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Abstract. The aim in this paper is to give expressions for modular linear differential operators

of any order. In particular, we show that they can all be described in terms of Rankin-Cohen brack-

ets and a modified Rankin-Cohen bracket found by Kaneko and Koike. We also give more uniform

descriptions of MLDOs in terms of canonically defined higher Serre derivatives and an extension of

Rankin-Cohen brackets, as well as in terms of quasimodular forms and almost holomorphic mod-

ular forms. The last of these descriptions involves the holomorphic projection map. The paper

also includes some general results on the theory of quasimodular forms on both cocompact and

non-cocompact subgroups of SL2(R), as well as a slight sharpening of a theorem of Martin and

Royer on Rankin-Cohen brackets of quasimodular forms.
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1. Introduction

Modular linear differential operators (MLDOs) and the corresponding modular linear differen-
tial equations (MLDEs) have appeared in recent years in a variety of contexts, ranging from the
study of supersingular j-invariants to the classification of vertex operator algebras in terms of the
spaces of modular forms spanned by the characters of their irreducible modules. In this paper we
study and describe these operators and these differential equations in several different ways:
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• as ordinary differential operators L =
∑n
r=0 ar(τ)Dr, where D is the normalized differ-

entiation operator (see below) and the ar(τ) are quasimodular forms that have to satisfy
certain auxiliary conditions in order to make the operator L modular;
• as operators of the form L =

∑n
r=0 br(τ) dr, where dr is the r th iterate of the Serre

derivative d (see below) and the br(τ) are modular forms;
• as linear combinations of two other types of higher-order Serre derivatives;
• in terms of Rankin-Cohen brackets and the Kaneko-Koike operator (defined below);
• uniformly in terms of extended Rankin-Cohen brackets;
• in terms of quasimodular forms and the action of sl2 on the space of quasimodular forms;
• in terms of almost holomorphic modular forms and the holomorphic projection operator.

Each of these approaches leads to a complete description of all MLDEs, but the representations
obtained are quite different and are related to one another in non-obvious ways. The most uniform
of these are two canonical bijections between the spaces of MLDOs and of quasimodular forms on
any lattice in SL2(R), respecting both the weights and the natural filtrations on these two spaces,
that are given in Section 8 and in Section 13 (or, in terms of almost holomorphic modular forms,
in Sction 14).

The paper falls naturally into two parts. In Section 2–6 we will recall some basic definitions,
give the precise definition of MLDEs and simple properties of their solution spaces, describe a
number of concrete examples of MLDOs including the Rankin-Cohen brackets and three kinds of
higher-order Serre derivatives, and state the main structure theorems describing all MLDOs in the
case of the full modular group, as well as giving examples coming from characters of modules over
vertex operator algebras. The remaining sections give refinements, proofs, and extensions to other
lattices (with a fairly detailed discussion of the different forms that the theory takes for cocompact
and non-cocompact lattices) and also more conceptual descriptions of the various isomorphisms in
terms of “extended Rankin-Cohen brackets” and of almost holomorphic modular forms. We also
give as an application a result saying that one of the three kinds of higher-order Serre derivatives
can be modified slightly to act on the space of quasimodular forms with a given upper bound
on their depth (Theorem 11), and as a corollary of this a slight sharpening of a result of Martin
and Royer [20] saying that a similar modification of Rankin-Cohen brackets also acts on pairs of
quasimodular forms without increasing their combined depths.

2. Review of basic definitions

In this preliminary section we review some basic notions, including modular forms, quasimod-
ular forms for the full modular group, and the Serre derivative. This material will be familiar to
most readers but is included anyway for completeness and to fix notations.

By lattice we will mean a discrete subgroup Γ of finite covolume in SL2(R), acting in the complex
upper half-plane H by fractional transformations, i.e., γ =

(
a b
c d

)
sends τ ∈ H to γτ = aτ+b

cτ+d . The

case of most interest is when Γ is the full modular group SL2(Z), which we will denote by Γ1, but
in the latter sections of the paper will consider other lattices as well, including cocompact ones
whose fundamental domains are compact in H and for which there are no cusps, no Eisenstein
series, and no Serre derivatives. If Γ is an arbitrary lattice, then for k ∈ Z we denote by Mk(Γ)
the space of holomorphic modular forms of weight k on Γ, meaning holomorphic functions f on H
satisfying f |kγ = f for all γ ∈ Γ. Here f 7→ f |kγ is the operation (“slash operator”) defined for
γ =

(
a b
c d

)
∈ SL2(R) by (

f |kγ
)
(τ) = (cτ + d)−kf

(aτ + b

cτ + b

)
(1)

and the word “holomorphic” includes a growth condition at cusps that is standard and will not be
repeated here. (For Γ = Γ1 it is just the condition that f(τ) is bounded as =(τ)→∞.) The space
Mk(Γ) is finite-dimensional over C for each k and the direct sum M∗(Γ) :=

⊕
kMk(Γ) is a finitely
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generated graded C-algebra. When Γ = Γ1 we usually omit it from the notations, writing simply
M∗ for M∗(Γ1). It is given explicitly by M∗ = C[E4, E6], where Ek is the standard normalized
Eisenstein series

Ek(τ) = 1 + Ck

∞∑
n=1

nk−1 qn

1− qn
(k = 2, 4, 6, . . . ) . (2)

(Here and from now on q = e2πiτ , and the Ck are well-known rational numbers with C2 = −24,
C4 = 240, and C6 = −504.) The form E2 is not modular, but belongs to the larger C-algebra

M̃∗ = C[E2, E4, E6] of quasimodular forms on Γ1, and for the moment we simply take this as the

definition of M̃∗. (The definition and properties of quasimodular forms for arbitrary lattices Γ will
be given in Section 8.) The important point is that the derivative of a modular form of positive

weight is never modular, but is always quasimodular. In fact the ring M̃∗(Γ) (for any Γ) is closed
under differentiation for any Γ, as one sees explicitly in the case of the full modular group from
Ramanujan’s famous formulas

E′2 =
E2

2 − E4

12
, E′4 =

E2E4 − E6

3
, E′6 =

E2E6 − E2
4

2
. (3)

(Here and from now on we denote by f ′(τ) or by Df(τ) the renormalized derivative (2πi)−1 d/dτ ,
where the factor (2πi)−1 is included so that the operator D = q d/dq preserves the space of power
series with rational coefficients in q.) These formulas show that the derivative Df = f ′ of a
quasimodular form of weight k has weight k+ 2 in this case, and the same holds for quasimodular
forms on any lattice. Another consequence of (3), which will play an important role in this paper,
is that the Serre derivative

dkf(τ) := f ′(τ) − k

12
E2(τ) f(τ) , (4)

maps Mk to Mk+2. Since a modular form has a well-defined weight, we will often omit the index k.
In particular, we will often write dn (or by abuse of notation dnk ) for the iterated Serre derivative
dk+2n−2 · · · dk+2dk, which maps modular forms of weight k to modular forms of weight k + 2n.

3. Modular linear differential equations and their solution spaces

We can now formulate the key definition. A modular linear differential operator (MLDO) of
weight K and type (k, k+K) on Γ is a linear differential operator L of finite order, with holomorphic
coefficients (also at the cusps, in the usual sense), satisfying

L
(
f |kγ

)
= L(f)|k+Kγ (5)

for all holomorphic functions f in the upper half-plane and all γ ∈ Γ. The corresponding modular
linear differential equation (MLDE) is then the linear differential equation Lf = 0. Notice that in
this definition, k can be positive or negative and in fact need not even be an integer, but K, as
we will see, will always be a non-negative integer if the operator L is non-zero, and in fact always
strictly positive except in the uninteresting case when L is multiplication by a constant.

Equation (5) implies in particular that L maps Mk(Γ) to Mk+K(Γ). But often we will apply
the operator L to some space of holomorphic or meromorphic modular forms of weight k on some
smaller subgroup Γ′ ⊂ Γ. The important remark is that the kernel of L is a finite-dimensional (of
dimension equal to the order n of L) and invariant under the action of Γ in weight k. Conversely,
any vector space V having these two properties is the solution space of some MLDE. To see this,
we choose a basis f1, f2, . . . , fn of V and define a differential operator ∆V of order n (depending
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up to a scalar factor depends only on V and not on the chosen basis) by

∆V (f) =

∣∣∣∣∣∣∣∣∣
f dkf · · · dnkf
f1 dkf1 · · · dnkf1

...
...

...
fn dkfn · · · dnkfn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
f Df · · · Dnf
f1 Df1 · · · Dnf1

...
...

...
fn Dfn · · · Dnfn

∣∣∣∣∣∣∣∣∣ ,
where drk = dk+2r−2 · · · dk+2dk is the r th iterate of the Serre derivative (4) and where the equality
of the two determinants follows from the inductively proved fact that each operator drk is a the
sum of Dr and a linear combination of Dp with p < r and with quasimodular coefficients (of
weight 2r − 2p) depending only on k, r and p. Expanding the determinants by their first rows,
we obtain two expressions ∆V =

∑n
r=0 ar(τ)Dr and ∆V =

∑n
r=0 br(τ) dr for the operator ∆V in

which each ar is a quasimodular form of weight n(k+ n+ 1)− 2r and depth ≤ n− r, while the br
are modular forms of the same weights. The second expression together with the transformation
property drk(f |kγ) = (drkf)|k+2rγ shows that ∆V is indeed an MLDO of type (k, n(k + n+ 1)).

We make several remarks about this construction. First of all, if V is the solution space
of Lf = 0 for some MLDO L, then L and ∆V needn’t agree up to a scalar factor, but may
differ by a non-constant left factor, and indeed this often happens. An example is given by the
space V spanned by the Rogers-Ramanujan functions defined by (9). As we will discuss in the
next section, V is the solution space of the operator L2,1/5 defined in (6), but when we calculate

∆V with respect to the basis (G0, G1) we find that ∆V is equal to 1
5η(τ)4 times L2,1/5, where

η(τ) = ∆(τ)1/24 = q1/24
∏

(1 − qn) as usual. One way to normalize the MLDO having a given
space V as its solution space is to fix the top coefficient (e.g. taking it to be 1, which is the case
of monic MLDOs discussed below, although making this normalization for a general MLDO with
holomorphic coefficients may lead to an MLDO with only meromorphic coefficients). Another is
to normalize L so that the quasimodular or modular forms occurring as coefficients in its D- or
d-expansion are holomorphic and have no common factor of positive weight. In ideal cases, like
for the operator (6) below, these agree. But in general one should be aware that giving a modular
linear differential equation is the same as giving its solution space, but is not quite the same as
giving a modular linear differential operator, since the opeators L and hL for any function h(τ)
give the same differential equation Lf = 0, and for some purposes it is important to keep track of
this distinction.

4. Examples of modular linear differential operators of small orders

The simplest non-trivial example of an MLDO is the Serre derivative dk as defined in (4). It
has order 1, weight 2, and type (k, k+ 2) and up to a constant factor is the only MLDO with these
parameters. Notice that k here can be positive or negative, and that for k = 0 the Serre derivative
reduces to just D, which is indeed an MLDO of type (0, 2).

The next example, which has order 2 and weight 4, arose in [15] in connection with the study
of supersingular j-invariants in characteristic p > 3. (The definition of supersingular plays no role
here and will not be recalled.) If k is a positive even integer, then the composition d2

k of dk with
dk+2 goes from Mk to Mk+4. If k+4 is not divisible by 3 (which is always true in the application to
supersingular j-values, where k = p− 1 with p > 3 prime), then Mk+4 = Mk ·E4 and we obtain an
endomorphism E−1

4 d2
k = E−1

4 dk+2dk of the finite-dimensional space Mk. Its eigenvalues turn out

to be λk−12n for 0 ≤ n ≤ k/12, where λk = k(k+2)
144 . The eigenfunction Fk(τ) with eigenvalue λk

is unique up to a scalar and can be given explicitly in terms of the Euler-Gauss hypergeometric
function 2F1(a, b; c;x) by

Fk(τ) = E4(τ)k/42F1

(
− k

12
,−k − 4

12
;−k − 5

6
;

1728

j(τ)

)
,
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where j(τ) = E4(τ)3/∆(τ) is the usual modular invariant (here ∆(τ) = q
∏
n≥1(1 − qn)24 =

(E4(τ)3−E6(τ)2)/1728 ∈M12, the Ramanujan discriminant function), and the eigenfunction with
eigenvalue λk−12n is then ∆(τ)nFk−12n(τ). In particular the function Fk(τ) is a solution (and in
fact the unique solution in Mk up to a scalar) of the MLDE L2,k(f) = 0, where L2,k is the MLDO

L2,k = d2
k − λk E4 (6)

of order 2 and type (k, k + 4). Written out explicitly in terms of D rather than d, this differential
equation takes the form

f ′′(τ) − k + 1

6
E2(τ)f ′(τ) +

k(k + 1)

12
E′2(τ) f(τ) = 0 . (7)

Our third example has order 3. Recall that the “Thetanullwerte” θj(τ) (j = 2, 3, 4) are the
values at z = 0 of the Jacobi theta functions θj(τ, z) (the function θ1(τ, z) vanishes at z = 0), given

explicitly as
∑
qn

2/2,
∑
q(n+ 1

2 )2/2, and
∑

(−1)nqn
2/2, respectively, and are individually modular

forms of weight 1/2 on the congruence subgroup Γ(2) of Γ1 but are permuted (up to roots of
unity) by the action of Γ1. The space of modular forms of weight k = n/2 spanned by θn2 , θn3
and θn4 is therefore SL2(Z)-invariant for any value of n and is 3-dimensional for n 6= 4. It follows
from the considerations given in Section 3 that this space is the solution space of an MLDE of
order 3, and by looking at the first few coefficients of the q-expansions we find that this equation

is d3
kf − 3k2−6k+8

144 E4dkf − k2(k−6)
864 f = 0, which in terms of ordinary derivatives becomes

f ′′′ − k + 2

4
E2f

′′ +
( (k + 1)(k + 2)

4
E′2 +

k

8
E4

)
f ′ −

(k(k + 1)(k + 2)

24
E′′2 +

k2

32
E′4

)
f = 0 . (8)

Finally, as already mentioned in the introduction, there are many examples of interesting
MLDEs coming from the theory of vertex operator algebras and their characters. Roughly speaking,
for a wide class of vertex operator algebras there are finitely many irreducible modules, each of
which has a character (a power series in q whose coefficients are the dimensions of its graded pieces)
that is known [32] to be modular, and the space spanned by all of these characters is always the
solution space of some MLDE. We omit all definitions here, since this is not our main subject, but
refer for instance to the [1–3,14,22–25,28] and their bibliographies for more details and examples.
A very simple case is the so-called (2,5) minimal model, whose two characters are the famous
Rogers-Ramanujan modular functions

G0(τ) =

∞∑
n=0

qn
2− 1

60

(1− q)(1− q2) · · · (1− qn)
, G1(τ) =

∞∑
n=0

qn
2+n+ 11

60

(1− q)(1− q2) · · · (1− qn)
. (9)

These are individually only invariant under the congruence subgroup Γ(5) of SL2(Z) but together
span the solution space of the MLDE d2f− 11

3600E4f = 0 (which can be written simply as L2,1/5f = 0

where L2,k is defined as in (7), but now with k being 1
5 rather than an even integer) [23]. Similarly

the third-order MLDO annihilating the nth powers of the Thetanullwerte arises in connection with
the space of characters of the lattice VOA associated to the root lattice Dn. (See [24] or §3 of [22].)
Sometimes one can also use the modular transformation properties of solutions of an MLDE “in
reverse” to show the non-existence of VOAs of certain types. For instance, the non-existence of a
certain apparently possible simple VOA with central charge c = 164/5 was proven in [2] using the
third order MLDE

f ′′′ − 1

2
E2 f

′′ +
(1

2
E′2 −

169

100
E4

)
f ′ +

1271

1080
E6 f = 0 , (10)

whose solution space is spanned by three explicit homogeneous polynomials of degree 82 in the
Rogers-Ramanujan functions G0 and G1 with huge coefficients. As a more complicated example,
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the 5th order MLDE

D5(f) − 5

3
E2D

4(f) +
(

10E′2 +
83

99
E4

)
D3(f) −

(
10E′′2 +

83

66
E′4 +

427

3267
E6

)
D2(f)

+
(5

3
E′′′2 +

83

330
E′′4 +

427

9801
E′6 +

202

107811
E8

)
D(f) +

7888

39135393
E10f = 0

(11)

is used in [25] in connection with the minimal model of minimal model of type (2,11) and central
charge c = −232/11.

