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Hecke Operators and Periods of Modular Forms

DoON ZAGIER

To my friend Ilya Piatetski-Shapiro on the occasion of his 60th birthday

1. Introduction. The main goal of this paper is to provide a new proof, based on
the theory of periods of modular forms, of the Eichler-Selberg formula for traces of Hecke
operators on the full modular group SLq(Z).

Recall that the period polynomial of a cusp form f(r) = Y12, as(l) €277 of weight
k on SLy(Z) is the polynomial

)= Y (-1 (*2 ) minxra,

n=0

where the periods r,,(f) of f are defined by

)= [ foydr = () e+ 1)

(L(f,s) = Hecke L-series of f). If f is & normalized Hecke eigenform, ie. f|T} = az(l) f
for all I, then it is known from the Eichler-Shimura-Manin theory that r.,(f)r,(f) is
an algebraic multiple of the Petersson scalar product (f, f) whenever n and m are of
opposite parity. More precisely, ro(f)ra{f)/i(f, ) transforms by o when f is replaced by
a conjugate form f7 = 3 ag(I)°e*"", ¢ € Aut(C). It follows that the polynomials

(X, Y) = g; (Zz)k_a(f 7 a;() (rs(Xrs (V)"  (I21),

eigenform

where (rg(X)rs(Y)) = 3(rs(X)rp(Y) —r(—=X)rs(=Y)) is the odd part of r¢(X)rs(¥)
and the sum is taken over a basis of Hecke eigenforms of S}, have rational coefficients.
The following closed formula for them was proved in [7): add to ¢}{X,Y) an “Eisenstein
part” ef(X,Y) € (XY)71Q[X,Y] defined by

ckEl(X’ Y) - Zk(k 2) _1(1) Z z‘ (]-‘:Bk-;:)' Xn—l(yk——Z 1) + (Xk—-z _ l)ym—-l}’

n=0
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where B, is the kth Bernoulli number and o¢-.1(I) = ¥ d*~! (sum over positive divisors
d of n); then the sum ¢z = c; + cF is given by

ca(X,¥)= Y sgn(bd)(cXY +dY +aX +b)F2
:3;3;1

k T > (B"__l(aX +dY)+X’=—2Bk_l( —dy) )
ad=l

- d _ a d
+YEIBY L (-aX + ) - VB (5 + ) )

where B)_,(X)) denotes the modified Bernoulli polynomial 3 (k:l)BrX E-1-7 This can
r#£1

be interpreted as saying that the generating function of the ¢z(X,Y) is a quotient of
products of Jacobi theta functions.

In this paper we use formula (1) to give a formula for the trace Tr(T}, M}) of the
Ith Hecke operator acting on the space of modular forms of weight k on SL3(Z). This -
approach is quite different from the classical method of integrating a kernel function for
T;. It also produces a formula for the traces which looks different from the usual one: class
numbers of imaginary quadratic fields do not appear explicitly (instead, one must count
solutions of a certain system of Diophantine equations and inequalities), and, at least in
its initial form (stated in §3), the formula contains Bernoulli numbers. By using a certain
Bernoulli number identity, we can cast it into a more elementary form. The special case of
this identity needed for the case [ = 1 of the trace formula is amusing enough to be stated
here as an exercise for the reader:

PROPOSITION 1. Let n be a positive odd number. Then

i (n+ 7') B, { +3 ifn=+1 (mod 12),
2r Jon+r | Fi ifn=+3or +5 (mod 12).

r=0

The trace formula which we then obtain gives the generating function of the traces
of Ty on M, (I fixed, k variable) as a simple rational function:

THEOREM 1 (TRACE FORMULA). Let ! be a positive integer. Then

(o4
_ 1 -z _ sgn(ed)
12 ZH [Tx(Ti, M) 2"“(’)] ™= adz_bc_‘ 1—(a+d—c)T+IT?
E even ad>o>—bc

It1/2
t E(Z 1—tT+IT2+Z 1—tT+lT2 12 1—-tT+lT2>

ad—l jti€a {t|€a+
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where the star on the summation means that the edge terms are to be counted with
multiplicity 1/2.

