always of Picard-Fuchs type? This question was already mentioned
in Section 2, but is so basic to our theme that it seems worth emphasizing.

2. In a related direction, given a sequence {An} of integers as above, how can
we recognize whether they can be defined as the constant terms of the powers of
a Laurent polynomial, as was the case for the Apéry numbers and for all of the
Picard-Fuchs equations discussed in connection with mirror symmetry? In some
cases one can in fact exclude the existence of such a representation, because an
equation like (11) implies certain obvious congruences like Ap ≡ A1 (mod p) (by
Fermat’s little theorem) as well as much less obvious ones such as the Lucas-like
congruences given in [60] and [53], and if these fail for a given sequence {An} then
there can be no representation of this type. As an example, the integrality of the
solutions of the Bouw-Möller recursion discussed in the final example of Section 5,
where non-elementary proofs using p-adic analysis or the theory of Hilbert modular
forms were described, cannot be proved in an elementary way by a formula like (11),
because already the Fermat-like congruence for primes splitting in Q(

√
17) fails.

But in many cases one knows that there is a formula for the sequence of coefficients
as constant terms of powers of some polynomial L, and the problem of finding this
polynomial algorithmically remains. Note, by the way, that the problem is only to
find the polynomial L, not to prove that it works, since once one has a candidate
it is an elementary procedure to find the recursion for the constant terms of its
powers, and if this recursion and its initial values agree with those for the An, then
the required identity is true.

As well as asking about the existence of a Laurent polynomial producing a given
sequence of constant terms, one can ask about its uniqueness. It is known that
different polynomials can give the same sequence of numbers, if they are obtained
from one another by a sequence of so-called mutations, and several authors (e.g.,
Galkin and Usnich [27]) have studied the question whether the converse of this
statement is also true. This is not known and seems very hard, but in any case
the question of having a criterion for the existence of a Laurent polynomial, or
equivalently of a Landau-Ginzburg model, seems even more fundamental than the
question of its uniqueness.

3. Again in a related direction, given a sequence of rational numbers defined
by a recursion with polynomial coefficients, is there any criterion to determine
whether this sequence can be multiplied by a quotient of products of Pochhammer
symbols to obtain a new sequence that is integral (perhaps up to a factor Mn for
some fixed M ∈ N) and has exponential growth? In this case, and if the answer to
the first question is positive, one would have a relation to periods and to algebraic
geometry. Also interesting is the extent to which this modified sequence is unique.
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The Bertola-Dubrovin-Yang example described above shows that the answer to
this latter question is not completely trivial.

4. The Picard-Fuchs equations associated to families of elliptic curves or fami-
lies of K3 surfaces are always modular (at least in practice; I do not know whether
there is any theorem to this effect), but for families of higher-dimensional Calabi-

Yau varieties, like the mirror quintic family with period
∑ (5n)!

n!5 t
n, this is known

not to be true. (The proof is easy: the differential equation satisfied by a modular
form of weight k with respect to a modular function as independent variable is
always the kth symmetric power of a second order equation, as mentioned in Ex-

ample 2 in Section 5, but the differential equation satisfied by
∑ (5n)!

n!5 t
n is not a

symmetric cube.) Is there nevertheless some non-trivial relation between the peri-
ods in this case and any kind of automorphic functions or forms? The Bouw-Möller
equation discussed at the end of Section 5 is an example of a differential equation
that cannot be parametrized directly by modular forms on an arithmetic group (of
finite index of SL(2,Z)), but which nevertheless, as we saw, embeds into a higher-
dimensional modular variety (in this case, a Hilbert modular surface) in which such
a parametrization exists. So one can at least wonder whether there can be any
kind of correspondence between the Calabi-Yau varieties and some automorphic
varieties that relates the periods of the former to automorphic quantities.

5. The final question concerns the integrality of Gromov-Witten invariants. If
the mirror story is to be true, then the quantum period

∑
anz

n of a Fano variety
as discussed in Section 8 must have coefficients an with denominator at most n!,
since they are supposed to be given by an = An/n! with An defined as in (11) for
some Laurent polynomial L. Can one prove this integrality directly from Gromov-
Witten theory? That the denominator is at least n! is to be expected, since an is
defined as the evaluation of a certain cohomology class on the fundamental class of
the moduli space X0,1,n and this moduli space is a stack some of whose points can
have a stabilizer of order as large as n! (namely, the points given by composing a
degree 1 map from P1 to F with a degree n map from P1 to itself, where the Galois
group of the latter can be the full symmetric group on n letters). Apparently no
geometric argument is known showing that n!an is always integral, but there seems
to be a possibility of showing at least that it cannot have more than exponential
growth, e.g. (in the Fano 3-fold case) that it is a divisor of l.c.m.{13, . . . , n3} rather
than merely of n!3, which is all that one gets directly from the recursive formula.

