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Abstract. We extend the definitions of the sequences used by Apéry in his

proof of the irrationality of ζ(3) to non-integral values of the index and relate

the value with index −1/2 to the central value of the L-series of the unique
normalized cusp form of weight 4 on Γ0(8). We also discuss the notion of

quasiperiods of modular forms and relate the Apéry numbers of other half-
integral indices to these. We further explain the conjectural relationship of the

Taylor expansion around 0 of a different interpolation of the Apéry numbers

to a generalized version of the Gamma Conjecture, and discuss interpretations
of the various results with families of Calabi-Yau manifolds, mirror symmetry,

and motivic gamma functions.

Introduction: the Apéry numbers and their interpolations

The Apéry numbers A0 = 1, A1 = 5, A2 = 73, . . . are defined recursively by

(1) (n+ 1)3An+1 − (34n3 + 51n2 + 27n+ 5)An + n3An−1 = 0

together with the initial value A0 = 1 and an arbitrary value of A−1. The fact
that they are all integers, which is not at all obvious from this definition, played
a key role in Apéry’s famous proof of the irrationality of ζ(3) in 1978. It can be
understood from at least three different points of view, one hypergeometric, one
modular, and one algebraic-geometric. The first is due to Apéry himself, who gave
the explicit closed formula

(2) An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(n ≥ 0)

for his numbers. This makes their integrality obvious but does not really explain
why it holds. A more conceptual explanation in terms of modular forms was found
by Beukers [1]: the generating series

(3) A(t) =

∞∑
n=0

An t
n = 1 + 5t+ 73t2 + 1445t3 + · · ·
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of the Apéry numbers, which satisfies a third-order differential equation correspond-
ing to the recursion (1), can be parametrized by

(4) A(t6(τ)) = f6(τ),

where

(5) t6(τ) =
η(τ)12 η(6τ)12

η(2τ)12 η(3τ)12
= q − 12q2 + 66q3 − 220q4 + · · ·

(q = e2πiτ , η(τ) = Dedekind eta-function) is a Hauptmodul for the group Γ0(6)
and

(6) f6(τ) =
η(2τ)7η(3τ)7

η(τ)5 η(6τ)5
= 1 + 5q + 13q2 + 23q3 + · · ·

a certain modular form (Eisenstein series) of weight 2 on Γ0(6), and the integrality of
the coefficients of A follows from that of t6 and f6. Finally, the algebraic-geometric
explanation, which was given (slightly earlier) by Beukers and Peters [2], identifies
the differential equation satisfied by A(t) with the Picard-Fuchs differential equation
of the family of K3 surfaces given (up to birational equivalence) by the equation

(7)
(y − 1)(z − 1)(x+ z − 1)(yz − x− z − 1)

xyz
=

1

t
.

More explicitly, one checks that An is the constant term of the nth power of the Lau-
rent polynomial occurring on the left-hand side of (7) (so-called Landau-Ginzburg
model), from which its integrality is again obvious. Each of these aspects is dis-
cussed in detail in [20] a long survey of the arithmetic and geometric properties of
differential equations in which the Apéry numbers were used as the running exam-
ple to illustrate the theory and in which many of the results of the present paper
were announced.

In this paper we will extend these ideas in several different directions, essentially
by adding a variable and thinking of the original results as those obtained by
“fibering out” a larger motive over a torus and seeing how this affects the local or
monodromy properties of the arithmetic of the individual fibers. Specifically, we
will see:

• that there is a natural holomorphic extension of the Apéry numbers to com-
plex values of the argument n, satisfying a modified form of the same recursion (1)
and symmetric with respect to n 7→ −n− 1 ;

• that the interpolated value of An at the point of symmetry n = −1/2 is
proportional to the central value of the Hecke L-series of a certain cusp form f8 of
weight 4 and level 8;

• that the interpolated values of An at other half-integral arguments of n are
related to the periods and quasiperiods (whose definition we will review) of the
same form f8 ;

• that similar statements are true for the second Apéry-like sequence {Bn} =
{1, 8, 88, . . . } defined by the recurrence relation

(8) (n+ 1)3Bn+1 − 8(4n3 + 6n2 + 4n+ 1)Bn + 256n3Bn−1 = 0 ,

with the interpolated values Bn−1/2 again related to the periods and quasiperiods
of f8;
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• that these facts are related to the monodromy of the Picard-Fuchs differential
equation of a certain family of 3-dimensional Calabi-Yau manifolds, one of 14 such
families for which this differential equation is hypergeometric and for all of which
a similar relationship was verified numerically in [12];

• that there is a second, and in some ways more natural, extension of the
Apéry numbers (or the Bn) to complex arguments based on the asymptotics of
the solutions of the recursion (1) (or (8)) at infinity, but now satisfying the same
recursion as the original numbers without any modification; and finally,

• that the first Taylor coefficients at zero of this new interpolation have an
interpretation in terms of the gamma class. The recursion (1) appears as the
Mellin transform of the regularized quantum differential equation of its plane in
this context, see [8]. This phenomenon was found experimentally in the earlier
paper [10] and is shown here to confirm the prediction of the so-called Gamma
Conjecture for a particular 10–dimensional Fano variety.

In the rest of the paper we will discuss each of these aspects in turn.

1. Hypergeometric interpolation, periods, and quasiperiods

As stated above, our purpose in this paper is to extend the definition of the
sequence {An} to non-integral values of n in two different ways and show how each
of them leads to interesting extensions of some of the properties of the original
numbers. The first, and most straightforward, interpolation arises by observing
that we can rewrite (2) for n ∈ Z≥0 as

(9) An =

∞∑
k=0

(
n

k

)2(
n+ k

k

)2

,

since
(
n
k

)
vanishes for k > n. The formula now makes sense for any complex

value of n, and the function that it defines does indeed interpolate the original
Apéry numbers An, but somewhat surprisingly it satisfies only a modification of
the original recursion involving an additive correction term that vanishes at all
integer arguments:

Theorem 1. The series (9) converges absolutely and locally uniformly for
all n ∈ C and defines a holomorphic function in the entire complex plane. This
function is symmetric under n 7→ −n− 1 and satisfies the functional equation

(10) (n+1)3An+1 − (34n3+51n2+27n+5)An + n3An−1 =
8

π2
(2n+1) sin2 πn .

A more interesting fact, which is the point of departure for the current paper,
is that the value of the interpolated function An at its symmetry point n = −1/2 is
a simple multiple of the central value of the Hecke L-series of a certain cusp form:

Theorem 2. Define An for n ∈ C by (9). Then

(11) A−1/2 =
16

π2
L(f8, 2) ,

where

(12) f8(τ) = η(2τ)4η(4τ)4 = q − 4q3 − 2q5 + 24q7 − · · ·

is the unique normalized Hecke eigenform in S4(Γ0(8)) .
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The statement of Theorem 2 is attractive, but at the same time somewhat
mysterious, since it relates A−1/2 to a modular form on a completely different
modular group from the one occurring in the modular parametrization (4). The
explanation was sketched in [20] and has to do with the fact that the double cover
of the variety (7) obtained by replacing t−1 by w2 has a Hasse-Weil zeta function
containing L(f8, s) as a factor. But then there is a second mystery. The cusp
form f8, like any normalized Hecke eigenform, has two basic periods, which we can
take to be ω+ and iω− with ω± ∈ R defined by
(13)

ω+ =

∫ ∞
0

f8(it)t dt =
L(f8, 2)

4π2
, ω− =

∫ ∞
0

f8(it)dt =
L(f8, 1)

2π
=

2L(f8, 3)

π3
.