For example, for [ = 1 the right-hand side of this formula is

-1/2 + 2 " 3 " 2 " -1/2
1-2T+T?  1-T4T?2 1472 14T+T2 142T+7T2

and we recover the standard formula for dim Mj as % + e with & periodic of period 12.

The usual formula for the trace of Ty (cf. [4], Appendix to Part I) involves the
Kronecker-Hurwitz class number H(N), defined for N > 0 as the number of SLy(Z)-
equivalence classes of positive definite binary quadratic forms of discriminant —N, forms
equivalent to a multiple of X2 + XY +Y? or X2 4+ ¥? being counted with multiplicity
3 or 1, respectively. The verification that the trace formula just stated agrees with the

classical one relies on the following surprising class number formula, which we prove in §5:
ProPOSITION 2. Forl 2 1 andt € Z, we have

24 H(4l—1%) if 4> ¢,
_ 2t -2 if 4l =2,
2 (@) +sen(d)(sn(c)—sea®) = ¢ g 1o 2 _s=u2 >0, @
ab,c,deZ ;
ad—be=l 0 otherwise.
a+-d~—c=t
c£0

(Note that each summand equals +2, +4, or 0 and that only finitely many are non-zero.)

As a second application of (1), we will prove in §6 the following formula expressing
the periods of f|T} as linear combinations of those of f:

THEOREM 2 {ACTION OF HECKE OPERATORS ON PERIODS). Lei ! be a positive inieger,
f a cusp form of weight k on SLy(Z). Then

aX+b)
eX +d77

rin(X) = Z (X +d)2rg(

(s2)
where the sum is over matrices (Z g) of determinant [ satisfying the conditions
d
a>le, d>{bl, be<0, b=0=>—§ <c<§, c=0=>-—-g<b<§, (3)

This theorem generalizes a result of Manin [5], proved using continued fractions, for
the zeroth period ry ( f {T1)
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2. The Petersson scalar product in terms of periods. The application of (1)
to the trace formula depends on the fact that the Petersson scalar product (f,¢) of two
cusp forms f and g can be expressed as a linear combinationg of products of periods of f
and periods of g of opposite parity. Define a map p, : Q[X,Y] — Q (k even, k > 2) by

m! n!
if 2k—-2, d2),
pk(X’"Y")={ m¥n—kt12ik_2) “mtn m#n (mod2),

0 otherwise;

then if f and g have real Fourier coefficients (in particular, if they are normalized eigen-
forms)

pr(rs(X)rg(Y)) = 3(20)*7 (£, 9)-
The formula was found by Haberland [2, Section 7] and is also proved in |3, pp. 243-245].
(Haberland states only the case when f = g is a Hecke eigenform, the case we will be

using; his formula contains a slight misprint. The definition of r,(f) in {3] differs from the
one here by a factor :"*1.) It follows that

p(e(X,Y)) = —12 ) af(l) = —12Te(T1, 5)

FES,
eigenform

or, substituting for c%; from equation (1),

-12Te(T3,8,) = T+ Tn+ T+ Tiv + Tv + Ty, (8)
where
Ty= ) sgn(bd)p[(cXY +dY +aX +5)*7]
ad—be=l]
ad>0>be
2 e
Iy = “3-1 Z pr[Bi-1(aX +dY)]
ad=]
a,d>0
_ 2 ¥—2 o r—1
T =-3— g__:t k[ X* 72 B y(aX 7! ~ aY)]
a,d;u
2 k=2 po - -
Tiv i ;{ pe [V By (—aX +a¥ 1)
ad>0
2 B Rt . -
Ty = === 3 alX V2B (X 4 dy Y]
b )

k Eﬂ Bk—n
n! (k—n)

4k(k — 2)} ke A
Ty = —-—-(73:—)"0»-1(’) pf(X2 -y ¥

=0
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(Here we have extended pg to X 1Y 1Q[X, Y] by pp(X 1Y ™) = pp(X™Y ) = 0.) Since
Py, is a completely explicit operator, this is already a trace formula: for each weight &k and
natural number ! it expresses Tr(T}, S;) as a finite sum of computable rational numbers.
However, it is not yet very pretty. In the next section we compute each of the terms
occurring in (5) in terms of a generating function, obtaining a more attractive trace formula.
The comparison between this trace formula and the classical one is given in §§4-5.

