Simple proofs of Ramanujan's congruences for the partition function

Don Zagier

Let p(n) denote the number of partitions of n. Ramanujan proved that p(n) is divisible by ℓ whenever $\ell \in \{5, 7, 11\}$ and 24n - 1 is divisible by ℓ . Many proofs of these congruences are now known. The one here is inspired by those given in a recent paper by M. Hirschhorn (JNT **139**, 2014) and is substantially the same as his for $\ell = 5$ or $\ell = 7$, but considerably simpler when $\ell = 11$.

Theorem (Ramanujan). If $\ell \in \{5, 7, 11\}$ and $24n \equiv 1 \pmod{\ell}$, then $p(n) \equiv 0 \pmod{\ell}$.

Proof. For each of these primes (and, by a famous theorem of Serre, for no other primes $\ell > 3$) the $(\ell - 1)$ st power of the Dedekind eta-function can be represented as a binary theta series. Choosing one such representation in each case, we find

$$\begin{split} \ell &= 5 : \quad \eta(\tau)^4 \ = \sum_{\substack{a \equiv 1 \pmod{6} \\ b \equiv 1 \pmod{4}}} (-1)^{[a/6] + [b/4]} \, b \, Q^{a^2 + 3b^2} \, \equiv \, \sum Q^{(\mathrm{R \ or \ 0}) + \mathrm{N}} \ = \, \sum Q^{\not\equiv 0} \,, \\ \ell &= 7 : \quad \eta(\tau)^6 \ = \sum_{\substack{a \equiv 1 \pmod{4} \\ b \equiv 1 \pmod{4}}} (-1)^{[a/4] + [b/4]} \, ab \, Q^{3a^2 + 3b^2} \, \equiv \, \sum Q^{\mathrm{N} + \mathrm{N}} \ = \, \sum Q^{\not\equiv 0} \,, \\ \ell &= 11 : \quad \eta(\tau)^{10} \ = \sum_{\substack{a \equiv 2 \pmod{6} \\ b \equiv 1 \pmod{6}}} \frac{ab(a^2 - b^2)}{6} \, Q^{2a^2 + 2b^2} \, \equiv \, \sum Q^{\mathrm{N} + \mathrm{N}} \ = \, \sum Q^{\not\equiv 0} \,, \end{split}$$

where $Q = e^{\pi i \tau/12}$ and where R (resp. N, 0, \equiv) denotes quadratic residues (resp. non-residues, zero, congruence) modulo ℓ . Hence in all three cases we have

$$\sum_{n\geq 0} p(n) Q^{24n-1} = \frac{1}{\eta(\tau)} \equiv \frac{\eta(\tau)^{\ell-1}}{\eta(\ell\tau)} \equiv \frac{\sum Q^{\not\equiv 0 \pmod{\ell}}}{\sum Q^{\equiv 0 \pmod{\ell}}} = \sum Q^{\not\equiv 0 \pmod{\ell}} . \qquad \Box$$