VALEURS DES FONCTIONS ZÉTA DES CORPS
QUADRATIQUES RÉELS AUX ENTIERS NÉGATIFS*

par

D. ZAGIER

Notre but est de démontrer, pour les valeurs aux entiers négatifs de la fonction zêta d'une classe d'idéaux \(A \) (au sens restreint) d'un corps quadratique réel, une formule de la forme

\[
\zeta(A,-n) = \sum_{(a,b,c)} \delta_n(a,b,c) \quad (n=0,1,2,...),
\]

où la sommation porte sur les formes quadratiques réduites (au sens de Gauss) \(ax^2 + bxy + cy^2 \) associées à \(A \) et \(\delta_n \) est une certaine fonction rationnelle. Cette formule contient le théorème de C. Meyer sur \(\zeta(A,0) \) et implique aussi des bornes pour les dénominateurs des nombres rationnels \(\zeta(A,-n) \). Le point de départ est la décomposition de \(\zeta(A,s) \) donnée en [6].

Récemment, Shintani [4] a calculé \(\zeta(A,-n) \) pour les classes d'idéaux \(A \) dans les corps totalement réels de degré quelconque par une méthode qui est en principe la même que celle utilisée ici. La formule qu'il trouve contient celle que nous donnons pour le cas quadratique (§ 2). Cependant, il m'a paru intéressant de reprendre ce cas pour décrire le lien avec la théorie de la réduction (ou des fractions continues) et pour expliquer comment on peut obtenir des théorèmes d'intégralité pour \(\zeta(A,-n) \).

* Ce travail ne correspond pas à l'exposé que j'ai donné à CAEN.
§ 1. LA DÉCOMPOSITION DE $\zeta(M, s)$.

Soient K un corps quadratique réel, $M \subset K$ un module de rang 2 et V le groupe des unités ϵ totalement positives ($\epsilon \gg 0$) telles que $\epsilon M = M$. Rappelons, d'une part que le discriminant de M est le nombre rationnel défini par

$$D(M) = (\xi_1 \xi_2 - \xi'_1 \xi'_2)^2,$$

où ξ_1, ξ_2 est une base quelconque de M et ξ' le conjugué de ξ, et d'autre part que la norme $N(M)$ de M est le p.g.c.d. des normes $N(\xi) = \xi \xi'$ ($\xi \in M$). (Le nombre $N(M)$ est rationnel, mais pas nécessairement entier). On a:

$$D(M) = N(M)^2 D,$$

où D est le discriminant de l'ordre $O_M = \{\lambda \in K| \lambda M = M\}$ ($D = df^2$, où d est le discriminant de K et f le conducteur de O_M).

Nous définissons la fonction zêta de M par

$$\zeta(M, s) = N(M)^S \sum_{\xi \in M/V, \xi \gg 0} \frac{1}{N(\xi)^S}.$$

Il est clair que la valeur de $\zeta(M, s)$ ne change pas si on remplace M par un module λM équivalent au sens strict ($\lambda \gg 0$). Si M est un idéal (fractionnaire) de K, c'est-à-dire si $f = 1$, alors on a

$$\zeta(M, s) = \zeta(A, s),$$

où A est la classe d'idéaux (au sens strict) qui contient M et

$$\zeta(A, s) = \sum_{a \in A} N(a)^{-s}$$

la fonction zêta de A usuelle. (N.B. : $\zeta(A, s) = \zeta(A^{-1}, s)$).

Par rapport à une base ξ_1, ξ_2 de M, la fonction $\xi \mapsto \xi \xi'/N(M)$ ($\xi \in M$) devient une forme quadratique primitive

$$Q(p, q) = N(p \xi_1 + q \xi_2)/N(M)$$

to coefficients entiers et de discriminant D. La classe d'équivalence de Q par rapport à $SL_2(\mathbb{Z})$ est bien définie si on ne considère que des bases orientées (c'est-à-dire telles que $\xi_1 \xi'_2 - \xi'_1 \xi_2 > 0$). La forme Q ne change pas si on remplace M par λM et ξ_1, ξ_2 par $\lambda \xi_1, \lambda \xi_2$ ($\lambda \in K$, $\lambda \gg 0$). On obtient de cette manière une bijection entre les classes d'équivalence des modules M avec une valeur de D fixée et les classes d'équivalence des formes quadratiques binaires primitives de discriminant D.

136
Parmi les formes équivalentes Q correspondant à M il y a un nombre fini de formes réduites au sens de la théorie de la réduction de Gauss (c'est-à-dire $Q(p,q) = a_p^2 + bpq + cq^2$, $\frac{b+\sqrt{D}}{2c} > 1 > \frac{b-\sqrt{D}}{2c} > 0$). Ce sont les formes

$$Q_k(p,q) = \frac{\sqrt{D}}{w_k} - w'_k(pw_k + q)(pw'_k + q)$$

(k=0,1,...,r-1),

où $w_0, ..., w_{r-1} \in K$ sont les nombres définis à l'aide de la théorie des fractions continues de la manière suivante: pour chaque base orientée x_1, x_2 de M, nous développons x_1/x_2 en fraction continue

$$\frac{x_1}{x_2} = a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \frac{1}{\ddots}}} = [a_0, a_1, a_2, ...]$$

avec $a_i \in \mathbb{Z}$, $a_1, a_2, ... \geq 2$; alors il existe $i_0 \geq 0$ et $r \geq 1$ tels que