3. Computation of the trace. In (5), the first term is the main one, the other five
being boundary terms coming from matrices (¢ 3) of determinant ! with abed = 0. We
now compute each of these terms in terms of generating functions.

First term. By the quadrinomial theorem,

_ a® b 7 d° o
pe[(eXY +dY +aX + )% = (k- 2)! ﬁz:p TR [x7Feyrte]
a,fB,7,6 20

a+f+y+b6=k-2

SR () () (e
@,f,7,530 v T J\B

a+BtyF6=k-2
a6 odd
1-(-1* ('r + a) (7 + 6) (7) arprad s
= Cqx-2 —_— TY(BTY (eT)'(dT
T[a’ﬂ;ﬁzo 2— ("I () () eoreryen

(here and from now on, Cry=[F(T')] will denote the coefficient of T™ in a power scries F{T))

_1 1 (LAVT)7 — (14 T
=3 CT~~’[§CT) ]

{binomial theorem, applied to the sums over «, 8 and §)

1 1 1
T2 CT""L —(a+d—o)T + (ad — be)T? 1~—(a+d+c)T+(ad——bc)T2}'

{geometric series). Hence

_ sgn (bd)
It = CT*“’Ld;c:l1_(a+d-c)'r+zfr2 |

ad>0>bc

{We can drop the symmetrization %( ..{¢) = ...(—c)) because it is already implied by the
factor sgn{b) = —sgn(c).)
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Second term. We have

B, (aX +dY)"

Bi_y(eX +d¥)=(k—-2)! ) ~ o

pr=k-1
T even

E—-1

Both here and for the terms Tiy1, Tyv, and Ty, we will compute the contribution from each
(aX +dY')? separately. In all four instances we will have to distinguish the cases p < k—2
(r >0)and p=k —1 (r = 0). Here the contribution from p € %k — 2 vanishes because
(aX + dY')P contains no monomials X™Y™ with m # n (mod 2) and m+n > k —2. For
p =k — 1 we find by the binomial theorem

_ a™ d* m
prlX +dV)F ) =(k=1) 3 S (X"
mzr,?:?lco—l
magn _ (f — .
=(k-1) mg;o a™d" = (k 1)CT,,-1[(1_aT)(1_dT)
m+1’1=/k——1

Therefore

1
Tn = "ZCT“‘[MZ:z (T—T)(KFT“)]

a,d>0

Third term. i p < k — 2, p odd, then (setting § = k ~ 2 — p for convenience)

— ™ dr —~2—myn
(KR + YY) =5l Y S g ((m)mX Y

ml
et
& g
m+n—p
_ (kp' p;)' Coo ; (n +p)(1 )n(dT)n]
p! pl 'n 1
(k 2)' "a—dT + adT2)5+1]'
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For p = k — 1, we have instead

pk(Xk—z(_ +dY)"_1)—(k 1) Z f_mT%r!:pk((_l)ka—z—myn)
mI:;}k(-’—l
— . (_1)m n a™d®
(k~1) ,.;;o —= (m) d
m+n=k—1
| (_l)m n m n
= (k~1)Camr 2 (™ Y (ary™(dT)
w3, S () enman]

= (k= 1) Cqu— Z ;11-(1 - aT)"(dT)"}

-n>0

r 1
= (k- 1)Cpur Vlog(m‘d‘ﬁ)]'

Inserting these expressions into the expansion of the polynomial BY_,, we find the formula

T = CT"-‘{ > ‘I’l,d(T)] )
5o
where
14T+ 17?2 B, i rr
¥1,(T) = lo ( ST + 1T2> + ; T((l ZST+IT?y (1 +sT+ IT2)’)' ©

T even
Fourth term. By symmetry (interchange the roles of X and Y and of a and d),
Tiv = CTk—-1{ Z ‘I‘z,a(T)}

ad=l
a,d>0

{which of course is equal to ).

