CHAPTER 9

Modular Forms with Rational
Periods

W. Kohnen and D. Zagier

INTRODUCTION

Classically, one of the main reasons for the importance of modular forms in
number theory was the fact that spaces of modular forms are spanned by forms
with rational Fourier coefficients and that these coefficients are often
arithmetically interesting functions — one need only think of the numbers of
representations of integers by quadratic forms (coefficients of theta series), the
sums of powers of divisors of integers (coefficients of Eisenstein series), and the
Ramanujan tau-function (coefficients of the discriminant function). The
appearance of interesting functions as Fourier coefficients, coupled with the
finite dimensionality of the spaces of modular forms, leads to non-trivial
identities and congruences with a wide range of applications (asymptotics of
numbers of representations by quadratic forms, partition identities, p-adic L-
functions, connections with finite simple groups and representations of Lie
algebras, examples of non-isometric isospectral Riemannian manifolds,
coding theory, etc.).

On the other hand, spaces of modular forms have natural rational
structures other than those given by the rationality of Fourier coefficients,
namely those defined by the rationality of periods. Specifically for feS,, =
S,.(SL,(Z)) (we shall for simplicity consider only the full modular group in
this paper, and therefore suppress it in the notations) one defines' the nth
period of f by

r(f) = rf(it)t"dt O<n<w:=2k-2);
0

! The usual definition of r,(f) as {5 f(2)2"dz differs from our definition by a factor i"*'; we
have preferred a normalization which is real for real f.
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198 Modular Forms with Rational Periods [Ch.9

then the results of Bichler and Shimura, reviewed in Section 1.1, imply that
there exist forms all of whose even or odd periods are rational. More precisely,
their work implies that each of the @Q-vector spaces

Sh={feSy: r{f)eQ for 0<n<w, n even},
S5 ={feSy: r(f)eQ for O<n<w, n odd}

gives a rational structure on S, (i.e. 5 ® C> 84,). Thus S, has two natural
Q

rational structures besides the usual rational structure

o«

Sy ={feSu: f(@=Y abe®*, aleQ for [=1}.
=1

The purpose of this paper is to give examples of functions belonging to 5, and
&5, whose periods are arithmetically interesting expressions — relating to
Bernoulli numbers, to binary quadratic forms, to zeta-functions of real
quadratic fields, to modular forms of half-integral weight, and to Hilbert
modular forms. It is to be hoped that the Q-structures coming from rationality
of periods will be a rich source of relations between modular forms and
arithmetic, just as the more familiar Q-structure coming from rationality of
Fourier coefficients has been in the past.

1. THE EICHLER-SHIMURA ISOMORPHISM AND
THE PERIODS OF R.
1.1, The Eichler—Shimura Theorem

In this section we review the Eichler—Shimura theory in a fair amount of detail.
The following notations will be used here and throughout the paper:
I is the full modular group PSL,(Z), acting in the usual way on the upper

half-plane §;clements of I will be denoted (a 3) rather than + (a Z)
c

c
0 —1 1 -1 1 1
= U._—_ Ee
(thus S?’=U3=1, U=TS).

- -1 0
F'=PGL,(Z)=Tuer, 3=( 0 1)'

k is an integer greater than or equal to 1; w=2k—2.
M, (resp. S,,;) is a space of modular (resp. cusp) forms of weight 2k on I,
L(f.5)(feS,,) is the L-series of f, ie., the analytic continuation of
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o« 0

Y a(hl™s, where f(z)= ) a(Dq' (q = e2™2),

I=1 I=1

r(f)= r fardt=n12m) " IL(fin+ 1) OSn<w).

(f,9) = f f(2)g(z) y* 2dxdy
g

is the Petersson scalar product of fand g.

V(K)=V,, _,(K)=Sym*(K® K) = {polynomials of degree <w in one
variable with coefficients in K}, where K is any subfield of C. (The letter K will
sometimes be omitted from the notation if it is clear which field — usually C or
(Q —is meant.) The space V(K) is acted on by PGL,(K) via

b
(P|y)(X)=(cX+d)WP(Z§:z) <P(X)ev, y:(z d))_

In particular, V(K) is stable under " for any K. The element ¢ acts by
(Ple)(X) = P(— X)and splits V up into the direct sum of the spaces Vtand V™
of even and odd polynomials, respectively. The action of I on V(K)extends to
an action of the group algebra Q[f 1; we define

W=W,,_,=ker(l +S)nker(l + U+ U?)
={PeV:P+P|S=P+ P|U + P|U*=0}.

From £Se= S and eUg = SU2S it follows that W|e=W, so that W=W*®
W (W =W~ V). Explicitly, the relations defining W are

YaX'eWea,=(-1V""a, ,, ¥ €,a,=0 0snsw),
0 m=0

m
n ) if m=2n,

cmn
w—m .
, U msn
w—n

Since these have rational coefficients, the space W is defined over Q; ie.

W(Q)® K > W(K) = W(C) V(K).
Q

where

If f(2) is a cusp form of weight 2k on I', we define the period polynomial
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r(f)eV(C) by
r(f)(X) = J f@X—2dz=Y i’"“(:)rn(f)X”“”-
- 0 n=0

We also set

r= % (—1)"’2<W)r,,(f)X”‘",
o<ns<w n

= ¥ (—1)‘"“”2(:>r,,(f)X“’“",

O<n<w
nodd

ab
so that r*eVE, r=ir* +r~. For y=(c d)eF we have

) = fmf(z)[ax +b— X+ d)]"dz
0

dz
(cz — a)®

=Fﬁ( —ez+a*f(I[X —y7 (21"
0

y~ (o)

_ j PO —2dz,

¥~ U0)

where the final integral is taken over the geodesic (semi-circle or vertical line)
joining the cusps ™ *(0) and y~ !(o0). Hence

ico 0
r(f)l(1+S)=f +f =0,
4] icc
io0 1
r(f)l(l+U+U2)=J +r+f =0,
[¢] 1 ioo

so that r(f) belongs to the subspace W. We thus have two maps r¥:
S, — Wi, _,(C). The basic result of Eichler-Shimura is the following:

Theorem (Eichler—Shimura) The map r™ :S,,—» W (C) is an isomor-
phism. The map r*:S,,—W*(C) is an isomorphism onto W (C), where
Ws cW™ is a subspace of codimension 1, defined over Q, and not
containing the element py(X)= X" — 1.

The injectivity of r* implies that we can define two rational structures S5
on S, by
SH(K)=(r*)"Y(V(K))
={feSyrffleK for O<m<w,(—1y=+1}.
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The assertion about the image of r* then implies that we have isomorphisms

*,p0)

S(K) > Wi o(K), SL(K)® K—"W —2(K)

(the second map sends (f,¢) to r*(f)}(X)+ cpo(X)eV). This describes the
rational structure €~ completely —it is isomorphic to W~ —but does not
quite describe S*: we know only that there is an exact sequence

0> ->WHQ) 50 -0

with a certain map A such that A(p,) # 0. The theorem defines A up to a non-
zZero constant but does not say what it is, i.e. what extra relation is satisfied by
even periods of cusp forms besides the relations defining W. We will determine
the missing relation A in Section 4.

The proof of the Eichler—Shimura theorem will not be given in this paper.
Good expositions can be found in [10] or [4].

Examples For 2< k<35 and k=7 one easily checks that W, _, = {0}
and that W3, _, is spanned by p,(X), in accordance with the theorem and the
fact that S,, = {0}. For k = 6 the space S,; is one-dimensional, with generator

4=qT[(1 - eSS,

Hence there must exist constants o, with w;'4e@&F,. The space Wy, is
spanned by p, = X!°— 1 and p; = X® — 3X%+ 3X* — X? and the space W
by p, =4X° —25X7 +42X° —25X3 +4X, so we must have o 'r*(4)eQp, +
Qp,, 0-'r (4)eQp,. In fact the periods of 4 are given by

n Qorl0 lor9 2o0r8 3o0or7 4o0r6 5

192 384 16 8
r,,(A) 6‘9—160_‘_ -—5—-(0_ Eah_ 400 _ IO—S(D_,_ Rw

with suitable real constants @, =00214460667... and o_=
0.000048 2774800. .. (cf. [22]), so

192 16 -
691P0+ pl, m_lr (A)z 192p2.

The fact that there exist constants @, such that w;'A has rational
periods — obvious here because the dimension of S , is one — generalizesin the
following way to higher weights:

witrtd)=—
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Theorem (Manin (11]) There is an action of the Hecke algebra of S, on
Vi o(Q) preserving the subspaces V*, V~, W, and Qp, (explicitly, p,|T, =
0ax—1Dpo, where o5 () =) d* ") and compatible with the period
mappings r*:S,,— VE.

Corollary If feS,, is a Hecke eigenform, then there exist two constants
04 =w(f) such that w3 'r,(f) is an algebraic number for 0Sn<w, (—1)*=
+ 1. More precisely, if f is a normalized Hecke eigenform and K ; the number
field generated by its coefficients, then there exist real numbers w_ (f) such
that o_1).(f) ™ 'r,(f)eK  for 0 < n < w, and these numbers can be chosen so
that o _ () 11, (f°) = {1 (f) " r(f)}° for all ceAut K.

Manin’s proof of the theorem is entirely explicit: he writes r,(f1T}) as a
linear combination of periods r,,(f) (0 € m < w, m = n(mod 2)) with integral
coefficients given in terms of certain continued fraction expansions. The
theorem also will be a consequence of the results of this paper (in particular, of
§1.4). Notice that the corollary implies that

oo, ()70
seGal(K;/ Q)
belongs to S5(Q) for any ae K; these functions, as f ranges over a set of non-
conjugate normalized eigenforms and o over a basis of K ;/Q, give a basis for
5@

We end with a result which follows from a theorem of Rankin [12] that
also implies a large part (indeed all, when suitably generalized [22]) of the
Eichler—Shimura theorem, even though it antedates it by several years. This
theorem and its corollary will play a central role in the paper.

Theorem The numbers w (f), w_(f) (feS, a normalized Hecke
eigenform) can be chosen in such a way that o  (f)o_{(f)= (/1)

Proof The theorem of Rankin just mentioned is the identity

-1y
;GG - = (“‘2‘{_—)1"'2n—1(f)"2k~2(f)

for k/2 <n<k—2 and fe3,, a normalized Hecke eigenform, where
. BZn - 1 )
Gu(2)= 2 + Z 03n-1004 n=2)
no =

(B, is the 2nth Bernoulli number) is the normalized Eisenstein series of weight
2n. (The proof of this identity will be reviewed in §1.4.) Since G,,G,; _,, has
rational coefficients, the left-hand side equals aff.f) for some a;kK;
with a;. = (a,)°; moreover a;#0 (r,(f)=m!(2n) " L{f,m+1)#0 for
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m = k because the Euler product for L(f,m + 1) converges). It follows that
By=w.(No_()/(f,f) is an element of K7 satisfying f3=p. for all
oeGal (K /Q), and dividing o, (f) or @_(f) by B gives a new choice having
the desired property.

Corollary  The spaces S5, and S, are dual with respect to the Petersson
scalar product, i.e.

FeGi <(F,G)eQ for all GeS3,.

