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Abstract

We consider the fourteen families W of Calabi-Yau threefolds with one complex
structure parameter and Picard-Fuchs equation of hypergeometric type, like the mirror
of the quintic in P4. Mirror symmetry identifies the masses of even–dimensional D–
branes of the mirror Calabi-Yau M with four periods of the holomorphic (3, 0)-form
over a symplectic basis of H3(W,Z). It was discovered by Chad Schoen that the singular
fiber at the conifold of the quintic gives rise to a Hecke eigenform of weight four under
Γ0(25), whose Hecke eigenvalues are determined by the Hasse-Weil zeta function which
can be obtained by counting points of that fiber over finite fields. Similar features are
known for the thirteen other cases. In two cases we further find special regular points,
so called rank two attractor points, where the Hasse-Weil zeta function gives rise to
modular forms of weight four and two. We numerically identify entries of the period
matrix at these special fibers as periods and quasiperiods of the associated modular
forms. In one case we prove this by constructing a correspondence between the conifold
fiber and a Kuga-Sato variety. We also comment on simpler applications to local Calabi-
Yau threefolds.
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1 Introduction

In this work we study classical questions concerning fourteen fourth order differential equa-

tions of hypergeometric type, with solutions such as

$0(z) =

∞∑
n=0

(5n)!

(n!)5
zn , (1.1)

using geometric and arithmetic tools. These differential equations are the unique hyper-

geometric Picard-Fuchs equations that describe the variation of the Hodge structure in

one-parameter families of Calabi-Yau threefolds W → Mcs = P1 \\ {0, µ,∞}. In the case

that W is the mirror of the quintic hypersurface M in P4, (2πi)3$0 =
∫
T 3 Ω is a period of

the holomorphic (3, 0) form Ω over a three-torus. The mirror manifold W can be obtained

as a resolved orbifold of a subfamily of M by a group action of (Z/5Z)3. The other thirteen

differential operators and its solutions have similar geometric interpretations. The mani-

folds M , their topological invariants and the parameters specifying the differential operators

are summarized in Table 1.

All hypergeometric systems have a point of maximal unipotent monodromy (MUM-

point) at z = 0 and a conifold point at z = µ. At z =∞ the quintic mirror has an orbifold

point , which can be made into a regular point by going to a five fold cover, at the expense of

introducing five conifold points at the fifths roots of µ. It has been pointed out in [95] that

after locally removing this finite branching, one-parameter families of Calabi-Yau threefolds

can have three types of limiting mixed Hodge structures at their critical points. Besides the

two types mentioned above there are also K-points, see [95]. It can be seen in Table 1 that

the fourteen hypergeometric operators exhibit any of the three types of singular points at

z =∞.

A classical task in the theory of differential equations is to analyze the global structure

of its solutions. The parameter space Mcs can be covered by three patches around the

singular points z ∈ {0, µ,∞}. At any of these, vectors Πz of local Frobenius solutions can

be constructed and have overlapping regions of convergence. Around z = 0 a canonical basis

Π, corresponding to an integral symplectic basis of cycles, exists and the global solutions are

then specified by a choice of branch cuts and the transition matrices Tz (with Π = TzΠz).

Using a Barnes integral representation, T∞ can be determined in terms of values of Gamma

functions and their derivatives extending a method pioneered in [21] for the mirror quintic.

The transition matrix Tµ has been determined in [51] first in terms of nine real numerical

constants that were found to be related by quadratic Legendre relations that cut them down

to six constants. In Section 2.3 we derive these relations from special geometry. In [85] the

nine constants were analytically determined and given as infinite sums of special values of

hypergeometric functions 3F2. In this work we numerically relate, for each of the fourteen

hypergeometric models, at least four of these constants to periods and quasiperiods of

modular forms determined by arithmetic properties of the conifold fiber Wµ.

Since Π corresponds to an integral symplectic basis of cycles, the monodromy group acts
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as a subgroup of Sp(4,Z) on Π. Guided by mirror symmetry the authors of [21] obtained a

special choice Π for such an integer basis for the quintic, which encodes at the MUM-point

the topological data of M and the genus zero Gromov-Witten invariants. This lead to the

Γ̂-class formalism which identifies periods over an integral symplectic basis of H3(W,Z) to

canonical algebraic K0
alg-theory classes of coherent sheaves with support on k-dimensional

holomorphic submanifolds on the mirror M ( [49], [54], [60], [36]). In physics this basis is

singled out because the K0
alg-theory classes map naturally to the central charges of D(2k)–

branes on M , which determine the masses of the latter.

In Section 3.1 we motivate and provide overwhelming numerical evidence for the con-

jecture1 that two entries of Tµ, which correspond to periods at the conifold that determine

the D4 and D2 brane central charges and masses, are given by two periods ω± associated

to weight four Hecke eigenforms f , which in the case of the quintic can be given by

f(τ) =
η(5τ)10

η(τ)η(25τ)
+ 5η(τ)2η(5τ)4η(25τ)2 = q + q2 + 7q3 − 7q4 + 7q6 + · · · (1.2)

with the Dedekind eta function η and q = e2πiτ . The coefficients of f have a precise number

theoretical meaning in terms of the number of points of Wµ over finite fields Fq [86]. More

generally, these numbers determine the Hasse-Weil zeta function as reviewed in Section

A.3.2. For a discussion of the role of mirror symmetry in this context see [22]. The definition

of the periods ω± which uses the theory of Eichler integrals and period polynomials is

reviewed more generally in Appendix A.1.3 and exemplified for level 25 in A.1.4. In Section

3.1 we also motivate and verify a new conjecture that two other entries in Tµ are given

by quasiperiods η± associated to f . The quasiperiods are obtained by associating with

f a certain cohomology class represented by meromorphic modular forms, which has the

same Hecke eigenvalues as f . For such a class one can again define an Eichler integral

and the period polynomials of this give rise to the quasiperiods. This theory is developed

in Appendix A.2 and exemplified for level 25 in A.2.2. The periods and quasiperiods are

related by a quadratic relation which we also call Legendre relation.

One way to prove the two conjectures is to construct an explicit correspondence be-

tween the conifold fiber Wµ and the relevant Kuga–Sato variety. The Kuga–Sato variety is

constructed from a fibration of elliptic curves over a modular curve. The correspondence

allows to identify the periods of Wµ with periods of the Kuga–Sato variety and the latter

are canonically identified with periods and quasiperiods of modular forms. In Section 4 we

provide such a correspondence and hence the proof of the above conjectures for the Calabi-

Yau family which is mirror to four quadrics in P7. In this case we can further numerically

identify all entries of Tµ in terms of periods, quasiperiods, factors of 2πi and log 2. An

intermediate result between the numerical evidence and the full construction of the corre-

spondence with a Kuga-Sato variety can be obtained by the technique of fibering out of

motives [13].

1This can be expected from motivic arguments and was communicated to us by M. Kontsevich and V.
Golyshev.
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Our results are not specific for hypergeometric families of Calabi-Yau threefolds, i.e.

by motivic conjectures it is expected that the identification of the Galois representation of

a variety with that of modular forms implies that periods of the variety can be given by

periods and quasiperiods of modular forms. We give further examples in this direction,

by considering rank two attractor points. Such points were introduced in the context of

charged black holes in type IIB string compactifications on Calabi-Yau threefolds [78].

For one-parameter families of Calabi-Yau threefolds, rank two attractor points are

smooth fibers in the moduli space such that the Betti cohomology of the fiber has a split-

ting into two parts which is compatible with the Hodge decomposition. Conjecturally, this

induces a splitting of the Galois representation and this can give rise to modular forms of

weight 4 and weight 2. Using a p-adic method [23] for the computation of the Hasse-Weil

zeta function allows to find such points [20]. We find two rank 2 attractor points for the

hypergeometric families

X3,3(16) at z∗ = −1/2336 and X4,3(1521) at z∗ = −1/2433 . (1.3)

Numerically we find that the associated period matrices can be given completely in terms

of the periods and quasiperiods of the associated modular forms.

Other examples of one parameter Calabi-Yau threefolds whose Galois representation is

related to automorphic forms are known, e.g. [96] for the case of GSp(4) (para)modular

forms 2. Even in the hypergeometric one-parameter families there are further examples,

including the occurrence of two Hilbert modular forms for X2,2,2,2(18) at z = (17±12
√

2)/28

and modular forms of weight 3 and 2 for X2,2,2,2(18) at z = −1/28, where in the latter case

the Galois representation is given by the product of the Galois representations attached to

the modular forms.

Surprisingly, these number theoretic considerations have quite deep and wide ranging

connections to physics. Generically, the D–brane central charges and hence their masses

are completely determined by the periods and therefore they take particular interesting

arithmetic values at the special points. The ratio of the D–brane central charge of the

D2–brane to the one of the D0–brane at the conifold point determines the growth of the

Gromov-Witten invariants [21] or the BPS numbers of D2–D0 bound states at the MUM

point, which in turn is related to the Bekenstein–Hawking entropy of spinning N = 2 black

holes. It can be exactly determined in terms of periods of modular forms for the first time

in the X2,2,2,2(18) model. At rank two attractor points the periods describe the value of

the moduli of the vector multiplets at the horizon of N = 2 black hole solutions in type

IIB string compactifications which are isolated supersymmetric N = 2 vacua for which the

theta-angles for the U(1) gauge couplings are fixed by the periods and quasiperiods [11].

Moreover the arithmetic structure of Calabi-Yau threefold periods can also used to fix

master integrals that are associated to the four loop banana Feynman integral [12], [1].

2Examples of these kind are investigated in an international project on GSp(4) motives. For more
information contact Vasily Golyshev.

4



Acknowledgement: It is a pleasure to thank Francis Brown, Philip Candelas, Vasily

Golyshev, Alexander Goncharov, Minxin Huang, Amir Kashani-Poor, Sheldon Katz, Maxim

Kontsevich, Greg Moore, Fernando Rodriguez Villegas, Cumrun Vafa, Duco van Straten

and Eric Zaslow for very useful discussions and comments. In particular we like to thank

Georg Oberdieck for discussion and help with the resolution of singularities of the quotient

of the four quadrics in P7 that leads to the construction of its mirror in Section 2.4.2. K.B.

is supported by the International Max Planck Research School on Moduli Spaces of the

Max Planck Institute for Mathematics in Bonn. A.K. likes to thank Dr. Max Rössler, the
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2 Hypergeometric one-parameter Calabi-Yau threefolds

In this section we introduce the hypergeometric Picard-Fuchs equations describing the vari-

ation of Hodge structure of one-parameter families of Calabi-Yau threefolds. We explain

the choice of solutions corresponding to an integral symplectic basis of cycles and derive

the quadratic Legendre relations satisfied by the periods from special geometry. We then

construct the one-parameter families W by resolving orbifolds of their mirrors M . Finally

we describe the physical significance of the periods in type II string compactifications on

the Calabi-Yau manifolds.

2.1 Fourth order hypergeometric Picard-Fuchs operators

The fourteen hypergeometric fourth order differential operators that arise as Picard-Fuchs

operators for one-parameter families of Calabi-Yau threefolds are given by

L = θ4 − µ−1z
4∏

k = 1

(θ + ak) (2.1)

with θ = z d
dz and for the values of µ and {ak} specified in the Table 1.

The associated Riemann symbol

P


0 µ ∞
0 0 a1

0 1 a2

0 1 a3

0 2 a4

 (2.2)

shows that the system (2.1) has always three regular singular points at z ∈ {0, µ,∞} so

that the parameter space of z is Mcs = P1 \\ {0, µ,∞}. The theorem of Landman [72]

states that principal properties of a monodromy matrix M∗ around a singular point ∗ or

more generally a divisor D in Mcs are captured by the minimal integer 1 ≤ k < ∞ such

that

(Mk
∗ − 1)p+1 = 0 (2.3)
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N a1, a2, a3, a4 1/µ Mirror M κ c2 ·D χ(M)

8 1
2 ,

1
2 ,

1
2 ,

1
2 28 X2,2,2,2(18) 16 64 −128

9 1
4 ,

1
3 ,

2
3 ,

3
4 2633 X4,3(1521) 6 48 −156

16 1
4 ,

1
2 ,

1
2 ,

3
4 210 X4,2(16) 8 56 −176

25 1
5 ,

2
5 ,

3
5 ,

4
5 55 X5(15) 5 50 −200

27 1
3 ,

1
3 ,

2
3 ,

2
3 36 X3,3(16) 9 54 −144

32 1
4 ,

1
4 ,

3
4 ,

3
4 212 X4,4(1422) 4 40 −144

36 1
3 ,

1
2 ,

1
2 ,

2
3 2433 X3,2,2(17) 12 60 −144

72 1
6 ,

1
2 ,

1
2 ,

5
6 2833 X6,2(1531) 4 52 −256

108 1
6 ,

1
3 ,

2
3 ,

5
6 2436 X6(1421) 3 42 −204

128 1
8 ,

3
8 ,

5
8 ,

7
8 216 X8(1441) 2 44 −296

144 1
6 ,

1
4 ,

3
4 ,

5
6 21033 X6,4(132231) 2 32 −156

200 1
10 ,

3
10 ,

7
10 ,

9
10 2855 X10(132151) 1 34 −288

216 1
6 ,

1
6 ,

5
6 ,

5
6 2836 X6,6(122232) 1 22 −120

864 1
12 ,

5
12 ,

7
12 ,

11
12 21236 X12,2(144161) 1 46 −484

Table 1: Data of fourteen one–parameter Calabi–Yau families W with hypergeometric
Picard–Fuchs operators, arranged according to the level N of the weight four cusp form
f4 ∈ S4(Γ0(N)) associated with the modular conifold fiber Wµ. The coefficients ai and µ
specify the Picard-Fuchs operator (2.1). The mirror M of the first thirteen families are
generically smooth complete intersection of r polynomials Pj of degree dj in the weighted
projective spaces P3+r(w1, . . . , w4+r). The notation is such that e.g. X4,3(1521) stands for
the intersection of a quartic and a cubic in P5(1, 1, 1, 1, 1, 2). The mirror of the last family is
a generically non-smooth intersection in the indicated space. The last three columns denote
the triple intersection number κ = D3 of M , the intersection number of D with the class
c2(TM) and the Euler number χ(M).

for some 0 ≤ p ≤ dimC(W ). If k > 1 there is a finite order branch cut transversal to the

divisor D. If in addition p = 0, D is called an orbifold divisor. Locally one can consider

a k-fold covering of Mcs and remove the finite branching. After this, one has k = 1 and

can consider the limiting mixed Hodge structure [95]. If p > 0 one has an infinite shift

symmetry. For p = 1 either of the two following cases arises. In the first case, there is

a a single vanishing period dual to a logarithmic degenerating period at z = ∗. Such a

point is called conifold point and the local exponents 3 in (2.2) have the schematic form

(a, b, b, c). In the second case, there are two distinct vanishing periods that are dual to two

distinct logarithmic degenerating periods at z = ∗. Such a point is called K–point and

has local exponents of the form (a, a, b, b). The value p = 2 cannot occur due to Schmid’s

3Here a 6= b 6= c and ka, kb, kc ∈ Z.
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SL(2,C) orbit theorem and for p = 3 one has a point of maximal unipotent monodromy,

the MUM–point, with local exponents (a, a, a, a). The latter fact implies that besides a

holomorphic solution also single, double and triple logarithmic solutions exist at this point.

From the entries in the columns of (2.2) under the singular point one sees that at z = 0 one

has a MUM-point, at z = µ a conifold point and at z = ∞ generically a finite branching.

All types of limiting mixed Hodge structures that can occur according to [95], do occur

in hypergeometric examples. The enumerative geometry of the X2,2,2,2(18) model at the

second MUM-point with local exponents 1
2 ,

1
2 ,

1
2 ,

1
2 is studied in [64].

2.2 The choice of the integral symplectic basis at the MUM-point

A basis Π of periods corresponding to an integral symplectic basis of cycles has been deter-

mined for the mirror quintic in [21] by identifying the period F0 =
∫
S3 Ω over the vanishing

three sphere S3 near the conifold z = µ, see (3.4), and making the corresponding Picard–

Lefshetz monodromy Mµ simultaneously integral symplectic with the order five orbifold

monodromy M∞. Using the Barnes integral representation (3.12) F0 can be exactly an-

alytically continued to the MUM-point. This calculation reveals the following facts that

generalize to all hypergeometric cases [65], [33], [29]: F0 degenerates with a triple logarithm

at the MUM-point z = 0. The S3 is symplectic dual to the three torus T 3, whose period

gives rise to a holomorphic solution X0 at the MUM-point. The remaining Sp(4,Z) am-

biguity can be canonically fixed by identifying the coordinate t of the complexified Kähler

moduli space McK of M with the ratios of the periods given in (2.19) and using special

geometry on the mirror manifold M at its large volume point. This is explained in Section

2.5 and leads to the Γ̂-class conjecture that relates the period vector Π systematically to

the central charges of the even–dimensional branes on M .

In the following we explain how the integral period vector Π can be defined for all

examples by the observations made in [50]. At the MUM-point z = 0 a unique basis of

solutions of the Picard-Fuchs equation can be defined by

Π0(z) =


f0(z)

f0(z) log(z) + f1(z)
1
2f0(z) log2(z) + f1(z) log(z) + f2(z)

1
6f0(z) log3(z) + 1

2f1(z) log2(z) + f2(z) log(z) + f3(z)

 (2.4)

for power series normalized by f0(0) = 1 and f1(0) = f2(0) = f3(0) = 0. It was observed

in [50] that from

(2πi)3
∞∑

k = 0

∏r
l = 1 Γ(dl(k + ε) + 1)∏r+4
l = 1 Γ(wl(k + ε) + 1)

zk+ε =

∞∑
m = 0

Lm(z)(2πiε)m , (2.5)

where the weights wl and the degrees dl are given in Table 1, one gets four solutions Lm(z)
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for m = 0, 1, 2, 3 that constitute a Q–basis and combine into a Z–basis Π by

Π =


F0

F1

X0

X1

=


κL3 + c2·D

12 L1

−κL2 + σL1

L0

L1

= (2πi)3


ζ(3)χ(M)

(2πi)3
c2·D

24·2πi 0 κ
(2πi)3

c2·D
24

σ
2πi − κ

(2πi)2
0

1 0 0 0
0 1

2πi 0 0

Π0 .

(2.6)

The constants in (2.6) can be related to topological invariants of the mirror M . If D is the

positive generator of H4(M,Z) then κ = D ·D ·D denotes the triple intersection number

on M . The integer c2 ·D denotes the intersection of the second Chern class c2(TM) of the

tangent bundle of M with D, and χ(M) denotes the Euler number of M . The constant σ

can be chosen to be

σ = (κ mod 2)/2 , (2.7)

since there is an Sp(4,Z) transformation corresponding to a shift of σ by 1. With these

choices Π corresponds to periods over an integral symplectic basis of cycles A0, A1, B0, B1 ∈
H3(W,Z) with non-vanishing intersections Ai ∩Bj = δij , i.e. the intersection matrix in this

basis is given by

Σ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 . (2.8)

The topological invariants are summarized in Table 1. They also determine the monodromy

matrix at the MUM-point

M0 =


1 −1 κ

6 + c2·D
12

κ
2 + σ

0 1 σ − κ
2 −κ

0 0 1 0
0 0 1 1

 (2.9)

with respect to the basis Π. Note that integrality of M0 implies that 2κ+c2 ·D ≡ 0 mod 12,

which follows geometrically from the Hirzebruch–Riemann–Roch theorem and the integral-

ity of the holomorphic Euler characteristic χ(OD) of D. Together with the conifold shift

monodromy

Mµ =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

 (2.10)

these matrices generate the monodromy group Γ ⊂ Sp(4,Z). These monodromy groups

have been analyzed in [65], [33] and [29]. The index of these monodromy groups in Sp(4,Z)

has been studied in [47].

2.3 The Legendre relations and special geometry

In this section we prove the Legendre relations satisfied by the transition matrices using

the fact that the Picard-Fuchs equation comes from a family of Calabi-Yau threefolds. We
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also recall consequences of special geometry and mirror symmetry. For more background

we refer to [18] and [21].

For a family of Calabi–Yau threefolds π : W → Mcs (with fibers Wz over z ∈ M),

one obtains a polarized variation of Hodge structure on the bundle H = ∪z∈MH3(Wz,C).

This bundle is equipped with a Hodge filtration F3 ⊆ F2 ⊆ F1 ⊆ F0 = H, where Fp

are holomorphic subbundles with fibers Fpz =
⊕

l≥pH
l,3−l(Wz). The bundle F3 is one-

dimensional and can be trivialized by a holomorphic section Ω. The bundle H is further

equipped with a connection ∇, called the Gauss–Manin connection, which can be defined by

the requirement that d
dzi

∫
γ ω =

∫
γ ∇iω for any holomorphic section ω and any constant cycle

γ defined over a contractible subset ofMcs. This connection satisfies Griffiths transversality,

i.e. ∇iΓ(Fp) ⊆ Γ(Fp+1), and is flat with respect to the intersection pairing < ·, · >: Γ(H)×
Γ(H)→ OMcs defined by < ω1, ω2 >=

∫
W ω1 ∧ ω2.

In our case of one-parameter families it follows that

< ∇kΩ,Ω > = ΠTΣ
dk

dzk
Π =

{
0 if k < 3

Czzz if k = 3 ,
(2.11)

where Czzz is a holomorphic function. Expanding the Picard-Fuchs operator as L =∑4
k=0Ak(z)

dk

dzk
and using the antisymmetry of the intersection pairing and Griffiths transver-

sality we find that

d

dz
< Ω,∇3Ω > =< ∇Ω,∇3Ω > + < Ω,∇4Ω > (2.12)

=
d

dz

 d

dz
< Ω,∇2Ω >︸ ︷︷ ︸

=0

− < Ω,∇3Ω >

− A3(z)

A4(z)
< Ω,∇3Ω > (2.13)

and thus

C ′zzz(z) +
1

2

A3(z)

A4(z)
Czzz(z) = 0 .

Solving this differential equation and using the structure of Π around the MUM-point z = 0

to fix the normalization gives

Czzz(z) =
(2πi)3κ

z3(1− z/µ)
. (2.14)

We are now in the position to prove the following Lemma.

Lemma 1. For any CY threefold hypergeometric system in Table 1 let δ = 1 − z/µ be

the conifold variable and ΠT
µ (z) = (1 + O(δ)3, ν(δ), δ2 + O(δ3), ν(δ) log(δ) + O(δ3)) with

ν(δ) = δ +O(δ2) a uniquely determined basis of the solutions of the Picard-Fuchs equation

around the conifold point. Then the transition matrix Tµ between the integral symplectic

basis Π (2.6) and the basis Πµ (which is defined by Π = TµΠµ and depends on a chosen

path of analytic continuation) fulfills the quadratic relation

(2πi)3


0 0 κ

2 0
0 0 −ακ −κ
−κ

2 ακ 0 0
0 κ 0 0

 = T Tµ


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

Tµ (2.15)
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with

α =
3

4

 4∑
i = 1

ai −
4∑
i<j

aiaj

 . (2.16)

Proof. With the intersection matrix Σµ = T Tµ ΣTµ in the basis Πµ we have

ΠT
µΣµ

dk

dzk
Πµ =

{
0 if k < 3

Czzz if k = 3 .
(2.17)

Expanding Πµ up to the third order in δ and solving for the intersection matrix Σµ gives

the relation (2.15).

The proof of the Lemma works analogous for any local basis Πz around any point z

and yields similar Legendre relations. For z = ∞ as calculated in (3.13) one can easily

check them, and for the attractor points they lead to the Legendre relations of periods and

quasiperiods of modular forms as discussed in Section 3.3.

We conclude this subsection with some comments on the Kähler structure and mirror

symmetry. Griffiths transversality implies that locally the full period vector Π (in a suitable

integer smyplectic basis) can be written in terms of a holomorphic prepotential F (X0, X1)

that is homogeneous of degree two in its arguments as ΠT = (F0, F1, X
0, X1) with F0 =

∂X0F and F1 = ∂X1F . In the inhomogeneous coordinate t = X1/X0 this relation becomes

ΠT = X0(2F − t∂tF , ∂tF , 1, t) (2.18)

with F(t) = F (1, t). Note that (2.17) then implies 1
(X0)2

(dz
dt )

3Czzz = −∂3
tF(t).

