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Abstract

We consider the fourteen families W of Calabi-Yau threefolds with one complex
structure parameter and Picard-Fuchs equation of hypergeometric type, like the mirror
of the quintic in P*. Mirror symmetry identifies the masses of even—dimensional D—
branes of the mirror Calabi-Yau M with four periods of the holomorphic (3,0)-form
over a symplectic basis of Hz(W,Z). It was discovered by Chad Schoen that the singular
fiber at the conifold of the quintic gives rise to a Hecke eigenform of weight four under
I'y(25), whose Hecke eigenvalues are determined by the Hasse-Weil zeta function which
can be obtained by counting points of that fiber over finite fields. Similar features are
known for the thirteen other cases. In two cases we further find special regular points,
so called rank two attractor points, where the Hasse-Weil zeta function gives rise to
modular forms of weight four and two. We numerically identify entries of the period
matrix at these special fibers as periods and quasiperiods of the associated modular
forms. In one case we prove this by constructing a correspondence between the conifold
fiber and a Kuga-Sato variety. We also comment on simpler applications to local Calabi-
Yau threefolds.

*kilian@mpim-bonn.mpg.de, °aklemm@th.physik.uni-bonn.de, Tesche@bicmr.pku.edu.cn, *dbz@mpim-
bonn.mpg.de



Contents

(1 _Introduction|

2 Hypergeometric one-parameter Calabi-Yau threefolds|

2.1 Fourth order hypergeometric Picard-Fuchs operators| . . . . . . . ... ...
[2.2  The choice of the integral symplectic basis at the MUM-point| . . . . . . ..

2.3 The Legendre relations and special geometry| . . . . . . .. .. .. ... ..

2.4 The geometry of hypergeometric one-parameter Calabi-Yau families|

[2.5  Physics concepts related to the arithmetic of Calabi—Yau periods| . . . . . .

[3 Special fibers and periods of modular forms|

|3.1  The period matrix at the conifold points| . . . . . ... ... ... ... ...

3.2  The period matrixat z=o0|. . . . . . .. .. .. ... ...

[3.3  The period matrix at the attractor points| . . . . . . ... ... .. .. ...

[4  Explicit correspondence with a Kuga-Sato variety in a special case|

4.1 A model for X((8) and for the associated universal elliptic curve] . . . . . .

4.2 Correspondence|. . . . . . . . ... e

[ Local hypergeometric one-parameter Calabi-Yau threefolds|
[5.1 Third order Picard-Fuchs operators|. . . . . . . ... ... .. ... .....
5.2 The local geometries| . . . . . . . ... . ... ...

5.3 The period matrix at the conifold points| . . . . . ... ... .. ... ....

[A Appendix: Modular forms and arithmetic algebraic geometry|

|A.1 Cusp forms and periods| . . . . . . . . ... o o

|[A.2 Meromorphic cusp forms and quasiperiods| . . . . . . ... ..o oL

|A.3 Zeta functions and the motivic point of view| . . . . .. . .. ... .. ...

(B Appendix: Computational Results|

[References]

co = ot O

11
18

24
25
28
30

32

34

36
36
37
38

41
41
o1
60

66

71



1 Introduction

In this work we study classical questions concerning fourteen fourth order differential equa-

tions of hypergeometric type, with solutions such as

o

mo(x) =3 O n (1.1)

= (n!)5

using geometric and arithmetic tools. These differential equations are the unique hyper-

geometric Picard-Fuchs equations that describe the variation of the Hodge structure in
one-parameter families of Calabi-Yau threefolds W — M.y = P'\ {0, 4, 00}. In the case
that W is the mirror of the quintic hypersurface M in P*, (2mi)3wy = fTS Q) is a period of
the holomorphic (3,0) form € over a three-torus. The mirror manifold W can be obtained
as a resolved orbifold of a subfamily of M by a group action of (Z/5Z)3. The other thirteen
differential operators and its solutions have similar geometric interpretations. The mani-
folds M, their topological invariants and the parameters specifying the differential operators
are summarized in Table [I

All hypergeometric systems have a point of maximal unipotent monodromy (MUM-
point) at z = 0 and a conifold point at z = u. At z = co the quintic mirror has an orbifold
point , which can be made into a regular point by going to a five fold cover, at the expense of
introducing five conifold points at the fifths roots of p. It has been pointed out in [95] that
after locally removing this finite branching, one-parameter families of Calabi-Yau threefolds
can have three types of limiting mixed Hodge structures at their critical points. Besides the
two types mentioned above there are also K-points, see [95]. It can be seen in Table [1| that
the fourteen hypergeometric operators exhibit any of the three types of singular points at
z = 00.

A classical task in the theory of differential equations is to analyze the global structure
of its solutions. The parameter space M. can be covered by three patches around the
singular points z € {0, u,00}. At any of these, vectors II, of local Frobenius solutions can
be constructed and have overlapping regions of convergence. Around z = 0 a canonical basis
II, corresponding to an integral symplectic basis of cycles, exists and the global solutions are
then specified by a choice of branch cuts and the transition matrices T, (with II = T,II,).
Using a Barnes integral representation, T, can be determined in terms of values of Gamma
functions and their derivatives extending a method pioneered in [21] for the mirror quintic.
The transition matrix 7}, has been determined in [51] first in terms of nine real numerical
constants that were found to be related by quadratic Legendre relations that cut them down
to six constants. In Section we derive these relations from special geometry. In [85] the
nine constants were analytically determined and given as infinite sums of special values of
hypergeometric functions 3F5. In this work we numerically relate, for each of the fourteen
hypergeometric models, at least four of these constants to periods and quasiperiods of
modular forms determined by arithmetic properties of the conifold fiber W,.

Since IT corresponds to an integral symplectic basis of cycles, the monodromy group acts



as a subgroup of Sp(4,Z) on II. Guided by mirror symmetry the authors of [21] obtained a
special choice II for such an integer basis for the quintic, which encodes at the MUM-point
the topological data of M and the genus zero Gromov-Witten invariants. This lead to the
I-class formalism which identifies periods over an integral symplectic basis of H3(W,Z) to
canonical algebraic Kglg—theory classes of coherent sheaves with support on k-dimensional
holomorphic submanifolds on the mirror M ( |49], [54], [60], [36]). In physics this basis is

singled out because the K

alg~theory classes map naturally to the central charges of D(2k)-

branes on M, which determine the masses of the latter.

In Section [3.1] we motivate and provide overwhelming numerical evidence for the con-
jectureﬂ that two entries of T},, which correspond to periods at the conifold that determine
the D4 and D2 brane central charges and masses, are given by two periods w™ associated
to weight four Hecke eigenforms f, which in the case of the quintic can be given by
10

_ n(57)
) = @)

with the Dedekind eta function n and ¢ = €*™7. The coefficients of f have a precise number

+5n(r) 2 (57) (257) =g+ +7¢° T + 75+ (1.2)

theoretical meaning in terms of the number of points of W), over finite fields F, [86]. More
generally, these numbers determine the Hasse-Weil zeta function as reviewed in Section
For a discussion of the role of mirror symmetry in this context see [22]. The definition
of the periods w® which uses the theory of Eichler integrals and period polynomials is
reviewed more generally in Appendix and exemplified for level 25 in In Section
3.1 we also motivate and verify a new conjecture that two other entries in T}, are given
by quasiperiods n* associated to f. The quasiperiods are obtained by associating with
f a certain cohomology class represented by meromorphic modular forms, which has the
same Hecke eigenvalues as f. For such a class one can again define an Eichler integral
and the period polynomials of this give rise to the quasiperiods. This theory is developed
in Appendix and exemplified for level 25 in The periods and quasiperiods are
related by a quadratic relation which we also call Legendre relation.

One way to prove the two conjectures is to construct an explicit correspondence be-
tween the conifold fiber W), and the relevant Kuga-Sato variety. The Kuga—Sato variety is
constructed from a fibration of elliptic curves over a modular curve. The correspondence
allows to identify the periods of W, with periods of the Kuga-Sato variety and the latter
are canonically identified with periods and quasiperiods of modular forms. In Section [4| we
provide such a correspondence and hence the proof of the above conjectures for the Calabi-
Yau family which is mirror to four quadrics in P7. In this case we can further numerically
identify all entries of 7}, in terms of periods, quasiperiods, factors of 2mi and log2. An
intermediate result between the numerical evidence and the full construction of the corre-
spondence with a Kuga-Sato variety can be obtained by the technique of fibering out of

motives [13].

!This can be expected from motivic arguments and was communicated to us by M. Kontsevich and V.
Golyshev.



Our results are not specific for hypergeometric families of Calabi-Yau threefolds, i.e.
by motivic conjectures it is expected that the identification of the Galois representation of
a variety with that of modular forms implies that periods of the variety can be given by
periods and quasiperiods of modular forms. We give further examples in this direction,
by considering rank two attractor points. Such points were introduced in the context of
charged black holes in type IIB string compactifications on Calabi-Yau threefolds [78].

For one-parameter families of Calabi-Yau threefolds, rank two attractor points are
smooth fibers in the moduli space such that the Betti cohomology of the fiber has a split-
ting into two parts which is compatible with the Hodge decomposition. Conjecturally, this
induces a splitting of the Galois representation and this can give rise to modular forms of
weight 4 and weight 2. Using a p-adic method [23] for the computation of the Hasse-Weil
zeta function allows to find such points [20]. We find two rank 2 attractor points for the

hypergeometric families
X33(1%) at zo = —1/2%3%  and = Xy3(1°2') at 2, = —1/2%3%. (1.3)

Numerically we find that the associated period matrices can be given completely in terms
of the periods and quasiperiods of the associated modular forms.

Other examples of one parameter Calabi-Yau threefolds whose Galois representation is
related to automorphic forms are known, e.g. [96] for the case of GSp(4) (para)modular
forms ﬂ Even in the hypergeometric one-parameter families there are further examples,
including the occurrence of two Hilbert modular forms for Xo222(1%) at 2z = (17+£121/2)/28
and modular forms of weight 3 and 2 for X2 222(1%) at z = —1/28, where in the latter case
the Galois representation is given by the product of the Galois representations attached to
the modular forms.

Surprisingly, these number theoretic considerations have quite deep and wide ranging
connections to physics. Generically, the D—brane central charges and hence their masses
are completely determined by the periods and therefore they take particular interesting
arithmetic values at the special points. The ratio of the D—brane central charge of the
D2-brane to the one of the DO-brane at the conifold point determines the growth of the
Gromov-Witten invariants [21] or the BPS numbers of D2-D0 bound states at the MUM
point, which in turn is related to the Bekenstein-Hawking entropy of spinning AN/ = 2 black
holes. It can be exactly determined in terms of periods of modular forms for the first time
in the X272,272(18) model. At rank two attractor points the periods describe the value of
the moduli of the vector multiplets at the horizon of N' = 2 black hole solutions in type
IIB string compactifications which are isolated supersymmetric N’ = 2 vacua for which the
theta-angles for the U(1) gauge couplings are fixed by the periods and quasiperiods [11].
Moreover the arithmetic structure of Calabi-Yau threefold periods can also used to fix

master integrals that are associated to the four loop banana Feynman integral [12], [1].

2Examples of these kind are investigated in an international project on GSp(4) motives. For more
information contact Vasily Golyshev.
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2 Hypergeometric one-parameter Calabi-Yau threefolds

In this section we introduce the hypergeometric Picard-Fuchs equations describing the vari-
ation of Hodge structure of one-parameter families of Calabi-Yau threefolds. We explain
the choice of solutions corresponding to an integral symplectic basis of cycles and derive
the quadratic Legendre relations satisfied by the periods from special geometry. We then
construct the one-parameter families W by resolving orbifolds of their mirrors M. Finally
we describe the physical significance of the periods in type II string compactifications on
the Calabi-Yau manifolds.