Proof Since &% are rational structures on the same space S, and( , )
is non-degenerate, it suffices to show that (F, G) is rational for FeS 3, GeS5,.
By the remark following Manin’s theorem we have

Flz)= ;}Za}w»r(f“)’lf"(Z),
Glx)= ;}Z Bro_(f) ()

for some numbers a;, f,eK,, where the outer sums run over a set of
representatives f of non-conjugate normalized Hecke eigenforms and the inner
sums over aeGal (K ,/Q). Since the functions /7 are pairwise orthogonal and
K is totally real, we have

F.G= %Z afBsw, (f) Lo _(f)"IfS°)
=3 Try,1o(08,)€Q.
i

1.2. The periods of R,

We have just seen that a function in S,; whose scalar products with elements of
&£ are rational itself belongs to S3;. Clearly a spanning set of such functions
is given by {R,:0<n<w, (— 1)"= £ 1}, where R,, is the cusp form characte-
rized by

r,(f)=(/.R,) (VfeSay).

Therefore the periods r,(R,) for m = n (mod 2) are rational numbers. Our
object in this section is to compute these numbers, thus obtaining an explicit
description of the structure of the spaces S%, and the duality between them.

Theorem 1 Let m and n be integers of opposite parity,0 < m, n S w. Then
(= DR27*wlr, (R)=(—1)r"m"D2x1m18,
+ ( _ l)(n+m— 1)/2ﬁ!’h!ﬁﬁ~m + ( _ l)(n+m+ Ulzn!m!ﬁm—ﬁ
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+ (= )2 mtp,

- nli!B, By 5
G ), e+ 1 o)

Ty m!ﬁz!ﬁmﬁﬁ
+(-1) MF +1)ﬂm(é,.,w(—1)"6,,,w),

where m=w—m, i=w—n,

Bivi it n>—1, nodd,
Ba=<(n+1)!
0 otherwise,

(B, is the nth Bernoulli number and is equal to the coefficient of t*/n! in
t/(e'— 1)), and &, ; is the Kronecker delta symbol.

Proof The numbers r,(R,) have the symmetry properties
rm(Rn) = (Rm Rm) = (Rm7 Rn) = n(Rm)’
rr?l(Rn) = ( - l)krm(Rn)’ rm(Rﬁ) = ( - l)krm(Rn):

all of which are shared by the formula given in the theorem. Hence it is
sufficient to prove the theorem under the restricion 0SS m<n<iw=k—1;
note that under these restrictions the fourth, sixth, seventh and eighth terms of
the formula in Theorem 1 always vanish, while the third is non-zero only for
m=k—2, n=k—1 and the fifth only for m =0. We will use the following
representation of R, as an infinite series, due to Henri Cohen:

Lemma (Cohen [3]) For 0 <n<w, RJ2) is given by

Rn(z)= c;,nl Z (aZ -+ b)—n_l(cz_I_ d)‘ﬁ—l ,

¢ her
. w
where ckn=in+12-—w( )'E.
g n
Progf Except for details of convergence, this formula is easily checked:

(f’ Z z7" ! 12:{)’)

yel

= fmy“’(fw Six+ip)x+iy— 2iy)"’”‘dx)dy
o - o0
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© i
= J‘ J’“’(%f ("’(Ziy))dy (Cauchy’s theorem)
0 '

2ni wl AN L
=1 — (5) L ¥y (2iy)dy

(n-fold integration by parts)
=27t 1<W)nrw_,,(f) =27wR" 1(w>7tr,,(f).
n n

To justify the steps, one notes that

Z (az + b2)—n—1(62 + dZ)—ﬁ—-l
ad—bec=1
converges for 0 <n<w and therefore the series in the lemma converges
uniformly absolutely on sets of the form y* 2 ¢, + ¢,x* (¢;,¢, > 0).
We now prove the theorem, assuming 0 < m < n < k— 1. By the lemma, we
have

@ /1 m
wrt=[ (3,3 g

The contribution from the terms with bd =0, i.e.

® 5 m t i
o \uz (e i (lic+ 1P+ +,Ezz(lit+1)"“‘1(—z't)7’+1 ?

equals
(DR, (= 1m0 p i1
wi " ) '
+ (- 1Ymtm= “/zﬁ!ﬁn!@,
as one sees easily using Lipschitz’s'formula,

-2 iv+1 .
Z (Z+ l)—v—l 2(_._:3___ Z IVCZzzlz (V > Lzesj)’

leZ M 11
the integral representation

(20 TE)s —v) = J - ( ¥ zve—m)dt (5> 1+7)
0 =1
and the identity
tmy=(—1"2 2" 5", _,  (n=>2even).
We have to show that the remaining terms give zero unless m=0o0rm+n=
w— L
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The integral over the terms with bd # 0 we write as 3lim S, with

£20

1/e i
Sg= J‘s {ad_§c=1 (ait+b)n+1(cit + d)ﬁ'.,_l }dt.
bd+0

Here we may interchange the order of summation and integration, since the
series converges uniformly absolutely. We also replace a, d and ¢ by their
negatives in the terms with bd <0, getting

1/8+ - tmdt
”m,_;c:l . _ 1y @it + by (it +af Tt
>0
1/e —& 0 e —1/e ©
[ I ) W I
3 —1/s — —-& — o0 ife

and observe that the (convergent) integral from* oo to = o0 is zero by the
residue theorem, because the integrand has only one pole if ac =0, while if
ac + 0 there are two poles, but both lie on the same side of the real axis because
of bd > 0 and ad — bc = 1. In the integrals from 1/¢ to co and from — oo to
— 1/e we replace ¢ by 1/t. This gives

We write

&
"
S =— ——dt
¢ ,,d_%:lJ_s(ait+b)"“(cit+d)"“
bd>0

(3 tﬁl
- 2 e Cdt.
ad—fo=1 _p(ait+ by " (cit + dy*t
>0

Since ad — be = 1, we have ac-bd = ad be 2 0. Hence bd = 0 in the second sum,
so that we can write S, =S+ S"*wﬁh

£ tm >
S.=— £—dt,
i _Z,,:C 1 ) (ait+ b)*”’ Yeit -+ dy*+?
>0,bd=0
SI/___ Z t
& —“:d——bc=1 {ait +b)n+ l(clt +d)n+1 ’
ac=0,bd>0
o rmdt
e _M_Eb:c:l _“,(ait+b)"“(czt+d)'Hl
bd}O

i t"dt

_lait + by Wit +- dy L )
The sum § we write (separating the cases b =0 and d =0, and replacing by
+ &t) as



1} The Eichler—Shimura Isomorphism 207

tm n—1
S = 2n+1 m~n—1
: I: Z j_l(l +ilgt)? Tt dt]

grom 1
+2—n+1n m—1 d X
PE [Elglf_1(1+ilst"+‘ t]

The expressions in square brackets are Riemann sums for the integrals

o 1 ome 1
dtd d
f J_l(l—!-zxt)"“ tdx an f f_1(1+1 t)n“dtdx,

respectively. Hence the limit as ¢ — 0 of the first term is zero unless m=n + 1,
ie. m=k—2 n=k—1, when it equals

w 1 1 2mi*
21t dtdx =
’L J_l(l-}-ixt)" tex=r_v

and similarly the second term gives 2ni”***/n if m=n — 1 and 0 otherwise.
This gives the third and fourth terms of the formula in Theorem 1. A similar
argument shows that (under our assumptions on m and n) lim S, = 0. Finally,

the first term of S’ equals 80
— m 1
2" ) prrigiri| & >
(z, Z )>=01 IeZ+cjd

1 trdt
f_l (1 + iet/bd + ilety ¥ 1(1 + ilet) ! |
where in the inner sum (g, ¢) denotes a fixed solution of ad — be = 1. Again the

expression in square brackets is a Riemann sum with a finite limit as ¢ —» 0, and
so this whole expression tends to 0 unless m =0, in which case it equals

~2 Z bhrig—#-1 ® ' a dx
b,d>0 cwd —1 (L4 ixt)?*

b,d=1
U+ DG+ 4n

T 2k 2%k-—1
( — 1)k2w

wl .ck,n

=2. (= 1) D2 nli1 BBy

W+DByry

The second term in S, always gives 0 since m < w. This completes the proof of
Theorem 1.
We would like to thank R. Sczech, who suggested the use of Riemann sums

in evaluating lim S,.
=0
As a numerical check, one can verify that the right-hand side of the formula
in Theorem 1 is zero for the 13 pairs (m,n) with0Sm<n<k—1<4,m#n
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(mod 2), while for k = 6 and the nine pairs with 0 < m < n< 5 the values r,(R,)
equal 7 (A)rA)/w, (Aw _(4) with the values r,(A) given in §1.1 (note that
dimS§,, =1 implies R, = (4, 4)~'r,(4)4 in this case).

1.3. Bernoulli polynomials as period polynomials

By an elementary calculation, the result of the last section can be rephrased as
a formula for the odd or even period polynomial of the cusp form R,:

Theorem 1" The odd period polynomial of R, for n even, 0Xn<w, is
given by

(= DF 72 279 (R )(X)

1 Xv 1
=_n+1 n+1( ) "+1(X>

1 D, 4t 1
——B2, (X)+—B°
+ﬁ+1 n+1( ) +1 n+1(X)

1 w1

A, O)H_Dﬂjm;—l ﬂmﬁﬁme‘

The even period polynomial of R, for n odd, 0 <n<w, is given by
( _ 1)k+(n—1)/22—wr+(Rn)(X)

1 Xv 1 1
=mB3+ 1(X) nt+ IBS+1(X)+T_B??+1(X)

_ Xv 0 (1) 2k Bn+1 A+l

(nO

Ar1 "UN\X ) B, n+la+l Po(X).
Here 7i, i, §,, have the same meaning as in Theorem 1, p(X)= X" — 1, and
BY(X) is the nth Bernoulli polynomial without its B,-term :

d . n .
BY(X)= z(’.’)sixw= 5 (,)BiX"“‘.
i=o \? o<i<n \}

iF1l ieven

Thefirst equation needs a bit of explanation if n = 0 or n = w, since then not
all terms on the right are in V,,_,. If, say, n equals w, then the first term
(— 1/(w+ 1)) BS , ,(X) has a leading coefficient — X271 /(2k — 1) of too large a
degree for an element of V, while the second term (— X™/(w + 1))B2 . ,(1/X)
contains a negative power — X~ */(2k — 1). These two terms are cancelled,
however, by the end terms m = — 1 and m = w + 1 of the folowing sum. Similar
remarks apply if n=0.

In this section we will check directly that the expressions on the right of the
formulae in Theorem 1’ belong to W%, at the same time getting a better
understanding for the structure of period polynomials.
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Assume first that 0 < n < w, to avoid the difficulties with the powers X 1,
X1 just mentioned. Since we know that p,(X)e W™, we must check that the
polynomial

1 _ 1
T n+ Il:B'(')"'l(X) +XWB;?+1<})]
1 (4] - w RO 1
"';1:_"_“1‘ Bﬁ+1(X)+X Bﬁ+1 E

belongs to W+, where (— 1)* = F 1. Since f (X)X "f(1/X) is the action of &S
on V (notations as in §1.1) and Bj,,, B2, are eigenfunctions of ¢ with
eigenvalue (— 1)"*! = + 1, this polynomial can be rewritten as

1 1
BY ——BY,
[in+l T Rt 1]
from which it is clear (since §2 = 1) that it is annihilated by 1 + S. We must
check that it is annihilated by 1+ U + U? or (equivalently) that it is in the
image of 1 - U.
Let

(1-3)

(_ 1)n+1
n+1l

f(X) = +1(X)+ Bg+ 1(X)

The polynomial BY, ,(X) differs by only the monomial 4(n + 1)X” from the
usual Bernoulli polynomial B, | 1(X ), whose most important property (the one
that led Bernoulli to introduce it) is

Bn-l- I(X + 1) - Bn+ I(X) =(n+ I)X”'

Hence
n+1
By, (X)— By, (X~ 1)=[B 2 ]
n+1 n+1
—[B,,H(X)— (- 1)"]= SIXT (-1
SO

1 n+1
£ ~fox 1=

Combining this with the identity

X"+ (X — 1] +4[ X+ (X - 1)L

o tr == () = (-
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gives

(__ 1)n+1

fla=T"Y= X" —3xH U

- (=1)r
e o gia - oy,
where g(X)=3(X"+(—1y""'X"). The fact that our original polynomial
fl(1—S8)is in Im(1 — U) is now a formal calculation:

AA=89)=Fl0-U)+f|1 =T HU
=fIl=V)+gl(1 = U HU =(f-9)I(1 - V).