On the other hand, from (10) we see that the values of An for n ∈ Z + 1
2 lie in

the Q-vector space spanned by the three numbers A−1/2, A1/2, and π−2. Since we
know from Theorem 2 that A−1/2 = 64ω+, it is reasonable to guess that A1/2, and
therefore also An+1/2 for any n ∈ Z, is in the Q-linear span of the three numbers

ω+, ω−, and π−2. But this turns out not to be the case. We can compute all of the
numbers involved to high precision (the series defining A±1/2 and L(f8, 3) converge
very slowly and the one defining L(f8, 2) diverges, but they can be all computed
rapidly and accurately by using standard convergence acceleration techniques and
the integral representation of the L-function). When we do so, we indeed find

A−1/2 = 64ω+ = 1.1186363871641870683496192575256409167948575515294 · · · ,

in accordance with Theorem 2, but the two further numerical values

A1/2 = 1.6719543024114185394024524459306932856672407502037904790004 · · · ,
64ω− = 3.6109143132953392967615735950910519401218540144056782090237 · · ·

do not yield any Q-linear dependencies among A−1/2, A1/2, π−2, and ω− with small
coefficients.

The resolution of this mystery lies in the notion of quasiperiods of modular
forms. These numbers, which can be viewed as “algebraic de Rham theory made
concrete,” are a simple generalization of differentials of the second kind, extending
the well-known corresponding notion for elliptic curves discovered by Legendre in
the 18th century. They were discovered in the context of modular forms and their
entire theory worked out by Martin Eichler [7] in 1957, but were then forgotten
and rediscovered some 60 years later by Francis Brown [4], [5] and also by us at
about the same time (Spring 2015) in the context of the present paper; they are also
studied and calculated numerically in [12] in connection with the transition matrices
of solutions of the Picard-Fuchs differential equation for hypergeometric families
of Calabi-Yau 3-folds. We will summarize their definition and main properties
briefly in Section 4, referring to any of the above-cited papers for more details.
Roughly speaking, to any Hecke eigenform f one can associate two quasiperiods,
well-defined up to an algebraic (and in this case rational) multiple of its two periods,
defined by integrating a certain meromorphic modular form over appropriate cycles.
Computing these two quasiperiods for f8 numerically to high precision then suggests
the following theorem, whose more precise statement and proof will be described
briefly in Section 4 and which will follow essentially the same lines as the proof
of Theorem 2 given in the next section:
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Theorem 3. The number A1/2 defined by (9) is a rational linear combination

of A−1/2, 1/π2, and the real quasiperiod associated to the Hecke eigenform f8.

2. Proof of Theorems 1 and 2

The proofs of both Theorems 1 and 2 were given in [20] (and in fact, as men-
tioned there, an identity equivalent to (11) was proved independently at about the
same time by Rogers, Wan, and Zucker [16]), but we will repeat them briefly here
for the reader’s convenience and because the same arguments with only minor mod-
ifications work also for Theorem 3 as well as for the corresponding statements for
the B-sequence discussed in the next section.

It is convenient to shift the index by 1
2 , since this puts the symmetry point

of the function at 0 and also makes the functional equation simpler. We therefore
define a function A(x) with A(n+ 1

2 ) = An by

(14) A(x) =

∞∑
k=0

αk(x), αk(x) =

(
x− 1/2

k

)2(
x+ k − 1/2

k

)2

.

The statements about absolute and locally uniform convergence follow easily from
Stirling’s formula and standard properties of the gamma function, which show that
αk(x) = O(k−2) as k → ∞, and the symmetry under x 7→ −x (corresponding
to n 7→ −n − 1 for the numbers An) is obvious because αk(x) can be written as(
x−1/2
k

)2(−x−1/2
k

)2
. Finally, induction on K gives

K∑
k=0

(
(x+ 1

2 )3αk(x+1)−(34x3+ 3
2x)αk(x)+(x− 1

2

)3
αk(x−1)) = 8x (2K2+K−4x2)αK(x)

for all integers K ≥ 0, and by computing the limiting value of the right-hand side
as K →∞ by Stirling’s formula we find that

(15)
(
x+ 1

2

)3A(x+ 1) −
(
34x3 + 3

2x
)
A(x) +

(
x− 1

2

)3A(x− 1) =
16

π2
x cos2 πx ,

which is equivalent to equation (10). This completes the proof of Theorem 1.
For Theorem 2, we rewrite the hypergeometric series defining A−1/2 as an

integral involving modular functions and modular forms, but on a different group
than the one occurring in the modular parametrization (4). Define a function β(λ)
in the closed unit disc by

(16) β(λ) = F
(

1
2 ,

1
2 ; 1;λ) =

∞∑
k=0

(
−1/2

k

)2

λk (|λ| ≤ 1) ,

where F (a, b; c;x) denotes the Euler-Gauss hypergeometric function. Then we have

(17) A(0) =

∞∑
k=0

(
−1/2

k

)4

=
1

2πi

∮
|λ|=1

β(λ)β(1/λ)
dλ

λ
.

On the other hand, we have the well-known modular parametrization

(18) β(λ(τ)) = ϑ3(τ)2 ,

where λ(τ) (Legendre function) is the standard Hauptmodul for Γ(2), defined by

λ(τ) = 16
η(τ/2)8η(2τ)16

η(τ)24
= 1− η(τ/2)16η(2τ)8

η(τ)24
=

(
ϑ2(τ)

ϑ3(τ)

)4

,
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in terms of the two Jacobi functions of weight 1/2

ϑ2(τ) =
∑
n∈Z

q(n+ 1
2 )2/2 = 2

η(2τ)2

η(τ)
, ϑ3(τ) =

∑
n∈Z

qn
2/2 =

η(τ)5

η(τ/2)2 η(2τ)2
.

Using the modular transformation properties

1

λ(τ)
= λ

( τ

1− τ

)
, ϑ3

( τ

1− τ

)2

= (1− τ)ϑ2(τ)2

and the modular form identity

1

2πi
ϑ3(τ)2 ϑ2(τ)2 λ

′(τ)

λ(τ)
= 2 f8(τ/4) ,

with f8 defined as in (12), we obtain the integral representation

(19) A(0) = 2

∫ 2

0

(1− τ) f8(τ/4) dτ ,

where the integral is taken along the hyperbolic geodesic from 0 to 2 (= Euclidean
semicircle with center 1 and radius 1), which is mapped by λ isomorphically to
the unit circle. Since f8 is a cusp form, we can replace this path of integration by
the difference of the two vertical lines from 0 to i∞ and from 2 to i∞, and since
f8(τ+ 1

2 ) = −f8(τ) (because f8 has a q-expansion containing only odd powers of q),
this gives finally

A(0) = 2
(∫ ∞

0

−
∫ ∞

2

)
(1− τ) f8(τ/4) dτ = −4

∫ ∞
0

τ f8(τ/4) dτ = 64ω+

as desired.

3. A second Apéry-like sequence and the proof of Theorem 3

To understand the situation better we will consider not only the Apéry num-
bers An, but also a second sequence defined by the terminating hypergeometric
sum

(20) Bn =

n∑
k=0

(
2k

k

)2(
2n− 2k

n− k

)2

(n ≥ 0)

and satisfying the recurrence relation (8). We will give the modular interpretation
of this sequence in a moment, but first we do the analogue of what was done in §1
by describing an interpolation of Bn to non-integral values of n. This has both
similarities and points of diference with the An case.