Fifth term. Kp<k—2,podd, p=k—2— pasbefore then

—. — a™d -2 —2—-n
pk(Xk 2yk 2(E+?)p)=p! Z —= pk(xk 2—-myk-2 )

—
e (e
- sy p;)t CT’[Z (") - 2 ("2 P)earr]

ma0 n20

p! ! 1
R CT’[(I — aT)FH1(1 = dT)iJH]'
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The term p = k — 1 contributes nothing since it leads to a sum of terms p,(X™Y™) with
m+n=2(k—2)—p<k—2. Hence

0 @iy o oy B L
| PR A Ey

1
k—2vrk—2
pu[XF YR —

1
(1-aT)(1—-dT) £
(a* + d* 1) /(k — 1) — 1Cpe-1[¥aa,044(T)] with &y, as in (6). Thus the fifth term in
(5) can be expressed as

—4
Ty = 7—0k-1() + Crs- ,[ ; ¥, .l+d(T)}
a, d_>0

>, a® +d*
Since log = Z - T, the right-hand side of this expression equals
nw

Sixth term. Finally, we have
B, By,

Bn Bi-n k—2yrn—1 -1
3 Zr ke (xkryntoyrt) = 3 Ze Tk (1 (ko 1),
oongk nl (k—n)! og;sk n! (k—n)!
n even 7 even
2k —1
=@ B
(Here we have used the identity Z Been ~(k — 1)Ei which follows from
n! (k n)! K
T
(coth-z-) = Z — d;coth— since }: o iy -%coth% ) Therefore
n even
4(2k —
Ty = (k D) or-1(l).

Combining our formulas for 71 -Ty1, we obtain

TRACE FORMULA (FIRST FORM). The trace of Ty on S, (k > 2) is given by

(cd)
—12Tr(T1, S) =8or—1(I) + CTk—z[ Z 61
A T (atd-oT+ 11
ed>0>be
2
+ CT""1[ Z (‘I‘z,a(T) + 9, 4(T) + Oy 04a(T) — m)]

ad=l )
a,d>0

where Czx[F(T)] denotes the coeflicient of T™ in the Taylor expansion of F(T') and ¥, ,(T)
is the function defined in (6).

We remark that if we replace Tr (T}, 5;) by Tr (T, M} —or—1(I) then the formulais
valid for all k£ > 2, since (1) is true, suitably interpreted, also for modular forms of weight
2, by the discussion in [7]. However, we do not elaborate on this.
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4. First simplification: a Bernoulli number identity. We now proceed to
transform the formula for Tr(T}) further. We start with the function ¥, , of equation {6).

PROPOSITION 3. Let s be a natural number, I € C. Then
T
v —_— 7
I-S(T) Z 1 — tT+lT2 3 ( )
ltl<s

where the * on the summation means that the boundary terms t = +s are to be counted
with multiplicity %
Remark. This is the generalization of Proposition 1 mentioned in the introduction. In-

deed, for I =1 and s = 2, Proposition 3 says that

T + T L T
1-T4+T2  14+T%2  14T+T2

(7 ) e +Z (oo )

The coefficient of T™ on the right for n odd (for n even it is clearly 0) equals

4 B./n+r—1 . (n+T
—nt+—+2 > T( )~4Zn+r( )

2€r€n

while the coefficient on the left is 4 times the number given in Proposition 1.