$a_{i+r} = a_i$ pour tout $i \geq i_0$ (nous choisissons r de façon minimale), et la période $\langle a_{i}, a_{i+1}, ..., a_{i+r-1} \rangle$ est indépendante, à permutation cyclique près, du choix de la base x_1, x_2. Notons cette période $\langle b_0, ..., b_{r-1} \rangle$ avec $b_i \in \mathbb{Z}$, $b_i \geq 2$. Alors les nombres

$$w_k = [b_k, b_{k+1}, ..., b_{r-1}, b_0, ..., b_{r-1}, b_0, ..., b_{r-1}]$$

$$= [b_k, b_{k+1}, ..., b_{r-1}, b_0, ..., b_k]$$

$k=0,1,...,r-1$ sont réduits (c'est-à-dire $w > 1 > w' > 0$, ce qui implique que les Q_k définis par (1.2) sont des formes réduites), et ce sont les seuls nombres réduits $w \in K$ tels que le module $\mathbb{Z}w + \mathbb{Z}$ soit équivalent à M. Il est utile de remplacer M par le module équivalent $\mathbb{Z}w_0 + \mathbb{Z}$ (ce qui ne change pas $\zeta(M,s)$) et aussi d'étendre les définitions de b_k, w_k à tout $k \in \mathbb{Z}$ par $b_{k+nr} = b_k$, $w_{k+nr} = w_k$ ($0 \leq k < r-1$, $n \in \mathbb{Z}$). On a donc

$$M = \mathbb{Z}w_0 + \mathbb{Z},$$

$$w_k = [b_k, b_{k+1}, ..., b_{k+r-1}]$$

$$= b_k - \frac{1}{b_{k+1} - \frac{1}{b_{k+2} - \frac{1}{\ddots}}} = b_k - \frac{1}{w_{k+1}}$$

$k \in \mathbb{Z}$.

Nous définissons des nombres totalement positifs $A_k \in K$ ($k \in \mathbb{Z}$) par
(1.4) \[A_0 = 1, \quad A_{k-1} = A_k w_k \quad (k \in \mathbb{Z}), \]
donc
\[A_1 = \frac{1}{w_1}, \quad A_2 = \frac{1}{w_1 w_2}, \ldots, \quad A_{-1} = w_0, \quad A_{-2} = w_0 w_{-1}, \ldots. \]
L'équation (1.3) implique alors
\[A_{k-1} = A_k w_k = A_k (b_k - \frac{1}{w_{k+1}}) = b_k A_k - A_{k+1}. \]
Il s'ensuit que \(A_{k-1} \in \mathbb{Z}A_k + \mathbb{Z}A_{k+1} \) et \(A_{k+1} \in \mathbb{Z}A_{k-1} + \mathbb{Z}A_k \), donc (par induction) que le module \(\mathbb{Z}A_{k-1} + \mathbb{Z}A_k \) est indépendant de \(k \):
\[\mathbb{Z}A_{k-1} + \mathbb{Z}A_k = \mathbb{Z}w_0 + \mathbb{Z} = M \quad (\forall k). \]
On a aussi \(A_{k-1} A'_k - A_k A'_{k-1} = w_0 - w'_0 = N(M)/D \), et la forme quadratique associée à la base \(A_{k-1}, A_k \) de \(M \) est exactement la forme \(Q_k \) définie par
\[(1.2) \quad \frac{N(pA_{k-1} + qA_k)}{N(M)} = Q_k(p, q) \]
(cette forme ne dépend que de \(k (\mod r) \)). D'après (1.4) on a :
\[A_{k+r} = \frac{1}{w_k w_{k+1} \ldots w_{k+r-1}} A_k \]
et puisque \(w'_k, w'_{k+1}, \ldots, w'_{k+r-1} \) est une permutation de \(w_1, \ldots, w_r \), ceci équivaut à
\[A_{k+r} = \frac{1}{w_1 \ldots w_r} A_k = A_k A_{-k} ; \]
l'équation (1.7) implique alors que \(A_M = M \), donc que \(A_r \) appartient au groupe des unités \(V \) de \(M \). En fait, on a
\[(1.9) \quad A_r = \frac{1}{w_1 \ldots w_r} = \varepsilon^{-1}, \]
où \(\varepsilon \) est le générateur de \(V \) qui satisfait à \(\varepsilon > 1 \).

PROPOSITION 1. - Soit \(\xi \in M, \quad \xi \gg 0 \). Alors il existe une représentation unique de \(\xi \) sous la forme
\[(1.10) \quad \xi = pA_{k-1} + qA_k \]
avec \(k, p, q \in \mathbb{Z}, \quad p \geq 1, \quad q \geq 0 \).

Démonstration : D'après (1.7), on peut, pour chaque entier \(k \), écrire \(\xi \) comme \(pA_{k-1} + qA_k \) avec \(p, q \in \mathbb{Z} \), et (étant donné que \(\xi, A_{k-1} \) et \(A_k \) sont tous totalement positifs et que \(A_{k-1} A'_k - A'_k A_k > 0 \)) on a \(p \geq 1, \quad q \geq 0 \).
si et seulement si

\[
\frac{\Delta_k}{\Delta'_{k}} < \frac{\xi}{\xi'} < \frac{\Delta_{k-1}}{\Delta'_{k-1}}
\]

Mais on déduit de (1.5) que

\[
0 < \ldots < \frac{\Delta_2}{\Delta'_{2}} < \frac{\Delta_1}{\Delta'_{1}} < \frac{\Delta_0}{\Delta'_{0}} = 1 < \frac{\Delta_{-1}}{\Delta'_{-1}} < \frac{\Delta_{-2}}{\Delta'_{-2}} < \ldots
\]

et que \(\frac{\Delta_k}{\Delta'_{k}} \to 0 \) (resp. \(\infty \)) pour \(k \to \infty \) (resp. \(k \to -\infty \)) ; il y a donc exactement une valeur de \(k \) telle que (1.11) soit satisfait.

D'après (1.9), multiplier \(\xi \) par \(\varepsilon \) dans (1.10) revient à remplacer \(k \) par \(k-r \). On a donc

\[
\{ \xi \in \mathbb{M} | \xi \gg 0 \} / \mathcal{V} = \bigcup_{k \mod r} \bigcup_{p \in \mathbb{Z}} \bigcup_{q=0}^{\infty} \{ p\Delta_{k-1} + q\Delta_{k} \},
\]

et la fonction \(\zeta(M,s) \) définie par (1.1) peut s'écrire

\[
\zeta(M,s) = \sum_{k \mod r} \sum_{p=1}^{\infty} \frac{N(M)^s}{N(p\Delta_{k-1} + q\Delta_{k})^s}
\]

(1.12)

\[
= \sum_{k=1}^{r} \sum_{p,q} \frac{1}{Q_k(p,q)^s},
\]

où le symbole \(\Sigma' \) est défini par

(1.13)

\[
\sum' f(p,q) = \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} f(p,q) + \frac{1}{2} \sum_{p=1}^{\infty} f(p,0) + \frac{1}{2} \sum_{q=1}^{\infty} f(0,q)
\]