The most obvious way to interpolate the Bn, imitating what we did in the
Apéry case, would be to rewrite the sum in (20) in the form

Bn =

(
2n

n

)2 ∞∑
k=0

(
n

k

)4(
2n

2k

)−2

and then take the right-hand side of this expression as a definition for all values

of n, where the pre-factor
(

2n
n

)2
is interpreted as Γ(2n+1)2

Γ(n+1)4 , since the sum again can

be checked to converge like 1/k2. However, the function that we would obtain this
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way would be only meromorphic, with double poles at all half-integers. Instead, we
replace the sum in (20) by

(21) Bn = 16n
∞∑
k=0

(
− 1

2

k

)2(
Γ( 1

2 )

Γ(n− k + 1)Γ(k + 1
2 − n)

)2

,

which again agrees with the original definition if n is a non-negative integer but now
makes sense for any complex number n, since the sum converges like 1/k2 and has
no poles. This gives a natural holomorphic continuation of the function n 7→ Bn
to the complex plane. This extrapolation is actually simpler than the one for the
Apéry numbers, because the value of Bn for integral n < 0 vanishes (as opposed to
An for n < 0, which coincides with A|n|−1) and the three-term functional equation
satisfied by Bn remains true unchanged for complex values of n (as opposed to An,
where the right-hand side of the identity had to be multiplied by a multiple of
sin2 πn). We state these results in the form of a theorem, again shifting the index
by 1/2 to make the functional equation and other properties of the function simpler,
and also removing the factor 16n in the above sum, which was useful for integrality
when n was integral but is only a nuisance when it is not.

Theorem 4. The sum

(22) B(x) :=

∞∑
k=0

(
− 1

2

k

)2(
Γ( 1

2 )

Γ(x− k + 1
2 )Γ(k + 1− x)

)2

converges for all complex values of x and defines an entire function with B(n+ 1
2 ) =

16−nBn for n ∈ Z≥0, B(n+ 1
2 ) = 0 for n ∈ Z<0 and B(−n) = B(n) for n ∈ Z, and

satisfying the functional equation

(23)
(
x+

1

2

)3

B(x+ 1) −
(

2x3 +
x

2

)
B(x) +

(
x− 1

2

)3

B(x− 1) = 0 .

for all x ∈ C. The values of B(x) and A(x) at x = 0 and x = 1 are related by the
formulas

(24) B(0) = A(0) , 6B(1) = A(0) + A(1) +
1

π2
.

The proof of this is very similar to that of Theorem 1, so we skip the details.
The 1/k2 convergence of the series (22) is checked as before and the interpolation
properties B(n+ 1

2 ) = Bn for n ∈ Z≥0 and B(n+ 1
2 ) = 0 for n ∈ Z<0 are obvious,

since the series defining B(x) agrees term-for-term with that defining Bx−1/2 if x is
a positive half-integer and vanishes term-for-term (actually doubly, so B has double
zeros at these points) if x is a negative half-integer. The symmetry property for
x ∈ Z, which was obvious for A(x) because each term of the series defining it
was individually even, now follows from the recursion (23), which for x = 0 gives
B(1) = B(−1) and then for other integral values of x gives the equality between B(x)
and B(−x) by induction. The functional equation is proved just the same way as for
the Apéry numbers, with the sum obtained by inserting the definition into all three
terms on the left telescoping. Finally, the last statement of the theorem follows by
direct comparison of the hypergeometric sums defining the numbers in question: at
x = 0 we have

B(0) =

∞∑
k=0

(
− 1

2

k

)4

= A(0)
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while at x = 1 we have

A(1) =

∞∑
k=0

( 1
2

k

)2(− 3
2

k

)2

,

and

(25) B(1) =

∞∑
k=1

(
− 1

2

k

)2( − 1
2

k − 1

)2

=

∞∑
k=0

4k2

(
− 1

2

k

)2( 1
2

k

)2

,

so that the desired formula A(0) + A(1) − 6B(1) = π−2 follows as in the proof of
Theorem 1 by taking the limit as K →∞ of the inductively proved identity

K∑
k=0

[(
− 1

2

k

)4

+

( 1
2

k

)2(− 3
2

k

)2

− 24k2

(
− 1

2

k

)2( 1
2

k

)2]
= 2 (2K + 1)2

(
− 1

2

K

)4

.

We end by giving the modular interpretation of the numbers Bn, or rather of
their generating series

B(t) =

∞∑
n=0

Bn t
n = 1 + 8q + 88q2 + 1088q3 + · · · .

Since
(

2k
k

)
= 4k

(−1/2
k

)
, we see that this series is simply β(16t)2, with β(λ) as in (16),

so the identity (18) used in the proof of Theorem 2 immediately gives the modular
parametrization

(26) B(t4(τ)) = f4(τ)

of B(t), where

(27) t4(τ) = 16λ(2τ) =
η(τ)8η(4τ)16

η(2τ)24
= q − 8q2 + 44q3 − 192q4 + · · ·

is a Hauptmodul for Γ0(4) (because λ(τ) is a Hauptmodul for Γ(2)) and

(28) f4(τ) = θ3(2τ)2 =
η(2τ)20

η(τ)8η(4τ)8
= 1 + 8q + 24q2 + 32q3 + 24q4 + · · ·

is a modular form (Eisenstein series) of weight 2 on Γ0(4). All of this is exactly like
the situation for the A’s, and leads to the same mystery, though now with differ-
ent numbers: while there the interpolated values of a sequence having a modular
parametrization coming from level 6 were related to an L-value of a cusp form f8

with the different level 8, here a sequence whose modular parametrization comes
from level 4 is related (by virtue of the last line of Theorem 4) to the same level 8
L-value. The underlying geometry for this will be discussed in Section 5, but first
we should describe the quasiperiods associated to the form f8 and their relationship
to the numbers An+1/2 and Bn+1/2.

We refer the reader to the unpublished work of A. Kalmykov [11], where the
series B(t) is studied in the context of mirror symmetry.
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4. Periods and quasiperiods of modular forms

In this section we review the definitions and basic properties of periods and
quasiperiods of modular forms and then briefly describe the calculation of the
quasiperiods in the case of the Hecke eigenform f8 and the proof of Theorem 3.

