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A classical modular form is a holomorphic function f in the complex upper
half-plane H satisfying the transformation equation

(1) (f |kγ)(z) := (cz + d)−k f
(az + b

cz + d

)
= f(z)

for all z ∈ H and all matrices γ =
(

a b
c d

)
∈ SL(2, Z), where k, the weight of

the modular form, is a fixed integer. Of course, there are many variants: one
can replace the group SL(2, Z) by a group commensurable with it or by a more
general Fuchsian subgroup of SL(2, R); the automorphy factor (cz + d)−k may be
multiplied by a character or replaced by a more general multiplier system; the
weight k may be half-integral or even rational; the function f can be vector-valued
rather than scalar-valued; there may be a further additive correction on the right-
hand side of (1); one can allow non-holomorphic functions of specified type (e.g.,
Maass wave forms); etc. But in all of these generalizations, as well as the higher-
dimensional generalizations of modular forms to Hilbert or Siegel modular forms or
to automorphic forms of more general type, the functions considered are defined on
a symmetric space X = G/K associated to a Lie group G and transform suitably
with respect to the action of a discrete subgroup Γ ⊂ G on X.

In this note we want to discuss, in the simplest cases, another type of modular
object which, because it has the “feel” of the objects occurring in perturbative
quantum field theory and because several of the examples come from quantum
invariants of knots and 3-manifolds, we call quantum modular forms. These are
objects which live at the boundary of the space X, are defined only asymptotically,
rather than exactly, and have a transformation behavior of a quite different type
with respect to some modular group. We will consider only the case when G is
SL(2, R), X is H, and Γ is SL(2, Z) or a group commensurable with it. Then, as
is well-known, the natural boundary of X is P1(Q) = Q ∪ {∞}, the set of “cusps”
of Γ.

A quantum modular form should therefore be a complex-valued function f
on Q, or possibly on P1(Q) r S for some finite subset S ⊂ P1(Q), having a certain
behavior under the action of Γ on P1(Q). Here neither of the properties which are

1991 Mathematics Subject Classification. Primary 11F99; Secondary 33D99, 57M27.

c© 2010 Don Zagier

1



2 DON ZAGIER

required of classical modular forms—analyticity and Γ-covariance—are reasonable
things to require: the former because P1(Q), viewed as the set of cusps of the ac-
tion on Γ on H, is naturally equipped only with the discrete topology, not with its
induced topology as a subset of P1(R), so that any requirement of continuity or
analyticity is vacuous; and the latter because Γ acts on P1(Q) transitively or with
only finitely many orbits, so that any requirement of Γ-covariance of a function on
this set would lead to a trivial definition. So we do not demand either continu-
ity/analyticity or modularity, but require instead that the failure of one precisely
offsets the failure of the other. In other words, our quantum modular form should
be a function f : Q → C for which the function hγ : Q r {γ−1(∞)} → C defined by

(2) hγ(x) = f(x) − (f |kγ)(x)

has some property of continuity or analyticity (now with respect to the real topol-
ogy) for every element γ ∈ Γ. This is purposely a little vague, since examples coming
from different sources have somewhat different properties, and we want to consider
all of them as being quantum modular forms. For the sake of definiteness we will
take as our canonical definition of a quantum modular form a function f : Q → C
for which the function hγ defined by (2) extends to a real-analytic function on
P1(R) r Sγ , where Sγ ⊂ P1(R) is a finite set (typically just {∞, γ−1(∞)}), for
each γ ∈ Γ. Notice that this property need only be checked for a set of generators
of Γ, and hence for only finitely many elements, because its validity for γ1 and γ2

automatically implies its validity for γ1γ2. In fact, the function γ 7→ hγ is a cocycle
on Γ (i.e., it satisfies hγ1γ2

= hγ1
|kγ2 + hγ2

), so that any quantum modular form
defines a cohomology class in the first cohomology group of Γ with coefficients in
the space of piecewise analytic functions on P1(R) with the action h 7→ h|kγ of Γ.

The definition just given describes what one can call a weak quantum modular

form. A strong quantum modular form—and most of our examples will belong to
this category—is an object with a stronger (and more interesting) structure: it
associates to each element of Q a formal power series over C, rather than just a
complex number, with a correspondingly stronger requirement on its behavior under
the action of Γ. To describe this, we write the power series in C[[ε]] associated to
x ∈ Q as f(x + iε) rather than, say, fx(ε), so that f is now defined in the union of
(disjoint!) formal infinitesimal neighborhoods of all points x ∈ Q ⊂ C. Since the
function hγ in (2) was required to be real-analytic on the complement of a finite
subset Sγ of P1(R), it extends holomorphically to a neighborhood of P1(R) r Sγ in
P1(C), and in particular has a power series expansion (convergent in some disk of
positive radius) around each point x ∈ Q. Our stronger requirement is now that
the equation

(3) f(z) − (f |kγ)(z) = hγ(z) (γ ∈ Γ, z → x ∈ Q)

holds as an identity between countable collections of formal power series.
Finally, there is a further property which holds for all the examples of strong

quantum modular forms that we know, namely, that the formal function f(z) just
described extends to an actual function f : (C r R) ∪ Q → C that is analytic
on C r R and whose asymptotic expansion as one approaches any rational point
x ∈ Q vertically from above or below coincides to all orders with the formal power
series f at x. (Here “analytic” can mean “holomorphic” or merely “real-analytic,”
depending on the example.) Of course such an extension, even if it exists, isn’t
canonical since it can be modified by adding an analytic function in H± which
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vanishes to infinite order as one approaches any rational point, but in our examples
there will often be a natural choice. One then gets a peculiar kind of object: an
analytic function in the upper half-plane which “leaks” into the lower half-plane
through the infinitely many “holes” Q ⊂ R in the real axis to another analytic
function in H− in such a way that the combined function on H ∪ Q ∪H− is C∞ on
any vertical line passing through a rational point, or more generally on any smooth
curve in C which intersects R only orthogonally and in rational points. The sheaf
defined by functions of this type gives (C r R) ∪ Q a bizarre “hybrid topology” in
which it is a 1-dimensional complex manifold at all points outside of Q and a kind
of 1-dimensional real C∞-manifold at all points of Q.