We now illustrate the structure around the MUM point z = 0 with the periods Π chosen

as in (2.6). The mirror map then has the form

t(z) = X1/X0 = log(z)/2πi+O(z) . (2.19)

In the limit z → 0, corresponding to t → i∞, mirror symmetry suggests that t can be

interpreted as a complexified Kähler coordinate t =
∫
Cβ
b + iω on the mirror M of W ,

where ω is the positive generator of H1,1(M,Z), b ∈ Ω2(M,R) is the Neveu-Schwarz 2-form

which by the equations of motion is harmonic and Cβ is a primitive curve class spanning

the Mori cone that is dual to the Kähler cone of M . Hence t =
∫
Cβ
b + iArea(Cβ) and

t→ i∞ corresponds to the maximal volume limit of M . One gets by comparison of (2.18)

with (2.6)

F = −κ
6
t3 +

σ

2
t2 +

c2 ·D
24

t+
χ(M)

2

ζ(3)

(2πi)3
−Finst(Q) . (2.20)

Here Q = e2πit such that the instanton corrections Finst(Q) are exponentially suppressed

near the MUM–point. The famous predictions of the genus zero BPS invariants nβ0 are

obtained from the expansion

Finst(Q) =
1

(2πi)3

∞∑
β=1

nβ0 Li3(Qβ) , (2.21)
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with e.g. {nβ0} = {2875, 609250, 317206375, 242467530000, . . .} for the quintic. Note that

n0
0 = −χ(M)/2 can be viewed as the degree zero genus zero BPS number. More generally

nβg = (−1)dimMβ
gχ(Mβ

g ) if the moduli Mβ
g of the Jacobian fibration over the deformation

space of the image curve Cg is smooth [39] [59]. For the constant mapsMβ
g = M so that we

get −χ(M) and the factor 1/2 comes from the zero mode structure of constant maps. The

regularizing factor ζ(3) = Li3(1) should also be understandable in Gromov–Witten theory.

Comparison of (2.20) with the normalization X0(z) = (2πi)3 +O(z) and its relation to the

third derivative of the prepotential fixes the choice of the normalization of Czzz in (2.14) in

order to get 1
(X0)2

(dz
dt )

3Czzz = κ+O(Q) at the MUM-point.

The complex structure moduli space Mcs can be equipped with the Weil-Petersson

metric with components Gīj = ∂ī∂jK in terms of the Kähler potential K defined by

e−K = i〈Ω, Ω̄〉 = −iΠ†ΣΠ . (2.22)

Note that this metric is independent of the choice of the holomorphic section Ω.

2.4 The geometry of hypergeometric one-parameter Calabi-Yau families

In this subsection we explain the construction of the mirror Calabi-Yau families W with

one complex structure parameter as resolved orbifolds of the manifolds M in Table 1. The

resolved orbifolds are projective algebraic and one can determine their Hasse-Weil zeta

functions geometrically as in [22].

The orbifold group Γ will be an abelian group. It is maximal in the sense that a family

Minv that admits the action of Γ has only one complex structure deformation. (See the

quintic example in Section 2.4.1 for more explanations.) The action on Minv leaves the

restriction of the holomorphic (3, 0)-form Ω of M to Minv invariant. Under this condition

the orbifold admits a Calabi-Yau resolution W = M̂inv/Γ, which can be identified with

the mirror of M . Orbifold constructions have been studied from the physical point of view

by [28] and from the mathematical point of view by [46]. According to [46] the Euler number

of the Calabi-Yau orbifold resolution is given by

χ(M̂/Γ) =
∑
[γ]

χ(M 〈γ〉/C(γ)) =
∑
[γ]

1

|C(γ)|
∑

δ∈C(γ)

χ(M 〈γ,δ〉) , (2.23)

where [γ] is summed over all conjugacy classes of Γ, C(γ) is the centralizer of γ, 〈γ, δ〉
denotes the subgroup of Γ generated by γ and δ and M 〈γ,δ〉 its fixed point set. Here we

abbreviate by M a smooth member of Minv such that its fixed point loci admit a suitable

smooth stratification. In our applications Γ is abelian and thus the sums extend over all

γ, δ ∈ Γ and 1/|C(γ)| = 1/|Γ| can be pulled out of the first sum in the last expression in

(2.23). We rewrite this formula by denoting by MG, for any subgroup G ⊂ Γ, the subset

MGr
⋃

Γ⊇G′)GM
G′ of points in M whose stabilizer is exactly G. Then MG =

⊔
G′⊇GMG′

(disjoint union), and hence χ(MG) =
∑

G′⊇G χ(MG′), so (2.23) can be recast as

χ(M̂/Γ) =
∑
G⊆Γ

|G|2

|Γ|
χ(MG) . (2.24)
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For suitable Γ this in particular allows to check that χ(W ) = −χ(M) and by further

analysis h1,1(W ) = h2,1(M). Orbifold mirror constructions for non-singular Minv have

been described in literature. For the quintic X5(15) this was done in [21] and for the

hypersurface examples X6(1421), X8(1441) and X10(132151) in weighted projective spaces

the procedure is very similar [65]4. For the complete intersections X3,3(16) the mirror has

been constructed in [74] and for X4,4(1422) as well as X6,6(122232) in [66]. However, for M

given by four quadrics in P7, denoted by X2,2,2,2(18), Minv is singular, and this case has

not been treated explicitly in the literature 5. This case is of particular interest as we will

relate the conifold fiber to a Kuga-Sato variety in Section 4. Since Minv is a generically

singular family (singular apart from the orbifold action) it requires additional resolutions,

which will be explained in Subsection 2.4.2. The mirror construction described here will

apply to all complete intersection hypergeometric cases, but has to be generalized for the

family X12,2(144161), which is special as it has no smooth member even before we restrict

to Minv. In this case the mirror can be realized as a sublocus of a smooth three–parameter

family of elliptically and K3–fibered Calabi–Yau threefolds [62], [25].

2.4.1 Mirror construction for the quintic

We exemplify the strategy with the quintic Calabi-Yau threefold, where the family M is

defined by the zero locus of generic degree five polynomials P in the projective space P4

Mψ = {P (x0, . . . , x4;ψ) = 0
∣∣ (x0 : . . . : x4) ∈ P4} . (2.25)

It has 101 independent complex structure deformations (denoted by ψ, where ψ differing 6

by the action of PGL(5) are considered as equivalent), which correspond to elements in

H1(M,TM). By the theorem of Tian [92] and Todorov [93], the complex structure defor-

mation spaceMcs(M) of a Calabi-Yau threefold has dimension dim H1(M,TM) = h2,1(M)

and is unobstructed. The only cohomologically non-trivial (1, 1)-form on M is the pullback

of the Kähler form of the ambient space P4 and the non trivial Hodge numbers are therefore

h2,1(M) = 101 and h1,1(M) = 1.

To specify Γ and its subgroups, let us define

ΓnN =
{
ξ = (ξj)j=0,...,n ∈ (µN )n+1

∣∣∣ n∏
j=0

ξj = 1
}/
µdiag
N , (2.26)

which is isomorphic to (Z/NZ)n−1. Here µN denotes the cyclic group of the Nth roots of

unity, generated by e2πi/N , and ξ acts on the coordinates of Pn by xj 7→ ξjxj . The action

4For all Calabi-Yau hypersurface in toric varieties Batyrev’s mirror construction [5] applies and describes
for our examples the same resolution as the orbifold construction.

5Batyrev’s and Borisov’s mirror construction [6] applies to the complete intersections discussed here
except X6,4(132231), but is notationally heavy and implicit.

6In this particular case we can choose representatives for the PGL(5)-equivalence classes, by writing the
generic quintic as

∑5
i=0 x

5
i +

∑101
k=1 ψkmk(x), where mk(x) are the 101 monomials in x0, . . . , x4 of degree 5

and individual degrees ≤ 3. The only fibers on which the group Γ4
5 defined in (2.26) acts come from the

one-parameter family (2.27).
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of Γ = Γ4
5 exists on the family

Minv =

{
Pψ =

4∑
i=0

x5
i − 5ψ

4∏
i=0

xi = 0

∣∣∣∣ (x0 : . . . : x4) ∈ P4

}
, (2.27)

which represents a one-parameter invariant subspace ∪ψMψ in the 101 dimensional complex

moduli space of quintics in P4. The mirror quintic W is obtained as the canonical resolution

of the quotient of Minv by Γ, namely as W = M̂inv/Γ. The condition
∏4
j=0 ξj = 1 ensures

that the restriction of the holomorphic (3, 0)-form Ω to Minv is invariant under Γ 7 8. This

condition (or more generally, the condition that at fixed points the orbifold group acts, in

suitable local coordinates in which Ω is written as Ω = dz1 ∧ dz2 ∧ dz3, as a subgroup of

SL(3,C)) turns out to be sufficient in order that Minv/Γ admits a Calabi-Yau resolution [80].

Denoting the variables identified in P4/Γ by x̂i, we can define the fibers Wψ of the mirror

one-parameter family W by the right hand side of (2.27) with xi replaced by x̂i (and P4 by

P4/Γ). It is easy to see that the fibers Wψ and Wξψ for ξ ∈ µ5 are isomorphic and we thus

introduce the variable

z =
1

(5ψ)5
, (2.28)

which also occurs in (1.1), (2.1). This identifies five conifolds at ψ5 = 1 with one conifold at

z = 1/55 and creates a Z/5Z orbifold singularity at z =∞, where z belongs to the complex

moduli space χ(Cpq) = −10 of the mirror family W .

The action of Γ on Minv has ten fixed curves CG, with G = Z/5Z, defined by Cp,q :=

Mψ ∩ {xp = 0} ∩ {xq = 0} with p 6= q. We have Cp,q = {x5
i + x5

j + x5
k = 0} ⊂ P2

(which we also denote by Ci,j,k) and its Euler number can be calculated by the adjunction

formula, χ(Cp,q) = −10. Each of these curves meets in three out of ten fixed point sets

Pi,j = {x5
i + x5

j = 0} ⊂ P1 obtained by setting three distinct coordinates xo = xp = xq = 0

of P4 to zero. The stabilizer group of these fixed point sets PG is G = (Z/5Z)2 and again

by the adjunction formula their multiplicity evaluates to χ(Pi,j) = 5. Hence summing over

all possible groups G of all fixed point sets, (2.24) reads in this case

χ(M̂/Γ) = (−200+10·(−10−3·5)−10·5)· 12

125
+10·(−25)· 52

125
+10·5· 252

125
= 200 . (2.29)

We note that the contribution of the identity element, the first term in (2.29), is always

zero in the orbifold construction of mirror manifolds. On the normal direction to the

curves Cp,q the orbifold action is given by Γ1
5 × µ

diag
5 , acting on the normal coordinates by

zk 7→ ξkzk, k = 0, 1. At the fixed points Pi,j the orbifold action is given by Γ2
5 × µ

diag
5 ,

acting on the normal coordinates by zk 7→ ξkzk, k = 0, 1, 2. These singularities can all

be resolved torically by two– and three dimensional fans which globally fit into the toric

7This can be seen from the specialization of (2.40) to the quintic hypersurfaces in the five homogenous
coordinates of P4. There is only one residuum around P = 0, which is invariant, and so is dµ4.

8On Minv an S5 permutation acts on the coordinates of P4, which identifies different fixed point sets of
subgroups G ⊆ Γ. The alternating subgroup A5 of S5 is isomorphic to the icosahedral group. It leaves Ω

invariant and χ(M̂/A5) = −16 has been calculated as an application of (2.23) in [63].
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diagram depicted in Figure 1. It is the projection of the four dimensional reflexive lattice

polyhedron (a simplex) that features in the construction of Batyrev [5]. Here we omitted

for clarity the inner points 9 on all codimension zero and codimension one faces as well

as the ones on seven codimension two and three codimension one faces. As explained in

the caption of the figure, the exceptional divisors correspond to 100 new cohomological

non-trivial (1, 1)-forms, so that the non-trivial Hodge numbers are h1,1(W ) = 101 and

h2,1(W ) = 1 as claimed.

C1,2,3

C1,2,3

P2,3

P1,3

P1,2

Figure 1: This toric graph represents a four dimensional simplex, whose vertices are the
corners of the larger pentagram. The ten edges connecting vertices represent the ten curves
Ci,j,k and the ten triangular three faces, spanned by vertices, the ten points Pj,k. Each face
is bounded by three edges corresponding to the three curves Ci,j,m, Ci,j,n and Ci,j,p that
meet in the point Pi,j . Likewise each curve, as for example the curve C1,2,3 represented by
the black edge, contains three points which correspond to the three faces P1,2, P1,3 and P2,3

incident to that edge. Each inner lattice point, four for each edge and six for each face,
correspond to an independent exceptional divisor [5]. Hence together with the hyperplane
class one gets 1 + 4 · 10 + 6 · 10 = 101 independent divisors and thus h2,1(W ) = 1 and
h1,1(W ) = 101.

2.4.2 Mirror construction for four quadrics in P7

We next construct the mirror W to the complete intersection M of four quadrics in P7

abbreviated as X2,2,2,2(18) in Table 1. For generic quadrics the Euler number is χ(M) =

−128. The only Kähler class of M is inherited from the ambient P7, i.e. h1,1(M) = 1

and by the Calabi-Yau properties one has h2,1(M) = 65. To construct the mirror W with

h2,1(W ) = dim H1(W,TW ) = 1 and h2,1(W ) = 65, we consider Minv as the one-parameter

9Those that lie not on lower dimensional boundary components of the faces.
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family of threefolds defined by the four equations

Pj := x2
j + y2

j − 2ψ xj+1 yj+1 = 0, j ∈ Z/4Z (2.30)

in the homogeneous coordinates xj , yj , j = 0, . . . , 3 of P7. The variety Minv has an au-

tomorphism group A of order 212, generated by transpositions τj : xj ↔ yj , the cyclic

permutation of the coordinates σ : j 7→ j + 1 with j ∈ Z/4Z and the elements of

Γ =
{
ξ = (ξj)j=0,...,3 ∈ (µ4)4

}/
µdiag

4 (2.31)

that act on the coordinates of P7 by

(xj , yj) 7→ (ξjxj , ξ
2
j−1ξ

−1
j yj) , (2.32)

with ξj ∈ µ4 = {1, i,−1,−i} and is isomorphic to (Z/4Z)3. The orbifoldization by Γ leads

to the mirror manifold, while the group S = (Z/2Z)4oZ/4Z generated by τj and σ is useful

to identify the fixed point sets.

Just as before we find that the holomorphic (3, 0)-form Ω is invariant 10 under Γ. This

can be seen from an analogous expression to (2.40) that defines Ω on Minv in the xj , yj

coordinates of P7. While the integrand and the measure dµ7 are not separately invariant

under some elements of Γ (they both change sign), the form Ω is.

We will show that the one-parameter family W = M̂inv/Γ given explicitly in (2.39) is

the mirror of the generic complete intersection in P7. The new feature, compared with the

situation in Subsection 2.4.1, is that (2.30) has 32 nodal points Pmj,l , j ∈ Z/4Z, m ∈ Z/4Z,

l ∈ Z/2Z, whose non-vanishing inhomogeneous coordinates are given by (α = exp(2πi/8))

Pmj,0 : (yj+2, xj+3, yj+3) = (
√

2ψα1+2m, 1, α2+4m)

Pmj,1 : (xj+2, xj+3, yj+3) = (
√

2ψα1+2m, 1, α2+4m) ,
(2.33)

for generic ψ. An additional node develops at xj = yj = 1, ∀j, when ψ8 = 1 or equivalently

z = 1/28 (with z = 1/(2ψ)8), i.e. at the conifold locus.

With respect to the action of Γ the fibers of Minv have sixteen irreducible fixed curves

C±j,l, j ∈ Z/4Z, l ∈ Z/2Z given by

C±j,0 : xj = yj = xj+1 = 0, yj−1 = ±ixj−1

C±j,1 : xj = yj = yj+1 = 0, yj−1 = ±ixj−1

(2.34)

with stabilizer Stab(C±j,l) = Z/4Z. In addition the action of Γ has exactly the 32 nodes Pmj,l
as fixed points with stabilizer Stab(Pmj,l) = (Z/4Z)2. In Minv eight of the nodal fixed points

lie on every curve C±1
j,l , i.e.

{
Pmj−1,l, P

n
j,0, P

n
j,1

}
⊂ C

(−1)(n−1)

j,l , (2.35)

10Similarly one can check that Ω is invariant under σ, but anti-invariant under τj .
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for m,n ∈ Z/4Z, and each point Pmj,l lies on the intersection of four curves

Pmj,l ∈ C
(−1)m−1

j,0 ∩ C(−1)m−1

j,1 ∩ C+
j+1,l ∩ C

−
j+1,l , (2.36)

as in the schematic intersection pattern in Figure 2. We note that C±j,l = σj(C±0,l), C
±
j,l =

τj−1(C∓j,l) and C±j,0 = τj+1(C±j,1). So all 16 curves are equivalent and we can focus on one

curve, say C+
0,0, given by the equations x2

2 + y2
2 − 2iψx2

3 = 0, y2
1 − 2ψx2y2 = 0. One checks

that this is a smooth curve of genus one 11, hence χ(C±j,l) = 0. Moreover Γ identifies the

curves C+
j,l with C−j,l as well as the points Pmj,l with m ∈ Z/4Z for fixed j, l respectively.

We hence need to provide a desingularization of Minv/Γ with eight nodes and an orbifold

singularity on top of these nodes. To explore the local neighborhoods of the nodes we

expand infinitesimally around the critical coordinate values of Pmj,l , xk = x
(0)
k + εk + . . .,

yk = y
(0)
k + δk + . . ., k ∈ Z/4Z. With the overall scaling of P7 we set one infinitesimal

deformation of a coordinate with finite critical value to zero. For example for P 0
0,0 we set

x3 = 1, hence ε3 = 0. We see that P1 = 0 requires x2 ∼ ε22 and that the local geometry

is given by ε20 + δ2
0 − 2ψε1δ1 = 0. Using the symmetries we conclude that each node P

is given locally by an affine equation s2 + t2 − 2ψxy = 0 on which the (Z/4Z)2 stabilizer

group Stab(P ) acts like (s, t, x, y) 7→ (ρas, ρ3at, ρa+bx, ρa+3by), with a, b ∈ (Z/4Z)2 and ρ a

non-trivial fourth root of unity.

C+
j+1,l

C−j+1,l

m = 0 m = 2 m = 1 m = 3Pmj,l

C−j,0

C−j,1

C+
j,0

C+
j,1

Figure 2: Intersection of the curves at the four points Pmj,l , m = 0, . . . , 3. Eight copies of
such four points and sixteen curves connecting them permuted by the group S complete
the intersection picture.

We may bring the local nodal geometries into the form uv − yx = 0 by setting u =

s + it and v = s − it and rescaling (x, y) to absorb the 2ψ and resolve the latter torically,

see e.g. [35] as review12. First, we describe the local singularity using the cone spanned

11It is isomorphic to the elliptic curve C : 2y3 = x3 + x. This can be seen by the map (x, y) 7→ (0 : 0 :
0 : Ay : x : i(x2 + 1)/2 : (x2 − 1)/(2Ai) : (x2 − 1)/(2A)) with A2 = 2iψ, where 0 = (∞,∞) 7→ P 0

0,0 and
P = (0, 0) 7→ P 2

0,0, independent of ψ.
12Whose notation we follow. In particular σ = 〈e1, e2, e3, e1 + e3 − e2〉 is defined in the conical lattice
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by σ = 〈v1 = e1, v2 = e2, v3 = e3, v4 = e1 + e3 − e2〉 torically. Indeed, we see that

Sσ = C[u, v, x, y]/(uv − xy = 0). Without the group action there are three canonical ways

to resolve the latter singularity. Small resolutions are defined by subdivisions of σ into

σ+
1 = 〈v1, v2, v3〉 and σ+

2 = 〈v1, v3, v4〉 or σ−1 = 〈v1, v2, v4〉 and σ−2 = 〈v2, v3, v4〉 yielding

two different resolutions X±1 = Spec
(
Sσ±1

)
∪ Spec

(
Sσ±2

)
. Both are isomorphic to the total

space Tot(OP1(−1) ⊕ OP1(−1)) of line bundles over the base P1 and related by a flop.

They can be further blown up torically by adding the vector ẽ0 = v1 + v2 = v2 + v4

to the cone σ. This leads locally to a non-compact space Tot (OP1×P1(−1,−1)). The

local action of the orbifold suggest another resolution, obtained by adding the vector e0 =
1
2(v1 +v2) = 1

2(v2 +v4) and refining the lattice M = 〈e0, e1, e2〉Z. This yields the Calabi-Yau

resolution Tot (OP1×P1(−2,−2)). Indeed in the coordinates (u, v, x, y) the group Stab(P )

is generated by two order four elements ga and gb, where gb acts only on (x, y) as before,

while the generator ga acts as ga : (u, v, x, y) 7→ (iv, iu, ix, iy). Resolving first the subgroup

generated by (ga)
2 : (u, v, x, y) 7→ (−u,−v,−x,−y) torically, leads precisely to the Calabi-

Yau resolution 13 Xloc = Tot (OP1×P1(−2,−2)). To obtain the induced action Γloc on Xloc,

we parametrize the latter by (a0, . . . , a4) ∈ C5 subject to two C∗ actions ak 7→ µ
l
(r)
k
r ak,

µr ∈ C∗ for r = 1, 2, k = 0, . . . 4 and l(1) = (−2, 1, 1, 0, 0) and l(2) = (−2, 0, 0, 1, 1). The

locus a1 = a2 = 0 and a3 = a4 = 0 is excluded. Hence the homogeneous coordinates

[a1 : a2] =: [x0 : x1] and [a3 : a4] =: [y0 : y1] are identified with the ones of the first and

the ones of the second P1. The blow-up relations identify x0y1 = u, x1y0 = v, x0y0 = x

and x1y1 = y. Clearly, (ga)
2 acts trivially on Xloc while ga generates merely an Z/(2Z)

action ([x0 : x1], [y0 : y1]) 7→ ([y0 : y1], [x0 : x1]). The action of gb is given by ([x0 : x1], [y0 :

y1]) 7→ ([ρx0 : x1], [y0 : y1ρ
−1]) on Xloc. It follows that the local orbifold group Γloc is

isomorphic to Z/2Z×Z/4Z and that its action leaves the holomorphic (3, 0)-form invariant.

Therefore we can apply (2.23). There are four fixed points under the Z/4Z action namely

when each of the [x0 : x1] and [y0 : y1]) take the values [1 : 0] or [0 : 1]. The Z/2Z action

leaves the diagonal ∆ ∼ P1 invariant. Hence, there are two fixed points invariant under

Γloc = Z/2Z × Z/4Z, namely ([1 : 0], [1 : 0]), ([0 : 1], [0 : 1]). The Euler number of the

non-compact Calabi-Yau manifold χ(Xloc) = 4 comes from the compact P1 × P1 section of

the degree (−2,−2) line bundle and application of (2.23) yields

χ
(

̂Xloc/Γloc

)
=

4− (2− 2)− (4− 2)− 2

8
+

(4− 2) · 42

8
+

2 · 82

8
= 20 . (2.37)

Hence we can apply (2.23) to the Calabi-Yau manifold defined by (2.30) with the group

action (2.32) in two steps. First we perform the small resolution at all 32 nodes. By similar

arguments as in [45] [98] we can conclude that the resulting manifold M̃ is smooth and

projective with Euler number χ(M̃) = −128− 32 + 2 · 32 = −96. It has the induced action

N , spanned by e1, e2, e3 over Z. With M the dual lattice to N one defines the associated semigroup
Sσ = σ∨ ∩M = {t ∈M : 〈t, s〉 ≥ 0, ∀ s ∈ σ} which defines the affine variety by Uσ = Spec(C[Sσ]).

13This can be viewed as the Calabi-Yau resolution of the total space of the cotangent bundle T ∗3 L(2, 1) to
the lens space L(2, 1) = S3/(Z/2Z) considered in [3].
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of Γ at the resolved nodes described above. Hence applying (2.23) yields

χ(̂̃M/Γ) =
−96− 16(0− 8)− 32

64
+

16(0− 8) · 42

64
+ 8 · 20 = 128 . (2.38)

To get the last term, which represents the contribution of the (Z/4Z)2 fixed points, we used

the fact that on Minv/Γ we have 32/4 = 8 such fixed points and their resolution contributes

according to (2.37) with 20 to the Euler number. We also note that on Minv/Γ there are 8

curves with stabilizer Z/4Z, and that their resolution contributes three exceptional divisors

for each curve. Locally, we get five exceptional divisors for each of the eight fixed points.

The Euler number calculations suggest that these contribute the 64 new homologically

independent divisor classes to raise h1,1(W ) to 64 + 1. We thank Georg Oberdieck for

providing arguments that the latter are independent homology classes.