We begin first by recalling the definition of the periods of a Hecke eigenform.
For f8 we could define the two periods ω+ and iω− by equation (13), but for
other eigenforms f of weight 4 this would not always work since L(f, 2) might
vanish, and for forms f of weights k smaller or larger than 4 it is not the right
approach at all since there are k − 1 critical values L(f, n) (0 < n < k) but only
two independent periods. A better way is to use Eichler integrals. Let f be a
Hecke eigenform of weight k on a congruence subgroup Γ of SL2(Z) (in our cases,
always Γ0(N) for some N ∈ N). We will assume for convenience that f has Fourier
coefficients in Q, and will also not worry about integrality conditions, defining only
a 2-dimensional Q-vector space of periods with basis ω+, iω− for some numbers

ω± ∈ R×/Q×. For any f ∈ Mk(Γ) we denote by f̃ an Eichler integral of f , i.e.,

any holomorphic function in the upper half-plane satisfying Dk−1f̃ = f , where
D = q d

dq = 1
2πi

d
dτ is the normalized differentiation operator. Bol’s identity tells us

that Dk−1
(
f̃ |2−kg

)
= f |kg for any g ∈ SL2(R), where |kg denotes the usual “slash”

operator f |k
(
a b
c d

)(
τ
)

= (cτ + d)−kf
(
aτ+b
cτ+d

)
, and hence that rf,γ := f̃ − f̃ |2−kγ is

a polynomial in τ of degree ≤ k − 2 for every γ ∈ Γ. The map rf : γ 7→ rf,γ is
then a cocycle on Γ with values in the space V = Vk−2 of all such polynomials
(with the Γ-action P 7→ P |2−kγ), and the induced map from Mk(Γ) to H1(Γ, V )

is injective. If f =
∑∞
n=1 anq

n is a cusp form, we can normalize the choice of f̃ ,

and hence of the cocycle rf within its cohomology class [rf ], by choosing f̃(τ) =∑∞
n=1 n

1−kan q
n, and if f is also a Hecke eigenform as above, then with this choice

all of the polynomials rf (γ) belong to V (Q)ω+ ⊕ V (Q)iω− for some real numbers
ω± that are well-defined up to rational multiples. If Γ is Γ0(N) and we enlarge it
by adding the Fricke involution WN = 1√

N

(
0 −1
N 0

)
, under which f is automatically

invariant up to sign, then the specialization of this statement to γ = WN gives the
usual proportionality of the critical values of L(f, n) (up to powers of π) with the
numbers ω±.

For the quasiperiods we have to refine this story. The cocycle rf for f ∈
Sk(Γ) belongs to the subgroup H1

par(Γ, V ) of parabolic cohomology (meaning that
rf (γ) ∈ V |2−k(1 − γ) for all parabolic elements γ of Γ), and the map f 7→ [rf ]

together with its complex conjugate induce an isomorphism between Sk(Γ)⊕Sk(Γ)
and H1

par(Γ, V ) that is Hecke equivariant with respect to the natural action of Hecke

operators for Γ on H1(Γ). But this is not the right way to get good arithmetic
properties, because complex conjugation is not an algebraic operation. To see this,
think of the case k = 2; then S2(Γ) is isomorphic to the space of holomorphic 1-
forms on the compact modular curve X0(N), and the isomorphism just mentioned
corresponds to the usual Hodge decomposition H1 = H1,0 ⊕ H0,1 valid for any
compact Riemann surface, but this decomposition is transcendental and in algebraic
contexts must be replaced by the isomorphism between H1 and the quotient of the
space of “differentials of the second kind” (meaning meromorphic 1-forms having
residue 0 at all of their poles, or better, meromorphic 1-forms that are locally
the derivatives of meromorphic functions) by the subspace of exact differentials
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(global derivatives of meromorphic functions). For higher weights this means that
we will have to work with the spaces M !

k(Γ) and Mmer
k (Γ) of weakly holomorphic or

meromorphic modular forms of weight k on Γ, rather than with just the holomorphic
ones. (Recall that “weakly holomorphic” means “holomorphic in the upper half-
plane but meromorphic at the cusps”.) Instead of thinking of usual cusp forms
as holomorphic modular forms that are small at infinity, we should see them as
those that have vanishing constant terms at all cusps and hence can be integrated
any number of times. We thus define the space S!

k(Γ) of weakly holomorphic cusp
forms of weight k as the space of forms in M !

k(Γ) satisfying the same vanishing
condition (i.e., having at every cusp a Fourier expansion of the form

∑
n�−∞

cnq
n

with c0 = 0), and the larger space Smer
k (Γ) of meromorphic cusp forms or cusp

forms of the second kind as the space of forms in Mmer
k (Γ) that are locally (k−1)st

derivatives (i.e., that satisfy the above condition at cusps and that have a Laurent
series with vanishing coefficients of (τ − τ0)−i for all 0 < i < k at all poles τ0
in the upper half-plane). For F belonging to either of these two spaces, we can

define an Eichler integral F̃ of F just as before (but replacing “holomorphic” by
“meromorphic” in its definition in the case of Smer

k (Γ)), and Bol’s identity implies
just as before that rF is a cocycle (and in fact a parabolic cocycle) in H1(Γ, V ). We
then get an identification of the parabolic cohomology group H1

par(Γ, V ) with the

space Sk(Γ) = Smer
k (Γ)/Dk−1(Mmer

2−k(Γ)) = S!
k(Γ)/Dk−1(M !

2−k(Γ)). This space has
twice the dimension of Sk(Γ). (More precisely, there is a short exact sequence of
Hecke modules 0 −→ Sk −→ Sk −→ S∨k −→ 0 given by mapping (F, f) ∈ Sk×Sk to

the sum over all points of X0(N) of the residues of F (τ)f̃(τ)dτ .) This means that
to each normalized Hecke eigenform f in Sk(Γ) we can associate a meromorphic
modular form F (which can be chosen if we like to be weakly holomorphic, or even
to be holomorphic at all cusps except ∞) that has the same eigenvalues as f with
respect to all Hecke operators modulo the (k− 1)st derivatives of meromorphic (or
weakly holomorphic) modular forms of complementary weight 2−k. However, since
Sk has only a canonical filtration rather than a canonical splitting, this F is only
canonically defined up to a rational multiplicative factor (if we choose F to have
rational Fourier coefficients) and the additition of a rational multiple of f and of a
(k−1)st derivative. Once we have chosen F , we fix the choice of its Eichler integral

F̃ by imposing k − 1 linearly independent conditions with coefficients in Q on the

polynomials rF (γ) = F̃ |(1 − γ) (e.g., by requiring that rF vanishes identically for
γ = T =

(
1 1
0 1

)
and that the constant term of the polynomial rF (γ) vanishes for

some chosen γ 6∈ 〈T 〉; cf. [12] for more details and examples). If we make these
choices, then all values of the associated cocycle rF belong to V (Q)η+ ⊕ V (Q)iη−
for some real numbers η± that are well-defined up to multiplication by rational
numbers and the addition of rational multiples of the original periods ω±.

We now make this explicit for the special case of the cusp form f8. This is ac-
tually only one of 14 cases of cusp forms fN ∈ S4(Γ0(N)), corresponding to the 14
families of Calabi-Yau 3-folds whose corresponding Picard-Fuchs differential equa-
tions are hypergeometric (see the next section for more details), with values of N
ranging from 8 to 864, the most famous of these being the case N = 25 correspond-

ing to the hypergeometric function
∑
n

(5n)!
n!5 t

n and to the mirror quintic family that
launched the whole field of mirror symmetry. These families are discussed in detail
in [12], where an explicit choice of meromorphic cusp form fmN with the same Hecke
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eigenvalues as fN is made for each of the 14 cases and the periods and quasiperi-
ods computed numerically to high precision and shown to agree with entries of the
transition matrices between bases of the spaces of solutions of the Picard-Fuchs
equations at the conifold point and at the “MUM point” t = 0. For N = 8 we can
choose as our meromorphic modular form F with the same eigenvalues as f8 any
of the three forms

F1(τ) =
η(2τ)12η(4τ)4

η(8τ)8
, F2(τ) =

η(2τ)12η(8τ)16

η(4τ)20
, F3(τ) =

η(4τ)28

η(2τ)4η(8τ)16
,

where F3 differs from F1 by 16f8 and from 256F2 by the third derivative of a
form in M !