All of this sounds somewhat abstract. Let us turn for the rest of the paper to the
examples, which are taken from a variety of fields: number theory, combinatorics
(q-series) and, as already mentioned, quantum invariants of 3-manifolds and knots.

Example 0. We begin with a function which is is more of a prototype than
a true example because it does not fit precisely into the scheme described above,
but which is in the same spirit and is very familiar to number theorists. This is the
classical Dedekind sum, defined on pairs of coprime integers (c, d) with c > 0 by
the formula

s(d, c) =
∑

0<k<c

((k

c

)) ((kd

c

))
,

where ((x)) denotes x − [x] − 1
2 for x 6∈ Z . It satisfies the well-known identities

s(d + c, c) = s(d, c), s(−d, c) = −s(d, c), s(d, c) + s(c, d) =
c2 + d2 + 1 − 3cd

12cd
,

which determine it completely. Hence the function S : Q → Q defined by S(d/c) =
12s(d, c) satisfies the functional equations

S(x)−S(x+1) = 0, S(x)−S(−1/x) = x+
1

x
± 3+

1

Num(x)Den(x)
(x ≶ 0) .

If we ignore the last term, which is the reason why we said that this example does
not quite fit in with our general scheme, then we see that we have precisely an
example of the type of transformation property described above. (The reason for
the anomaly is that this example is related to the Eisenstein series of weight 2 on
SL(2, Z), which is a quasimodular rather than a modular form.)

We mention that a function with quantum modular properties very similar to
those of the Dedekind sum occurs in a recent preprint of Brian Conrey [5].

Example 1. We consider the following two q-hypergeometric functions, the
first of which was given in Ramanujan’s “Lost” Notebook and the second, its part-
ner, discovered later:

σ(q) =

∞∑

n=0

qn(n+1)/2

(1 + q)(1 + q2) · · · (1 + qn)

= 1 + q − q2 + 2 q3 − 2 q4 + q5 + q7 − 2 q8 + · · · ,

σ∗(q) = 2
∞∑

n=1

(−1)nqn2

(1 − q)(1 − q3) · · · (1 − q2n−1)

= −2 q − 2 q2 − 2 q3 + 2 q7 + 2 q8 + 2 q10 + · · · .
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In a beautiful paper by George Andrews, Freeman Dyson and Dean Hickerson [2]—
the story is told in more detail in the last section of Dyson’s famous survey arti-
cle [8]—several identities expressing these two q-series as theta series associated to
indefinite quadratic forms were proved, thereby explaining in particular the other-
wise amazing experimental fact that the coefficients of both are very small, even
though the individual terms have huge coefficients. (For instance, no coefficient
of qn in σ(q) for n ≤ 1600 is greater than 4 in absolute value, even though some
coefficients of the individual terms in the sum in the same range exceed 1013.) A
typical identity they proved is

(4) q σ
(
q24

)
=

∑

a, b∈Z
a>6|b|

(
12

a

)(
−1

)b
qa2−24b2 ,

the right-hand side of which is very similar to that of the modular identity

(5)
η(24z)3

η(48z)
=

∑

a, b∈Z
a>6|b|

(−12

a

)(
−1

)b
qa2−24b2 ,

where η(z) = q1/24
∏∞

n=1(1 − qn) denotes the classical Dedekind eta function.
In an equally beautiful paper [4] which appeared side-by-side with the Andrews-

Dyson-Hickerson paper, Henri Cohen interpreted these identities in terms, first of
algebraic number theory, and then of the theory of Maass wave forms. Define
coefficients

{
T (n)

}
n∈24Z+1

by

(6) q σ
(
q24

)
=

∑

n≥0

T (n) qn , q−1 σ∗(q24
)

=
∑

n<0

T (n) q|n| .

Then the identities of [2] are equivalent to the fact that T (n) is the coefficient of
|n|−s in the Dirichlet series

L(s) =
∏

p≡±3
(mod 8)

1

1 − p−2s

∏

p≡±7
(mod 24)

1

1 + p−2s

∏

p≡±1
(mod 24)

1

(1 − ε(p) p−s)2
,

where ε(p) is defined for p = |P | with P ∈ 24Z+1 by ε(p) = (−1)b =
(

12
c

)
=

(
24
f

)
if

P has the representations P = a2 − 72b2 = c2 − 96d2 = e2 − 192f2 as a norm in the
three quadratic orders Z[6

√
2], Z[4

√
6] and Z[8

√
3], respectively. Cohen observed

that this is an Artin L-function that can be expressed via the identities L(s) =
ζ