We have established that the mirror family W is obtained by resolving the singular quo-

tient of Minv and that the one complex structure deformation family of it can be described

as the orbifold resolution of

Wψ = {(x̂0 : ŷ0 : . . . : x̂3 : ŷ3) ∈ P̂7/Γ | Pj := x̂2
j + ŷ2

j − 2ψx̂j+1ŷj+1 = 0 , j ∈ Z/4Z} .
(2.39)

The holomorphic (3, 0)-form can be given explicitly as

Ω =
1

(2πi)4

∮
γ1

∮
γ2

∮
γ3

∮
γ4

(2ψ)4dµ7∏3
k=0 Pk(x̂, ŷ, ψ)

, (2.40)

where dµ7/
∏3
k=0 Pk with dµ7 =

∑7
k=0(−1)k zkdz0 ∧ · · · ∧ d̂zk ∧ · · · ∧ dz7 is a 7-form 14 in

P7/Γ and the γj are S1 cycles encircling Pj = 0. A similar residuum expression for Ω can be

written down for the invariant one-parameter families of all hypergeometric cases. By per-

forming all residues over the three S1 integrals one can explicitly compute the holomorphic

period
∫
T 3 Ω around the MUM-point [21,65,66,74].

2.5 Physics concepts related to the arithmetic of Calabi–Yau periods

Type II string compactifications on Calabi–Yau threefolds give rise to N = 2 effective

supergravity theories in four dimensions, and if in addition 3-form fluxes are turned on in

Type IIB theory one can break the supersymmetry to get an N = 1 effective supergravity

theory [34]. Very important quantities attached to these effective theories can be given

in terms of the Calabi–Yau periods. In particular, the central charges and masses of the

N = 2 BPS states, the gauge kinetic terms of the vector multiplets in N = 2 theories and

the flux super potential and its vacua are determined by the periods. Moreover, in the

Π stability conditions [30] [16] and wall crossing formulas [71] the phases of the centrals

charges ultimately determine which are the stable states. An important source of insights

from physics are the partially proven mirror symmetry conjectures:

14To display the form dµ7 it is convenient to define (z0 : . . . : z7) = (x̂0 : ŷ0 : . . . : x̂3 : ŷ3).
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• The conjectured equivalence between the (2, 2) supersymmetric non-linear sigma mod-

els on the worldsheet of type II string theory compactified on M and W . This iso-

morphism exchanges the h1,1(M) marginal deformations that correspond to the com-

plexified Kähler structure deformations of M with the h2,1(W ) marginal deformations

that correspond to the complex structure deformations of W and vice versa [73].

• The conjectured equivalence between type IIA theory on M and type IIB theory on

W and vice versa [91]. It goes beyond the first conjecture as it also exchanges the

non-perturbative even–dimensional D–branes15 of type IIA with the odd ones of type

IIB or in mathematical terms Db(Coh(M)), the bounded derived category of coherent

sheaves on M , with Dπ(Fuk(W )), the bounded derived Fukaya category on W , and

vice versa [70].

It has been first suggested in [78] that the arithmetic of the periods at special points

play an important role for the properties of these compactifictions. For example the rank

two black hole attractor points and supersymmetric minima of flux superpotentials can be

characterized by their arithmetic properties. The families of hypersurfaces in (weighted)

projective spaces Xd(w1, . . . w5) (i.e. the four models with d = 5, 6, 8 and 10) have a special

fiber
∑5

i=1 x
d/wi
i = 0, in which the (2, 2) supersymmetric non-linear sigma models on the

worldsheet is conjectured by Doron Gepner to be described exactly by a rational conformal

field theory [37]. The corresponding point in the complex structure moduli space Mcs is

referred to as the Gepner point. It has been speculated in [42] that generally points inMcs

at which a rational conformal field theory descriptions exist have interesting arithmetic

properties and might be related to analogues of points of complex multiplication of elliptic

curves [83].

Central charges and masses of D-branes For Γ ∈ H3(W,Z) the D3–branes of Type

IIB wrapping a special Lagrangian in this class give rise to a BPS state with electro-magnetic

charge Γ in the effective N = 2 four–dimensional theory. These BPS states have a central

charge which is given entirely in terms of periods of W

Z(z,Γ) = e
K
2

∫
Γ

Ωz = e
K
2 ΠΓ (2.41)

with the Kähler potential as defined in (2.22). Note that they are moduli dependent and

determine the masses of the BPS states non-perturbatively exact as

mΓ(z) = |Z(z,Γ)| . (2.42)

From our analysis of the periods in the integral basis we will get the central charges and

the masses of BPS D-branes at the conifold and the attractor points in terms of formulas

with a strongly number theoretical flavor.

15These are called B–branes and the special Lagrangian 3-branes, which are objects of the Fukaya category,
are called A–branes, because they are natural boundary conditions for the topological B– and A–model,
respectively.
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Central charges at the MUM point and the Γ̂-class conjecture The second mirror

conjecture relates these D3–brane states in Dπ(Fuk(W )), specified by the class Γ, to the

even–dimensional D2k–branes, k = 0, . . . , 3, viewed as objects in Db(Coh(M)) specified

by a class G in the algebraic K-theory group K0
alg. In the large volume limit, the latter

can be understood in terms of classical algebraic geometry. Mirror symmetry induces an

isomorphism

M : H3(W )→ K0
alg(M) . (2.43)

This can be used to relate the central charge given in formula (2.41) for the odd–dimensional

D–branes at the MUM-point on W to one that is derived using classical properties of

even–dimensional D–branes on M . Under the map M the pairing (Γ,Γ′) on Dπ(Fuk(W ))

induced from the one on H3(M,Z) was first identified with the Euler pairing (G,G′) =∫
M Td(TM)ch(G∨)ch(G′) on K0

alg(M). Here, the Todd class Td is the multiplicative char-

acteristic class generated by x/(1 − e−x). However, it was realized in [49] [55] [60] [36]

that the natural analogue of (Γ,Γ′) that also makes contact with the central charge for-

mula (2.41), (2.6) is obtained by taking the square root of the Todd class. Noting that

Γ(1 + x/(2πi)) Γ(1− x/(2πi)) = e−x/2x/(1− e−x) one can hence take ex/4 Γ(1− x/2πi) as

generating function for the Γ̂ class. Expansion in terms of Chern classes of the tangent

bundle of the Calabi-Yau threefold16 M gives

Γ̂(TM) = 1 +
1

24
c2 +

ic3ζ(3)

8π3
. (2.44)

The natural pairing becomes (G,G′) =
∫
M ψ(G∨)ψ(G′) with ψ(G) = Γ̂(TM) · ch(G). The

operation ψ(G) gives a sign (−1)k on elements of weight 2k.

In the following we restrict to one–parameter families W . In the large volume limit of

M , which corresponds to a MUM-point of W , one can calculate [49] [55] [60] [19] [36]

Π̌G(t) =

∫
M
eωt Γ̂(TM)ch(G) +O(Q) . (2.45)

Here the check on Π̌G = Π̌M(Γ) indicates that relative to ΠΓ we made the usual large radius

gauge choice X0 = 1. The K-theory class D6 of the D6–brane is given in terms of the

structure sheaf OM by D6 = [OM ] = M(B0) and ch(OM ) = 1, where B0 is the homology

class of the vanishing cycle S3. In the coordinate t given by the mirror map (2.19) and with

the Kähler class ω = Dt, where D corresponds to the restriction of the hyperplane class to

M , we get

Π̌D6(t) =

∫
M

(
ω3t3

6
+

1

24
tωc2 +

ic3ζ(3)

8π3

)
+O(Q) = 2F − t∂tF . (2.46)

The D0–brane is given by the skyscraper sheaf Opt with D0 = [Opt] = M(A0) and ΠOpt = 1,

where A0 is the class dual to B0, see [55]. Following [55] we can also identify the D2–brane

16The e
x
4 factor can be omitted for Calabi-Yau manifolds as it gives a trivial contribution. The Euler–

Mascheroni contribution in the expansion of the Γ-function vanishes for the same reason.
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with a K-theory class D2 of a sheaf supported on a genus zero curve C and the D4–brane

with the K-theory class D4 of a sheaf supported on the restriction of the hyperplane class

D to M . We can summarize the mirror symmetry identification and the special geometry

relation with F given in (2.21)
Π̌D6

Π̌D4

Π̌D0

Π̌D2

 = X−1
0


∫
A0

Ω∫
A1

Ω∫
B0 Ω∫
B1 Ω

 =


2F − t∂tF

∂tF
1
t

 . (2.47)

The central charges and masses of the even–dimensional D–branes are defined in a gauge

independent way as

Z(t,D2k) = eK/2ΠM−1(D2k) = Z(z,M−1(D2k)), mD2k = |Z(t,D2k)| , (2.48)

in a way that extends over the full deformation spaceMcs(W ), which is identified with the

stringy Kähler moduli space Mks(M) of M . By this mirror symmetry identification, we

do not only get a natural integral structure at the MUM-point, but we can also study the

masses of the odd– and the even–dimensional BPS branes globally in their moduli space.

D-branes at the conifold Geometrically one can see from (2.27) or more indirectly from

(2.2) that at the conifold points z = µ the families of the mirror manifolds W develop a

node, i.e. a singularity at which an S3 that represents a class in H3(W,Z) shrinks to zero

size. From the Lefschetz monodromy theorem one gets the monodromy Mµ (2.10) assuming

that the S3 represents a primitive class. From (2.47), (3.6), we see that the class of the S3

corresponds to the class of the D6–brane on the mirror. This implies that mD6 vanishes at

the conifold while the other D–brane masses take arithmetically interesting values there.

Defining the Kähler potential K(z) according to (2.22), we see that its value is exactly

given in terms of the periods in the integral symplectic basis. In particular, from (2.22), (3.6)

follows that at the conifold

e
K(µ)

2 =
1√

2iw+w−
. (2.49)

This implies that the masses of the even–dimensional type IIA BPS D-branes defined at

the large radius are given at the conifold in terms of the entries of the transition matrix Tµ

as follows17 

mD6(µ)

mD4(µ)

mD0(µ)

mD2(µ)


=



0

|σw+ + w−|√
2iw+w−

|b|√
2iw+w−

w+

√
2iw+w−


. (2.50)

17If κ is even one can set σ = 0 and obtains the relation mD2(µ)mD4(µ) = 1/2.
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It is remarkable that the physical values of the masses of the D2– and D4–branes at the

conifold are determined in such a simple form in terms of w±, i.e. those numbers that

are rational multiples of periods ω±f of the associated newform f ∈ S4(Γ(N)) specified in

Table 8. The numerical values of the w± can be found in Table 2 and the relations to the

periods ω±f in Table 3. Alternatively, the periods of f can always be expressed by values at

s = 1, 2 of the associated L-function or its twists by Dirichlet characters given by

L(f ⊗ χ, s) =

∞∑
n=1

anχ(n)n−s =
∏

p prime

1

1− app−s + χ(p)p4−1−2s
, (2.51)

for Re s > 3. Here the numbers an are the Fourier coefficients of the newform f , which for

primes p coprime to N are just the Hecke eigenvalues. For example, for the quintic f is

given in (1.2) and we have

w+ = −5 (2πi)2 L(f, 1), w− = −625

4
(2πi)L(f, 2) . (2.52)

Such equations for w± relating the exact values of the D-brane masses to special values

of L-functions of weight four newforms extend to conifold points of non-hypergeometric

one-parameter models and also to rank two attractor points.

As reviewed in Section A.3.2, the Hecke eigenvalues encode the information of the point

count over finite fields in the associated fiber. This makes it likely that there is an inter-

pretation of the mass of the BPS D–branes in terms of states that are related to the point

count in that geometry, because the way the values of the masses are calculated using the

L–functions resembles the calculation of regularized determinants or one–loop BPS satu-

rated amplitudes like in the Schwinger loop amplitude that lead Gopakumar and Vafa to the

definition of the D2–D0–brane bound states at the large volume point [39]. It is tempting

to speculate that the analogues of the integer BPS invariants in the GV calculation could

be interpreted as the numbers of points in the Calabi-Yau fiber over finite number fields.

The masses of the D-branes are directly relevant physical quantities in the low energy su-

pergravity theory. In particular, the fact that the D6–brane becomes massless is physically

interpreted famously by Strominger [90] as the occurrence of a massless black hole in anal-

ogy to the massless monopole that occurs in N = 2 super Yang-Mills theory as predicted

by Seiberg and Witten [88]. Its gravitational one loop β-function induces similarly as in

the Yang-Mills theory a monodromy around the conifold. The quantity |b| that determines

the mass of the D0–brane at the conifold

mD0 =
|b|√

2iw+w−
(2.53)

is also relevant for the low energy effective action. If b would have been zero the latter

would eventually have no local Lagrangian description, because electrically and magnetically

charged D– branes could become massless. This is the scenario that occurs the case of rank

two attractors as discussed in more detail in [11]. With the exception of the X2,2,2,2(18)

model for which the full transition matrix Tµ is given in (3.11), we have so far only the
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obvious expression of b = X0(µ) = (2πi)3$0(µ) as the (slowly converging) series coming

from the solution that is holomorphic at the MUM-point.

Exact metric and curvature at the conifold and growth of instanton numbers

Of relevance to the growth of the BPS invariants nβg of holomorphic curves and the entropy

of microscopic black hole states is the value of the complexified Kähler parameter (2.19)

at the conifold. The latter is given according to the transition matrix Tµ in (3.6) and the

leading behaviour of the Frobenius solutions at the conifold (3.4) by

t(µ) =
X1

X0
=

w+

b
=: ic . (2.54)

The value c determines the leading exponential growth of the nβg for large degree β at genus

g = 0 [21] as well as at higher genus g [7] by

nβg ∼
(
|b|2

4π2w+

)2

β2g−3(log β)2g−2e2π c β . (2.55)

While w+ can be always related to a period of the holomorphic cusp form f called ω+
f , see

Table 3 (with a proof for N = 8 given in Section 4), the value b of the central charge of the

D0–brane at the conifold is in general not well understood. However, for the N = 8 case

there is a precise conjecture given in (3.11) to the effect that

bN=8 = −32ω−f , cN=8 = i
ω+
f

ω−f
, (2.56)

making this the first compact case where the exponential growth of the worldsheet instanton

numbers of the mirror is exactly determined in terms of the arithmetic numbers given by

the periods of newforms.

On the other hand, the leading order behaviour of the metric and the scalar curvature

at the conifold is encoded for all models in terms of w±

gδδ̄ ∼ −
4π3κ log |δ|
|w+w−|

, R ∼ − |w+w−|
2π3κ|δ|2 log3 |δ|

, (2.57)

i.e. the numbers related to the periods of the associated newforms or their L-function values

as explained above.

Properties of the effective action for special fibers As reviewed in [78], the attractor

flow equations for charged N = 2 black holes specify subloci of the vector multiplet moduli

fields, at which the flow can end. The vector moduli parametrize the complex structure

moduli spaceMcs(W ) of the Calabi-Yau family in the type IIB compactification. The main

observations in [78] is that the subloci specified by the so called attractor equations have

interesting arithmetic and Hodge theoretic properties. Moreover the constraints imposed

by the attractor equations are very similar to the conditions for supersymmetric flux vacua
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that likewise occur at restricted subloci of the moduli inMcs of Type IIB compactifications

with F3, G3 ∈ H3(W,Z) flux backgrounds. At rank two attractor points z0 ∈ Mcs the

lattice H3,0(Wz0) ⊕H0,3(Wz0)) ∩H3(W,Z) has rank two and, as reviewed in [56] [11], for

one-parameter models the condition for rank two attractors and N = 2 supersymmetric flux

vacua are equivalent. It is remarkable that despite the possibility to follow the attractor

flow lines the first rank two attractor point has been found using arithmetic methods [20].

In this paper we present two rank two attractor points for hypergeometric Calabi-Yau

families and a discussion of the effective action and its C– and P–symmetries can be found

in [11]. Interesting observations concerning the theta-angle in the gauge kinetic term of the

graviphoton for rigid Calabi-Yau compactifications have bee made in [24]. In [11] these are

extended to rank two attractor points.

3 Special fibers and periods of modular forms

In this section we present as one main result the comparison between the period matrix of

special fibers of the hypergeometric one-parameter families of Calabi-Yau manifolds and the

periods and quasiperiods of associated modular forms. We start by discussing the special

fibers we consider.

Let W be any of the fourteen hypergeometric one-parameter families of Calabi-Yau

threefolds. If we choose z so that Wz is smooth and defined over Q we can compute for all

primes p of good reduction the local zeta function Z(Wz/Fp, T ). From the Weil conjectures

(together with the positive sign in the relevant functional equation) it follows that the

numerator of the local zeta function is completely determined by the action of the Galois

group on the middle cohomology and has the form

P3(Wz/Fp, T ) = det
(
1− TFr∗p|H3(Wz,Q`)

)
= 1 + αpT + βppT

2 + αpp
3T 2 + p6T 4 (3.1)

for integers αp and βp. We are interested in special fibers where the motive attached to

the middle cohomology splits. This can happen for example when z = z∗ is a rank 2

attractor point, i.e. if H3(Wz∗ ,Q) = Λ ⊕ Λ⊥ where Λ ⊂ H3,0(Wz∗) ⊕ H0,3(Wz∗) and

Λ⊥ ⊂ H2,1(Wz∗) ⊕ H1,2(Wz∗). For one-parameter families of Calabi-Yau threefolds, a

beautiful method for finding such points is given in [20] and [23]. Hodge-like conjectures

would then imply that Λ and Λ⊥ are 2-dimensional motives and, as explained in [40], the

Serre–Khare–Wintenberger theorem implies that the Galois actions on these motives are

associated with newforms f and g of weight 4 and 2. Practically speaking this means that

we get a factorization

P3(Wz∗/Fp, T ) = (1− apT + p3T 2)(1− bp(pT ) + p(pT )2) (3.2)

where ap and bp are the Hecke eigenvalues of f and g. We also expect that the period

matrix of H3(Wz∗ ,Q) can be completely expressed in terms of the periods and quasiperiods

of f and g. In 3.3 we numerically verify this for rank 2 attractor points that appear in two

hypergeometric families.
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Another special point is the conifold fiber Wµ. This fiber is not smooth but one can still

compute the local zeta function which will again be a rational function. It was observed

in [82] that the numerator of the local zeta function then has a factor

(1− χ(p)pT )(1− apT + p3T 2) (3.3)

where χ(p) = (κp ) and the numbers ap are the Hecke eigenvalues of a weight 4 newform

f . The logic behind this is that the fiber Wµ can be resolved to give a rigid Calabi-Yau

threefold Ŵµ (i.e. h2,1(Ŵµ) = 0) and again by the Serre–Khare–Wintenberger theorem the

Galois action on H3(Ŵµ,Q) is associated with a weight 4 newform f . We also expect that

the period matrix of H3(Ŵµ,Q) can be completely expressed in terms of the periods and

quasiperiods of f . In Section 3.1 we numerically check this for each of the hypergeometric

families and also identify other entries of the rank 4 period matrix of Wµ. Numerically the

occurrence of the periods of f was already studied in [105]. For completeness we comment

on the structure of the period matrix of W∞, too.

3.1 The period matrix at the conifold points

Let W be any of the fourteen hypergeometric one-parameter families of Calabi-Yau mani-

folds. The generic conifold fiber Wµ is located at z = µ. From the Riemann symbol (2.2)

we can read off that the local exponents at this point are 0, 1, 1, 2 and hence a local basis

of solutions consists of three power series starting with order 0, 1, 2 and one logarithmic

solution. We choose the basis such that

Πµ(z) =


1 +O

(
δ3
)

ν(δ)
δ2 +O

(
δ3
)

ν(δ) log(δ) +O
(
δ3
)
 , (3.4)

where δ = 1− z/µ and ν(δ) = δ +O
(
δ2
)
.

The period matrix Tµ that relates the integral symplectic basis Π defined in (2.6) and

the basis Πµ at the conifold by Π = TµΠµ can be numerically computed by analytically

continuing the periods from z = 0 to z = µ and depends on the chosen path of analytic

continuation. We choose the path along the open interval (0, µ). The structure of the period

matrix is further constrained from

T Tµ ΣTµ = Σµ , Tµ


1 0 0 0
0 1 0 0
0 0 1 0
0 2πi 0 1

T−1
µ = Mµ (3.5)

and from the fact that the first derivative of
∫
S3 Ω evaluated at the conifold can be calcu-

lated explicitly using the description of the vanishing S3 in the conifold geometry, see [21]

for the quintic and [65] for the hypersurfaces in weighted projective spaces. From these con-

siderations one finds that for all hypergeometric one-parameter families the period matrix
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of the conifold fiber is of the form

Tµ =


0

√
κ(2πi)2 0 0

σw+ + w− σa+ + a− σe+ + e− 0
b c d −

√
κ2πi

w+ a+ e+ 0

 (3.6)

with κ in Table 1 and σ as in (2.7). Here w+, a+, e+ are real and w−, a−, e−, b, c, d are

purely imaginary and these nine numerical constants fulfill the quadratic relations

w+e− − w−e+ = −(2πi)3κ

2
(3.7)

w+a− − w−a+ = −(2πi)2√κb (3.8)

a+e− − a−e+ = (2πi)3κα+ (2πi)2√κd . (3.9)

Here α ∈ Q is given in (2.16) in terms of the ai, i = 1, . . . , 4. The remaining constants

can be calculated numerically to a very high precision 18 and the approximate values are

given in Table 2. Closed analytic expressions in terms of infinite sums of special values

of hypergeometric functions 3F2 have been derived for all the constants w±, a±, e±, b, c, d

in [85] (see also [68]). For example, for the quintic we have

w+ =
√

5Γ(1
5)2Γ(2

5)2Γ(4
5)

∞∑
`=0

(1
5)`(

2
5)`

(3
5)``!

3F2

(
−`, 3

5 ,
4
5

1, 1
; 1

)
(3.10)

where (a)` = Γ(a+`)
Γ(a) denotes the Pochhammer symbol.

Now consider the weight 4 newform f that we can associate with each conifold fiber.

In Appendix A.1 we explain how one can compute two periods ω±f associated with f and

the approximate values are given in Appendix B. Numerically we find that these are up

multiplication by rational numbers equal to w±. In Appendix A.2 we also explain how we

can compute two quasiperiods η±F associated with f which are unique up to the addition

of rational multiples of ω±f . The approximate values are again given in Appendix B and

numerically we find that the quasiperiods can be chosen such that these are up to multipli-

cation by rational numbers equal to e±. The rational numbers which relate the entries of

the period matrix to the periods and quasiperiods of f are given in Table 3. Note that the

Legendre relation ω+
f η
−
F − ω

−
f η

+
F = (2πi)3 corresponds to the quadratic relation (3.7).

We finish the discussion of the period matrix at the conifold points with a comment

about the N = 8 case. For this case we prove in Section 4 the occurrence of the periods

and quasiperiods by constructing an explicit correspondence with a Kuga-Sato threefold.

Numerically we further find that in this case the complete period matrix is given by

Tµ =


0 0 8 0
0 8 0 0
0 1 0 1
−1 0 1 0




ω+
f η+

F 0 0

ω−f η−F 0 0

0 0 (2πi)2 0
0 0 0 2πi



−32 −8 0 0

0 0 − 1
32 0

0 1
2 0 0

0 4 + 12 log 2 −2 −4


(3.11)

18We have calculated the numerical values to 1000 digits to check the conjectures and computing to higher
accuracy can be done without any problems.
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N
w+

w−
a+

a−
e+

e−
b c d

8
223.9220165
−2219.823957i

36.24129533
−554.9559892i

−8.167934872
89.83386058i

−277.4779946i 8.025308746i −1.337138042i

9
297.7398851
−1547.101826i

37.23153237
−280.2254923i

−6.996235045
38.85283506i

−267.1438008i 6.529815239i −1.498527304i

16
277.4779946
−1791.376132i

36.98123771
−347.2828377i

−7.392164711
51.29901671i

−269.7075585i 6.955740334i −1.496470803i

25
320.8713030
−1536.675110i

37.39771091
−252.1690170i

−6.893856185
34.94778947i

−265.5937802i 6.128728878i −1.434849337i

27
264.2581920
−1792.615238i

36.85667438
−371.4391414i

−7.459278462
54.82457171i

−270.9159568i 7.220828893i −1.521267495i

32
331.3076700
−1284.846229i

37.55313067
−208.5502647i

−6.496695001
26.69227218i

−263.9961931i 5.860894359i −1.425906613i

36
244.0637177
−2017.155303i

36.56502757
−455.7307460i

−7.825592526
70.77552085i

−273.9891366i 7.637961074i −1.460867809i

72
351.9173326
−1521.650120i

37.58661259
−221.7200905i

−6.774643286
30.70248663i

−263.8589705i 5.654643418i −1.351202495i

108
372.2764430
−1261.892271i

37.77656510
−176.1713832i

−6.337937329
22.48294139i

−261.9897714i 5.266252962i −1.306509091i

128
439.9947243
−1228.327316i

38.05274079
−139.1677051i

−6.134259511
17.68868648i

−259.5665046i 4.496718823i −1.138914049i

144
405.9683199
−988.7259810i

38.02051419
−128.3125516i

−5.788326330
14.70833696i

−259.6941350i 4.686199444i −1.202518075i

200
538.2249038
−932.1141418i

38.40650813
−85.32277915i

−5.453031198
9.674157709i

−256.4336628i 3.531095905i −0.9247888950i

216
480.8077208
−690.4500218i

38.37482290
−76.17241925i

−5.011615709
7.454737366i

−256.5551153i 3.709287484i −0.9799750828i

864
590.1833073
−1174.061806i

38.43332195
−93.60241425i

−5.839377416
11.82652070i

−256.3296014i 3.377681763i −0.8754559806i

Table 2: The approximate values of the constants in the period matrix Tµ (3.6).