−2(Γ0(8)). The forms F2(τ) and F3(τ) are equal to t4(2τ)f8(τ) and to
t4(2τ)−1f8(τ), respectively, with t4 as in (27). It is now easy to give the proof of
Theorem 3. For the proof of equation (24) we used the second of equations (25),
but here the first is more convenient, since it tells us that we can compute the
value of B(1) by an integral just like the one used for the value B(0) = A(0) in
equation (17), but with the differential dλ/λ replaced by simply dλ. That means
that we obtain B(1) simply by multiplying the integrand (1− τ)f8(τ/4) in (19) by

λ(τ) = 1
16 t4(τ/2). This expresses 8B(1) as the period integral

∫ 2

0
(1− τ)F2(τ/4) dτ

of the weakly holomorphic cusp form F2 as desired, the integral being convergent
because F2(τ) vanishes at the cusps τ = 0 and τ = 1/2 of Γ0(8).

5. Geometric interpretation: fibered motives

We first describe in abstract terms the geometric/motivic ideas underlying the
calculations of the last sections, and then say in a little more detail how they look
in our special case.

One way of proving an identity of the form
∫∞
x=−∞ ϕ(x)dx =

∫∞
y=−∞ ψ(y)dy

is to show that there exists a space S such that x and y are two functions on it,
and ϕ(x) resp. ψ(x) are the measures of their level subspaces; then by Fubini,
both integrals are equal to the measure of S. This is a metaphoric rendering of
a persistent theme in the arithmetician’s study of differential equations that come
from geometry as follows. Suppose we are given a hypergeometric variation of
Hodge structures V on the torus Gm = SpecC[λ, λ−1]. That V is hypergeometric
simply means that the period(s) of H = Vλ can be written formally as

∑
Γ(k)λk,

where Γ(k) =
∏
i Γ(li(k))mi for some linear functions li(k) = qik + ri with qi ∈ Z,

ri ∈ Q and some exponents mi ∈ Z. The precise interpretation of the summation
sign can be broader than the one we use in our examples where the products Γ(k)
will have the factor k! in the denominator, as in the case of Gauss’s m+1Fm, so
that the summation can be chosen to be over k ∈ Z≥0.

Now fix λ = λ0. The Hodge structure Vλ0
plays the role of the space S above,

and we will see in a moment how two different lifts of the hypergeometric indices
occurring in Γ(k) can be thought of as corresponding to the two functions x, y,
providing a conceptual explanation of the identity A−1/2 = B−1/2.

Choose a lift of Γ(k) to Γ̃(n, k) given by the formula Γ̃(n, k) =
∏
i Γ(l̃i(n, k))mi ,

where l̃i(n, k) are now linear functions in two variables of the form l̃i(n, k) = pin+

qik + ri, so that Γ̃(0, k) = Γ(k), and set formally

(29) Cn =
∑
k

Γ̃(n, k)λk0 (n ∈ C).
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(In our examples the lifts Γ̃(n, k) have a k! in the denominator and the sum over
k ∈ Z≥0 is convergent, but in general the summation in (29) has to be understood
formally.) The expressions Cn satisfy a finite-length recursion R(Cn) = 0 for n
belonging to any coset n0 + Z, and there is a corresponding linear differential op-
erator L (the formal Mellin transform of R) that formally annihilates the doubly
infinite series

∑
n∈n0 +Z Cnt

n for any n0 ∈ C. In the geometrically interesting sit-

uations when Γ̃(n, k) is balanced, i.e. when
∑
imipi =

∑
imiqi = 0, this doubly

infinite in n series typically diverges for all values of t, but the truncated series
Φn0

(t) =
∑
n∈n0 +Z≥0

Cnt
n has finite radius of convergence and satisfies an inho-

mogeneous equation LΦn0
= r(t), where r(t) is a finite Laurent series times tn0 .

A formal analogue of Cauchy’s formula would express Cn as an integral of the
form

∫
Φ(t)t−n dtt . In particular, the same quantity

(30) C0 =

∫
Φ(t)

dt

t
,

can be interpreted, depending on one’s optic, as (a) the value at 0 of the solution
of the recursion R or, alternatively, (b) as the period of the Hodge structure H, or
else (c) a period in the Hodge structure arising in the cohomology of the t-torus
SpecC

[
t, t−1

]
with coefficients in the Hodge module H given by L. We will say that

the Hodge structure H is fibered out by t into a Hodge module H on Gm(t). The
mental picture behind this wording is that of an invertible function, or a “unit”,
on the motive M that underlies H which turns it into a pencil of motives M over
the t-torus. One of the benefits of the passage to a fibered motive from a variety
equipped with a function fibering it into a pencil is that in real-life applications
one will typically compactify and resolve in order to arrange a smooth proper
morphism, in which case rubbish cohomology classes are often acquired along the
way that obscure the picture and cause a lot of struggle with unnecessary details.

As we have already mentioned, one can consider two different lifts of the same
one-variable gamma product, corresponding to two different “fibering-outs” of the
same motive over two tori Gm(t′) and Gm(t′′). Recall that the role of the space
S is now played by the motive M , while the units t′, t′′ are analogues of x and y.
One should view the triple (H, t′, t′′) as being a (Hodge) correspondence between
H1(Gm(t′),H′) and H1(Gm(t′′),H′′), and expect, generically, the orders of R′ and
R′′ to be equal to the rank of H. The values at integer arguments of the solutions
to R′ and R′′ that are in the respective Q-Betti spaces should span the same space
of periods. This conceptual picture can be used as a tool to produce and prove
statements about the equality of periods. Relatively straightforward in the cases
of pure Hodge structures, such as period matrices of elliptic curves or periods of a
conifold Calabi–Yau fiber of the Landau–Ginzburg model of a rank 1 Fano 4-fold
(the case treated in this paper), this quickly becomes a source of much less trivial
identities as one passes to iterated variations of mixed Hodge structures and their
special fibers.

Summing up these observations, one anticipates a relation between the value
of the motivic gamma function

(31) Γmot
H (s) :=

∫
Φ(t) ts

dt

t
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at s = 0 and the entries of the period matrix of H — provided, of course, that one
can make the meaning of the integral precise. We refer the reader to the recent
paper [3] for the fundamentals of motivic gammas.

A final remark here is that the comparison of higher derivatives rather than
values of the motivic gamma functions at integer arguments arising from different
fiberings H of the same Hodge structure H

(32)
drΓmot
H (s)

dsr
=

∫
Φ(t) ts log(t)r

dt

t

is an equally important subject, pertaining now to the study of mixed, rather than
pure, motives. Special cases of Boyd’s conjectures on Mahler measures of Laurent
polynomials, for example, can be interpreted as statements about the existence of
a single mixed motive that can be fibered out in two specific ways as above. In
what looks at first like a totally different setup, the Gamma Conjecture relates the
motivic gamma derivatives to the expansion coefficients of the “gamma class” of
a Fano variety whose regularized quantum differential equation is H. In the final
section of the paper we will give numerical evidence for this in the Apéry case.