Proor: We start by proving the simpler power series identity

= T 1+3T T
D et S +Z ((1—51’)’ (1+sT)f>' ®

fti<s

Both sides of (8) are odd power series in T. For n even, the coefficient of T"t! on the
left-hand side equals EBK ,t" and that on the right equals

b sn+1 - BT n n—rt1 2 0
2<n+1+§T(n~r+1)s )"n+1 n() = (B"H(s) B~ s)>

1
((x + 1) + :z:") by the defining
property of Bernoulli polynomials {(which were introduced by Bernoulli precisely for the

problem of summing powers of integers). Now to get from (8) to (7) simply replace T" by
T

14172

these are equal because BY (z + 1) — BS,,(z) =
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Substituting Proposition 3 and the identity

or-[=am=an) ~ o[

1 a d at+d
= §CT*”[1 —ar Tioar taTanac dT)}
[ T TR . 1
_2(11 +d )+(ﬂ+d)CTl¢—2 (l—aT)(l—dT)

into the trace formula given at the end of §3, we obtain the version formulated as a theorem
in the introduction. Note that the quantities Tr(7}, M, ) — 20x-1(I) which appear there
are the averages of the traces of 77 in M and in §,.

5. Second simplification: a class number identity. For I € N, ¢t € Z denote by
N(1,t) the left-hand side of equation (2). In the summation, terms with ad < 0 or bc >0

give zero, so we have either ad > 0 > be or else abed = 0. In the latter case, (¢ Z) is one of
-+t — - 0 -
the ma'tnces (1+a—t s) (-r—a-——t —-a) (‘a g —: g (3 s+rt

s run over the solutions of rs =1, r, s > 0. Hence

N(l,t)=4 E sgn (bd)
ad-be=l
ad>0>bc
a}-d—e=t (9)

+ Z (2[sgn(r+ 5 ~t) +sgn(r+ s +1t)] —4[sgn(s +1t) +sgn(s — t)])

ro=l
r,s>0

,or { % .7 ), where r and
st—s

But sgn(z +1t) +sgn(z — 1) for = > 0 equals 2, 1 or 0 according as |t} < z, [t| = z or
[t] > =z, so

N(l,D) sgn (cd)
421—tT+sz Z - (a+d—T +1T?

ad>0>bc
+ 2 (22 1—tT+lT2 -3 1—tT+lT2)
T.!—l lt]S It l<

Therefore Proposition 2 transforms the trace formula we have just proved into the following
(nearly) standard form:

TRACE FORMULA (CLASSICAL FORM). Let [ be a positive integer. Then

oo

£ (nen - Jwao) oA D EGE o

k=2
k even
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where H(N) for N > 0 is the Kronecker-Hurwitz class number of Proposition 2, H(0) =
—, H(—r?) = —3r for r positive, and H(N) = 0 if —N is positive and not a square.

(Actually, this formula is not quite standard since the contribution from the terms
with 2 —4l = 72 > 0 is usually written in terms of decompositionsof [ as a product ad. It is
left to the reader as an exercise to check that the contribution to the coefficient of T2 of all
terms with 41 —#? < 0 on the right-hand side of (10) is " (max{a,d}*~! —min{a, d}*1),
where the sum is over all decompositions ! = ad with ¢ and d positive.)

It remains only to prove Proposition 2. The main feature of this proposition is that
the expression N(I,t) — 2[t|»(t* — 4I), depends only on the “discriminant” 2 — 4l; here
v(A) denotes the number of square roots of an integer A (e, 2if A=7r2> 0,1 A =0,
and 0 otherwise). This is explained by the following

LEMMA. Suppose!>0,¢>0. Then N(I+t+1,t+2) — N(L,t) = 42(t? — 4).

Assuming this, we now prove Proposition 2. Since both sides of (2) are invariant
under t + —t, we may assume ¢ > 0. Set A =12 — 4.

If A < 0, then we can successively reduce ¢ by 2 until it assumes the value 0 or 1,
changing [ at each stage to keep the discriminant invariant. Under each reduction we are
comparing two values (I, ) and (I+%+ 1,¢ + 2) with t > 0 and [ > 0 (since 4 > #?), so,
by the lemma, the value of N(I,%) does not change. Therefore the case A < 0 reduces to
the two assertions

N(1,0) =24 H(4l),  N(i,1) = 24 H(4l - 1).