Higher dimensions. Throughout this paper we have concentrated on ordinary
differential equations, whose solutions are functions of a single complex variable, so
that in the geometric situation we were studying families defined over a curve (and
indeed almost always over P1(C), since then the associated differential equations
have polynomial rather than algebraic coefficients and the coefficients satisfy a
recursion with polynomial coefficients). One exception was in Section 8, where the
quantum differential equations associated to Fano 3-folds with Picard rank ρ > 1
involve ρ arguments, and similarly for the Picard-Fuchs differential equations on
the mirror sides since ρ is the dimension of the corresponding family, but even
here we used this higher-dimensional system of differential equations to construct
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a power series in a single variable, the quantum period, whose coefficients still
satisfied a recursion with polynomial coefficients. Of course higher-dimensional
situations are also extremely interesting, but much harder to study. I would like to
end the paper by saying a few words about them, especially because, as mentioned
in the opening paragraph of the paper, this was a subject that was of great interest
to Hirzebruch and that he studied actively in the last decades of his life. For reasons
of both space and competence I will say only a few words about it here.

A particularly beautiful result of Hirzebruch’s is his proportionality principle,
which says that the Chern numbers of the compact quotient of a bounded sym-
metric domain X by a properly discontinuous and fixed-point-free group action
are proportional to the Chern classes of the compact dual X ′ (a compact alge-
braic manifold into which X is naturally embedded). If X is the complex 2-ball,
then X ′ = P2(C), which has Chern numbers c21 = 9, c2 = 3, so any compact
quotient B2/Γ, where Γ is a group acting freely, has Chern numbers satisfying
c21 = 3c2. Conversely it was proved by Miyaoka and Yau that one has c21 ≤ 3c2
for any compact complex surface of general type, with equality only for quotients
of the 2-ball. One is particularly interested in examples of non-arithmetic groups
acting freely and with compact quotients. There are three main sources of these:
certain groups generated by complex reflections, surfaces obtained as coverings of
P2(C) ramified along lines, and finally monodromy groups of generalized (Appell-
Lauricella) hypergeometric functions. Hirzebruch made an intensive study of the
second class [1], deriving in particular from the Miyaoka-Yau inequality an in-
equality concerning the combinatorics of line arrangements in the plane that was
stronger than anything that had been obtained by elementary methods and was
later applied to prove the so-called “bounded negativity conjecture” about such
line configurations. There are many links between the three classes, as one can
read in detail in [2], in the book [22] of which it is a review, and in the book [67]
that, as mentioned in the introduction, was originally an outgrowth of a course that
Hirzebruch gave on the subject in 1996. Of particular interest in connection with
the present article are the discussions of the classical hypergeometric differential
equations in Chapter 2 and of the Appell hypergeometric functions and their asso-
ciated monodromy groups in Chapter 7 of [67]. I say no more here except that the
whole field is still very active, a very recent example being a new construction by
Martin Deraux [23] of non-arithmetic lattices via coverings of line arrangements.
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Norm. Sup. 2 (1969), 583–598.

[43] Nicholas Katz, The regularity theorem in algebraic geometry. Actes, Congrès
Intern. math. 1 (1070), 437–443.

[44] Nicholas Katz, Exponential Sums and Differential Equations. 1990.

[45] Nicholas Katz and Tadao Oda, On the differentiation of De Rham cohomology
classes with respect to parameters. J. Math. Kyoto Univ. 8 (1968) 199–213.

[46] Sheldon Katz, Enumerative Geometry and String Theory. Student Mathematical
Library, IAS/Park City Mathematical Subseries 32, AMS, Providence 2006.

[47] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev, Hodge theoretic aspects
of mirror symmetry. Proc. Sympos. Pure Math. 78 (2008), 87–174.

[48] Albrecht Klemm, Emanuel Scheidegger, and Don Zagier, Periods and quasiperi-
ods of modular forms and D-brane masses for the mirror quintic. In preparation.

[49] Maxim Kontsevich and Don Zagier, Periods. In Mathematics Unlimited—2001
and Beyond (B. Engquist and W. Schmid, eds.), Springer, Berlin-Heidelberg-
New York 2001, 771-808.
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Ann. Math. Qué. 39 (2015), 185–203.

[61] Chad Schoen, On the geometry of a special determinantal hypersurface associated
to the Mumford-Horrocks vector bundle. J. Reine Angew. Math. 364 (1986) 85–
111.

[62] Anthony Scholl, Motives for modular forms. Invent. Math. 100 (1990) 419–430.



Arithmetic and Topology of Differential Equations 57
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