(l'égalité (1.12) vient de (1.8) et du fait que les nombres \(mA_j \) avec \(m > 0 \) possèdent deux représentations (1.10) avec \(p,q \geq 0 \) , à savoir

\(mA_j = mA_j + 0A_{j+1} = 0A_{j-1} + mA_j \)). Nous avons ainsi démontré :

THÉORÈME 1. - Soit \(M \) un module de rang 2 dans un corps quadratique réel, alors la fonction zêta de \(M \) possède la décomposition

\[
\zeta(M,s) = \sum \left(\frac{1}{Q(p,q)^s} \right)
\]

(1.12)

où \(\Sigma' \) est défini par (1.13) et \(Q \) parcourt les formes réduites dans la classe des formes quadratiques correspondant au module \(M \).

On peut donner une interprétation géométrique de la décomposition qu'on vient de décrire (voir Fig.). On plonge le module \(M \) dans \(\mathbb{R}^2 \) par

\[
\xi \mapsto (\xi, \xi')
\]

alors \(M \) peut être identifié à un sous-réseau de \(\mathbb{R}^2 \) et
\{ \xi \in M \mid \xi \geq 0 \} \rightarrow M \cap \mathbb{R}^2_+. \text{ Les } A_k \text{ sont les points extrémaux de } M \cap \mathbb{R}^2_+, \text{ c'est-à-dire les points de } M \text{ qui sont sur le bord de la clôture convexe de } M \cap \mathbb{R}^2_+. \text{ Les rayons passant par l'origine et les points } A_k \text{ partagent } \mathbb{R}^2_+ \text{ en une union infinie de cônes, le } k\text{-ième cône } C_k \text{ étant défini comme l'ensemble des points } (\xi, \xi') \in \mathbb{R}^2_+ \text{ satisfaisant à (1.11). L'opérateur du générateur } \varepsilon \text{ de } V \text{ envoie le cône } C_k \text{ sur } C_{k-1}. \text{ Puisque } A_{k-1}, A_k \text{ forment une } \mathbb{Z}\text{-base de } M, \text{ on peut faire un changement de base de } \mathbb{R}^2 \text{ qui envoie } C_k \text{ sur } \mathbb{R}^2_+ \text{ et } M \text{ sur le réseau standard } \mathbb{Z}^2 \subset \mathbb{R}^2. \text{ De cette manière, } \\
\{ \xi \in M \mid \xi \geq 0 \}/V \text{ se décompose en une union de } r \text{ morceaux isomorphes à } \mathbb{R}^2 = \{(p, q) \in \mathbb{Z}^2 \mid p, q \geq 0\} \subset \mathbb{R}^2_+ \text{ (les points du bord, c'est-à-dire ceux avec } p \text{ ou } q = 0, \text{ étant comptés avec la multiplicité } \frac{1}{2}).

K = Q(\sqrt{3})
M = \mathcal{O}_K = \mathbb{Z}w_0 + \mathbb{Z},
\quad w_0 = \frac{3+\sqrt{3}}{2} = \left[\frac{3}{2}, \frac{2}{2}\right]
\quad w_1 = \frac{3+\sqrt{3}}{3} = \left[\frac{2}{3}, \frac{3}{3}\right]
V = \{ \varepsilon^n \}, \quad \varepsilon = w_0 w_1 = 2+\sqrt{3}
\quad r = 2

Ajoutons que la décomposition de \(\zeta(M, s) \) décrite plus haut s'applique aussi à un module \(M \) de rang \(n \) dans un corps de nombres totalement réel.
de degré \(n \) quelconque (on plonge \(M \) dans \(\mathbb{R}^n \) par les \(n \) conjugués et on décompose le bord de la clôture convexe de \(M \cap \mathbb{R}_+^n \) en simplexes ; le nombre des simplexes inéquivalents par rapport à l'opération de \(V \) est fini). C'est le point de départ du travail de Shintani.

§ 2. CALCUL DE \(Z_Q(-n) \).

Soient

\[Q(p, q) = ap^2 + bpq + cq^2 \quad (a, b, c > 0, \quad D = b^2 - 4ac > 0) \]

une forme quadratique indéfinie à coefficients réels positifs, \(w > w' \) les racines de l'équation \(cw^2 - bw + a = 0 \), c'est-à-dire

\[w = \frac{b+\sqrt{D}}{2c}, \quad w' = \frac{b-\sqrt{D}}{2c}, \quad Q(p, q) = \frac{\sqrt{D}}{w-w'}(pw+q)(pw'+q), \]

et \(Z_Q(s) \) la fonction définie par

\[Z_Q(s) = \sum'_{p,q} \frac{1}{Q(p, q)^s} \quad (\text{Re } s > 1), \]

où \(\sum' \) est défini par (1.13).

THÉORÈME 2. - La fonction \(Z_Q(s) - \frac{2\sqrt{D}}{s-1} \log \frac{w}{w'} \) se prolonge analytiquement en une fonction entière sur tout \(\mathbb{C} \). Les valeurs de \(Z_Q(s) \) aux entiers négatifs s'expriment par des fonctions rationnelles en \(a, b, c \) avec des coefficients rationnels. Plus précisément, on a

\[Z_Q(-n) = \frac{(-1)^n n!}{2} \frac{B_{2n+2}}{2n+2} \left(\frac{f_n(a, b, c)}{a^{n+1}} + \frac{f_n(a, b, c)}{c^{n+1}} \right) + g_n(a, b, c) \]

pour \(n \geq 0 \), où \(B_k \) est le \(k \)-ième nombre de Bernoulli et \(f_n, g_n \) sont les polynômes définis par

\[f_n(a, b, c) = \sum_{r=0}^{n} (-1)^r \frac{(n-r)!}{r!(2n+1-2r)!} a^r b^{2n+1-2r} c^r, \]

\[g_n(a, b, c) = -\sum_{r=0}^{2n} \frac{B_{r+1}}{r+1} \frac{B_{2n-r+1}}{2n-r+1} d_{r,n}, \]

avec \(d_{r,n} \) défini par

\[\sum_{r=0}^{2n} d_{r,n} x^{2n-r} y^r = (ax^2 - bxy + cy^2)^n. \]