Remark. Not all solutions of modular linear differential equations are necessarily modular
forms. For instance, for the Kaneko-Zagier equation, one solution is always modular, and if the
parameter is 1

5 there are two independent modular solutions (namely, the two Rogers-Ramanujan
functions multipllied by a power of η(τ)), but in general the second element of a basis of solutions
is a linear combination of products of modular forms and of Eichler integrals of modular forms
of weight 2, as discussed in [12] and [10]. This second type of solution was described in [10] as a
mixed mock modular form, and this is correct but is somewhat misleading since the mock modular
forms occurring are of weight 0, so have shadows of weight 2, and the non-holomorphic Eichler
integral of a modular form of weight 2 is simply the complex conjugate of the ordinary Eichler
integral of a different modular form of weight 2, so that the notions of “mock” and “mixed mock”
are not needed at all. (In fact, it seems probable that truly mixed mock modular forms, i.e.,
sums of products of modular forms and of mock modular forms of weight different from zero, can
never be the solutions of any MLDE.) Perhaps the best way to see these non-modular solutions is
as modular forms of second or higher order in the sense introduced in [4] and [17], the latter in
connection with a specific second order differential equation coming from percolation theory.

5. Higher order examples: Rankin-Cohen brackets and higher Serre derivatives

The examples given above all had specified and quite small orders. Here we consider three
families of examples of MLDOs of arbitrary order. The first and most important is given by the
Rankin-Cohen bracket[

f, g
](k, `)
n

=

n∑
i=0

(−1)i
(
n+ k − 1

n− i

)(
n+ `− 1

i

)
Di(f)Dn−i(g)

(
n ∈ Z≥0

)
, (12)

which belongs to Mk+`+2n(Γ) if f ∈ Mk(Γ) and g ∈ M`(Γ) for any group Γ. These bilinear
operations will play a key role in the whole paper and will be discussed and generalized in Section 9.

The map f 7→ [f, g]
(k,`)
n for fixed g ∈ M`(Γ) and any n ∈ Z≥0 is an MLDO of order n and type

(k, k + `+ 2n). As with the Serre derivative, we will often omit the superscripts and write simply

[f, g]n for [f, g]
(k,`)
n when f and g are modular forms of weights k and `.

If g = E2, then the Rankin-Cohen bracket [ · , g]
(·,2)
n no longer sends modular forms to modular

forms, but it was discovered by Kaneko and Koike [13, p. 467] that the modified bracket

Θn
k (f) := Dn(f) − k + n− 1

12

[
f,E2

](k,2)

n−1
(13)

sends modular forms of weight k to modular forms of weight k + 2n for arbitrary k and for all
non-negative integers n. This is an MLDO of type (k, k + 2n) that reduces to the Serre derivative
for n = 1 and to the Kaneko-Zagier operator L2,k for n = 2 and that will play an important role
in the sequel. We will give a proof of the modularity and an interpretation of Θn

k (f) for f ∈Mk as
an “extended Rankin-Cohen bracket” of f with a constant function in Section 9. We should also
mention that the Kaneko-Koike has been rediscovered at least twice, by Henri Cohen and Frederik
Strömberg ([7], Prop. 5.3.27, p. 164) in the above form and by Xuanzhong Dai ([9], eq. (1.7)) in
the form of a generalized Rankin-Cohen bracket (slightly different from ours) with 1.

Finally, we have the canonical higher Serre derivatives d
[n]
k , which, like both the iterated Serre

derivatives dnk and the Kaneko-Koike operators Θn
k , are a family of monic MLDOs of order n and
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weight 2n that reduce to the Serre derivative if n = 1, but which have much nicer properties than
either of these other two families. These operators were first used in [27] in connection with the
calculation of special values of L-functions of Hecke grossencharacters (whose definition again plays
no role here and will be omitted) and are discussed in detail in Section 5 of the textbook [31]. They
are defined recursively by

d
[n+1]
k (f) = dk+2n

(
d

[n]
k (f)

)
− n(n+ k − 1)

144
E4 d

[n−1]
k (f) (n ≥ 1) (14)

with the initial values d
[0]
k (f) = f , d

[1]
k (f) = dk(f), and have the attractive property that the

Rankin-Cohen brackets are given by the same formula[
f, g
](k, `)
n

=

n∑
i=0

(−1)i
(
n+ k − 1

n− i

)(
n+ `− 1

i

)
d[i](f) d[n−i](g)

(
n ∈ Z≥0

)
(15)

in terms of the higher Serre derivatives as in terms of the ordinary ones, but with the difference
that now each individual term of the sum defining [f, g]n is modular and not just quasimodular.

As already mentioned, the higher Serre derivatives d
[n]
k actually form a much simpler family of

higher order generalizations of dk than the more obvious iterated Serre derivatives dnk , because they
have a very simple expansion in terms of the usual derivatives Dr (equation (16) below), whereas
no corresponding explicit form for the iterated derivatives dnk in terms of the Dr is known. For the
Kaneko-Koike operators Θn

k , which can be seen as yet a third type of higher Serre derivatives, the
situation is intermediate, since they are given by a relatively explicit closed formula, but as linear

combinations of the d
[n]
k rather than of the Dn, as expressed in the following theorem.

Theorem 1. The canonical higher Serre derivatives of a holomorphic function f in H are related
to the usual derivatives by

d
[n]
k (f) =

n∑
r=0

(
n

r

)
(k + r)n−r

(
−E2

12

)n−r
Dr(f) (k, n ∈ Z≥0), (16)

and the Kaneko-Koike derivatives are related to the canonical higher Serre derivatives by

Θn
k (f) =

n∑
m=0

(
n

m

)(
k + n− 1

m

)
ωm d

[n−m]
k (f) (k, n ∈ Z≥0), (17)

where the ωm are modular forms in M2m(Γ1) depending only on m, the first few being given by

m 0 1 2 3 4 5 6 7 8

ωm 1 0 −E4

72 − E6

144 − E2
4

288 − 5E4E6

2592 − 9E3
4+16E2

6

20736 − 35E2
4E6

41472 − 117E4
4+128E4E

2
6

373248

.

Here and from now on, (x)m denotes the “shifted factorial” x(x+ 1) · · · (x+m− 1).

The proof of Theorem 1, and a description of the forms ωm, will be given in Section 9.

6. Structure theorems

We now come to our central subject, the description of all MLDEs for a given lattice Γ. We
denote by MLDOk,k+K(Γ) the space of all modular linear differential operators of type (k, k +K)

on Γ and by MLDO
(≤n)
k,k+K(Γ) (n ≥ 0) the subspace of operators of order ≤ n, often omitting Γ from

the notations when it is equal to Γ1. We write the expansion of an element L ∈ MLDO
(≤n)
k,k+K(Γ)

in the form

L =

n∑
r=0

ar(τ)Dr (18)
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where a0, . . . , an are holomorphic functions in the upper half-plane. (At first sight it might seem
more natural to write an operator L of order n as a0D

n+ · · ·+an rather than a0 + · · ·+anD
n, but

this numbering of the coefficients would not respect the filtration of MLDOk,k+K or the addition
of operators of different orders, and would also make our later formulas much more complicated.)
It is easy to see—and can be seen clearly in the examples (7), (8) (10) or (11) given in the last two
sectlions—that each ar must be a quasimodular form of weight K − 2r and depth ≤ n− r (where
the depth of a quasimodular form will be discussed in Section 8 for general lattices, but for Γ1 is
just the degree of the form as a polynomial in E2). In particular, since the weight of a holomorphic
quasimodular form cannot be negative, we see that the order of any L ∈ MLDOk,k+K(Γ) is at
most K/2 and that we have an injective map

MLDO
(≤n)
k,k+K(Γ) ↪→

n⊕
r=0

M̃
(≤n−r)
K−2r (Γ)

a0 + a1D + · · ·+ anD
n 7→ (a0, a1, . . . , an) ,

(19)

where M̃
(≤p)
k (Γ) denotes the space of quasimodular forms of weight k and depth ≤ p on the group Γ.

In particular we have the dimension estimate

dim
(
MLDO

(≤n)
k,k+K(Γ)

)
≤

n∑
r=0

dim
(
M̃

(≤n−r)
K−2r (Γ)

)
≤

n∑
r=0

dim
(
M̃K−2r(Γ)

)
(20)

(independent of k), but of course the actual dimension is much smaller, because the differential
operator L defined by (18) with arbitrary quasimodular forms ar(τ) of weight K − 2r and depth
≤ n − r as coefficients would in general be only a quasimodular linear differential operator of

weight K, and in particular would send Mk(Γ) for any k to M̃k+K(Γ), but not in general to
Mk+K(Γ). There are therefore two natural questions:

Question 1. What conditions must quasimodular forms ar ∈ M̃k−2r(Γ) (0 ≤ r ≤ n) satisfy in
order that the differential operator defined by (18) is modular?

Question 2. What is the exact dimension of MLDO
(≤n)
k,k+K(Γ) ?

The first question will be answered in two ways in Section 7. The second is easier and will be
answered here, although for the moment only for Γ = Γ1.

Theorem 2. An MLDO of weight K on the full modular group has order at most K/2 and is a
linear combination of Rankin-Cohen brackets with modular forms of positive weight, together with
the (K/2)-nd Kaneko-Koike operator if the order is equal to K/2.

Corollary. The dimension of MLDO
(≤n)
k,k+K = MLDO

(≤n)
k,k+K(Γ1) is given for any k, K and n by

dim
(
MLDO

(≤n)
k,k+K

)
=

n∑
r=0

dim
(
MK−2r

)
. (21)

Proof. We have already seen the first statement of the theorem, that the order of any L in
MLDOk,k+K is at most K/2. If it is exactly K/2, then the top coefficient an(τ) in (18) is a
(holomorphic) quasimodular form of weight 0 and hence constant. Since the nth Kaneko-Koike
operator (13) begins with Dn, we can simply subtract a0 Θn

k from L to reduce it to an operator of
lower order. Now if the order is n < K/2, then the top coefficient an(τ) in (18) is a quasimodular
form of weight K − 2n and depth 0, and hence actually a modular form. Then, since the Rankin-
Cohen bracket (12) of a modular form f of weight k and a modular form g of weight ` > 0 has an
expansion beginning with a non-zero multiple of f (n)g, we see that by subtracting from L a suitable

non-zero multiple of
[
· , an

](k,K−2n)

n
we can again reduce its order by at least one. Continuing by

induction, we obtain the theorem. The corollary is then immediate since dimM0 = 1 and since
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the (K/2)th Kaneko-Koike operator and the r th Rankin-Cohen brackets with modular forms of
strictly positive weight K − 2r are easily seen to be linearly independent. �

Theorem 2 gives us canonical isomorphisms

MLDOk,k+K
∼=
⊕
r≥0

MK−2r , MLDO
(≤n)
k,k+K

∼=
n⊕
r=0

MK−2r , (22)

defined (from right to left) by mapping 1 ∈M0 to the Kaneko-Koike operator (13) (or to any chosen
multiple of it) and g ∈ MK−2r with K − 2r > 0 to the r th Rankin-Cohen bracket [ · , g]k,K−2r

r

(or again to any chosen multiple of it, where the multiples in each case can be arbitrary non-zero
numbers depending only on k, K and r). But three further descriptions can be obtained by noticing
that any MLDO, as well as the expansion (18) in terms of ordinary higher derivatives, has three
further expansions

L =

n∑
r=0

br(τ) drk =

n∑
r=0

cr(τ) Θr
k =

n∑
r=0

dr(τ) d
[r]
k (23)

in terms of the three different types of higher-order Serre derivatives introduced in Section 5, and
unlike the situation for the original expansion (18) the condition on the coefficients here is trivial:

since each of drk, Θr
k, and d

[r]
k preserves modularity and increases the weight by 2r, we simply need

that each of the three coefficients br, cr and dr belongs to MK−2r for each r. This gives

Theorem 3. We have three isomorphisms (22) given by mapping an operator L ∈ MLDO
(≤n)
k,k+K

with the three expansions (23) to one of the vectors (b0, . . . , bn), (c0, . . . , cn), or (d0, . . . , dn).

Thus, although the final statement of the isomorphism of MLDOk,k+K or MLDO
(≤n)
k,k+K to a

known space is the same in Theorem 3 as in Theorem 2, the actual isomorphisms are completely
different: whereas in Theorem 2 we mapped a modular form g ∈MK−2r to (a multiple of) [ · , g]r
or Θr

k( · ) (depending whether 2r < K or 2r = K), which is a linear combination of derivatives of g
times powers of D, we now map the same g to an operator that again begins with gDr but is now
simply a multiple of g, no longer containing any of its higher derivatives.

We can summarize the whole discussion of this section formally in terms of the filtration and
its splittings. For any lattice Γ ⊂ SL2(R) and any integer n ≥ 0 we have a canonical map σ

from MLDO
(≤n)
k,k+K(Γ) to MK−2n(Γ) assigning to an operator L with the D-expansion (18) its top

coefficient an, which we call the symbol of L. For Γ = Γ1 this gives a short exact sequence

0 −→ MLDO
(≤n−1)
k,k+K −→ MLDO

(≤n)
k,k+K

σ−→ MK−2n −→ 0 , (24)

where the exactness at all places except the last (i.e., the surjectivity of σ) is clear and the last
follows there from any of the four splittings of σ that we have given (mapping g ∈ MK−2n to the
nth Rankin-Cohen bracket with g if K − 2n > 0 and to the nth Kaneko-Koike operator if g = 1,
or else multiplying it with any of the three Serre derivatives of order n defined in Section 5), cor-
responding to the four isomorphisms between MLDOs and vectors of modular forms described in
Theorems 2 and 3. The space MLDOk,k+K is filtered by the order and the exact sequence (24) gives

a canonical identification of the graded vector space
⊕

n≥0 MLDO
(≤n)
k,k+K(Γ)/MLDO

(≤n−1)
k,k+K (Γ) asso-

ciated to this filtration with
⊕

n≥0MK−2n, with each of the four splittings giving an isomorphism
of MLDOk,k+K with the same space. Since all four isomorphisms induce the same isomorphism of
graded as opposed to filtered vector spaces (because the exact sequence (24), unlike its splittings,
is canonical), the passage from any one to any other can be described in terms of block unipotent
matrices (blocks of size dimMK−2r, with zeros below the diagonal and identity matrices on the
diagonal), but not all of these can be made explicit. In fact, the only passage between the different
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isomorphisms that we know how to describe in closed form is that between the isomorphism in-

duced by the Kaneko-Koike operators Θr
k and the canonical higher Serre derivatives d

[r]
k , because

of Theorem 1.