2.1 Fourth order hypergeometric Picard-Fuchs operators
The fourteen hypergeometric fourth order differential operators that arise as Picard-Fuchs
operators for one-parameter families of Calabi-Yau threefolds are given by

4

L=0"—p "'z [[(0+a) (2.1)
k=1

with 6 = z% and for the values of p and {a} specified in the Table

The associated Riemann symbol

0 pu o0
0 0 al
P 0 1 a9 (2.2)
0 1 as
0 2 a4

shows that the system has always three regular singular points at z € {0, u, 00} so
that the parameter space of z is M = P'\{0,1,00}. The theorem of Landman [72]
states that principal properties of a monodromy matrix M, around a singular point * or
more generally a divisor D in Mg are captured by the minimal integer 1 < k& < oo such
that

(MF—1)PT1 =0 (2.3)



N | ay,a9,a3,a4 | 1/p Mirror M Kk | ca-D | x(M)

8 3131313 28 Xop22(1%) | 16| 64 | —128

o | Lh33 |2 | x0%) | 6| 48 | 150
16 | 1113 | 9l X42(1°) 8| 56 | —176
25 | 1234 5 X5(1%) 51 50 | —200
o7 | 1,422 36 X33(19) 9 | 54 | —144
32 | L1338 212 X44(1%22) | 4| 40 | —144
36 | ALz | 213 | X300(17) |12 60 | —144
72 55,52 | 2833 | Xgp(153') | 4| 52 | —256
108 | &§,3.3.2 | 2135 | Xg(1%2Y) | 3 | 42 | —204
128 | 1,351 216 Xg(1441) 2 | 44 | —296
| LAEE 9| X, 2 | 82 | 1
200 | &, 3.5, | 285° | Xpp(1%2'5Y) | 1| 34 | 288
26 | L5230 | 2| Xeg(222) | 1| 22 | 120
864 | 19,130 190 13 | 278 | X1o2(1%4%6") | 1 | 46 | —484

Table 1: Data of fourteen one—parameter Calabi—Yau families W with hypergeometric
Picard—Fuchs operators, arranged according to the level N of the weight four cusp form
fa € Sa(Ty(N)) associated with the modular conifold fiber W,,. The coefficients a; and p
specify the Picard-Fuchs operator . The mirror M of the first thirteen families are
generically smooth complete intersection of r polynomials P; of degree d; in the weighted
projective spaces P3*" (w1, ..., wsy,). The notation is such that e.g. X473(1521) stands for
the intersection of a quartic and a cubic in P°(1,1,1,1,1,2). The mirror of the last family is
a generically non-smooth intersection in the indicated space. The last three columns denote
the triple intersection number x = D3 of M, the intersection number of D with the class
co(TM) and the Euler number x(M).

for some 0 < p < dim¢(W). If & > 1 there is a finite order branch cut transversal to the
divisor D. If in addition p = 0, D is called an orbifold divisor. Locally one can consider
a k-fold covering of M.y and remove the finite branching. After this, one has £ = 1 and
can consider the limiting mixed Hodge structure [95]. If p > 0 one has an infinite shift
symmetry. For p = 1 either of the two following cases arises. In the first case, there is
a a single vanishing period dual to a logarithmic degenerating period at z = *. Such a
point is called conifold point and the local exponents E] in have the schematic form
(a,b,b,c). In the second case, there are two distinct vanishing periods that are dual to two
distinct logarithmic degenerating periods at z = %. Such a point is called K—point and

has local exponents of the form (a,a,b,b). The value p = 2 cannot occur due to Schmid’s

3Here a # b # ¢ and ka, kb, kc € Z.



SL(2,C) orbit theorem and for p = 3 one has a point of maximal unipotent monodromy,
the MUM-point, with local exponents (a,a,a,a). The latter fact implies that besides a
holomorphic solution also single, double and triple logarithmic solutions exist at this point.
From the entries in the columns of under the singular point one sees that at z = 0 one
has a MUM-point, at z = p a conifold point and at z = co generically a finite branching.
All types of limiting mixed Hodge structures that can occur according to [95], do occur
in hypergeometric examples. The enumerative geometry of the X522(1%) model at the

second MUM-point with local exponents %, %, %, % is studied in [64].

2.2 The choice of the integral symplectic basis at the MUM-point

A basis II of periods corresponding to an integral symplectic basis of cycles has been deter-
mined for the mirror quintic in [21] by identifying the period F = [ g3 §2 over the vanishing
three sphere S? near the conifold z = p, see , and making the corresponding Picard—
Lefshetz monodromy M,, simultaneously integral symplectic with the order five orbifold
monodromy My,. Using the Barnes integral representation Fy can be exactly an-
alytically continued to the MUM-point. This calculation reveals the following facts that
generalize to all hypergeometric cases [65], [33], [29]: Fy degenerates with a triple logarithm
at the MUM-point z = 0. The S? is symplectic dual to the three torus 72, whose period
gives rise to a holomorphic solution X° at the MUM-point. The remaining Sp(4,7Z) am-
biguity can be canonically fixed by identifying the coordinate ¢ of the complexified Kahler
moduli space M.k of M with the ratios of the periods given in and using special
geometry on the mirror manifold M at its large volume point. This is explained in Section
and leads to the I'-class conjecture that relates the period vector II systematically to
the central charges of the even—dimensional branes on M.

In the following we explain how the integral period vector II can be defined for all
examples by the observations made in [50]. At the MUM-point z = 0 a unique basis of

solutions of the Picard-Fuchs equation can be defined by

02

(2)
_ fo(2)log(z) + fi(2)

Mo(2) = Lio(2)10g?(2) + fi(2) log(2) + fal2) (2.4)
Lfo(2)log?(2) + 1 f1(2)log?®(2) + fa(2) log(z) + f3(2)

for power series normalized by fo(0) = 1 and f1(0) = f2(0) = f3(0) = 0. It was observed
in [50] that from

(2mi)3 Z [l ik +¢) + Zhre = Z Ly (2)(2mie)™ (2.5)

4
K20 }"ilf (+6)+

where the weights w; and the degrees d; are given in Table [l one gets four solutions L,,(z)



for m = 0,1, 2,3 that constitute a Q—basis and combine into a Z—basis II by

. 3)x (M .
Fo kL3 + 2P1, C((z):é?) ) 2o 0 PITE
m= | Bl Rl | S0 wm @ O |,
X1 Lo 1 0 0 0
1
X Ly 0 = 0 0
(2.6)

The constants in can be related to topological invariants of the mirror M. If D is the
positive generator of Hy(M,Z) then kK = D - D - D denotes the triple intersection number
on M. The integer ¢ - D denotes the intersection of the second Chern class ca(T'M) of the
tangent bundle of M with D, and x(M) denotes the Euler number of M. The constant o
can be chosen to be

o = (kmod 2)/2, (2.7)

since there is an Sp(4,Z) transformation corresponding to a shift of o by 1. With these
choices II corresponds to periods over an integral symplectic basis of cycles A°, A', By, By €
H3(W,Z) with non-vanishing intersections A’ N B; = 5;, i.e. the intersection matrix in this

basis is given by

0 0 10
0 0 01

¥ = 1 0 00 (2.8)
0 -1 00

The topological invariants are summarized in Table[l} They also determine the monodromy
matrix at the MUM-point

12
0 1 o—3 —K
Mo =14 1 0 (2:9)
0 0 1 1

with respect to the basis II. Note that integrality of My implies that 2k+c¢s- D = 0 mod 12,
which follows geometrically from the Hirzebruch—-Riemann—Roch theorem and the integral-
ity of the holomorphic Euler characteristic x(Op) of D. Together with the conifold shift

monodromy

1 000
0 100

Mi=| "0 01 o (2.10)
0 00 1

these matrices generate the monodromy group I' C Sp(4,Z). These monodromy groups
have been analyzed in [65], [33] and [29]. The index of these monodromy groups in Sp(4, Z)
has been studied in [47].

2.3 The Legendre relations and special geometry

In this section we prove the Legendre relations satisfied by the transition matrices using

the fact that the Picard-Fuchs equation comes from a family of Calabi-Yau threefolds. We



also recall consequences of special geometry and mirror symmetry. For more background
we refer to [18] and [21].

For a family of Calabi-Yau threefolds 7 : W — Ms (with fibers W, over z € M),
one obtains a polarized variation of Hodge structure on the bundle H = U,y H?(W,, C).
This bundle is equipped with a Hodge filtration 2 C F2 C F! C FY = H, where F?
are holomorphic subbundles with fibers F£ = D>, H L3=UW,). The bundle F? is one-
dimensional and can be trivialized by a holomorphic section 2. The bundle H is further
equipped with a connection V, called the Gauss—Manin connection, which can be defined by
the requirement that d%i /. W= fv V,w for any holomorphic section w and any constant cycle
~ defined over a contractible subset of M. This connection satisfies Griffiths transversality,
i.e. V,['(FP) C T(FPT1), and is flat with respect to the intersection pairing < -,- >: T'\(H) x
L(H) = Opm,, defined by < wy,wy >= i}, w1 Awa.

In our case of one-parameter families it follows that

qk 0 if k<3
<VFQ,Q>=T'S— 11 =
Ce.. ifk =3,

TF (2.11)
where C,., is a holomorphic function. Expanding the Picard-Fuchs operator as L =

Zi:o Ag(2) d—kk and using the antisymmetry of the intersection pairing and Griffiths transver-

dz

sality we find that

d

T < Q, V30> =<VQ,V3Q >+ <Q, V> (2.12)

A
_ 44 _gvios-cavias| -8B g was 213
dz \ dg ~e—oaP —— Ay(2)
=0

and thus

, 1 As(2)
szz(z) + §m

Solving this differential equation and using the structure of II around the MUM-point z = 0

Crz(2) =0.

to fix the normalization gives

(27 )3k
B(l—z/p)
We are now in the position to prove the following Lemma.

C.oa(2) = (2.14)

Lemma 1. For any CY threefold hypergeometric system in Table |1 let 6 = 1 — z/u be
the conifold variable and HE(Z) = (1 + 0(8)3,v(8),0% + O(5®),v(5) log(d) + O(83)) with
v(8) = 0 + O(6?) a uniquely determined basis of the solutions of the Picard-Fuchs equation
around the conifold point. Then the transition matriz T, between the integral symplectic
basis 11 @ and the basis II,, (which is defined by I1 = T,II,, and depends on a chosen

path of analytic continuation) fulfills the quadratic relation

0 0 % 0 0 0O 1 0
0 0 —ark —k 0 0 0 1
3 I
(2mi) _% o 0 0 = Tu 1 0 0 0 T, (2.15)
0 K 0 0 0 -1 0 O



with

3 (4 4
a =7 Zai—Zaiaj . (2.16)

i=1 i<j

Proof. With the intersection matrix X, =T, ;{ YT, in the basis II,, we have

e db 0 if k<3
IS, 1l = T (2.17)

Expanding II,, up to the third order in 4 and solving for the intersection matrix ¥, gives

the relation (2.15)). O

The proof of the Lemma works analogous for any local basis II, around any point z
and yields similar Legendre relations. For z = oo as calculated in one can easily
check them, and for the attractor points they lead to the Legendre relations of periods and
quasiperiods of modular forms as discussed in Section [3.3]

We conclude this subsection with some comments on the Kéhler structure and mirror
symmetry. Griffiths transversality implies that locally the full period vector II (in a suitable
integer smyplectic basis) can be written in terms of a holomorphic prepotential F(X%, X1)
that is homogeneous of degree two in its arguments as II7 = (Fp, [y, X9, X!) with Fy =
OxoF and Fy = Ox1F. In the inhomogeneous coordinate ¢ = X'/XY this relation becomes

7 = X°2F — toF, 0, F,1,1) (2.18)

with F(t) = F(1,t). Note that 1} then implies ﬁ(%):SCZZZ = -0} F(t).
We now illustrate the structure around the MUM point z = 0 with the periods II chosen

as in (2.6)). The mirror map then has the form
t(z) = X1/ X9 =log(z)/27mi + O(z) . (2.19)

In the limit z — 0, corresponding to ¢ — <00, mirror symmetry suggests that ¢ can be
interpreted as a complexified Kdhler coordinate t = fCB b + iw on the mirror M of W,
where w is the positive generator of H1(M,Z), b € Q?(M,R) is the Neveu-Schwarz 2-form
which by the equations of motion is harmonic and Cp is a primitive curve class spanning
the Mori cone that is dual to the Kéahler cone of M. Hence t = fcﬁ b+ iArea(Cg) and
t — ioco corresponds to the maximal volume limit of M. One gets by comparison of

with (2.6)

Ka 0o c-D  x(M) (3)
= 4t t
d 6 20 T T T T amip

— Finst(Q) - (2.20)

Here Q = > such that the instanton corrections Fins(Q)) are exponentially suppressed

near the MUM-point. The famous predictions of the genus zero BPS invariants ng are

obtained from the expansion

1

Finst(Q) = (QWi)gzngLig(Qﬁ), (2.21)
B=1

10



with e.g. {nl} = {2875,609250, 317206375, 242467530000, ...} for the quintic. Note that
ny = —x(M)/2 can be viewed as the degree zero genus zero BPS number. More generally
ng = (—1)dimMg X(Mg ) if the moduli ./\/lg of the Jacobian fibration over the deformation
space of the image curve C4 is smooth [39] [59]. For the constant maps MY = M so that we
get —x (M) and the factor 1/2 comes from the zero mode structure of constant maps. The
regularizing factor ((3) = Liz(1) should also be understandable in Gromov—Witten theory.
Comparison of with the normalization X°(2) = (27i)3 + O(z) and its relation to the
third derivative of the prepotential fixes the choice of the normalization of C,, in in
order to get ﬁ(%)sCza =k + O(Q) at the MUM-point.

The complex structure moduli space M can be equipped with the Weil-Petersson

metric with components G;; = 9;0;K in terms of the Kéhler potential K defined by
e K = i(0,Q) = —ilIfIn. (2.22)

Note that this metric is independent of the choice of the holomorphic section ).

2.4 The geometry of hypergeometric one-parameter Calabi-Yau families

In this subsection we explain the construction of the mirror Calabi-Yau families W with
one complex structure parameter as resolved orbifolds of the manifolds M in Table [l The
resolved orbifolds are projective algebraic and one can determine their Hasse-Weil zeta
functions geometrically as in [22].