Q

(√
3+

√
3
)(s)/ζ

Q

(√
3
)(s) = ζ

Q

(√
3+

√
6
)(s)/ζ

Q

(√
3
)(s) as a quotient of Dedekind

zeta functions. This implies the functional equation L̂(s) = −L̂(1 − s), where

L̂(s) = (24
√

2/π)sΓ(s/2)2L(s), and from this in turn one deduces that the function

(7) u(z) =
√

y
∑

n∈24Z+1

T (n)K0

(
2π|n|y/24

)
e2πinx/24 (z = x + iy ∈ H)

satisfies u(−1/2z) = u(z) as well as the more obvious functional equation u(z+1) =
e2πi/24u(z), whence also u(z/(2z + 1)) = e2πi/24u(z). Since u(z) is also an eigen-
function of the hyperbolic Laplace operator −y2

(
∂2/∂x2+∂2/∂y2

)
with eigenvalue

1/4, this shows that u(z) is a Maass wave form on the congruence subgroup Γ0(2)
and thus that the identity (4) is just as modular in nature as the identity (5), but
now using non-holomorphic rather than holomorphic modular forms.
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All of this seems to have nothing to do with quantum modular forms. However,
Cohen also observed a further phenomenon, and it is this which concerns us here.
One has the two q-series identities (the first due to Andrews, the second derived in
a similar way by Cohen)

(8)

σ(q) = 1 +

∞∑

n=0

(−1)n qn+1 (1 − q)(1 − q2) · · · (1 − qn) ,

σ∗(q) = −2

∞∑

n=0

qn+1 (1 − q2)(1 − q4) · · · (1 − q2n) .

Cohen observed that the right-hand side of each of these expressions, as well as
being a convergent series in the disk |q| < 1, also makes sense whenever q is a root
of unity, because the series is then terminating in both cases. He then discovered
the following surprising fact about these functions.

Lemma. Define σ and σ∗ at roots of unity by (8). Then σ(q) = −σ∗(q−1) for

every root of unity q.

The first cases of this can be checked by hand: σ(1) = −σ(1) = 2, σ(−1) =
−σ∗(−1) = −2, σ(ω) = −σ∗(ω2) = 2ω + 6 for ω2 + ω + 1 = 0, and σ(±i) =
−σ∗(∓i) = ∓2i − 4.

Proof. The Laurent series

Sk =
k∑

n=1

q−n(n−1)/2(1 + q)(1 + q2) · · · (1 + qk−n) ∈ Z[q, q−1]

satisfies the recursion Sk+1 − Sk = qk+1
(
Sk+1 − (1 + q) · · · (1 + qk)

)
− q−k(k+1)/2,

so by induction

(9)

k−1∑

n=0

(
q−1−1

)
· · ·

(
q−n−1

)
−

k−1∑

n=0

qn+1(1−q2) · · · (1−q2n) = (1−q) · · · (1−qk)Sk

for every k ≥ 0. If q is a root of unity and k is bigger than or equal to the order
of q, then the right-hand side of (9) vanishes and the left-hand side is easily seen
to be 1

2σ(q−1) + 1
2σ∗(q) . �

We can now define our quantum modular form. Define a function f : Q → C
by

(10) f(x) = q1/24 σ(q) = −q1/24 σ∗(q−1) (x ∈ Q, q = e2πix) ,

where the equality of the two formulas is precisely the content of the lemma. This
function, whose values for x with denominator ≤ 4 were given (up to the factor
q1/24) before the proof of the lemma, jumps around erratically as x runs through
the rational numbers, but the cocycle defined by (3) with Γ = Γ0(2) and k = 1 is
almost everywhere analytic:

Proposition. The function f : Q → C defined by (10) satisfies

(11) f(x + 1) = e2πi/24f(x) ,
1

2x + 1
f
( x

2x + 1

)
= e2πi/24f(x) + h(x)

where h : R → C is C∞ on R and real-analytic except at x = −1/2 .
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We illustrate this behavior by plotting in Figure 1 the real part of f(x) for all
rational numbers x ∈ [−1.7, 1.1] with denominator ≤ 100 (the imaginary part looks
very similar), and in Figure 2 the values of the real and imaginary parts of h(x) for
the same values of x.

−1.5 −1 −.5 .5 1

−3

−2

−1

1

2

3

4

Figure 1. Graph of ℜ(f(x))

−1.5 −1 −.5 .5 1

−1

−.5

.5

1

1.5

Figure 2. Graph of ℜ(h(x)) and
ℑ(h(x))

This proposition, which we will prove in a moment, shows that f is a quantum
modular form in the sense explained in the introduction, and the figures depict
graphically what this means. In fact, f is a strong quantum modular form. Indeed,
the two expressions in (8) are not only well-defined complex numbers when q is a
root of unity, but well-defined power series in t, with coefficients in Q[ξ], when we
take q = ξe−t with ξ a root of unity. Furthermore, the identity σ(q) = −σ∗(q−1)
of the lemma remains true as an identity in Q[ξ][[t]], with the same proof, because
the right-hand side of (7) is O(tm) for k larger than m times the order of ξ. For
instance, if we take ξ = 1 we find

σ
(
e−t

)
= −σ∗(et

)
= 2− 2 t +5 t2 − 55

3
t3 +

1073

12
t4 − 32671

60
t5 +

286333

72
t6 − · · · .