We end this section by giving examples of all four isomorphisms we have described for some of
the explicit examples of MLDOs introduced in Section 4. For the Kaneko-Zagier operator L2,k this
is almost trivial: it was already given as a combination of Dr and of dr in equations (7) and (6); its
expression as a linear combination of Θ2

k and a Rankin-Cohen bracket or as a linear combination
with modular coefficients of Θr

k is simply Θ2
k itself, and in terms of the higher Serre derivatives it

equals d
[2]
k −

k(k+1)
144 E4. For the third-order MLDO Lθ3,k of type (k, k + 6) defined by the left-hand

side of (8), the expression corresponding to Theorem 2 is

Lθ3,kf = Θ3
k(f) − k

32

[
f,E4

](k,4)

1

and those corresponding to Theorem 3 are

Lθ3,kf = d3
k(f) − 3k2 − 6k + 8

144
E4dk(f) − k2(k − 6)

864
E6 f

= Θ3
k(f) +

k

8
E4 Θ1

k(f) +
k2

96
E6 f

= d
[3]
k (f) − (k − 1)(k − 2)

48
E4 dk(f) − k(k2 − 6k + 2)

864
E6 f ,

(25)

while for the third-order MLDO of type (0,6) defined by L3 = D3 − 1
2E2D

2 + (1
2E
′
2 − 169

100E4)D
(i.e., the left-hand side of equation (10) without the final term, which is modular anyway) the
corresponding expressions, which are easier here because k is 0 rather than a variable, are

L3(f) = Θ3
0(f) +

169

400

[
f,E4

](k,4)

1

= d3
0(f) − 1571

900
E4 d0(f) = Θ3

0(f) − 169

100
E4 Θ1

0(f) = d
[3]
0 (f) − 1039

600
E4 d0(f) .

(26)

Similarly, writing L5 for the operator in (11) without its last term, we find the four representations

L5(f) = Θ5
0(f) − 83

1980

[
f,E4

](0,4)

3
− 61

9801

[
f,E6

](0,6)

2
− 101

431244

[
f,E8

](0,8)

1

= d5
0(f) − 53

396
E4 d

3
0(f) +

295

8712
E6 d

2
0(f) − 6151

1724976
E8 d0(f)

= Θ5
0(f) +

83

99
E4 Θ3

0(f) +
1885

6534
E6 Θ2

0(f) +
7181

143748
E8 Θ0(f)

= d
[5]
0 (f) +

1

198
E4 d

[3]
0 (f) +

35

3267
E6 d

[2]
0 (f) − 2689

1149984
E8 d0(f) .

(27)

7. The expansion coefficients of modular linear differential operators

We now turn to the first question posed in the last section, namely, the determination of the
conditions that must be satisfied by the coefficients ar in (18) in order that the differential operator
defined there is modular.

Of course, from one point of view the answer to this question is almost tautological: we define a
different series of coefficients bs by requiring the first expansion in (23) to hold; these are computable
combinations of the a’s and their derivatives and hence are automatically quasimodular of the
correct weights, and L is an MLDO if and only if they are actually modular. For small orders n
we can carry this process out by hand, but for general n we cannot, because the expansion of dsk
as a polynomial in D with quasimodular coefficients is not known in closed form. We can, in fact,
do this if we use the third expansion in (23) together with equation (16) and its easy inversion, in
which case we find the following result, whose proof will be given in Section 9 when we prove (16):
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Theorem 4. The operator L defined by (18) is modular of type (k, k + K) if and only if the
function

dr(τ) :=
∑
j≥0

(
r + j

j

)
(k + r + j)j

(E2(τ)

12

)j
ar+j(τ) (28)

is a modular form for r = 0, . . . , n, in which case L is given by the final expression in (23).

It is nevertheless interesting to give a direct description of the conditions that the original
coefficients ar must fulfill in order for L to be modular. We will do this first in terms of the
modular transformation properties that they must satisfy and then give a second characterization
by constructing certain explicit linear combinations of the ar and their derivatives whose modularity
is a necessary and sufficient condition for that of the operator L.

To study the transformation properties of the ar, we will need the following lemma.

Lemma 1. For any holomorphic function f , γ =
(
a b
c d

)
∈ SL2(R), k ∈ Z and m ≥ 0 we have

Dm
((
f
∣∣
k
γ
)
(τ)
)

=

m∑
r=0

(
m

r

)
(k + r)m−r

(
− 1

2πi

c

cτ + d

)m−r (
(Drf)

∣∣
k+2r

γ
)
(τ) . (29)

Proof. This follows by induction on m, using D(γτ) = 1
2πi

1
(cτ+d)2 and the elementary identity

(k +m+ r)
(
m
r

)
(k + r)m−r +

(
m
r−1

)
(k + r − 1)m−r+1 =

(
m+1
r

)
(k + r)m+1−r. �

For completeness and for later use, we also give the counterpart to this lemma in the other direction
(first differentiate, then apply a modular transformation rather than vice versa), namely

(
(Dmf)|k+2mγ

)
(τ) =

m∑
r=0

(
m

r

)
(k + r)m−r

( 1

2πi

c

cτ + d

)m−r (
Dr(f |kγ)

)
(τ) . (30)

The proof of this formula (which is also stated in [31], top of page 54, in the special case when
f ∈Mk(Γ)) is similar to that of (29) and will be omitted here (but indicated briefly in Section 9).

Using the lemma we can easily determine the modular transformation property of the vector
of coefficients ar(τ) in (18) needed to make the operator L modular.

Theorem 5. Let ar(τ) (0 ≤ r ≤ n) be holomorphic functions in the upper half-plane. Then the
differential operator L defined by (18) is an MLDO of type (k, k+K) with respect to a lattice Γ if
and only if the ar(τ) transform by

(
ar
∣∣
K−2r

γ
)
(τ) =

n−r∑
j=0

(
r + j

j

)
(k + r)j

(
− 1

2πi

c

cτ + d

)j
ar+j(τ) (31)

for all 0 ≤ r ≤ n, all τ ∈ H, and all γ =
(
a b
c d

)
∈ Γ.

Proof. Multiplying both sides of (29) by am(τ) and summing over m, we find

L
(
f
∣∣
k
γ)(τ) =

∑
0≤r≤m≤n

am(τ)

(
m

r

)
(k + r)m−r

(
− 1

2πi

c

cτ + d

)m−r (
(Drf)

∣∣
k+2r

γ
)
(τ) .

On the other hand, from the definition of the slash operation it follows that(
L(f)|k+Kγ

)
(τ) =

n∑
r=0

(
ar
∣∣
K−2r

γ
)
(τ)
(
Dr(f)

∣∣
k+2r

γ
)
(τ) .

Comparing the coefficients of Dr(f)|k+2rγ, we see that (5) is equivalent to (31). �
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Theorem 5 gives a complete answer to the first question posed in the previous section, since
it gives a necessary and sufficient criterion for the coefficients in (18) to make L modular, but it
is not a very easy one to check in practice. We would prefer to replace this description by one
in terms of actual modular forms, in which case no further transformation properties are needed.
To do this, we look at the first few cases of the transformation equation (31). If r = n, the top
coefficient, it says

(an
∣∣
K−2n

γ)(τ) = an(τ) (32)

for all γ ∈ Γ, i.e., that an is a modular form of weight K − 2n, which of course we knew already.
For the next case r = n− 1 it says

(an−1

∣∣
K−2n+2

γ)(τ) = an−1(τ) − n(k + n− 1)
1

2πi

c

cτ + d
an(τ) . (33)

But differentiating (32) with respect to τ gives

(a′n
∣∣
K−2n+2

γ)(τ) = a′n(τ) + (K − 2n)
1

2πi

c

cτ + d
an(τ) , (34)

and taking a suitable linear combination of this and (33) we find that the linear combination

hn−1(τ) := an−1(τ) +
n(k + n− 1)

K − 2n
a′n(τ) (35)

transforms like a modular form of weight K − 2n+ 2. Similarly, for the next case we find that

hn−2(τ) := an−2(τ) +
(n− 1)(k + n− 2)

K − 2n+ 2
a′n−1(τ) +

n(n− 1)(k + n− 2)(k + n− 1)

2(K − 2n+ 1)(K − 2n+ 2)
a′′n(τ)

is modular of weight K− 2n+ 4, and looking also at the next case we easily guess that the general
statement should be that the function

hm(τ) :=
∑
s≥0

(
m+ s

s

)
(k +m)s

(K − 2m− s− 1)s
a

(s)
m+s(τ) (36)

(where the sum stops at s = n−m because the later am+s vanish) is modular of weight K−2m for
0 ≤ m ≤ n. Since we know that K ≥ 2n, we see that the denominators in each of these formulas
are non-zero except in the case of (35) when K = 2n, in which case an is a constant and the second
term becomes 0/0. We will return to this point in a moment, but for now will simply assume that
the order of our differential operator is strictly less than K/2.

Theorem 6. Let ar(τ) (0 ≤ r ≤ n) be holomorphic functions in the upper half-plane. Then the
differential operator L defined by (18), where n < K/2, is an MLDO of type (k, k+K) with respect
to a lattice Γ if and only if the function hm defined by (36) belongs to MK−2m(Γ) for all 0 ≤ m ≤ n.
If this is the case, then the expansion of L as a linear combination of Rankin-Cohen brackets is
given by

L(f) =

n∑
m=0

(
K −m− 1

m

)−1 [
hm, f

](K−2m,k)

m
. (37)

Proof. If L is modular, then by induction on s, starting with Theorem 5 for s = 0, we find

a(s)
r

∣∣
K−2r+2s

γ =
∑
j≥0

0≤t≤s

(
r + j

j

)(
s

t

)
(k + r)j (j −K + 2r − s+ 1)t U

j+t a
(s−t)
r+j (τ)

for all s ≥ 0, where we have set U = Uγ(τ) = − 1
2πi

c
cτ+d and omitted the variable τ for simplicity.

Inserting this into (36) gives

hm
∣∣
K−2m

γ =
∑
`,p≥0

(m+ p+ `)!

m! p! `!

(k +m)p+` U
`

(K − 2m− p− 1)p
a

(p)
m+`+p

∑̀
t=0

(−1)t
(
`

t

)
(K − 2m− t− p− `)t
(K − 2m− t− p− 1)t
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and this equals hm because the interior sum vanishes for ` > 0, since it is the `th difference of
a polynomial of degree ` − 1. This proves the first assertion. For the second, we note that the
inversion of (36), expressing the a’s as linear combinations of the derivatives of the h’s, is given by

ar =
∑
j≥0

(−1)j
(
r + j

j

)
(k + r)j

(K − 2r − 2j)j
h

(j)
r+j , (38)

To see this, insert (36) into (38) and set X = K − 2r − 1 and r + j = m to find

RHS of (38) =
∑
m≥0

(r + 1)m (k + r)m
(X − 2m)m+1

a
(m)
r+m

m∑
j=0

(X − 2j)

(
X

j

)(
2m−X
m− j

)
,

which equals ar because the inner sum is equal to X
[(

2m
m

)
− 2
(

2m−1
m−1

)]
= 0 for m ≥ 1. Now insert

equation (38) into (18) and use the definition of the Rankin-Cohen brackets to obtain (37). �

We now consider the case K = 2n omitted so far, assuming that Γ = Γ1. (General lattices
will be treated in Section 12.) In that case the function an is a non-zero constant, which we
can assume without loss of generality to be 1, so that L = Dn+(lower order terms) is monic.
Recall that the problem here only concerned the function hn−1, which cannot be defined by (35).

But (33) with a0 = 1 now reduces to (an−1

∣∣
2
γ)(τ) = an−1(τ)− n(k+n−1)

2πi
c

cτ+d , and comparing this
with the transformation law of the weight 2 quasimodular form E2, which will be recalled in the

next section, we see that an−1 − n(k+n−1)
12 E2 is a modular form of weight 2 on Γ1 and hence is

equal to 0. A computation similar to that of Theorem 6, though slightly more complicated, then
gives the following theorem, which together with Theorem 6 gives the desired explicit version of
Theorem 2. We omit the somewhat messy direct combinatorial proof of this theorem since we will
find smoother approaches in Section 8 using quasimodular forms and in Section 9 using extended
Rankin-Cohen brackets.

Theorem 7. Let L be a monic MLDO of order n and type (k, k + 2n) on the full modular group.
Then the function hm defined by (36) is modular of weight 2n− 2m for 0 ≤ m ≤ n− 2 and

L(f) = Θn
k (f) +

n−2∑
m=0

(
2n−m− 1

m

)−1 [
hm, f

](K−2m,k)

m
. (39)

8. Quasimodular forms and modular linear differential operators

In Section 6 we gave four different descriptions of MLDOs in terms of modular forms, using
Rankin-Cohen brackets and higher-order Serre derivatives, the final result in each case being an
isomorphism of filtered vector spaces as in (22). However, there is another space, much more
familiar than the space of MLDOs, that is also canonically isomorphic (this time in two rather
than four different canonical ways) to the same direct sum of spaces of modular forms, namely the
space of all quasimodular forms of weight K and depth ≤ n. In this section we show that there is
a direct and extremely simple correspondence between quasimodular forms and MLDOs for any
lattice, and that combining this correspondence with the two isomorphisms between quasimodular
forms and vectors of ordinary modular forms gives two of the four descriptions of MLDOs given
in Section 6 for Γ = Γ1. We will postpone to Section 12 the discussion of the extent to which
these latter results hold for other lattices (roughly speaking, in the cocompact case there is only
one natural description of quasimodular forms in terms of modular forms and only one of the
four isomorphisms in question generalizes, but in the non-cocompact case they all go through
if one modifies the definitions appropriately), but we will give the definition and properties of
quasimodular forms for arbitrary Γ already here.

The key structure on quasimodular forms is that they form a module over the Lie algebra sl2.
More explicitly, for any lattice Γ there are three natural derivations D, W , and δ on the space
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M̃∗(Γ) of quasimodular forms on Γ that satisfy the commutation relations

[W,D] = 2D, [W, δ] = −2δ, [δ,D] = W . (40)

Here D is the renormalized differentiation operator (2πi)−1d/dτ as above and W is the weight

operator multiplying an element of M̃k(Γ) by k (so that the first two commutation relations in (40)
just say that D and δ increase and decrease the weight by 2, respectively). The definition of the
operator δ is more complicated. For the case of the full modular group it is simply 12 ∂/∂E2 if we

identify M̃∗(Γ1) with C[E2, E4, E6], the commutation relations (40) then being direct consequences
of the Ramanujan formulas (3). To define it for general lattices, we must first review the definition
and basic properties of quasimodular forms. We refer to §5.3 of [31] (where W is denoted E) for
more details and for all proofs omitted here, none of which are difficult.

In fact there are two different definitions of quasimodular forms. The one used in [15], where
the term was first introduced, was in terms of almost holomorphic modular forms and will be
reviewed in the last section of this paper. The other, which was suggested subsequently by Werner
Nahm, is more direct and more algebraic and will be discussed here.