The results of the preceding sections can be viewed as working out a case of
the correspondence between two fiberings of a very specific H, and studying the
respective motivic gammas. Explicitly, we start with the gamma product Γ(k) =

256−k
(

2k
k

)4
=
(−1/2

k

)4
, fix λ0 = 1 and consider the two lifts given by

(33) Γ̃A(n, k) =

(
n− 1

2

k

)2(−n− 1
2

k

)2

and

(34) Γ̃B(n, k) = 42n−1

(
− 1

2

k

)2(
Γ( 1

2 )

Γ(n− k + 1
2 )Γ(k − n+ 1)

)2

,

corresponding to the two sequencesAn−1/2 andBn−1/2 (cf. equations (14) and (21)).
The generating series of our gamma product

(35) ξ(λ) =

∞∑
k=0

Γ(k)λk =

∞∑
k=0

(
2k

k

)4(
λ

256

)k
satisfies the differential equation

(36)
(
D4
λ − λ(Dλ + 1/2)4

)
ξ(λ) = 0,

(
Dλ = λ

d

dλ

)
,

one of the 14 hypergeometric DEs of order 4 that arise as regularized quantum
differential equations of complete intersections in weighted projective spaces. The
argument λ0 = 1 is the conifold singularity of this equation. By Picard, hyperge-
ometric differential equations with rational indices are known to be of geometric
origin, or Picard–Fuchs, which simply means that their solutions can be repre-
sented as integrals of certain algebraic differential forms over relative cycles in a
pencil of varieties. In our case, the pullback of (36) under the map of tori given by
λ = 256 Λ2, i.e. the differential equation

(37)
(
D4

Λ − 256 Λ2(DΛ + 1)4
)

Ξ(Λ) = 0 ,
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corresponds to the pencil given by the Laurent polynomial on G4
m

(38) Λ−1 =

4∏
i=1

(
xi +

1

xi

)
.

This shows that the space of solutions to (36) (or the dual space of flat sections) is
a variation of Q–Hodge structures.

The dimension of the space of analytic local solutions to (36) drops by 1 at
the conifold point. The corresponding period matrix is of rank 3, but because of
the symplectic polarization a rank 2 Q–Hodge structure H splits off. The standard
expectation is that it comes from a modular newform, so a correspondence should
exist between the rigid Calabi–Yau threefold C given by

(39)

3∏
i=0

(
xi +

1

xi

)
= 16 .

and a Kuga-Sato variety. We refer the reader to papers [6], [14], [15], [17], [18],
[19] for various aspects of the link between rigid Calabi–Yau threefolds and modular
forms, and also [12] for an explicit construction of the correspondence with a Kuga-
Sato variety in the case (39).

The rank 2 motive M that underlies H can be fibered out “in different direc-
tions” that correspond to the choice of the lifts. In our situation one can be looking
for special choices that turn H into a modular variation of Hodge structures. This
means that in the differential equation LΦ1/2(t) = 0 that controls H, the solution
Φ1/2(t) can be chosen to be a weight 2 modular form, and t a Hauptmodul for the
same congruence subgroup. The modular parameter τ could then be interpreted

as the ratio
Φ∗

1/2(t)

Φ1/2(t) of the normalized log to the analytic solution around t = 0;

the functions Φ1/2(t(τ)), τΦ1/2(t(τ)) = Φ∗1/2(t(τ)) and τ2Φ1/2(t(τ)) form a basis of

the space of local solutions of this differential equation around a cusp. Among the
entries of the period matrix of H should then be the value of the Eichler integral of
the weight 4 form Φ(t(τ))t′(τ). This can be made even more precise if one notices
that the essential ingredient of the L-function of C computed by the point count is
the Mellin transform of the level 4 form f8(τ).

In our examples, the weight 2 modular forms appearing in (4) and (26) arise
exactly in this way from the two lifts of Γ(k) indicated above, as summed up in the
following table:

Γ̃(n, k) t(τ) Φ1/2(t(τ))

Case A
(
n−1/2
k

)2(−n−1/2
k

)2 η(τ)12 η(6τ)12

η(2τ)12 η(3τ)12

η(2τ)7η(3τ)7

η(τ)5 η(6τ)5

Case B 24n−2
(−1/2

k

)2(−1/2
k−n

)2 η(τ)8η(4τ)16

η(2τ)24

η(2τ)20

η(τ)8η(4τ)8

and are related to the weight 4 form f8 by

(40) f6(τ) t6(τ)′/t6(τ)1/2 = f8(τ) − 9 f8(3τ), f4(τ) t4(τ)′/t4(τ)1/2 = f8(τ).
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In contrast, the forms fN (τ)t′N (τ) and fN (τ)t′N (τ)/tN (τ) for N = 4 or 6 are
weight 4 Eisenstein series whose periods involve the number ζ(3) occurring in the
Gamma Conjecture [10]. In our language, these would correspond to “fibering–
outs” of a Hodge–Tate structure that arises in a special fiber in a highly reducible
hypergeometric variation of mixed Hodge–Tate structures. Even though these two
rank 2 Hodge structures appear to be completely dissimilar at first sight, both are
members in a continuous family of integrals varying with the parameter s of the
motivic gamma function. The reason to pay special attention to the cases where
s is an integer or half–integer is that we want our Hodge structures to be defined
over Q, which requires exp(2πis) ∈ Q.

6. Asymptotics

In this section we discuss the asymptotic properties of various solutions of the
recursions (1) and (23). The two cases are very different. In the Apéry case, if we
consider the homogeneous version of the shifted recursion (15) (with A(x) replaced
by an unknown solution F (x) and the right-hand side replaced by 0) and assume
as Ansatz that F (x) ∼ CxxµP (1/x) for x large, where C and µ are constants and
P is a power series, then we find two asymptotic solutions, an exponentially large
one and an exponentially small one, given by

(41) LA(x) ∼ Cx0
x3/2

P
( 1

64x
√

2

)
, SA(x) ∼ C−x0

x3/2
P
(
− 1

64x
√

2

)
,

where C0 = 17+12
√

2 = 33.9705 · · · and P (X) ∈ Q[[X]] is a power series beginning

P (X) = 1 + 30X + 274X2 − 17132X3 − 444234X4 + 41390724X5 + · · · ,

In particular, since the solution space of the recursion in a fixed residue class Z+x0

(x0 ∈ C) is 2-dimensional, we deduce that any unbounded solution of the recursion
in this residue class grows exponentially and is asymptotically equal to a multi-
ple of LA(x) to all orders in 1/x, while any bounded solution decays exponen-
tially and is asymptotically equal to a multiple of SA(x) to all orders. For exam-
ple, from Stirling’s formula and the Euler-Maclaurin formula one finds easily that
A(x) ∼ 2−9/4π−3/2LA(x) to all orders as x → ∞. Notice that the small solution
is asymptotically about 1154n times smaller than the large one. It is this huge
dichotomy that permitted Apéry to prove the irrationality of ζ(3), since it implies
that the ratio of the two solutions of (1) with initial values (0, 1) and (1, 5) tends
to its limit 1

6 ζ(3) with great exponential rapidity.
For the B-case the situation is different because if we make the same Ansatz

CxxµP (1/x) for the recursion (23), then the corresponding characteristic equation
is C2 − 2C + 1, which has a double root at C = 1 (or C = 16 if we consider (8)
instead), as opposed to the two different roots C±1

0 of the corresponding equation
C2 − 34C + 1 = 0 in the A-case. This means that there are now two asymptotic
solutions of comparable size: a “small” solution