If we extend the definition of f to infinitesimal neighborhoods of all rational points
by interpreting (10) in the obvious way when x is replaced by x + iy with x ∈ Q
and y infinitesimal (so q = ξe−t with ξ = e2πix and t = 2πy), then (11) then
still holds, where h(x) is extended to a neighborhood of R r {−1/2} by analytic
continuation. Here we can also clearly see the phenomenon of “leaking through
the rational numbers” mentioned in the introduction, because we can extend the
formally defined function f to a globally defined function f : H ∪ H− ∪ Q → C by
setting

(12) f(z) =

{
q1/24 σ(q) if z ∈ H ∪ Q ,

−q1/24 σ∗(q−1) if z ∈ H− ∪ Q,

where q = e2πiz. Then the argument just given shows that f , which is obviously
analytic in both H and H−, is C∞ on any curve passing vertically through a rational
point. In fact, the function f(z) is the key to the proof of the proposition. Inserting
the Fourier expansions (6) into (12) we can rewrite the definition of f in C r R as

f(z) =

{ ∑
n>0 T (n) qn if z ∈ H ,

−∑
n<0 T (n) qn if z ∈ H−,
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which stands exactly is the same relation to the Maass wave form (7) as the functions
denoted in the same way in the earlier work of J. Lewis and the author on Maass
cusp forms on SL(2, Z) and their associated “period functions” [12, 13]. Making
the needed minor changes in the results given there, we find that the holomorphic
function f in C r R can be expressed in terms of the Maass form u by the integral
formulas

(13) f(z) =

{ ∫ ∞
z

[u(τ), rz(τ)] if z ∈ H ,

−
∫ ∞

z̄
[rz(τ), u(τ)] if z ∈ H−,

where the function rz : H → C is defined by rz(τ) = (ℑ(τ)/(τ − z)(τ̄ − z))1/2 and,
like u, is an eigenfunction of the hyperbolic Laplace operator (with respect to τ)
with eigenvalue 1/4, and where [ · , · ] denotes the Green’s form

[
u(τ), v(τ)

]
=

∂u(τ)

∂τ
v(τ) dτ + u(τ)

∂v(τ)

∂τ̄
dτ̄ ,

which is a closed 1-form whenever u and v are eigenfunctions of the hyperbolic
Laplace operator with the same eigenvalue. From this and the modularity property
u(γτ) = χ(γ)u(τ) for γ ∈ Γ of u(τ), where χ : Γ0(2) → C∗ is the character sending
both generators

(
1 1
0 1

)
and

(
1 0
2 1

)
to e2πi/24, together with the easy equivariance

property rγz(γτ) = ±(cz +d)rz(τ) for γ =
( · ·

c d

)
∈ SL(2, R), we deduce, apart from

the obvious periodicity property f(z + 1) = e2πi/24f(z), the formula

(14) (2z + 1) f
( z

2z + 1

)
− e2πi/24f(z) = −

∫ ∞

−1/2

[u(τ), rz(τ)]

for z in either the upper or the lower half-plane, where the integral is taken along
any path from −1/2 to ∞ passing to the left of z or z̄. But the right-hand side
now makes sense for any z lying to the right of both the chosen path and its
reflection in the x-axis, so (if we push the path of integration far to the left) defines
a holomorphic function on all of C r (−∞, 0]. The function h(x) occurring in (11)
for x > 0 is the restriction of this function to R+ and hence is real-analytic, and a
similar argument works for z ∈ C r [0,∞) and x < 0 if we change the minus sign
on the left-hand side of (14) to a plus sign and take a path of integration passing
to the right of z and z̄. This establishes the real-analyticity of h on R∗. The fact
that it is C∞ also at x = −1/2 follows by looking more closely at the integral and
using that u is a cusp form, as was done in [13] for the period functions of Maass
forms on the full modular group. �

A similar discussion applies to other Maass wave forms on groups commensu-
rable with SL(2, Z). We refer to the article [3] by R. Bruggeman for a treatment of
this more general case.

Example 2. Our second example comes from [14], where the following ele-
mentary but rather surprising facts were proved.
1. Let Q5 denote the set of all quadratic functions Q(x) = ax2 + bx + c with
a, b, c ∈ Z, a < 0, and discriminant b2 − 4ac equal to 5. Then for every rational
number x we have ∑

Q∈Q5

max(Q(x), 0) = 2 ,

the sum always being finite. (For example, the only Q ∈ Q5 with Q( 1
3 ) > 0 are

−x2 +x+1, −x2 −x+1, −5x2 +5x− 1 and −11x2 +7x− 1 and the corresponding
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values Q( 1
3 ) = 11

9 , 5
9 , 1

9 , 1
9 add up to 2.) More generally, if for every positive non-

square integer D we define QD like Q5 but with the discriminant of Q now being
the given number D, then we have

(15)
∑

Q∈QD

max(Q(x), 0) = αD

for all x ∈ Q, where αD is a rational number that depends only on D and is equal
to a simple multiple of the value of the Dedekind zeta function of Q(

√
D) at s = 2.

2. If one replaces the expression max(Q(x), 0) by its cube, then the same thing
happens: one has

(16)
∑

Q∈QD

max(Q(x), 0)3 = βD

for all x ∈ Q, where βD ∈ Q is related to ζ
Q(

√
D)(4). But for the fifth power one

has instead

(17)
∑

Q∈QD

max(Q(x), 0)5 = γD + δD Φ(x)

where γD (again related to ζ
Q(

√
D)(6)) and δD are rational numbers depending only

on D and Φ : Q → Q is an even periodic function satisfying q10 Φ(p
q ) ∈ Z for all

p
q ∈ Q, the first values being

p/q (mod 1) 0 1/2 ±1/3 ±1/4 ±1/5 ±2/5 ±1/6
q10 Φ(p/q) 1 −1049 −29399 12076 3132025 −8012423 30839551

The function Φ satisfies—and, if one fixes one value, is uniquely characterized
by—the two functional equations

(18) Φ(x + 1) = Φ(x) , x10 Φ(−1/x) = Φ(x) + x10 − 691

36
x2(x2 − 1)3 − 1 .