The starting point for this definition is the observation that if we differentiate the transformation
law f

(
aτ+b
cτ+d

)
= (cτ + d)kf(τ) of a modular form of weight k on some group Γ ⊂ SL2(R), we find

after multiplying through by (cτ + d)2 that

f ′
(aτ + b

cτ + d

)
= (cτ + d)k+2f ′(τ) +

k

2πi
c(cτ + d)k+1f(τ) for

( a b
c d

)
∈ Γ (41)

(recall that Df = (2πi)−1 df/dτ), which describes precisely the extent to which f ′ fails to be a
modular form of weight k + 2 on Γ. (We already used this identity in the previous section when
passing from equation (32) to equation (34).) Similarly, the weight 2 Eisenstein series defined
in (2) (with C2 = − 1

24 ), which is quasimodular of weight 2 and depth 1, satisfies (cf. [29])

E2

(aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6

πi
c(cτ + d) for

( a b
c d

)
∈ SL2(Z) . (42)

We can rewrite (41) and (42) using the slash operator (1) as
(
f ′
∣∣
k+2

γ
)
(τ) = f ′(τ)+ kf(τ)

2πi
c

cτ+d and

(E2

∣∣
2
γ)(τ) = E2(τ) + 6

πi
c

cτ+d , respectively. These two examples motivate the following general

definition: A quasimodular form of weight K on a lattice Γ ⊂ SL2(R) is a holomorphic function
F : H → C of moderate growth such that the map γ 7→ (F |Kγ)(τ) from Γ to C is a polynomial
in c

cτ+d (where γ =
(
a b
c d

)
) for any fixed value of τ ∈ H. If n is the maximum degree of these

polynomials for all τ ∈ H, we say that F is of depth n. Thus a quasimodular form of weight K and
depth n has the transformation behavior(

F |Kγ
)
(τ) =

n∑
r=0

Fr(τ)
( 1

2πi

c

cτ + d

)r
(43)

for all γ =
(
a b
c d

)
∈ Γ, where F0, . . . , Fn are holomorphic functions (of moderate growth, as usual)

in the upper half-plane that are independent of γ. Taking γ to be the identity, we see that F0 = F ,
and we can now define δ by setting δ(F ) = F1. It is then not very difficult to prove that Fr = δrF/r!
for all r ≥ 0 , so that (43) takes the form of a “modified Taylor expansion”(

F |Kγ
)
(τ) =

∞∑
r=0

δrF (τ)

r!

( 1

2πi

c

cτ + d

)r
. (44)

Note that the infinite series always terminates, because δrF has weight K− 2r and hence vanishes
for 2r > K. The depth of F is by definition the largest value of r for which δrF is non-zero.

We can now combine these ideas with the results in the previous section to obtain a description
of all MLDOs on an arbitrary lattice in terms of quasimodular forms. Specifically, by compar-
ing (44) with equation (31) (Theorem 5), we find immediately that each coefficient ar (0 ≤ r ≤ n)
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of L in (18) is quasimodular of weight K − 2r and depth n− r, as mentioned earlier, and that the
action of powers of δ on this coefficient is given by

δjar = (−1)j (r + 1)j (k + r)j ar+j (45)

for all j ≥ 0. These equations are actually overdetermined, since already the case j = 1 tells us that
δar−1 = −r(k+ r− 1)ar and hence by induction on r that each ar has the form (−1)rδra0/r!(k)r,
which is what we would get directly from (45) with r = 0 and which in turn implies (45) for all r
and j. This establishes the following bijection between MLDOs and quasimodular forms:

Theorem 8. Let F be a quasimodular form of weight K and depth n on an arbitrary lattice Γ.
Then for every positive integer k the operator

LF,k :=

n∑
r=0

(−1)r

r! (k)r
δr(F )Dr (46)

is a modular linear differential operator of order n and type (k, k +K). For fixed k > 0, the map
F 7→ LF,k gives an isomorphism

M̃∗(Γ)
∼−→ MLDOk,k+∗(Γ) (47)

of filtered graded M∗(Γ)-modules, where M̃∗(Γ) is filtered by depth and MLDOk,k+∗(Γ) by order,
with the inverse isomorphism mapping the differential operator (18) to its “constant term” a0(τ).

As a simple example of the first statement of the theorem, if we take for F the quasimodular
form (− 1

12E2)n of weight 2n and depth n, then LF,k(f) equals d[n](f)/(k)n with d[n](f) as in
equation (16). We should also remark that the weaker statement that LF,k(f) is a modular form

of weight k + K for any F ∈ M̃K(Γ) and f ∈ Mk(Γ) can be seen without the rather complicated
calculations of Section 7 simply from the sl2-commutation relations (40), since if f is a modular
form of weight k then it satisfies W (f) = kf and δ(f) = 0 and then by a standard and easy
induction also δ(Drf) = r(k+r−1)Dr−1f (cf. equation (77) below) and therefore δ(LF,k(f)) = 0.
The last statement of the theorem, which asserts that LFh,k = hLf,k for any modular form h, is
true because δr(Fh) = δr(F )h since δ is a derivation and annihilates h.

Theorem 8 makes sense and remains true if k is negative and non-integral, but if k is 0 or a
negative integer then the right-hand side becomes meaningless. We will see one way to remedy
this in the case k = 0 in Section 10 by identifying LF,k(f) for f ∈ Mk with the value {f, F} of a
pairing between modular and non-modular forms that makes sense also when k = 0 and f = 1.
However, to understand MLDOs we do not merely want their action on modular forms, but on
arbitrary differentiable functions, and here this is quite easy to do just by rescaling. For instance,

if we multiply (46) by k and set k = 0, we get the operator
∑
r≥1

(−1)r

r!(r−1)!δ
r(F )Dr, which is indeed

an MLDO of type (0,K) (equal, for example, to D if F = −E2/12, K = 2). More generally, if we
divide (46) by (k − 1)!, then this does not change any of the statements of the theorem as long as

k is a strictly positive integer, but gives a new operator
∑ (−1)r

r!(k+r−1)! δ
r(F )Dr that is well-defined

also for k ∈ Z≥0 if we interpret the terms having the factorial of a strictly negative integer in their
denominator as 0. Then for Γ non-cocompact all of the statements of the theorem except for the
statement about the inverse isomorphism remain true (for instance, for Γ = Γ1, k = 0 and K = 2

the spaces MLDO0,2(Γ) = C · D and M̃2(Γ) = C · E2 are isomorphic, but we cannot see this by
taking the “constant term”), whereas for co-compact lattices (which will be treated in Section 12)
the map (46) still exists but is no longer always an isomorphism.

Theorem 8 gives a more conceptual explanation of the expansions discussed in Section 7. To
see the relation to the various structure theorems in Section 6, we need first to know the structure

of M̃∗(Γ). For the moment we do this only for Γ = Γ1; the results for general lattices, which
differ in several respects, will be discussed in Section 12. In this case there are two quite different
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descriptions of quasimodular forms in terms of modular forms, as already mentioned at the be-
ginning of the section. One of them, which is an obvious consequence of the expressions for the

rings M∗ = M∗(Γ1) and M̃∗ = M̃∗(Γ1) as C[E4, E6] and C[E2, E4, E6], respectively, is that every
quasimodular form on the full modular group can be written uniquely as a polynomial in E2 with
modular coefficients. This gives a canonical isomorphism

n⊕
r=0

MK−2r ' M̃
(≤n)
K , (g0, . . . , gn) ←→ F =

n∑
j=0

gj E
j
2 . (48)

The second description, which is equally easy to establish (see Proposition 3 for a proof in a slightly
more general situation), is that every quasimodular form of positive weight can be expressed
uniquely as a linear combination of derivatives of modular forms and of E2. This means that if we
define spaces M+

k = M+
k (Γ1) by M+

0 = {0}, M+
2 = CE2, and M+

k = Mk for k > 2, then for every
K > 0 we have a second canonical isomorphism

n⊕
r=0

M+
K−2r ' M̃

(≤n)
K , (h0, . . . , hn) ←→ F =

n∑
j=0

Dj(hj) (49)

between M̃
(≤n)
K and a space of of the same dimension as before, but in which the 1-dimensional

space C·1 has been replaced by the 1-dimensional space C·E2. (We will see a natural interpretation
of this in Section 10 when we interpret the quasimodular form E2/12 as a modified derivative of
the modular form 1.)

If we now combine the two isomorphisms (48) and (49) with the isomorphism given in Theorem 8
between quasimodular forms and MLDOs, we get two of the four descriptions of MLDOs given in
Theorems 2 and 3 of Section 6: if F has the form given in (48), then the associated MLDO LF,k is
given by the third isomorphism in (23) with dr = 12rgr/(k)r, while if F has the form given in (49),

then LF,k(f) is a linear combination of the Rankin-Cohen brackets [hj , f ]
(K−2j,k)
j for j < (K−2)/2

and Θj
k(f) for j = (K − 2)/2, with easily determined coefficients. (See Section 10.)

9. Cohen-Kuznetsov series, Rankin-Cohen brackets, and higher Serre derivatives

The best way to understand the relation between the derivatives and the modular transfor-
mation properties of functions in the upper half-plane is through the generating function of their
derivatives. The right generating series to use, as was discovered independently by Henri Cohen [6]
and Nikolai Kuznetsov [19] in 1975, is defined by the formula

Φf,k(τ,X) =

∞∑
n=0

Dn(f)

n! (k)n
Xn (50)

for any holomorphic function f in H and k ∈ Z and satisfies the transformation property

Φf,k

(aτ + b

cτ + d
,

X

(cτ + d)2

)
= (cτ + d)k exp

( c

cτ + d

X

2πi

)
Φf |kγ,k(τ,X) (51)

for any γ =
(
a b
c d

)
∈ SL2(R). This is an easy consequence of the transformation formula (29)

(Lemma 1) and is in turn equivalent to the inverse transformation formula (30). If f ∈Mk(Γ) for
some lattice Γ ⊂ SL2(R), then (51) says that the function Φf,k(τ,X) is invariant up to a simple

automorphy factor under the action (τ,X) 7→
(
aτ+b
cτ+d ,

X
(cτ+d)2

)
of Γ. In this case we usually omit

the weight, writing simply Φf (τ,X) for Φf,k(τ,X).

The Cohen-Kuznetsov series are related to the Rankin-Cohen brackets defined in (12) by

∞∑
n=0

[f, g](k,`)
n

(τ)

(k)n (`)n
Xn = Φf,k(τ,−X) Φg,`(τ,X) , (52)



MODULAR LINEAR DIFFERENTIAL OPERATORS 17

so that the transformation property (51) immediately implies1 the transformation property[
f |kγ, g|`γ

](k, `)
n

=
[
f, g
](k, `)
n

∣∣
k+`+2n

γ (γ ∈ SL2(R))

of Rankin-Cohen brackets and hence that [Mk(Γ),M`(Γ)]
(k,`)
n ⊆ Mk+`+2n(Γ). But they are also

the key to understanding the higher Serre derivatives d
[n]
k (f) and Θn

k (f) introduced in Section 5.

For this purpose, we introduce the three modified Cohen-Kuznetsov series

Φ
(D̂)
f,k (τ,X) =

∞∑
n=0

D̂n(f)

n! (k)n
Xn, Φ

(d)
f,k(τ,X) =

∞∑
n=0

d
[n]
k (f)

n! (k)n
Xn, Φ

(Θ)
f,k (τ,X) =

∞∑
n=0

Θn
k (f)

n! (k)n
Xn

obtained by replacing Dn(f) in (50) by D̂
[n]
k (f), dnk (f) or Θn

k (f), respectively, where again the in-

dex k will usually be omitted if f is modular of weight k. Here D̂k is the non-holomorphic derivative

D̂kf(τ) = Df(τ)− k
4πyf(τ) (y := =(τ)) and D̂n

k denotes the composition D̂k+2n−2 · · · D̂k+2D̂k. It

is well known, and easily checked, that D̂k(f |kγ) = D̂k(f)|k+2(f), so that D̂n
k preserves modularity

(but not holomorphy). The first two of these modified series were studied in [31], where it was

shown (pp. 54–55) that they are related to the original Cohen-Kuznetsov series Φf,k = Φ
(D)
f,k by

Φ
(D)
f (τ,X) = eX/4πy Φ

(D̂)
f (τ,X) = eXE2(τ)/12 Φ

(d)
f (τ,X) , (53)

where E2 is the non-modular Eisenstein series of weight 2 defined in Section 2. (We should mention
here that our notations differ in several respects from those of [31]: the derivations denoted here

by W , d = dk and D̂ are denoted there by E, ϑ = ϑk and ∂ = ∂k, or inadvertently on p. 60 by

ϑ = ϑk, the Cohen-Kuznetsov series denoted here by Φf , Φ
(D̂)
f and Φ

(d)
f are denoted in [31] by f̃D,

f̃∂ and f̃d, and the argument τ ∈ H is denoted there by z.) The second two of these relations give

Φ(d)(τ,X) = e−XÊ2(τ)/12 Φ(D̂)(τ,X) , (54)

where Ê2(τ) denotes the non-holomorphic “completion” E2(τ)− 3
πy of E2(τ), which transforms like

a modular form of weight 2 because of the transformation equation (42), so that the fact that d
[n]
k

maps modular forms of weight k on Γ1 to modular forms of weight k + 2n is a direct consequence

of the fact that D̂n
k preserves modularity. The equality between the first and third terms of (53),

on the other hand, immediately gives equation (16), the first part of Theorem 1.

For the proof of the second part of Theorem 1 concerning the Kaneko-Koike derivatives, we
introduce a Cohen-Kuznetsov series Φ1 = Φ1,0 for the constant function 1 ∈M0(Γ1). The original
definition does not make any sense in this case, because all but the first terms of (50) have vanishing
numerator and denominator. The correct definition is given by the following proposition, which
was also found by Dai ([9], eq. (6.7)).

Proposition 1. The Cohen-Kuznetsov series Φ1 = Φ1,0 defined by

Φ1,0(τ,X) = 1 +
X

12
ΦE2,2(τ,X) = 1 +

1

12

∞∑
n=1

Dn−1E2(τ)

n! (n− 1)!
Xn (55)

transforms under the action of
(
a b
c d

)
∈ Γ1 by

Φ1

(aτ + b

cτ + d
,

X

(cτ + d)2

)
= exp

( c

cτ + d

X

2πi

)
Φ1(τ,X) . (56)

1at least if k and ` are positive. If we allow the modular forms f and g to be meromorphic, then their weights

can be negative; in this case Lemma 1 still implies that [f, g]
(k,`)
n is modular of weight k + ` + 2n, but this cannot

be proved using (52) since the definition of Φf,k does not make sense when k is a non-positive integer.



18 KIYOKAZU NAGATOMO, YUICHI SAKAI, AND DON ZAGIER

The modified Cohen-Kuznetsov series Φ
[d]
1 = Φ

[d]
1,0 defined by

Φ
[d]
1 (τ,X) = e−XE2(τ)/12 Φ1(τ,X) (57)

is invariant under (τ,X) 7→
(
aτ+b
cτ+d ,

X
(cτ+d)2

)
.