N w+

ω+
f

w−

ω−f

η+F
e+

η−F
e−

8 32 −256 32 −4

9 108 −108 36 −36

16 64 −256 64 −16

25 100 −250 100 −40

27 108 −486 108 −24

32 256 −512 256 −128

36 72 −432 72 −12

72 432 −864 432 −216

108 864 −1296 864 −576

128 1024 −1024 1024 −1024

144 1728 −1728 1728 −1728

200 8000 −4000 8000 −16000

216 5184 −2592 5184 −10368

864 20736 −10368 20736 −41472

Table 3: Comparison of entries in period matrices and periods and quasiperiods of associated
newforms.
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where ω±f and η±F are the periods and quasiperiods of the associated newform.

3.2 The period matrix at z = ∞

The analytic continuation to the point w = 1/z = 0 can be done with a contour deformation

argument using a Barnes integral representation. This can be done for all 14 hypergeometric

models but here we just give the result for five examples.

Let us first consider the mirror quintic. Near w = 0 we chose a basis of solution

Π∞ = (ω1, ω2, ω3, ω4)T with

ωk = w
k
5

∞∑
n = 0

(
k
5

)5
n

(k)5n
wn = − Γ(k)

Γ5
(
k
5

) ∫
C0

ds

e2πis − 1

Γ5
(
s+ k

5

)
Γ (5s+ k)

ws+
k
5 , (3.12)

where the contour C0 is along the y-axis (just left of it) and then closed clockwise in an

infinite semicircle to the right to include all poles at s ∈ N0. (x)n = x(x+ 1) · · · (x+ n− 1)

is the ascending Pochhammer symbol. These solutions converge for |w| ≤ 55. If the contour

is deformed to C∞ which is taken in the same way along the y-axis, but closed in an

infinite semicircle counter clockwise to the left to include all poles −5s ∈ N+ the expression

converges for |w| ≥ 55 and can be compared with Π given in (2.6). For T∞ defined by

Π = T∞Π∞ this yields the analytic expressions

T−1
∞ =



− 16π4α

(α−1)Γ( 1
5)

5 − 16π4α

(α−1)2Γ( 1
5)

5 − 16π4

Γ( 1
5)

5
16π4α(2α+3)

(α−1)3Γ( 1
5)

5

− 16π4α2

(α2−1)Γ( 2
5)

5 − 16π4α2

(α2−1)2Γ( 2
5)

5 − 16π4

Γ( 2
5)

5

16π4α2(2α2+3)
(α2−1)3Γ( 2

5)
5

− 32π4α3

(α3−1)Γ( 3
5)

5 − 32π4α3

(α3−1)2Γ( 3
5)

5 − 32π4

Γ( 3
5)

5

32π4α3(2α3+3)
(1−α3)3Γ( 3

5)
5

− 96π4α4

(α4−1)Γ( 4
5)

5 − 96π4α4

(α4−1)2Γ( 4
5)

5 − 96π4

Γ( 4
5)

5

96π4α4(2α4+3)
(1−α4)3Γ( 4

5)
5


(3.13)

where α = exp(2πi/5). For more general structures of solutions at the point z = ∞ one

notices that (2.1) reads Lx = xθ4
x−
∏4
k=1(θx−ak) in the coordinates x = µ/z with θx = x d

dx .

The solutions are special hypergeometric cases of the Meijer G–function as defined in [32]

whose Barnes integral representation for all (four) solutions specializes to

Gn,44,4 (x) =
1

2πi

∫
C

Γ(s)4
∏n
k=1 Γ(aσ(k) − s)((−1)nx)s∏4
k=n+1 Γ(1− aσ(k))

ds . (3.14)

Here σ denotes a permutation in the four indices of the ak. For x > 1 the contour C is

closed left to include the poles of the Γ functions in the integrand on the negative x-axis.

In particular the factor Γ(s)4 produces poles of maximal order 4 and ((−1)mx)s has to

be expanded in s to pick the residue. This yields the logarithmic structure in z at the

MUM-point z = µ/x = 0. For x ≤ 1 the contour C is closed right to include the poles of

Γ(aσ(k) − s) on the positive x-axis. Together with m, σ has to be chosen to get the four

solutions of the Picard-Fuchs equation at the point x = 0. This choice depends on the

nature of the singularity, which as explained above is either an orbifold on top of a regular
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point, a conifold point, a K-point or a MUM-point. For regular points n = 1, the ak are

all different, and σ are the four cyclic permutations of k = 1, . . . , 4. For conifold points

n = 1 with (a1, a2, a2, a3), (a2, a1, a2, a3), (a3, a1, a2, a2) and n = 2 with (a2, a2, a1, a3).

For K-points n = 1 with (a1, a1, a2, a2), (a2, a1, a1, a2) and n = 2 with (a1, a1, a2, a2),

(a2, a2, a1, a1) and for MUM-points n = 1, 2, 3, 4 all with (a1, a1, a1, a1).

We give now the exact analytic continuations for four different types of models in turn.

To fix the convention we call the local variable x and normalize the solutions with finite

cuts as $ai(x) = xai(1 +O(x)). If the local exponent occurs with multiplicity greater than

one, we normalize the logarithmic solutions lai1 = $aj (x) log(x) + O(xai+1). The leading

logarithm of higher logarithmic solutions lain are normalized to $ai logn(x)/n! and their pure

series part is always chosen to start with O(xai+1). The complete intersection X4,3(1521)

has an orbifold point at x = 1/z = 0 and one gets

T−1
∞ =



8(1+i)
√

2π9/2

Γ( 1
4)

6
8
√

2π9/2

Γ( 1
4)

6 −16
√

2π9/2

Γ( 1
4)

6 −24i
√

2π9/2

Γ( 1
4)

6

4 6√−122/3π5/2
√

3Γ( 1
6)Γ( 1

3)
4 22/3π5/2

3Γ( 1
6)Γ( 1

3)
−4 22/3π5/2

Γ( 1
6)Γ( 1

3)
− 4i22/3π5/2
√

3Γ( 1
6)Γ( 1

3)

−80(−1)5/6π3

3Γ( 2
3)

3
80π3

3
√

3Γ( 2
3)

3 − 80π3
√

3Γ( 2
3)

3
80iπ3

3Γ( 2
3)

3

10(1−i)
√

2π9/2

Γ( 3
4)

6
10
√

2π9/2

Γ( 3
4)

6 −20
√

2π9/2

Γ( 3
4)

6
30i
√

2π9/2

Γ( 3
4)

6


. (3.15)

The X4,2(16) geometry is a model with a conifold point at x = 1/(212z) = 0 and the analytic

continuation matrix is

T−1
∞ =


4√−1
√

2π9/2

Γ( 1
4)

6
π9/2

Γ( 1
4)

6 − 2π9/2

Γ( 1
4)

6 −4iπ9/2

Γ( 1
4)

6

π
8

π
16 −π

4 0
1
8(4− iπ)π π

4 −π iπ2

4
(1−i)π9/2

64Γ( 3
4)

6
π9/2

64Γ( 3
4)

6 − π9/2

32Γ( 3
4)

6
iπ9/2

16Γ( 3
4)

6

 . (3.16)

The X4,4(1422) geometry has a K-point at x = 1/(220z) = 0 and we get

T−1
∞ =



(1+i)π3

4Γ( 1
4)

4
π3

4Γ( 1
4)

4 − π3

2Γ( 1
4)

4 − iπ3

2Γ( 1
4)

4

π4

2Γ( 1
4)

4 0 − π4

Γ( 1
4)

4
iπ4

Γ( 1
4)

4

(1−i)π3

256Γ( 3
4)

4
π3

256Γ( 3
4)

4 − π3

128Γ( 3
4)

4
iπ3

128Γ( 3
4)

4

((2−2i)−π)π3

128Γ( 3
4)

4
π3

64Γ( 3
4)

4
(π−2)π3

64Γ( 3
4)

4
iπ3(2+π)

64Γ( 3
4)

4


. (3.17)

The complete intersection X2,2,2,2(18) has a MUM-point at x = 28/z = 0

T−1
∞ =


1
32

1
64 − 1

16 0
− iπ

32 0 0 iπ
8

−π2

48
π2

192
π2

24 0
ζ(3)

4 + iπ3

96
ζ(3)

8 − ζ(3)
2

iπ3

12

 . (3.18)

We have calculated the exact expressions for the nine other hypergeometric cases in the

above conventions and the data are available at request.
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3.3 The period matrix at the attractor points

Let W be any of the fourteen hypergeometric models. There are algorithms to compute

P3(Wz/Fp, T ) very efficiently for all points in Mcs (which are only finitely many after the

reduction to Fp) and this gives a powerful method for finding rank two attractor points,

i.e. one computes P3(Wz/Fp, T ) for all z ∈ Mcs and many primes p and searches for

persistent factorizations. This was first done in [20] and the method we use for computing

P3(Wz/Fp, T ) is explained in [23]. Using this method we were able to find two rational

rank two attractor points in the hypergeometric models. Numerically we also find that

the periods associated with Λ are the periods and quasiperiods of the associated weight 4

newform f and that the periods associated with Λ⊥ are (up to a multiplication by 2πi) the

periods and qausiperiods of the associated weight 2 newform g. For the attractor points

found in [20] such an analysis has been done in [10].

The model with hypergeometric indices 1
3
, 1
3
, 2
3
, 2
3

For the hypergeometric model

with indices 1
3 ,

1
3 ,

2
3 ,

2
3 we find that there is an attractor point at z∗ = −1/2336. The

associated newforms f ∈ Snew
4 (Γ0(54)) and g ∈ Snew

2 (Γ0(54)) are uniquely determined by

f(τ) = q + 2q2 + 4q4 + 3q5 + · · · and g(τ) = q − q2 + q4 + 3q5 + · · · . (3.19)

We numerically computed the period matrix Tz∗ = (Π(z∗) Π′(z∗) Π′′(z∗) Π′′′(z∗)) where Π

is defined around z = 0 in (2.6) and the analytic continuation is done along the upper half

plane.

In A.1 we explain how one can compute periods ω±f and ω±g associated with f and g

and the approximate values are given in Appendix B. Numerically we find that all entries

in Π(z∗) are rational linear combinations of the periods ω±f and all entries in the projection

of Π′(z∗) on the Hodge structure (2, 1) are rational linear combinations of ω̃±g = 2πiω±g .

In Appendix A.2 we also explain how we can compute quasiperiods η±F and η±G associated

with F and G which are unique up to the addition of rational multiples of ω±f and ω±g ,

respectively. The approximate values are again given in Appendix B and numerically we

find that the quasiperiods can be chosen such that all entries in the projection of Π′′′(z∗) on

the Hodge structure (3, 0) and (0, 3) are rational linear combinations of η±F and all entries

in the projection of Π′′(z∗) on the Hodge structure (1, 2) and (2, 1) are rational linear

combinations of η̃±G = 2πiη±G. In other words, the periods associated with Λ are the periods

and quasiperiods associated with f and the periods associated with Λ⊥ are the periods and

quasiperiods associated with g. The complete period matrix can then be written as

Tz∗ = A


ω+
f η+

F 0 0

ω−f η−F 0 0

0 0 ω̃+
g η̃+

G

0 0 ω̃−g η̃−G

B (3.20)
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where

A =


0 486 6 12
−108 −1620 −4 −4

0 −162 2 0
27 −81 1 1

 and B =


2 1944 12597120 0
0 0 0 15116544
0 17496 0 −800783801856
0 0 3779136 72241963776

 .

(3.21)

Note that the compatibility with the intersection pairing gives the quadratic relation

T Tz∗ΣTz∗ = (2πi)3


0 0 0 212318

0 0 −212318 −2173227
0 212318 0 −21932647

−212318 2173227 21932647 0

 (3.22)

which is equivalent to the Legendre relations

ω+
f η
−
F − ω

−
f η

+
F = (2πi)3 and ω+

g η
−
G − ω

−
g η

+
G = 2πi. (3.23)

The model with hypergeometric indices 1
4
, 1
3
, 2
3
, 3
4

For the hypergeometric model

with indices 1
4 ,

1
3 ,

2
3 ,

3
4 we find that there is an attractor point at z∗ = −1/2433. The

associated newform f ∈ Snew
4 (Γ0(180)) is uniquely determined by

f(τ) = q + 2q2 + 4q4 + 3q5 + · · · (3.24)

and the associated newform g is the unique form in Snew
2 (Γ0(32)). We numerically compute

the period matrix Tz∗ = (Π(z∗) Π′(z∗) Π′′(z∗) Π′′′(z∗)) where Π is defined around z = 0 in

(2.6) and the analytic continuation is done along the upper half plane.

Proceeding as in the previous example one finds that the complete period matrix can

be written as

Tz∗ = A


ω+
f η+

F 0 0

ω−f η−F 0 0

0 0 ω̃+
g η̃+

G

0 0 ω̃−g η̃−G

B (3.25)

where

A =


432 432 4 6
−1296 −3888 −1 −3

0 −864 2 0
432 −432 1 1

 and B =


1 432/5 217728/5 0
0 0 0 1296/25
0 2592/5 0 −228427776
0 0 93312/5 161243136/5

 .

(3.26)

The compatibility with the intersection pairing gives the quadratic relation

T Tz∗ΣTz∗ = (2πi)3


0 0 0 213310/5
0 0 −213310/5 −21731319/52

0 213310/5 0 −219314383/52

−213310/5 21731319/52 219314383/52 0

 (3.27)

which is equivalent to the Legendre relations

ω+
f η
−
F − ω

−
f η

+
F = (2πi)3 and ω+

g η
−
G − ω

−
g η

+
G = 2πi. (3.28)
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4 Explicit correspondence with a Kuga-Sato variety in a spe-
cial case

In this section we construct an explicit correspondence between the conifold fiber in the

mirror family of four quadrics in P7 and the relevant Kuga-Sato variety. Our construction

makes use of the modular parametrization of the Legendre curve and provides a proof for

the identification of the Calabi-Yau periods in this fiber with the periods and quasiperiods

associated with the unique newform in S4(Γ0(8)).

4.1 A model for X0(8) and for the associated universal elliptic curve

We start with the classical Legendre elliptic curve

Lλ : y2 = x(x− 1)(x− λ) (λ ∈ C \\ {0, 1}) , (4.1)

with the standard holomorphic 1-form

ω =
dx

2 y
(4.2)

and with 2-torsion subgroup {O,P0, P1, Pλ}, where O = (∞,∞) is the origin of the elliptic

curve and Pν = (ν, 0) (ν ∈ {0, 1, λ}) are the points of order 2. If λ is given in the form

1 − α2 for some α 6= 0,±1, then the curve Lλ also has the four 4-torsion points Q1±α =

(1 ± α, α(1 ± α)) and −Q1±α = (1 ± α, −α(1 ± α)). They all satisfy 2Q = P1 and hence

differ by 2-torsion points (e.g. Q1+α = Q1−α + P0).

These maps give rational parametrizations X(2)
∼−→ P1(C)λ and X(2; 4)

∼−→ P1(C)α,

where X(2) is the compactified moduli space of elliptic curves with labelled 2-torsion points

and X(2; 4) is the compactified moduli space of elliptic curves with labelled 2-torsion points

and one labelled 4-torsion point. Over C, these two spaces are the compactifications of

the upper half-plane quotients H/Γ(2) and H/Γ(2; 4), respectively where Γ(2) has its usual

meaning (principal congruence subgroup) and Γ(2; 4) := Γ(2) ∩ Γ0(4). (Here we should

really use Γ1(4), which corresponds to a choice of a 4-torsion point rather than merely of a

cyclic subgroup of order 4 on an elliptic curve, but since the quotients of H by Γ0(4) and

Γ1(4) are isomorphic, we will ignore this point.) The group Γ(2; 4) is conjugate to Γ0(8)

by the matrix
(

2 0
0 1

)
, corresponding to the map τ 7→ 2τ from H to itself, so α can also be

seen as a rational parameter on the compactified moduli space X0(8) ∼= H/Γ0(8) of elliptic

curves together with a cyclic subgroup of order 8.

We now describe this in transcendental (modular) terms. Let α(τ) and λ(τ) be the two

modular functions defined in terms of the Dedekind eta-function η(τ) = q
1
24
∏∞
n=1(1 − qn)

(here and from now on q = e2πiτ ) by

α(τ) =
η(τ)8η(4τ)4

η(2τ)12
, λ(τ) = 16

η(τ/2)8η(2τ)16

η(τ)24
= 1− α(τ/2)2 . (4.3)

The function λ(τ) is the classical Legendre λ-function giving the isomorphism between

H/Γ(2) and X(2) (Hauptmodul) and α(τ) is a Hauptmodul for Γ0(8), with the factor 2

32



in the argument of α in (4.3) corresponding to the bijection between Γ(2; 4) and Γ0(8)

described above. The parametrization of the Legendre curve (4.1) with λ = λ(τ) can be

given in terms of the four classical Jacobi theta functions Θi(z) = Θi(τ, z) defined by

Θ1(z) =
∑

n∈Z+ 1
2

(−1)n−
1
2 qn

2/2ζn = q1/8ζ1/2
∞∏
n=1

(
1− qn

)(
1− qnζ

)(
1− qn−1ζ−1

)
,

Θ2(z) = −iΘ1(z +
1

2
) , Θ3(z) = −q−

1
8

√
ξΘ1(z +

1

2
+
τ

2
) , Θ4(z) = −q−

1
8

√
ξΘ1(z +

τ

2
)

(4.4)

(here z ∈ C, ζ = e2πiz) and their Nullwerte θi = Θi(0) (which are related to λ by λ =

θ4
2/θ

4
3 = 1− θ4

4/θ
4
3) by the formulas

(x, x− 1, x− λ, y) =
(c3Θ1(2z)

2 Θ1(z)4
,
c2Θ4(z)2

θ2
4Θ1(z)2

,
c2Θ2(z)2

θ2
2Θ1(z)2

,
c2Θ3(z)2

θ2
3Θ1(z)2

)
(4.5)

with c = −2i η3/θ2
3. With this identification the 1-form ω is given by

ω = πθ2
3 dz . (4.6)

Note that under modular transformations τ 7→ aτ+b
cτ+d , z 7→

z
cτ+d with

(
a b
c d

)
∈ Γ(2), θ2

3 and

dz transform by θ2
3 7→ (cτ + d)θ2

3 and dz 7→ (cτ + d)−1dz, so ω is unchanged.

For any complex number α 6= 0,±1 we define an algebraic curve Cα of genus 1 by

Cα :
(
Y1 −

1

Y1

)(
Y2 −

1

Y2

)
= 4α , (4.7)

where Y1 and Y2 are variables in P1. This curve has eight obvious points where one of the

Yi is ±1 and the other is 0 or ∞. If we chose (∞,−1) as the origin, then Cα becomes an

elliptic curve and can be put into the Legendre form (4.1), with λ = 1− α2, by

L1−α2
∼−→ Cα , (x, y) 7→ (Y1, Y2) =

(
xα+ y

xα− y
,
x(1− x)

y

)
, (4.8)

with the inverse map given by x = 1 + α1−Y1
1+Y1

Y2 and y = αY1−1
Y1+1x. Under this isomorphism,

the holomorphic 1-form ω becomes19

ω =
1

2α

Y −1
2 − Y2

Y2
−1 + Y2

dY1

Y1
= − dY1√

Y 4
1 + (4α2 − 2)Y 2

1 + 1

and the above-mentioned eight points map to eight points of order dividing 4 on L1−α2 , as

given in the following Table:

(Y, Y ′) (∞,−1) (∞, 1) (0, 1) (0,−1) (±1,∞) (±1, 0)

(x, y) O Pλ P1 P0 Q1∓α −Q1±α

19One has ω = −2 dY1/(
∂P
∂Y2
|P=0) with P = (Y 2

1 − 1)(Y2
2 − 1)− 4αY1Y2.
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The curve Cα also has a theta-series parametrization. With the Kronecker symbol
( ·
·
)

this can be given by

Y1(z) = −i
∑

n∈Z
(

8
n

)
q
n2

8 ξn∑
n∈Z
(−8
n

)
q
n2

8 ξn
, Y2(z) = −Y1(z + 1/8) , (4.9)

where Y1 is an odd function of z (because its numerator is even and its denominator is

odd) and Y2 gets inverted under z 7→ −z (because up to a factor i the numerator and

denominator of Y1 are exchanged under z 7→ z + 1/4). The parametrization is invariant

under Γ0(8)-Jacobi transformations up to the identification (Y1, Y2) ∼ (−Y1, 1/Y2). For our

following analysis we remark that there is an isomorphism

Cα → C1/α

(Y1, Y2) 7→
(
Y1 − 1

Y1 + 1
,
Y2 − 1

Y2 + 1

)
.

(4.10)

4.2 Correspondence

The identification

iYj =
xj
yj

for j = 0, . . . , 3 (4.11)

gives a map of degree 8 from the family of Calabi-Yau threefolds defined in (2.30) to the

hypersurface in (P1)4 defined by

W̃ψ :
4∏
i=1

(
Yi −

1

Yi

)
= 16ψ4 . (4.12)

We can identify W̃ψ with
⋃
αCα×Cψ4/α, where the two curves are given by the coordinates

(Y1, Y2) and (Y3, Y4), respectively. We have already seen that Cα is always an elliptic curve

with a distinguished cyclic subgroup of order 8, where we can think of α as a parameter in

the moduli space Y0(8) of such curves and we also have the modular parametrization (4.9).

For ψ = 1 the two factors Cα and C1/α of W̃ψ are isomorphic and so W̃1 can be identified

with the Kuga-Sato threefold, which by definition is the union over the moduli space of the

product of the corresponding elliptic curve by itself.

From the modular parametrization (4.9) of Cα and the symmetry (4.10) we get the

modular parametrization

Φ : H× C× C→ W̃1

(τ, z1, z2) 7→
(
Y1(z1), Y2(z1),

Y1(z2)− 1

Y1(z2) + 1
,
Y2(z2)− 1

Y2(z2) + 1

)
.

(4.13)

For the canonical (3, 0) form Ωψ of W̃ψ, which can be defined using P :=
∏4
i=1(Y 2

i − 1) −
16ψ4

∏4
i=1 Yi = 0 in a patch of (P1)4 as20

Ωψ = ψ4 dY1 ∧ dY2 ∧ dY3

∂P
∂Y4

∣∣
p=0

=
1

16

Y 2
4 − 1

Y 2
4 + 1

dY1

Y1
∧ dY2

Y2
∧ dY3

Y3
(4.14)

20That we have singled out Y4 in the derivative and Y1, Y2, Y3 in the measure is not important. The
representations with permuted indices describe the same 3-form.
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= −1

4
ω(1)
α ∧ ω

(2)
ψ4/α

∧ dα

α
, (4.15)

one then finds that

Φ∗Ω1 = 2(2πi)3f(τ) dτ ∧ dz1 ∧ dz2 . (4.16)

Here f(τ) = − 1
16πiθ3(2τ)2α′(τ) = η(2τ)4η(4τ)4 is the unique newform of level 8 and

weight 4. This proves the occurrence of the periods of f in the period matrix of W̃1.

To prove that the quasiperiods also occur we consider components of derivatives of Ωψ at

ψ = 1 which are anti-invariant under the involution Π induced by

Cα × C1/α → Cα × C1/α

(Y1, Y2, Y3, Y4) 7→
(
Y3 − 1

Y3 + 1
,
Y4 − 1

Y4 + 1
,
Y1 − 1

Y1 + 1
,
Y2 − 1

Y2 + 1

)
.

(4.17)

Denoting by ∇z the partial derivative with respect to z = 1/(2ψ)8 with Y1, Y2, Y3, α held

constant, and by (·)(−) the anti-invariant part of (·) under Π∗, we get

Ω
(−)
1 = Ω1 (4.18)

(∇zΩψ)|(−)
ψ=1 =

1

2

(
−29 Y 2

3

4Y 2
3 + α2(1− Y 2

3 )2
− 27 (1− Y 2

1 )2

1 + (4α2 − 2)Y 2
1 + Y 4

1

)
Ω1 (4.19)

= −26Ω1 + 24d(ω(1)
α ∧ ω

(2)
1/α) (4.20)

(∇2
zΩψ)|(−)

ψ=1 =
1

2

(
2183

Y 4
3

(4Y 2
3 + α2(1− Y 2

3 )2)2
+ 2143

(1− Y 2
1 )4

(1 + (4α2 − 2)Y 2
1 + Y 4

1 )2

)
Ω1 (4.21)

= 214 1− 4α2 + α4

(1− α2)2
Ω1 + d

(
− 212 2− α2

1− α2
ω(1)
α ∧ ω

(2)
1/α

+ 28 (1− Y 4
1 )(1− Y 2

2 )3

α2(1− α2)Y 2
1 (1 + Y 2

2 )3
ω

(2)
1/α ∧ dα+ 28α

2(1− Y 4
3 )(1− Y 2

4 )3

(1− α2)Y 2
3 (1 + Y 2

4 )3
ω(1)
α ∧ dα

)
.