Therefore Φ(x) (and hence also
∑

Q∈QD
max(Q(x), 0)5 for any D) is a quantum

modular form. This example is unusual in that the cocycle rγ = Φ − Φ|−10γ is
analytic on all of R (it is a polynomial) and that Φ itself extends continuously (and
even differentiably, though not C∞) from Q to R.

Here, again, the explanation is modular, but much simpler than in our first
example because now only holomorphic modular forms on the full modular group
are involved. The reason for the different behavior of the functions in (15) and (16)
and in (17) is that there are no holomorphic modular forms except for Eisenstein
series of weight 4 or 8 on SL(2, Z), while in weight 12 one has the cusp form

∆(z) = q
∞∏

n=1

(
1 − qn

)24
=

∞∑

n=1

τ(n) qn
(
z ∈ H, q = e2πiz

)
,

as well as the Eisenstein series. The existence of the quantum modular form Φ fol-
lows directly from the existence of the cusp form ∆, as a consequence the classical
Eichler-Shimura-Manin theory of periods of holomorphic modular forms. Specifi-
cally, we associate to ∆(z) its Eichler integral

(19) ∆̃(z) =
(2π/i)11

10!

∫ ∞

z

∆(z′) (z′ − z)10 dz′ =
∞∑

n=1

τ(n)

n11
qn (z ∈ H) .
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(For an arbitrary cusp form f of weight k, f̃ would be defined the same way with

10 and 11 replaced by k − 2 and k − 1.) Then
d10∆̃(z)

dz10
= ∆(z) and from this and

the modularity of ∆ one deduces easily that

(20) ∆̃(z) − (cz + d)10 ∆̃
(az + b

cz + d

)
= P(

a b
c d

)(z)

(or, more succinctly, ∆̃
∣∣
−10

(γ−1) = Pγ) for all γ =
(

a b
c d

)
∈ Γ1 = PSL(2, Z), where

Pγ(z) is a polynomial of degree ≤ 10, given explicitly by

(21) Pγ(z) =
(2π/i)11

10!

∫ ∞

γ−1(∞)

∆(z′) (z − z′)10 dz′ .

These polynomials satisfy the cocycle relation Pγγ′ = Pγ

∣∣
−10

γ′ +Pγ′ and hence are

determined by their values for the generators T =
(

1 1
1 0

)
and S =

(
0 −1
1 0

)
of Γ1,

which are PT = 0 (obviously) and

PS(z) = −Ω1

(
z10 − 691

36
z2(z2 − 1)3 − 1

)
+ Ω2

(
z(z2 − 1)2(z2 − 4)(4z2 − 1)

)

with Ω1 = 0.98943291 · · · ∈ R, Ω2 = 1.53908051 . . . i ∈ iR. From this and (18) we
deduce that

(22) Φ(x) = ℜ
(
∆̃(x)/Ω1

)
=

1

Ω1

∞∑

n=1

τ(n)

n11
cos(2πnx)

for x ∈ R, where ∆̃(x) is defined by either of the formulas in (19), both of which
remain convergent also when z lies on the real axis. The above-mentioned “contin-
uous but not infinitely differentiable” properties of the function Φ follow from this:
it is known that τ(n) is O

(
n11/2

)
but not o

(
n5

)
for n large, so the function Φ(x)

on R is 4 times but not 6 times continuously differentiable.
In this example, too, we find a function that “leaks” from H into H− through

the rational holes in the real axis. To do this, we extend the definition (19) to the
lower half-plane by

∆̃(z) =
(2π/i)11

10!

∫ ∞

z̄

∆(z′) (z′ − z)10 dz′(23)

=
1

10!

∞∑

n=1

τ(n)

n11
γ11(4πn|y|) qn (z ∈ H

−),

where z = x + iy ∈ H and γ11(t) =
∫ ∞

t
e−u u10 du, the incomplete gamma function

(which is equal to e−t times a polynomial in t). For z = x ∈ R the integrals in

both (19) and (23) are convergent, because ∆(x + iy) = O
(
y−6

)
as |y| → 0, so ∆̃

extends in this case to a continuous function in all of C. This extended function still
satisfies the functional equation (20), with the same polynomials Pγ as before, and
because ∆ is a cusp form and hence vanishes to infinite order as τ approaches any
rational point, one sees easily that its restriction to any vertical line passing through
a rational point is infinitely often differentiable. However, unlike the situation in our
first example, here the function that “leaks” is only real-analytic, not holomorphic,
in the lower half-plane.
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Example 3. Our next example of a quantum modular form comes from the
unusual series

(24) F (q) =

∞∑

m=0

(1 − q)(1 − q2) · · · (1 − qm) ,

invented by Maxim Kontsevich, which has the peculiarity of not converging on any
open subset of C but nevertheless makes sense as a function on the set of roots of
unity because the series terminates after N terms if qN = 1. We will be fairly brief
in our treatment here, since this function was studied in detail in [15], and will
only discuss the quantum modular aspect. Define ϕ : Q → C by ϕ(x) = q1/24F (q),
where q = e2πix as usual. Then ϕ(1/n) has an asymptotic expansion of the form

(25) ϕ(1/n) ∼ n3/2 e2πi(3−n)/24 +
∞∑

j=0

cj (−2πi/n)j

as n → ∞, where c0 = 1, c1 = 23
24 , c2 = 1681

1152 ,. . . are certain rational coeffi-

cients. From the trivial functional equation ϕ(x + 1) = e2πi/24ϕ(x) one sees that

e2πi(3−n)/24 equals
√

i ϕ(−n), so (25) says that the function g(x) defined by the
second of the two equations
(26)

ϕ(x+1) = e2πi/24ϕ(x) , ϕ(x)∓ i1/2|x|3/2 ϕ(−1/x) = g(x) (x ∈ Q, ±x > 0)

is smooth (i.e., has a well-defined Taylor expansion) at x = 0, and in fact it is
real-analytic on the rest of the real axis, so that (26) presents ϕ(x) as a quantum
modular form.