Proof. We can prove this by imitating any of the three proofs given in [31] (p. 54) for equation (51)
when the weight k is positive. One of them is the one we gave above using equation (30), and
we can apply this also in weight 0 by using equation (30) for f = E2 and k = 2 together with
the transformation formula (42) to deduce that ΦE2,2 has precisely the transformation properties
under Γ1 needed to imply equation (56) for Φ1,0. Another proof in [31] used the fact that Φf (τ,X)

for k > 0 is the unique solution of the differential equation
(
X ∂2

∂X2 +k ∂
∂X −D)Φf = 0 with constant

term f and that the function (cτ + d)−ke−cX/2πi(cτ+d)Φf
(
aτ+b
cτ+d ,

X
(cτ+d)2

)
has the same properties.

For f = 1 and k = 0 the first statement is no longer true, but all solutions of the differential

equation
(
X ∂2

∂X2 − D)Φf = 0 with constant term 1 have the form 1 +
∑
n≥1

Dn−1(F )
n!(n−1)!X

n−1 for

some function F , which is arbitrary, and therefore for any F there is a unique solution beginning
1 + FX + O(X2). This function therefore satisfies the transformation equation (56) if (and only
if) F satisfies F |2γ = F + 1

2πi
c

cτ+d , which is the case for F = 1
12E2 by virtue of (42) (and for no

other holomorphic function F of bounded growth at infinity because there are no non-zero modular
forms of weight 2 on Γ1). The second statement of the proposition follows immediately from the
first and the transformation property (42) of E2(τ). We observe that the definition (57) is just

the relation given in (53) between Φ
[d]
f and Φf for modular forms f of positive weight, but now

decreed to hold also for f = 1. �

By combining the definition (13) of the Kaneko-Koike operator with equations (52) and (55),
we can rewrite that definition in terms of generating series as

Φ
(Θ)
f,k (τ,X) = Φ

(D)
f,k (τ,X) Φ1,0(τ,−X) . (58)

Comparing this with equation (52), we see that the Kaneko-Koike derivatives Θn(f) can be inter-
preted in some sense simply as the Rankin-Cohen brackets of f with the constant function 1. (We
will make more precise sense of this statement in the next section.) In any case, equation (58)
together with the transformation property (56) of Φ1 immediately implies the fact that Θn

k is
an MLDO of type (k, k + 2n) and hence sends modular forms of weight k to modular forms of
weight k + 2n.

Equation (58) tells us that the fourth of our modified Cohen-Kuznetsov series Φ
(Θ)
f,k is related

to the other three by universal factors, not depending on the form f or its weight k, but no longer
purely exponential in X as was the case for the relationships among the other three series. We can
combine it with the previous statements (53) and (54) into a single diagram

Φ
(D̂)
f (τ,X)

Φ
(D)
f (τ,X) Φ

(d)
f (τ,X)

Φ
(Θ)
f (τ,X)

· e−XÊ2(τ)/12· eX/4πy

· e−XE2(τ)/12

· Φ(D)
1 (τ,−X) · Φ(d)

1 (τ,−X)

(59)
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showing the relationships between all four series. The last arrow of this diagram also proves
equation (17) of Theorem 1, with the modular forms ωm defined by the generating function

∞∑
m=0

ωm(τ)

m! 2 (−X)m = Φ
(d)
1 (τ,X) . (60)

The first terms of this series are then easily calculated to be the ones tabulated in Theorem 1.

10. Modified derivatives and extended Rankin-Cohen brackets

In this section we introduce a new and very convenient notion that will make many statements
of the theory simpler and more uniform, namely, modified higher derivatives D〈n〉(f) that are
simply a renormalization of the usual derivatives Dn(f) when f has positive weght but which are
non-trivial also for f = 1.

Specifically, if f is a modular form of positive weight we define

D〈n〉(f) = D
〈n〉
k (f) =

Dn(f)

(k)n
(f ∈Mk(Γ), k > 0) , (61)

where (k)n = k(k + 1) · · · (k + n − 1) as before. This renormalization seems unnecessary and
somewhat strange at first sight but turns out to be very natural. In particular, in terms of this
notation the Cohen-Kuznetsov series (50) can be written very simply as

Φf (τ,X) =

∞∑
n=0

D〈n〉(f)

n!
Xn (62)

or symbolically as

Φf (τ,X) = e〈XD〉f(τ) . (63)

The real point, however, is that we can now define higher derivatives of the constant function 1 in
a useful way. The definition (61) makes no sense in this case for n > 0 (for n = 0 it of course just
gives D〈0〉(1) = 1), because both the numerator and the denominator of the fraction vanish. But if
we recall that the Serre derivative dk(f) = D(f)− k

12E2f of a modular form of weight k is modular

of weight k + 2, and that the function dk(f)
k = D〈1〉(f) − E2

12 f is therefore also modular of this

weight, we see that D〈1〉(1) should be defined as the sum of 1
12E2 and a modular form of weight 2,

and hence must be taken to be 1
12E2. For the higher derivatives, there is then no problem, since

equation (61) in the positive weight case gives the inductive formulaD〈n+1〉f = D(D〈n〉(f))/(k+n),
which makes sense even for k = 0 as soon as n > 0. We therefore define D〈n〉(1) for all n ≥ 0 by

D〈n〉(1) = D
〈n〉
0 (1) =

{
1 if n = 0,

Dn−1(E2)
12 (n−1)! if n ≥ 1,

(64)

and discover that formula (62) for the Cohen-Kuznetsov series of a modular form of positive weight
is still valid for f = 1 and k = 0 if we use the definition of Φ1 given in Proposition 1. In fact, we
could have simply used equations (62) and (55) as the motivation of the definition (64). We can
also give D〈n〉(1) by the explicit formula

D〈n〉(1) =

n∑
m=0

(−1)m
(
n

m

)
ωm
m!

(E2

12

)n−m
(65)

with ωm as in Theorem 1. (The proof will be given later.)

So far this is purely formal and a matter of introducing new notations for objects that we
already knew. But in fact it immediately leads to many simplifications in the formulas that we
have studied so far, as well as in those given in the rest of this section and the two following ones.
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The first concerns the Rankin-Cohen bracket. If we rewrite the definition (12) in terms of the
modified derivatives (61) for f and g of positive weights k and `, we find that[

f, g
](k, `)
n

=
(k)n (`)n

n!

n∑
i=0

(−1)i
(
n

i

)
D〈i〉(f)D〈n−i〉(g) . (66)

This equation still holds if k or ` is zero, but is then not interesting since both sides vanish for n ≥ 1,
because the factor in front of the sum is then equal to 0. But the sum itself is in general non-
zero and therefore give an interesting modified Rankin-Cohen bracket even in the case of forms of
weight 0. We therefore define the nth extended Rankin-Cohen bracket 〈f, g〉n of any two modular
forms f and g and any n ≥ 0 by〈

f, g
〉
n

:=

n∑
i=0

(−1)i
(
n

i

)
D〈i〉(f)D〈n−i〉(g) . (67)

We then have

Theorem 9. If f and g are modular forms of weight k and `, respectively, then the extended
Rankin-Cohen bracket (67) is a modular form of weight k + ` + 2n for all n ≥ 0, and is given in
terms of the usual Rankin-Cohen bracket, the Kaneko-Koike derivative, and the modular forms ωm
defined in Theorem 1 by

〈
f, g

〉
n

=


n!

(k)n(`)n
[f, g]

(k,`)
n if k, ` > 0,

1
(`)n

Θn
` (g) if f = 1, ` > 0,

1
n!

∑n
m=0(−1)m

(
n
m

)2
ωm ωn−m if f = g = 1.

(68)

Proof. The statement about modularity follows immediately from the transformation properties of
Φf (τ,X) for modular forms of positive weight (equation (51)) or weight 0 (equation (56)) together
with equation (52), which in the new notation and in view of equation (62) takes on the simpler
form

Φf (τ,−X) Φg(τ,X) =

∞∑
n=0

〈f, g〉n
Xn

n!
. (69)

The proportionality of 〈f, g〉n with [f, g]n for k and ` positive follows from equation (66), which

says that [f, g]n = (k)n(`)n
n! 〈f, g〉n in this case. For g of positive weight ` and f = 1, equations (69)

and (58) immediately imply that 〈f, g〉n = 1
(`)n

Θn
` (g), so that the Kaneko-Koike derivatives can

be seen as a special case of the Rankin-Cohen bracket once the latter has been extended. Finally,
the explicit formula for 〈1, 1〉n follows immediately from (69) and (60). �

For completeness, we give a small table of values of 〈1, 1〉n for n even (the odd values vanish
because in that case the bracket is antisymmetric), with ∆ = (E3

4 − E2
6)/1728 as usual:

n 0 2 4 6 8 10 12

n! 〈1, 1〉n 1 − 1
36E4 0 36∆ 352

3 E4∆ 260E2
4∆ 480E3

4∆ + 1259136∆2
.

We emphasize that the point of the extended bracket is not to extend the definition of the
original Rankin-Cohen bracket from positive weight to weight 0, since (12) already makes perfectly
good sense for modular forms of arbitrary positive, zero, or negative integral weights (and for that
matter even half-integral or arbitrary rational weights) and always sends a pair of modular forms
of weights k and ` to a modular form of weight k + ` + 2n, simply because the transformation
laws (29) and (30) hold for any value of k. But if one is interested in studying holomorphic modular
forms only, then there are no non-zero forms of negative weights and the only forms of weight 0
are constants, and in the case when f or g is constant the original Rankin-Cohen bracket [f, g]n
vanishes, whereas the new bracket 〈f, g〉n does not. However, the real point of introducing 〈f, g〉n is
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not even this extension to weight 0 but rather that all formulas involving Rankin-Cohen brackets
become much simpler even in positive weight if we use the extended ones instead, as will see
repeatedly in the rest of this paper.

An immediate consequence of the above definition and theorem is that Theorem 2, which in its
original formulation involved an unaesthetic case distinction depending whether the order of the
MLDO in question was less than half its weight (in which case it was a combination of Rankin-
Cohen brackets) or equal to half its weight (in which case one needed the Kaneko-Koike operators
as well), can now be given in a more uniform and much simpler form:

Theorem 10 (= uniform restatement of Theorem 2). Every MLDO on the full modular group can
be written uniquely as a sum of extended Rankin-Cohen brackets.

Explicitly, if L ∈ MLDO
(≤n)
k,k+K , then L(f) =

∑n
r=0〈hr, f〉r for some modular forms hr ∈MK−2r.

A different use that we can make of the modified derivatives is to give a cleaner and more
uniform description of quasimodular forms for the full modular group (and in fact also for other
non-cocompact lattices, as we will see in the next section), which then also has applications to

the description of MLDOs. In Section 8 we saw that the space M
(≤n)
K (Γ1) of quasimodular forms

of strictly positive weight K and depth ≤ n is canonically isomorphic to
⊕

0≤r≤nMK−2r(Γ1) in

two different ways: on the one hand by writing its elements as polynomials in E2 (equation (48))
and on the other by writing them as linear combinations of r th derivatives of elements of spaces
M+
k (Γ1) (where K = k + 2r) that are somewhat artificially defined as Mk(Γ1) for k > 2 and as

M̃2(Γ1) = CE2 for k = 2 (equation (49)). But using the renormalized derivatives D〈n〉 and their
extension (64) to weight 0, we can write the latter isomorphism much more naturally by saying that
each quasimodular form of depth ≤ n is a linear combination of modified derivatives of modular
forms of weight ≥ 0, namely,

n⊕
r=0

MK−2r ' M̃
(≤n)
K , (h0, . . . , hn) ←→ F =

n∑
r=0

D〈r〉(hr) (70)

instead of (49). Of course the content of this isomorphism is the same as that of (49), but the

new one is better in several ways. One is that if we now two isomorphisms between the ring M̃∗ of
quasimodular forms on Γ1 and the same ring M∗[X] of polynomials in one variable over the ring
M∗ of modular forms on Γ1, one by sending the polynomial

∑
hrX

r to the quasimodular form∑
D〈r〉(hr) and one by sending the polynomial

∑
grX

r to the quasimodular form
∑
gr(E2/12)r.

(Note that it is more natural here and in all other formulas to use E2/12 rather than E2 itself as

the generator of M̃∗(Γ1) over M∗(Γ1), because E2/12 is mapped to 1 under the derivation δ on M̃∗.
This comment will become more important in the next section, when we replace E2/12 by a choice

of element E ∈ M̃2(Γ) with δ(E) = 1 for sublattices Γ of Γ1 or more general lattices Γ with cusps.)
If we compose one of these isomorphisms with the inverse of the other, we get an endomorphism of
M∗[X] =

⊕
M∗X

r that is represented with respect to the basis {Xr} by a triangular matrix with
1’s on the diagonal (i.e., the coefficient of (E2/12)n in the expansion of D〈n〉(f) as a polynomial in
E2/12 is equal to f , with coefficient 1). In fact, we can now describe this whole matrix completely
explicitly by using the generating series identities (53) and (57), which imply the formula

D〈n〉(f) =

n∑
r=0

(
n

r

)
d〈r〉(f)

(E2

12

)n−r
(71)

(equivalent to (16) when the weight of f is positive, but now considerably simpler) for any f ∈M∗.
Here we have defined d〈r〉(f) by modifying the canonical higher Serre derivatives defined in Section 5
in the same way as we did for the ordinary derivatives, i.e., by setting

d〈n〉(f) = d
〈n〉
k (f) =

d[n](f)

(k)n
(f ∈Mk(Γ), k > 0), d〈n〉(1) =

(−1)n

n!
ωn , (72)
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so that Φ
[d]
f (τ,X) =

∑
d〈n〉(f) X

n

n! in all cases. Note that, just as the unnormalized canonical
higher Serre derivatives can be used instead of ordinary derivatives to write the Rankin-Cohen
brackets as a sum of terms that are individually modular (equation (15)), the modified ones can
be used to write the extended Rankin-Cohen bracket 〈f, g〉n as a sum of n+ 1 terms each of which
is modular: 〈

f, g
〉
n

=

n∑
r=0

(−1)r
(
n

r

)
d〈r〉(f) d〈n−r〉(g) . (73)

Here, just as with (12) and (15), the coefficients are the same as in (67).

Finally, the discussion above can also be used to give a new interpretation of the operator (46)
defined in Theorem 8 in the case of its action on modular forms, and at the same time to extend
it to the case when k = 0. Specifically, we define a pairing{

,
}

: M∗ ⊗ M̃∗ →M∗ , f ⊗ F 7→
{
f, F

}
=

∞∑
r=0

(−1)r

r!
δr(F )D〈r〉(f) . (74)

between quasimodular and modular forms. The bracket {f, F} coincides with LF,k(f) as defined
in Theorem 8 when k is strictly positive, and is therefore modular (of weight k+K) because LF,k
is an MLDO of type (k, k + K), but it now makes sense also in weight 0 and is still modular in
that case. To see this, and to understand the pairing better, we observe that{

f , D〈n〉(g)
}

=
〈
f, g

〉
n

(75)

for any modular forms f and g and any integer n ≥ 0 (this follows immediately from equation (79)
in the next section), so that the pairing f ⊗ F 7→ {f, F} is related to the decomposition of
quasimodular forms given in equation (70) by

F =

n∑
r=0

D〈r〉(gr) =⇒
{
f, F} =

n∑
r=0

〈
f, gr

〉
r
. (76)

This also gives a proof of the formula (65), because under the correspondence (47) between quasi-

modular forms and modular linear differential operators the MLDOs Θn
k and d

[n]
k correspond to

the quasimodular forms (−1)n(k)nD
〈n〉(1) and (k)n

(
− 1

12E2

)n
, respectively, so that (65) is just a

consequence of (17), which was proved in the last section.