The orbifold group I' will be an abelian group. It is maximal in the sense that a family
My, that admits the action of T' has only one complex structure deformation. (See the
quintic example in Section for more explanations.) The action on M, leaves the
restriction of the holomorphic (3,0)-form © of M to Miy, invariant. Under this condition
the orbifold admits a Calabi-Yau resolution W = ]\ml“, which can be identified with
the mirror of M. Orbifold constructions have been studied from the physical point of view
by [28] and from the mathematical point of view by [46]. According to [46] the Euler number
of the Calabi-Yau orbifold resolution is given by

X(MJT) = ZX Z‘ Z X (MDY (2.23)

éeC(

where [v] is summed over all conjugacy classes of I', C(y) is the centralizer of v, (v,0d)
denotes the subgroup of I' generated by v and § and M9 its fixed point set. Here we
abbreviate by M a smooth member of Mj,, such that its fixed point loci admit a suitable
smooth stratification. In our applications I' is abelian and thus the sums extend over all
v,6 € T'and 1/|C(vy)| = 1/|T'| can be pulled out of the first sum in the last expression in
. We rewrite this formula by denoting by Mg, for any subgroup G C T, the subset
MY~ Ur-aoa M of points in M whose stabilizer is exactly G. Then M% = Uea Mer
(disjoint Jnio;l), and hence (M%) = perte X(MG/), so can be recast as

X(MJT) = Z i (2.24)

GCr
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For suitable I' this in particular allows to check that x(W) = —x(M) and by further
analysis hM'(W) = h>!'(M). Orbifold mirror constructions for non-singular Mi,, have
been described in literature. For the quintic X5(1°) this was done in [21] and for the
hypersurface examples Xg(1#2'), Xg(1%4!) and X10(132'5') in weighted projective spaces
the procedure is very similar |65]|ﬂ For the complete intersections X3,3(16) the mirror has
been constructed in |74] and for Xy 4(142%) as well as Xg6(1%2232) in [66]. However, for M
given by four quadrics in IP’7, denoted by X272,272(18), M,y is singular, and this case has
not been treated explicitly in the literature H This case is of particular interest as we will
relate the conifold fiber to a Kuga-Sato variety in Section [l Since M,y is a generically
singular family (singular apart from the orbifold action) it requires additional resolutions,
which will be explained in Subsection [2.4.2] The mirror construction described here will
apply to all complete intersection hypergeometric cases, but has to be generalized for the
family X 12’2(144161), which is special as it has no smooth member even before we restrict
to Miyy. In this case the mirror can be realized as a sublocus of a smooth three-parameter
family of elliptically and K3-fibered Calabi—Yau threefolds [62], [25].

2.4.1 Mirror construction for the quintic

We exemplify the strategy with the quintic Calabi-Yau threefold, where the family M is
defined by the zero locus of generic degree five polynomials P in the projective space P*

M :{P(xo,...,m;g):0‘(:n0:...:$4)E]P’4}. (2.25)

It has 101 independent complex structure deformations (denoted by 9, where ¢ differingﬂ
by the action of PGL(5) are considered as equivalent), which correspond to elements in
HY(M,TM). By the theorem of Tian [92] and Todorov 93], the complex structure defor-
mation space Mes(M) of a Calabi-Yau threefold has dimension dim H'(M,TM) = h*(M)
and is unobstructed. The only cohomologically non-trivial (1, 1)-form on M is the pullback
of the Kihler form of the ambient space P* and the non trivial Hodge numbers are therefore
h*1(M) =101 and hVH (M) = 1.
To specify I' and its subgroups, let us define

I = {g = (&})j=0,..n € (un)"* \ 14 = 1} T (2.26)
§=0

which is isomorphic to (Z/NZ)"~!. Here uy denotes the cyclic group of the Nth roots of

2mi/N

unity, generated by e , and £ acts on the coordinates of P by z; +— {;x;. The action

“For all Calabi-Yau hypersurface in toric varieties Batyrev’s mirror construction [5] applies and describes
for our examples the same resolution as the orbifold construction.

SBatyrev’s and Borisov’s mirror construction |6] applies to the complete intersections discussed here
except Xg,4(13223"), but is notationally heavy and implicit.

5Tn this particular case we can choose representatives for the PGL(5)-equivalence classes, by writing the
generic quintic as Zf:() z? + 21160:11 Yrmi(x), where mg(x) are the 101 monomials in o, ..., x4 of degree 5
and individual degrees < 3. The only fibers on which the group I's defined in acts come from the

one-parameter family (2.27)).
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of I' = F% exists on the family

4

4
Miny = {R/, => a5y [Jai =0

1=0 1=0

(zo:...:m4) € IP’4} , (2.27)

which represents a one-parameter invariant subspace Uy, My, in the 101 dimensional complex
moduli space of quintics in P%. The mirror quintic W is obtained as the canonical resolution
of the quotient of Mj,, by I', namely as W = ]\m I'. The condition H?:o §j = 1 ensures
that the restriction of the holomorphic (3,0)-form  to My, is invariant under I’ E”ﬂ This
condition (or more generally, the condition that at fixed points the orbifold group acts, in
suitable local coordinates in which € is written as {2 = dz; A dzo A dzs, as a subgroup of
SL(3,C)) turns out to be sufficient in order that M,y /I" admits a Calabi-Yau resolution [80].
Denoting the variables identified in P4/T" by &;, we can define the fibers Wy, of the mirror
one-parameter family W by the right hand side of with x; replaced by #; (and P* by
P*/T). Tt is easy to see that the fibers Wy, and Wey, for § € pus are isomorphic and we thus
introduce the variable )

z = Ok (2.28)
which also occurs in , . This identifies five conifolds at ¥®> = 1 with one conifold at
z = 1/55 and creates a Z/57Z orbifold singularity at z = oo, where z belongs to the complex
moduli space x(Cpq) = —10 of the mirror family W.

The action of I' on M,,, has ten fixed curves CG, with G = Z/5Z, defined by Cp 4 :=
My N {z, = 0} N {zg = 0} with p # ¢q. We have Cp, = {xf—i—x?—i—xi = 0} c P?
(which we also denote by C; ;1) and its Euler number can be calculated by the adjunction
formula, x(Cp4) = —10. Each of these curves meets in three out of ten fixed point sets
P j={zd+ x? = 0} C P! obtained by setting three distinct coordinates z, = ¥, = 2, = 0
of P* to zero. The stabilizer group of these fixed point sets P¢ is G = (Z/5Z)? and again
by the adjunction formula their multiplicity evaluates to x(F; ;) = 5. Hence summing over
all possible groups G of all fixed point sets, reads in this case

12 52 257

M/T) = (=200410-(—10—3-5)—10-5) —— +10+(—25)- ——+10-5- = = 200. (2.2
X(M/T) = (=200+10-(=10=3-5)=10-5)- 7= +10-(~25)- = +10-5- - = 200. (2.29)

We note that the contribution of the identity element, the first term in (2.29), is always

zero in the orbifold construction of mirror manifolds. On the normal direction to the
curves (), 4 the orbifold action is given by F% X ,ugiag, acting on the normal coordinates by
2k — &gz, k= 0,1. At the fixed points P;; the orbifold action is given by I'Z x ,ugiag,
acting on the normal coordinates by zp — &gzi, & = 0,1,2. These singularities can all

be resolved torically by two— and three dimensional fans which globally fit into the toric

"This can be seen from the specialization of to the quintic hypersurfaces in the five homogenous
coordinates of P*. There is only one residuum around P = 0, which is invariant, and so is dua.

80n Miny an Ss permutation acts on the coordinates of IP’4, which identifies different fixed point sets of
subgroups G C I'. The alternating subgroup As of Ss is isomorphic to the icosahedral group. It leaves 2

invariant and x(]\m) = —16 has been calculated as an application of 1) in |63].
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diagram depicted in Figure[I] It is the projection of the four dimensional reflexive lattice
polyhedron (a simplex) that features in the construction of Batyrev [5]. Here we omitted
for clarity the inner points [’ on all codimension zero and codimension one faces as well
as the ones on seven codimension two and three codimension one faces. As explained in
the caption of the figure, the exceptional divisors correspond to 100 new cohomological
non-trivial (1,1)-forms, so that the non-trivial Hodge numbers are h':'(W) = 101 and
h?1 (W) =1 as claimed.

C123

Cip3

Figure 1: This toric graph represents a four dimensional simplex, whose vertices are the
corners of the larger pentagram. The ten edges connecting vertices represent the ten curves
C;,jr and the ten triangular three faces, spanned by vertices, the ten points P; . Each face
is bounded by three edges corresponding to the three curves Cj jm,Cjjn and Cjj, that
meet in the point P; ;. Likewise each curve, as for example the curve C 23 represented by
the black edge, contains three points which correspond to the three faces P 2, P 3 and P 3
incident to that edge. Each inner lattice point, four for each edge and six for each face,
correspond to an independent exceptional divisor [5|. Hence together with the hyperplane
class one gets 1 +4-10+ 6 - 10 = 101 independent divisors and thus A*'(W) = 1 and
RbL(W) = 101.

2.4.2 Mirror construction for four quadrics in P7

We next construct the mirror W to the complete intersection M of four quadrics in P7
abbreviated as X2222(1%) in Table I} For generic quadrics the Euler number is y(M) =
—128. The only Kihler class of M is inherited from the ambient P7, i.e. hM(M) = 1
and by the Calabi-Yau properties one has h?!(M) = 65. To construct the mirror W with
Y (W) = dim Hy(W,TW) = 1 and h>'(W) = 65, we consider Mi,, as the one-parameter

9Those that lie not on lower dimensional boundary components of the faces.
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family of threefolds defined by the four equations
Pji=ai+y; —2¢ x4y =0, jEZL/AL (2.30)

in the homogeneous coordinates z;,y;, j = 0,...,3 of P7. The variety Mi,, has an au-
tomorphism group A of order 2'2, generated by transpositions Tj ¢ xj < yj, the cyclic
permutation of the coordinates o : j+— j+ 1 with j € Z/47 and the elements of

I = {6 = (&)imo...8 € (ua) } /u"® (2.31)

that act on the coordinates of P7 by

(x,y5) = (&, 618 y)) (2.32)

with &; € ug = {1,4,—1, —i} and is isomorphic to (Z/4Z)3. The orbifoldization by I' leads
to the mirror manifold, while the group S = (Z/2Z)* x Z /47 generated by 7; and o is useful
to identify the fixed point sets.

Just as before we find that the holomorphic (3,0)-form € is invariant H under I'. This
can be seen from an analogous expression to that defines Q2 on M, in the z;,y;
coordinates of P7. While the integrand and the measure dju; are not separately invariant
under some elements of I' (they both change sign), the form € is.

We will show that the one-parameter family W = ]\Tin_yl“ given explicitly in is
the mirror of the generic complete intersection in P7. The new feature, compared with the
situation in Subsection is that has 32 nodal points P}, j € Z7]A7, m € Z/AZ,
l € Z/27, whose non-vanishing inhomogeneous coordinates are given by (« = exp(27i/8))

PJ% : (yj+27$j+3,yj+3) = (mal-iﬂm’ 1, a2+4m)

pm - . . . — \/T 1+2m 1 ,2+4m (233)
g1 (Tjt2, Tj43,Yj+3) = (V20 Lo )

for generic 1. An additional node develops at z; = y; = 1, Vj, when Y® =1 or equivalently
z=1/2% (with z = 1/(2¢)®), i.e. at the conifold locus.
With respect to the action of I' the fibers of Mj,, have sixteen irreducible fixed curves

C%, j € L)AL, | € /27 given by

gl
ct . =y, =241 =0 i = +ix;
jo Li=Yi=TH1 =V, Yj—1 = T

Cri

: (2.34)
7,1 T =Y = Yj+1 = 0, Yj—1 = :i:z:cj_l

with stabilizer Stab(C’jil) = Z/4AZ. In addition the action of I' has exactly the 32 nodes P}
as fixed points with stabilizer Stab(P[}) = (Z/ 47Z)%. Tn Mjy,y eight of the nodal fixed points

lie on every curve C’;—Lll, ie.

—1)(n=1)
(PP, Pl Py c O (2.35)

10Gimilarly one can check that Q is invariant under o, but anti-invariant under Tj.
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for m,n € Z /47, and each point Pj"; lies on the intersection of four curves

Prie C V" e

+ —_
5, J g1 NCLL NG

s (2.36)

as in the schematic intersection pattern in Figure 2, We note that C;f =al (Cgfl), Cfl =
Tj,l(Cjﬁ) and C]j‘,[() = Tj+1(0ji71). So all 16 curves are equivalent and we can focus on one
curve, say Cafo, given by the equations 23 + y3 — 2ivz3 = 0, y§ — 2¢bx9ys = 0. One checks
that this is a smooth curve of genus one E hence X(Cfl) = 0. Moreover I' identifies the
curves C’;fl with C’;l as well as the points Pﬁ with m € Z/4Z for fixed j,1 respectively.
We hence need to provide a desingularization of My, /I" with eight nodes and an orbifold
singularity on top of these nodes. To explore the local neighborhoods of the nodes we
expand infinitesimally around the critical coordinate values of P}, zp = a:,(go) +ep+ ..o
Y = y,(go) + 6k + ..., k € Z/4Z. With the overall scaling of P” we set one infinitesimal
deformation of a coordinate with finite critical value to zero. For example for P§, we set
r3 = 1, hence e3 = 0. We see that P, = 0 requires 73 ~ €3 and that the local geometry
is given by €2 + d2 — 2tbe1d; = 0. Using the symmetries we conclude that each node P
is given locally by an affine equation s* + t* — 2¢pxy = 0 on which the (Z/4Z)? stabilizer
group Stab(P) acts like (s,t,z,y) — (p%s, p3t, pTox, p23by), with a,b € (Z/4Z)? and p a

non-trivial fourth root of unity.

