Simple proofs of Ramanujan's congruences for the partition function

Don Zagier

Let $p(n)$ denote the number of partitions of n. Ramanujan proved that $p(n)$ is divisible by ℓ whenever $\ell \in\{5,7,11\}$ and $24 n-1$ is divisible by ℓ. Many proofs of these congruences are now known. The one here is inspired by those given in a recent paper by M. Hirschhorn (JNT 139, 2014) and is substantially the same as his for $\ell=5$ or $\ell=7$, but considerably simpler when $\ell=11$.

Theorem (Ramanujan). If $\ell \in\{5,7,11\}$ and $24 n \equiv 1(\bmod \ell)$, then $p(n) \equiv 0(\bmod \ell)$.
Proof. For each of these primes (and, by a famous theorem of Serre, for no other primes $\ell>3$) the $(\ell-1)$ st power of the Dedekind eta-function can be represented as a binary theta series. Choosing one such representation in each case, we find

$$
\begin{aligned}
& \ell=5: \quad \eta(\tau)^{4}=\sum_{\substack{a \equiv 1(\bmod 6) \\
b \equiv 1(\bmod 4)}}(-1)^{[a / 6]+[b / 4]} b Q^{a^{2}+3 b^{2}} \equiv \sum Q^{(\mathrm{R} \text { or } 0)+\mathrm{N}}=\sum Q^{\not \equiv 0}, \\
& \ell=7: \quad \eta(\tau)^{6}=\sum_{\substack{a \equiv 1(\bmod 4) \\
b \equiv 1(\bmod 4)}}(-1)^{[a / 4]+[b / 4]} a b Q^{3 a^{2}+3 b^{2}} \equiv \sum Q^{\mathrm{N}+\mathrm{N}}=\sum Q^{\not \equiv 0}, \\
& \ell=11: \quad \eta(\tau)^{10}=\sum_{\substack{a \equiv 2(\bmod 6) \\
b \equiv 1(\bmod 6)}} \frac{a b\left(a^{2}-b^{2}\right)}{6} Q^{2 a^{2}+2 b^{2}} \equiv \sum Q^{\mathrm{N}+\mathrm{N}}=\sum Q^{\not \equiv 0},
\end{aligned}
$$

where $Q=e^{\pi i \tau / 12}$ and where R (resp. $\mathrm{N}, 0, \equiv$) denotes quadratic residues (resp. non-residues, zero, congruence) modulo ℓ. Hence in all three cases we have

$$
\sum_{n \geq 0} p(n) Q^{24 n-1}=\frac{1}{\eta(\tau)} \equiv \frac{\eta(\tau)^{\ell-1}}{\eta(\ell \tau)} \equiv \frac{\sum Q^{\not \equiv 0(\bmod \ell)}}{\sum Q^{\equiv 0(\bmod \ell)}}=\sum Q^{\not \equiv 0(\bmod \ell)}
$$