As a final remark, we observe that in equations (62), (67), (73) and (74) we were able to omit
the index k that was needed in the corresponding earlier equations (50), (12), (15) and (46) because
it is already incorporated into the definition of the modified derivative D〈r〉. A consequence of this
is that these formulas can be written symbolically in a very simple form. This was already done
in the first case in equation (63), and the other three can be written as〈

f, g
〉
n

= m
(
(1⊗D − D ⊗ 1)〈n〉 (f ⊗ g)

)
= m

(
(1⊗ d − d⊗ 1)〈n〉 (f ⊗ g)

)
and {

f, F
}

= m
(
e〈−D⊗δ〉(f ⊗ F )

)
,

where m denotes multiplication. Alternatively, we can also express the right-hand sides of these
last three equations as the restrictions to the diagonal τ1 = τ2 = τ of (D2 − D1)〈n〉(f(τ1)g(τ2)),
(d2−d1)〈n〉(f(τ1)g(τ2)) or e〈−δ1D2〉(f(τ1)g(τ2)), respectively, where the subscripts on the differential
operators indicate which variable τi they act on.

11. Application: higher Serre derivatives of quasimodular forms

The theme of this section is a non-trivial extension of the Rankin-Cohen bracket from modular
to quasimodular forms that was discovered by François Martin and Emmanuel Royer and in a
different form by Youngju Choie and Min Ho Lee (and that had also been found by the third

author, but never published). Of course the Rankin-Cohen bracket [f, g]
(k,`)
n can be defined for
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any two holomorphic functions f and g, any non-negative integer n, and any integers (or for that
matter, even complex numbers) k and `, but the original point of the specific complicated-looking
bilinear combination of derivatives in its definition was that if f and g are modular forms of weights

k and ` on some lattice, then [f, g]
(k,`)
n is also a modular form, of weight k + `+ 2n. At first sight

this statement seems impossible to generalize in an interesting way to quasimodular forms, since
the ring of quasimodular forms is closed under differentiation anyway, so that each term of (12)
is quasimodular if f and g are. But if we remember that modular forms are simply quasimodular
forms of depth 0, then we can ask if there is a way to make a bracket of two quasimodular forms
whose depth is at most the sum of the two individual depths, independent of n. (The individual
terms of (12) in general have depths equal to the sum of the two individual depths plus n.) The
result of Martin and Royer is that this is possible, and that all one has to do is to replace the upper
indices k and ` of the bracket by k − p and `− q, where p and q are the depths (or upper bounds
on the depths) of f and g. We will prove this in a somewhat more general form by replacing
the original Rankin-Cohen brackets with the extended ones that were defined in the last section,
in which case the theorem still makes sense (and still is true) even if one of f or g has weight 0
and hence is constant. (If both have weight 0, then there is nothing to prove, since the depths
are then also 0 and we are simply back to the modularity of the extended Rankin-Cohen brackets

〈1, 1〉(0,0)
n .)

Actually, as well as this extension of the Martin-Royer theorem to include forms of weight 0,
we will give a strictly stronger result of which that theorem is an immediate corollary. This
is the statement that the action on quasimodular forms of canonical higher Serre derivatives of
arbitrary orders preserves their depth if one chooses the index of the Serre derivative to be the
weight of the form minus its depth, rather than just its weight as in the modular case. Because of
the expression (15) for Rankin-Cohen brackets as bilinear combinations of canonical higher Serre
derivatives, this immediately gives the Martin-Royer theorem as well, but it is both stronger and
simpler, since it applies to individual quasimodular forms rather than to pairs.

We formulate the two results just described more quantitatively in the following two theorems.

Theorem 11. If f is a quasimodular form of weight k and depth ≤ p , then the quasimodular form

d
[n]
k−p(f) has depth ≤ p for all integers n ≥ 0 .

Corollary (Generalized Martin-Royer theorem). If f and g belong to M̃
(≤p)
k and M̃

(≤q)
` , respec-

tively, then the extended Rankin-Cohen bracket 〈f, g〉(k−p,`−q)n belongs to M̃
(≤p+q)
k+`+2n for all n ≥ 0.

For the proofs we will need the following lemma, which is a general statement about the action
of the Lie algebra sl2 that has many applications in the theory of quasimodular forms.

Lemma 2. In the universal enveloping algebra of sl2 we have the identities

δDn = Dnδ + nDn−1(W + n− 1) (77)

for all n ≥ 0 and more generally

δ rDn =

r∑
j=0

(
r

j

)
(n− j + 1)j D

n−jδ r−j(W + n− r)j (78)

for all r, n ≥ 0, where (n− j + 1)j D
n−j is to be interpreted as 0 if j > n.

Corollary. If f is a modular form of weight k, then we have δDn(f) = n(k + n− 1)Dn−1(f) for
all n ≥ 0 and more generally δ rDn(f) = (n− r + 1)r(k + n− r)rDn−r(f) for all n, r ≥ 0.

The proof of the lemma (using induction on n for the first statement and then on s for the second)
is straightforward and well known, so we will omit it, and the corollary follows immediately since
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modular forms are annihilated by δ. In terms of the modified derivatives D〈n〉(f) introduced in
the last section, we can rewrite the second statement of the corollary as

δ r(D〈n〉(f))

r!
=

(
n

r

)
D〈n−r〉(f) (n, r ≥ 0, f ∈M∗(Γ)) (79)

if the weight of f is positive. Note that this equation remains true also for f = 1, as one sees by
the following calculation using the definition (64) and equation (78) applied to E = E2/12 :

(n− 1)! δr(D〈n〉(1)) = δr(Dn−1(E)) =

r∑
j=0

(
r

j

)
(n− j)j (n− r + 1)j D

n−1−j(δ r−j(E))

= (n− r)r (n− r + 1)rD
n−r−1(E) + r (n− r + 1)r−1 (n− r + 1)r−1D

n−r(1)

=
(n− 1)!n!

(n− r − 1)! (n− r)!
Dn−r−1(E) + r

(n− 1)!2

(n− r)!2
δn,r =

(n− 1)!n!

(n− r)!
D〈n−r〉(1) .

(Actually, to prove (79) it is enough to give the calculation for r = 1, which is slightly simpler,
and then use induction on r, but we gave the calculation in general because it is not much longer
and gives a nice illustration of the properties of the modified derivative D〈n〉.) We already used
equation (79) in Section 10 to get the formula (75) relating extended Rankin-Cohen brackets to
the pairing (74).

We now proceed to the proof of Theorem 11, after which, as already mentioned, the corollary
follows immediately as a consequence of equation (15) (or of its extension (73) to extended Rankin-
Cohen brackets in the case when one of the forms has weight 0). To do this, we consider the Cohen-

Kuznetsov series of f with index k − p, where f ∈ M̃ (≤p)
k as in the theorem. More specifically, we

consider both the d- and the D-versions of this series, defined and related by

Φ
(d)
f,k−p(X) =

∞∑
n=0

d
[n]
k−p(f)

(k − p)n n!
Xn = e−XE Φf,k−p(X) = e−XE

∞∑
n=0

Dn(f)

(k − p)n n!
Xn

with E = E2/12 and d
〈n〉
k−p(f) defined as in equation (72). (Here and for the rest of the proof

we omit the argument τ for notational simplicity.) Notice, by the way, that we can assume that
k > 0, since if k = 0 then p is also 0 and there is nothing to prove, and then p ≤ k/2 < k, so
that the factors (k − p)n in the denominators of the above formulas never vanish. To prove the
theorem, we have to show that the series on the left is annhilated by δp+1, or equivalently that all
of the coefficients of its image under δp are modular rather than merely quasimodular forms. By
Leibniz’s formula and the fact that δ(E) = 1 we have

eXEδm
(
Φ

(d)
f,k−p(X)

)
= eXEδm

(
e−XE Φf,k−p(X)

)
=

m∑
s=0

(
m

s

)
(−X)m−s δs

(
Φf,k−p(X)

)
= (δ −X)m

(
Φf,k−p(X)

)
for every m ≥ 0, and we want to show that this expression vanishes for m > p.

In fact, we will give two different arguments, omitting a few of the details of the calculation
in the second case. For the first argument we use the fact that every quasimodular form is a
linear combination of modified derivatives D〈r〉(h) of modular forms (equation (70)). Since such a
derivative has depth exactly r, we can assume that the quasimodular form f in Theorem 11 has
the form D〈r〉(h) for some r ≤ p and some modular form h of weight k − 2r. Then we have

Φf,k−p(X) =

∞∑
n=0

Dn(D〈r〉(h))

(k − p)n n!
Xn =

1

(k − p)p−r

∞∑
n=0

(k + n− p)p−rD〈n+r〉(h)
Xn

n!
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and hence

(k − p)p−r eXE δm
(
Φ

(d)
f,k−p(X)

)
=

m∑
s=0

(
m

s

)
(−X)m−s δs

( ∞∑
n=0

(k + n− p)p−rD〈n+r〉(h)
Xn

n!

)

= Xm−r
∞∑
`=0

[
m∑
s=0

(
m

s

)
(−1)m−s (k − p+ s+ `− r)p−r(s+ `− r + 1)r

]
D〈`〉(h)

X`

`!

for any m ≥ r, where to obtain the second line we have used equation (79). If m > p then the
expression in square brackets vanishes for every ` because it is the mth difference of a polynomial
in s of degree p. This proves the theorem. We also get an explicit formula for the pth derivative of

d
[n]
k−p(f) as a modular form for every n, since the pth derivative of a monic polynomial of degree p

is p! and hence

(k − p)p−r δp
(
Φ

(d)
f,k−p(X)

)
= p!Xp−re−XE

∞∑
h=0

D〈h〉(f)
Xh

h!
= p!Xp−r Φ

(d)
f (X) ,

so that δp(d[n](f)) vanishes if n < p− r and is a simple multiple of d[n+r−p](h) if n ≥ p− r.
For the second argument, which we only sketch, we work directly with the action of sl2 on

the various Cohen-Kuznetsov series involved. This approach involves slightly more calculation
but has the advantages that it does not use the decomposition (70) or the special quasimodular

form E = E2/12. For any quasimodular form f ∈ M̃k and any positive integer K we have

(δ −X) Φf,K(X) =

∞∑
n=0

δ(Dn(f)) − n(K + n− 1)Dn−1(f)

n! (K)n
Xn

=

∞∑
n=0

Dn(δ(f)) + n(k −K)Dn−1(f)

n! (K)n
Xn (by eq. (77))

= Φδ(f),K(X) +
k −K
K

X Φf,K+1(X)

and hence by induction on m

(δ −X)mΦf,K(X) =

m∑
s=0

(
m

s

)
(k −K −m+ 1)m−s

(K)m−s
Xm−s Φδs(f),K+m−s(X)

for every integer m ≥ 0. (We omit the details of this step, which are slightly messy.) Now if we
take K = k − p for f of depth ≤ p, and if m > p, then the terms with s ≤ p vanish because
(p−m+ s)m−s = 0 and those with s > p vanish because δs(f) = 0, so we again find that (δ−X)m

annihilates Φf,K(X) and therefore that δm annihilates Φ
(d)
f,K(X) as desired.

12. Cocompact and non-cocompact lattices

In this section we discuss a basic dichotomy between the structure of the rings of quasimodular
forms for non-cocompact and cocompact lattices Γ in SL2(R). In the former case, exemplified by
the full modular group Γ1, there is always a quasimodular but not modular form of weight 2, and
then all theorems of the previous sections for Γ1 still hold with this form in place of E2. In the
latter case, exemplified by Shimura curves, there is no such quasimodular form and the structure
theorems are somewhat different. In particular, here there is no analogue of the Serre derivative
or the Kaneko-Koike operator, and all MLDOs are linear combinations of Rankin-Cohen brackets.

For Γ = Γ1 = SL2(Z) we have already seen that the ring M̃∗(Γ) of quasimodular forms is simply
C[E2, E4, E6], with the derivations δ and D given by 12 ∂/∂E2 and by Ramanujan’s formulas (3),
respectively. If Γ is a subgroup of SL2(Z) of finite index, then the algebra M∗(Γ) of modular

forms on Γ is in general no longer free, but we still have M̃∗(Γ) = M∗(Γ)[E2] and δ = 12 ∂/∂E2.
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The following proposition shows that a similar statement holds for any non-cocompact lattice
Γ ⊂ SL2(R). Recall that for any lattice Γ, cocompact or not, we have derivations D, W and δ on

M̃∗(Γ) satisfying (40), where W is the weight operator and ker(δ) = M∗(Γ). In particular, δ maps

M̃2(Γ) to M0(Γ) = C, so it must be either 0 or surjective.

Proposition 2. Let Γ ⊂ SL2(R) be an arbitrary lattice.

(a) If Γ is cocompact, then M2(Γ) = M̃2(Γ).

(b) If Γ is non-cocompact, then the sequence 0→M2(Γ)→ M̃2(Γ)
δ−→ C→ 0 is exact.

(c) In the non-cocompact case, M̃∗(Γ) = M∗(Γ)[E ] for any E ∈ M̃2(Γ) with δ(E) 6= 0.

Proof. Since the result is certainly known to experts, we only sketch the proof here. For (a), we
observe that if E is a quasimodular form of weight 2 on Γ that is not modular, then δE = C for
some C 6= 0, in which case the same argument as was given for Γ = Γ1 in Section 9 shows that

the “completion” defined by Ê(τ) = E(τ) − C
4πy (where again y = =(τ)) transforms under Γ like

a modular form of weight 2. Then the non-holomorphic 1-form ω = Ê(τ) dτ is Γ-invariant and
its derivative dω is a non-zero multiple of the volume form y−2dτ dτ̄ on H, so the integral of dω
over H/Γ is non-zero, which contradicts Stokes’s theorem if Γ is cocompact since then H/Γ is
closed. For (b), we observe that if Γ is non-cocompact, then it has at least one cusp, which we can
assume after conjugating by an element of SL2(R) to be at∞. Then the non-holomorphic weight 2
Eisenstein series defined by “Hecke’s trick” as limε→0

∑
(cτ +d)−2|cτ +d|−ε, where

( · ·
c d

)
runs over

the left cosets of the stabilizer of∞ in Γ, has the form E(τ)− C
4πy for some holomorphic function E

and constant C 6= 0, in which case E belongs to M̃2(Γ) but not to M2(Γ). Finally, part (c) of
the proposition follows by an easy induction, since if F is a quasimodular form of weight k and
depth p > 0, so that the function G = δp(F ) is a non-zero modular form of weight k− 2p, then the
difference between F and some multiple of GEp is easily checked to have weight k and depth < p,
so that by induction on p we see that F is a polynomial in E with modular coefficients. �

We call a choice of E in case (b) a splitting, since it splits M̃2(Γ) as M2(Γ)⊕CE . We can, and
from now on will, normalize E multiplicatively by requiring that δ(E) = 1, but we then still have
the freedom of replacing E by E + h for an arbitrary element h ∈ M2(Γ). For Γ = SL2(Z) we
have M2(Γ) = {0}, so in that case E = 1

12 E2 is unique. In all non-cocompact cases, if we identify

M̃∗(Γ) with M∗(Γ)[E ], then δ corresponds simply to ∂/∂E .

Proposition 2 gives a complete “multiplicative” description of the ring of quasimodular forms

for all non-cocompact groups Γ as polynomials in a single function E ∈ M̃2(Γ) with modular forms
as coefficients. However, this does not work for cocompact groups, since there is no function E .