- +
Clo Cjo
Jr
Cj—i—l,l
P m =3
Ciii
- +
Cia Cia
Figure 2: Intersection of the curves at the four points PJ”l‘, m = 0,...,3. Eight copies of

such four points and sixteen curves connecting them permuted by the group S complete
the intersection picture.

We may bring the local nodal geometries into the form uv — yx = 0 by setting u =
s+ it and v = s — it and rescaling (z,y) to absorb the 21 and resolve the latter torically,

see e.g. [35] as revieWE First, we describe the local singularity using the cone spanned

71t is isomorphic to the elliptic curve C : 2y® = 2® + 2. This can be seen by the map (x,y) + (0: 0 :
0: Ay :x:i(z? +1)/2: (2% — 1)/(24i) : (2* — 1)/(24)) with A® = 2i), where 0 = (00, 00) — P§, and
P =(0,0) — P§,, independent of .

2Whose notation we follow. In particular o = (e1,e2,e3,e1 + e3 — e2) is defined in the conical lattice
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by ¢ = (v1 = e1,v2 = eg,v3 = e3,v4 = €1 + ez — eg) torically. Indeed, we see that
Se = Clu, v, z,y]/(uv — xy = 0). Without the group action there are three canonical ways
to resolve the latter singularity. Small resolutions are defined by subdivisions of ¢ into
Uf = (v1,v2,v3) and J; = (v1,v3,v4) or 07 = (v1,v2,v4) and o, = (v2,v3,v4) yielding
two different resolutions XljE = Spec(SJli) U Spec (So_;). Both are isomorphic to the total
space Tot(Op1(—1) @ Opi1(—1)) of line bundles over the base P! and related by a flop.
They can be further blown up torically by adding the vector ég = v1 + vo = v9 + 4
to the cone o. This leads locally to a non-compact space Tot (Opiypi(—1,—1)). The
local action of the orbifold suggest another resolution, obtained by adding the vector eg =
3 (v1+v2) = 3 (v2+v4) and refining the lattice M = (e, e1, €2)z. This yields the Calabi-Yau
resolution Tot (Op1yp1 (—2,—2)). Indeed in the coordinates (u,v,z,y) the group Stab(P)
is generated by two order four elements g, and g, where g, acts only on (x,y) as before,
while the generator g, acts as g, : (u,v,x,y) — (iv,iu, iz, iy). Resolving first the subgroup
generated by (g.)? : (u,v,x,y) — (—u, —v, —x, —y) torically, leads precisely to the Calabi-

Yau resolution H Xioc = Tot (Op1p1(—2,—2)). To obtain the induced action I'jo. on X,
(r)
we parametrize the latter by (ag,...,as) € C° subject to two C* actions ajp + ui’“ ag,

pr € C* for r = 1,2, k = 0,...4 and I = (=2,1,1,0,0) and ¥ = (=2,0,0,1,1). The
locus a; = as = 0 and a3 = a4 = 0 is excluded. Hence the homogeneous coordinates
[a1 : az] =: [zo : x1] and [a3 : a4] =: [yo : y1] are identified with the ones of the first and
the ones of the second P'. The blow-up relations identify zoy1 = u, z1yo = v, Zoyo =
and z1y; = y. Clearly, (g4)? acts trivially on Xj,. while g, generates merely an Z/(27)
action ([zo : z1], [yo : y1]) = ([vo : y1], [xo : 1]). The action of gy is given by ([zo : z1], [vo :
v1]) — ([pzo : z1],[yo : yip~!]) on Xjee. It follows that the local orbifold group T is
isomorphic to Z/27 x 7. /AZ and that its action leaves the holomorphic (3, 0)-form invariant.
Therefore we can apply . There are four fixed points under the Z/47Z action namely
when each of the [z : z1] and [yo : y1]) take the values [1: 0] or [0 : 1]. The Z/2Z action
leaves the diagonal A ~ P! invariant. Hence, there are two fixed points invariant under
Te = Z/2Z x Z/4Z, namely ([1 : 0],[1 : 0]), ([0 : 1],[0 : 1]). The Euler number of the
non-compact Calabi-Yau manifold x(Xj,c) = 4 comes from the compact P! x P! section of
the degree (—2,—2) line bundle and application of yields
X(Xloc/Floc):4 (2 2)8(4 2) 2+(4 :) 4 +288
Hence we can apply to the Calabi-Yau manifold defined by with the group
action in two steps. First we perform the small resolution at all 32 nodes. By similar
arguments as in [45] [98] we can conclude that the resulting manifold M is smooth and

projective with Euler number x(M) = —128 — 32+ 2-32 = —96. It has the induced action

=20. (2.37)

N, spanned by ej,e2,es over Z. With M the dual lattice to N one defines the associated semigroup
Se=0"NM={te M:(ts)>0,Vs¢c o} which defines the affine variety by U, = Spec(C[S,]).

13This can be viewed as the Calabi-Yau resolution of the total space of the cotangent bundle T3 L(2, 1) to
the lens space L(2,1) = S*/(Z/2Z) considered in [3].
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of I' at the resolved nodes described above. Hence applying (2.23)) yields

96160 —8) ~ 32, 16(0 —8) - 47

(M /T) = . »

+8-20=128. (2.38)

To get the last term, which represents the contribution of the (Z/47)? fixed points, we used
the fact that on My, /T’ we have 32/4 = 8 such fixed points and their resolution contributes
according to with 20 to the Euler number. We also note that on Mjy, /T" there are 8
curves with stabilizer Z/4Z, and that their resolution contributes three exceptional divisors
for each curve. Locally, we get five exceptional divisors for each of the eight fixed points.
The Euler number calculations suggest that these contribute the 64 new homologically
independent divisor classes to raise h%'(W) to 64 + 1. We thank Georg Oberdieck for
providing arguments that the latter are independent homology classes.

We have established that the mirror family W is obtained by resolving the singular quo-
tient of Mi,, and that the one complex structure deformation family of it can be described

as the orbifold resolution of

Wy = {(Z0:d0:...:83:93) €PTT | Py =327 +§? — 2pij 10541 =0, j€ZLJ/AL}.
(2.39)
The holomorphic (3,0)-form can be given explicitly as

_ 1 (20)*dpr
4= ey f'»{ ffé 75 vt [Tomo Pe(d,9,0) (240)

where duy/ Hi:o P, with dury = Z:Z:O(—l)’l€ zpdzg A - A Ez\k A --- ANdzy is a 7-form ['4| in
P7/T and the 7, are S ! cycles encircling P; = 0. A similar residuum expression for 2 can be

written down for the invariant one-parameter families of all hypergeometric cases. By per-
forming all residues over the three S' integrals one can explicitly compute the holomorphic
period [,; Q around the MUM-point [21}/65,66,(74].

2.5 Physics concepts related to the arithmetic of Calabi—Yau periods

Type II string compactifications on Calabi-Yau threefolds give rise to N/ = 2 effective
supergravity theories in four dimensions, and if in addition 3-form fluxes are turned on in
Type IIB theory one can break the supersymmetry to get an N’ = 1 effective supergravity
theory [34]. Very important quantities attached to these effective theories can be given
in terms of the Calabi—Yau periods. In particular, the central charges and masses of the
N = 2 BPS states, the gauge kinetic terms of the vector multiplets in A/ = 2 theories and
the flux super potential and its vacua are determined by the periods. Moreover, in the
IT stability conditions [30] [16] and wall crossing formulas |71] the phases of the centrals
charges ultimately determine which are the stable states. An important source of insights

from physics are the partially proven mirror symmetry conjectures:

1476 display the form dp7 it is convenient to define (2o :...:27) = (Zo: o :...: T3 : J3).
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e The conjectured equivalence between the (2, 2) supersymmetric non-linear sigma mod-
els on the worldsheet of type II string theory compactified on M and W. This iso-
morphism exchanges the h!(M) marginal deformations that correspond to the com-
plexified Kiihler structure deformations of M with the h%!(1W) marginal deformations

that correspond to the complex structure deformations of W and vice versa |73].

e The conjectured equivalence between type IIA theory on M and type IIB theory on
W and vice versa [91]. It goes beyond the first conjecture as it also exchanges the
non-perturbative even—dimensional beraneﬁ of type ITA with the odd ones of type
IIB or in mathematical terms D®(Coh(M)), the bounded derived category of coherent
sheaves on M, with D™ (Fuk(W)), the bounded derived Fukaya category on W, and

vice versa [70].

It has been first suggested in |78 that the arithmetic of the periods at special points
play an important role for the properties of these compactifictions. For example the rank
two black hole attractor points and supersymmetric minima of flux superpotentials can be
characterized by their arithmetic properties. The families of hypersurfaces in (weighted)
projective spaces Xg4(wi,...ws) (i.e. the four models with d = 5,6,8 and 10) have a special
fiber Z?Zl x?/ “# = 0, in which the (2,2) supersymmetric non-linear sigma models on the
worldsheet is conjectured by Doron Gepner to be described exactly by a rational conformal
field theory [37]. The corresponding point in the complex structure moduli space Mg is
referred to as the Gepner point. It has been speculated in |42 that generally points in Mg
at which a rational conformal field theory descriptions exist have interesting arithmetic
properties and might be related to analogues of points of complex multiplication of elliptic

curves [83].

Central charges and masses of D-branes For I' € H3(W,Z) the D3-branes of Type
1IB wrapping a special Lagrangian in this class give rise to a BPS state with electro-magnetic
charge I in the effective N' = 2 four—dimensional theory. These BPS states have a central

charge which is given entirely in terms of periods of W
Z(z,T) = eé‘/gz = e=1Ip (2.41)
r

with the Kéhler potential as defined in (2.22). Note that they are moduli dependent and
determine the masses of the BPS states non-perturbatively exact as

mr(z) = |Z(z,T)] . (2.42)

From our analysis of the periods in the integral basis we will get the central charges and
the masses of BPS D-branes at the conifold and the attractor points in terms of formulas

with a strongly number theoretical flavor.

15These are called B-branes and the special Lagrangian 3-branes, which are objects of the Fukaya category,
are called A—branes, because they are natural boundary conditions for the topological B— and A—model,
respectively.
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Central charges at the MUM point and the I'-class conjecture The second mirror
conjecture relates these D3-brane states in D™ (Fuk(W)), specified by the class T, to the
even-dimensional D2k-branes, k = 0,...,3, viewed as objects in D°(Coh(M)) specified
by a class & in the algebraic K-theory group Kglg' In the large volume limit, the latter
can be understood in terms of classical algebraic geometry. Mirror symmetry induces an
isomorphism

M : Hy(W) — K (M) . (2.43)

This can be used to relate the central charge given in formula for the odd—dimensional
D-branes at the MUM-point on W to one that is derived using classical properties of
even—dimensional D-branes on M. Under the map 9 the pairing (I',I”) on D™ (Fuk(W))
induced from the one on Hs(M,Z) was first identified with the Euler pairing (&,®’) =
Sy TA(TM)ch(6" )ch(&’) on Kglg(M). Here, the Todd class Td is the multiplicative char-
acteristic class generated by z/(1 — e™*). However, it was realized in [49] [55] [60] [36]
that the natural analogue of (I',T”) that also makes contact with the central charge for-
mula , is obtained by taking the square root of the Todd class. Noting that
(14 z/(2m))T(1 — z/(27i)) = e~ */22/(1 — e~*) one can hence take e*/*T'(1 — x/27i) as
generating function for the I' class. Expansion in terms of Chern classes of the tangent
bundle of the Calabi-Yau threefold™® M gives
~ 1 ngC (3)

NTM) = 1+ﬂcQ+ o

(2.44)

The natural pairing becomes (&, ®') = [, 1(&V)(&') with (&) = T(TM) - ch(®). The
operation 1)(®) gives a sign (—1)* on elements of weight 2Fk.
In the following we restrict to one—parameter families W. In the large volume limit of

M, which corresponds to a MUM-point of W, one can calculate [49] [55] [60] [19] [36]
g (£) = / ¢ T(TM)ch(®) + 0(Q) . (2.45)
M

Here the check on ITg = ﬁgﬁ([‘) indicates that relative to Il we made the usual large radius
gauge choice X? = 1. The K-theory class Dg of the D6-brane is given in terms of the
structure sheaf Oy by Dg = [Op] = M(BY) and ch(Oyy) = 1, where B is the homology
class of the vanishing cycle S2. In the coordinate ¢ given by the mirror map and with
the Kahler class w = Dt, where D corresponds to the restriction of the hyperplane class to

M, we get

343 .
Tpg(t) = /M (“’Gt + itw@ + wgfrf’)) +O(Q) = 2F —tdF . (2.46)

The DO-brane is given by the skyscraper sheaf Oy with Dy = [Op¢] = M(Ap) and Ip,, = 1,
where Ay is the class dual to By, see |55]. Following [55] we can also identify the D2-brane

16The e factor can be omitted for Calabi-Yau manifolds as it gives a trivial contribution. The Euler—
Mascheroni contribution in the expansion of the I'-function vanishes for the same reason.
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with a K-theory class Ds of a sheaf supported on a genus zero curve C and the D4-brane
with the K-theory class D4 of a sheaf supported on the restriction of the hyperplane class

D to M. We can summarize the mirror symmetry identification and the special geometry
relation with F given in (2.21)

ﬂDG fAO Q 2; - tatf

p, N Y O F

N = X Ay = ) 2.47
]-E[Do 0 fBO 0 1 ( )
IIp, f B Q t

The central charges and masses of the even—dimensional D—branes are defined in a gauge

independent way as
Z(t, Doy) = X/ yy-1(p,y = Z(z, M (D)), mpar = |Z(t, Dai)| , (2.48)

in a way that extends over the full deformation space M¢s(W), which is identified with the
stringy Kahler moduli space Mys(M) of M. By this mirror symmetry identification, we
do not only get a natural integral structure at the MUM-point, but we can also study the

masses of the odd— and the even—dimensional BPS branes globally in their moduli space.