En particulier,

\[Z_Q(0) = \frac{1}{24} \frac{(b+b)}{(a+c)} - \frac{1}{4}, \]
\[Z_Q(-1) = \frac{1}{1440} \left(\frac{b^2 - 6abc}{a^2} + \frac{b^2 - 6abc}{c^2} \right) + \frac{1}{144} b, \]

\[Z_Q(-2) = \frac{1}{30240} \left(\frac{b^5 - 10ab^3c + 30a^2bc^2}{a^3} + \frac{b^5 - 10ab^3c + 30a^2bc^2}{c^3} \right) - \frac{1}{360} b(a+c). \]

Pour démontrer ce théorème on va se servir d'un résultat général sur les valeurs aux entiers négatifs d'une série de Dirichlet. Ce résultat, souvent très utile en théorie des nombres, est certainement connu mais ne semble pas se trouver dans la littérature.

PROPOSITION 2. - Soit \(\varphi(s) = \sum_{\lambda>0} \alpha_{\lambda} \lambda^{-s} \) (où les \(\lambda \) sont des nombres réels positifs tendant vers \(+\infty \)) une série de Dirichlet qui converge pour au moins une valeur de \(s \), et soit \(f(t) = \sum_{\lambda>0} \alpha_{\lambda} e^{-\lambda t} \) la série exponentielle correspondante. Si \(f(t) \) possède en \(t=0 \) un développement asymptotique de la forme

\[f(t) \sim \frac{C}{t} + \sum_{n=0}^{\infty} \frac{C_n t^n}{n!} \quad (t \to 0) \]

(c'est-à-dire pour chaque \(N > 0 \), \(f(t) = \frac{C}{t} + \sum_{n=0}^{N-1} \frac{C_n t^n}{n!} + O(t^N) \) pour \(t \to 0 \)), alors

i) \(\varphi(s) \) a un prolongement méromorphe sur tout \(\mathbb{C} \);

ii) \(\varphi(s) \) a un pôle simple de résidu \(C \) en \(s=1 \) et n'a pas d'autres pôles ;

iii) \(\varphi(-n) = (-1)^n n! C_n \) \((n=0,1,2,\ldots)\).

Réciproquement, si \(\varphi(s) \) a les propriétés i) - iii), la fonction \(f(t) \) a le développement asymptotique (2.7).

Cette proposition se démontre sans difficulté à partir de la formule de Mellin

\[\Gamma(s) \varphi(s) = \int_0^\infty t^{s-1} f(t) dt, \]

valable dans le domaine de convergence de \(\varphi(s) \). Remarquons simplement que, si \(f(t) = O(t^N) \) pour \(t \to 0 \), la formule (2.8) implique que \(\Gamma(s) \varphi(s) \) se prolonge en fonction holomorphe dans le domaine \(\text{Re}(s) > -N \); dans ce cas, \(\varphi(s) \) est aussi holomorphe dans ce domaine et on a \(\varphi(-n) = 0 \) pour \(0 \leq n < N \). Les singularités, ainsi que les valeurs aux entiers négatifs, de \(\varphi(s) \) dans le domaine \(\text{Re}(s) > -N \) ne dépendent donc que des \(N \) premiers coefficients dans le développement asymptotique de \(f(t) \) en \(t=0 \).
Les formules bien connues \(\zeta(-n) = (-1)^n \frac{B_{n+1}}{n+1} \), \(\zeta(-n, \alpha) = \frac{B_{n+1}(\alpha)}{n+1} \) et

\[L(-n, \chi) = -\frac{B_{n+1}(\chi)}{n+1} \quad (\text{où } \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \text{ est la fonction zêta de Riemann,} \]

\[\zeta(s, \alpha) = \sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^s} \quad (\alpha > 0) \quad \text{la fonction zêta de Hurwitz et} \quad L(s, \chi) = \sum_{n=1}^{\infty} \chi(n)n^{-s} \]

la série \(L \) associée à un caractère de Dirichlet \(\chi \) sont des conséquences immédiates de la Proposition 2.

Pour pouvoir appliquer la Proposition 2 à la fonction \(Z_Q(s) \), il faut trouver le développement asymptotique de \(\sum_{p,q} \frac{1}{e^{Q(p,q)t}} \) en \(t = 0 \). Pour cela, nous utilisons un deuxième résultat général qui, comme la Proposition 2, possède de nombreuses applications en théorie des nombres.

PROPOSITION 3. - Soit \(f \) une fonction \(C^\infty \) à valeurs réelles sur \(\mathbb{R}_+ \) qui possède en \(t = 0 \) un développement asymptotique de la forme

\[f(t) \sim a_0 + a_1 t + a_2 t^2 + \ldots \quad (t \to 0) \]

et telle que l'intégrale \(C = \int_0^{\infty} f(t) dt \) soit finie. Alors la fonction \(g(t) = \sum_{n=1}^{\infty} f(nt) \) a en \(t = 0 \) le développement asymptotique

\[(2.9) \quad g(t) \sim \frac{C}{t} + \sum_{r=0}^{\infty} \frac{1}{(-1)^r} \frac{B_{r+1}}{r+1} \frac{t^r}{r} = \frac{C}{t} - \frac{1}{2} a_0 t + \frac{1}{12} a_1 t^2 - \frac{1}{120} a_2 t^3 - \ldots \]

Cette proposition est une conséquence facile de la formule de sommation d'Euler-Maclaurin.