This proves what we wanted. Furthermore, the last calculation generalizes
immediately to give

Theorem 2 Let f, g be two polynomials in V satisfying the identity
fIA=T " HY=gl1-U". (%)

Thenf |(1 — S)eW. Conversely, given any heW there existf, geV satisfying
(%) and f|(1 — 8) = h; the element g can be chosen to satisfy g|S = —g.

Proof The first statement follows from the formal calculation just given,
which shows that

11 =8)=(f— @Il — VyeIm(l — )~ Im(1 — U)=W.
For the second, suppose that heW and set f'=2h, g =2h|(U%?— U). Then
fIQ=T"Y)=3h|(1 -SUY)=3h|(1 + U*)= —3h|U,
gl(l = U™ Y =¢h|(U*-2U + )= —3h|U,

and clearly f|(1 — §) = h. The last statement follows if we note that we can
subtract from f and g any polynomial invariant under S without changing
fI(1 — S)=h or affecting the relation (*); applying this remark with the poly-
nomial 1g{(1 + S) leads to fand g with g|S= —g.

Notice that the essential element of the pair (f; g) in Theorem 2 is g, sincefis
determined by g up to a constant {the kernel of 1 — T~ ! consists of periodic
polynomials, hence constants) and changing f by a constant changes h =/
(1 —35) only by a multiple of po(X)= X" —1, the ‘trivial’ element of W,,_..
Conversely, the only condition on g in order that there should be an feV
satisfying (x) is that g|(1 — U~ !) have degree less than w. If we assume — as we
may by the last statement of the theorem — that g|S= —g, then g{1 — U~ 1=
gl(1 + T™1), which has the same degree as g. Hence the requirements on g
become: (i) g|S = — g, (ii) deg(g) < w, and we have a map from the set of such g
to W/{p,> defined by
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g—f11—S8), where fl(1—-T Y=g|(1+T Y.

A basis for polynomials g satisfying (i) and (ii) is clearly given by {g=3(X"+
(=)t X":0<n<w}, and the calculations preceding Theorem 2 show
that the corresponding elements of W/{ p, > are just the period polynomials of
the R,,0<n<w.

It remains to discuss the anomalous cases n =0, w. By symmetry we may
suppose that n=0. The formula for ( — 1)*27*r ~(R,)(X) can be written

1 1
[_ BY(X)+ mBaﬂ(X)]l(l —8)— mck(X)’

where
26—1
aX)= Z 1ﬂmﬂ2k—2—me (k=0).

The first term [ — B+ (w+ 1)~ B2 1](1 —S) is not a polynomial, but it is
annihilated by 1 + Sand 1 + U + U? by the same calculation as for 0 <n < w.
The function ¢,(X) is also clearly annihilated by 1+ S (since it is odd and
symmetric), so to check that the whole expression is in W,, _, we must check
that ¢, is annihilated by 1+ U + U?, i.e.

X))+ Xch(X ; 1) +(X - 1)ch< ) =0 (k>0).

1-X

The numbers B, (n = — 1) are the Laurent coefficients of £ coth 4t around t =0,
so we have the generating series

Y aXy* =% B BX""" =}cothitcothiXr.
k=0

m,nz—1

Hence

ki::() [Ck(X)“’ XZk—zck<X; l)+(X _ 1)2k-—2ck<1 jX)] t2k—2

(X —1)x
2

1 t Xt Xt
= Z[cothicoth—z— +coth TCOth

(X —1) —t 1
th th— [=—
-+ co > co ) 7

and the assertion follows.

1.4, Rankin’s method

By the result of Manin quoted in §1.1, we know that the Hecke operators T,
(1> 1) preserve S£(Q) and hence that the numbers r,(R,|T}) (m £ n(mod 2))
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are rational. Knowing these numbers will give an explicit description of the
spaces S, (and hence also of S,,) as modules over the Hecke algebra. By the
self-adjointness of T;, we have

T Rol T) = (R,| Ty R,) = (R, R, | T)
=(R,|T;, T,)=r{R,|T),

ie. the numbers r,(R,|T,) are symmetric in m and n. To compute them, we
could use the same method as in the case = 1, simply noting that R, | T;is given
by a formula like that in the lemma in §1.2 but with the sum taken over

ab
matrices <c d) of determinant I The calculation then proceeds much

as before except that there are extra terms coming from the fact that
ad — bc = [ no longer implies that ad-bc 2 0 (as for [ = 1), and the terms with
ad-bc < 0 must be treated separately. We prefer, however, to give a completely
different proof, based on Rankin’s method, since this will also permit the
introduction of several ideas used in the sequel

We begin with a property which is a formal consequence of the definitions
of the rational structures &%, and &9,.

Proposition  Let n be an integer satisfying 0 S n<w and let p,:S,,— S,
be the linear map defined by the property: p (f)=r(f)fiffis a normalized
Hecke eigenform. Then p, maps S5, to S5, , where (— 1)'= £ 1.

Proof This is essentially a restatement of Manin’s theorem, since by
linearity we see that

coefficient of ¢' in p(f)=r (f|ITY) (=123,..))

for any feS,,, and for feS%, the numbers on the right are all rational.
More explicitly, an arbitrary function in % can be written as
Y oo (f)” f(z), where the sum is over all normalized Hecke eigen-
forms and the «, are algebraic numbers satisfying (o)’ =o,. for all
0€Gal(@/Q); the image of such an element under p, will be ) .B,/(z) with
Bs (=apr () (f)eQ, (B, = Bs., and this is the typical form of an ele-
ment in &9,.

By the identity above, the number r(R,| T)) is the ith Fourier coefficient
of p(R,,). From the definition of R,,, we have the eigenfunction expansion

R,(2) =Y r /). 1),
7

where as usual ). denotes a sum over normalized Hecke eigenforms and
(f,f) is the Petersson scalar product. Hence

PuR,) = Zf:r.,.(f NS,
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ie. p(R,) is the cusp form characterized by the property (f,p,(R,))=
r()r{f) (f a normatized Hecke e1genform) If we can construct a modular

form with this property, thenits Fourier coefficients will be the numbers we are
looking for.

To construct this function, we use Rankin’s identity — already quoted and
used in §1.1: ‘

(=1
(/. G2nG 2k~ 2m = 5% =1l 2n— 2 201 (),

where f is a Hecke eigenform and k/2 <n< k— 2. The proof is simple: for
n=2 we have, writing I'  ={(T)cT,

B
Gu@=-2 Y (cz+a™
" 4n el \T

and therefore

4n
- §2—”(f5 GZnGZk—Zn)
f - dxd
=], S0 T Y
Jns  @nel \r y*
i xdy

= Z SDGyyo 2,,(yz)Im(yz)z"
J r\ﬁ(“g)er \I

= J(@)G gy Zn(z) ¥y 2 d);dy

JTA\

= Z a0 31— 21 (e ™y 2dy
Jo =1

= T a(Do 25— 20— 1(D

- (415 2k~1 = J2k—1
2k —2)! -

= it n) ™ LA, 2= DL, 20,

where {a,} are the Fourier coefficients of f, L(f,5) = 3.7 a(})l* its L-series, and
the last line of the calculation (the only one that requires f to be an eigenform)
follows from the properties of the Euler product of L{f,s). The conditions
n> 1k and n < k — 2 are needed to make the series absolutely convergent and
to make G,,_,, a modular form, respectively. The relations r(f)=
ni(2n)" " *L(f,n + 1) and {(2n) = (— 1)*"'B,,(2n)*"/2(2n)! now complete the
proof.

Rankin’s identity actually remains true for n =1k (although the above
proof breaks down), and then by the symmetry property r,, =(— 1) r,,_,, for
all2< n< k—2;itis true also for n =1 or n =k — 1 if the function G,,G,;_ 1,
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is replaced by
1

G,Gopp + m@k—za

where G, = —4z+ Y 0,(Dq". (The function G, is not a modular form, but
instead satisfies

az+b 12¢
= d)? =t
Gl(cz+d) (cz+d) GZ(Z)-I—zm_ (cz+d)

ab
for (c d)el’, from which it easily follows that G,f+ (1/4=ih)f’ is a modular

form of weight A + 2 for any fe M (I').) We will need a further generalization of
Rankin’s identity, proved in [22] and which we shall quote without proof. To

state it, we need certain differential operators F,, which were introduced by
Cohen [2].

FormeZ. ,and a, beR, let F@" be the (— 1)"-symmetric bilinear form on
smooth functions defined by

FEN (fig) = (a) ™ 3 (~ 1 ('f)

_ I'la+m)I'(b+m) FO g
Ia+)I'b+m—i ’

where f® denotes the nth derivative of f. Then Cohen shows the following:

@) If f,g are modular forms of weights a and b on some group
I'" = PSL,(R), then F,(f,g): = F&Y(f,g) is a modular form of weight
a+b+2mon I'" and is a cusp form if m > 0 (F,(f,g) is simply the
product fg).

(ii) If fis a modular form of weight a on some group I'" < I', then

F(f,G):=F5G2(£,G))
(zni)—‘m~ 1f(m+ 1)

+ 2(a+m)

is a modular form of weight a + 2 4+ 2mon I’ and a cusp form if m > 0.
(i)  FpGyG)i= FED(G,, Gy)
m!
22+m)

is a modular form of weight 4 + 2m on I" and a cusp form if m> 0.

+{1+(=1m (2mi)~m LGyt D

The generalization of Rankin’s identity proved in [22] is then that the
scalar product of a Hecke eigenform fwith a function F (G, , G,,,) of the same
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weight is up to a simple factor the product of two periods of f(Rankin’s identity
was the case v = 0). More precisely, if m and n are integers of opposite parity
with 0 S m<n<k~— 1, then the function

_ !
E+(n—m+ 1)/2 -1 (W —m)!
X = (= romme Dr2p2 1

.I:Fm(sz——m—n—i’ Gn~m+ 1)

iBn—}—l B2k—n——1 G ]
mOg n+12k—n—1 **

+96
has the property

(f, X o) =1l FIr(f)

for all normalized Hecke eigenforms feS,,. Also, X, isitself a cusp form (this
is the reason for subtracting a multiple of G,, when m =0, which does not
affect the scalar product with feS,, but makes X, , vanish at infinity) and has
rational Fourier coefficients (by the definitions of G ,» and of the operators F, ).
By the remarks at the beginning of this section, we must have X, , = p(R,) =
Pm(R,). This proves

Theorem 3 For 0Sm<n<k—1, m#n (mod 2), let X, S, be
the function defined above and let | be a positive integer. Then r,(R,|T)
is the lth Fourier coefficient of X, ,

al

Looking at the explicit formulae for the Fourier coefficients of
F,(G,,,,G,,,), we easily see that the case [ = 1 of this gives Theorem 1, while for
1> 1 one obtains equally explicit formulae. In particular, for m=0,3<n<
k—1 odd (ie. the case of Rankin’s identity) we obtain

1)k+(n+ 1)/22—2k+ Ir (R ITI)

= coefficient of ¢’ in G, ;G414 — k B,iy Biis ”
-1 Byn+ln+1
=Y ahoi(l—h)
h=1
Biis +1
_ n _ ,, I
3+ 070 5+ 1)
k B+1Bn+1 (l)
Byn+1i+17%1

for 1= 1, where il = w — nas in §1.2. The formulae for r (R, | T}) are similar, but

the numbers o (h)o{l — h) are multiplied by a coefficient which is a homo-

geneous polynomial of weight m in I and h with rational coefficients.
Notice that our explicit formula for X, proves that p (R,,) has rational
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Fourier coefficients and hence implies the proposition at the beginning of this
section and (working backwards) Manin’s theorem on the invariance of S5,
under the Hecke algebra.