Both follow from reduction theory of definite binary quadratic forms. For example, the
matrices (': 3) of determinant ! with ad > 0 2 be and a + d = ¢ have the form :t( I_f_y _y”)
where (z,y,2) is a solution in nonnegative integers of the equation oy + zz + yz = 1, so
we see (paying attention to multiplicities) that N(I,0) equals 8 times the number of such
solutions (solutions with zyz = 0 being counted with multiplicity 1/2). This number in
turn equals 3H(4l), because putting {4, B, C] = [z +y, 2z, = + 2] sets up a correspondence
between one-sixth of the solutions in question (namely, those with z > y > =) and one-half
of all reduced forms of discriminant —4! (namely, those with C > 4 > B > 0), the terms
where some inequality is an equality being counted with suitable fractional multiplicities.
(This expression for H(4l) is also given in [6], Theorem 2, p. 292.) Similarly, the matrices
counted by N({,1) (I>0) can be put into correspondence with the reduced quadratic forms
of discriminant 4{—1 by mapping, for instance, ( . +;_1 ';’) (z, 9, 2 2 0, zyt+aztyes—z = 1)
toly+22:+1Lz+2]ifz2y>z,tolz+y—1,2c~ 1,242 if 2z >y 2 2, etc. Details
are left to the reader.

If A > 0, then we can keep reducing £ by 2 at a time until 0 < I € t—1, when a further
reduction would make [ € 0. The lemma implies that the correctness of Proposition 2 is
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not affected by this reduction. If I < ¢ — 1, then £ > A > (¢ —2)? and therefore A, which
has the same parity as %, is not a square, so in this case we must show that N(l,t) = 0.
This is clear from (9), since if (a, b, ¢,d) occurs in the first sum then

t=a+t+d—c<lal+|d|+ld<lad|+1+ el =ad—bec+1=1+1,

while if 7 and s are positive integers with rs = I then both r and r + s are < I+ 1. For
Il =t — 1 we must show N(¢ — 1,¢) = 24 — 8¢ (¢ > 0), which is proved by looking at the
cases of equality in the argument just given.

We still have to prove the lemma. Let A denote the set of quadruples (a,b,¢,d) € Z*
with ad—bec =l and a+d—c = t, and £(a, b, ¢, d) the quantity (sgn (a)+sgn(d))(sgn{c) —
sgn (b)), so that N(I,t) = 3 4 e(a,b,¢,d). As (a,b,c,d) runs over the set A, (a + 1,b+
1,¢,d+ 1) runs over the corresponding set for [+#+1 and ¢ +2. Hence N({+t+1,t+2)—
N(1,t) is the sum over A of the quantity f(a,b,¢,d) = e(a+1,b+1,c,d+1) —&(a, b, ¢, d).
Clearly f(a,b,c,d) is non-zero only when (at least) one of the integers a, b and d belongs
to {0,—1}. Hence N(I+t+1,t+2)— N(I,t) = S\ + Sz + S3 where Sy, 53, S3 denote the
sum of f(a,b,c,d) over the sets

A = {(a,b,c,d) € A{{a,d} N {0,~1} #0, b ¢ {0,-1}},
Ay = {(@,be,d) € A {a,d} 0 {0,~1} =8, be {0,~1}},
Az = {(a)b,cvd) €Al {a:d} N {07—1} # b, be {0’—1}}'

We have
f(0,—r,s,s+ 1)+ f(s+t,—7,50) fs+t#0, -1
S]:Z f(0=”7‘7370) fs+i=0
s L f(0,-r,5,-1) fstt=-—1
(-, —r—1ss+t+1)+f(s+t+1,—r—1,5—1) fs+t#-1,-2
+ > f(=1,—r—1,s,0) fstt=—1
":;,étt]-l-l f(-—l,v—ﬂ‘ —1,s, “1) ifs+t=-2
=2 (s + > (4sen(r)
rf;—»ll rs=;+tl+1
vl

]

—44+4=0 (combine (r,s) and (—r, —s) whenever |r]| # 1);