Remarques :

1. Les hypothèses faites sur \(f \) impliquent que la série \(\sum_{n=1}^{\infty} f(nt) \) converge.

2. On peut écrire (2.9) sous la forme

\[(2.9)' \quad g(t) \sim \frac{C}{t} + \sum_{r=0}^{\infty} a_r \zeta(-r)t^r, \]

tandis qu'un calcul formel donnerait

\[g(t) = \sum_{n=1}^{\infty} f(nt) = \sum_{n=1}^{\infty} \sum_{r=0}^{\infty} a_r n^r t^r = \sum_{r=0}^{\infty} \sum_{n=1}^{\infty} a_r n^r t^r = \sum_{r=0}^{\infty} a_r \zeta(-r)t^r. \]

3. On a pour \(\alpha > 0 \)

\[\sum_{n=0}^{\infty} f((n+\alpha)t) \sim \frac{C}{t} + \sum_{r=0}^{\infty} a_r \zeta(-r, \alpha)t^r, \]

où \(\zeta(s, \alpha) \) est la fonction zêta de Hurwitz mentionnée plus haut. Avec cette formule plus générale que (2.9)' on peut trouver les valeurs aux entiers négatifs de \(Z_Q(s;a,b) = \sum_{p,q} \frac{1}{e^{Q(p+a, q+b)t}} \) \((a, b > 0) \), ce qui permet de calculer \(L(-n, \chi) \) pour des caractères \(\chi \) ramifiés sur le corps quadratique \(K \).
4. Si \(f(t) = \sum_{\lambda > 0} a_{\lambda} e^{-\lambda t} \) est la fonction associée à une série de Dirichlet \\
\(\varphi(s) = \sum_{\lambda > 0} a_{\lambda} \lambda^{-s} \), alors \\
g(t) = \sum_{n=1}^{\infty} \sum_{\lambda > 0} a_{\lambda} e^{-n\lambda t} \) est associée à la série de \\
Dirichlet \\
\(\Psi(s) = \sum_{n=1}^{\infty} \sum_{\lambda > 0} a_{\lambda} (n\lambda)^{-s} = \zeta(s)\varphi(s) \). On a donc \\
\(\Psi(-n) = \zeta(-n)\varphi(-n) \), \\
et la formule (2.9)' est une conséquence, dans ce cas, de la Proposition 1.

Ecrivons la formule (2.9) comme

\[
\sum_{n=1}^{\infty} f(nt) \sim \frac{1}{t} \left(\int_{0}^{\infty} f(x) \, dx \right) + \sum_{r=0}^{\infty} \beta_{r} t^{r} \left(\int_{0}^{\infty} f(0, r)(x, 0) \, dx \right)
\]

\[
+ \frac{1}{u} \sum_{r=0}^{\infty} \beta_{r} t^{r} \left(\int_{0}^{\infty} f(r, 0)(0, y) \, dy \right) + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \beta_{r} \beta_{s} f(r, s)(0, 0) t^{r} u^{s},
\]

où \(\beta_{r} = (-1)^{r+1} B_{r+1} / (r+1)! \). On en déduit facilement le résultat analogue pour les
fonctions à deux variables, à savoir

\[
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} F(mt, nu) \sim \frac{1}{tu} \left(\int_{0}^{\infty} \int_{0}^{\infty} F(x, y) \, dx \, dy \right) + \sum_{r=0}^{\infty} \beta_{r} u^{r} \left(\int_{0}^{\infty} F(0, r)(x, 0) \, dx \right)
\]

\[
+ \frac{1}{u} \sum_{r=0}^{\infty} \beta_{r} t^{r} \left(\int_{0}^{\infty} F(r, 0)(0, y) \, dy \right) + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \beta_{r} \beta_{s} F(r, s)(0, 0) t^{r} u^{s},
\]

où \(F(i, j)(x, y) = \frac{1}{i! j!} F(x, y) \). En particulier, on a pour \(t = u \) la formule

\[
\sum_{m, n} F(mt, nt) \sim \frac{1}{t^{2}} \left(\int_{0}^{\infty} \int_{0}^{\infty} F(x, y) \, dx \, dy \right) + \sum_{r=1}^{\infty} \beta_{r} t^{r-1} \left(\int_{0}^{\infty} F(0, r)(x, 0) \, dx \right)
\]

\[
+ \sum_{r=1}^{\infty} \beta_{r} t^{r-1} \left(\int_{0}^{\infty} F(r, 0)(0, y) \, dy \right) - \frac{1}{4} F(0, 0) + \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \beta_{r} \beta_{s} F(r, s)(0, 0) t^{r+s},
\]

dans laquelle on ne trouve que des puissances paires de \(t \) (puisque \(\beta_{r} = 0 \)
\(r > 0 \) et pair). Pour \(F(t, u) = e^{-Q(t, u)} \), où \(Q \) est donné par
(2.1), on obtient (en substituant \(t^{2} \) à \(t \))

\[
\sum_{m, n} e^{-(a m^{2} + b mn + c n^{2})t} \sim \frac{C}{t} + \sum_{n=0}^{\infty} \beta_{2n+1} n! \int_{0}^{\infty} \frac{e^{-ax^{2}}}{{\partial y}^{2n+1}} \left(e^{-bxy-cy^{2}} \right) y=0 \, dx
\]

\[
+ \sum_{n=0}^{\infty} \beta_{2n+1} n! \int_{0}^{\infty} \frac{e^{-ax^{2}}}{{\partial x}^{2n+1}} \left(e^{-bxy-cy^{2}} \right) x=0 \, dy
\]

\[
- \frac{1}{4} \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \beta_{r} \beta_{s} t^{r+s} \int_{0}^{\infty} \int_{0}^{\infty} \left(e^{-ax^{2}-bxy-cy^{2}} \right) x=y=0 \, dx \, dy,
\]

où

\[
C = \int_{0}^{\infty} \int_{0}^{\infty} e^{-Q(x, y)} \, dx \, dy.
\]

Pour calculer \(C \), on utilise l'équation (2.2) et le changement de variables
\(\xi = wx + y \), \(\eta = w'x + y' \):
VALEURS DES FONCTIONS ZÉTA

\[C = \frac{1}{w-w'} \int_0^\infty \int_\eta^w \eta \ e^{-\frac{\eta \sqrt{D}}{(w-w')}} d\eta \ d\eta' \]

\[= \frac{1}{\sqrt{D}} \int_0^\infty \int_\eta^w \left(e^{-\frac{\eta^2}{w-w'}} - e^{-\frac{w}{w'-w'} \sqrt{D}} \right) d\eta \ d\eta' \]

\[= \frac{1}{2\sqrt{D}} \log \frac{w}{w'} . \]

