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Abstract. We prove that a curious generating series identity implies Faber’s intersection number con-

jecture (by showing that it implies a combinatorial identity already given in [3]) and give a new proof
of Faber’s conjecture by directly proving this identity.

We recall one of the equivalent forms of Faber’s conjecture, now a theorem, on proportionalities of
kappa-classes on the moduli space Mg of curves of genus g ≥ 2:

Theorem (Faber’s Intersection Number Conjecture [2]). Let n ≥ 2 and g ≥ 2. For any d1, . . . , dn ≥ 1,
d1 + · · ·+ dn = g − 2 + n, there exists a constant Cg that only depends on g such that

(1)
1

(2g − 3 + n)!

∫
Mg,n

λgλg−1

n∏
i=1

ψdi
i (2di − 1)!! = Cg .

Remark [2]. From the known value of
∫
Mg,1

λgλg−1ψ
g−1
1 one deduces the value Cg =

|B2g|
22g−1(2g)! , where

B2g is the (2g)th Bernoulli number.

This theorem has now been proved in several different ways. Getzler and Pandharipande [4] derived
it from the Virasoro constrains for P2, later proved by Givental [5]. Liu and Xu [8] derived it from
an identity for the n-point functions of the intersection numbers of ψ-classes that comes from the KdV
equation. Goulden, Jackson, and Vakil proved it for n ≤ 3 using degeneration and localization of Faber–
Hurwitz classes [6]. Buryak and Shadrin proved it using relations for double ramification cycles [1].
Finally, Pixton showed the compatibility of this theorem with Faber–Zagier relations in [10], also proved
by Faber and the second author (unpublished, see a remark in [9]). Together with a result of [9], this
shows that the Faber–Zagier relations imply this theorem. The proof we will give relies instead on the
following equivalence from [3], which was found via the so-called half-spin tautological relations [7]:

Theorem [3]. Faber’s intersection number conjecture is equivalent to the following system of combina-
torial identities: For any g, n ≥ 2 and a1, . . . , an ∈ Z≥0 with a1 + · · ·+ an = 2g − 3 + n,

0 =

n∑
k=1

(−1)k(2g − 3 + k)!

k!

∑
I1t···tIk=JnK
Ij 6=∅,∀j∈JkK

∑
d1,...,dk∈Z≥0

d1+···+dk=g−2+n

k∏
j=1

(
2a[Ij ] + 1

2dj

)
(2dj − 1)!!

(2dj + 1− 2|Ij |)!!
.(2)

Here by a[Ij ] we denote
∑

`∈Ij a` and by |Ij | we denote the cardinality of the set Ij ⊂ JnK, j = 1, . . . , k.

Since this theorem is an equivalence and Faber’s conjecture is proved, we know that the combinatorial
identity (2), which was already verified for 2 ≤ n ≤ 5 in [3], must hold for all n ≥ 2. Our goal is to give
an independent elementary proof of it. Specifically, we will show in Section 1 that (2) is a consequence
of the following curious identity, whose proof will then be given in Section 2.

Theorem 1. Let A(v, y) = v−1 P (v(1+y)2), where P (X) =
∑

a≥0 caX
a is a polynomial with infinitesimal

coefficients. Define a power series T (v, y) by

T (v, y) := y +

∞∑
r=1

1

r!

(1

y

d

dy

)r−1(1 + y

y
A(v, y)r

)
.

Then for every positive even integer N we have

(3)
[
vN−1y−2

](T (v, y)− T (v,−y)

2

)−N
= − (2N + 1)!

(N − 1)!(N + 1)!
cN .

We make several remarks about this statement. First of all, when we say that the ca’s are infinitesimal,
we simply mean all expressions being considered, such as T (v, y), belong to the formal power series ring
Q[v±1, y±1][[c0, c1, . . . ]] and there are therefore no convergence issues. Secondly, the restriction to N
positive and even is harmless since the left-hand side of (3) vanishes trivially for N = 0 or N odd.
Finally, equation (3) is slightly stronger than what we need to prove (2), for which it would suffice to
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know that the coefficient on the left is linear in the coefficients ca, i.e., that it has no terms of total degree
≥ 2 in the ca’s.

1. Reduction to a curious identity

Theorem 1 will be proved in §2. In this section we will show how it implies the identity (2) (and hence
Faber’s conjecture). To do this, we will rewrite the right-hand side of (2) in terms of a simpler expression
defined using generating functions.

Proposition. Let P (X) = P (x1, . . . , xn;X) =
∑n

`=1 x`X
a` and define S(v, y) = S(x1, . . . , xn; v, y) by

(4) S(v, y) = y +

n∑
r=1

1

r!

(1

y

d

dy

)r−1( (1 + y)P (v(1 + y)2)r + (1− y)P (v(1− y)2)r

2y

)
.

Then the right-hand side of (2) is equal to (2g − 3)! [x1 · · ·xn v2g+n−3 y−2]
(
S(v, y)2−2g

)
.