2. THE PERIODS OF £, ,

2.1. Modular forms of half-integral weight

Let D > 0 be a discriminant (i.c. an integer congruent to 0 or 1 modulo 4)and k
a positive even integer. The function

DUz
=3, o
T k _ 1

where the sum is over all triples (g, b, ¢)e Z* with b% — 4ac = D, belongs to S,,.
This function was introduced in [19, Appendix 2] in connection with the Doi—
Naganuma lifting from elliptic to Hilbert modular forms, and shown in [8],
[ 7] to be the Dth Fourier coefficient of the holomorphic kernel function for the
Shimura—Shintani correspondence between modular forms of integral and
half-integral weight. In this section we will use this property off, , to show that
it belongs to S5, and compute its even periods.

To state the result, we will need the number-theoretical function H, (D)
defined by H. Cohen [2]. Thisis defined either as the Dth Fourier coefficient of
an appropriate Eisenstein series of weight k+1 or as a special value of a
Dirichlet L-series: if D is a fundamental discriminant (i.e. either 1 or the
discriminant of a real quadratic ficld), then

wm-i-4(2)

while if D is an arbitrary discriminant we write D as D, f % with D, fundamental
and feN and set

wan-{1-+() () )
ajf

The polynomials py( = X™ — 1) and B? have the same meaning as in Theorem
1. Then we have

(az?+bz+c)*  (ze9),

Theorem 4 Let k and D be positive integers, k even. Then

B
o)X= Y (@X?+bX +off 1+ ZEH(D)py(X)
a,b.ceZ BZk
a<(Q<c
b2 —4ac=D
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1
%(Bg(mX )— X*BAmX~') if D=m?

0 if D s square.

In particular, f; , belongs to S3,.

Notice that the sum on the right is finite, since 0>ac> — D/4,
bl < \/ D. Notice, too, that the theorem is vacuous if D is not a discriminant,
ie.if D =2 or 3(mod 4), because then f; ;,, H (D) and the sum in the theorem all
vanish,

If k=2 or 4, then §,, = {0} and consequently f; , = 0. Restricting to the
case that D is the discriminant of a real quadratic field, and computing the
coefficient of X™ on the right of Theorem 4, we obtain

Corollary Let K be a real quadratic field, D its discriminant, {(s) the
Dedekind zeta-function of k. Then {(— 1) and [ (—3) are given by the
Jormula

B D —p?
CK(I_k)=—I:£§Gk—1< 4 ) (k=2,4),

where the sum is over integers b satisfying |b| < \/ D, b=D (mod 2) and

6«_1(n) as usual denotes Y. c*~ L.

cin
c>0

This identity was proved by Siegel [13] (in a somewhat different form; for
the above formula see [ 17 or [20]) by studying the restriction to the diagonal
of the Eisenstein series of weight k for the Hilbert modular group of K; the
relation of this method to ours will be discussed briefly in §2.4.

We observe that the Eichler—Shimura theorem implies that the Oth period
can be expressed in terms of the periods r, (0 < n < w, n even). Hence Theorem
4 implies the existence of a formula of the type

[(b—1)j2}

— b2
GU—-R=Y 3 gk,j<b2,u)a,‘_1_z,-(l~)4—>

b j=0

for every k, not just k=2 or 4, where ), has the same meaning as in the
Corollary and the g, ; are universal homogeneous polynomials of degree j in
two variables. For instance, for k =6 we have

691 (D—b?\ 45 D—b?
CK("5)=§[16380"5( 4 )+3‘64(9b2_m°3("7_>]
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691 (D—p
— 5= "
txl(=3) 2,;[1638005< 4 )

5 D—b?
— = (21b* — 1462D + D? .
52( + )0'1< 4 )]

or

However, to give canonical and explicit formulae of this type for general k we
need to have a description of the map A discussed in §1.1; this will be given in
Section 4.

Proof of Theorem 4 Let S, ,,, denote the space of cusp forms of weight
k+ % on I' ((4) whose nth Fourier coefficients for n= 0, 1 (mod 4) vanish. Then
the following facts are known:

(i) The map &, which sends ) ., c(n)g" to Y., (3 4, d*~ *c(n®/d*))q"
maps Sy, 1), t0 S,([6]; the map &, is a slight modification of the
lifting map defined by Shimura in [16]).

(i) the function

'Qk(za ’L') ___( _ 1)k/223k— 1 Z fk,D(Z)GZniDr (z,reSj)

D>0
belongs to S, ,,, as a function of ¢ [8, Theorem 2] and is the holomorphic
kernel function of &, [7]; ie.
(Z19)(2) =<9, 2(—Z"))>
1

= *f 9O — Z1) v* " ¥ dudy
6Jroans

(€8st 1/2,T =u+WED).

It follows that €, is also the holomorphic kernel function for the adjoint map
F¥:182,—> Sy41j25 in particular

(_l)k!22—3k+1y=f(R")= Z <Rn9ﬁ,o>elnins

D>0
= Z rn(fk,D) g2nibe
D>0

isin S, 4,,. So to prove the theorem we have to identify the function #$(R,).
By definition, it is the unique cusp form in S, ,,,, satisfying

(LR =1(L19)  VgeSiryp-

Using the fact that r (£} is essentially equal to the L-series of fats =2k — 1 — n,
we see that r,(,g) is, up to a simple factor, the value of ), ; c(m®)m™* at
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s =2k — 1 — n, i.e. the convolution of the L-series of g and of O(z) =) > ™~ at
s =42k — 1 — n). By Rankin’s method and its generalization, as already used
in the proof of Theorem 3, this number, for n even and less than k, is essentially
the scalar product of g with F,,(0, G,_,), so that #¥(R,) is a multiple of the
cuspidal part of F,,(0, G, _,). The exact computation gives

w—n!  Ww/2)!

®(R ) 93k~ 1k—1
SR =2 o = )

B
'l:Fn/Z(@(T)a Gy_n(47)) — d,0 B”—k%lﬁ 1/2(’5):]
2k

(neven,0sn<k—2),
where

B
”Hl/z(f): - 27: + Z Hy(D)e e?mir

is the Eisenstein series of weight k + £ introduced by Cohen [2]. Comparing
the coefficients of e>™* on the two sides of this equation gives the theorem.

Let us discuss the result and the relationship between S,, and S, ., in a
little more detail. It is known [6] that there is a natural action of the Hecke
algebra on S, . ;, and that (i) the map &S, , ;, = Sy is Hecke-equivariant;
(i) S, and S, 1 , are isomorphic as Hecke modules. (It is not known whether
&, gives the isomorphism; this is equivalent to the non-vanishing of L(f, k) for
all eigenforms f€S,,.) Hence there exists a basis g; (1<j<r) of S, 4,
corresponding to the basisf;(1 <j<r) of normalized Hecke eigenformsin S,
where r =dim S, =dim §,,,,. The g; can be chosen to have algebraic
Fourier coefficients (more precisely, Fourier coefficients in the same field asf ;).
If we write

9= Y  ¢Dyg’,
D>0
. D=0,1(mod4)
then & (g;) = c{1)f;. The g; are mutually orthogonal with respect to the
Petersson scalar product, so that the kernel function Q, of &, is given by

Q(z,7) Z 95,9, g, ¢ (DS (2)
and therefore

FIR,) = Z(g,,g, rf)eDg )

or (taking the Dth Fourier coefficients on both sides)

(= D2 ' (fi0) = 20059, e (e D)ry(f).
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The fact that this is rational for m even means (since c{1) and c,(D) are
algebraic nmambers and transform appropriately under Gal(Q/Q)) that the
scalar product (g, g;) is an algebraic multiple of w , (f}), the algebraic factor
transforming in the usual way under ¢eGal(Q/Q) (ie. mapping to the
corresponding factor for g;,, where /' = f ). This fact was proved previously
by Shimura [17] and the authors [8]. One could also study the map
Lo :Sr 12> S defined by

s onee LR (D) (o
n>0 n>0 (dn d d

where D’ >0 is a second (say, fundamental) discriminant; this would replace
the numbers ¢ (1)c (D) in the above discussion by ¢ (D)c(D") and the function
F,5(0(z), G_(47)) in the proof of Theorem 4 by

Trr3h (F(O(D'7), Gy (7))

(cf. the computations in [8]), while the Eisenstein series discussed in §2.4
would have to be replaced by Eisenstein series associated to a non-trivial
genus character; we do not carry out any of this.

2.2, Sums of powers of reduced quadratic forms as period polynomials

This section is the analogue of §1.2: we shall check directly that the polynomial
occurring on the right-hand side of Theorem 4 belongs to the space W, _,.
For convenience we avoid the case that D is a square; then (since p, belongs to
W) we must check that the polynomial

PopX)= Y (@X*+bX+cf!
i,
a>0>¢
belongs to W3, _,.
Recall that an indefinite binary quadratic form [a,b,c] =aX?*+bXY+
cY? is said to be reduced if

a>0, ¢>0, b>a+c

There are only finitely many reduced quadratic forms of discriminant D, and
each I'-equivalence class of forms of discriminant D contains at least one
reduced form (the reduced forms in a given class naturally form a cycle,
corresponding to the period of a continued fraction; this will be discussed
further is §3.1). Let

Q. p(X) = Y (aX?—bX +of 1,
[a,b,clreduced
b2—4ac=D
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an element of V,,_,. Now one checks easily that

{(a,b,c):a>0>c}
={—~(@—b+c,—2a+b, a):[ab,c] reduced}
U{le, b—2¢, a—b+¢):[a,b,c] reduced},

the two sets on the right being disjoint. Applying this to the triples with
discriminant D and summing the (k — 1)th powers of the corresponding
quadratic forms gives

Py p(X)= . %=1) {(—0X—1,-X)"'+ QL X -1}
Qreduced

=0 p(OI(— U+ U?).

Hence P, ,|(1 + U + U?) = 0. Since, cleatly, P, ,|e = P, , (replace bby —bin
the definition of P, ;) and P, ,|S = — P, ,, (replace (a,b,¢) by (— ¢, b, —a)), it
follows that P, ,eW3, _, as desired.

We also find that

Pl =T~ ) =P p|(1 —=SU™Y)
=P pl(1+U™)
=0, pl(—U+ UH(1+U™Y
== Quol1=U"Y)

and P|(1 + S) = 2P, so that the pairf =3P, 5,9 = — 30, , exhibits P, ;, in the
form described in §1.2 (Theorem 2).