D-branes at the conifold Geometrically one can see from or more indirectly from
that at the conifold points z = p the families of the mirror manifolds W develop a
node, i.e. a singularity at which an S® that represents a class in Hs(W,Z) shrinks to zero
size. From the Lefschetz monodromy theorem one gets the monodromy M), assuming
that the S® represents a primitive class. From , , we see that the class of the S3
corresponds to the class of the D6-brane on the mirror. This implies that mpg vanishes at
the conifold while the other D-brane masses take arithmetically interesting values there.
Defining the Kahler potential K (z) according to , we see that its value is exactly
given in terms of the periods in the integral symplectic basis. In particular, from ,
follows that at the conifold
L N (2.49)
V2iwtw=

This implies that the masses of the even—dimensional type IIA BPS D-branes defined at

the large radius are given at the conifold in terms of the entries of the transition matrix 7,

as followd™]

mpe (1) 0

low™ +w™|

mpa(p) V2iwtw™
= |b| . (2.50)

mpo (1) V2wt w—

w™T
mpalk) Vo

171f k is even one can set o = 0 and obtains the relation mpa (w)mpa(p) = 1/2.
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It is remarkable that the physical values of the masses of the D2— and D4-branes at the
conifold are determined in such a simple form in terms of w¥, i.e. those numbers that
are rational multiples of periods wjf of the associated newform f € Sy(I'(IN)) specified in
Table R The numerical values of the w* can be found in Table 2] and the relations to the
periods wjf in Table 3| Alternatively, the periods of f can always be expressed by values at

s = 1,2 of the associated L-function or its twists by Dirichlet characters given by

L(f®x,s) Zanx = I - ! . (2.51)

b rime |~ @pP” F x(p)ptTIT

for Re s > 3. Here the numbers a,, are the Fourier coefficients of the newform f, which for

primes p coprime to N are just the Hecke eigenvalues. For example, for the quintic f is

given in (|1.2)) and we have

wt = —5(2mi)* L(f,1), wo = 6?15 (27i) L(f,2). (2.52)

Such equations for w® relating the exact values of the D-brane masses to special values
of L-functions of weight four newforms extend to conifold points of non-hypergeometric
one-parameter models and also to rank two attractor points.

As reviewed in Section the Hecke eigenvalues encode the information of the point
count over finite fields in the associated fiber. This makes it likely that there is an inter-
pretation of the mass of the BPS D—branes in terms of states that are related to the point
count in that geometry, because the way the values of the masses are calculated using the
L—functions resembles the calculation of regularized determinants or one—loop BPS satu-
rated amplitudes like in the Schwinger loop amplitude that lead Gopakumar and Vafa to the
definition of the D2-D0-brane bound states at the large volume point [39]. It is tempting
to speculate that the analogues of the integer BPS invariants in the GV calculation could
be interpreted as the numbers of points in the Calabi-Yau fiber over finite number fields.
The masses of the D-branes are directly relevant physical quantities in the low energy su-
pergravity theory. In particular, the fact that the D6-brane becomes massless is physically
interpreted famously by Strominger [90] as the occurrence of a massless black hole in anal-
ogy to the massless monopole that occurs in AN/ = 2 super Yang-Mills theory as predicted
by Seiberg and Witten [88]. Its gravitational one loop S-function induces similarly as in
the Yang-Mills theory a monodromy around the conifold. The quantity |b| that determines
the mass of the DO-brane at the conifold

0|
m = 2.53
Do V2iwtw™ ( )

is also relevant for the low energy effective action. If b would have been zero the latter
would eventually have no local Lagrangian description, because electrically and magnetically
charged D— branes could become massless. This is the scenario that occurs the case of rank
two attractors as discussed in more detail in [11]. With the exceptlon of the X3922(1%)

1Ly

model for which the full transition matrix 7}, is given in , we have so far only the
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obvious expression of b = X%(u) = (2mi)3wo(1) as the (slowly converging) series coming
from the solution that is holomorphic at the MUM-point.

Exact metric and curvature at the conifold and growth of instanton numbers
Of relevance to the growth of the BPS invariants ng of holomorphic curves and the entropy
of microscopic black hole states is the value of the complexified Kéahler parameter
at the conifold. The latter is given according to the transition matrix 7}, in and the
leading behaviour of the Frobenius solutions at the conifold by

tp) = = = o =iic. (2.54)

The value ¢ determines the leading exponential growth of the ng for large degree 3 at genus

g = 0[21] as well as at higher genus g [7] by

b2\ oge _
ng ~ (47|72|w+> B%973(log B)?9 7227 <8 (2.55)

While w™ can be always related to a period of the holomorphic cusp form f called w;f, see
Table |3| (with a proof for N = 8 given in Section , the value b of the central charge of the
DO-brane at the conifold is in general not well understood. However, for the N = 8 case
there is a precise conjecture given in to the effect that

Jr

_ Wy
szg = —32wf y CN=8 = 1——, (2.56)

w

f
making this the first compact case where the exponential growth of the worldsheet instanton
numbers of the mirror is exactly determined in terms of the arithmetic numbers given by

the periods of newforms.

On the other hand, the leading order behaviour of the metric and the scalar curvature

at the conifold is encoded for all models in terms of w®

473k log |0  wtwT|
lwtw=| 2m3k|6]2 log? 6]

955 ~ — (2.57)
i.e. the numbers related to the periods of the associated newforms or their L-function values

as explained above.

Properties of the effective action for special fibers As reviewed in |7§|, the attractor
flow equations for charged N' = 2 black holes specify subloci of the vector multiplet moduli
fields, at which the flow can end. The vector moduli parametrize the complex structure
moduli space M s(W) of the Calabi-Yau family in the type IIB compactification. The main
observations in 78] is that the subloci specified by the so called attractor equations have
interesting arithmetic and Hodge theoretic properties. Moreover the constraints imposed

by the attractor equations are very similar to the conditions for supersymmetric flux vacua
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that likewise occur at restricted subloci of the moduli in Ms of Type IIB compactifications
with F3,G3 € H3(W,Z) flux backgrounds. At rank two attractor points zg € M., the
lattice H3Y(W,,) ® H*3(W,,)) N H3(W,Z) has rank two and, as reviewed in [56] [11], for
one-parameter models the condition for rank two attractors and A/ = 2 supersymmetric flux
vacua are equivalent. It is remarkable that despite the possibility to follow the attractor
flow lines the first rank two attractor point has been found using arithmetic methods |20].
In this paper we present two rank two attractor points for hypergeometric Calabi-Yau
families and a discussion of the effective action and its C— and P—symmetries can be found
in [11]. Interesting observations concerning the theta-angle in the gauge kinetic term of the
graviphoton for rigid Calabi-Yau compactifications have bee made in [24]. In [11] these are

extended to rank two attractor points.

3 Special fibers and periods of modular forms

In this section we present as one main result the comparison between the period matrix of
special fibers of the hypergeometric one-parameter families of Calabi-Yau manifolds and the
periods and quasiperiods of associated modular forms. We start by discussing the special
fibers we consider.

Let W be any of the fourteen hypergeometric one-parameter families of Calabi-Yau
threefolds. If we choose z so that W, is smooth and defined over Q we can compute for all
primes p of good reduction the local zeta function Z (W, /F,, T'). From the Weil conjectures
(together with the positive sign in the relevant functional equation) it follows that the
numerator of the local zeta function is completely determined by the action of the Galois

group on the middle cohomology and has the form
Py(W./Fp, T) = det(1 — TFry|H*(W., Q) = 14 0T + BppT” + app®T> + p°T*  (3.1)

for integers «;, and ,. We are interested in special fibers where the motive attached to
the middle cohomology splits. This can happen for example when z = z, is a rank 2
attractor point, i.e. if H3(W,,,Q) = A ® A, where A C H3(W,,) ® H*3(W,,) and
Ay C HX(W,,) @ HY2(W,,). For one-parameter families of Calabi-Yau threefolds, a
beautiful method for finding such points is given in [20] and [23]. Hodge-like conjectures
would then imply that A and A are 2-dimensional motives and, as explained in [40], the
Serre-Khare—Wintenberger theorem implies that the Galois actions on these motives are
associated with newforms f and g of weight 4 and 2. Practically speaking this means that

we get a factorization
B(W.. [Fp, T) = (1= apT + p’T?)(1 = by(pT) + p(pT)?) (32)

where a, and b, are the Hecke eigenvalues of f and g. We also expect that the period
matrix of H3(W.,,Q) can be completely expressed in terms of the periods and quasiperiods
of f and g. In[3.3] we numerically verify this for rank 2 attractor points that appear in two

hypergeometric families.
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Another special point is the conifold fiber W,,. This fiber is not smooth but one can still
compute the local zeta function which will again be a rational function. It was observed

in [82] that the numerator of the local zeta function then has a factor
(1= x(PpT)(1 = apT +p°T?) (3.3)

where x(p) = (}) and the numbers a, are the Hecke cigenvalues of a weight 4 newform
f. The logic behind this is that the fiber W, can be resolved to give a rigid Calabi-Yau
threefold W; (i.e. h2’1(ﬁ/;) = 0) and again by the Serre-Khare-Wintenberger theorem the
Galois action on H? (ﬁ/:, Q) is associated with a weight 4 newform f. We also expect that
the period matrix of H B(W;, Q) can be completely expressed in terms of the periods and
quasiperiods of f. In Section we numerically check this for each of the hypergeometric
families and also identify other entries of the rank 4 period matrix of W,,. Numerically the
occurrence of the periods of f was already studied in [105]. For completeness we comment

on the structure of the period matrix of W, too.

3.1 The period matrix at the conifold points

Let W be any of the fourteen hypergeometric one-parameter families of Calabi-Yau mani-
folds. The generic conifold fiber W, is located at z = p. From the Riemann symbol
we can read off that the local exponents at this point are 0,1, 1,2 and hence a local basis
of solutions consists of three power series starting with order 0,1,2 and one logarithmic
solution. We choose the basis such that

140 (69

I, (2) = gz((:)_ 9 (53) ) (3.4)

v(6)log(6) + O (6%)

where 6 =1 — z/p and v(6) =6 + O (6%).

The period matrix T, that relates the integral symplectic basis II defined in and
the basis II,, at the conifold by II = T,1I,, can be numerically computed by analytically
continuing the periods from z = 0 to z = pu and depends on the chosen path of analytic
continuation. We choose the path along the open interval (0, ). The structure of the period

matrix is further constrained from

1 0 00
0 1 00
T —
T =% Tl o o 1 0 T, = M, (3.5)
0 2m 0 1

and from the fact that the first derivative of f g8 ) evaluated at the conifold can be calcu-
lated explicitly using the description of the vanishing S% in the conifold geometry, see [21]
for the quintic and [65] for the hypersurfaces in weighted projective spaces. From these con-

siderations one finds that for all hypergeometric one-parameter families the period matrix
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of the conifold fiber is of the form

0 VE(27i)? 0 0
ocwt+w™ ocaT4+a cet +e” 0

T = b ¢ d —/r2mi (3.6)
wt at et 0

with # in Table [I| and o as in (2.7). Here w™,at,e™ are real and w™,a",e™,b,c,d are

purely imaginary and these nine numerical constants fulfill the quadratic relations

wre” —w et = —(27Ti)3g (3.7)
wra™ —w at = —(2mi)?V/kb (3.8)
ate” —a"et = (27mi) ko + (2mi)2V/kd . (3.9)

Here a € Q is given in in terms of the a;, ¢ = 1,...,4. The remaining constants
can be calculated numerically to a very high precision E and the approximate values are
given in Table Closed analytic expressions in terms of infinite sums of special values
of hypergeometric functions 3F> have been derived for all the constants w*, a*, e*, b, ¢, d

in [85] (see also [68]). For example, for the quintic we have

wt = ﬁr(é)?r(éﬁr(g)ingz(‘ﬁ’g’g ;1) (3.10)

3
2@ 11
_ T'(a+9)

where (a); = T denotes the Pochhammer symbol.