However, there is also an “additive” description of M̃∗(Γ) which works for both cocompact and
non-cocompact groups Γ, but which is a little different in the two cases.

Let Γ ⊂ SL2(R) be an arbitrary lattice and define MD
∗ (Γ) as the closure of M∗(Γ) with respect

to D, i.e., as the smallest vector space containing M∗(Γ) and closed under differentiation. The
space MD

∗ (Γ) has the additive structure C⊕MD
>0(Γ), where MD

>0(Γ) is the subspace

MD
>0(Γ) = C[D]

(
M>0(Γ)

)
= C[D]⊗C M>0(Γ) =

⊕
n≥0, k>0

Dn(Mk(Γ)) ,

since Dn : Mk(Γ) → MD
>0(Γ) is injective for all n ≥ 0, k > 0. Clearly M∗(Γ) ⊂MD

∗ (Γ) ⊆ M̃∗(Γ).
The additive description of the space of quasimodular forms on Γ, generalizing equation (49) for
the case of the full modular group, is then as follows.

Proposition 3. (a) If Γ is cocompact, then M̃∗(Γ) = MD
∗ (Γ).

(b) If Γ is non-cocompact, then M̃∗(Γ) = MD
∗ (Γ)⊕C[D]E, where E as in Proposition 2 (b) is any
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element in M̂2(Γ) rM2(Γ). Thus

M̃k(Γ) =

{
MD
k (Γ) if k = 0 or k is odd,

MD
k (Γ) ⊕ C ·Dn(E) if k = 2n+ 2, n ≥ 0 .

Proof. If F is quasimodular of weight k > 0 and of depth n, then the final coefficient Fn in the
development (43) is quasimodular of depth 0 and hence is modular, of weight k − 2n. If n < k/2,
then Dn(Fn) is quasimodular of the same weight and depth as F , so subtracting a multiple of
it from F reduces the depth of F and hence proves the result by induction. If Γ is cocompact,

then n is always less than k/2, because Fn = δ(Fn−1)/n and the map δ : M̃2(Γ)→ M̃0(Γ) = C is
identically 0. This proves part (a). If Γ is non-cocompact, then n can be equal to k/2, but in that

case Fn−1 belongs to M̃2(Γ) = M2(Γ)⊕C · E , so we can reduce the depth of F by subtracting from
it a multiple of Dn−1(Fn−1) ∈MD

k (Γ)⊕ C ·Dn−1(E) and proceed as before. �

Further properties of the subspace MD
∗ (Γ) are summarized in the following proposition.

Proposition 4. The vector space MD
∗ (Γ) is an sl2-submodule of M̃∗(Γ) and is an ideal of the

algebra M̃∗(Γ). In particular, MD
∗ (Γ) is closed under multiplication.

Proof. It follows easily from the definition of the sl2-action on M̃∗(Γ) and from Lemma 2 that
D(DnF ) = Dn+1F , W (DnF ) = (k + 2n)DnF and δ(DnF ) = n(k + n − 1)Dn−1F for each

F ∈ M̃k(Γ) and n ≥ 0. Therefore the subspace MD
∗ (Γ) is an sl2-submodule of M̃∗(Γ). This proves

the first statement. For the second, we define a map µ : M̃∗(Γ)→ C[T ] by µ(F ) = 0 if F ∈ M̃k(Γ)
with k odd and µ(F ) = δ p(F )T p/p! if k = 2p. It follows from the Leibniz rule that the map

µ : M̃∗(Γ) → C is an algebra homomorphism, so its kernel is an ideal. We claim that this kernel
is MD

∗ (Γ). The inclusion MD
∗ (Γ) ⊆ Ker(µ) is obvious because MD

k (Γ) =
⊕

0≤n<k/2D
nMk−2n(Γ)

for k > 0 (since DnM0(Γ) = 0 for n > 0) and hence ∂k/2 acts trivially on MD
k (Γ) for k even.

The reverse inclusion then follows from the decomposition M̃k = MD
k ⊕C ·Dp−1(E) and the easily

verified fact that µ(Dp−1E) 6= 0. �

The fact that MD
∗ (Γ) is closed under multiplication means that there must be a formula for any

product Dr(f)Ds(g) (r, s ≥ 0, f, g ∈ M∗(Γ)) as a linear combination of derivatives of modular
forms, a simple example being fg′ = `

k+` (fg)′ + 1
k+` [f, g]1 for f ∈ Mk and g ∈ M`, in which the

right-hand side contains only modular forms and their derivatives but no derivatives of E . Similarly,

in the non-cocompact case, the fact that MD
∗ (Γ) is an ideal of M̃∗(Γ) = MD

∗ (Γ) ⊕
⊕

s C ·Ds(E)
means that there must also be an expression for Dr(f)Ds(E) as a linear combination of derivatives

of modular forms, and the fact that M̃∗(Γ) is a ring means that there must also be an expression
for any product Dr(E)Ds(E) as a linear combination of derivatives of both modular forms and E .
These formulas, which are quite complicated, are given in [26] and will not be repeated here.

Now using this discussion of the structure of quasimodular forms for arbitrary lattices, we can
easily see how all of the theorems proved in this paper have to be modified when the full modular
group Γ1 is replaced by some other lattice Γ. In particular, if Γ is non-cocompact and we have
chosen a splitting, then every result discussed or proved so far remains true mutatis mutandis. We
state this informally as the following theorem.

Theorem 12. If Γ ⊂ SL2(R) is a non-cocompact lattice with a given splitting E, then all results
of Theorems 1–11 remain true with Γ1 replaced by Γ and E2 by 12 E.

Let us discuss briefly what this statement means in each case. The first point is that given the
lattice Γ and the splitting E we have a well-defined Serre derivative dk = dk,E mapping Mk(Γ) to
Mk+2(Γ) for every k ≥ 0, defined by the same formula (4) as before but with E2(τ)/12 replaced
by E , or in symbolic notation, by dE = D − EW . We will usually drop the subscript E for
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convenience, but one should not forget that in the general case the new Serre derivative is not
intrinsic to Γ as it was for the full modular group, but depends on a choice of splitting. Replacing
E by E∗ = E + h with h ∈ M2(Γ) changes dE by hW , i.e., it changes dk to d∗k(f) = dk(f) + khf .
Similarly, we have a new Kaneko-Koike operator Θn

k = Θn
k,E(f) from Mk(Γ) to Mk+2n(Γ) given by

equation (13) with E2/12 replaced by E , and also new canonical higher Serre derivatives d
[n]
k = d

[n]
k,E

defined by equation (14), but with E4/144 replaced by the “curvature” Ω = E2 − E ′, which
always belongs to M4(Γ). Formula (15) still remains true with these new higher Serre derivatives,
and shows that the entire structure of M∗(Γ) as a Rankin-Cohen algebra is determined by just
the multiplication, the new Serre derivative, and the curvature, in accordance with the main
result of [30] (where Ω was denoted by −Φ, and a Rankin-Cohen algebra defined by formulas (14)
and (15) from an underlying graded algebra together with a derivation d of weight +2 and an
element Ω of weight 4 was called a canonical Rankin-Cohen algebra). With these definitions, the
meaning of the generalizations of Theorem 1 (apart from the specific formulas for the values of
ωm = ωm,E ∈ M2m(Γ), which will of course depend on Γ and E), Theorems 2, 3, 4, 7, 10, 11 and
its corollary, and Propositions 1 and 9 are all clear. In particular, we have a notion of extended
Rankin-Cohen brackets for any non-cocompact group together with a choice of splitting.

Finally, we should say a few words about the cocompact case, even though for most of the
applications (in particular, in the theory of VOAs) we only care about the full modular group
or its subgroups. The proofs of Theorems 5, 6 and 8 did not depend in any way on the special
properties of Γ1 and were already stated for arbitrary lattices. The description of all modular linear
differential operators in terms of Rankin-Cohen brackets as given in Theorem 2 is in principle still
valid for any lattice Γ, cocompact or not, but with the proviso that in the cocompact case all
MLDOs have order strictly smaller than half their weight and there is no analogue of the Kaneko-
Koike operator, so that we only need Rankin-Cohen brackets with modular forms of strictly positive
weight. There is, however, one exception. The generalized Serre derivative dE(f) = f ′ − kEf does
not involve E if k = 0, and similarly Θn

k,E(f) does not contain E if k = 1 − n, so that the
corresponding operators D and Dn are defined even in the cocompact case when no splitting
exists. This corresponds to “Bol’s identity” Dn(f |1−n g) = (Dnf)|1+n g for any f ∈ Hol(H) and
g ∈ SL2(R), so that Dn ∈ MLDO1−n,1−n(Γ) for any lattice Γ and any n ≥ 0. Apart from this,
however, all MLDOs for non-cocompact lattices are combinations of Rankin-Cohen brackets with
forms of positive weights, there are no monic MLDOs with holomorphic quasimodular forms as

coefficients, and the dimension of MLDOk,k+K(Γ) is independent of k and equal to dim M̃K(Γ).

13. Primitive projection and modular linear differential operators

In Section 8 we defined an isomorphism F 7→ LF between quasimodular forms and MLDOs,
and in Section 10 the operation of LF on modular forms was interpreted as a pairing (74) between
quasimodular and modular forms. Here we will define a second isomorphism between quasimodular
forms and MLDOs in terms of a certain projection operator. This will be done in the opposite
order from before, giving first a new pairing between quasimodular and modular forms in terms of
the action of sl2 on the space of quasimodular forms and the primitive projection operator for sl2-
modules, and then generalizing this operator to non-modular arguments. A reinterpretation of the
new isomorphism in terms of almost holomorphic modular forms and the holomorphic projection
operator will be given in the next section.

Theorem 13. Let F be a quasimodular form of weight K and depth n on an arbitrary lattice Γ.
Then for every positive integer k the operator

LF,k :=

n∑
r=0

1

r!

(
n∑

m=r

(−1)mDm−r(δmF )

(m− r)! (k +K −m− 1)m

)
Dr (80)
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is a modular linear differential operator of order n and type (k, k + K), and the map F 7→ LF,k

gives an isomorphism from M̃
(≤n)
K (Γ) to MLDO

(≤n)
k,k+K(Γ).

As examples, if F is modular of weight K (so that δm(F ) = 0 for m > 0), then LF,k is
just multiplication by F , while if F = E2 and k > 0 then LF,k is just a multiple of the Serre
derivative dk . Note that the complicated-looking formula (80) can be written more simply as

LF,k(f) =

n∑
m=0

(−1)mDm(δm(F )f)

m! (k +K −m− 1)m
, (81)

but in (80) we have expanded by Leibniz’s rule to give LF,k explicitly as a differential operator.

The origin of this new isomorphism is that there is a canonical way to project any non-negatively
graded sl2-module (with grading given by W ) onto its “primitive” part (kernel of δ). Applied to

the ring of quasimodular forms, this gives a collection of canonical projection maps πk from M̃k(Γ)
to Mk(Γ) for all k ≥ 0 and any lattice Γ ⊂ SL2(R). Rather than just stating the formula as a
proposition and checking that it works, we indicate how it can be derived. We make the Ansatz
that πk is an element of the universal enveloping algebra of sl2, i.e., that it can be represented as
a polynomial in the three generators D, W, δ of sl2. These elements of course do not commute,
but in view of the commutation relations (40) we can write any non-commutative polynomial in
them as a linear combination of monomials DnδmW ` with integers `, m, n ≥ 0. When we apply
them to quasimodular forms of a fixed weight k, the factor W ` just acts as a known scalar, so we
can write the sought-for operator πk as a linear combination of monomials Dnδm with complex
coefficients depending only on m, n and k. Moreover, since we want πk to preserve the weight,
and since D and δ increase and decrease the weight by 2, respectively, we must have m = n, so
our Ansatz becomes

πk =
∑
m≥0

cmD
m δm (82)

with some as yet undetermined coefficients cm depending on k. Here the summation can be
replaced by one over just 0 ≤ m ≤ k/2, because δm(f) vanishes for m > k/2. Since we want πk to

be a projection operator onto the subspace Mk of M̃k, and since δ annihilates Mk, we must have
c0 = 1. Furthermore, since we want the image of πk to be contained in Mk = ker(δ) we must have

δπk(f) = 0 for every f ∈ M̃k. Using (77) and noting that δm(f) has weight k − 2m, we calculate

δ
(
πk(f)

)
=
∑
m≥0

cm
(
Dmδ+m(k−m−1)Dm−1

)
δm(f) =

∑
m≥1

(
cm−1 +m(k−m−1)cm

)
Dm−1δm(f) .

Equating this to 0 gives the recursion cm = −cm−1/m(k −m − 1) for all m ≥ 1, which together
with the initial condition c0 = 1 determines cm uniquely as (−1)m/m!(k−m− 1)n. If k > 2, then
this number is finite for all 0 ≤ m ≤ k/2, since m ≤ k/2 ≤ k − 1 and therefore (k −m− 1)m 6= 0.
Conversely, this calculation shows that the operator πk defined by

πk :=
∑

0≤m≤k/2

(−1)m

m! (k −m− 1)m
Dmδm = 1 − Dδ

k − 2
+

D2δ2

2(k − 2)(k − 3)
− · · · (83)

has the required properties for every k > 2, establishing the following result.

Proposition 5. For every lattice Γ and every integer k > 2 the operator (83) gives a projection
from quasimodular forms of weight k on Γ to the subspace of modular forms of weight k on Γ.

We make two remarks. The first is that Proposition 5 fails if k = 2 and we have to define π2(F )
instead as F − δ(F )E with E as in Section 12 in the non-cocompact case, while in the cocompact
case we can simply take π2 to be the identity. This will not be important to us since in the
application given here the weight will be larger than 2 anyway. The second is that the operator πk
defined in (83) satisfies the identity πk ◦D = 0 as well as δ ◦πk = 0 by a calculation exactly similar
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to the one above. (More specifically, the equation πk ◦D = 0 together with the Ansatz (82) leads to
the same recursion m(k−m− 1)cm = −cm−1 as before and hence determines πk uniquely up to a

constant.) This means that we can give an alternative definition of the map πk : M̃k →Mk as the

projection onto the first factor in the direct sum decomposition M̃k = Mk ⊕D(M̃k−2) for k > 2.