2.3. Periods of f, ,, ,

The fact that f, 5, is a modular form comes from the invariance under I' of the
set of binary quadratic forms of discriminant D. By the same argument, the
function defined by

k—1/2

_— . 2 —k
Jo. )= n(2k - 2> i T

k-1

where o is a I'equivalence class of quadratic forms of discriminant D and k
any positive integer (not necessarily even), also belongs to S,,. Clearly f, , =
Y 4D, Where the sum is over the finitely many equivalent classes of
forms of discriminant D. In this section we will refine the results of §2.1 by
computing the periods of the individual £ ;, .,; the proof will be considerably
harder because we no longer have available the interpretation of these
functions as the coefficients of the kernel function for the lifting to half-integral
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weight. Actually, what we calculate is not the nth period off, ,, ,, but rather of
Sipa=ripw thipa O fipu=ifipw—tepah
(depending whether n is even or odd), where
o’ ={{a, —b,c}:[a,b,cles}

is the image of .o/ under &. (Under the correspondence between equivalence
classes of binary quadratic forms and ideal classes in () \/B), o and &’
correspond to conjugate ideal classes.) These periods turn out to be rational,
so that /7, , belongs to &3;.

To state the precise resnlt, we introduce the polynomial

Qp(X)= ) OX, -1 'eV(@

Qe
Qreduced

(so that )", Q, 5, , is the function @, , defined in §2.2) and the zeta-function
defined by meromorphic continuation of

éd(s) = Z Qo(m7 n~* (Re(s) > 1),
(m,m)eZ2[Ty,
Qolm,n)>0
where J,, is any quadratic form in o and Iy, its stabilizerin . f D>l isa
fundamental discriminant, so that ./ corresponds to an ideal class in a real
quadratic field, then { _ is the usual zeta-function of that ideal class; in any case
{ ,(s)extends to a meromorphic function of s (holomorphic except at s = 1) and
satisfies

;C 28) = {(8)Lp(s),

where the sum is over all &/ of discriminant D and Ly(s) is the L-function
defined for arbitrary DeZ in [22], the value of which at s = 1 — kis the number
H (D) which occurred in §2.2. Then we have

Theorem 5 Let k=2 and o a I'equivalence class of binary quadratic
Jforms of discriminant D > 0, D not a square. Let s¢* denote the class of forms

d*={[—a,b, —cl:[a,b,cled}={—Q:Qc'}.
Then
r+(f1:1),&1) +r " (fip.a)
Cm(l - k)

=(Qxpwt+ OpM(—U+UH+ Ed“_“z—k)Po-
The formulaefor r*(f ), ) and r~(f , ) separately can be obtained by
looking at the even or odd terms on the right, respectively. That Theorem 5
really generalizes Theorem 4 follows from the formulae in §2.2 and the identity
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Yl A~k)=— %’;Hk(D) (k> 0 even).

Theorem 4 was stated only for even k becausef, ;, vanishes for k odd (£, ,, , and
JSrp,~cancel), but Theorem 5 is valid for all k 2 2. One can also giver*(f5, )
when D is a square, but this case is less interesting and we have omitted it. As
with Theorem 4, Theorem 5 gives explicit formulae for { (1 — k) if S,, = {0}
{i.e. for k=2,3,4,5 or 7), since then the expression on the right must vanish.
One such identity, obtained by looking at the constant term in Theorem 5, is

Corollary Forke{2,3,4,5,7} and o a class of quadratic forms of positive,
non-square discriminant,

Z}f—{f&‘,(l—k)= Y {a=b+of1-d"}
B,

{a,b,clest
reduced

+(=1F Y {la—b+of -1
[a,b,clest*
reduced
As with the corollary to Theorem 4, this could also be proved by Siegel’s
method of restricting Hecke—FEisenstein series (cf. §2.4).

Theorem 5 was used by D. Kramer [9] to show that the functions f, , ,, (or
even f 7 , with a fixed choice of sign) generate S,, as D runs over all
discriminants and o over all classes of forms of discriminant D. In fact, it is
sufficient to restrict to D of the form D, f'2 with D fixed. It is also conjectured,
but not known, that for k even the functions f j, span S,,; this is equivalent
to the question mentioned in §2.1 whether &, is an isomorphism.

Proof of Theorem 5 The method is similar to that used in §1.1. We set

2k—2 _
Ck,z)=< k—l)Dl/z kr,

2i_nzc r(fi )_Jw( Z + Z ) t"dt
kD nl kD, 0 \[a,b,clest o [a,b,clesd’ {a(it)z + bit + c}k

and write the integral as lim |!*. On the compact interval [¢,¢™ '] we may
&0
interchange the order of summation and integration, since the series converges

absolutely uniformly. If (— 1)*= + 1, we therefore have

so that

27" ¢ pr n(fk_,D,d) = hm Ser

t"dt
5= Ia, b et —1/e (- at? + bit + C)k
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1/ —e 0 —1fe s @
(I I I e I e
€ —1/e —o ~ 00 —& 1/e
In the integrals from — oo to —1/¢ and 1/e to oo we replace ¢ by 1/t and
[c, — b,a] by [a,b,c] (which is in the same class = since S€TI'). In the integral
from — oo to oo the only terms which contribute are the finitely many ones
with ac <0, since if ac > 0 the two poles of the integral lic on the same side of

the real axis (ac = 0 cannot occur since D is not a square). Hence S, =S, + S
with

Write

S = Z @ t"dt
t [abclesd J —0 ("‘ at2 + blt +c 4

ac<gQ
3 "+ ( — 1)k[r‘:
¢ [a.bclesd J —¢ ( - atz + bit + c)k

(i=w—n as in §1.1). We claim that the integral in S, equals

~1
2i7", ( v’:) sgn(a)d, (c, — b,a),

where d, (a, b, ¢) denotes the coefficient of X" in (aX? + bX + ¢)*~ . Assuming
this, we find the contribution of S, to r,(f, ) to be

-1
(— I)IniZ](w) ( Z dk_,,(C, ~b,a)— Z dk,,.(ca —b, a)>,
n fab.cles? {a,b,cles
a>0>c a<0<c
and the contribution to r*(fF, )+ r7(fp ) therefore
Y @X?—bX+of '~ Y (aX?—bX -+,
fa,b.cled fa,bcled

a>0>¢ a<0<c¢

which equals (@, p, ., + Q) p_)|(— U + U?) by the same calculation as in §2.2.
To check the claim we use the residue theorem:

® t'dt
f_m(— at? + bit + cf
sgna 1 &1 "
a (k-1 prad {t—4i(b— \/D)/a}k t=i(b+¥D)/2a

= 27i

-coefficient of X" in &(X, 4i(b + \/D)/a)),
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where
o+t X+
ot~V {t—Li(b— \/D)ja}*

Expanding — - W
X+g= [(X + ib————ZZ/D) + <t — ib 2;/D )]

by the binomial theorem, we find

B(X,1) =

(X, 1) = :;lli( {X+ _*/} { z‘;;/D

_ W\ (w—))! b— /D"
=(—1)" 12 )(k 1_)'{X—H 2 }

b_ J—2k+1
Kt —1
-t

=(”1)k_1{x+ib”\/D}k_1
2a

(k—1)!

-{t—ib_\/D}_ZHI(XH)"’l

v

b

§ —

2a

Q(X,ib + \/D ) =(‘* 1) tw! (i\/D)—2k+ 1

2a (k—1)! a

‘(aX2+ibX-—c>"“1
a

and hence
@ t"dr
_ o (—at? +bit + of

_1 ’
= Zni‘”sgn(a)<kiv_ 1)(:) D724, (c,—b,a),

whence the claim.
We still have to study the term S.. We write

{2 vy [

[a,b,clet [a,b,clesd ™ —s( - atz + bit + C’)k
c>0 c>0

and apply the following lemma, whose proof will be given at the end.
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Lemma Let € be a I'-equivalence class of forms of non-square discriminant
D>0. Then for 0< m< 2k —2 one has

& ™dt
lm T 2 1. T K 2n C‘g(k)
wo[abzc]eg _o(—at? +bit + o 5"'°2k 1¢2k)°

Taking into account the identity {,(s)={,(s) and the functional
equations

DY 2F< > {8+ pds)} = (same with s — 1 —s),

—wzf(s; ) 1649~ .9} = same with 51—

we deduce
o _ 2n
El_l;r; S.a - (5n,w 5n.0)(2k 1)C(Zk) {‘sd(k) + ( I)kcd*(k)}
_ _ ) 2k—2 12-18a(1 —K)
Cor =00} Zn( k— 1)D {(1—2k’

giving the last term of the formula in Theorem 5. It remains to prove the
lemma, i.e. to compute lm L,, where

=0

1 m
L =8m+1 ¢ dt
¢ faiaes ) —1 {aliet)? + bigt + c}*
c>0

! ™dt
=gm ck .
[a,bz,c:]ew [Enelgbllcj‘—l {D82/4CZ + (1 + nait)z)k]

> 0,b(mod 2¢)

The inner sum is a Riemann sum for the integral

t™dt
{1+ zxt)z"

Hence lim L, = 0 unless m = 0, when it equals
&0
2n
2k—1 [a,,fv-;]eg

e>0,bimod2¢}

-k
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(the integral has already occurred in the proof of Theorem 1). The sum equals
L (k)/{(2k) by the argument given in [22,p. 131], namely

Yy <=y o0y
fa,b,cle¥

¢>0,b(mod 2¢) Qg(%/’ §§§>‘n’(}>

= Y (QeedODF  (Qe? fixed)

AT AT 9>

- b
 anar (oo )
(b, d)eZ2/T'o,

b,dy>0
Q(Ob(,ti))=l

I

i

{(2k)™ (k).

This completes the proof.

2.4. Restrictions of Hecke—Eisenstein series

Let .7 be a narrow ideal class of a real quadratic field K, correspondingtoa I'-
equivalence class (also denoted <) of binary quadratic forms of discriminant
D =disc K. For an integer k = 3 define the Hecke—Eisenstein series of weight k
associated to « by

k—1)1
(27t)2k

G,If"d(z, Z') — Dk-— 1/2 N(a)"

X > 1
(A.peaxa/U*

hmr.0 (Az+ mA'z + p')

(z,2'e9),

where a is any ideal in the class o (the definition does not depend on the
choice) and U+ is the group of totally positive units of XK. Denote by

Gy p,/2)= G5 (z,2)e M, (I)

its restriction to the diagonal. These restrictions (or at least the sums G, , =
Y Gy p.) Were studied by Siegel [13] in order to obtain formulae for the
zeta-values { (1 — k) (or {x(1 — k)). Specifically, the fact that G, ;, ,(z) has
rational (actually, integral) Fourier coefficients and constant term £{ (1 - k)
implies the rationality of, and explicit formulae for, { (1 — k). On the other
hand, we have obtained formulae of the same sort for { (1 — k) by studying the
functions f; ; - The relation between the two approaches is given by
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Theorem 6 For k,D,.< as above we have

CA1—k .
G, p.(2)= z%:EéGZk(Z) -+ ka—z(fk,D,ﬂ(Z)) >

where p,y_5:S,,— S, is the map introduced in §1.4.

Since p,, ., maps S, to &9, thisrelates the fact used by usthatf},,  has
rational even periods to the fact used by Siegel that G, ;, , hasrational Fourier
coefficients. Using the known formula for the coefficients of G, ;, ,, we also
can deduce (by comparing coefficients of g™ in Theorem 6) a formula for
Fak—2(fiip.| T,); the case m = 1 generalizes the special case n = 0 of the result
for r(f;/ p..) Proved in §2.3.