Proof. We first note that dividing by (2g− 3)! replaces the prefactor (−1)k(2g−3+k)!
k! in (2) by the simpler

binomial coefficient
(
2−2g
k

)
, and also that the sum from k = 1 to n can be replaced by a sum over all k ≥ 0

since a decomposition I1 t · · · t Ik = JnK with all Ij non-empty can only exist if 1 ≤ k ≤ n. Then we
introduce a formal variable y and use the equality

(2dj − 1)!!

(2dj + 1− 2|Ij |)!!
y2dj+1−2|Ij | =

(1

y

d

dy

)|Ij |−1
y2dj−1

to write the inner sum in (2) for given a` and Ij as the coefficient of y2g−4+k in

k∏
j=1

[(1

y

d

dy

)|Ij |−1 ∞∑
d=0

(
2a[Ij ] + 1

2d

)
y2d−1

]
=

k∏
j=1

[(1

y

d

dy

)|Ij |−1 (1 + y)2a[Ij ]
+1 + (1− y)2a[Ij ]

+1

2y

]
.

(Extracting the coefficient of y2g−4+k corresponds to the condition d1 + · · · + dk = g − 2 + n.) We now
introduce n+ 1 further formal variables x1, . . . , xn and v and use the identity

∑
I1t···tIk=JnK
I1,...,Ik 6=∅

F (I1) · · ·F (Ik) = [x1 · · ·xn]

( ∑
∅6=I⊆JnK

F (I)x{I}

)k

,

where x{I} stands for
∏

`∈I x`, which is valid for any function F on the power set of JnK, to write the

quotient of (2) by (2g − 3)! as the coefficient of x1 · · ·xn y2g−4 v2g+n−3 in

∞∑
k=0

(
2− 2g

k

)(
1

y

∑
∅6=I⊂JnK

x{I} v
a[I]

(1

y

d

dy

)|I|−1( (1 + y)2a[I]+1 + (1− y)2a[I]+1

2y

))k

=

(
1 +

1

y

∑
∅6=I⊂JnK

x{I} v
a[I]

(1

y

d

dy

)|I|−1( (1 + y)2a[I]+1 + (1− y)2a[I]+1

2y

))2−2g

.

(Here extracting the coefficient of v2g−3+n corresponds to the condition a1 + · · ·+ an = 2g− 3 + n.) The
proposition then follows by noting that the coefficient of x1 · · ·xn in a polynomial or power series depends
only on its congruence class of modulo the ideal generated by x 2

` (` = 1, . . . , n) and that, if we denote
this equivalence relation by ≡, we have∑

I⊆JnK
|I|=r

x{I} v
a[I] (1± y)2a[I] ≡ 1

r!
P (v(1± y)2)r ,

for each 0 ≤ r ≤ n, since each term
∏

`∈I x` v
a`(1 ± y)2a` appears r! times in P

(
v(1 ± y)2

)r
. The last

identity can also be justified by observing that the LHS is the coefficient of tr in
∏n

`=1

(
1+tx`v

a`(1±y)2a`
)
,

which is congruent to exp
(
tP (v(1± y)2)

)
. �

The identity (2) for g, n ≥ 2 follows immediately by combining Theorem 1 (with N = 2g − 2) and
the proposition (with the same P , so with ca equal to

∑
a`=a x`), since if we rescale x1, . . . , xn in (4)

by dividing them by v then the expression whose vanishing we have to prove is just the coefficient of
x1 · · ·xn in the left-hand side of (3), which vanishes for n > 1 because cN is linear in the x’s.



A CURIOUS IDENTITY THAT IMPLIES FABER’S CONJECTURE 3

2. Proof of the curious identity

In this section we prove Theorem 1. The first step is to give a different expression for the power series
T (v, y) appearing there. This is done in the following lemma, in which there is no parameter v.

Lemma. Let A(y) be a polynomial with infinitesimal coefficients. Then

y +
∑
r≥1

1

r!

(1

y

d

dy

)r−1(1 + y

y
A(y)r

)
= w + A(w) ,

where w is the solution near y=w of w2 = y2 + 2A(w).

Proof. This is in principle just an application of Lagrange’s inversion theorem, but we give a proof via
a residue calculation. As with Theorem 1, “polynomial with infinitesimal coefficients” means that all
expressions being considered are to be interpreted as formal power series (with coefficients in the ring
of Laurent polynomials in y) in the coefficients of A. The easiest way to keep track of everything is to
replace A(y) by xF (y), where F is a polynomial, so that the powers of x keep track of the degree of the

terms with respect to the coefficients of A. Then setting T = w+ xF (w) = w+ w2−y2

2 and using residue
calculus (with y fixed and x variable), we find:

[xr](T ) = Res
x=0

(w + w2/2

xr+1
dx
)

=
1

r
Res
w=y

(1 + w

w
F (w)r

dz

zr

)
=

1

r!