Now consider the weight 4 newform f that we can associate with each conifold fiber.
In Appendix we explain how one can compute two periods w]jf associated with f and
the approximate values are given in Appendix Numerically we find that these are up
multiplication by rational numbers equal to w*. In Appendix we also explain how we
can compute two quasiperiods nf associated with f which are unique up to the addition
of rational multiples of wjf. The approximate values are again given in Appendix [Bf and
numerically we find that the quasiperiods can be chosen such that these are up to multipli-
cation by rational numbers equal to e*. The rational numbers which relate the entries of
the period matrix to the periods and quasiperiods of f are given in Table [3] Note that the
Legendre relation w?n; - w;n} = (27i)3 corresponds to the quadratic relation .

We finish the discussion of the period matrix at the conifold points with a comment
about the N = 8 case. For this case we prove in Section 4 the occurrence of the periods
and quasiperiods by constructing an explicit correspondence with a Kuga-Sato threefold.

Numerically we further find that in this case the complete period matrix is given by

0 080 wi mgp 00 —32 -8 0 0
oo | 0 800 wy np 0 0 0 0 —+ 0
a 0 101 0 0 (2m)% 0 0 : 0 0
-1 010 0 0 0 2m 0 4+12log2 -2 —4

(3.11)

18We have calculated the numerical values to 1000 digits to check the conjectures and computing to higher
accuracy can be done without any problems.
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N w? at et b c d
w a e

I e R p——
IR N ST
16 _f%f;?ifggi _gjfgggg% ’nggégﬁ%l —269.7075585i  6.955740334i  —1.496470803
25 jggﬁg;‘;’?i’gi 7‘;’;;&1)255(1)3(1)1. _gfgiiig;i; —265.5937802i 6.128728878i —1.434849337i
27 jgg;gf;gg; jgfiggzi’i _gfggigifgi —270.9159568i 7.220828893i —1.521267495i
32 _i’géﬁgiggggi _;’g;iié‘;’gi; ’gézgggiggéi —263.9961931i 5.860894359i —1.425906613
o | LSS D g oo Lo
AL ———— N p——
108 jngggggigz 7‘1’;67???2;81 _S;igggﬁ;gz —261.9897714i 5.266252962i —1.306509091i
128 jgggg;gﬁi jg;fg;‘;ﬁji f;gggggzi —259.5665046i 4.496718823i —1.138914049;
T P —
200 _ggi:ﬁﬁgi’; _ggégg?ggﬁi ’gg?iggﬁggl —256.4336628i 3.531095005i —0.9247888950i
216 7;138:22;8;(1)22' jgi’;giigggl _igéigéigggl —256.5551153i  3.709287484i —0.9799750828i
864 j??ﬁﬁgi’gggb ji:ég;iﬂggi ffgggg;ﬁ;gb —256.3296014i 3.377681763i —0.8754559806i

Table 2: The approximate values of the constants in the period matrix 7}, (3.6).

v
8 32 —256 32 —4
9 108 —108 36 —36
16 64 —256 64 —16
25 100 —250 100 —40
27 108 —486 108 —24
32 256 —512 256 —128
36 72 —432 72 —12
72 432 —864 432 —216
108 | 864 —1296 864 —576
128 | 1024 —1024 1024 —1024
144 | 1728  —1728 1728  —1728
200 | 8000  —4000 8000 —16000
216 | 5184  —2592 5184 —10368
864 | 20736 —10368 20736 —41472

Table 3: Comparison of entries in period matrices and periods and quasiperiods of associated
newforms.
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where w]jf and 7]25 are the periods and quasiperiods of the associated newform.

3.2 The period matrix at z = oo

The analytic continuation to the point w = 1/z = 0 can be done with a contour deformation
argument using a Barnes integral representation. This can be done for all 14 hypergeometric
models but here we just give the result for five examples.

Let us first consider the mirror quintic. Near w = 0 we chose a basis of solution

T .
My = (w1, w2, ws,wyq)’ with

SR

(o) E5 K
ot 3 W T e Pl

(K)sn 5 (E) Jo, 7 — 1T (55 1 k) !

where the contour Cj is along the y-axis (just left of it) and then closed clockwise in an
infinite semicircle to the right to include all poles at s € Ng. (z), =z(z+1)---(r+n—1)
is the ascending Pochhammer symbol. These solutions converge for |w| < 5°. If the contour
is deformed to Cy which is taken in the same way along the y-axis, but closed in an
infinite semicircle counter clockwise to the left to include all poles —5s € N the expression
converges for |w| > 5% and can be compared with II given in . For T, defined by
II = T Il this yields the analytic expressions

__ 16rta __ lén’a _ 167 1674 (20+3)

(a=1r(3)”  (@=1r(3)”  T(§)° (a-1PT(3)°

_ 16rta? _ 16nta? _ iert 1677a%(20743)

1 (@2-1I(2)”  (a2-1)°T(2)° T(2)" (a2-1)°T(2)’
I = _ s3miat _ 32743 _ 3200 32m'a®(207+3) (3.13)

@-DP(3)"  (@-Dr(3)°  T(3)°  (-adT(3)

96mdat . 9614t . 9674 96774044(2044+3)

(at-1r(3)"  e-0r(d)” r(E)” 0-e’r(3)

where o = exp(27i/5). For more general structures of solutions at the point z = oo one
notices that 1} reads L, = z0% —Hﬁzl(«% —ay) in the coordinates x = p/z with 6, = :L‘%.
The solutions are special hypergeometric cases of the Meijer G—function as defined in [32]

whose Barnes integral representation for all (four) solutions specializes to

- 1/ L(s)* Tzt T(ao@w) — 8)((=1)"z)*
2mi Je Hi:n—l—l 1 - aa(k))

Here o denotes a permutation in the four indices of the ag. For x > 1 the contour C is

Gpy(z)

ds . (3.14)

closed left to include the poles of the I' functions in the integrand on the negative z-axis.
In particular the factor I'(s)* produces poles of maximal order 4 and ((—1)™z)* has to
be expanded in s to pick the residue. This yields the logarithmic structure in z at the
MUM-point z = pu/x = 0. For z < 1 the contour C is closed right to include the poles of
I'(agk) — s) on the positive z-axis. Together with m, o has to be chosen to get the four
solutions of the Picard-Fuchs equation at the point x = 0. This choice depends on the

nature of the singularity, which as explained above is either an orbifold on top of a regular
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point, a conifold point, a K-point or a MUM-point. For regular points n = 1, the a; are
all different, and o are the four cyclic permutations of K = 1,...,4. For conifold points

= 1 with (a1, az,as,a3), (a2,a1,as,as3), (as,ai,as,as) and n = 2 with (ag,as,a1,as).
For K-points n = 1 with (a1, a1,a2,a2), (az,a1,a1,a2) and n = 2 with (aj, a1, a2,as2),
(ag,az,a1,a1) and for MUM-points n = 1,2, 3,4 all with (a1, a1,a1,a1).

We give now the exact analytic continuations for four different types of models in turn.
To fix the convention we call the local variable x and normalize the solutions with finite
cuts as w® () = 2% (1 + O(z)). If the local exponent occurs with multiplicity greater than
one, we normalize the logarithmic solutions I{* = w% (z)log(z) + O(z%*!). The leading
logarithm of higher logarithmic solutions [% are normalized to w® log™(x)/n! and their pure
series part is always chosen to start with O(z%*1). The complete intersection Xy 3(1°2!)

has an orbifold point at x = 1/z = 0 and one gets

8(144)v/27%/2 8/21%/2 _16y/2n9%/2 _ 24i\/27%/2
r(4)" r(4)" r(4)" r(4)"
4 $/—122/375/2 4 92/3,.5/2 _4.92/375/2  4492/375/2
_ \/grlrl 1 1 (i (L \/grlrl
Tool — 80((—61))5/(63723 (80)77 (3) (g(%ﬂg{s) 80(2'31-2 (3) . (3_15)
sr(2)”  svar(2)’ Var(2)° sr(2)°
10(1—i)v27%/2  10y/279/2 _20V/2r%/2 30iy/279/2
r(3)" r(3)" r(3)" r(3)°

The X42(1°) geometry is a model with a conifold point at x = 1/(2!22) = 0 and the analytic

continuation matrix is

\/4 *1\/571'9/2 x9/2 279/2 4i79/2
6 - 6 - 6
r(3) (%) r(3) r(3)
T, = : . .
& %(4 —am)T % -7 % ( )
(1—3)79/2 79/2 a9 im9/2
oar(3)”  ear(3)”  sar(3)° 1en(3)”

The X4 4(112%) geometry has a K-point at z = 1/(2%°2) = 0 and we get

(144)m 3 8 __im8
ar(s) 4F(%) ()’ (3)
s 7T4 T
(1) 1)4
o = o l)zr P B F(7r43) (4) . (3.17)

256F(§) 2560 (3)"  1280(8)" 1281“(1)

((2—2i)—m)73 3 T—2)73 im3(2+m)
1281 (3)" ear()t  ear(2)"  ean(3)

The complete intersection Xg 29 2(18) has a MUM-point at x = 28/2 =0

1 1 1 0
3227r %4 016 s
TO_Ol = 7?;% 2 2 8 . (3.18)
-® _ 12 23 0
¢(3) + s ¢B3)  _¢(3)  in?
4 96 8 2 12

We have calculated the exact expressions for the nine other hypergeometric cases in the

above conventions and the data are available at request.
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3.3 The period matrix at the attractor points

Let W be any of the fourteen hypergeometric models. There are algorithms to compute
P3(W,/F,,T) very efficiently for all points in M¢s (which are only finitely many after the
reduction to F,,) and this gives a powerful method for finding rank two attractor points,
i.e. one computes P3(W./F,,T) for all 2z € M and many primes p and searches for
persistent factorizations. This was first done in [20] and the method we use for computing
P3(W,/F,,T) is explained in [23]. Using this method we were able to find two rational
rank two attractor points in the hypergeometric models. Numerically we also find that
the periods associated with A are the periods and quasiperiods of the associated weight 4
newform f and that the periods associated with A are (up to a multiplication by 27i) the
periods and qausiperiods of the associated weight 2 newform g. For the attractor points

found in [20] such an analysis has been done in [10].

The model with hypergeometric indices %, %, %,% For the hypergeometric model
with indices %, %, %,% we find that there is an attractor point at z, = —1/233%. The

associated newforms f € S}V (T'g(54)) and g € S5V (I'g(54)) are uniquely determined by
f(r) = q+2¢+4¢* +3¢°+- and  g(r) = q— P+ +3¢+--- . (3.19)

We numerically computed the period matrix T, = (II(zy) II'(z) II"(2.) 11" (z,)) where II
is defined around z = 0 in and the analytic continuation is done along the upper half
plane.

In we explain how one can compute periods w% and w;t associated with f and g
and the approximate values are given in Appendix [B] Numerically we find that all entries

in II(z,) are rational linear combinations of the periods w]jf and all entries in the projection
+
7 -
In Appendix we also explain how we can compute quasiperiods n% and 772;& associated

of TI'(z,) on the Hodge structure (2,1) are rational linear combinations of dz;k = 2miw

with F' and G which are unique up to the addition of rational multiples of w? and w;t,
respectively. The approximate values are again given in Appendix [B] and numerically we
find that the quasiperiods can be chosen such that all entries in the projection of IT"(z,) on
the Hodge structure (3,0) and (0, 3) are rational linear combinations of 5 and all entries
in the projection of II”(z.) on the Hodge structure (1,2) and (2,1) are rational linear
combinations of ﬁg = 2771'175. In other words, the periods associated with A are the periods
and quasiperiods associated with f and the periods associated with A are the periods and

quasiperiods associated with g. The complete period matrix can then be written as

w;{ 7]; 0 O
w; N 0 0
T, = A for B 3.20
. I o (3.20)
0 0 w, 1g
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where

0 486 6 12 2 1944 12597120 0
A= —108 —-1620 —4 -4 and B — 0 0 0 15116544
N 0 -162 2 0 N 0 17496 0 —800783801856
27 —81 1 1 0 0 3779136 72241963776
(3.21)
Note that the compatibility with the intersection pairing gives the quadratic relation
0 0 0 212318
) 0 0 _212318 _2173227
TZETZ* = (27”)3 0 212318 0 _21932647 (322)
_212318 2173227 21932647 0
which is equivalent to the Legendre relations
w;ﬁ]; - w;n} = (2mi)3 and w;né - w;ng = 2mi. (3.23)
The model with hypergeometric indices %, %, %,% For the hypergeometric model
with indices %, %, %,% we find that there is an attractor point at z, = —1/2%33. The

new

associated newform f € S}V(I'(180)) is uniquely determined by
) = q+2¢* +4¢" +3¢° + - (3.24)

and the associated newform g is the unique form in S5V (I'o(32)). We numerically compute
the period matrix T, = (II(z4) IT'(24) 1" (24) 11" (24)) where II is defined around z = 0 in
and the analytic continuation is done along the upper half plane.