Les autres intégrales dans (2.10) se calculent encore plus facilement :

\[\int_0^\infty \frac{2^{n+1}}{n!} \left(e^{-ax^2-bxy-cy^2} \right)_{x=0} dy \]

\[= \int_0^\infty \left[\sum_{n=0}^{\infty} \frac{(-1)^{n}a_n b_{n+1} - 2r}{n!(2n+1-2r)} \right] \ y^{2n+1-2r} e^{-cy^2} dy \]

\[= -\frac{1}{2} (2n+1)! \frac{f_n(a,b,c)}{c^{n+1}} , \]

où \(f_n(a,b,c) \) est le polynôme défini en (2.4). La formule (2.10) devient alors

\[\sum_{p,q} e^{-Q(p,q)t} \sim \frac{1}{2\sqrt{D}} \frac{\log w}{w'} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{B_{2n+2}}{c^{n+1}} \left(\frac{f_n(a,b,c)}{a^{n+1}} + \frac{f_n(c,b,a)}{a^{n+1}} \right) t^n \]

\[- \frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} t^n \left(\sum_{r,s \geq 1} \frac{B_{r+1}}{r+1} \frac{B_{s+1}}{s+1} d_{r,s} \right) \]

avec \(d_{r,s} \) donné par (2.6), et le théorème 2 est une conséquence immédiate de cette formule et de la proposition 2.

§ 3. APPLICATIONS.

Nous avons trouvé au § 1 la décomposition

\[\zeta(M,s) = \sum_{k=1}^{r} Z_{Q_k}(s) \]

de la fonction zêta (1.1) d'un module \(M \) dans un corps quadratique réel, les formes quadratiques \(Q_k \) étant définies par (1.2) et les fonctions \(Z_{Q_k}(s) \) par (2.3). Comme premières conséquences du théorème 2, on a :

1) \(\zeta(M,s) \) se prolonge en une fonction méromorphe sur tout \(\mathbb{C} \), la seule singularité étant un pôle simple en \(s=1 \).
ii) le résidu de $\zeta(M, s)$ en $s = 1$ est donné par

$$\text{Res}_{s=1} \zeta(M, s) = \sum_{k=1}^{r} \text{Res}_{s=1} \mathcal{Q}_k(s)$$

$$= \sum_{k=1}^{r} \frac{1}{2\sqrt{D}} \log \frac{w_k}{w_k'}$$

$$= \frac{1}{\sqrt{D}} \log \varepsilon$$

(cf. (1.9)) ;

iii) les valeurs de $\zeta(M, -n)$ pour $n = 0, 1, 2, \ldots$ sont des nombres rationnels.

Nous allons utiliser (3.1) et le théorème 2, d'une part pour étudier les valeurs de $\zeta(M, -n)$ pour de petites valeurs de n, d'autre part pour trouver une borne pour le dénominateur de $\zeta(M, -n)$ qui soit indépendante du module M.

Ecrivons

$$\mathcal{Q}_k(p, q) = L_k p^2 + M_k pq + N_k q^2$$

avec

$$L_k, M_k, N_k \in \mathbb{Z}, \quad M_k^2 - 4L_k N_k = D$$

(les valeurs de L_k, M_k, N_k ne dépendent que de $k \mod r$) ; alors

$$w_k = \frac{M_k + \sqrt{D}}{2N_k}$$

et on déduit de l'équation (1.3) les formules de récurrence

$$L_{k+1} = N_k$$

$$M_{k+1} = 2b_k N_k - M_k$$

$$N_{k+1} = b_k^2 N_k - b_k M_k + L_k$$

En introduisant dans (3.1) l'expression explicite pour $\mathcal{Q}_k(0)$ donnée par le théorème 2, on trouve

$$\zeta(M, 0) = \frac{1}{24} \sum_{k=1}^{r} \left(\frac{M_k}{L_k} + \frac{M_k}{N_k} - 6 \right)$$

$$= \frac{1}{24} \sum_{k=1}^{r} \left(\frac{M_{k+1}}{L_{k+1}} + \frac{M_k}{N_k} - 6 \right)$$

(nous avons utilisé la périodicité de M_k, N_k), d'où, avec (3.2), le résultat

$$\zeta(M, 0) = \frac{1}{12} \sum_{k=1}^{r} (b_k - 3)$$

Comme nous l'avons expliqué en [7], ceci est équivalent à un théorème célèbre
de C. Meyer [3] qui exprime \(\lim_{s \to 1} \sum_{\xi \in M/V} \frac{\text{sign } N(\xi)}{|N(\xi)|^s} \) en termes de sommes de Dedekind.

De la même façon, on trouve pour \(s = -1 \)

\[
\zeta(M, -1) = \frac{1}{1440} \sum_{k=1}^{r} \left(\frac{M_k^3 - 6L_k M_k N_k}{L_k^2} + \frac{M_k^3 - 6L_k M_k N_k}{N_k^2} + 10M_k \right)
\]

\[
= \frac{1}{1440} \sum_{k=1}^{r} \left(\frac{M_{k+1}^3 - 6L_{k+1} M_{k+1} N_{k+1}}{L_{k+1}^2} + \frac{M_{k+1}^3 - 6L_{k+1} M_{k+1} N_{k+1}}{N_{k+1}^2} + 10M_{k+1} \right)
\]

\[
= \frac{1}{720} \sum_{k=1}^{r} \left(-2N_k b_k^3 + 3M_k b_k^2 - 6L_k b_k + 5M_k \right).
\]

Remarquons qu'on peut déduire d'un théorème de Siegel [5] que (au moins dans le cas où \(M \) est un idéal de \(K \))

\[
\zeta(M, -1) = \zeta(M, -1) + \zeta(M^*, -1) = \frac{1}{60} \sum_{k=1}^{r} (M_k - N_k) + \frac{1}{60} \sum_{k=1}^{r} (M_k^* - N_k^*),
\]

où \(M^* = \lambda M \) avec \(\lambda \lambda' < 0 \) et \(Q_k^*(p, q) = L_k^* p^2 + M_k^* p q + N_k^* q^2 \) \((1 \leq k \leq r^*)\) sont les formes quadratiques réduites qui correspondent à \(M^* \). (Cf. [8], §3).