The explanation is quite similar to that in the last example, except that the cusp
form ∆(z) is replaced by its 24th root η(z), which is a modular form of half-integral
weight. Again we have a function η̃(z) in H ∪ H−, related to η(z) in the same way

as ∆̃(z) in the previous example was related to ∆(z). (The direct analogues of the
integrals in (19) and (23) diverge, because η has weight 1/2, so that the exponent
“10” in the integrand would have to be replaced by “−3/2,” but they can be made
sense of by integrating by parts once, or alternatively, we can use the definitions via

sums rather than integrals.) In particular, since η(z) =
∑∞

n=0 n
(

12
n

)
qn2/24 (Euler),

this gives that η̃(z), appropriately normalized, is given by

(27) η̃(z) =

∞∑

n=0

n
(12

n

)
qn2/24 = q1/24

(
1 − 5q − 7q2 + 11q5 + · · ·

)
,

and now the relation to Kontsevich’s function follows from the formula
∞∑

n=0

(
q1/24(1− q)(1− q2) · · · (1− qn) − η(z)

)
= −1

2
η̃(z) + η(z)

(
1

2
−

∞∑

n=1

qn

1 − qn

)

([15], Theorem 2), which implies that −2ϕ(x) for x ∈ Q is the limiting value of
η̃(z) as z approaches x from either the upper or the lower half-plane. We also
deduce (26), with an explicit formula for the cocycle function g(x) as an integral of
the Dedekind eta-function along a path from 0 to ∞ in the upper half-plane.

We observe in passing that the function of this example, like those of Exam-
ples 4 and 5, belongs to the Habiro ring of “analytic functions of roots of unity” [10].
These functions, which are also related to the (now so very fashionable) F1-story,
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occur in many contexts connected with quantum topological invariants and quan-
tum groups, and would be a natural setting to look for more examples of quantum
modular forms.

Example 4. The next example, taken from [11], is similar in many ways to the
last one, but is interesting because it comes from topology and more particularly
from the theory of quantum invariants of 3-manifolds. Again we shall be brief and
refer to the original paper for details. To any 3-manifold one can associate the
so-called Witten-Reshetikhin-Turaev invariant, defined by the first of these authors
by a path integral that can be made sense of only perturbatively or in the sense
of topological quantum field theory, and by the second two in a rigorous, but less
illuminating, algebraic way. The invariant makes sense at roots of unity of the form
ζK = e2πi/K with K > 0 integral. For manifolds of very special types (such as
torus knots or Seifert fibrations) there are explicit formulas for it, and in particular
for the Poincaré homology sphere Σ(2, 3, 5) it is given by

(28) W (q) =
1

2G

∑

β (mod 60K)
β 6≡0 (mod K)

(1 − α24β)(1 − α40β)

1 + α60β
α−(β+1)2 ,

if q = ζK , where α = ζ120K and G =
∑

β mod 60K

α−β2

= (1− i)
√

30K (Gauss sum).

We extend this to other roots of unity by Galois invariance W (q)σ = W (qσ), or
equivalently by formula (28) for q equal to any primitive Kth root of unity, with α
being any primitive (120K)-th root of unity with α120 = q. Let χ+(n) be the odd
periodic function of period 60 defined by the formula

χ+(n) =

{
(−1)[n/30] if (n, 6) = 1 and n ≡ ±1 (mod 5),

0 otherwise,

and let Θ+(z) be the theta series

Θ+(z) =

∞∑

n=1

nχ+(n) q
n2

120 = q
1

120

(
1 + 11q + 19q3 + 29q7 − 31q8 − · · ·

)
(z ∈ H),

which is a modular form of weight 3/2 on a certain congruence subgroup of SL(2, Z)
(and in fact is the first component of a 2-component vector-valued modular form
of weight 3/2 on the full group SL(2, Z)). Then for every x ∈ Q the number

(29) f(x) = 2 eπix/60
(
1 − W

(
e2πix

))

is equal to the limit as z → x of the Eichler integral

(30) Θ̃+(z) =

∞∑

n=1

χ+(n) q
n2

120 = q
1

120

(
1 + q + q3 + q7 − q8 − · · ·

)

([11], Theorem 1), and from this it follows that the function f : Q → C is a quantum
modular form (in fact, a strong quantum modular form). The whole story is quite
similar to that in Example 3 except that this time the modular form whose Eichler
integral is involved has weight 3/2 rather than 1/2. There is also an expression

∞∑

n=0

[
qn(1 − q)(1 − q6) · · · (1 − q5n−4) + q4n+3(1 − q4)(1 − q9) · · · (1 − q5n−1)

]
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for q−1/120Θ̃+(q) (due to Zwegers) of the same type as (24), which terminates and
hence gives a closed formula for W (q) whenever q is a root of unity of order not
divisible by 5, as well as relations (also pointed out by Zwegers) to the mock theta
functions of Ramanujan. See [11] for more details.