Proceeding as in the previous example one finds that the complete period matrix can

be written as

wy 1N 0
T, = A . . B (3.25)
Z 00 e
0 0 w, 1g
where
432 432 4 6 1 432/5 217728/5 0
_ —1296 —3888 -1 -3 |1 0 0 0 1296/25
A= 0 -84 2 0 and B =1 9500/ 0 —228427776
432 -432 1 1 0 0 93312/5 161243136/5
(3.26)
The compatibility with the intersection pairing gives the quadratic relation
0 0 0 213310 /5
0 0 —213310/5 21731319 /52
T _ 3
TZ*ZTZ* - (27I"L) 0 213310/5 0 _219314383/52 (327)
—213310/5  21731319/52 219314383 /52 0
which is equivalent to the Legendre relations
w;{n; - w}?n}r = (2mi)3 and w;n;; - wg_nzg = 2mi. (3.28)

31



4 Explicit correspondence with a Kuga-Sato variety in a spe-
cial case

In this section we construct an explicit correspondence between the conifold fiber in the
mirror family of four quadrics in P” and the relevant Kuga-Sato variety. Our construction
makes use of the modular parametrization of the Legendre curve and provides a proof for
the identification of the Calabi-Yau periods in this fiber with the periods and quasiperiods

associated with the unique newform in S4(I'(8)).

4.1 A model for X,(8) and for the associated universal elliptic curve

We start with the classical Legendre elliptic curve
Ly: ¢* =zz-D@-X  (AeC\{0,1}), (4.1)

with the standard holomorphic 1-form

w = de (4.2)
2y
and with 2-torsion subgroup {O, Py, Pi, Py}, where O = (00, 00) is the origin of the elliptic
curve and P, = (v,0) (v € {0,1,\}) are the points of order 2. If X is given in the form
1 — a? for some a # 0,41, then the curve Ly also has the four 4-torsion points Qi+ =
(I1+a,a(l£a)) and —Q11q = (1 £ o, —a(1 £ «)). They all satisfy 2QQ = P; and hence
differ by 2-torsion points (e.g. Q1+a = Q1—a + Po).

These maps give rational parametrizations X (2) — P!(C)y and X(2;4) = P}(C),,
where X (2) is the compactified moduli space of elliptic curves with labelled 2-torsion points
and X (2;4) is the compactified moduli space of elliptic curves with labelled 2-torsion points
and one labelled 4-torsion point. Over C, these two spaces are the compactifications of
the upper half-plane quotients $/I'(2) and $/T'(2;4), respectively where I'(2) has its usual
meaning (principal congruence subgroup) and I'(2;4) := I'(2) N T'¢(4). (Here we should
really use I'1(4), which corresponds to a choice of a 4-torsion point rather than merely of a
cyclic subgroup of order 4 on an elliptic curve, but since the quotients of $ by I'y(4) and
I'1(4) are isomorphic, we will ignore this point.) The group I'(2;4) is conjugate to I'o(8)
by the matrix (g (1)), corresponding to the map 7 — 27 from §) to itself, so « can also be
seen as a rational parameter on the compactified moduli space Xo(8) = $/T(8) of elliptic
curves together with a cyclic subgroup of order 8.

We now describe this in transcendental (modular) terms. Let a(7) and A(7) be the two
modular functions defined in terms of the Dedekind eta-function n(7) = g1 I, (1—-q")

(here and from now on ¢ = €>™7) by

n(r)*n(47)’
p@n?

n(7/2)%n(27)"
n(r)*

The function A(7) is the classical Legendre A-function giving the isomorphism between

$H/T'(2) and X(2) (Hauptmodul) and «(7) is a Hauptmodul for I'y(8), with the factor 2

= 1—a(r/2)?. (4.3)

alr) = A7) = 16
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in the argument of « in (4.3 corresponding to the bijection between I'(2;4) and I'o(8)
described above. The parametrization of the Legendre curve (4.1) with A\ = A(7) can be

given in terms of the four classical Jacobi theta functions 0;(z) = ©;(7, z) defined by

O1(2) = > (-1 = dBAPTI(-a") (1 - q7) (1 - "7,
neZ—i—% n=1
1 7

Oa(2) = —iO1 (= + %) L O3(a) =g Ot + 1), Ou() =g FV/EON(s 1)
(4.4)

(here z € C, ¢ = €2™*) and their Nullwerte §; = ©;(0) (which are related to A by A\ =
03/03 =1 —01/63) by the formulas

- tsonn) = (G150 o gy day) U9

with ¢ = —2i73/6%. With this identification the 1-form w is given by
w = mh5dz. (4.6)
Note that under modular transformations 7 +— Z;ts, z = g with (2b) € I'(2), 63 and

dz transform by 63 — (c7 + d)03 and dz +— (er + d)~1dz, so w is unchanged.
For any complex number « # 0,+1 we define an algebraic curve C,, of genus 1 by

C, (Y1 _ ;1) (YQ — ;2) — 4a, (4.7)

where Y; and Y, are variables in P'. This curve has eight obvious points where one of the
Y; is £1 and the other is 0 or co. If we chose (0o, —1) as the origin, then C, becomes an
elliptic curve and can be put into the Legendre form (4.1, with A = 1 — a2, by

~ rza+y z(l—2x
L17a2 — Com (:E?y) = (Ylayé) = < y7 ( )> ; (48)
T — Y Y
with the inverse map given by x =1+ aij}i Yo and y = agﬂx Under this isomorphism,

the holomorphic 1-form w becomeslﬂ

1 Y, ' —Y, dv; dy;

20, T 4+Ye Vi YA+ (da2 —2)YP 11

and the above-mentioned eight points map to eight points of order dividing 4 on L;_,2, as

given in the following Table:

(V,Y") | (00,=1) (00,1) (0,1) (0,=1) | (F1,00) (1,0)
(a:,y) ‘ o0 Py Py Py ‘ Ql:Fa _Qlia

One has w = —2dY1/(f |p=o) with P = (Y{ — 1)(Y2” — 1) — 4a¥1Ya.
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The curve C,, also has a theta-series parametrization. With the Kronecker symbol (—)
this can be given by

n2

— ZnGZ (%)q?gn
ZTLGZ (%S)q%én

where Y7 is an odd function of z (because its numerator is even and its denominator is

Yl(Z) =

Ya(z) = —Yi(z +1/8), (4.9)

odd) and Ys gets inverted under z — —z (because up to a factor ¢ the numerator and
denominator of Y; are exchanged under z — z + 1/4). The parametrization is invariant
under I'y(8)-Jacobi transformations up to the identification (Y7, Y2) ~ (=Y3,1/Y3). For our

following analysis we remark that there is an isomorphism

Co — Cl/a
Vi—1Y,—1 (4.10)

Y1, Y: —_— .

. ¥2) <Y1+1’Y2+1)
4.2 Correspondence
The identification

iY; = 2 for j=0,...,3 (4.11)

Yj

gives a map of degree 8 from the family of Calabi-Yau threefolds defined in (2.30)) to the
hypersurface in (P!)* defined by

Wy H<Y—}1/> = 169 . (4.12)

i=1

We can identify V[N/¢ with (J, Ca X Cy4 /o, Where the two curves are given by the coordinates
(Y1,Y3) and (Y3, Ys), respectively. We have already seen that C,, is always an elliptic curve
with a distinguished cyclic subgroup of order 8, where we can think of o as a parameter in
the moduli space Y((8) of such curves and we also have the modular parametrization .
For ¢ =1 the two factors Cy and C/, of Ww are isomorphic and so Wl can be identified
with the Kuga-Sato threefold, which by definition is the union over the moduli space of the
product of the corresponding elliptic curve by itself.

From the modular parametrization of C, and the symmetry we get the
modular parametrization

<I>:Y)><<C><C—>va1

(T, 21, 22) — (Yl(zl), Yé(zl)

Yi(za) =1 Ya(zs) — 1) (4.13)
"Yi(ze) + 17 Ya(22) +1)

For the canonical (3,0) form €2y, of W¢, which can be defined using P := [[_, (Y2 — 1) —
16¢* T[;_, ¥i = 0 in a patch of (P')* a
4dY1 A dYs AdY3 1Y?-1dy;  dYs dYs

oP 16 V2 vy
5V7 lp=0 16Y7+1 Y1 Y5 Y3

(4.14)

20That we have singled out Yy in the derivative and Y7, Y2, Y3 in the measure is not important. The
representations with permuted indices describe the same 3-form.

34



do

1
- _-,,@ (2) ==
= —1% AWy o N " (4.15)
one then finds that
O*Yy = 2(2mi)3 f(r)dr Adz Adzy. (4.16)
Here f(1) = —15=03(27)%d/(1) = n(27)n(47)? is the unique newform of level 8 and

weight 4. This proves the occurrence of the periods of f in the period matrix of Wi.
To prove that the quasiperiods also occur we consider components of derivatives of €2, at

1) = 1 which are anti-invariant under the involution II induced by

Caxcl/a%CaxC‘l/a
3-1Y-1Y-1Y-1 (4.17)
YV54+1'Yi+1'Y1+1Yo+1

(Yl,}/é,YEg,Y4) — <

Denoting by V. the partial derivative with respect to z = 1/(2¢)® with Y7, Ya, Y3, a held

constant, and by (-)(=) the anti-invariant part of (-) under IT*, we get

ol = (4.18)
_ 1 Y2 (1-Y3)?
ZQ (=) —_ _29 3 o7 1 0 4.1
(v 1/))|1/;:1 2 < 4}/}32 + a2(1 . Y32)2 1+ (40{2 . 2)Y12 + }/14 1 ( 9)
= =20, + 2'd(w) Aw)) (4.20)
_ 1 Y (1-YP)?
20 y((5) — 2 (918 3 9l4 1 Q (4.21
(V2)lm = 5 3(4Y2 +a?(1— Y2)2)2 " 3(1 + (102 —2)Y2 v Y2 ) (21
1—4a? +at 2 —
_ ol4at T X T QA _ 9l2 ( ) (2)
~ -y  +d( - 22 Gl nwi,
1-YH(1-YP)3 9 2(1-YHA -YE)3
98 ( 1 2 (2) Ada -+ 28 3 4 MW Ada) .
T AR v e N T T (1 v e 0‘)
(4.22)

The modular parametrization further gives

* [(vzm)@;ﬂ = [2°@2mi)}(F(r) +2°-3- f(7))dr Adzy Adz] , (4.23)
where
(ol —da(r)? 4 a(r)? o6 .
F(r) = (2 0= a7 2 3) £(7) (4.24)

is in the same class as the meromorphic partner of f chosen for our numerical computations.

In particular this shows that if
/91 = ajwf +a-w; (4.25)
~
for a II-anti-invariant 3-cycle v then also

/ (Vo2 lyet = —64(asw} +a_w?) (4.26)
Y
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/(VgQw)Wl = 24576(oz+w;{ +a_wy)+ 128(aynf + a—ngp). (4.27)
g

Up to a multiplicative constant this confirms two rows from (3.11]) since

1 -32 -8 0 O
- @(W?U}%) ( 0 0 1 0) Iy /s
32 (4.28)

(2 —1/2%)°

5 +0((z —1/28)3).

—wy — 64wy (2 — 1/2°%) + (245760 + 1281;)

5 Local hypergeometric one-parameter Calabi-Yau threefolds

Non-compact (also called local) Calabi-Yau manifolds M have been studied much due to
their relation to Chern-Simons theory [99], matrix models [3] and N = 2 supersymmetric
gauge theories [58] and Feynman graphs [§8]. They also provide examples for Calabi-Yau
backgrounds on which the topological string can be completely solved by localization [67],
large string/gauge theory duality [2] [15] and the modular approach [44]. We consider
local Calabi-Yau threefolds M given as the total space of the anti-canonical line bundle
O(—Kg) — S over a del Pezzo surface S and consider a one parameter subslice in the
Kahler parameter space of S. The mirror W can be obtained by local version of Batyrev’s
construction [58] [48] and is given by a one parameter family of elliptic curves C embedded
into a non-compact three-dimensional space. The family C is parametrized by z and each
curve is equipped with a meromorphic one-form A of the third kind, which is obtained from

a holomorphic (3, 0)-form (.