(4.22)

The modular parametrization further gives

Φ∗
[
(∇2

zΩψ)|(−)
ψ=1

]
=
[
28(2πi)3(F (τ) + 26 · 3 · f(τ)) dτ ∧ dz1 ∧ dz2

]
, (4.23)

where

F (τ) =

(
27 1− 4α(τ)2 + α(τ)4

(1− α(τ)2)2
− 26 · 3

)
f(τ) (4.24)

is in the same class as the meromorphic partner of f chosen for our numerical computations.

In particular this shows that if ∫
γ

Ω1 = α+ω
+
f + α−ω

−
f (4.25)

for a Π-anti-invariant 3-cycle γ then also∫
γ
(∇zΩψ)|ψ=1 = −64(α+ω

+
f + α−ω

−
f ) (4.26)
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∫
γ
(∇2

zΩψ)|ψ=1 = 24576(α+ω
+
f + α−ω

−
f ) + 128(α+η

+
F + α−η

−
F ) . (4.27)

Up to a multiplicative constant this confirms two rows from (3.11) since

− 1

32
(ω±f , η

±
F )

(
−32 −8 0 0

0 0 − 1
32 0

)
Π1/28

=ω±f − 64ω±f (z − 1/28) + (24576ω±f + 128η±F )
(z − 1/28)2

2
+O((z − 1/28)3) .

(4.28)

5 Local hypergeometric one-parameter Calabi-Yau threefolds

Non-compact (also called local) Calabi-Yau manifolds M have been studied much due to

their relation to Chern-Simons theory [99], matrix models [3] and N = 2 supersymmetric

gauge theories [58] and Feynman graphs [8]. They also provide examples for Calabi-Yau

backgrounds on which the topological string can be completely solved by localization [67],

large string/gauge theory duality [2] [15] and the modular approach [44]. We consider

local Calabi-Yau threefolds M given as the total space of the anti-canonical line bundle

O(−KS) → S over a del Pezzo surface S and consider a one parameter subslice in the

Kähler parameter space of S. The mirror W can be obtained by local version of Batyrev’s

construction [58] [48] and is given by a one parameter family of elliptic curves C embedded

into a non-compact three-dimensional space. The family C is parametrized by z and each

curve is equipped with a meromorphic one-form λ of the third kind, which is obtained from

a holomorphic (3, 0)-form Ω.

5.1 Third order Picard-Fuchs operators

Because of the non-vanishing residuum of λ there are three periods
∫
γk
λ, k = 1, 2, 3 of W ,

which in our cases are annihilated by third order Picard-Fuchs operators of the form

L = (θ2 − µ−1z
2∏

i = 1

(θ + ai))θ (5.1)

with θ = z d
dz and the associated Riemann Symbol

P


0 µ ∞
0 0 0
0 1 a1

0 1 a2

 . (5.2)

The four possible choices for (a1, a2) are displayed in Table 4. As it can be seen there,

additional choices of the sign of z and different topological invariants lead to six different

local Calabi-Yau threefolds M that are related to the these four hypergeometric systems.

Similar as for the compact cases we can fix a preferred basis of periods corresponding

to an integral basis of cycles at the point of maximal unipotent monodromy z = 0 in terms
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of topological invariants of M . We are mainly interested21 in the relation of this basis to

the Frobenius basis at the conifold z = µ expressed by a transition matrix Tµ. In particular

it contains the value t(µ) of the mirror map at the conifold, which determines the large

degree asymptotics of the Gromov-Witten invariants at all genera [67], determined there

numerically. We will show that in all cases it can be expressed in terms of the value of of a

Dirichlet L-function, which for Re s > 1 is defined by

La(s) =
∞∑

n = 1

(a
n

)
n−s , (5.3)

at s = 2. Here a takes the values −3,−4,−8 and
(
a
n

)
denotes the Kronecker symbol.

5.2 The local geometries

To describe M = Tot(O(−KS)) note that two dimensional del Pezzo surfaces are either

P1×P1 with canonical class K = 2(H1 +H2) (where H1 and H2 are the hyperplane classes

of the projective spaces) or the surfaces Bk obtained by blowing up P2 in k = 0, . . . , 8

points with canonical class KBk = 3H −
∑k

i=1Ei (where H is the hyperplane classes of

the projective space and Ei are the exceptional divisors with intersection numbers H2 =

1 = −E2
i and H · Ei = Ei · Ej = 0 for i 6= j). For S = P2 the geometry M has only one

Kähler parameter. For S = P1 × P1 we restrict to one parameter sublocus by considering

the diagonal Kähler parameter t = t1 = t2 in P1 × P1 and for S = Bk, k = 5, . . . , 8 we set

the Kähler parameters ti of the exceptional divisors classes Ei to zero, see [52]. This gives

six local geometries which are summarized in Table 4.

Following [58] [48] the non-compact mirror geometry W can be obtained from a conic

bundle

uv = H(X,Y, z) (5.4)

over C∗ × C∗, where the conic fiber degenerates to two lines over the punctured elliptic

curve

C(z) =
{

(X,Y ) ∈ C∗ × C∗|H(X,Y, z) = 0
}
. (5.5)

The holomorphic (3, 0)-form Ω = dH∧dX∧dY
HXY of W gives the meromorphic one form λ(z) =

(2πi)2 log(Y )dX
X on C(z), where z denotes the one complex structure parameter of W . If S

allows a toric description one can directly apply a local version of Batyrev’s construction [58]

[48] to obtain H(X,Y, z). The general del Pezzo’s Bk, k = 5, . . . , 8 do not admit a such

a toric description, but the one-parameter families can be obtained from a restricted toric

representation as explained in [52], where also Weierstrass forms of the elliptic curves C are

given.

21At z = ∞ the operator L has either a second conifold with the indices (1/2, 1/2) or an orbifold point
and the corresponding transition matrix can be obtained comparing local expansion of Barnes integral
representations of the periods at z = 0 and z =∞ as in Section 3.2.
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Base S a1, a2 1/µ κ σ c2 · J s l h n1
0 n2

0 n3
0

P1 × P1 1
2 ,

1
2 24 1 0 −2 0 32π L−4(2) 2 -4 -4 -12

P2 1
3 ,

2
3 −33 1

3
1
6 −2 1

2 27
√

3π L−3(2) 3 3 -6 27

B5 [D5] 1
2 ,

1
2 −24 4 2 −20 1

2 32π L−4(2) 1 16 -20 48

B6 [E6] 1
3 ,

2
3 −33 3 3

2 −18 1
2 27

√
3π L−3(2) 1 27 -54 243

B7 [E7] 1
4 ,

3
4 −26 2 1 −16 1

2 32
√

2π L−8(2) 1 56 -272 3240

B8 [E8] 1
6 ,

5
6 −2433 1 1

2 −14 1
2 80π L−4(2) 1 252 -9252 848628

Table 4: Data for the local Calabi-Yau manifolds M = O(−KS) → S, that give rise to
mirrors W with one-parameter Picard-Fuchs differential equations. The Weyl groups of the
indicated Lie algebras act on the homology of the Bk. This organizes the BPS invariants
such as nβ0 in representations of these Weyl groups. The degree of the curve C corresponding
to β is given by the intersection C ·KS = χ(S)β. The main observation is that l, which up
to factor of (2πi)3 is the imaginary part of the mirror map at the conifold, is given terms
of values of Dirichlet L-functions at s = 2.

5.3 The period matrix at the conifold points

Around z = 0 the Γ̂-class formalism defines a preferred basis of periods Π also for the

local models. One can start with a compact elliptically fibered Calabi-Yau threefold Mc

over the base S with one section. Let t be the one complexified Kähler parameter of the

base under consideration. On Mc one has one additional complexified Kähler parameter

te measuring the size of the elliptic fiber. The Γ̂ class determines a basis of periods of Mc

and in the large volume limit te → ∞ this gives three finite periods, corresponding to the

D4–brane wrapping S, the D2–branes wrapping curves in S and the D0–brane restricted

to S. In terms of the topological invariants summarized in Table 4, the preferred bases for

the models under consideration are given by

Π =

 ΠD4

ΠD0

ΠD2

 = (2πi)3

 c2·J
24

σ
2πi −

κ
(2πi)2

1 0 0
0 1

2πi 0

Π0 (5.6)

where

Π0(z) =

 1
log(z) + f0(z)

1
2 log2(z) + f0(z) log(z) + f1(z)

 (5.7)

are solutions of the Picard-Fuchs equation with power series normalized by f0(z) = O(z)

and f1(z) = O(z). Around the conifold z = µ we define a basis of solutions by

Πµ(z) =

 1
ν(δ)

ν(δ) log(δ) +O(δ2)

 (5.8)
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with δ = 1−z/µ and ν(δ) = δ+O(δ2). We now define the transition matrix Tµ by Π = TµΠµ

(analytically continuing along the open interval (0, µ)) and claim that

Tµ =

 0 −4iπ2
√
κ
h 0

(2πi)3 0 0
l 2πh

√
κ(1− log |µ|) −2πh

√
κ

 (5.9)

with the topological invariants and the L-function values l given in Table 4. Here s = 0, 1
2

determines whether the instanton numbers nβ0 (and more generally nβg ) are alternating in

sign. The value s = 1
2 can be understood as a half integer shift of the B-field in the limit.

The integer h takes values 1, 2, 3. It is 2 and 3 for the cases of P1×P1 and P2 geometries and

1 for all other. After substituting z → −z the mirror curves of P1×P1 and P2 are isogenous

to the ones of B5 and B6, respectively, which results in the Picard-Fuchs equations being

related by z → −z. Therefore the analytic continuation matrices of these two pairs of

geometries are very similar.

The relation (5.9) can be proven by using the modularity of the Picard-Fuchs equations

of the family of elliptic curves. This is discussed for example in [103] and in the following

we exemplify this for the case of B5, corresponding to the family of Legendre curves. On

the open interval (0, µ) we define a basis of functions annihilated by θ2 − z/µ(θ + 1/2)2 by

ω1(z) =
∞∑
n=0

(
2n

n

)2

zn and ω2(z) = log(z)ω1(z) +O(z) , (5.10)

which are essentially periods of the Legendre family of elliptic curves. These have only

logarithmic divergences for z → µ and we thus have

Π0(z) =

∫ z

µ

 0
ω1(z′)
ω2(z′)

 dz′

z′
+

 1
c1

c2

 (5.11)

with

c1 = log(µ) +

∫ µ

0

ω1(z)− 1

z
dz (5.12)

c2 =
1

2
log(µ)2 +

∫ µ

0

ω2(z)− log(z)

z
dz . (5.13)

The expansions of the functions ω1 and ω2 around z = µ are well known and have the form

ω1(z) = − 1

π
log(µδ)− 1

2π
δ − 1

4π
log(µδ)δ +O(log(δ)δ2) (5.14)

ω2(z) = −π − π

4
δ +O(δ2) . (5.15)

and so it follows that the transition matrix is given by

Tµ = (2πi)3

 c2·J
24

σ
2πi −

κ
(2πi)2

1 0 0
0 1

2πi 0

 1 0 0
c1 (log(µ)− 1)/π 1/π
c2 π 0

 (5.16)
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and it only remains to compute the constants c1 and c2. To do this we introduce the

Hauptmodul t of Γ0(4) defined by

t(τ) =
η(τ)8η(4τ)16

η(2τ)24
. (5.17)

This maps the straight line from 0 to ∞ to the straight line from µ to 0 and hence we have

c1 = log(µ)−
∫ ∞

0

ω1(t(τ))− 1

t(τ)
t′(τ) dτ (5.18)

= log(µ)−
∫ ∞

0

(
2πi− t′(τ)

t(τ)

)
dτ −

∫ ∞
0

(
ω1(t(τ))

t′(τ)

t(τ)
− 2πi

)
dτ (5.19)

= −
∫ ∞

0

(
ω1(t(τ))

t′(τ)

t(τ)
− 2πi

)
dτ (5.20)

= 8πi

∫ ∞
0

(E3,−4(τ) + 1/4) dτ . (5.21)

with the Eisenstein series of weight 3 with Fourier expansion

E3,−4(τ) = −1

4
+

∞∑
n=1

∑
d|n

d2

(
−4

d

) qn , q = e2πiτ . (5.22)

In the same way one gets

c2 = −16π2

∫ ∞
0

τ(E3,−4(τ) + 1/4) dτ . (5.23)

From (5.22) we find that
∫∞

0 (E3,−4(ix) + 1/4)xs−1 dx equals (2π)−sΓ(s)ζ(s)L−4(s − 2)

(initially for Re s > 3 and then by analytic continuation for Re s > 0, since the Eisenstein

series is small for τ → 0), so

c1 = −4L′−4(−1) = − 8

π
L−4(2) and c2 = 4ζ(2)L−4(0) =

π2

3
. (5.24)

Numerically the values agree with the ones calculated in [67]. Shortly after these num-

bers were published (because of their significance for the growth of the |nβg |) the authors re-

ceived an e-mail from Fernando Rodriguez Villegas pointing out the relations to L-function

values (partially based on [97]) 22. Using the identity L−3(2) = 4
3
√

3
Im(Li2(eπi/3)) and

L−4(2) = Im(Li2(i)) ones sees that the value for t at the conifold agrees for the local P2

with the value that was conjectured from the matrix model in [76]. Similarly for P1 × P1 it

correspond to the value calculated for m = 1, in (B.5) in [57]. Let us finally remark that

the asymptotic growth of the absolute value of the instanton numbers |nβg | is given also for

the local case by (2.55). But in this case X0(µ) = (2πi)3. Hence the asymptotic growth of

|nβg | is exactly determined by the L-function values given in Table 4.

22A.K. wants to thank Fernando for pointing out the connection to number theory, which he only appre-
ciated with a long delay.
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A Appendix: Modular forms and arithmetic algebraic ge-
ometry

In the first two parts of this appendix we review the general theory of modular forms and

their associated period polynomials, which leads to the definition of periods and quasiperiods

of modular forms. In the second part we review the cohomological structure of smooth

projective varieties, which for example gives rise to periods and zeta functions. We sketch

how the different cohomology groups define motives and that also to certain modular forms

one can attach motives.

A.1 Cusp forms and periods

In this section we define the periods associated with modular forms for discrete and cofinite

subgroups Γ of SL(2,R). For us the relevant examples are the level N subgroups Γ0(N) ⊆
SL(2,Z). We start the section by reviewing a few basic facts about these groups and the

properties of modular forms. Then we describe how one can associate period polynomials

with modular forms and construct these explicitly for the group Γ∗0(25) and weight 4.

A.1.1 Review of holomorphic modular forms

In this section we review some elementary facts about holomorphic modular forms. For

further details, see e.g. [102] or [26].

The group SL(2,R) of real 2× 2 matrices of determinant 1 acts as usual on the complex

upper half plane H = {τ ∈ C| Im τ > 0} by τ 7→ gτ = aτ+b
cτ+d for g =

(
a b
c d

)
∈ SL(2,R) and

this action also extends to H ∪ P1(R). Elements in SL(2,R) which have exactly one fixed

point in P1(R) are called parabolic elements and every parabolic element is conjugate to

±T , where T = (1 1
0 1). Now let Γ be a discrete subgroup of SL(2,R) that is cofinite, i.e. Γ\H

has finite hyperbolic area. The fixed points in P1(R) with respect to parabolic elements of

Γ are called the cusps of Γ and we denote the union of H and the set of cusps of Γ by H.

The action of Γ can be restricted to H and two cusps are said to be equivalent if they are

in the same Γ orbit. There are only finitely many equivalence classes of cusps.

For any function f : H→ C, integer k ∈ Z, and g =
(
a b
c d

)
∈ SL(2,R) one writes

(f |kg)(τ) = (cτ + d)−kf(gτ) (A.1)

and calls |k the weight k slash operator. For any k ∈ Z we define the vector space Mk(Γ) of

(holomorphic) modular forms by

Mk(Γ) = {f : H→ C | f |kγ = f ∀ γ ∈ Γ, f holomorphic on H} , (A.2)

where f is said to be holomorphic (vanish) at a cusp fixed by ±gTg−1 ∈ Γ if (f |kg)(x+ iy)

is bounded (vanishes) for y →∞. A modular form f ∈Mk(Γ) is a cusp form if it vanishes

at all cusps. We denote the subspace of cusp forms by Sk(Γ) ⊆Mk(Γ). The spaces Mk(Γ)
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and hence Sk(Γ) are finite–dimensional and there are standard formulas for dimMk(Γ) and

dimSk(Γ).

Modular forms have Fourier expansions around each cusp, i.e. for a cusp fixed by

±gTg−1 ∈ Γ one finds that (f |kg)(τ + 1) = (±1)k(f |kg)(τ) and hence there is an expansion

(f |kg)(τ) =
∑
m

ag,m q
m with q = e2πiτ , (A.3)

where, depending on (±1)k, the sum runs over positive integers or positive half integers. If

f is a cusp form we further have ag,0 = 0. If T ∈ Γ we abbreviate a1,m by am and then have

f(τ) =
∞∑
m=0

am q
m . (A.4)

A.1.2 Hecke operators and Atkin-Lehner involutions

From now on we take for Γ the level N subgroup

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0 modN
}

(N ∈ N) (A.5)

and for each n ∈ N with (n,N) = 1 define the Hecke operator Tn, acting on Mk(Γ0(N)), as

follows. Let

Mn,N =
{
g =

(
a b
c d

)
∈ M2(Z)

∣∣∣ det(g) = n, c ≡ 0 modN
}
, (A.6)

where M2(Z) denotes the set of integral 2×2 matrices. Note that this set is stabilized under

left and right multiplication by any γ ∈ Γ0(N). For f ∈Mk(Γ0(N)) we then define

f |kTn = nk−1
∑

M∈Γ0(N)\Mn,N

f |kM , (A.7)

where the weight k slash operator on the right is defined as in (A.1) even though the matrices

M do not have determinant 1. The sum is over any set of representatives for the left action

of Γ0(N) on Mn,N , a convenient choice being

M[∞]
n =

{(
a b
0 d

)
∈ M2(Z)

∣∣∣ ad = n, 0 ≤ b < d
}
. (A.8)

Note that the cardinality of this set equals σ1(n), the sum of divisors of n. In particular,

the sum in (A.7) is finite and does not depend on the choice of representatives since f is

modular. It is easy to see that f |kTn is again modular since the set Γ0(N)\Mn,N is invariant

under right multiplication by any γ ∈ Γ0(N). We further see that Tn maps cusp forms to

cusp forms. Since T ∈ Γ0(N) we have the Fourier expansion (A.4) and if one chooses the

representatives as in (A.8) one gets a formula for the action of Tn on the Fourier expansion

of f . For cusp forms this gives

(f |kTn)(τ) =

∞∑
m=1

∑
r|(m,n)
r>0

rk−1 amn/r2 q
m . (A.9)
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Using the fact that the Tn for different n commute which each other, and that they are

self–adjoint for a certain scalar product on Sk(Γ0(N)), one can choose a common basis of

eigenforms f of Sk(Γ0(N)) such that

f |kTn = λnf ∀ n ∈ N, (n,N) = 1 . (A.10)

From (A.9) one then gets an = λna1 for (n,N) = 1. In particular, for N = 1 any eigenform

is (up to a multiplicative constant) uniquely determined by its Hecke eigenvalues. For N > 1

this is not true in general but for so called newforms f ∈ Sk(Γ0(N)), which are eigenforms

under all Hecke operators that are normalized by a1 = 1 and that can not be written as

f(τ) =
∑

i fi(miτ) for integers mi and modular forms fi of lower level, this is again true.

We denote the algebra generated by the Hecke operators by T.

There is a further set of operators on Mk(Γ0(N)) that are relevant for us. For any exact

divisor Q of N , i.e. Q|N and (Q,N/Q) = 1, any element in the set

WQ =
1√
Q

(
QZ Z
NZ QZ

)
∩ SL(2,R) (A.11)

normalizes Γ0(N) and the product of any two elements of WQ is in Γ0(N). Hence, any

WQ ∈ WQ induces an involution on Γ0(N)\H via the action of WQ on H. These involutions

do not depend on the choice of WQ ∈ WQ and are called the Atkin–Lehner involutions.

They generate a group isomorphic to (Z/2Z)`, where ` is the number of prime factors of N .

The subgroup of SL(2,R) obtained by adjoining all Atkin–Lehner involutions to Γ0(N) is

denoted by Γ∗0(N), i.e.

Γ∗0(N) =
⋃
Q|N

(Q,N/Q)=1

WQΓ0(N) . (A.12)

It normalizes Γ0(N) in SL(2,R) and permutes the cusps of Γ0(N). Each Atkin–Lehner

involution on Γ0(N)\H induces an involution (also called Atkin–Lehner involution) on

Mk(Γ0(N)) by f 7→ f |kWQ, which is again independent of the choice of WQ. These involu-

tions commute with each other as well as with the operators of T and define an eigenspace

decomposition Mk(Γ0(N)) =
⊕

εM
ε
k(Γ0(N)), where the sum ranges over the characters of

(Z/2Z)`. The fact that the Atkin–Lehner involutions commute with T implies that every

newform automatically belongs to one of these eigenspaces.

A.1.3 Eichler integrals and period polynomials

We consider the normalized derivative D = 1
2πi

d
dτ , where the factor 1

2πi is introduced so

that D sends periodic functions with rational Fourier coefficients to periodic functions with

rational Fourier coefficients. The operator D does not preserve modularity. Instead, we

have the following elementary but not obvious proposition.

Proposition 1. (Bol’s identity [9]) Let k ∈ N be an integer, k ≥ 2. Then for any mero-

morphic function f : H→ P1(C) we have

Dk−1(f |2−kg) = (Dk−1f)|kg (∀ g ∈ SL(2,R)) . (A.13)
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If f is modular of weight k on some group Γ, then any holomorphic function f̃ : H→ C
with the property that Dk−1f̃ = f is called an Eichler integral of f . The Eichler inte-

gral exists, but is well–defined only up to a degree k − 2 polynomial p ∈ Vk−2(C), where

Vk−2(K) = 〈1, . . . , τk−2〉K for any field K. For instance, we can take f̃ to be f̃τ0 , where

f̃τ0(τ) =
(2πi)k−1

(k − 2)!

∫ τ

τ0

(τ − z)k−2 f(z) dz (A.14)

for any τ0 ∈ h, or even τ0 ∈ h if f is a cusp form. In particular, if T ∈ Γ, then we have

f̃∞(τ) =

∞∑
m=1

am
mk−1

qm if f(τ) =

∞∑
m=1

am q
m ∈ Sk(Γ) . (A.15)

For later purposes we observe that f̃∞ is related to f̃τ0 for any τ0 ∈ h by

f̃∞(τ)− f̃τ0(τ) =
(2πi)k−1

(k − 1)!

∫ τ0−1

τ0

Bk−1(τ − z) f(z) dz , (A.16)

where Bn is the nth Bernoulli polynomial. Indeed, from Bn(x + 1) = Bn(x) + nxn−1 and

f(z − 1) = f(z) we find that this equation does not depend on τ0 and since it is true for

τ0 =∞ it is true for all τ0.

For a fixed choice of Eichler integral f̃ it follows from Bol’s identity (A.13) that

rf (γ) := f̃ |2−k(γ − 1)(τ) ∈ Vk−2(C) ∀ γ ∈ Γ (A.17)

i.e. rf (γ) is a polynomial of degree k − 2, which is called a period polynomial of f for

γ ∈ Γ. Here we extended the action of the slash operator to the group algebra C[SL(2,R)]

in the obvious way (viz., f |k
∑
gi =

∑
f |kgi, where we write

∑
gi instead of the more

correct
∑

[gi]). The period polynomials measure the failure of modularity of the Eichler

integral. An immediate consequence of the definition is that the period polynomials satisfy

the cocycle condition

rf (γγ′) = rf (γ)|2−kγ′ + rf (γ′) , (A.18)

where we define an action of SL(2,Z) on Vk−2(C) by extending the slash operator (A.1) to

complex polynomials p ∈ Vk−2(C) in the obvious way.

Since the Eichler integral f̃ is unique only up to addition of polynomials p ∈ Vk−2(C)

it follows that rf is unique only up to addition of maps of the form γ 7→ p|2−k(γ − 1) for

polynomials p ∈ Vk−2(C). The dependence on p is described in terms of group cohomology.