Nous donnons un exemple numérique : pour \(D = 21 \) il y a deux classes de modules (ou d'idéaux) \(A \) et \(A^* \) au sens restreint, les périodes des fractions continues correspondantes étant ((5)) et ((2,2,3)), et on trouve avec chacune des formules (3.4), (3.5) et (3.6) la valeur \(\zeta(A, -1) = \zeta(A^*, -1) = \frac{1}{6} \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(A)</th>
<th>(A^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(M_k)</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>(N_k)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(b_k)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>(2 \sum_{k=1}^{r} (M_k - N_k))</td>
<td>(\frac{27}{500})</td>
<td>(\frac{27}{500})</td>
</tr>
<tr>
<td>(\frac{1}{720} (-2N_k b_k^3 + 3M_k b_k^2 - 6L_k b_k + 5M_k))</td>
<td>(\frac{37}{720})</td>
<td>(\frac{47}{720})</td>
</tr>
<tr>
<td>(\frac{1}{60} (M_k - N_k))</td>
<td>(\frac{1}{15})</td>
<td>(\frac{1}{15})</td>
</tr>
</tbody>
</table>
Dans les calculs qu'on vient de faire pour \(s = 0 \) et \(s = 1 \), les expressions données par le théorème 2, dans lesquelles il y a des dénominateurs qui dépendent des coefficients des formes \(Q_k \), se sont simplifiées en des expressions polynomales en \(L_k, M_k, N_k \) et \(b_k \). Nous allons maintenant démontrer que ce phénomène se produit pour les valeurs de \(\zeta(M,s) \) en tout entier négatif \(s \).

PROPOSITION 4. - Avec les notations du théorème 2, on a l'identité

\[
(3.7) \quad f_n(a,b,c) + f_n(c,2\lambda c-b,\lambda^2 c-\lambda b+a) = \frac{2(-1)^n}{n!} c^{n+1} h_n(a,b,c;\lambda),
\]

\[\text{où} \quad h_n(a,b,c;\lambda) = \int_0^\lambda \frac{(a-bt+ct^2)^n}{n!} \, dt = \sum_{r=0}^n \frac{\lambda^{2n-r+1}}{r! \, n^{2n-r+1}}.
\]

Démonstration : Nous introduisons la fonction génératrice

\[
F(a,b,c;x) = \sum_{n=0}^\infty f_n(a,b,c)x^{2n+1}.
\]

D'après (2.4), on a

\[
F(a,b,c;x) = \sum_{r=0}^\infty \sum_{m=0}^\infty \frac{(-1)^r m!}{r!(2m+1)!} a^r b^{2m+1} c^{2r+2m+1} x^m = \sum_{m=0}^\infty \frac{m!}{(2m+1)!} b^{2m+1} c^{2m+1} x^m.
\]

\[
= \pi 1/2 e^{Dx^2/4} \text{erf}\left(\frac{bx}{2}\right),
\]

où \(D = b^2 - 4ac \) et

\[
\text{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-u^2} \, du = \frac{2}{\sqrt{\pi}} e^{-t^2} \sum_{m=0}^\infty \frac{2^m}{1 \cdot 2 \cdot \ldots \cdot (2m+1)} t^{2m+1}
\]

est la "error function". Puisque \(b^2 - 4ac \) ne change pas quand on remplace \((a,b,c) \) par \((c,2\lambda c-b,\lambda^2 c-\lambda b+a) \), on a

\[
F(a,b,c;x) + F(c,2\lambda c-b,\lambda^2 c-\lambda b+a;x) = \pi 1/2 e^{Dx^2/4} \left[\text{erf}\left(\frac{bx}{2}\right) - \text{erf}\left(\frac{bx}{2} - \lambda cx\right) \right]
\]

\[
= \pi 1/2 e^{Dx^2/4} \sum_{n=0}^\infty \frac{(-1)^n}{(n+1)!} (\lambda cx)^{n+1} \text{erf}(n+1)(\frac{bx}{2})
\]

(théorème de Taylor)

\[
= 2e^{-acx^2} \sum_{n=0}^\infty \frac{H_n(bx/2)(\lambda cx)^{n+1}}{n!(n+1)!} e^{-t^2}
\]

où \(H_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} e^{-t^2} \) est le \(n \)-ième polynôme de Hermite. En utilisant
la fonction génératrice \(e^{2xt-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n \), nous obtenons
\[
F(a, b, c; x) + F(c, 2\lambda c-b, \lambda^2 c-\lambda b+a; x) = \int_0^\lambda \left[\sum_{n=0}^{\infty} \frac{H_n(bx)}{2^n} (tcx)^n \right] dt
\]
\[
= \int_0^\lambda \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} (a-bt+ct^2) dx \right] dt
\]
\[
= \int_0^\lambda \left(\sum_{n=0}^{\infty} \frac{2(-1)^n}{n!} (a-bt+ct^2) c^{n+1} x^{2n+1} \right) dt,
\]
et (3.7) s'ensuit immédiatement.

Comme dans les calculs faits pour \(s = 0 \) et \(s = -1 \), cette proposition et les équations (3.2) nous permettent de remplacer la formule pour \(\zeta(M,-n) \) donnée par le théorème 2 par une expression polynomiale en \(L_k, M_k, N_k, b_k \):

COROLLAIRE. - Avec les mêmes notations que ci-dessus, on a

\[(3.8) \quad \zeta(M,-n) = \frac{r}{\sum_{k=1}^{2n+2} h_n(L_k, M_k, N_k; b_k) + q_n(L_k, M_k, N_k)}.
\]

On peut aussi écrire cette équation sous la forme

\[\zeta(M,-n) = \frac{2n}{\sum_{k=1}^{s} \sum_{n=0}^{n} \frac{\left(b_{2n+2} \right) b_{2n-s+1}^{k}}{2n+2 \cdot 2n-s+1} - \frac{B_{s+1} b_{2n-s+1}^{k}}{2n-s+1}}, \]

où les \(d_{s,n}^{(k)} \) sont définis par

\[\sum_{s=0}^{n} (-1)^s d_{s,n}^{(k)} x^y 2n-s = Q_k(x,y)^n.\]