(42) SB(x) ∼ 1

x
− 1

24 x3
+

17

210 x5
− 169

214 x7
+

50777

222 x9
− · · ·

in 1
xQ[[ 1

x2 ]] and a “large” (or “logarithmic”) solution

(43) LB(x) ∼
(
log(16x) + γ

)
SB(x) +

5

24x3
− 1219

30720x5
+

304469

10321920x7
− · · ·
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in (log x + κ)SB(x) + 1
x3Q[[ 1

x2 ]], where the constant κ = log 16 + γ (γ = Euler’s
constant) has been chosen for later convenience. This in turn means that, whereas
in the A-case we get only a filtration of the 2-dimensional solution space, with a
uniquely defined solution that is asymptotically equal to SA(x) but whose second
solution that is asymptotically equal to ∼ LA(x) that is defined only up to multiples
of the first, in the B-case we get a well-defined basis of two solutions S(x) and L(x)
having the asymptotics SB(x) and LB(x), respectively. More precisely, this means
that the recursion relation (23) has two meromorphic solutions LB(x) and SB(x)
(from now on we omit the subscript “B” for typographical convenience) determined
uniquely by the requirements that

S(x) =
1 + o(1)

x
, L(x) =

log(16x) + γ + o(1)

x

as x → ∞ with x real. These functions then satisfy the asymptotic formulas
S(x) ∼ SB(x) and L(x) ∼ LB(x) to all orders in 1/x as x → ∞ with x real or as
<(x) → ∞ with =(x) fixed, where SB(x) and LB(x) are the asymptotic solutions
given above, and have poles (of order at most 3) at x = − 1

2 , −
3
2 , . . . as their only

singularities.
It follows that any solution F (x) of the recursion on a fixed class in C/Z is a

linear combination λL(x) + µS(x), where the coefficients λ and µ are determined
by xF (x) = λ(log(16x) + γ) + µ+ o(1) as x→∞. In particular, it turns out that
both 16−nBn and B(n) for n ∈ Z≥0 are multiples of L(x) (where x = n + 1

2 or n,
respectively), with the coefficient of S(x) being 0 in both cases (this was the reason
for the choice of the constant log(16) + γ in the definition of L(x)), but that B(x)
for non-half-integral values of x is not a multiple of L(x). The full result is given
as follows.

Theorem 5. For general complex values of x, the solutions B(x) and B(−x)
are given in terms of L(x) and S(x) by

(44) B(x) =
3− cos 2πx

2π2
L(x) +

sin 2πx

2π
S(x) , B(−x) =

cos2 πx

π2
L(x) .

In particular, the numbers 16−nBn and B(n) (n ∈ Z≥0) are multiples of the “large”
solution:

(45) Bn =
2

π2
L(n+ 1

2 ) , B(n) =
1

π2
L(n) (n = 0, 1, 2, . . . ) .

Corollary 1. The functions L(−x) and S(−x) are given in terms of L(x)
and S(x) by(

L(−x)/2π2

S(−x)/2π

)
=

1

2 cos2 πx

(
3− cos 2πx sin 2πx

8 tanπx 3− cos 2πx

)(
L(x)/2π2

S(x)/2π

)
.

Proof. We only need to prove equation (44), since (45) is just its specialization to
half-integral x. Since both B(x) and B(−x) are solutions of the equation, by the
previous remarks it suffices to prove the asymptotic formulas

(46)
xB(x) =

3 + cos 2πx

2π2

(
log(16x) + γ

)
log x +

sin 2πx

2π
+ o(1) ,

xB(−x) =
cos2 πx

π2

(
log(16x) + γ

)
log x + o(1)
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as x→∞. We prove the second statement only, the proof of the first being similar.
Suppose that |x| → ∞ with a fixed argument between −π and π. From the formula
Γ(x)Γ(1− x) = π

sinπx we have

π

cos2 πx
B(−x) =

∞∑
k=0

(
− 1

2

k

)2(
Γ(x+ k + 1

2 )

Γ(k + 1− x)

)2

=

∞∑
k=0

(
− 1

2

k

)2(
1

x+ k
+ O

( 1

(x+ k)2

))
.

The second term can be estimated easily (by using that the binomial coefficient as

O(k−1/2) and breaking up the sum into k ≤ |x| and k > |x|) as O( log x
x2 ), and the

first is equal to

∞∑
k=0

((
− 1

2

k

)2

− 1

π(k + 1)

)
1

x+ k
+

1

π(x− 1)

∞∑
k=0

(
1

k + 1
− 1

k + x

)
=

c+ log x+ γ + o(1)

πx

for a certain constant c. To calculate it, we use the modular parametrization:

c =

∞∑
k=0

(
π

(
− 1

2

k

)2

− 1

k + 1

)
= lim

λ→1

(
π β(λ) − 1

λ
log
( 1

1− λ

))
= lim

τ→0

(
π θ3(τ)2 − 1

λ(τ)
log
( 1

1− λ(τ)

))
= lim

τ→∞

(
−πiτ θ3(τ)2 +

1

1 − λ(τ)
log λ(τ)

)
= log 16 ,

where we have used the modularity properties ϑ3

(
− 1
τ )2 = −iτϑ3(τ)2 and λ

(
− 1
τ

)
=

1− λ(τ). Finally, the corollary follows directly from the theorem, since(
3− cos 2πx − sin 2πx
2 cos2 πx 0

)−1(
2 cos2 πx 0

3− cos 2πx sin 2πx

)
=

1

2 cos2 πx

(
3− cos 2πx sin 2πx

8 tanπx 3− cos 2πx

)
.

7. The kappa series and the Gamma Conjecture

In [10], we considered the Frobenius deformation of Apéry’s recursion (1), i.e.,

(n+ ε+ 1)3An+1(ε) − P (n+ ε)An(ε) + (n+ ε)3An−1(ε) = 0

with P (x) = 34x3 + 51x2 + 27x + 5, and its solution, the sequence of functions
An(ε) defined by the initial condition A−1(ε) = 0, A0(ε) = 1. We then defined the
kappa function by

κ0(ε) = lim
n→∞

An(ε)

2−9/4π−3/2LA(n+ 1/2 + ε)
.

The kappa function is meromorphic in the complex plane and holomorphic at 0.

Expand kappa in Taylor series around 0 as
∑∞
j=0 κ

(0)
j εj . The question was raised in

[10] and later investigated in [3] of whether the expansion coefficients κ
(0)
j are in the

algebra of multiple zeta (or merely Riemann zeta) values. We found numerically
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with high precision that

(47) κ
(0)
0 = 1, κ

(0)
1 = 0, κ

(0)
2 = −1

3
π2, κ

(0)
3 =

17

6
ζ (3) ,

κ
(0)
4 =

1

45
π4, κ

(0)
5 = −17

18
π2ζ (3) +

7

3
ζ (5) ,

κ
(0)
6 =

4

945
π6 + 4 ζ (3)

2
, κ

(0)
7 = −7

9
π2ζ (5) +

7

108
π4ζ (3)− 5

3
ζ (7) ,

κ
(0)
8 = − 11

37800
π8 + 6 ζ (5) ζ (3)− 4

3
π2ζ (3)

2
,

κ
(0)
9 =

8

9
ζ (9) +

34

9
ζ (3)

3
+

5

9
π2ζ (7) +

149

11340
π6ζ (3) +

5

54
π4ζ (5) ,

κ
(0)
10 = − 107

249480
π10 − 4 ζ (5)

2 − 8 ζ (3) ζ (7) +
4

45
π4ζ (3)

2 − 2π2ζ (3) ζ (5) ,

involving only Riemann zeta values, while κ
(0)
11 is given numerically by

κ
(0)
11 = − 503

680400
π8ζ (3) +

199

5670
π6ζ (5) +

49

270
π4ζ (7)− 34

27
π2ζ (3)

3

− 8

27
π2ζ (9) +

28

3
ζ (3)

2
ζ (5) + 66 ζ (11) +

2

3
ζ (3, 5, 3) .