Let K be any field so that Γ ⊂ SL(2,K). We define the group of cocycles

Z1(Γ, Vk−2(K)) = {r : Γ→ Vk−2(K) | r(γγ′) = r(γ)|2−kγ′ + r(γ′) ∀ γ, γ′ ∈ Γ} (A.19)

and the group of coboundaries by

B1(Γ, Vk−2(K)) = {Γ 3 γ 7→ p|2−k(γ − 1) | p ∈ Vk−2(K)} . (A.20)
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Then, the (first) group cohomology group is defined as the quotient

H1(Γ, Vk−2(K)) =
Z1(Γ, Vk−2(K))

B1(Γ, Vk−2(K))
. (A.21)

It follows from the definition (A.17) that the freedom in the choice of the Eichler integral

f̃ results in a coboundary. Therefore we can associate to f a unique cohomology class

[rf ] ∈ H1(Γ, Vk−2(C)). Furthermore, we define the group of parabolic cocycles

Z1
par(Γ, Vk−2(K)) = {r ∈ Z1(Γ, Vk−2(K)) | r(γ) ∈ Vk−2(K)|2−k(γ− 1) ∀ parabolic γ ∈ Γ} .

(A.22)

Trivially, one has B1 ⊆ Z1
par ⊆ Z1. Hence, one can define the parabolic cohomology group

H1
par(Γ, Vk−2(K)) =

Z1
par(Γ, Vk−2(K))

B1(Γ, Vk−2(K))
⊆ H1(Γ, Vk−2(K)) , (A.23)

where the codimension of the embedding is in general less or equal then the number of

non-equivalent cusps times the dimension of Vk−2(K). We have the following proposition.

Proposition 2. For any f ∈ Sk(Γ) one has rf ∈ Z1
par(Γ, Vk−2(C)).

Proof. Recall that rf is defined by (A.17) for some fixed Eichler integral f̃ of f . We have

to show that rf (γ) belongs to Vk−2(C)|(γ − 1) for any parabolic γ ∈ Γ. We can write

γ = ±gTg−1 ∈ Γ for some g ∈ SL(2,R). Then we have a Fourier expansion

(f |kg)(τ) =
∑
m

ag,m q
m , (A.24)

where ag,0 vanishes since f is a cusp form. The function(∑
m

ag,m
mk−1

qm
)∣∣∣

2−k
g−1 (A.25)

is then annihilated by γ − 1, and using Bol’s identity we find that it is an Eichler integral

of f and hence differs from f̃ by an element of Vk−2(C). This implies the claim.

The importance of the parabolic cohomology group stems from a theorem due to Eichler.

We define the space of Sk(Γ) of antiholomorphic cusp forms as the space of all functions f

for f ∈ Sk(Γ), where we define f(τ) = f(τ).

Theorem 1 (Eichler-Shimura isomorphism). The map f 7→ [rf ] and its complex conjugate

f 7→ [rf ] := [rf ] (obtained by complex conjugating the coefficients) induce an isomorphism

H1
par(Γ, Vk−2(C)) ∼= Sk(Γ)⊕ Sk(Γ) . (A.26)

Proof. For even k a first result of this type was given by Eichler in [31], who in particular

showed that the dimensions of both sides agree. For the complete proof for even and odd k

we refer to Shimura [89].

45



We now assume that ε =
(−1 0

0 1

)
normalizes Γ. We then get an involution r 7→ r|2−kε

on Z1(Γ, Vk−2(K)), where we define the action of any normalizer W ∈ GL(2,K) of Γ on

elements in Z1(Γ, Vk−2(K)) by

(r|2−kW )(γ) = r(WγW−1)|2−kW . (A.27)

Here we generalize that the slash operator acts on polynomials as defined in (A.1) even when

detW < 0. The eigenvalues of the involution are ±1 and we get an induced decomposition

H1
par(Γ, Vk−2(K)) = H1

par(Γ, Vk−2(K))+ ⊕H1
par(Γ, Vk−2(K))− . (A.28)

It is straightforward to check that, with respect to the Eichler-Shimura isomorphism, the

involution ε on H1
par(Γ, Vk−2(C)) corresponds to the involution on Sk(Γ)⊕Sk(Γ) induced by

f 7→ (−1)k−1f∗, where f∗(τ) = f(−τ). In particular, the restriction of period polynomials

to H1
par(Γ, Vk−2(K))± gives the isomorphisms

Sk(Γ) ∼= H1
par(Γ, Vk−2(C))± . (A.29)

We now fix Γ = Γ0(N). Since Sk(Γ0(N)) admits an action by the Hecke algebra T, the

Eichler-Shimura isomorphism induces an action of T on H1
par(Γ0(N), Vk−2(C)). This action

can be described as follows. For a map r : Γ0(N)→ Vk−2(K) and for n ∈ N with (n,N) = 1

we define a map r|2−kTn : Γ0(N)→ Vk−2(K) by

(r|2−kTn)(γ) =

σ1(n)∑
i=1

r(γi)|2−kMπγ(i) , (A.30)

where Mi, i = 1, . . . , σ1(n) are chosen representatives of Γ0(N)\Mn,N and the γi ∈ Γ0(N)

are determined by the identity

Miγ = γiMπγ(i) . (A.31)

Here, πγ(i) denotes a permutation of the indices i = 1, . . . , σ1(n), whose dependence on γ

is uniquely determined by (A.31). Using the cocycle property it is straightforward to show

that this map can be restricted to Z1 and B1. Further, the map depends on the choice of

representatives of Γ0(N)\Mn,N , but we have the following propositions.

Proposition 3. For any r ∈ Z1(Γ0(N), Vk−2(K)) the cohomology class [r|2−kTn] does not

depend on the chosen representatives of Γ0(N)\Mn,N .

Proof. Let r|2−kT ′n be defined with respect to a second choice M ′i , i = 1, ..., σ1(n) of rep-

resentatives of Γ0(N)\Mn,N . We order these so that M ′i = γ′iMi for uniquely determined

γ′i ∈ Γ0(N). By using the cocycle property one finds that for all γ ∈ Γ0(N)

(r|2−kT ′n − r|2−kTn)(γ) =
( σ1(n)∑

i=1

r(γ′i)|2−kMi

)
|2−k(γ − 1) (A.32)

and thus [r|2−kT ′n] = [r|2−kTn].
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Proposition 4. For f ∈ Sk(Γ0(N)) we have

rf |kTn = rf |2−kTn , (A.33)

where the same set of representatives of Γ0(N)\Mn,N has been chosen on both sides and

the Eichler integral on the left side has been chosen as f̃ |kTn = nk−1f̃ |2−kTn.

Proof. Using Bol’s identity (A.13) we find that

Dk−1(nk−1f̃ |2−kTn) = (Dk−1f̃)|kTn = f |kTn (A.34)

and thus our choice of Eichler integral is indeed valid. We then get

rf |kTn(γ) = f̃ |kTn
∣∣∣
2−k

(γ − 1)

= nk−1 f̃ |2−kTn
∣∣∣
2−k

(γ − 1)

=

σ1(n)∑
i=1

f̃ |2−k(Miγ −Mi)

=

σ1(n)∑
i=1

f̃ |2−k(γiMσγ(i) −Mi)

=

σ1(n)∑
i=1

rf (γi)|2−kMσγ(i)

(A.35)

We conclude that the action of T defined by (A.30) induces a well defined action of Hecke

operators on H1(Γ0(N), Vk−2(K)) which does not depend on the chosen representatives

of Γ0(N)\Mn,N and is compatible with the isomorphism (A.26) for K = C. Completely

analogously we can define the action of Atkin–Lehner operators WQ on Z1(Γ0(N), Vk−2(K))

(for suitable K) by r 7→ r|2−kWQ. This gives a well-defined action on H1(Γ0(N), Vk−2(K))

which does not depend on the chosen element ofWQ and is compatible with the isomorphism

(A.26) for K = C.

We conclude this introduction to period polynomials with an important proposition

about the period polynomials associated with newforms.

Proposition 5. Let f ∈ Sk(Γ0(N)) be a newform and let Q(f) be the number field generated

by its Hecke eigenvalues. Then the Eichler integral can be chosen such that

rf ∈ ω+
f Z

1
par(Γ0(N), Vk−2(Q(f)))+ ⊕ ω−f Z

1
par(Γ0(N), Vk−2(Q(f)))− (A.36)

for some ω±f ∈ C. If Q(f) is totally real one has ω+
f ∈ R and ω−f ∈ iR.

Proof. First note that H1
par(Γ0(N), Vk−2(C)) ∼= H1

par(Γ0(N), Vk−2(Q)) ⊗Q C and that we

have a well-defined action of the Hecke algebra T and of the involution ε onH1
par(Γ0(N), Vk−2(Q)).
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Since f is uniquely determined by its Hecke eigenvalues which lie in Q(f) we can define

two 1-dimensional eigenspaces V ± ⊆ H1
par(Γ0(N), Vk−2(K))± with the same eigenvalues as

f ± (−1)k−1f∗. Then the first statement directly follows. If Q(f) is totally real we have

f∗ = f and then the second statement also follows.

We call the numbers ω±f , which are unique only up to multiplication by Q(f), the

periods of f . Proposition 5 was first proved (for Γ = SL(2,Z)) by Manin [75] in a stronger

form, namely that the period polynomials rf defined by choosing f̃ = f̃∞ as in (A.15)

satisfies (A.36), and we will use this in the sequel.

A.1.4 Computation of H1
par(Γ

∗
0(25), V2(QQQ))

In the following we want to compute a basis for H1
par(Γ

∗
0(25), V2(Q)) and simultaneously

diagonalize the action of the involution ε and the Hecke algebra T. We start by explaining

how one can obtain a set of generators of Γ∗0(25) and their relations.

To obtain generators of discrete cofinite subgroups Γ ⊆ SL(2,R) we construct a funda-

mental domain F as Fτ0 plus parts of its boundary, where

Fτ0 = Γτ0 \\ {τ ∈ H | d(τ, τ0) < d(γτ, τ0) ∀ γ ∈ Γ} . (A.37)

Here τ0 ∈ H is arbitrary point, d is the hyperbolic distance function and Γτ0 is the stabilizer

of τ0. If H contains ∞, choosing τ0 =∞ and the Ford circles |cτ + d| = 1 as boundaries is

particularly convenient. Then (A.37) evaluates to

F∞ = Γ∞ \\ {τ ∈ H | |cτ + d| > 1 ∀
(
a b
c d

)
∈ Γ∞\Γ

}
. (A.38)

For subgroups of SL(2,R) containing T = (1 1
0 1) we define Hs to be the strip of width 1 in

the upper half plane Hs =
{
τ ∈ H | −1

2 < Re τ < 1
2

}
. For instance, for Γ = Γ0(N) one can

then express (A.38) as

F = F∞ = Hs \\
∞∐
c=1

c≡ 0 modN

∐
−c≤d≤c
(c,d)=1

{∣∣τ + d
c

∣∣ ≤ 1
c

}
, (A.39)

while for Γ∗0(N) with N a prime power we instead take the product over all elements that are

in WNΓ0(N) (or Γ0(N)WN ), i.e. over elements of the form
(
â
√
N b̂/

√
N

ĉ
√
N d̂

√
N

)
with â, b̂, ĉ, d̂ ∈ Z

and Nâd̂− b̂ĉ = 1, hence the divisibility condition becomes (ĉ, Nd̂) = 1. The union over c

leads to Ford circles with rapidly decreasing radii, which can be shown to not bound the

fundamental domain further for c sufficiently large. Topologically F is a polygon bounded

by segments of the Ford circles as edges. If a Ford circle has a fixed point of order 2 we regard

it as two edges split by the fixed point. In this way the polygon has an even number of edges

which are identified in pairs. As generators of Γ one can choose the elements identifying

the edges. The relations between these generators are obtained from considering the finite

orbits of the vertices of F under the action of Γ. If the vertices in one orbit are cusps, one
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gets no relation, and if they are elliptic points of order n, one gets a product of elements

which is of order n (in Γ/{±1}). As an example, consider the standard fundamental domain

of SL(2,Z) with the vertices P0 = ∞, P1 = e2πi/3, P2 = i, P3 = eπi/3. The edges P0P1 and

P3P0 are identified by T = (1 1
0 1) and the edges P1P2 and P2P3 are identified by S =

(
0−1
1 0

)
.

The elliptic fixed point P2 of order 2 gives the relation S2 = −1 and the elliptic fixed point

P1 of order 3 gives the relation (ST )3 = −1. We now turn to the more complicated case

of Γ∗0(25).

P1

P2

P3

P4

P5

P6

P7

P8

P9

P0

T

A
B

C

W W−1 = −W

T−1

A−1
B−1

C−1

Figure 3: A fundamental domain F of Γ∗0(25) with three inequivalent parabolic ver-
tices P0, P2, P4 and three inequivalent elliptic vertices P1, P3, P5 of order two.

For Γ∗0(25) we find the fundamental domain F shown in Figure 3. From the Ford circles

bounding F one sees that one can choose the generators of Γ∗0(25) as

T =

(
1 1
0 1

)
, A =

(
5 12

5
10 5

)
, B =

(
5 8

5
15 5

)
, C =

(
5 6

5
20 5

)
, W =

(
0 −1

5
5 0

)
.

(A.40)

The relations between these generators are again obtained from considering the finite orbits

of the vertices of F under the action of Γ∗0(25). For example, A maps P1 to P9 and T−1

maps P9 back to to P1. From similar considerations one concludes that one has three elliptic

elements of order two (in Γ∗0(25)/{±1})

T−1A, B−1C, W, fixing P1 = −1

2
+

i

10
, P3 = − 7

25
+

i

25
, P5 =

i

5
, (A.41)

respectively. Analogously, we find the three inequivalent parabolic elements

T, A−1B, C−1W, fixing P0 =∞, P2 = −2

5
, P4 = −1

5
, (A.42)

respectively.

Now, we set k = 4 and give an explicit description of H1
par(Γ

∗
0(25), V2(Q)). For a cocycle

r ∈ Z1
par(Γ

∗
0(25), V2(Q)) we write the five period polynomials corresponding to the generators
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γ from (A.40) as

r(γ) = a(2)
γ τ2 + a(1)

γ τ + a(0)
γ (A.43)

so that in total we have 15 rational coefficients a
(k)
γ , γ ∈ {T,A,B,C,W}, k = 0, 1, 2. The

existence of the elliptic elements A.41 and the parabolic elements A.42 imposes six relations

among them. For example, the cocycle relation yields r(T−1A) = r(A)− r(T )|−2T
−1A, but

since T−1A is of order two one gets

0 = r(T−1A)|−2T
−1A+ r(T−1A) , (A.44)

yielding one relation between the coefficients of r(A) and r(T ). For the representatives we

can furthermore choose e.g. r(T ) = 0 – two nontrivial conditions – as well as r(W ) = a
(1)
W τ

– one nontrivial condition –, which leaves six independent parabolic cocycles, which we

choose as in Table 5.

T W A B C

r1 0 0 25τ2 + 25τ + 6 0 0

r2 0 0 150τ2 − 39 125τ + 35 0

r3 0 0 −100τ2 + 26 125τ2 − 10 0

r4 0 0 100τ2 − 26 −10 125τ + 25

r5 0 0 −50τ2 + 13 5 125τ2 − 5

r6 0 25τ 50τ2 − 13 −5 −5

Table 5: Representatives for a basis of H1
par(Γ

∗
0(25), V2(Q)).

We now work out the action of the Hecke operator T2 as defined in (A.30) in detail. We

choose σ1(2) = 3 representatives for Γ0(25)\M2,25 as

M1 =

(
2 0
0 1

)
, M2 =

(
1 0
0 2

)
, M3 =

(
1 1
0 2

)
. (A.45)

In order to apply (A.30) we need to determine for γ ∈ Γ∗0(25) the permutations πγ as well

as the γi for i = 1, 2, 3 as defined in (A.31) and express the latter as a word in terms of the

chosen generators of Γ∗0(25), see Table 6.

γ T A B C W

M1γ T 2M1 TWTM1 TB−1M3 AM1 WM2

M2γ M3 CM2 WC−1WM2 WB−1WM2 WM1

M3γ TM2 TC−1M3 TB−1TM1 TB−1AB−1M3 TA−1M3

Table 6: γi and πγ(i) for γ ∈ {T,A,B,C,W} as defined by Miγ = γiMπγ(i), where we
decomposed γi as a word in terms of the chosen generators of Γ∗0(25).
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Given this information we can compute the action of T2 on the basis ofH1
par(Γ

∗
0(25), V2(Q))

defined in Table 5 by repeatedly using the cocycle property. By (A.33), this action must

have the same eigenvalues as the Hecke operator T2 acting on S4(Γ∗0(25)) and by the Eichler-

Shimura isomorphism they must appear with multiplicity two. The calculation gives

 [r1]|−2 T2
...

[r6]|−2 T2

 =



−4 −6
5 −9

5 −4
5 −8

5 0

−24 184
5

246
5

336
5

672
5 −12

16 −106
5 −139

5 −204
5 −408

5 8

104 366
5

539
5

384
5

798
5 −8

−42 −178
5 −262

5 −192
5 −399

5 4

74 122
5

182
5

96
5

199
5 0



 [r1]
...

[r6]

 (A.46)

and so the eigenvalues are {1, 1, 4, 4,−4,−4}. Analogously, we compute the matrix associ-

ated with the involution ε. For any generator γ ∈ {T,A,B,C,W} one has εγε = γ−1 and

one then obtains

 [r1]|−2 ε
...

[r6]|−2 ε

 =



1 0 0 0 0 0
12 7 12 0 0 0
−8 −4 −7 0 0 0
8 12 18 9 20 0
−4 −6 −9 −4 −9 0
4 6 9 8 16 −1


 [r1]

...
[r6]

 . (A.47)

We can now choose an eigenbasis of H1
par(Γ

∗
0(N), V2(Q)) with respect to the action of T2

and ε. A possible choice is given in Table 7. The lower index of r±λ indicates the eigenvalue

λ of the associated cohomology class with respect to T2 and the upper index denotes the

eigenvalue ±1 of the associated cohomology class with respect to the involution ε.

r±λ T W A B C

r+
1 0 0 400τ2 + 400τ + 96 525τ2 + 350τ + 56 1000τ2 + 500τ + 60
r−1 0 −8τ 12τ + 6 125τ2 + 82τ + 14 250τ 2 + 132τ + 18
r+

4 0 0 25τ2 + 25τ + 6 75τ2 + 50τ + 8 100τ 2 + 50τ + 6
r−4 0 −5τ 0 50τ2 + 40τ + 8 175τ2 + 90τ + 12
r+
−4 0 0 75τ2 + 75τ + 18 75τ2 + 50τ + 8 0
r−−4 0 −τ 4τ + 2 50τ2 + 34τ + 6 75τ2 + 34τ + 4

Table 7: Representatives for an eigenbasis of H1
par(Γ

∗
0(25), V2(Q)) w.r.t. T2 and ε.

A.2 Meromorphic cusp forms and quasiperiods

In the previous section we have seen that there is an isomorphism

H1
par(Γ, Vk−2(C)) ∼= Sk(Γ)⊕ Sk(Γ) . (A.48)
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For the case k = 2 this corresponds to the usual Hodge decomposition H1 = H1,0 ⊕H0,1

for complex curves and the complex conjugation makes this decomposition non-algebraic.

In this case the algebraic version of H1 can be realized by holomorphic differentials (differ-

entials of the first kind) and meromorphic differentials with vanishing residues (differentials

of the second kind). The integration of these forms gives a well defined pairing with the

homology and taking the quotient by derivatives of meromorphic forms one obtains a space

that is isomorphic to H1 and defined algebraically. Instead of the Hodge decomposition we

then have a filtration into classes that can be represented by differentials of the first and sec-

ond kind, respectively. In this section we discuss the algebraic analogue of the isomorphism

(A.48) by considering meromorphic modular forms. This will allow us to define quasiperiods

as the periods of certain meromorphic modular forms. The theory of meromorphic cusp

forms and their associated period polynomials was first introduced by Eichler [31] and later

independently rediscovered by Brown [17] and one of the authors in the context of [38].

A.2.1 Meromorphic cusp forms and their period polynomials

We want to extend the period map r : Sk(Γ)→ H1
par(Γ, Vk−2(C)) to the space of meromor-

phic modular forms

Mmero
k (Γ) = {F : H→ P1(C) | F meromorphic and F |kγ = F ∀γ ∈ Γ} . (A.49)

However, to have an Eichler integral, we need to restrict to forms that are (k − 1)-st

derivatives. By simple connectivity it is enough to require that they are locally (k − 1)-st

derivatives and we thus define

Smero
k (Γ) = {F ∈Mmero

k (Γ) | F is locally a (k − 1)-st derivative} . (A.50)

Concretely, this means that for each τ0 ∈ H the coefficients of (τ − τ0)m in the Laurent

expansion around τ0 vanish for m = −1, ...,−(k − 1) and that for each cusp the constant

coefficient in the Fourier expansion vanishes. For any F ∈ Smero
k (Γ) one can then choose an

Eichler integral F̃ , i.e. a meromorphic modular form such that Dk−1F̃ = F , and compute

the period polynomials rF (γ) = F̃ |2−k(γ − 1)(τ) for γ ∈ Γ. These are polynomials by Bol’s

identity and as in the case of holomorphic cusp forms one finds that they are parabolic

cocycles and induce a well defined class [rF ] ∈ H1
par(Γ, Vk−2(C)) which does not depend on

the choice of Eichler integral. Bol’s identity also implies that Dk−1Mmero
2−k (Γ) ⊆ Smero

k (Γ)

and of course the classes in H1(Γ, Vk−2(C)) associated with elements in Dk−1Mmero
2−k (Γ) are

trivial. This motivates introducing the quotient

Sk(Γ) = Smero
k (Γ)/(Dk−1Mmero

2−k (Γ)) . (A.51)

Note that the Riemann-Roch theorem implies that one can choose the representatives to

have poles only in an arbitrary non-zero subset of H closed under the action of Γ, for instance

the set of all cusps (if there are cusps) or the set of cusps equivalent to ∞ (if ∞ is a cusp).

For suitable Γ we therefore have canonical isomorphisms

S[∞]
k (Γ) ∼= S!

k(Γ) ∼= Sk(Γ) , (A.52)
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where the first two spaces are defined as in (A.51) but restricting to forms with possible

poles only at [∞] or only at the cusps, respectively.

In the following we explain that the period map gives an isomorphism between Sk(Γ)

and H1
par(Γ, Vk−2(C)). We start by defining a useful pairing.

Proposition 6 (Eichler pairing). There is a pairing { , } : Smero
k (Γ) × Smero

k (Γ) → C
defined by

{F,G} = (2πi)k
∑
τ∈Γ\H

Resτ (F̃Gdτ) . (A.53)

This pairing is (−1)k+1–symmetric and descends to Sk(Γ)× Sk(Γ).

Proof. First note that the right-hand side of (A.53) makes sense because the sum is finite

(only finitely many orbits have poles) and the individual residues do not depend on the

choice of τ in the Γ-orbit (the difference of the residues at τ and γτ is rF (γ)Gdτ which

cannot have any residues since G is a (k − 1)-st derivative and rF (γ) is a polynomial of

degree at most k − 2). Similarly, the pairing does not depend on the choice of Eichler

integral since F̃ is unique up to a polynomial p of degree k − 2 and pGdτ again has no

residues. The (−1)k+1–symmetry follows since F̃G − (−1)k+1FG̃ is a derivative. Because

of this symmetry it just remains to prove that {F,G} vanishes for any F ∈ Dk−1Mmero
2−k (Γ).

This is clear since one can choose F̃ to be in Mmero
2−k (Γ) and then F̃Gdτ is a well defined

meromorphic differential on the compact curve Γ\H and hence the sum of its residues

vanishes.

Theorem 2 (Eichler). The natural map Sk(Γ)→ Sk(Γ) induced by inclusion and the map

F 7→ {F, } give the short exact sequence

0 −→ Sk(Γ) −→ Sk(Γ)
{ , }−−→ Sk(Γ)∨ −→ 0 , (A.54)

where Sk(Γ)∨ denotes the dual space of Sk(Γ).

Proof. The first (non-trivial) map is injective since the period polynomial of a holomorphic

cusp form determines the form uniquely. The composite of the first two maps is trivial since

holomorphic functions don’t have poles. Eichler [31] shows that the kernel of the second

map is exactly the image of the first map and that the second map is surjective.

This theorem implies that Sk(Γ) is (non-canonically) isomorphic to Sk(Γ) ⊕ Sk(Γ)∨.