Comparing the formulas (83) and (81), we find that the effect of LF,k on modular forms of
weight k is given simply by

LF,k(f) = πk+K(fF ) (F ∈ M̃K(Γ), f ∈Mk(Γ)) , (84)

because δm(fF ) = δm(F )f for f modular. Of course the same formula holds also if f belongs
to M !

k(Γ) (modular forms that are holomorphic in H but can have poles at the cusps) or even
to Mmer

k (Γ) (meromorphic modular forms of weight k), and this then proves the modularity of
the operator LF,k and determines it completely, since the map from MLDOk,k+K(Γ) to either
Hom(M !

k(Γ),M !
k+K(Γ)) or Hom(Mmer

k (Γ),Mmer
k+K(Γ)) is injective. To see that F 7→ LF,k is an

isomorphism from M̃K(Γ) to MLDOk,k+K(Γ), at least for k > 0 as in the theorem, we calculate
the effect on derivatives. If F = Dn(g) with g ∈M` and K = `+ 2n, then equations (68) and (75)
tell us that LF,k is given by

LDn(g),k(f) =

(
n+ k − 1

n

)−1 [
f, g

]
n

(85)

for any f ∈Mk, and a simple calculation that is left to the reader shows that LF,k is given by the
very similar formula

LDn(g),k(f) =

(
n+ k +K − 2

n

)−1 [
f, g

]
n
. (86)

for f ∈ Mk and g ∈ M` and any n > 0. In view of Theorem 2, which says that all MLDOs
are given by Rankin-Cohen brackets and the Kaneko-Koike operator, together with the fact that
all (holomorphic) quasimodular forms are linear combinations of derivatives of modular forms or
extended derivatives of the constant function 1, this completes the proof of Theorem 13 except in
the case when ` = 0 and g = 1, where we have to modify (86) to write LD〈n〉(g),k(f) as a multiple

of the extended Rankin-Cohen bracket 〈f, 1〉n if k > 0. If k is 0 or negative, then we have to
renormalize LF,k in a suitable way as already discussed in the case of LF,k in the remarks following
Theorem 8. A further remark is that, in virtue of the identity πk ◦ D = 0 noted above, we find
that (86) can be generalized by repeated “integration by parts” to(

n+ k +K − 2

n

)−1 [
f, g

]
n

= (−1)rπk+K

(
Dr(f)Dn−r(g)

) (
0 ≤ r ≤ n

)
,

so that the nth Rankin-Cohen brackets can be seen as the result of applying the projection operator
to any product Dr(f)Ds(g) with r + s = n.

14. Holomorphic projection and modular linear differential operators

In this final section we recall the bijection between quasimodular forms and almost holomorphic
modular forms and use it to rewrite Theorem 13 as a statement involving a holomorphic projection
operator defined for real-analytic functions in the upper half-plane. This gives a more conceptual
description of the map from quasimodular forms to MLDOs. The final result, Theorem 14, provides
perhaps the simplest description of MLDOs of all the ones given in this paper.

By definition, an almost holomorphic modular form of weight k on a lattice Γ ⊂ SL2(R) is a
function Φ : H→ C that is a polynomial in 1/=(τ) with coefficients that are holomorphic functions
of moderate growth and that transforms like a modular form of weight k under the operation of Γ
on H. The degree of this polynomial is called the depth of Φ. There is an isomorphism from

the space M̂k(Γ) of all almost holomorphic modular forms of weight k on Γ to the space M̃(Γ)
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of quasimodular forms of weight k on Γ given by associating to each function Φ(τ) ∈ M̂k(Γ) its
constant term with respect to 1/=(τ). (In fact this was the original definition of quasimodular
forms in [15], as already mentioned in Section 8.) The inverse isomorphism, which is less obvious,

maps F ∈ M̃k(Γ) to its “completion”

F̂ (τ) =
∑
r≥0

Fr(τ)

(2πi(τ − τ̄))r
, (87)

where the functions Fr are defined by (43) or in terms of δ as Fr = δrF/r! . Then the action

of the Lie algebra sl2 on M̃∗(Γ) described in Section 8 translates into an action on M̂∗(Γ) by

new operators (denoted D̂, Ŵ and δ̂ to distinguish them from the corresponding operators on
quasimodular forms) defined by

D̂Φ(τ) =
1

2πi

(
∂Φ(τ)

∂τ
+ k

Φ(τ)

τ − τ̄

)
, Ŵ Φ(τ) = kΦ(τ) , δ̂Φ(τ) = 2πi(τ − τ̄)2 ∂Φ(τ)

∂τ̄
(88)

for Φ ∈ M̂k(Γ). For a more complete discussion of all of this material we refer the reader to
Section 5.3 of [31], but with the warning that the notations there are somewhat different (in

particular D̂, Ŵ and δ̂ are denoted ∂, E and δ∗, respectively) and that there are a few misprints.

We can now use this isomorphism to transfer the projection operator πk as defined by (83) to
a projection operator π̂k from almost holomorphic modular forms to modular forms of the same

weight simply by replacing D and δ by D̂ and δ̂ in (83). Then (84) translates into the statement

that the operator LF,k(f) defined in Theorem 13 is equal to π̂k+K(fF̂ ) if f is a modular form
of weight k. However, this is still not quite what we want because to obtain LF,k as an MLDO
we need to know its operation on arbitrary differentiable functions in the upper half-plane, not
only on modular forms. For this we use a holomorphic projection operator πhol

k that maps real-
analytic (or just differentiable) functions in the upper half-plane to holomorphic functions and that
projects differentiable or real-analytic modular forms of weight k ≥ 2 on some lattice Γ ⊂ SL2(R)
to holomorphic modular forms of the same weight and on the same group. There are several
different versions of this operator, depending on the space of functions to which it is applied. The
most special one, and the one that is used most frequently in the theory of modular forms, is
defined directly on the space of differentiable or real-analytic modular forms Φ of weight k on Γ
that are sufficiently small at infinity and projects them to holomorphic cusp forms of weight k by
the requirement that the Petersson scalar product of πhol

k (Φ) with any holomorphic cusp form h
of weight k on Γ is the same as the Petersson scalar product of Φ with h. This defines πhol

k (Φ)
uniquely because the Petersson scalar product on the space of cusp forms is non-degenerate. At
the next level, there is a projection operator defined for arbitrary 1-periodic functions on H (i.e.,
functions on Z\H) in terms of their Fourier expansions by the formula

πhol
k : Φ(x+ iy) =

∑
n∈Z

An(y) e2πinx 7→ f(z) =
∑
n>0

an e
2πinτ ,

an :=
(4πn)k−1

(k − 2)!

∫ ∞
0

An(y) e−2πny yk−2 dy ,

which is checked by a straightforward calculation to agree with the previous definition when Γ con-
tains the matrix

(
1 1
0 1

)
and Φ is modular of weight k on Γ. (Apply the formula (πhol

k (Φ), h) = (Φ, h)

to the nth Poincaré series h(τ) = Pk,n(τ) =
∑
γ∈Z\Γ e

2πinτ |kγ and use a standard unfolding ar-

gument on both sides.) Finally, both cases can be seen as specializations of a yet more general
operator that projects arbitrary smooth functions in H satisfying a suitable growth condition near
the boundary to holomorphic functions and that is equivariant with respect to the action of SL2(R)
and hence sends modular forms to modular forms and 1-periodic functions to 1-periodic functions.
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This operator is defined by integrating against the Bergman kernel function and maps the func-
tion Φ to the function πhol

k (Φ) defined by

πhol
k (Φ)(τ) :=

k − 1

4π

∫∫
H

Φ(z)
( z − z̄
τ − z̄

)k
dV (τ ∈ H) , (89)

where dV denotes the invariant volume element y−2dxdy (with z = x+iy as usual) and the integral
is absolutely convergent by virtue of the growth assumption on Φ. The fact that the map πhol

k is
SL2(R)-equivariant in weight k follows directly from the transformation property

gz − gz

gτ − gz
=

cτ + d

cz + d

z − z̄
τ − z̄

(
z, τ ∈ H, g =

(
a b
c d

)
∈ SL2(R)

)
,

while the fact that it is the identity on holomorphic functions (and therefore is a projection operator
as claimed, since πhol

k (Φ) is obviously always holomorphic in τ) is proved by an argument involving
Cauchy’s theorem and integration by parts which we generalize in the following lemma.

Lemma 3. If h(τ) is a holomorphic function in the upper half-plane satisfying suitable growth
conditions, then for any integer m with 0 ≤ m ≤ k − 2 we have

πhol
k

(
h(τ)

(τ − τ̄)m

)
=

(−1)m

(k −m− 1)m

dmh(τ)

dτ m
. (90)

Proof. We can compute the integral over H in (89) for Φ(τ) = h(τ)/(τ − τ̄)m as∫ ∞
0

(∫
R+iy

(2i)k−m h(z) dz

(τ − z + 2iy)k

)
yk−m−2 dy = 2πi

(−1)k(2i)k−m

(k − 1)!

∫ ∞
0

dk−1h

dzk−1

(
τ + 2iy

)
yk−m−2 dy .

where we have used the trick that z̄ = z − 2iy becomes a holomorphic function of z when we
restrict to the line =(z) = y, so that we can apply Cauchy’s theorem to write the inner integral as
2πi times the residue of its integrand at the unique pole z = τ + 2iy. The lemma now follows by
(k −m− 2)-fold integration by parts. �

We can now use Lemma 3 to extend the domain of definition of πhol
k , which was previously

defined on the space of differentiable functions in the upper half-plane of sufficiently small growth
at infinity, to the (not direct!) sum of this space with the space AHol(H) of “almost holomorphic
functions” in the upper half-plane. Here “almost holomorphic” means a polynomial in 1/=(τ)
with holomorphic coefficients, just as it did in the case of almost holomorphic modular forms,
and we no longer need to require any growth condition, because the lemma allows us to define
the weight k holomorphic projection of any almost holomorphic function in the upper half-plane
simply by writing it as a finite linear combination of functions (τ − τ̄)−mh(τ) with h holomorphic
and applying formula (90), and also tells us that this definition agrees with the one given by the
Bergman integral whenever the function being projected is small at infinity as well as being almost
holomorphic. This extended definition is applicable in particular to almost holomorphic modular
forms, and we have:

Proposition 6. The projection maps πk and πhol
k from M̂k(Γ) to Mk(Γ) agree.

Proof. This follows directly by comparing formulas (83) and (90), using (87) and remembering
that Dmh is equal to (2πi)−mdmh/dτm . �

Proposition 6, combined with equation (84) and the bijection F 7→ F̂ between quasimodular

forms and almost holomorphic modular forms, tells us that LF,k(f) = πhol
k+K(fF̂ ) for f ∈Mk(Γ)

and F ∈ M̃K(Γ). (Note that the restriction m ≤ k−2 in Lemma 3 is not a problem here, since the
weight here is k+K and m is bounded by the depth of F and hence by K/2, so that the condition is
always satisfied when k is positive, and in fact also for k = 0 except in the case K = 2 and δ(F ) 6= 0,
where LF,k has to be renormalized by a factor k and then is an MLDO even in this case by the
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remarks following Theorem 13.) But now the discussion above immediately allows us to extend

this statement to arbitrary holomorphic functions f : the right-hand side makes sense because fF̂
is an almost holomorphic function, and the maps coincide because both are differentiable operators
and agree for all modular forms of weight k. Putting everything together, we get the following
theorem.

Theorem 14. For each positive integer k there is an isomorphism

M̃∗(Γ)
∼−→ MLDOk,k+∗(Γ) (91)

given by associating to F ∈ M̃K(Γ) the modular linear differential operator LF,k defined by

LF,k(f) = πhol
k+K(fF̂ ) , (92)

where πhol
k+K is the extended holomorphic projection operator defined above.
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(1985).

[12] Y. Honda and M. Kaneko, On Fourier coefficients of some meromorphic modular forms. Bull. Korean

Math. Soc. 49 (2012), 1349–1356.
[13] M. Kaneko and M. Koike, On extremal quasimodular forms. Kyushu J. Math. 60 (2006), 457–470.

[14] M. Kaneko, K. Nagatomo and Y. Sakai, Modular forms and second order ordinary differential equations:
applications to vertex operator algebras. Lett. Math. Phys. 103, no. 4 (2013), 439–453.

[15] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, In The Moduli

Spaces of Curves (R. Dijkgraaf, C. Faber, G. van der Geer, eds.), Prog. in Math. 129, Birkhäuser, Boston
(1995), 165–172.

[16] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin’s orthogonal polyno-

mials, AMS/IP Studies in Advanced Mathematics, 7 (1998), 97–126.
[17] P. Kleban and D. Zagier, Crossing probabilities and modular forms. J. Stat. Phys. 113 (2003), 431–454.

[18] M. Kuga and G. Shimura, On vector differential forms attached to automorphic forms, Journal of the

Mathematical Society of Japan, 12, no. 3 (1960), 258–270.



34 KIYOKAZU NAGATOMO, YUICHI SAKAI, AND DON ZAGIER

[19] N.V. Kuznetsov, A new class of identities for the Fourier coefficients of modular forms (in Russian), Acta

Arithm. 27 (1975), 505–519.
[20] F. Martin and E. Royer, Rankin-Cohen brackets on quasimodular forms. J. Ramanujan Math. Soc. 24 (2009),

213–233.

[21] G. Mason, Vector-valued modular forms and linear differential operators. Int. J. Number Theory 3 (2007),
377–390.

[22] G. Mason, K. Nagatomo and Y. Sakai, Vertex operator algebras with central charge 8 and 16. Contemporary

Mathematics 695 (2017), 157–186.
[23] S. Mathur, S. Mukhi and A. Sen, On the classification of rational conformal field theories, Phys. Lett. B 213

(1988), 303–308.
[24] S. Mathur, S. Mukhi and A. Sen, Reconstruction of conformal field theories from modular geometry on the

torus, Nucl. Phys. B 318 (1989), 483–540.

[25] K. Nagatomo and Y. Sakai, Characterization of minimal models with 5 and 6 simple modules and modular
differential equations. In preparation.

[26] K. Nagatomo and D. Zagier, sl2-Algebras: I. Rankin-Cohen algebras and associative sl2-algebras. In prepa-

ration.
[27] F. Rodriguez Villegas and D. Zagier, Square roots of central values of Hecke L-series. In Advances in Number

Theory (Proceedings of the Third Conference of the Canadian Number Theory Association), eds. F.Q. Gouvea

and N. Yui, Oxford University Press (1993), 81–99.
[28] A. Ramesh Chandra and S. Mukhi, Towards a classification of two-character rational conformal field theories,

J. High Energy Physics 04 (2019) 153, 61 pp.

[29] J-P. Serre, A Course in Arithmetic. Graduate Texts in Mathematics 7, Springer (1973), viii+115 pp.
[30] D. Zagier, Modular forms and differential operators. Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 57–75.

[31] D. Zagier, Elliptic modular forms and their applications. In J. Bruinier, G. Harder, G. van der Geer

and D. Zagier, The 1–2–3 of Modular Forms : Lectures at a Summer School in Nordfjordeid, Norway
(ed. K. Ranestad). Universitext, Springer-Verlag, Berlin–Heidelberg–New York (2008), 1–103.

[32] Y. Zhu, Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996), 237–302.

Osaka University, Osaka 565-0871, Japan

E-mail address: nagatomo@math.sci.osaka-u.ac.jp

Kurume Institute of Technology, Fukuoka 830-0052, Japan

E-mail address: dynamixaxs@gmail.com

Max Planck Institute for Mathematics, 53111 Bonn, Germany

International Centre for Theoretical Physics, Trieste, Italy

E-mail address: dbz@mpim-bonn.mpg.de


	1. Introduction
	2. Review of basic definitions
	3. Modular linear differential equations and their solution spaces
	4. Examples of modular linear differential operators of small orders
	5. Higher order examples: Rankin-Cohen brackets and higher Serre derivatives
	6. Structure theorems
	7. The expansion coefficients of modular linear differential operators
	8. Quasimodular forms and modular linear differential operators
	9. Cohen-Kuznetsov series, Rankin-Cohen brackets, and higher Serre derivatives
	10. Modified derivatives and extended Rankin-Cohen brackets
	11. Application: higher Serre derivatives of quasimodular forms
	12. Cocompact and non-cocompact lattices
	13. Primitive projection and modular linear differential operators
	14. Holomorphic projection and modular linear differential operators
	Acknowledgments
	References