Example 5. The last example, which again comes from topology, is the most
mysterious and in many ways the most interesting. The function from Q/Z to R
that we obtain in this case is not a quantum modular form in the strict sense of
the definition we gave in the introduction, let alone a strong quantum modular
form, because the associated cocycle is no longer analytic or even continuous, but
it nevertheless will turn out to have a clearly defined modularity property.

To any knot and any integer n ≥ 2 one can associate a Laurent polynomial
Jn(q) ∈ Z[q, q−1], called the n-colored Jones polynomial. The definition, which
involves the theory of quantum groups, will not be reviewed here since we will only
look at one example and here the Jones polynomials can simply be given by an
explicit formula. We will consider the figure-eight knot, the simplest hyperbolic
knot. The Jones polynomial of this knot is given by

Jn(q) =

n−1∑

m=0

q−mn
m∏

j=1

(1 − qn−j)(1 − qn+j) .

(Here the sum could also be taken from m = 0 to ∞ since the mth summand is 0
for m ≥ n.) If we fix a root of unity q, then the function n 7→ Jn(q) is periodic,
of period N if qN = 1, so we can extrapolate it backwards to define Jn(q) also
for n ≤ 0. Of particular interest to us is the Q-valued function on roots of unity
defined by

(31) J0(q) := JN (q) =
∞∑

m=0

∣∣(1 − q)(1 − q2) · · · (1 − qm)
∣∣2 (q ∈ C∗, qN = 1 )

(compare the sum on the right-hand side to (24)), the first few values of which are
as follows:

q 1 −1 ζ±1
3 ±i ζ±1

5 ζ±2
5 ζ±1

6

J0(q) 1 5 13 27 46 + 2
√

5 46 − 2
√

5 89

The function J0, which is related to perturbative SL(2, C) Chern-Simons theory
(cf. [7]), is of a very different nature than the Jones polynomials themselves. For
instance, the values of the Jones polynomials Jn(q) when q is a root of unity are
of only polynomial growth if qn 6= 1, but the values of J0(ζN ) = JN (ζN ) are
exponentially big, as one can see in the following table:

N 100 200 300
max0<n<N |Jn(ζN )| 12.07 18.62 24.99
J0(ζN ) = JN (ζN ) 8.20 × 1016 2.48 × 1031 4.89 × 1045

Explicitly, J0(ζN ) is given by the the asymptotic formula [1]

J0

(
e2πi/N

)
∼ 1

4
√

3
N3/2 eCN (n → ∞) ,
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where C = 0.3230659 . . . is 1/2π times the hyperbolic volume of the complement
of the knot, and in fact one has a complete asymptotic expansion [6, 9, 16]
(32)

J0

(
e2πi/N

)
=

1

31/4
N3/2 eCN

(
1 +

11

36
√

3

π

N
+

697

7776

π2

N2
+

724351

4199040
√

3

π3

N3
+ · · ·

)

as N → ∞, where the factor in parentheses is a power series in π/N
√

3 with
rational coefficients. Conjecturally [7], the corresponding expansion for an arbitrary
hyperbolic knot would be a power series in πi/N with coefficients in the trace field
of the knot, this trace field being Q(

√
−3) for the figure 8 knot.

But since J0(q) is defined for all roots of unity, we can look at its expansion
near some other point than 1, e.g., we can consider the values q = −ζN rather
than q = ζN . It is here that the phenomenon of most interest to us appears: these
values are given (experimentally) by the asymptotic series

(33) J0

(
−e2πi/N

)
= κ(N)· 3

1/4

23/2
N3/2 eCN/4

(
1 +

41

36
√

3

π

N
+

12625

7776

π2

N2
+ · · ·

)
,

of the same general form as (32), but this time involving an extra factor

κ(N) =





27 if N ≡ 1 (mod 2),

1 if N ≡ 2 (mod 4),

5 if N ≡ 0 (mod 4)

that depends on the value of N (mod 4). Comparing with the table of values
of J0(q) given above, we find that this factor is given in all cases by κ(N) =
J0

(
iN+2

)
. What’s more, if we now try rational rather than integral values for N ,

but with bounded denominators, then we find that (33) still holds, with κ(N) =
J0

(
eπi(N+2)/2

)
. Going back to (32), we find exactly the same behavior there: if

N goes to infinity, not through integers, but through rational numbers, say with
denominator 2, 3 or 4, then (32) remains true if we multiply the right-hand side
multiplied by 5, 13, and 27, respectively (and in general by J0(e

2πiN )). More
generally, the experimentally found asymptotic behavior of the function

(34) J : Q/Z → Q ∩ R , J(x) := J0(e
2πix)

as x tends to a fixed rational number α = a/c (a, c ∈ Z, (a, c) = 1) from the right
or left is given by the formula

(35) J(α ± ε) = J(α∗ ± β) · exp(C/c2ε)

ε3/2

(
A±(α) + B±(α)ε + C±(α)ε2 + · · ·

)

as ε tends to 0 through positive rational values with 1/c2ε ≡ β (mod 1) for some
fixed rational number β, where α∗ = d/c with d ≡ a−1 (mod c) and A±(α) =
A(±α), B±(α) = B(±α), . . . are algebraic numbers depending only on α modulo 1.
(In equations (32) and (33) we have α = α∗ = β = 0 and α = α∗ = 1/2, β ≡ N/4
(mod 1), respectively, explaining the extra factor κ(N) = J((N +2)/4) in the latter
case.)