Sp = Z F(r,0,r +5—1,5)+ Z fr-1,-1,r+s—t—-2,5-1)
re=l rs=I41+1
ry8#—~1 r,8#1
ot r+s#i2
= Z (—2sgn(r)) + Z (~2sgn(r))
ra=l re=l4t}1
ra#—-1 r, 8#£1

rtaFt r+aFi42
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=—4+4+26; + Z 244+ Z 2 (again by combining (r,s) and (—r,—s))
ra=l re=l+1+1
rta=t T4a=t42
= 2811 +4v(8? — Al);
Ss = f(0,-1, L1+ )+ f(I+¢,-1,1,0)
+ {f(—l,O,—-l—t—1,—l)+f(—l,0,-l—t—1,——1) ifl>1
f(-1,0,-2 —1¢,-1) ifl=1
0+0 ifix>1

+ +{—2 fl=1 b

This completes the proof of the lemma and of Proposition 2.

6. The action of Hecke operators on periods. For each integer ! > 1 define

o= (2 1)

The assertion of Theorem 2 is that the period polynomial of f{T; is given by

ran= Y, ril_ M,
M€EeMan;

a,b,c,d€Z, ad—bc=1, a, b, ¢, d satisfy (3)}

where (r|sM)(X) for h € Z and M = (%)) is defined as (cX + d)_hr(‘c‘fgib. Because

the set Man, is invariant under ('; 2) — (_“c ';b), this automatically implies the sharper

i ‘4
statement that ri, = Y MeMan, r%lz_kM, where r}k(X) = 1(rp(X) £ rs(—X)) denote
the “plus” and “minus” parts of the period polynomial 7.

Examples. Clearly Man; = {((1) ‘1))} For I =2, 3, 5 we have

Man; = {(i(l))’ ((l)g)’ (3(1))’ ((1);)}’

30, ,10, ,30 30, ,11, ,1-1
Mam = {0 3> (1 (i) (o) (30
50, ,106, ,50 50, ,80 50
Mans = {(0 1 (o) (1) () (1) (o),
11 1-1 12, ,1-2 21 2-1
(08 030 G2 63 i G50}
One can verify by direct computation that these act (via |,_, ) on the functions

k-1

B, B;_
k-2 2 : n k—n n—1

n=0
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(the “plus” and “minus” parts of the period “polynomial” of the Eisenstein series of weight
k) as multiplication by g¢—1(I), and (via |_,, ) on the functions

X3HX2-1)*  and X(X%2-1)2(aXZ-1)(X?-4)

(the “plus” and “minus” parts of the period polynomial of A € Si3) as multiplication by
the Ramanujan tau-function 7(), the lith Fourier coefficient of A (here —24, 252, or 4830).
Let M be the ring of formal finite linear combinations ), ¢;M; (¢; € Z, M; €
Mj(Z) = 2 x 2 matrices over Z with positive determinant). The action r + |y M of
/I M3F(Z) on functions extends by linearity to an action of M. For each I € N we set
= Y MeMan, M € M, so that the result we want to prove is rpq; = r¢|,_ le The key
1dent1ty for this purpose is the formula

T-1)T=T(T-1)+(1-9)Y, (11)

where S = ( ) T= (2 ) €SL(1), T =% “<‘%=’4(g 3), and V] is the element
o<

P q 0 -2y T -y
i- Y CHe-n+ D [CT N+ G
patgr=l z,y>0
p>712>0,4>0,5>0 2zy=l
or p=r>0,¢>s>0
or p>2r>0, s>q=0
or p>r=0, s>—2¢>0
of M. This identity, which is tedious but not hard to verify directly, is proved in [1}, except
that Y] is not worked out explicitly there.
We will show that

ckl(Xa Y) = Ck1 (Xa Y)lg_kj:’l ) (12)

where TI is taken to act on the variable X. In view of the formula.