Hence the domain and the codomain of the period map r : Sk(Γ)→ H1
par(Γ, Vk−2(C)) have

the same dimension and since the map is injective it gives an isomorphism

Sk(Γ) ∼= H1
par(Γ, Vk−2(C)) . (A.55)

We now restrict to Γ = Γ0(N) to introduce Hecke operators for meromorphic modular

forms. For holomorphic modular forms we defined these in (A.7) and we use the same

definition for meromorphic modular forms. By Bol’s identity it follows that they also

descend to Sk(Γ0(N)) and we have the following proposition.

53



Proposition 7. The pairing { , } is equivariant with respect to the Hecke operators.

Proof. Without loss of generality we can restrict to meromorphic modular forms F and G

that only have poles at cusps equivalent to ∞. In terms of the Fourier coefficients am and

bm of F and G, respectively, we choose the Eichler integrals

F̃ (τ) =
∑
m 6=0

m�−∞

am
mk−1

qm and G̃(τ) =
∑
m 6=0

m�−∞

bm
mk−1

qm . (A.56)

This gives

{F,G|kTn} = (2πi)k−1
∑
m 6=0

−∞�m�∞

∑
r|(m,n)
r>0

a−m
(−m)k−1

rk−1bmn/r2

= (−1)k−1(2πi)k−1
∑
m′ 6=0

−∞�m′�∞

∑
r′|(m′,n)
r′>0

r′k−1am′n/r′2
b−m′

(−m′)k−1

= (−1)k−1{G,F |kTn}

= {F |kTn, G} ,

(A.57)

where m′ = −mn/r2 and r′ = n/r.

Just as in the case of holomorphic cusp forms, the period map r : Sk(Γ)→ H1
par(Γ, Vk−2(C))

is compatible with the action of the Hecke operators. The proposition above further shows

that the (non-canonical) isomorphism between Sk(Γ) and Sk(Γ)⊕Sk(Γ)∨ is also compatible

with the action of the Hecke operators.

The above considerations show that associated with any newform f ∈ Sk(Γ0(N))

we have a 2-dimensional subspace of Sk(Γ0(N)) with the same Hecke eigenvalues. Let

F ∈ Smer
k (Γ0(N)) be such that [f ] and [F ] generate this subspace. We can choose F to

have poles only at cusps equivalent to ∞ and Fourier coefficients in Q(f), and then call F

(or [F ]) a meromorphic partner of f . In Proposition 5 we showed that

[rf ] = ω+
f [r+] + ω−f [r−] (A.58)

for r± ∈ Z1
par(Γ0(N), Vk−2(Q(f))) and used this to define the periods ω±f , which are unique

up to multiplication by Q(f). Completely analogously we have

[rF ] = η+
F [r+] + η−F [r−] (A.59)

for the same r±, which defines the quasiperiods η±F . Note that these only depend on the

class of F . We finish this section by giving a quadratic relation fulfilled by the periods and

quasiperiods.

Proposition 8 (“Legendre Relation”). Let f be a newform with meromorphic partner F .

Then the associated periods and quasiperiods satisfy

(ω+
f η
−
F − ω

−
f η

+
F ) ∈ (2πi)k−1Q(f) . (A.60)
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Proof. First note that clearly {f, F} ∈ (2πi)k−1Q(f). The idea now is to relate the pairing

{·, ·} to a pairing on H1
par(Γ0(N), Vk−2(C)). We give an explicit proof for level 1 which

goes along the lines of similar calculations in [43] and [69]. SL(2,Z) is generated by T and

S =
(

0−1
1 0

)
satisfying S2 = (ST )3 = −1 and a standard (non-strict) fundamental domain

is given by F = {τ ∈ H | |Re τ | ≤ 1
2} \\ {τ ∈ H | |τ | < 1

2}. In the following we abuse the

notation and denote by F also a representative of F without poles on the boundary of F .

We then have

{f, F} = (2πi)k−1

∫
∂F
f̃F dτ (A.61)

= (2πi)k−1

∫ ∞
i
√

3−1
2

(f̃ |2−k(T − 1))F dτ (A.62)

+ (2πi)k−1

∫ i
√
3−1
2

i
(f̃ |2−k(S − 1))F dτ . (A.63)

For τ0 = i
√

3+1
2 we have T−1τ0 = S−1τ0 and with the choice f̃ = f̃τ0 this gives rf,τ0(S) =

rf,τ0(T ) and thus

{f, F} = (2πi)k−1

∫ ∞
i

rf,τ0(T )F dτ . (A.64)

From S2 = −1 we further get rf,τ0(S)|2−kS = −rf,τ0(S) and so

{f, F} =
1

2
(2πi)k−1

∫ ∞
0

rf,τ0(T )F dτ (A.65)

= −(k − 2)!

2

k−2∑
i=0

(−1)i
(
k − 2

i

)−1

rf,τ0(T )irF,∞(S)k−2−i (A.66)

=: −(k − 2)!

2
< rf,τ0(T ), rF,∞(S) > . (A.67)

Here pi denotes the coefficient of τ i for p ∈ Vk−2(C) and it is straightforward to show that

the defined pairing < ·, · >: Vk−2(C)× Vk−2(C)→ C is SL(2,Z) invariant. We now want to

replace rf,τ0 by rf,∞. Using the T invariance of f̃∞, the SL(2,Z) invariance of the pairing

< ·, · > and the cocycle relations associated with the identities S2 = (ST )3 = −1 gives

< rf,τ0(T ), rF,∞(S) >= < (f̃τ0 − f̃∞)|2−k(T − 1), rF,∞(S) > (A.68)

= < f̃τ0 − f̃∞, rF,∞(S)|2−k(T−1 − 1) > (A.69)

=− < f̃τ0 − f̃∞, rF,∞(S)|2−k(ST−1 + 1) > (A.70)

=− < f̃τ0 − f̃∞, rF,∞(S)|2−k((TS)2 + 1) > (A.71)

= − 1

3
< f̃τ0 − f̃∞, rF,∞(S)|2−k((TS)2 + 1− 2TS) > (A.72)

= − 1

3
< f̃τ0 − f̃∞, rF,∞(S)|2−k(TST − T )(S − T−1) > (A.73)

=
1

3
< (f̃τ0 − f̃∞)|2−k(T − S), rF,∞(S)|2−k(TST − T ) > (A.74)
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=
1

3
< rf,∞(S), rF,∞(S)|2−k(ST−1S − T ) > (A.75)

=
1

3
< rf,∞(S)|2−k(T − T−1), rF,∞(S) > . (A.76)

We note that any coboundary which vanishes on T comes from a constant polynomial and

hence this expression is invariant under shifting the parabolic cocycles by such coboundaries.

In particular, we can define a pairing < ·, · > on H1
par(SL(2,Z), Vk−2(K)) by

< [r1], [r2] >= −(k − 2)!

6
< r1(S)|2−k(T − T−1), r2(S) > , (A.77)

where r1, r2 must be chosen such that r1(T ) = r2(T ) = 0. We see that this pairing is ε

invariant and we conclude that

{f, F} = (ω+
f η
−
F − ω

−
f η

+
F )< r+, r− >︸ ︷︷ ︸

∈Q(f)

∈ (2πi)k−1Q(f) (A.78)

which finishes the proof for SL(2,Z). The proof for higher levels can be done by using

Shapiro’s lemma [79] or in a way similar to the calculations in [101].

A.2.2 Computation of S4S4S4(Γ0(25))

In this subsection we explain the explicit computation of a Hecke eigenbasis of S4(Γ0(N)).

We do this in detail for the case of Γ0(25), the general case being similar. To this end,

we first discuss the construction of weakly holomorphic modular forms with a given pole

order at ∞, use these to construct a basis of S4(Γ0(25)) and diagonalize the action of the

Hecke algebra. Since newforms are also eigenforms under Atkin–Lehner involutions and

since there are no old forms of level 25 and weight 4 this also allows us to write down a

Hecke eigenbasis of S4(Γ∗0(25)).

For any Γ, one can give X(Γ) = Γ\H the structure of a Riemann surface, and although

non-zero F ∈ Mmero
k (Γ) with k 6= 0 are not well-defined on X(Γ), one can still define a

vanishing order ordτ (F ) at any τ ∈ X(Γ). E.g. if T ∈ Γ and Γ∞ =< T >, then the

vanishing order at the cusp ∞ is given by the lowest exponent in the Fourier expansion

around∞. The Eichler–Selberg trace formula or the Riemann–Roch formula imply that the

total order of vanishing of any non-zero g ∈Mk(Γ) is given by κΓk, where κΓ = 1
4π Vol(Γ\H)

in terms of the hyperbolic volume. Since [SL(2,Z) : Γ0(N)] = N
∏
p|N (1 + 1

p), we have

κΓ0(N) = N
12

∏
p|N (1 + 1

p) and κΓ∗0(N) = 1
2eκΓ0(N), where e is the number of prime factors of

N . Restricting to the case T ∈ Γ we now set M
[∞,M ]
k (Γ) = {f ∈ M [∞]

k (Γ) | ord∞ f ≥ M},
where M

[∞]
k (Γ) consists of meromorphic modular forms with poles only at cusps equivalent

to ∞, and denote by S
[∞,M ]
k (Γ) the subspace with vanishing residues. Let h ∈Ma(Γ) have

the maximal order of vanishing A = κΓa at∞ (which exists for a large enough). For ` large

enough we have the short exact sequence

0 −→M
[∞,−`A+1]
2−k (Γ)

Dk−1

−−−→ S
[∞,−`A+1]
k (Γ) −→ Sk(Γ) −→ 0 . (A.79)
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The multiplication by h` gives an isomorphism between M
[∞,−`A+1]
2−k (Γ) and a subspace of

M2−k+`A(Γ) (of codimension at most 1) and also an isomorphism between S
[∞,−`A+1]
2−k (Γ)

and a subspace of Sk+`A(Γ) (of codimension at most 1). Hence the construction of Sk(Γ)

can be reduced to linear algebra in these finite dimensional spaces. We now specialize to

the case Γ = Γ0(N). As explained in [84], the form h necessarily can be realized as an eta

quotient,

h(τ) =
∏
m|N

η(mτ)rm , rm ∈ Z , (A.80)

and we have the following expressions for the weight k and for the vanishing order at ∞,

respectively:

k =
1

2

∑
m|N

rm, ord∞(h) =
1

24

∑
m|N

mrm . (A.81)

For cusps of the form a/c ∈ P1(Q) with gcd(a, c) = 1, c|N and c > 0, the order orda/c(h)

evaluates to

orda/c(h) =
N

gcd(c,N/c)c

1

24

∑
m|N

gcd(m, c)2rm
m

. (A.82)

We now consider the case N = 25. Since we are interested in eigenforms, we will

consider both Γ0(25) and its extension Γ∗0(25) by W =
(

0 −1/5
5 0

)
. A fundamental domain for

the latter was constructed in Section A.1.4, and to get a fundamental domain of Γ0(25) we

can take the union of that domain and (any Γ0(25) translation of) its image under W . One

finds that there are six inequivalent cusps at ∞, 0, 1
5 ,

2
5 ,

3
5 ,

4
5 , and two inequivalent elliptic

fixed points of order 2 at P± = 1
25(i±7) (fixed by

(
7 −2
25 −7

)
). Since the genus of X0(25) is zero,

we can construct the weakly holomorphic modular forms from a Hauptmodul φ of Γ0(25),

i.e. a generator of the field of meromorphic modular functions Mmero
0 (Γ0(25)) = C(φ). We

take φ to be

φ(τ) =
η(τ)

η(25τ)
=

1

q
− 1− q + q4 + q6 − q11 + · · · . (A.83)

The function φ has a single pole at ∞ and vanishes at 0 to first order. We also need the

unique normalized form h ∈ M4(Γ0(25)) with the maximal vanishing order 4
12 [SL(2,Z) :

Γ0(25)] = 10 at ∞. This is given by the eta product

h(τ) =
η(25τ)10

η(5τ)2
= q10 + 2q15 + 5q20 + · · · . (A.84)

For the construction of the meromorphic modular forms we also introduce δ ∈ S4(Γ0(25))

defined by

δ(τ) = η(5τ)4η(25τ)4 = q5 − 4q10 + 2q15 + 8q20 − 5q25 + · · · , (A.85)

and the Eisenstein series e ∈M2(Γ0(25)) defined by

e(τ) =
η(25τ)5

η(5τ)

√
φ(τ)2 + 2φ(τ) + 5 =

1

5

∑
a,b>0

a+b≡0 mod 5
a6≡0 mod 5

aqab = q4 + q6 + · · · . (A.86)
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By (A.82), δ vanishes to order 5, 1, 1, 1, 1, 1 at the six cusps and so does not have any other

zeros. e vanishes with order 4 at ∞ and with order 1/2 at the elliptic fixed points P± and

so does not have any other zeros. Hence M
[∞]
2 (Γ0(25)) = eC[φ] and moreover

M
[∞]
−2 (Γ0(25)) =

e

h
C[φ] . (A.87)

It follows that non-zero elements in M
[∞]
−2 (Γ0(25)) have vanishing order at most −6 at ∞

and since D does not change the order at ∞, we can construct representatives of a basis

of S
[∞]
4 (Γ0(25))/D3M

[∞]
−2 (Γ0(25)) with vanishing order −5 ≤ m ≤ 5 and m 6= 0 at ∞. It

follows that possible representatives are given by forms Fi = δ pi(φ), where p1, ..., p10 are

linearly independent polynomials of degree at most 10 chosen such that the forms Fi have

no constant coefficients.

Using (A.9) to compute the action of the Hecke operator T2 on the constructed basis

one finds that T2 has the eigenvalue −4 with multiplicity 4 and the eigenvalues −1, 1 and 4

with multiplicity 2. To define a Hecke eigenbasis, we further split these by considering the

Atkin-Lehner involution W . To do this we construct representatives that are eigenforms

under this involution. To this end we note that W acts as

h|4W =
1

55
hφ10, δ|4W =

1

52
δφ4, φ|0W =

5

φ
, e|2W = − 1

52
eφ4 . (A.88)

It is straightforward to construct basis elements with definite eigenvalue under the action

of W . In particular, the invariant combination

φ+ = φ+
5

φ
= q−1 − 1 + 4q + 5q2 + 10q3 + · · · (A.89)

is a Hauptmodul of Γ∗0(25) and the unique normalized form h+ ∈ M4(Γ∗0(25)) with the

maximal vanishing order 5 at ∞ is given by

h+ = hφ5 = q5 − 5q6 + 5q7 + 10q8 − 15q9 + · · · . (A.90)

Similarly, the unique normalized form e+ ∈ M2(Γ∗0(25)) with vanishing order 1 at ∞ is

given by

e+ = e (φ3 − 5φ) = q − 3q2 − 4q3 + 7q4 + 12q6 + · · · . (A.91)

This is unique since any non-zero element of M2(Γ∗0(25)) must vanish at least to or-

der 1/2 at the three inequivalent elliptic fixed points from Figure 3. This shows that

M
[∞]
2 (Γ∗0(25)) = e+C[φ+] and

M
[∞]
−2 (Γ∗0(25)) =

e+

h+
C[φ+] . (A.92)

To complete the analysis we also introduce the form h− ∈M4(Γ0(25)) defined by

h− = h (φ6 − 5φ4) = q4 − 6q5 + 4q6 + 30q7 − 40q8 − 38q9 + · · · , (A.93)
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which is anti-invariant under W and vanishes to order 4 at∞. This is the unique normalized

form with these properties since any anti-invariant form from M4(Γ0(25)) also has to vanish

at the fixed point i/5 of W . Using the forms δ± ∈ S4(Γ0(25)) defined by

δ+ = δφ2 = q3 − 2q4 − q5 + 2q6 + q7 − 2q8 + . . .

δ− = δ (φ3 − 5φ) = q2 − 3q3 − 5q4 + 10q5 + 5q6 − 4q7 + · · ·
(A.94)

we can now construct a basis of invariant forms F+,i = δ+ p+,i(φ+), where p+,1, ..., p+,6

are linearly independent polynomials of degree at most 6 with the property that the forms

F+,i do not have constant coefficients. A basis of anti-invariant forms is given by F−,i =

δ− p−,i(φ+), where p−,1, ..., p−,4 are linearly independent polynomials of degree at most 4

with the property that the forms F−,i do not have constant coefficients. We diagonalize the

action of the Hecke operator T2 on this basis and conclude that representatives for a Hecke

eigenbasis of S4(Γ0(25)) are given by

f+,−4 = δ+ (φ2
+ − 10) = q − 4q2 + 2q3 + 8q4 + 20q5 − 8q6 + 6q7 − 23q9 + · · ·

F+,−4 =
δ+

27
(27φ6

+ + 240φ5
+ + 320φ4

+ − 2580φ3
+ − 9385φ2

+ − 9900φ+ − 1900)

= q−3 +
8

9
q−2 − 10

27
q−1 +

1100

27
q2 +

6586

27
q3 +

31760

27
q4 +

40475

9
q5 + · · ·

f+,1 = δ+ (φ2
+ + 5φ+ + 10) = q + q2 + 7q3 − 7q4 + 7q6 + 6q7 − 15q8 + 22q9 + · · ·

F+,1 =
δ+

27
(27φ6

+ + 220φ5
+ + 190φ4

+ − 2580φ3
+ − 7975φ2

+ − 7275φ+ − 1250)

= q−3 +
4

27
q−2 +

665

27
q2 +

5141

27
q3 +

8875

9
q4 +

34375

9
q5 + · · ·

f+,4 = δ+ (φ2
+ + 8φ+ + 10) = q + 4q2 − 2q3 + 8q4 − 8q6 − 6q7 − 23q9 + · · ·

F+,4 =
δ+

27
(27φ6

+ + 208φ5
+ + 100φ4

+ − 2652φ3
+ − 7141φ2

+ − 5148φ+ + 340)

= q−3 − 8

27
q−2 − 2

9
q−1 +

404

27
q2 +

4274

27
q3 +

2384

3
q4 +

29375

9
q5 + · · ·

f−,−4 = δ−φ+ = q − 4q2 + 2q3 + 8q4 − 30q5 − 8q6 + 6q7 − 23q9 + · · ·

F−,−4 =
δ−
8

(8φ4
+ + 57φ3

+ + 110φ2
+ + 11φ+ − 100)

= q−2 +
1

8
q−1 − 73

4
q2 − 331

4
q3 − 347q4 − 9355

8
q5 + · · ·

f−,−1 = δ− (φ+ + 3) = q − q2 − 7q3 − 7q4 + 7q6 − 6q7 + 15q8 + 22q9 + · · ·

F−,−1 =
δ−
4

(4φ4
+ + 30φ3

+ + 64φ2
+ + 22φ+ − 29)

= q−2 +
1

2
q−1 − 73

4
q2 − 421

4
q3 − 1607

4
q4 − 1250q5 + · · · ,

(A.95)

where now f±,λ stands for the newform with W -eigenvalue ±1 and T2-eigenvalue λ and F±,λ

stands for an associated meromorphic partner. The latter are chosen such that the leading

coefficient in the Fourier expansion is 1 and the coefficient of q vanishes. The maximal

denominators in these expansions can be read off from the integer by which we divide δ±.

Explicitly the action of the Hecke operator T2 on the meromorphic representatives is given
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by

F+,1|4(T2 − 1) = D3 e+

h+

(
− 1

27
φ2

+ +
1

9

)
F+,4|4(T2 − 4) = D3 e+

h+

(
− 1

27
φ2

+ +
11

54

)
F+,−4|4(T2 + 4) = D3 e+

h+

(
− 1

27
φ2

+ +
7

27

)
F−,−1|4(T2 + 1) = D3 e+

h−

(
−1

8
φ+ +

1

4

)
F−,−4|4(T2 + 4) = D3 e+

h−

(
−1

8
φ+ +

1

4

)
.

(A.96)

A.3 Zeta functions and the motivic point of view

There are different cohomology groups one can associate with smooth projective varieties

defined over Q (or more generally any number field). These can be used to define periods

and zeta functions, the latter being related to the number of points over finite fields. In

the following we briefly discuss these objects and sketch the idea of motives, which capture

the cohomological structure of varieties. As the most important example for this paper, we

explain that there are motives attached to Hecke eigenforms.

A.3.1 Hodge theory and periods

LetX be a smooth projective variety of dimension d defined over Q. ViewingX as a complex

manifold, we have for each integer r between 0 and 2d the rth homology group Hr(X(C),Z)

whose elements are represented by closed r-dimensional chains modulo boundaries of (r+1)-

dimensional chains. The dimension of this space is the rth Betti number br(X). Considering

the cochain complex we also get the associated cohomology groups Hr(X(C),Z). By de

Rham’s theorem, we can represent elements of Hr(X(C),Z) by elements of the de Rham

cohomology group Hr
dR(X(C),C) whose elements are represented by closed r-forms modulo

exact r-forms. More concretely, by Stokes’s theorem, the integration of differential forms

over chains gives a well defined pairing∫
: Hr(X(C),Z)⊗Z H

r
dR(X(C),C)→ C (A.97)

and by de Rham’s theorem this pairing is non-degenerate. This induces an isomorphism

Hr
dR(X(C),C)

∼−→ Hr(X(C),Z)⊗Z C . (A.98)

The complex structure of X(C) further allows us, by a theorem of Hodge, to decompose

Hr
dR(X(C),C) into subspaces whose elements can be represented by forms of Hodge type

(p, q) with p+ q = r. This gives the Hodge decomposition

Hr
dR(X(C),C) =

∑
p+q=r

Hp,q(X(C)) . (A.99)
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Up to now nothing required X to be defined over Q. This changes now as we want to to

use the pairing of homology and cohomology to define periods. To do this, we replace the

complex vector spaces Hr
dR(X(C),C) by the algebraic de Rham cohomology groups Hr

dR(X)

which are vector spaces over Q. These were defined by Grothendieck [41] as the hypercoho-

mology groups of a certain algebraic de Rham complex. In particular, Grothendieck proves

that there is a natural isomorphism

Hr
dR(X)⊗Q C ∼= Hr

dR(X(C),C) , (A.100)

called the comparison isomorphism. For the algebraic de Rham cohomology groups, we do

not have a Hodge decomposition but only a Hodge filtration

F rHr
dR(X) ⊆ F r−1Hr

dR(X) ⊆ · · · ⊆ F 0Hr
dR(X) = Hr

dR(X) (A.101)

which, with respect to the comparison isomorphism, is compatible with the Hodge filtration

of Hr
dR(X(C),C) induced by the Hodge decomposition, i.e.

F kHr
dR(X)⊗Q C ∼=

⊕
p≥k

Hp,r−p(X(C)) . (A.102)

For example, if X is an elliptic curve defined over Q, a basis of H1
dR(X) is given by a

differential ω of the first kind and a differential η of the second kind, both defined over Q.

While ω has Hodge type (1, 0), η will be a mix of the Hodge types (1, 0) and (0, 1) and is

canonically defined only up to multiplication by a non-zero rational number and addition

of a rational multiple of ω.

Using the comparison isomorphism, we can now define the non-degenerate pairing∫
: Hr(X(C),Z)⊗Z H

r
dR(X) → C . (A.103)

By choosing a basis for Hr(X(C),Z) and Hr
dR(X) this gives rise to a complex br(X)×br(X)

matrix called the period matrix. The period matrix is unique up to multiplication by a

unimodular integer matrix from the left and multiplication by an invertible rational matrix

from the right. The Hodge filtration of the algebraic de Rham cohomology groups further

induces a filtration of the periods which allows to restrict possible matrices multiplied from

the right to lower triangular matrices.

A.3.2 Reduction modulo primes and zeta functions

Let X as before be a smooth projective variety of dimension d defined over Q. Since X is

given as a subspace of some projective space by equations with rational coefficients, we can

reduce these defining equations (after multiplication by an integer to clear the denominators)

modulo any prime p, leading to a variety Xp := X/Fp defined over Fp. We restrict to the

case that this variety is smooth, which happens for all but finitely many p, called the good

primes. The remaining primes are called bad primes. For any n ≥ 1 we consider the number
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#Xp(Fpn) of solutions of the defining equations with the variables taking their values in the

field Fpn . The local zeta function of Xp is a generating function of these numbers

Z(Xp, T ) = exp

( ∞∑
n=1

#Xp(Fpn)
Tn

n

)
. (A.104)

A deep theorem says that Z(Xp, T ) is not just a power series but a rational function in T

with integral coefficients. Moreover, Weil conjectured that this rational function has the

form

Z(Xp, T ) =
2d∏
r=0

Pr(Xp, T )(−1)r+1
(A.105)

where Pr(Xp, T ) is a polynomial of degree br(X) with integral coefficients and with all roots

of absolute value p−r/2 (“local Riemann hypothesis”) and satisfies the functional equation

P2d−r(Xp, 1/p
dT ) = ±Pr(Xp, T )/(pd/2T )br(X) . (A.106)

He further conjectured that it should be possible to prove this by finding an appropriate

cohomology theory for the variety Xp defined over Fp. This was later realized through the

work of Grothendieck, Artin and others by introducing, in general for any smooth projective

variety V defined over any field K, the `-adic cohomology group Hr(V ,Q`) for any prime

` 6= char K. Here, V stands for the variety V regarded as a variety over the algebraic

closure K. In particular, the Galois group Gal(K/K) naturally acts on V and this action

induces an action on Hr(V ,Q`). In the case V = Xp and K = Fp, the Galois group is

topologically generated by the Frobenius automorphism Frp : x 7→ xp and the fixed points

of the nth power of Frp on Xp(Fp) are precisely the points defined over Fpn . This can be

used to relate #Xp(Fpn) to the traces of the Frobenius automorphism, since, as proven by

Grothendieck, the Lefschetz trace formula can be applied also to the `-adic cohomology

groups, and one obtains

#Xp(Fpn) =
2d∑
r=0

(−1)r tr
(
(Fr∗p)

n |Hr(Xp,Q`)
)
. (A.107)

A direct consequence is that the local zeta function has the form

Z(Xp, T ) =

2d∏
r=0

det
(
1− TFr∗p |Hr(Xp,Q`)

)(−1)r+1

. (A.108)

In particular, the product on the right is independent of the chosen prime `. Because of

the local Riemann hypothesis, which was proven by Deligne, the same holds for each factor,

giving the desired polynomial Pr(Xp, T ) ∈ Z[T ].