Proof of Theorem 6 From the definition, we have

k— 1)12

Gk,D,.gf(Z) — ( (27_[)21: Dk— I/ZN(a)k

Y {N(Z + Tr(A pz + N(u)} ™"
A plen{004:U
where 4’ is the conjugate of 4 over Q. Choose an oriented Z-basis «, ff for a (i.e.
one with o’ — f'a>0) and let

Qolx, y) = N(ax + By)/N(a)

be the corresponding quadratic form. Then Q e/ and I'y can be identified
with U”. Each (4,u)ea x a can be represented as (x, S)M for some unique
MeTly\M ,(Z)\{0}, and under this correspondence

N(@)" INGZ? + Te(¥ )z + N1 = Qoo M)z 1)
Therefore

YDk

O G = % (QoeM)a 1)

Mel'g\M1(Z) 10}

= Z Gg:ll)),d(z)’

meZ
where

G @)=Y (QoM(zD7F

METQO\Am
with 4,, = {MeM,(Z):det M =m, M #0}. For m 2 1 clearly

G, (D) + GL B0 (2)
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= 2 @ooM@ED ™+ Y (QpeM)(z1)7*

Io)\dm Todm
o

=m”*2¢, 5(fe.p, (D) +F b, (2 T(m),

where Qy = Q,0¢ and T(m) denotes the mth Hecke operator in S,,, defined by
S1T(m)=m"1 Z SlaM;
MeN4m

the constant ¢, ;, is defined as in the proof of Theorem 5.
For m =0 we write

Gih D= 2, Y (QocyeM)(z1)7H,
Mel'\4o yel'g\l'/Ta

where y runs over a set of representatives of I'/I",, which are inequivalent
under left multiplication by the generator of I'y and I'y, = {NeI':NM = M}.
It is easily seen that a set of representatives for I'\4,, is

m n
{(0 0):m_>0, neZ, or m=0, n?O}

and the isotropy group I'y, of any M in this set is I' =< T>. Therefore
(denoting as usual by )’ a sum with the zero term omitted)

6= 3 T oer(y olben

m,neZ yel g\ I'y

Z’{ Y o4+ Y }Q(mz-ﬁ-n.O)*k

mneZ { Qe [Ty Qe "™*{I,

{3
13

F(-F Y fa

[a, b c]sd la,b,cled'*
a>0

b (mod 2a) b{mod 2a)

={{olh) + (= Yk} Eil2),

where E,(2)={30(1 —2k)} "'G,(z)=1+-- denotes the normalized
Eisenstein series and the last line follows from the identity

—Z (mz + 1)~ 2 = [(2k) E5y(2)

mn

and the formula for { (k)/{(2k) given at the end of §2.3.
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Putting together the formulae for the various G}, , and using the identity
2k22k— 1

T )

LR+ (= D pull) =
we find that

Gk,D,.sj(Z) = %Cﬂ(l —k)E(2)
2k—2
((271: 2k )1 m 2 {fk,D,w +(— l)kf'k,D,d*}l T,

(notice that f, 5 . =(— 1) p, &,*). To 1dentify the cuspidal part of this, we
compute the Petersson scalar product with a normalized Hecke eigenform

/= Y.a(m)qmeSy:
(27I)2k 1

2k — 2)'(kaD~d)_ Z m_2k+1(f(-fkb.szl+fkb.ﬁ)lT)

Z m~2** l(fle,f,:D,d)
m=1

Il

© .
= Z amm‘2k+1(f’fIZD,.sl)

= L(f 2k — I)UJIZD,M)
2. 2k—1
((ZZ) Y Tax—2f) (ffk D, o)

Therefore if 1/, ,,(2) =) ;a.f(z) (sum over normalized Hecke eigenforms),
then the cuspidal part of G, 5, , is

; cxfer— Z(f)f(z) = sz_z(f,zp,d).

The theorem follows.

3. HYPERBOLIC PERIODS

3.1. Periods around closed geodesics

The periods r,{ /) of a cusp formfe€S,, are integrals of falong a certain geodesic
in $, namely the one joining O to ico. All geodesics in § have the form of asemi-
circle from o to B, where a, f are distinct pointsin Ru { o0 } and the semi-circle
degenerates to a vertical line if ¢ or § is infinite. If « and § are rational, then -
there is a sequence o, = a, oy, .., 0y = f§ of elements of @ U { o0 } such that the
geodesic from o, _, to o, is F-equlvalcnt to the geodesic from 0 to i, so -
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integrals of f from o to f can be expressed as linear combinations of the
numbers r,,(f). (This is the basis of Manin’s proof of the formula for r, (f| T}).) If
the pair {o, B} is not defined over Q, then the image of the geodesic from a to 8
is dense in I'\$, and the integral of falong this geodesic makes no sense. There
remains the case that « and § are not individually rational but that {«, 8} is
defined over Q (ie. Gal (C/Q)-invariant); this occurs when « and B are
conjugate quadratic irrationalities, i.e. when a and § are the roots of an
equation

axz +bx+c=0 (a,b,cEZ, (a7 bs C)= 1)
In this case the geodesic C joining « and f is given by the equation
azl?+bx+c=0 (z=x+iye®)

Since « and § are real, we must have D = b? — 4ac > 0; moreover, Dshould be a
. non-square since we want o and f to be irrational. We write C = Cy, where Q is
the quadratic form [a,b,c]. There is an infinite cyclic subgroup I'y of T,
corresponding to the group of totally positive units of K = Q( \/ D), preserving
Q and hence C,; this group is generated by the matrix

1
_ 5({t — bu) —cu
o= < au I+ bu))er’

where (¢, u) is the smallest positive solution of Pell’s equation t*> - Du? = 4. One
checks that the expression

f@)(@z* +bz+cfftdz

is invariant under y,, so the number

rolf)=1 f@)az+bz+cf 1z
TyiCy

makes sense. (There is a slight question of orientation; we orient the geodesic
from(—b — \/D)/2ato(— b+ /D)/2a,i..fromleft to right if ¢ > 0 and from
right to left if @ < 0; then the oriented integral will go from z, to y,z,, Where z,
is any point of Cy.) Replacing Q by a I'-equivalent form replaces Cy by a I'-
translate and Iy, by a conjugate group and does not change either the curve
Io\Cy =I'\$ or the number ry(f). We therefore also write C,, for I'y\C (a
closed geodesic in I'\§)) and r(f) for ry(f), where o/ denotes the I'-
equivalence class of the form Q.

The relation of the ‘periods around closed geodesics’ r (/) and the cusp
formsf, ; ,(2)studied in Section 2 is given by the following proposition ([14],

AL

Proposition Let &/ be a I'equivalence class of primitive binary quadratic

)
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Jorms of discriminant D >0, D not a square. Then for any feS,, we have
rﬂ(f) = 22k_2(fs fk,D,ﬂ)-

Proof By the usual unfolding argument, we have

o> fi,p,) = s I‘Z\T (QN(E ) (2)y* 2dxdy
relg
= F(2)az? + bz + ) Fy** 2 dxdy,
Iy

where Q = [a,b,c] is any element of &/ and c, j, has the same meaning as in
§2.3. Let

where o and f are the roots of az® + bz + ¢ =0, with « < . Then 0 < 8 < 7 and
¢ is invariant under I', (replacing z by 7oz multiplies (z — a)/(z— B) by

[t +u/D)1 7). Also
d0 =dIm[log(z — p) —log(z —a)]

ﬂm[(ziﬂ_zia)”]

- \/Dlm[i_],

az?+bz+c
so \/
D
dzdf= —Y—— )
0= T prr W
and
2
¥yt
]azz—&—bz—l-cfz—Dsm 0.
Therefore

f(zWaz? + bz + ¢) *y*~ 2dxdy
=DV27kf(Z)(az® + bz + cf ' sin®*~20dzdf.

For each 0e(0, ) the integral of f(z) (az® + bz + ¢}~ 'dz from z, to yyz,, where
z,€$ is any point with arg{(z, — B)/(z, — )} =8, is r (f), independent of 0.
Hence

ol fip,w) = D2 _kr&,(f)f sin?*~ 2040,
0

and the theorem follows.
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Now Theorem 5 (§2.3) tells us that / 5}, , belongs to S3; and therefore has
rational scalar product with any fe ;. By the above proposition, this scalar
product is a rational multiple of r_,(f) + r.(f) or i(r ,(f) — r (/). Hence it
should be possible to write r_(f) as a rational linear combination of odd
periods of f plus i times a rational linear combination of even periods. This is
the content of the following theorem:

Theorem 7 Let oZ, D be as in the proposition, k> 1, feS,,. Then
r.d(f)= Z i_n+1q§c',')1),.szlrn(f)’
n=0

where q\", , is the coefficient of X™ in the polynomial Or.p,(X) Qs p, v asin
§2.3).

Proof We may assume that the form Q =[a, b, cje o/ in the definition of
r,(f) is a reduced form, since every class of forms contains a reduced
representative. The reduced forms in o form a cycle Q,=0Q, Q,,...,0,=Q,,
where each Q; is related to its predecessor by Q;=Q,_,°M; with

M= m; 1
J -1 0

for some integer m;>2; the m; are determined by the continued fraction
expansion

b D 1

+/ N N

2a 1
rnz"~

iy —,

which is pure periodic (m;=m;.,) because Q is reduced [23].
Choose z,e$ and set z; =M, ... M z,, so that z,=7y,z,. Then

re(f) = f YQmf (2Q(z 1) dz

-y f Y @0 1z
=1

Zj—1
r M jzg

=2 f@Q,_ (2,1 dz,
=t

Zg

where in the last line we have acted on z by M,...M;_,. Now Mz, = —m;—
1/z,. Since the last formula is true for any z,e$, we can let z, tend to 0, so
M zy—i%. Then

=Y, f SO0, 1z
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= f S@)0 0.0~ 2z,

w

=2 (=g 4 fmf (2)z"dz,
0

n=0

as was to be shown.
In view of the proposition preceding the theorem, an equivalent for-
mulation is

fk,D,.le(Z) =27 Z it “"qu)l),an(Z)-
n=0

Replacing o/ by «/' replacesf; p ,(2) byf, p 4(— 2).Since R,(— 2) = R, (z2), we
find that

Sipa2)=27" Z " lqgf)n,gR,.(Z)
n=0
and therefore

fl;i:D,ﬂ(Z) =32k Z ( _ 1)[(n— 1)/21q§‘r:)D’an(z)’

Osnsw
(-1 =F1
which gives /', , as an explicit rational linear combination of the functions
R, belonging to S%.