c = ——————a 7‘ T Tr rt
engenform

(where the summation is over the basis of normalized Hecke eigenforms in Mi(SL2(Z)))
and of the linear independence of the functions r$(X) as f = ranges over the eigenforms
and ¢ over the set {1}, this immediately implies the formula r}‘“‘i'f'z = as(Il) r}t for aill
AT for all f € M. (In the
preceding sentence, r}"(X )and 7 (X) when f is the Eisenstein series of weight & must be
interpreted as multiples of X¥~2 —1 and 3 ( ﬁ)Ban_nX 71 respectively; cf. [7].)

normalized Hecke eigenforms and hence the formula rﬂf’, = rE
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We remark that the identity (12) is not actually necessary to deduce Theorem 2
once one has (11). Instead, we can use the alternate definition of ry for f € Si by

ri(r) = f(r) = ™ 2f(~1/7) or rf = fla—x(1 — T), where

f(,r) — (—(—I;;)zk)_ z ‘;{(ll) 2wilr /;00 f(T’) (T’ _ T)k—2 dr'

is the Eichler integral associated to f (cf. [4], Chapter 5). It is easily seen that replacing f
by f|Ty = IF71f| T replaces fby ﬂz_le‘”, sorpn = (ﬂz—lew)‘z-—k(l —T), and this
equals r f|2-—kTI by (11) because f [,_(1 —S) vanishes. (For this argument we do not need
the explicit formula for the operator ¥} in (11), which is why it was not given explicitly in
[1].) We nevertheless give the proof of identity (12), since the calculation is amusing and
since it was via this identity that the form of Tl was discovered.

When ! = 1, formula (1) simplifies drastically, becoming simply

(X, ¥) = 2 B (X 4+ V)] (1- Ty (1= T),

where |, and |, denote the action of M3 (Z) (the notation for the weight, which from now
on will always be 2k, being omitted) with respect to the variables X and Y, respectively.
Since the operators |, A and |;, B obviously commute for any matrices A and B, we have
by (11)
~ 2
cul|xTi = k-1 Bg-l(X +Y)lx (le(T -1+~ S)YI)Iy(l ~T).
But

d—1
Z dkhzng_ aX+b+Y)

By (X +Y) T

]

ad=l] b=0
a,d>0

=y [B£~1(aX +dY)+ fg—l > (aX +dY +b)?
ad=] 0<b<d

a,d>0

by the well-known distribution property By _i(dt) = d¥ 2 Eb—o By, (t+3) of the standard
Bernoulli polynomial Bx_.(t) = BY_,(t) — 5524572 Ao BY (X +YV)|x(1 - S) =
~EL(X +Y)* %4 (1 + S) (we already used this in the proof of Proposition 3). Hence

cnlxTi = Z B _y(aX +dY)|x(1-T)ly(1-T)

ad=l
a,d>0
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b ab .

@ B (D@0 -0 -,
0<b<d

But this equals the right-hand side of (1) because one has the identities (X +Y)*¥~2|, M|, T

= (X +Y )2 TM for any M € M (Z) and, by direct verification,

»

ab ab .
Q1-T) ( g_; (Od) (T-1) —(1+S)Y}) = ag;:Isgn(bd)(c d) in M.
o<h<d ad>0>be
Finally, we should compare Theorem 2 with the formula for the Oth period of f|T}
given by Manin [5]. Setting X = 0 in the equation r'f"m X)= r:f"(X i, we find

af(l) To(f) = Z Z (k ; 2) rn(f) (bk—2—-ndn _ bﬂdk—-2—n)

b lip—
(2 8)eMan, OSp SRRt

if f € My is an eigenform. Applying this when f is the Eisenstein series of weight k, we see
that the coefficient of ro(f) on the right equals ox—1(I) (since this is the value of ay(I) in
this case and all 7,(f) for even 0 < n < 3% — 1 vanish). From this it is easy to check that
the formula given here agrees with that given by Manin. It should also be remarked that
the methods of Manin’s paper suffice in principle to calculate r,(f|T}) for n > 0 as well
as n = 0, and could thus be used to give an alternate proof of Theorem 2 via continued
fractions; however, this proof would be less direct than the one arising from equation (11).
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