The considerations above apply to any smooth projective variety defined over Fp and

not only to the reduction Xp of a variety X defined over Q. However, using that we have a

global variety X defined over Q allows us to define the `-adic cohomology group Hr(X,Ql)

for all primes l. An important fact is that there is a natural comparison isomorphism

Hr(X,Ql) ∼= Hr(X(C),Z)⊗Z Q` . (A.109)
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In particular, this implies that Pr(Xp, T ) is a polynomial of degree br(X). Another impor-

tant theorem is that for all good primes p 6= l there is a natural isomorphism

Hr(X,Ql) ∼= Hr(Xp,Ql) . (A.110)

The Frobenius automorphism Frp then corresponds to a well-defined conjugacy class in the

action of Gal(Q/Q) on Hr(X,Ql), which we also denote by Frp, and we have

Pr(Xp, T ) = det
(
1− TFr∗p |Hr(Xp,Q`)

)
= det

(
1− TFr∗p |Hr(X,Q`)

)
. (A.111)

If p is a bad prime one can still associate a conjugacy class to Frp but this is only well

defined up to elements in an inertia subgroup Ip. For these primes one defines

Pr(Xp, T ) = det
(
1− TFr∗p |Hr(X,Q`)

Ip
)
, (A.112)

whose degree in T is at most br(X).

The fact that all local zeta functions come from the same variety X allows us to define

the Hasse-Weil zeta function

ζ(X/Q, s) =
∏
p

Z(X/Fp, p−s) (Re s� 0) (A.113)

which may also be written as an alternating product of the L-functions

Lr(X/Q, s) =
∏
p

Pr(X/Fp, p−s)−1 (Re s� 0) . (A.114)

One of the most important conjectures in modern arithmetic algebraic geometry is that

each Lr has remarkable analytic properties. For example, it is expected that Lr can be ana-

lytically continued to a meromorphic function on the complex plane which has a functional

equation with respect to the symmetry s 7→ r + 1− s. For a few varieties, these properties

can be proven but in almost all cases they are conjectural. For a more detailed treatment,

we refer to [53].

We finish with some remarks regarding the computation of the local zeta function. We

have seen that the local zeta function can be obtained by either counting the number of

points over finite fields or studying `-adic cohomology groups. In practice these methods

quickly become infeasible for complicated varieties and large primes p. However, there are

also p-adic cohomology theories which allow a more efficient computation. A good review

explaining how these can be used to compute the local zeta function is [61]. Given a family of

varieties one may further use the periods to compute the local zeta function very efficiently.

This was first considered by Dwork and for one-parameter Calabi-Yau threefolds this is

explained for example in [23].

A.3.3 The motivic point of view

The idea of motives was proposed by Grothendieck to capture the cohomological structure

of varieties. We want to briefly explain this idea without going much into detail. For more
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details we refer to [4]. We start by explaining geometric motives. Let X be a smooth

projective variety of some dimension n. For simplicity, we assume that X is defined over Q
(more generally one could consider any number field). In A.3.1 we recalled that for every

integer 0 ≤ r ≤ 2n we can associated different cohomology groups with X:

- by considering the complex points on X we obtain a topological space X(C) which

gives rise to the Betti cohomology group Hr(X(C),Z),

- using the structure of X as a variety defined over Q we obtain the algebraic de Rham

cohomology group Hr
dR(X) with the usual Hodge filtration,

- letting X be the variety X regarded as a variety over Q one obtains for any prime `

the `-adic cohomology group Hr(X,Q`) upon which Gal(Q/Q) acts.

We also saw that these are not unrelated, e.g. there are comparison isomorphisms between

Hr(X(C),Z)⊗Z C and Hr
dR(X)⊗Q C and between Hr(X(C),Q)⊗Q Q` and Hr(X,Q`).

The simplest example of a geometric motive is the vector space V = Hr(X(C),Q) to-

gether with the Hodge decomposition on V ⊗QC and the action of Gal(Q/Q) on V ⊗QQ` for

primes `. More generally, consider an algebraic cycle γ ∈ Zn(X×X) defined over Q (an ex-

ample of a correspondence). This induces an element in H2n(X×X) and using the Künneth

isomorphism and Poincaré duality this gives elements σr ∈ End(Hr(X(C),Q), Hr(X(C),Q))

for any 0 ≤ r ≤ 2n. The same can be done for the algebraic de Rham cohomology groups

and the `-adic cohomology groups. If some σr is a projector we now say that the kernel

(and hence also the image) of σr is a geometric motive. This subspace is automatically

compatible with the Hodge decomposition and the action of Gal(Q/Q). The weight of such

a motive is defined to be r and can be read off from the motive itself by the fact that the

eigenvalues of Fr∗p have absolute value pr/2.

Conjecturally, any linear subspace V ⊆ Hr(X(C),Q) that is compatible with the Hodge

decomposition and the action of Gal(Q/Q) defines a geometric motive, i.e. is cut out by some

correspondence. Even stronger, Hodge-like conjectures and Tate-like conjectures would im-

ply that a linear subspace V ⊆ Hr(X(C),Q) is already a geometric motive if it is compatible

with the Hodge decomposition or with the Galois action. This can be summarized in the

following diagram:

V is cut out by
a correspondence

V is compatible with
the Hodge decomposition

V is compatible with
the Galois action

Hodge-like
conjectures

Tate-like
conjectures
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More generally, a motive can be thought of as a suitable collection of vector spaces

(equipped with a Hodge decomposition and an action of Gal(Q/Q) with additional compat-

ibilities). It should always be representable as a geometric motive contained in a cohomology

group of some variety, but the choice of the geometric realization is not part of the definition

of the motive. Examples of motives that do not refer to specific varieties are hypergeometric

motives, for which we refer to the survey article by Roberts and Villegas [81], and motives

associated with modular forms, which we now describe.

A.3.4 The motives attached to Hecke eigenforms

In this final subsection we explain that there are motives attached to arbitrary newforms,

the weight of the motive being one less than that of the modular form. The point we want

to stress is that the motive Vf attached to a newform f is an intrinsically defined object,

independent of any specific geometric realization: it always has a geometric realization, as

a consequence of the Eichler-Shimura theory if k = 2 and of the work of Deligne if k > 2,

as explained below, but in general it can have others. The situation of relevance to this

paper is that of the motives attached to newforms of weight 4 and 2 occurring in the 3rd

cohomology group of some Calabi-Yau threefolds (fibers over conifold points and attractor

points of hypergeometric families), but there are many other examples in the literature. For

instance, it was shown by Ron Livné in the 1980s that the L7-factor of the Hasse-Weil zeta

function of the 7-dimensional variety {(x1 : · · · : x10) ∈ P9 |
∑

i xi =
∑

i x
3
i = 0} splits as a

product of a number of Riemann zeta functions and the L-function of the unique newform

of level 10 and weight 4. For more discussion and other examples we refer to [104] (pp.

150–151), [100], and [77].

Geometric realization of Vf for all newforms The simplest situation arises for mod-

ular forms of weight 2 and some level N . In this case one can consider the modular curve

X0(N) = Γ0(N)\H and there is a canonical isomorphism

S2(Γ0(N))
∼−→ H1

dR(X0(N),C)

[F ] 7→ [2πiF dτ ] .
(A.115)

In fact, X0(N) can be given the structure of a smooth projective variety defined over Q and if

one restricts to classes that can be represented by forms in S
[∞]
2 (Γ0(N)) with rational Fourier

coefficients this gives an isomorphism with H1
dR(X0(N)). Hence we have a natural motive

V = H1(X0(N),Q) we can consider. For any divisor N ′ of N there are [Γ0(N ′) : Γ0(N)]

correspondences on X0(N)×X0(N) which give a splitting V = V new ⊕ V old corresponding

to the splitting into old forms and new forms. There are Hecke correspondences which

further split V new so that attached to any newform f with rational Hecke eigenvalues (the

case of more general coefficients is similar) we obtain a 2-dimensional geometric motive Vf .

From the work of Eichler and Shimura it follows that for all primes p - N and ` 6= p

det
(
1− Fr∗pT |Vf ⊗Q Q`

)
= 1− apT + pT 2

65



where ap is the eigenvalue of f under Tp. We conclude that attached to f there is a geometric

motive Vf so that the periods of Vf are the periods of qusiperiods and f and the traces of

the Frobenius operators are just the eigenvalues of the Hecke operators.

For newforms f ∈ Sk(Γ0(N)) of weight k > 2, Deligne [27] showed that the Hecke eigen-

values coincide with the eigenvalues of the Frobenius operators in the (k−1)-st cohomology

group of an appropriate Kuga-Sato variety, defined as a suitable compactification of a fiber

bundle over Γ0(N)\H whose fiber over a point τ is the (k− 2)-nd Cartesian product of the

level N elliptic curve Eτ . Scholl [87] used this construction to associate a motive with Vf

with f . If f has rational Hecke eigenvalues the attached motive Vf is again 2-dimensional

and the periods of Vf are given by the periods and quasiperiods of f .

We remark that newforms of weight 1 (defined either for suitable subgroups of Γ0(N)

or with a character in the slash operator) are also motivic. Geometrically these motives

are not very interesting since the relevant varieties are 0-dimensional. As an example we

consider the newform of level 23 defined by f(τ) = η(τ)η(23τ). This is associated with the

variety defined by x3 − x− 1 and this manifests in the number of roots of this polynomial

over the finite field Fp for primes p 6= 23 being ap+1 where ap is the eigenvalue of the Hecke

operator Tp. This example was given by Blij in [94].

Correspondences between different geometric realizations Conjecturally, two dif-

ferenet geometric realizations of motives must be related by a correspondence. We give one

example in Section 4 where we construct a correspondence between a conifold fiber of a

hypergeometric family of Calabi-Yau threefolds and a Kuga-Sato variety associated with

the unique newform f ∈ S4(Γ0(8)). The Tate conjecture would imply that there must be

a correspondence already if two Galois representations coincide. While the construction

of correspondences can be difficult, theorems of Faltings and Serre allow to establish the

equality of two Galois representations by comparing finitely many Frobenius traces. E.g.

for the conifold fiber of the quintic this was used by Schoen [86] to prove the equality of the

associated Galois representation with that of the relevant newform of level 25 and weight 4.

B Appendix: Computational Results

In the main part of this paper we considered 16 newforms of weight 4 (associated with

14 conifold points and 2 attractor points) and 2 newforms of weight 2 (associated with

2 attractor points). The Atkin-Lehner eigenvalues and beginning of the q-expansions of

these forms can be found in Table 8 (for the modular forms associated with conifold points)

and Table 9 (for the modular forms associated with attractor points). In the following we

explain how we computed the periods and quasiperiods associated with these forms.

For each newform f of level N and weight k we choose the Eichler integral f̃ = f̃∞ as

defined in (A.15) and then compute the period polynomials rf (γ) for a set of generators of

Γ0(N) by using (A.16) with τ0 chosen so that the imaginary parts of τ0 and γ−1τ0 are as
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N W2· W3· W5· beginning of q-expansion

8 1 q − 4q3 − 2q5 + 24q7 − 11q9 − 44q11 + · · ·
9 1 q − 8q4 + 20q7 − 70q13 + 64q16 + 56q19 + · · ·
16 1 q + 4q3 − 2q5 − 24q7 − 11q9 + 44q11 + · · ·
25 1 q + q2 + 7q3 − 7q4 + 7q6 + 6q7 + · · ·
27 −1 q − 3q2 + q4 − 15q5 − 25q7 + 21q8 + · · ·
32 −1 q − 8q3 − 10q5 − 16q7 + 37q9 + 40q11 + · · ·
36 −1 −1 q + 18q5 + 8q7 − 36q11 − 10q13 − 18q17 + · · ·
72 1 −1 q − 14q5 − 24q7 + 28q11 − 74q13 − 82q17 + · · ·
108 −1 1 q − 9q5 − q7 − 63q11 − 28q13 − 72q17 + · · ·
128 −1 q − 2q3 + 6q5 − 20q7 − 23q9 − 14q11 + · · ·
144 1 1 q + 16q5 + 12q7 − 64q11 + 58q13 + 32q17 + · · ·
200 1 −1 q + q3 − 6q7 − 26q9 − 19q11 + 12q13 + · · ·
216 1 −1 q + q5 − 9q7 − 17q11 − 44q13 + 56q17 + · · ·
864 −1 −1 q − 19q5 − 13q7 − 65q11 − 56q13 − 108q17 + · · ·

Table 8: Atkin-Lehner eigenvalues and the q-expansions of newforms of weight 4 associated
with conifolds.

N k W2· W3· W5· beginning of q-expansion

36 2 −1 1 q − 4q7 + 2q13 + 8q19 − 5q25 − 4q31 + · · ·
54 2 1 −1 q − q2 + q4 + 3q5 − q7 − q8 + · · ·
54 4 −1 −1 q + 2q2 + 4q4 + 3q5 + 29q7 + 8q8 + · · ·
180 4 −1 1 −1 q + 5q5 + 2q7 + 30q11 − 4q13 + 90q17 + · · ·

Table 9: Atkin-Lehner eigenvalues and the q-expansions of newforms associated with at-
tractors.

large as possible. These period polynomials can then be written as

rf (γ) = ω+
f r̂

+
f (γ) + ω−f r̂

−
f (γ) (B.1)

with r̂±f ∈ Z
1(Γ0(N), Vk−2(Q))± and we choose the periods ω±f so that all r̂±f have integral

coefficients and do not have any non-trivial common divisor. This makes the periods unique

up to a sign which we fix by requiring ω+
f , Im ω−f > 0. We list numerical values for the

periods and r̂±f (γ) for a chosen γ ∈ Γ0(N) in Table 12 and Table 13.

To compute the quasiperiods associated to a normalized Hecke eigenform f of level

N and weight k we first find a meromorphic form F such that [F ] has the same Hecke

eigenvalues as f . We make the ansatz

F =
g

h
(B.2)

where g ∈ Sk+kh(Γ0(N)) has the same Atkin-Lehner eigenvalues as f and h ∈Mkh(Γ∗0(N))

is chosen such that kh is as small as possible and h has the maximal vanishing order at ∞.

Such a form necessarily has to be an eta quotient and the forms are explicitly given in Table

14. We then determine g so that [F ] has the same Hecke eigenvalues as f and normalize F

so that the quasiperiods fulfill

ω+
f η
−
F − ω

−
f η

+
F = (2πi)k−1 . (B.3)

This makes [F ] unique up to the addition of rational multiples of [f ]. For the modular

forms associated with the conifold points we fix this by requiring that the ratios η±f /e
±
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are rational and for modular forms of weight 2 (or 4) associated with the attractor points

we fix this by requiring that the projection of Π′′(z∗) (or Π′′′(z∗)) on the Hodge structure

(1, 2) (or (0, 3)) are given by rational linear combinations of the quasiperiods (or rational

linear combinations multiplied by 2πi). The beginning of the q-expansions of our choice of

meromorphic forms can be found in Table 10 and Table 11. The resulting numerical values

for the quasiperiods are given in Table 12 and Table 13. We provide a supplementary Pari

file containing more detailed data at [14].

N beginning of q-expansion

8 −q−1 − 52q − 256q2 − 1842q3 − 10240q4 − 40792q5 − 138240q6 + · · ·
9 − 3

2
q−1 − 108q − 246q2 − 3645

2
q3 − 7884q4 − 32853q5 − 104976q6 + · · ·

16 8q−2 − 4q−1 − 96q + 416q2 + 3000q3 + 18432q4 + 75968q5 + 260496q6 + · · ·
25 − 216

5
q−3 − 32

5
q−2 − 280q − 1344q2 − 50928

5
q3 − 40640q4 − 165000q5 − 543360q6 + · · ·

27 96q−2 − 408q − 5832q3 − 24288q4 − 69984q5 − 209952q6 − 505536q7 − 1189728q8 + · · ·
32 864q−3 + 512q−2 + 128q−1 − 2112q − 12288q2 − 66816q3 − 327680q4 − 1094816q5 + · · ·
36 96q−4 + 27q−3 − 8q−2 − 12q−1 − 115q + 1128q2 + 7992q3 + 38048q4 + · · ·
72 12348q−7 + 19440q−6 + 29250q−5 + 32256q−4 + 28674q−3 + 16704q−2 + 3852q−1 + · · ·
108 41472q−12 + 127776q−11 + 216000q−10 + 384912q−9 + 602112q−8 + 839664q−7 + · · ·
128 219488q−19 + 373248q−18 + 628864q−17 − 2052000q−15 − 6849024q−14 − 16451136q−13 + · · ·
144 139968q−18 + 202500q−15 + 329280q−14 + 685464q−13 + 1140480q−12 + 1661088q−11 + · · ·
200 −8230800q−19 + 3930400q−17 + 6553600q−16 + 31050000q−15 + 50489600q−14 + · · ·
216 1752048q−23 + 12266496q−22 + 36006768q−21 + 80640000q−20 + 175809888q−19 + · · ·
864 −2176782336q−108 − 4233748608q−107 − 8503971840q−104 + 20782697472q−102 + · · ·

Table 10: The q-expansions of meromorphic partners of weight 4 associated with conifolds.

N k beginning of q-expansion

36 2 1
2
q−1 + 37

2
q + 2q2 + 15

2
q3 + 12q4 + 19q5 + 36q6 − 25

2
q7 + 88q8 + 117q9 + 180q10 + · · ·

54 2 −2q−2 + 2q−1 + 36q − 44q2 − 10q4 + 58q5 − 162q6 − 192q7 − 450q8 + · · ·
54 4 1125q−5 − 384q−4 + 486q−3 − 264q−2 − 18q−1 + 10374q + 24744q2 + 19197q3 + · · ·
180 4 165888q−12 − 31944q−11 − 24000q−10 + 52488q−9 + 49152q−8 + 65856q−7 + · · ·

Table 11: The q-expansions of meromorphic partners associated with attractors.
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N γ
r̂+f (γ)

r̂−f (γ)

ω+
f

ω−f

η+F
η−F

8

(
5 −2
8 −3

)
−8τ2 + 6τ − 1
−4τ2 + 4τ − 1

6.997563016
8.671187331i

−261.3739159
−359.3354423i

9

(
7 −4
9 −5

)
−3τ + 2

−6τ2 + 7τ − 2
2.756850788
14.32501690i

−251.8644616
−1398.702062i

16

(
5 −1
16 −3

)
−16τ2 + 8τ − 1
32τ2 − 12τ + 1

4.335593665
6.997563016i

−473.0985414
−820.7842673i

25

(
6 −1
25 −4

)
−50τ2 + 20τ − 2
90τ2 − 28τ + 2

3.208713029
6.146700439i

−689.385618
−1397.911578i

27

(
20 −3
27 −4

)
99τ2 − 30τ + 2
−189τ2 + 54τ − 4

2.446835111
3.688508720i

−805.6020738
−1315.789720i

32

(
19 −3
32 −5

)
−800τ2 + 256τ − 21
−96τ2 + 32τ − 3

1.294170585
2.509465291i

−1663.153920
−3416.610839i

36

(
7 −1
36 −5

)
180τ2 − 48τ + 3
252τ2 − 72τ + 5

3.389773856
4.669340978i

−563.4426618
−849.3062501i

72

(
41 −4
72 −7

)
−6264τ2 + 1224τ − 61
−936τ2 + 180τ − 9

0.814623455
1.761169120i

−2926.645899
−6631.737112i

108

(
77 −5
108 −7

)
−5940τ2 + 768τ − 27
−11124τ2 + 1440τ − 47

0.430875512
0.973682307i

−5475.977852
−12950.17424i

128

(
71 −5
128 −9

)
−35200τ2 + 4960τ − 177
−3456τ2 + 480τ − 17

0.429682347
1.199538394i

−6281.481738
−18113.21495i

144

(
13 −1
144 −11

)
58752τ2 − 8928τ + 336
20736τ2 − 3168τ + 120

0.234935370
0.572179387i

−10002.22789
−25416.00625i

200

(
109 −6
200 −11

)
−626000τ2 + 69000τ − 1916
−45200τ2 + 5000τ − 140

0.067278112
0.233028535i

−43624.24958
−154786.5233i

216

(
185 −6
216 −7

)
299160τ2 − 19440τ + 305
−140616τ2 + 9072τ − 147

0.092748402
0.266377323i

−25980.21583
−77290.71700i

864

(
559 −11
864 −17

)
−15725664τ2 + 617904τ − 6099
−6487776τ2 + 255312τ − 2511

0.028461772
0.113238985i

−121085.3301
−490469.4664i

Table 12: Period polynomials and approximate values of periods and quasiperiods for new-
forms of weight 4 associated with conifolds and for chosen γ ∈ Γ0(N).

N k γ
r̂+f (γ)

r̂−f (γ)

ω+
f

ω−f

η+F
η−F

36 2

(
61 −13
108 −23

)
−1
−1

2.103273157
1.214325323i

35.27180728
23.35152423i

54 2

(
43 −4
54 −5

)
1
−1

1.052362237
0.892458100i

32.63160582
33.64385854i

54 4

(
23 −3
54 −7

)
−288τ2 + 75τ − 5
756τ2 − 207τ + 13

6.323218461
0.761033398i

64915.70757
7773.726563i

180 4

(
77 −3
180 −7

)
−52200τ2 + 4068τ − 81
55800τ2 − 4332τ + 83

0.549166142
0.261665000i

429900.2582
204385.8725i

Table 13: Period polynomials and approximate values of periods and quasiperiods for new-
forms associated with attractors and for chosen γ ∈ Γ0(N).
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N kh h beginning of q-expansion

8 4 1888

2444
q2 − 8q3 + 24q4 − 32q5 + 28q6 + · · ·

9 4 2696

34
q2 − 6q3 + 9q4 + 14q5 − 54q6 + · · ·

16 4 18168

2484
q4 − 8q5 + 24q6 − 32q7 + 24q8 + · · ·

25 4 15255

52
q5 − 5q6 + 5q7 + 10q8 − 15q9 + · · ·

27 4 16276

3292
q6 − 6q7 + 9q8 + 12q9 − 42q10 + · · ·

32 4 18328

24164
q8 − 8q9 + 24q10 − 32q11 + 24q12 + · · ·

36 4 16466496366

2634124186
q6 − 6q7 + 15q8 − 22q9 + 21q10 + · · ·

54 4 1323273543

316191181
q9 − 3q10 − 3q11 + 15q12 − 3q13 + · · ·

72 4 16628696122726

233443183244363
q12 − 6q13 + 12q14 − 4q15 − 15q16 + · · ·

108 4 1646621822761086

263292122362546
q18 − 6q19 + 15q20 − 24q21 + 33q22 + · · ·

128 4 181288

24644
q32 − 8q33 + 24q34 − 32q35 + 24q36 + · · ·

144 4 1662961662421446

233483183484723
q24 − 6q25 + 12q26 − 4q27 − 18q28 + · · ·

180 4 13435362932033023634531803

2332103122152183602903
q18 − 3q19 + 3q20 − 2q21 + 10q24 + · · ·

200 8 110810102202251020010

2545544045051005
q60 − 10q61 + 40q62 − 80q63 + 95q64 + · · ·

216 4 1661861211812763612166

233243922425437221083
q36 − 6q37 + 12q38 − 6q39 − 3q40 + · · ·

864 4 166118127632648114418646

23329216354396228824323
q144 − 6q145 + 12q146 − 6q147 − 6q148 + · · ·

Table 14: For each given level N the unique normalized form h ∈Mkh(Γ∗0(N)) such that kh
is as small as possible and h has maximal vanishing order at ∞. The notation is such that

e.g. 1888

2444
corresponds to η(τ)8η(8τ)8

η(2τ)4η(4τ)4
.
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