3.2. The scalar product of f ,:’ pa, a0 f L,

We have proved in §2.3 and againin §3.1 that the cusp formf f}, , belongs to
83. Since 33, and 3, are dual Q-vector spaces, it follows that the scalar
product (fp, «,>f .0, ,) is rational for any classes &/, %/, of quadratic
forms of discriminant D, , D,. The various formulae proved so far in this paper
would permit us to give various expressions for this number — for example, we
could express f,f ), , as a rational linear combination of R, (nodd) by the
results of §3.1 and then compute (R,.f ; p, .,,) by the formulage in §2.3, or we
could express both £, 5. ., in terms of the R, and use the results of Section 1.
The most natural formula, however, is obtained by writing the scalar product
as2' " *(r, 41, Nf i p,.,) and computing the integral around the geodesic.
This was done by S. Katok in her thesis [5]. The calculations are somewhat
analogous to those in §§1.4 and 2.3 of this paper. One first uses an ‘unfolding
argument’ to write the integral as a sum of integrals parametrized by the set of
double cosets 'y, \I'/T",,, where Q; is a form in the class «/;. All but finitely
many of these integrals are zero because their integrands are rational functions
all of whose poles lie on the same side of the path of integration. The remaining
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double cosets are those corresponding to the intersections of the geodesics
C,,wC,and C, in I'\$. The final result, which we do not state in detail,
expresses the scalar product as a sum of local contributions from these
intersection points, each given as a simple multiple of P, _,(cos ), where 0 is
the angle between the two geodesics at their intersection point and P,_,
denotes the (k — 1)th Legendre polynomial.

3.3. Applications to zeta-functions of real quadratic fields

Another way to combine the formulae proved so far is to compute (via the
results of Sections 1 and 2) the periods of both sides of the identity

Fina=2H Y (-G, R,
Osn<w
(—1y=F1
proved in §3.1. In particular, taking the Oth period of £/}, ,, we find after a
short calculation:

Theorem 8 Let .o/ be an equivalence class of quadratic forms of non-square
discriminant D and { ,(s) the corresponding zeta-function. Then for k Z 2 we
have

B
((l—k=—- Y {—Zk(a""l—!—(b—a—c)"‘l)
fopyelear L

2k—3
Byw( Byiy | By L+6,,
22k Pn i 5 X
+,,;[2k(n+1+ﬁ+1+ Ln ok~ 2

nodd

B

B.
i el

where d,_(a,b,c) denotes the coefficient of X" in (aX* +bX +cff ™"
As an example, we have

— )=y 105+ 691(b —a—¢)°
L (—5) 22_32.5.7'13[a,b§5d[69a +691(b—a—c¢)
reduced

+ 3(24bc* — 50abc® — 25bc? + 30a*be? + 20ab*c + b5)].

By applying other periods than r,, we obtain other identities among the
coefficients of Q(X, Y)*~ !, where Q runs over the reduced polynomials in the
class «/. We do not give these explicitly, since the reader can easily work them
out if he so desires.

A formula for { (1 — k) of the same type as Theorem 8 was proved by D.
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Kramer in his thesis [9]. His proof was based on the method of [ 21], in which
formulae for { (1 — k) in terms of rational (rather than polynomial) functions
of the coefficients of reduced polynomials were given. This method did not use
the theory of modular forms or their periods but was based instead on a certain
decomposition of the zeta-function { (s} into simpler Dirichlet series; this
decomposition, first given in [18], was generalized by Shintani to arbitrary
totally real number fields and the special values of their zeta-functions [15].

Finally, we can use Theorem 7 to obtain results on modular forms of half-
integral weight. By the results quoted in §2.1 we have

(= 2272 p(@=3.(9,,9) ™ "cDeDY (),
j
where the f; are the Hecke eigenforms in S,, and

g;= Z cj(")qn
n>0
n=0,1(mod 4)

the corresponding eigenforms in S; ., ,. Thus we have

(ff)
9.9 )

for any Hecke eigenform f, where we have omitted the index j. On the other
hand, by the results of §3.1 we have

(_

22k 1(.fafk,D) = ; r /)

=% X (= D" 92, r()

A n=0
nodd

(the terms with n even drop out when we combine the classes &/ and /")
Hence we find

— (129K 9.9 1) 172 W
dlg(z) = (— 1)**2 1) . Z( ) r )Y, (2)

nodd

where

discQ=D
Qreduced

Y= ¥ ( ) dk,,.(Q)) gmibz

D= 0D1>(tgod 4)
(dy, Q) = coefficient of X" in Q(X,1)*"", as usual). Since the numbers r,(f)
(0 <n<w,n odd) are not linearly 1ndependent it does not follow from this
formula that the functions ¥ (z) belong to S, ,,,, and indeed by looking at
examples one sees that they do not. On the other hand, the formula shows that
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all functions in S, {;, are linear combinations of the ¥,,, so these functions —
which can be thought of as theta series with respect to the indefinite ternary
form b? — 4ac and the spherical polynomials d, ,(a, b, c) — are very related to
forms of half-integral weight; it might be of interest to study them further.

4. COMPLEMENTS

4.1 Reinterpretation of formulae and extension to non-cusp forms

As pointed out in §1.1, the FEichler—Shimura theorem gives natural
isomorphisms

S5 —WT(Q), ;0 —W*Q)
r r*,po)
*

rather than simply ©%, ~ W*(Q). Thus one might expect that to any naturally
occurring example of a cusp form fe S5, there is associated a rational constant
c such that the polynomial »*(f}(X) + cp(X) is a simpler polynomial than
r*(f)(X)itself, i.e. that the formulae for r (1) involve correction terms forn =0
and n=w. This is indeed what we found for the various special functions
treated in this paper: the even period polynomial of (—1)"~¥227*R (z)
O<n<w,nodd, i=w—n) was

1 . 1
(m’*m*m%)

(Theorem 1") and that of f, (z) (D the discriminant of a real quadratic field K)
was

_2_k_Bn+1 Byyy

1-5) —
A=8 —g aria+t

po(X)

k
- Pk,D(X) - E;Cx(l — k)po(X)

(Theorem 4), while for 7, ,(2) there was a similar result with {, replaced by
the corresponding partial zeta function ,, (Theorem 5). Thus if we define a
map

F 85,00 > W3 Q)
by
. 2k
(fior (f)(X)+B—0po(X),
2k

where the factor 2k/B,, has been included to simplify the formulae, then we
have

B,.: B; 7
Y E-1)y2y—w n+1 M+l r
(( DE2 R"’n+1ﬁ+1)H
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(1 - S)>

(fi,p>38x(1— 1) Lo = Py p(X)
and, more generally (Theorem 5),

(Fipatr Ll = 00) L (Qppoy + Qs p o) — U+ UP(1 +6)/2

In other words, the formulae for the period polynomials force us to ‘augment’
the modular forms R,, f; , and /', , by the constants
B, ., B;,
1 (i — 1)/22w n+1
(=D n+li + 1

(1—k) and ({1—K),

respectively. In the same spirit, we notice that the formulae obtained for the
images of our special functions in &3, under the maps p,, defined in the
proposition in §1.4 involved an extra multiple of G,,(z) for m =0 and m = w.
For example, the function p,(R,) (0 < m<n<jw) was shown in §1.4 tobe a
multiple of F (G, _,. ., 1,G,_pn+1) for m+#0 but a linear combination of
Gk n+ 10,41 80d Gy for m = 0,and similarly po(f 5 ) in §2.4 turned out to
be alinear combination of G, ;, , and G,,. In each case the coefficient of G, in
po(f) was the same as the multiple of p, occurring in r*(f). Thus as well as the
augmented period map 7* we have an augmented version of p, given by

P0:S5,®Q 5> MY(Q), (f.d>polf)— CGZk(Z)

(9, is the space of modular forms with rational Fourier coeﬁic:lents); then we
have the commutative diagram

MY, @)
constant term coefficient of g'
ol
Q 33,00 » Q
~ —3pr 2
~ ro.
~
~

) l

F
BN ~ constant term
~
~N
~
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(where the map A, defined by the diagram, will be given explicitly in §4.2) and
our two basic examples become

/ _2G"+ ‘(Z)Gi+1(2) \
___an+1 Bﬁ-‘-l I Bn+1B' ’__>Bn+l +Bﬁ+1

L _1(n—1)/22—wR 2), A+l
<( ) "()n+1ﬁ+1) n+1 di+1

2n+1na+1

L o 1 g _
(n B =g B,~,+1(X))1(1 S)

%Gk.D(:] /\
1 / ; I D—b?
~ 2kl — ke~ (f;(,D(Z)’ECK(I — k) ’-'—’Z Og—1 4
I ol <vD
‘Pk,D(X)/

and

b=D(2)

(and similarly for G, ;, ).
However, augmenting (—1)"""22"%R, and f,, by the constants
B, (B /n+ 1A +1) and L (1 —k) in this way is a purely ad hoc
construction, based on the forms of the formulae for their period polyno-
mials. To see in a natural way where these constants come from, we give
a different and more natural interpretation of the somewhat artificial space
€5, ®Q. By the last theorem of §1.1, there is a natural identification of
&3 with Hom o(&;, Q) given by the Petersson scalar product; we will extend
this to an identification of &7, Q with Hom (M3, Q), where My, is a
rational structure on M, extending S3;. To do this we notice that the periods
/)0 <n< w)canbedefined for any = a(l)g'e M 5, not just cuspforms,
by the formula
rdf)=

n!
(27[)" +1
where L(f,s) is the meromorphic continuation of the series Z‘;" a(h)l~*. For

f€S,, this definition agrees with the definition of r,(f) as a period integral,
so we only have to calculate the new periods for = G,,. We have

L{f,n+1),

LGy, 5) =Y, 00— (DI = Us)lls — 2k + 1),
1
so that

n!
——=l(n+ 1){(— ) O<nSwihi=w—n),
2 nt+ 1
rn(sz)z (ln)
ZTCC'('—Z’H'Z) (n=0),
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or — using the functional equation and special values of {(s) —

(_ )k 1
ro(Gap) = *‘ZWC(ZIC —)=a, say,

r,(Gy) = 2(2 )Zk {2k — 1) =(—1)a,

r{G,) =0 (0<n<w,neven),

(=D®"2 By Biyy

2 n+1na+1

Thus if we define M3, as the space of modular forms fe M,, such that r,(f) is
rational for all n with (— 1)*= + 1, then

%;k= 65(@@'62];5 wz2k 62k@Q a_IGZk

(As an amusing sidelight, note that these formulae and the expected duality
between the pius and minus spaces suggests that (G,,, G,,) should be a rational
multiple of « for any reasonable extension of the Petersson scalar product to
non-cusp forms, and this is indeed true for the extension given in [24, pp. 434—
5]) It is now clear in what sense the cusp form R, and the number
B,./(n+1). B, /fi+ 1) are related: the former describes the action of r,
on S,; and the latter on G,,. More precisely, if we define an isomorphism

1:S;,®Q > Homg, (M, Q)

rn(GZk) =

(0 <n<w,nodd).

by
(f,e)g+c'Gy)=2"(f,9) +3(— 1 ec
(feS5,9eS5. ¢ c'e(Q),
then the pair

B, . . B:
( ¥R, (— 1) “'znj:; J:;) S;,®Q (nodd),
which occurred somewhat unnaturally before, simply corresponds to the map
r,: M5, — Q. (The factors 2¥ and (— 1)* 1/2 in the definition of 1 were included
to make this simple statement true.) The other pair we encountered, namely
(fip.> (1 — k), corresponds under 1 to the integral-around-a-geodesic map
r o + 1, studied in Section 3. Indeed, for cusp forms this is the content of the
Proposition in §3.1, while for the Eisenstein series we have the following
calculation:

(- k-1 . 1

p) "
ro\Co Qn)* ziaymz+n

r {Gy) =

(@z? +bz+cyfldz

C(=k=1)! o, [ (@R +bz+ft
o en* A le o (mz+m*
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(this is the usual ‘unfolding trick’)

C(— k-1 o (k=D pe
Quy* 5,2k — 1)1 (an® — bmn + cm?)*

(the integration is performed by making the substitution t = 1/(mz + n)ifn+#0
to get an integral of the form % (s —aff™' (¢t — B)*~'dz, which after the
substitution ¢ = o 4 (f — a)x becomes a standard beta integral)

— 1)k~ 112D+ 12
Pt + (= D)

=3(— D (k.