(1

y

d

dy

)r−1(1 + y

y
F (y)r

)
for r > 0, where we have used the local parameter z = xF (w) = w2−y2

2 , d
dz = 1

y
d
dy , near w = y. �

Proof of Theorem 1. Applying the lemma to A(v, y), we find that T (v,±y) = w±+A(v, w±), where w± is

the solution of w2−2A(v, w) = y2 near to ±y. Our goal is to show that [v−1y−2]S−N = − (2N+1)!
(N−1)!(N+1)!cN

for N > 0 even, where S := v T (v,y)−T (v,−y)
2 and A(v, y) =

∑
a cav

a−1(1 + y)2a. The first step is to note
that, again by residue calculus, for fixed v we have

[y−2]S−N = Res
y=0

y dy

SN
= Res

y=0

d(y2/2)

SN
= −1

2
Res
S=0

y2 d(S−N ) =
N

2
Res
S=0

y2 dS

SN+1
=
N

2
[SN ] y2 .

Hence the identity to be proved can also be written as [v0SN ](Y ) = −
(
2N+2
N+1

)
cN for N > 0 even,

where Y = (y2− 1)v. (As already mentioned in the introduction, this coefficient is trivially 0 if N is zero

or odd.) We define new variables V, W, W̃ by V =
√
v, W = (1 + w+)V , W̃ = (1 + w−)V . Then S, V

and Y all become polynomials in W and W̃ , namely

S =
W 2 − W̃ 2

4
, V =

1

2

Q(W )−Q(W̃ )

W − W̃
, Y =

WQ(W̃ )− W̃Q(W )

W − W̃
,

where Q(X) = X2−2P (X2). Now change variables again by (W, W̃ ) = (r+s, r−s) and set Q± = Q(r±s).
Then a simple computation shows that

S = rs, V =
Q+ −Q−

4s
, Y =

Q+ +Q−

2
− 2rV

and the quantity that we want to compute is

[V 0SN ](Y ) = Res
V=0

Res
S=0

(
Y
dV

V

dS

SN+1

)
=
[
rNsN

](JY
V

)
,

where J = rVr − sVs, with Vr = ∂V/∂r and Vs = ∂V/∂s, is the Jacobian of the transformation (r, s) 7→
(V, S). We have

JY

V
= 2r

(
sVs−rVr

)
+
rVr − sVs

2V

(
Q+ +Q−

)
= 2r

(
sVs−rVr

)
+
(1

2
+
r(sV )r − s(sV )s

2sV

)
(Q+ +Q−) .

The coefficient of rNsN in the first two terms is easily computed in closed form and is given by[
rNsN

](
2r
(
sVs − rVr

)
+
Q+ +Q−

2

)
= −2cN

((
2N

N − 1

)
+

(
2N

N

))
= −

(
2N + 2

N + 1

)
cN ,

and the two numbers [rNsN ]
( r(sV )r−s(sV )s

sV Q±
)

both vanish because they are diagonal coefficients of
power series in r and s that are antisymmetric under interchange of the two variables. (To see that
(r(sV )r−s(sV )s)/(sV ) is a power series in r and s, note that Q is an even polynomial with non-vanishing
quadratic term, so sV is rs times a polynomial with non-vanishing constant term and r(sV )r − s(sV )s
is divisible by rs.) �
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3. Another curious identity

In the course of finding and proving Theorem 1 we empirically discovered the following result, which
seems interesting enough to be worth stating, even though we don’t know of any applications, since it
may indicate that there are much more general identities of this sort.

Theorem 2. Let all notations be as in Theorem 1. Then for all N ≥ 1 one has

(5)
[
vN−1y−2

](T (v, y) + y

2

)−N
= − N

4

(
2N + 2

N + 1

)
cN .

Proof of Theorem 2. The proof follows the same lines as that of Theorem 1. We again set V =
√
v,

W = (1+w)V, Y = (y2−1)v and want to evaluate RN := [V 0SN ](Y ), but now with S := v(T (v, y)+y)/2.
This time we define the new local coordinates r and s by r = (W +(1−y)V )/2 and s = (W −(1−y)V )/2,
so that the variables (r, s) are again related to W and S by r+s = W and rs = S. The expressions sV =
rs−P ((r+s)2)/2 and Y = (r−s)2−2(r−s)V are now different polynomials in r and s, but we still have
RN = [rNsN ](JY/V ) and J = rVr−sVs. Then JY/V = −2(r−s)J+(r−s)2(1+(r(sV )r−s(sV )s)/(sV )).
The first two terms are easy and give the desired binomial coefficient times cN , and the last one is
antisymmetric and hence gives 0. The only slightly tricky point is that (r(sV )r − s(sV )s)/(sV ) is no
longer a power series in r and s, but instead a power series in the infinitesimal variables whose coefficients
are Laurent polynomials in r an s, rather than polynomials as before. �
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