The function defined by the expression κ0(−ε)/ε3 can be shown [3] to satisfy
the original homogeneous (i.e. without the correction term) three–term recursion
(1). It follows that the derivatives of κ0 at any integer argument n can be expressed
linearly in terms of the two sets of derivatives, at 0 and at 1. Computing many
more derivatives at 0 numerically and using them to compute near ε = 1 (for
this we use the fact that the function κ0(ε)/Γ(1 + ε)3 is entire and therefore has
an extremely rapidly converging Taylor expansion), we find that for the first five
expansion coefficients

κ
(0)
1,j :=

1

j!

dj

dxj

(
κ(0)(x)

(1 + x)3

) ∣∣∣∣
x=1

one has

κ
(0)
1,0 =

1

6
ζ (3) , κ

(0)
1,1 = − 1

90
π4, κ

(0)
1,2 = − 1

18
π2ζ (3) +

11

3
ζ (5) ,(48)

κ
(0)
1,3 = − 13

1890
π6, κ

(0)
1,4 =

59

3
ζ (7) +

19

540
π4ζ (3)− 11

9
π2ζ (5) ,(49)

but

κ
(0)
1,5 = − 29

56700
π8 − 10 ζ (3) ζ (5)− 4ζ (3, 5) .

We have introduced the factor (1 + x)−3 because it turns out to make all of the
conjectural formulas above homogeneous in the weight. In fact, the first identity in
(48) is a rewording of Apéry’s original discovery, see [3]. Reasoning in the spirit of
the Gamma Conjecture, we predicted in [10] that the top–weight components of the

leading expansion coefficients of kappa at 0 and at 1, namely the numbers κ
(0)
j for

j = 0, . . . , 10 and κ
(0)
1,j for j = 0, . . . , 4 should be equal to the expansion coefficients of

the normalized gamma class of the orthogonal Grassmannian OG(5, 10) of isotropic
5-planes in a 10-dimensional space endowed with a non-degenerate orthogonal form.
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Recall that the normalized gamma class of a smooth variety V of index d is
given by the formula

Γ̂norm(V ) =

∏
α Γ(1 + rα)

Γ(1 + (−KV )/d)d
,

where the product in the numerator is taken with respect to the formal Chern
roots rα of the tangent bundle TV (so that c(TV ) =

∏
α(1 + rα)). We will explain

in the particular case of OG(5, 10) how to compute the expansion coefficients of the
normalized gamma class with respect to the elements of the Lefschetz basis. We
warn the reader that the normalized gamma class should not be confused with the
regularized gamma class considered by the authors in [10] and given by the formula

Γ̂reg(V ) =
(∏

α Γ(1 + rα)
)
/Γ(1 + (−KV )). In the context of Fano topology, both

relate naturally to the gamma class of Calabi–Yau subvarieties: in the former case,
of a d–fold complete intersection, and in the latter, of a Calabi–Yau anticanoni-
cal section hypersurface. It is the normalized gamma class that, by definition, is
essentialy stable under passage to hyperplane section.

Similarly to the case of the ordinary Grassmannian, where the classes of the
Schubert cells are numbered by partitions and expressed as Schur polynomials in
the Chern roots of the universal quotient bundle Q, the cell classes of OG are
numbered by strict partitions—in our case, those that lie within the 4-by-4 box.
As in the ordinary case, there is a map from the ring of symmetric functions to
the cohomology ring, but the formulas are more complicated. In particular, the
elementary symmetric functions ei, i = 1, . . . , 4 evaluated on the Chern roots of
Q give twice the cell classes that correspond to the special (one-strip) partitions:

τi = ci(Q)
2 , while the class c5(Q) vanishes. Thus, the τi’s generate the cohomology as

algebra, the ideal of relations being generated by the Pragacz–Ratajski polynomials:

P̃i,i(X) = τ2
i + 2

i−1∑
k=1

(−1)kτi+kτi−k + (−1)iτ2i (i = 1, . . . , 4).

Looking (e.g. with the help of Gröbner bases) for a linear combination of τ3
1 and τ3

annihilated by multiplication by the class τ5
1 , we find that the class P = 7τ3

1 − 12τ3
is primitive in weight 3, in the sense that Pτ5

1 = 0, Pτ4
1 6= 0. Therefore, the two

Lefschetz sl2–submodules in H∗(OG(5, 10),Q) are spanned by {τ i1 | i = 0, . . . , 10}
and {Pτ i1 | i = 0, . . . , 4} respectively. Passing from the full Chern class Ch(Q, t) =

1 +
∑5
i=1 2τit

i to the Chern character in the usual way, using the isomorphism

TOG =
∧2

Q, which implies the relation between the Chern characters

Ch(TOG, t) =
1

2

(
Ch(Q, t)2 − Ch(Q, 2t)

)
,

and expanding

Ch(TOG, t) =
∑
i≥0

pi
i!
ti,

we compute the normalized gamma class with the formula

Γ̂norm(OG(5, 10)) =
exp
(
−p1γt+

∑10
i=2(−1)i ζ(i)i pit

i
)

exp
(
−γτ1t+

∑10
i=2(−1)i ζ(i)i τ

i
1
ti

i

)8 (mod t11) .

By straightforward computation we prove:
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Theorem 6. The expansion coefficients of the normalized gamma class of
OG(5, 10) with respect to the Lefschetz basis

{τ i1 | i = 0, . . . , 10} ∪ {Pτ i1 | i = 0, . . . , 4}
coincide with the top–weight components of the leading expansion coefficients of the
kappa function at 0 and at 1 as found experimentally and given above in (47), (48):

Γ̂norm(OG(5, 10)) = 1 +

10∑
i=2

κ
(0)
i τ i1t

i +

4∑
j=0

κ
(0)
1,jPτ

j
1 t
j+3.

Afterword

We would like to thank Spencer Bloch, Masha Vlasenko, and Duco van Straten
for many illuminating discussions in connection with the present paper. All three
are members of the group that undertook to pursue the subject of motivic gamma
functions. We would like to mention in particular two papers that followed our
discussions at meetings in Bures and at Herstmonceux Castle in June 2016. In [3],
Bloch and Vlasenko work out the relation between the Mellin transform associated
to a solution of a DN -type equation with the corresponding Apéry series, and
link the Apéry constants with periods of limiting mixed Hodge structures. In
[9], the present authors and van Straten consider dimensional interpolation of the
Riemann-Roch–Hirzebruch formalism for Grassmannians and indicate how Apéry-
like numbers can be interpolated with respect to the dimensional parameter as well
as the index. In this context we refer the reader to [13] for the foundations of
D-modules on tori and the algebraic Mellin transform. We would also like to thank
Andrew Kresch for communicating to us facts about cohomology of the orthogonal
Grassmannian and for organizing the activity in Konolfingen in Switzerland where
parts of this work were first presented.

Above all, we want to express our gratitude to Boris Dubrovin, to whose mem-
ory this paper is dedicated, for the inspiration that he provided for us and for many
other members of our generation, as both a mathematician and a person of gigantic
stature. It was an honor and a pleasure to learn from him and to work with him,
and his premature passing leaves a gap in our lives. In view of his many contribu-
tions to the theory of mirror symmetry, and in particular his proof of the Gamma
Conjecture for projective spaces of every dimension, we hope that this paper is an
appropriate tribute to him.
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