4.2, Explicit description of the map 4

The main result of this section is the following theorem:

Theorem 9 Define rational numbers 4, , (k22,0 n<2k—2, neven) by

P S A B
o= B 1L n+1

ko(2r—1\(2k
+2r;1( n )(2r>‘32r32k~2r'

(i) A’k,n ==k 2k-2-n>
2%-2

@ Y (=D"24/)=0for all feSy.
n=0

neven

Then

Since 4, g = ~ Ay 245 = — 3(2k — 1)B,, # 0, this theorem yields a relation
among the coefficients of period polynomials which is not satisfied by the
polynomial p,(X) and therefore exhibits the map 1:W,, _, - Q discussed in
§§1.1 and 4.1:

2k—-2

2%=2\ .
& Z( )"X 24k(2k k1) 2w

neven

The first few coeficients 4, , are given in Table 1, where for convenience a
common denominator of the 4, , has been chosen for each k (thus 4, o = 7/10,
A4, = 31/18). As a numerical check of part (ii) of the theorem, we have (using
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Table 1 The coefficients 4,,

k Denom- n=0 n=2 n=4 n==6 n=§
inator
1 1 0
2 10 3 -3
3 —14 5 ] -5
4 90 63 155 — 155 —63
5 — 66 135 854 0 — 854 —135
6 2730 22803 263781 327166 —327166 — 263781
7 -90 4095 74404 212325 0 —212325
8 1530 488295 12754911 62018627 55137531 —55137531
9 —3990 11186085 396 185430 2880943650 5467320254 0
10 6930 209009 367 9625959997 97060379 284 298093976908 217739243 986

the values for r,(4) given in §1.1)

10
2. (= 1)k ,m(4)
n=0

W+
2730

192 16 8
2 —263781-— 166-—— }=0.
(2 803-— 691 6 135+327 66- 105) 0

Proof of Theorem 9  For the proof of part (i), and for later purposes, it is
convenient to define the 4, , for all k and n satisfying 0<n<2k—2 by

2k—1 2k—1
o))
k (2k\[2r—1 2k
+2r§1<2r)( n )BZrBZh—Zr—(n+I)Bn+lBﬁ+la

where 7i = 2k — 2 — n as usual. Then

SO

2k 2r—1
scrsa-cmme 3 (7))
2r—1 2k
+ Fi BZrBZk—Zr“ n+1 Bn+lBE+l’

T A x+y
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B2r B2s 2s—1 2r—1 2r—1
2 (2?')' (23)'{ (x + Y) - 65,0 x /y

s>0

+ x25—1(x + y)lr——l . 5s’oy2r— I/_\_}

B
n+1 A+l n@
E E — T x"yt —
>~ﬁ>1(n+1)'("+1)' !

n,ii odd

1
4
1
(c th———--(- oth )
2 x+y

1 y x+y 2
— th— — -
+4c0 2<co’th 5 x+y)

1 x x+y 2 1 y 2
—coth— - - ———
+ 4co 2(coth 2 x+y> 2x(cc»th 5 y)

1 x 2 y 2 1
—— ——— the-—= ) —-
4(00th2 x)(co 2 y> 4

=0.

We remark that an identity similar to (i) was proved by D. Kramer in his thesis
[9, proof of Theorem 4].

For (ii) we give two proofs. The first is based on an identity of Haberland’s
expressing the Petersson scalar product of two cusp forms in terms of their
periods. The second is direct but rather computational,

Haberland’s identity, proved in Section 7 of [4], is

1 —
o=z, I (-0 () (Y
n m

m ¥ n{mod 2}

(f,9€80

(actually, he states this only for f= g a Hecke eigenform; his formula must also
be corrected by a factor w!?/i). His proof uses the language of group
cohomology but can be given purely in terms of the period polynomials. We
will do this here, at the same time generalizing the formula by allowing one of
the forms, say g, to be non-cuspidal. Then taking g to be G, which is
orthogonal to cusp forms, will give a non-trivial relation among the periods
r{/f)-

It is convenient to introduce the pairing

(fa,.x",ib,,x"> . 1)"(’")“ by
3] 0 7] n
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on V,,_,. This pairing is easily checked to be symmetric, non-degenerate and

T-invariant (ie. {F[y, Gly> = {F,G) for F, GeV, yeI'). Then Haberland’s
formula can be written

— 621 (f, g) = <HT — T ), g) D,

where
To prove it, we define
F)= f * -

so that dF(z)/0z= —f(z)(z — Z)”. Then, denoting by @ the standard funda-
mental domain for I'\$, we have

C)*f.g) = —j f(D9(2)(z — 2)*dzdz
[74
=j d[F(2)g(z)dz]
2

_ j Foe@d
fx74

by Stokes’ theorem. Since F and g are periodic, the integrals along the vertical
sides of 39 cancel and we can replace 8% by its bottom side C, an arc going
from p? to p (p=6""=(1+i,/3)/2). Also, S maps C to itself with the
orientation reversed, so

220%1(f, g) = f . [F(z)g(z)dz — F(S2)g(S2)d(S7)]
= f (F(z)— 2*F(~ 1/2))g(2)dz.
But )
F) - 2 F(= 1/2)= f :cf(u)(u — Ddu=r)@,
so the right-hand side equals {r(f), A with
H(X)= é;o(~ 1)"(:);(”“" J Fglekz

= jp gz)z— X)dz eV,
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where now the path of integration from p* to p can be chosen arbitrarily, since
the integrand is holomorphic. If g as well as fis a cusp form, then we can write
H=H,.—H, where

H,(X)= f T X (e,
Then

7~ Hioo)
HZoh,:J g2}z — Xy¥dz for yel,

¥~ Hzo)

SO

wja-0=(["+[") o= 27z
] (4]
and H,|T = H .. On the other hand, using the period relations, we have
NI =T ) =rNHIL+ST H=rnNI1 +U?
=3NIU*-U)1-UY,
S0
(), HY = <), H (T = 1)>=<{n/ )T =1),H,>
=3{rNIU ~ UZ),FI,,I(I_j )2
=TS = ST ,rlg)>
= —3rtMT =T ), rg)>,

completing the proof of Haberland’s formula {the proof being, as we said, his,
but with the terminology of cohomology of groups removed). If g is not a cusp
form, but has instead a Fourier development Y2 ,a,4', then the analytic
continuation of the L-series of g is given by

2n)~*I'(s)L (g,s)= Jm {g(it) — ao)ts' 14¢

+{= 1)*j (g(it) — at** s 1dt
t% " 2k—s

t
— L (=12 R
ao(s +(-—1) 2k~—s) {any t,eR),

so the period polynomial as defined in §4.1 is given by
Hg)=H,(X)— Hs.{X)IS  (any zoe9),
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where now

H,(X)= f (9(2) — ap)(z — X)*dz
(X—— Zo)w+1 _ xw+l
w1 )

In particular rg)=H,— H|S=H,—H,|S as before, and we still
have H=H,, — H,; the difference is that now H .= H,|T + a,E, where

(X+1)w+1_Xw+1
w+1 ’

+ a,

E(X)=

A calculation similar to the one for cusp forms now gives

— 6% 1(f;,9) = <rHANT — T~ Y, rg) > — 28, {r(f), Ey >,

where
(X+ 1)w+1 _(X_ 1)w+1
w+1

E, =E[(1+T Y=

In particular, for g = G,;, we obtain

(A AGIT =T~ )= 22 E,) =0,

and in view of the formulae for r (G,,) in §4.1 this is equivalent to the identity
(ii).

We now turn to the second proof of (ii). By Theorem 1, we have

(— 1)n/2,.n(( — tmt 1)/22—W<W)Rm>
m

= ¢e(n) — o) (m odd, n even),
where

n! nl! BB
= ka =Py T T n—~_5nw_*m_"
cln)=cllsmim)=_ A o )R,
Since the functions R,, with m odd span S, and in view of part (i) of the
theorem, it suffices to show that Y 4, ¢(n)= 0 for each odd m. We have

hid 2k
nZ:O L) =t + 1 5 —3 m+1 B, 1Bs .1

neven
where

1 s
tk,m = _m—i'; n !ﬁn—m"'k.n'



4] Complements 247

Using the identity

WN-D2 /N
2

2])BZJ=%(N + 51\1,1) (N> IOdd)

j=0

we find that
1EED2 (it m—1 1 2k—1>
= — B, .4+~
I G O o
(2k—1)lﬁ*+zﬂ/2 2k—m—1\ B,
m i=o 2 m+2j
k 2kN\/2r—1
B,.B,y_»,
+r=(mz+1>/2<2’)< m ) k2

2k
+(m+ I)Bm+lBﬁl+1'

The following lemma (with N = 2k — 1) tells us that the expression in square
brackets equals

oL ()G

) 3/ 2k
tk,m=7/1k,m +§ B,+1Bsi1

so that

m+1

with 4, ,, (m odd) defined as in the proof of (i); the antisymmetry of 4, ,, under
mi— then gives the desired result.

Lemma Let m,N be integers satisfying 1 Sm<N —1. Then
1/2j+m—1 1 N\/N—m
Z o 27 Y 2i Bl]
o<j<@O-myz ™M J m+2j\m j
1 N
=—= 14
2[(m+1)+ :I

Proof Fix N =2 and let

il 1/2j+m—1
alx)= ), Y ~( / 2';' )szx"‘,

m=10<j<(N-myzM

N 1 N)(N - m)
X)= A : B 'xm,
A m§1 osjé%—m)/zm“'zl(m 2j 2

R N
?(X)=-2'mz=:0 [(m+ 1)+ l]x'".
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‘We want to show that the polynomials B(x) — a(x) and y(x) differ by a constant.
For this, it suffices to show that their difference is periodic. Now

N 1 (I—1)/2 l . N 1
)=y = ¥ ( ,>szx"2’= Y. = BY(x) + constant,
=1l =0 \2%j =1 !

)
N
ac+ 1) —a@x)= Y x+1) "1 +x71]

DY -1 XV —1
T 2x 2x—1)

by a property of B? mentioned in §1.2. Similarly,

py= 3 (Z)&f 3 <N—2® "

0<j<NJ2 1<m<N-2j m  Jm+2j

1
Z (N.)szj tzi_l{(l +xt)N_2j—1}dt
0<j<N/2 2j 0

Jor{m(er)-m(Df

and so, by the same property of By as before,

]

dt

e+ De+ ¥ 1+ (e + DV
+1)— =N
Blx+1)— B(x) : fo

2
G2 -1 V1

2x+ 1) 2x
Finally,
naty ()_(x+1)N—1 x¥—1
PI="0x Ax—1)
so that

Q-1 x¥—1
?@+U—ﬂﬂ=&;;ln ~xh

= B(x + 1) — B(x) —o(x + 1) + a(x).

This proves the lemma and completes the proof of Theorem 9.

By combining Theorem 9, which expresses the Oth and wth periods of a
cusp form in terms of the even periods r, with 0 < n < w, with Theorem 4 (resp.
Theorem 5) for the periods of f; p, (resp.f, p ) We obtain a formula ~ similar
to Theorem 8 and to the formulae in [9] - for the zeta-values ({1 — k) (resp.
{ (1 —k)) as sums of polynomials in the coefficients of reduced quadratic
forms.
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