En particulier, puisque les nombres \(d_{s,n}^{(k)} \) et \(b_k \) sont des entiers, on déduit les théorèmes d'intégralité

\[(3.9) \quad d_n \zeta(M,-n) \in \mathbb{Z} \quad (n=0,1,\ldots),\]

où \(d_n \) est le p.p.c.m. des dénominateurs de \(\frac{B_{2n+2}}{2n+2} \cdot \frac{1}{2n-s+1} \) et \(\frac{B_{s+1} b_{2n-s+1}^{k}}{2n-s+1} \). Ces bornes \(d_n \) pour les dénominateurs des \(\zeta(M,-n) \) ne sont certainement pas les meilleures possibles (par exemple, on a \(d_1 = 720 \), tandis qu'en fait \(120 \zeta(M,-1) \in \mathbb{Z} \), d'après (3.6)), mais on peut les améliorer dans certains cas par la même méthode que celle utilisée pour démontrer (3.8).

Pour \(n = 2 \), par exemple, (3.8) donne

\[\zeta(M,2) = \frac{1}{15120} \sum_{k=1}^{15} \left(12N_k^2 \cdot 5 - 30M_k^2 \cdot b_k^4 + 20(M_k^2 + 2L_k N_k) b_k^3 - 60L_k M_k^2 b_k^2 \right),\]

\[+ 60L_k b_k^2 - 21(L_k M_k + M_k N_k),\]

\[149\]

\[\sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n,\]

et (3.7) s'ensuit immédiatement.

Comme dans les calculs faits pour \(s = 0 \) et \(s = -1 \), cette proposition et les équations (3.2) nous permettent de remplacer la formule pour \(\zeta(M,-n) \) donnée par le théorème 2 par une expression polynomiale en \(L_k, M_k, N_k, b_k \):

COROLLAIRE. - Avec les mêmes notations que ci-dessus, on a

\[(3.8) \quad \zeta(M,-n) = \frac{r}{\sum_{k=1}^{2n+2} h_n(L_k, M_k, N_k; b_k) + q_n(L_k, M_k, N_k)}.
\]

On peut aussi écrire cette équation sous la forme

\[\zeta(M,-n) = \frac{2n}{\sum_{k=1}^{s} \sum_{n=0}^{n} \frac{\left(b_{2n+2} \right) b_{2n-s+1}^{k}}{2n+2 \cdot 2n-s+1} - \frac{B_{s+1} b_{2n-s+1}^{k}}{2n-s+1}}, \]

où les \(d_{s,n}^{(k)} \) sont définis par

\[\sum_{s=0}^{n} (-1)^s d_{s,n}^{(k)} x^y 2n-s = Q_k(x,y)^n.\]

En particulier, puisque les nombres \(d_{s,n}^{(k)} \) et \(b_k \) sont des entiers, on déduit les théorèmes d'intégralité

\[(3.9) \quad d_n \zeta(M,-n) \in \mathbb{Z} \quad (n=0,1,\ldots),\]

où \(d_n \) est le p.p.c.m. des dénominateurs de \(\frac{B_{2n+2}}{2n+2} \cdot \frac{1}{2n-s+1} \) et \(\frac{B_{s+1} b_{2n-s+1}^{k}}{2n-s+1} \). Ces bornes \(d_n \) pour les dénominateurs des \(\zeta(M,-n) \) ne sont certainement pas les meilleures possibles (par exemple, on a \(d_1 = 720 \), tandis qu'en fait \(120 \zeta(M,-1) \in \mathbb{Z} \), d'après (3.6)), mais on peut les améliorer dans certains cas par la même méthode que celle utilisée pour démontrer (3.8).

Pour \(n = 2 \), par exemple, (3.8) donne

\[\zeta(M,2) = \frac{1}{15120} \sum_{k=1}^{15} \left(12N_k^2 \cdot 5 - 30M_k^2 \cdot b_k^4 + 20(M_k^2 + 2L_k N_k) b_k^3 - 60L_k M_k^2 b_k^2 \right),\]

\[+ 60L_k b_k^2 - 21(L_k M_k + M_k N_k),\]
et on a $d_z = 15120$. Mais les équations (3,2) impliquent que

$$\sum_{k=1}^{r} (L_k M_k + M_k N_k) = \sum_{k=1}^{r} (L_{k+1} M_{k+1} + M_k N_k) = \sum_{k=1}^{r} (2N_k^2 b_k),$$
donc

$$21 \sum_{k=1}^{r} (L_k M_k + M_k N_k) = 12 \sum_{k=1}^{r} N_k^2 b_k \pmod{10},$$
ce qui permet d'améliorer (3.9) par un facteur 10 pour $n=2$, c'est-à-dire $1512\zeta(M,-2) \in \mathbb{Z}$. Des arguments analogues nous permettent de gagner encore un facteur 12, donc de démontrer

$$126\zeta(M,-2) \in \mathbb{Z},$$
et c'est le meilleur résultat possible pour $n=2$; en effet, pour $M=0$
(l'anneau des entiers de $\mathcal{O}(\sqrt{D})$) on a la table

<table>
<thead>
<tr>
<th>D</th>
<th>12</th>
<th>21</th>
<th>28</th>
<th>33</th>
<th>44</th>
<th>56</th>
<th>57</th>
<th>60</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\zeta(M,-2)$</td>
<td>1/18</td>
<td>16/63</td>
<td>4/7</td>
<td>2/3</td>
<td>3/2</td>
<td>24/7</td>
<td>22/9</td>
<td>11/3</td>
<td>16/3</td>
</tr>
</tbody>
</table>

Il semble cependant difficile dans le cas général de déduire de (3.8) une bonne estimation du dénominateur de $\zeta(M,-n)$.

Signalons aussi les papiers [1,2] de P. Cassou-Noguès, où le calcul de $\mathbb{Z}_Q(-n)$ est appliqué à la construction d'une fonction zêta p-adique.

--:--:--

BIBLIOGRAPHIE

-:-:-:-

D. ZAGIER
Sonderforschungsbereich
"Theoretische Mathematik"
Mathematisches Institut der
Universität Bonn
D-53 BONN