The factor J(α∗ ± β) in equation (35) looks odd at first sight, but in fact has
a simple modular explanation: if we set γ =

(
a b
c d

)
, where b ∈ Z is chosen so

that γ ∈ SL(2, Z), then we have J(α∗ ± β) = J(−α∗ ± 1/c2ε) = J(γ−1(α ± ε)),
so that (35) can be seen as simply relating the values of J(X) and J(γ(X)) as X
(=−α∗±1/c2ε ) tends to infinity through rational numbers with small denominator.
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The asymptotic formula (35) is therefore equivalent to the first part of the following
conjecture generalizing formulas (32) and (33):

Conjecture. Let α ∈ Q and choose γ ∈ SL(2, Z) with γ(∞) = α. Then for

suitable real numbers S0(α), S1(α), . . . depending only on α (mod 1) we have an

asymptotic expansion

(36)
J(γ(X))

J(X)
∼

(
π/~

)3/2
exp

( ∞∑

n=0

Sn(α) ~n−1

)
, ~ =

π/
√

3

X − γ−1(∞)

as X → ∞ through rational numbers with bounded denominators. The value of

S0(α) is independent of α and is equal to πC/
√

3, while S1(α) ∈ Q log
(
K×

a

)
and

Sn(α) ∈ Kα for n ≥ 2, where Kα is the maximal real subfield of the cyclotomic

field Q
(√

−3, e2πiα
)
.

We expect that a similar conjecture should hold for any hyperbolic knot comple-
ment, with ~ being defined as πi/(X − γ−1(∞)) (we divided this by

√
−3 in our

special case to make everything real) and Kα being replaced by K
(
e2πiα

)
, where

K is the trace field of the knot. The case when α = 0 and X ∈ Z is precisely the
arithmeticity conjecture from [7] which was cited earlier.

Observe that the correctness of (36) is unchanged by replacing (γ,X) by
(γT,X − 1) or (Tγ,X), where T =

(
1 1
0 1

)
, since these changes do not affect the

left-hand side or the quantity ~, so the quantities Sn(α) really do depend only on α
rather than on γ, and are periodic in α.

Here is a table of the numerically obtained values of Sn(α) for some small n
and simple α , where in the last line εk (k = 1, 2, 3) denotes the real cyclotomic
unit ζk + ζ−k with ζ = ζ−1

3 e4πia/5 and π29 = 2 − ε1 + ε2 + 2ε3, a prime of Q(ζ) of
norm −29.

α exp(S1(α)) S2(α) S3(α) S4(α)

0 1
3

11
2232

2
32

1081
21355

1
2 (23/3)1/2 41

2432

19
2332

71089
27355

1
3 2 · 32/3 37

2233

401
2136

30767
21385

2
3 34/3 25

2233

182
36

29027
21385

1
6 27/2 · 35/6 193

2433

24691
2736

8027957
29385

5
6 23/2 · 313/6 67

2433

1289
2336

1759883
27385

± 1
4

23(2
√

3±1)

3(2±
√

3)1/4

1855±360
√

3
263211

71132±3123
√

3
2832112

1499191589±43727850
√

3
2113551113

a

5
, 5 ∤ a (53/3)1/2|π29|

(ε3

1
ε3/ε2)1/10

1
223253π29

(2678 − 943ε1 · · · · · ·
+1831ε2 + 2990ε3)

Formulas (35) or (36) say that the values of J(x) as x approaches any given
rational number go exponentially rapidly to infinity and lie on certain smooth curves
(countably many, all proportional to one another) depending on the rational number
in question. This behavior can be seen clearly in the graph of the function J,
which looks as follows, where because of the very rapid growth we have plotted
f(x) = log(J(x)) rather than J itself, so that now the different curves containing
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the points of the graph with argument near any fixed rational point differ by vertical
translations:

5

10

15

0 1

Figure 3. Graph of f(x) = log(J(x))

To make more sense of this graph, we do as in Examples 1–4 and compare the
values of f(x) at x and 1/x. The graph of the difference indeed looks much better
than the graph of f itself:

−3

−2

−1

1

2

3

4

1 2 3 4

Figure 4. Graph of h(x) = log(J(x)/J(1/x))

The behavior that we see here is a consequence of the conjecture above, which can
easily be seen to imply that the function h(x) has a jump at every rational point
α = a/c but is C∞ as we approach α from the left or from the right, with limiting
values of the form h±(α) = ±C/ac+ log(β±(α)) as x approaches α from the left or
from the right, where β±(α) are real algebraic numbers. This smoothness from the
two sides can be seen more clearly by looking more closely at the graph of h(x) in
the neighborhood of a rational point α with small denominator, say α = 3/8 :
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2.4

2.3

2.2

2.1
.35 .36 .37 .38 .39

6/17 5/14 4/11 3/8 5/13

2.27

2.26

2.25

2.24

2.23

2.22
.373 .374 .375 .376 .377

3/8

Figure 5. Graphs of h(x) near x = 3/8

By contrast, in a small interval around the point 1/φ (φ = (1 +
√

5)/2 = golden
ratio), where there are no points with particularly small denominator, we get the
following picture

1.108

1.107

1.106

1.105

1.104

1.103
.617 .618 .619

29/47 21/34 1/φ 34/55

Figure 6. Graph of h(x) near x = 1/φ

showing that, unlike what the picture in Figure 4 might have suggested, h(x) is not
monotone decreasing on {x > 0} and seeming to indicate that the function h(x) is
continuous but in general not differentiable at irrational values of x.
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