5.1 Third order Picard-Fuchs operators

Because of the non-vanishing residuum of A there are three periods f’m ANEk=1,2,30f W,

which in our cases are annihilated by third order Picard-Fuchs operators of the form

2
L= (0*—pu 'z H (0 + a;))0 (5.1)

i=1
with 6 = z% and the associated Riemann Symbol
00
0

ai
a2

(5.2)

O O OO
— = Ol

The four possible choices for (a1, az) are displayed in Table As it can be seen there,

additional choices of the sign of z and different topological invariants lead to six different

local Calabi-Yau threefolds M that are related to the these four hypergeometric systems.
Similar as for the compact cases we can fix a preferred basis of periods corresponding

to an integral basis of cycles at the point of maximal unipotent monodromy z = 0 in terms
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of topological invariants of M. We are mainly interested@ in the relation of this basis to
the Frobenius basis at the conifold z = p expressed by a transition matrix 7),. In particular
it contains the value ¢(u) of the mirror map at the conifold, which determines the large
degree asymptotics of the Gromov-Witten invariants at all genera [67], determined there
numerically. We will show that in all cases it can be expressed in terms of the value of of a
Dirichlet L-function, which for Re s > 1 is defined by

Lao(s) = i (%) n=s, (5.3)

at s = 2. Here a takes the values —3, —4, —8 and ( ) denotes the Kronecker symbol.

5.2 The local geometries

To describe M = Tot(O(—Kg)) note that two dimensional del Pezzo surfaces are either
P! x P! with canonical class K = 2(H; + Hs) (where H; and Hy are the hyperplane classes
of the projective spaces) or the surfaces By obtained by blowing up P? in k = 0,...,8
points with canonical class Kp, = 3H — Zle E; (where H is the hyperplane classes of
the projective space and E; are the exceptional divisors with intersection numbers H? =
1= —Ef and H - E; = E;- E; = 0 for i # j). For S = P? the geometry M has only one
Kihler parameter. For S = P! x P! we restrict to one parameter sublocus by considering
the diagonal Kéhler parameter ¢t = t; = to in P! x P! and for S = By, k = 5,...,8 we set
the Kéahler parameters ¢; of the exceptional divisors classes E; to zero, see [52]. This gives
six local geometries which are summarized in Table
Following [58] [48] the non-compact mirror geometry W can be obtained from a conic
bundle
w=H(X,Y,z2) (5.4)

over C* x C*, where the conic fiber degenerates to two lines over the punctured elliptic

curve

C(z) = {(X,Y)eC"xC*H(X,Y,z) =0}. (5.5)

The holomorphic (3,0)-form = % of W gives the meromorphic one form A(z) =
(271) log(Y) %X on C(2), where z denotes the one complex structure parameter of W. If S
allows a toric description one can directly apply a local version of Batyrev’s construction [5§]
[48] to obtain H(X,Y,z). The general del Pezzo’s By, k = 5,...,8 do not admit a such
a toric description, but the one-parameter families can be obtained from a restricted toric
representation as explained in [52], where also Weierstrass forms of the elliptic curves C are

given.

2L At z = oo the operator L has either a second conifold with the indices (1/2,1/2) or an orbifold point
and the corresponding transition matrix can be obtained comparing local expansion of Barnes integral
representations of the periods at z = 0 and z = oo as in Section @
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1 2 3

Base S | anax | 1/pp |k |0 |ca-J | s l h | ng ng ng
PxPH| 2,5 20 [1]0] -2 [o| 32rL4(2) [2] 4| 4 -12
P2 L2 =3 |1 F] -2 | $|27V3rLs(2) 3] 3 | 6 27
Bs [Ds] | 3,4 | =2 |4 |2| =20 | 5| 32rL_4(2) |1 16 | -20 48
Bg[Eg) | 3,2 | =3% | 3|3 | —18 | 3 |27W3rL_5(2) | 1| 27 | -54 243
Br[E7 | 1.3 | —26 |2 ]1| —16 | 5 |32v2nrL_g(2) | 1| 56 | -272 | 3240
Bs [Es] | §,5 | —2%33 | 1| 3| —14 | 3| 80mL_4(2) |1 |252|-9252 | 848628

Table 4: Data for the local Calabi-Yau manifolds M = O(—Kg) — S, that give rise to
mirrors W with one-parameter Picard-Fuchs differential equations. The Weyl groups of the
indicated Lie algebras act on the homology of the By. This organizes the BPS invariants
such as ng in representations of these Weyl groups. The degree of the curve C' corresponding
to (3 is given by the intersection C' - Kg = x(S)5. The main observation is that I, which up
to factor of (2mi)? is the imaginary part of the mirror map at the conifold, is given terms
of values of Dirichlet L-functions at s = 2.

5.3 The period matrix at the conifold points

Around z = 0 the I-class formalism defines a preferred basis of periods II also for the
local models. One can start with a compact elliptically fibered Calabi-Yau threefold M,
over the base S with one section. Let ¢ be the one complexified Kahler parameter of the
base under consideration. On M, one has one additional complexified Kéhler parameter
te measuring the size of the elliptic fiber. The I' class determines a basis of periods of M,
and in the large volume limit ¢, — oo this gives three finite periods, corresponding to the
D4-brane wrapping S, the D2-branes wrapping curves in S and the D0O-brane restricted
to S. In terms of the topological invariants summarized in Table [4] the preferred bases for

the models under consideration are given by

I c2J o K
Dy g [ 22 2w (2mi)2
II=| lp, | = (2m) 1 0 0 II (5.6)
1
where
1
Iy(z) = log(2) + fo(z) (5.7)

$log?(2) + fo(2)log(z) + fi(z)

are solutions of the Picard-Fuchs equation with power series normalized by fo(z) = O(z)
and f1(z) = O(z). Around the conifold z = i we define a basis of solutions by

u(2) = V(;S) (5.8)



with § = 1—2/p and v(8) = §+0(4?). We now define the transition matrix 7}, by I = T),I1,,

(analytically continuing along the open interval (0, 1)) and claim that

0 —4im? YE 0
T, = | (2m)3 0 0
l 2hy/k(1 —log |p|) —2mhy/k

with the topological invariants and the L-function values [ given in Table |4, Here s = 0, %

determines whether the instanton numbers ng (and more generally ng ) are alternating in

sign. The value s = % can be understood as a half integer shift of the B-field in the limit.

The integer h takes values 1,2, 3. It is 2 and 3 for the cases of P! x P! and P? geometries and

(5.9)

1 for all other. After substituting z — —z the mirror curves of P! x P! and P? are isogenous
to the ones of Bs and Bg, respectively, which results in the Picard-Fuchs equations being
related by z — —z. Therefore the analytic continuation matrices of these two pairs of
geometries are very similar.

The relation can be proven by using the modularity of the Picard-Fuchs equations
of the family of elliptic curves. This is discussed for example in [103] and in the following
we exemplify this for the case of Bj, corresponding to the family of Legendre curves. On

the open interval (0, ) we define a basis of functions annihilated by 62 — z/u(6 + 1/2)? by

wi(z) = Z <2n> 2" and wa(z) = log(2)wi(z) + O(2), (5.10)

n
n=0

which are essentially periods of the Legendre family of elliptic curves. These have only

logarithmic divergences for z — p and we thus have

2 0 W, 1
Mo(2) = / w@) | Tt @ (5.11)

ro\ wel(2') 2

with
» -1
q:mw+/mgdz (5.12)
0
p _
cy = ;log(,u)2+/ WQ(Z)ZlOg(Z)dz. (5.13)
0

The expansions of the functions w; and wsy around z = p are well known and have the form

wi(z) = —% log(pd) — %6 - i log(ud)d + O(log(6)6?) (5.14)
wa(z) = — — Z(s +0(5%). (5.15)

and so it follows that the transition matrix is given by

cf o Ko\ /] 0 0
5 24 278 (2m1)?
T, = (2mi) 1 0 0 1 (log(p) —1)/m 1/m (5.16)
0 ﬁ 0 () T 0
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and it only remains to compute the constants c¢; and c3. To do this we introduce the
Hauptmodul ¢ of I'y(4) defined by

_ nlr)n(an)®®

o (5.17)

This maps the straight line from 0 to co to the straight line from p to 0 and hence we have

e = log(y1) — /0 b Wﬂm dr (5.18)

= log(u) — /0 h <2m' - tt/((:))) dr — /0 h <w1(t(7))tt/((:)) - 2m'> dr (5.19)

_ /0 - <w1(t(7))i/((:)> - 2m'> dr (5.20)

= 8mi /OO(E374(T) +1/4)dr. (5.21)
0

with the Eisenstein series of weight 3 with Fourier expansion

1 —4 ,
B3 _4(1) = ~1 + Z Zdz <d) @, q=emr. (5.22)
n=1 \ d|n

In the same way one gets
o0
co = —16772/ 7(E3_4(7) + 1/4)dT. (5.23)
0

From (5.22) we find that [;°(E3_4(iz) + 1/4)2* ' da equals (2m) *T'(s)((s)L—4(s — 2)
(initially for Re s > 3 and then by analytic continuation for Re s > 0, since the Eisenstein

series is small for 7 — 0), so

¢ = —AL ,(~1) = —%L_4(2) and o= AQLA0) =" (529)

Numerically the values agree with the ones calculated in [67]. Shortly after these num-
bers were published (because of their significance for the growth of the |n§ |) the authors re-
ceived an e-mail from Fernando Rodriguez Villegas pointing out the relations to L-function
values (partially based on [97]) Using the identity L_3(2) = ?fwlm(Lig(em/?’)) and
L_4(2) = Im(Liz(7)) ones sees that the value for ¢ at the conifold agrees for the local P?
with the value that was conjectured from the matrix model in [76]. Similarly for P! x P it
correspond to the value calculated for m = 1, in (B.5) in [57]. Let us finally remark that
the asymptotic growth of the absolute value of the instanton numbers \ng | is given also for
the local case by . But in this case X°(u) = (2mi)3. Hence the asymptotic growth of

\ng | is exactly determined by the L-function values given in Table

22 A K. wants to thank Fernando for pointing out the connection to number theory, which he only appre-
ciated with a long delay.
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A Appendix: Modular forms and arithmetic algebraic ge-
ometry

In the first two parts of this appendix we review the general theory of modular forms and
their associated period polynomials, which leads to the definition of periods and quasiperiods
of modular forms. In the second part we review the cohomological structure of smooth
projective varieties, which for example gives rise to periods and zeta functions. We sketch
how the different cohomology groups define motives and that also to certain modular forms

one can attach motives.

A.1 Cusp forms and periods

In this section we define the periods associated with modular forms for discrete and cofinite
subgroups I' of SL(2,R). For us the relevant examples are the level N subgroups I'g(/N) C
SL(2,Z). We start the section by reviewing a few basic facts about these groups and the
properties of modular forms. Then we describe how one can associate period polynomials

with modular forms and construct these explicitly for the group I';(25) and weight 4.

A.1.1 Review of holomorphic modular forms

In this section we review some elementary facts about holomorphic modular forms. For
further details, see e.g. [102] or [26].

The group SL(2,R) of real 2 x 2 matrices of determinant 1 acts as usual on the complex
upper half plane ) = {7 € C|Im7 > 0} by 7 — g7 = g:ifl for g = (53) € SL(2,R) and
this action also extends to $ UP!(R). Elements in SL(2,R) which have exactly one fixed
point in P}(R) are called parabolic elements and every parabolic element is conjugate to
+T', where T = (}1). Now let I be a discrete subgroup of SL(2,RR) that is cofinite, i.e. '\

has finite hyperbolic area. The fixed points in P!(R) with respect to parabolic elements of

I" are called the cusps of I' and we denote the union of $) and the set of cusps of I' by 9.
The action of I' can be restricted to $ and two cusps are said to be equivalent if they are
in the same I' orbit. There are only finitely many equivalence classes of cusps.

For any function f: $ — C, integer k € Z, and g = (‘33) € SL(2,R) one writes

(fleg)(r) = (er+d)™"f(g7) (A1)

and calls |, the weight k slash operator. For any k € Z we define the vector space My(I") of

(holomorphic) modular forms by
Mi(T) = {f:9—C| flgy = f Y~y €T, f holomorphic on H}, (A.2)

where f is said to be holomorphic (vanish) at a cusp fixed by +¢Tg~! € T if (f|rg)(z + iy)
is bounded (vanishes) for y — co. A modular form f € My(T") is a cusp form if it vanishes
at all cusps. We denote the subspace of cusp forms by Si(I') C My (T"). The spaces M (T")
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and hence Si(I") are finite-dimensional and there are standard formulas for dim M(I") and
dim Sy (T").

Modular forms have Fourier expansions around each cusp, i.e. for a cusp fixed by
+gTg~! € T one finds that (f|rg)(r + 1) = (£1)*(f|xg)(7) and hence there is an expansion

(fleg)(T Z agmq™" with ¢ = ™7, (A.3)

where, depending on (il)k, the sum runs over positive integers or positive half integers. If

f is a cusp form we further have a,0 = 0. If T' € I' we abbreviate a1 ,, by a,, and then have
o
= Z am q™ . (A.4)
m=0

A.1.2 Hecke operators and Atkin-Lehner involutions

From now on we take for I' the level N subgroup

ro(N) = {(¢ ) esL2.2)

and for each n € N with (n, N) = 1 define the Hecke operator T,,, acting on My(I'o(N)), as
follows. Let

¢=0mod N } (N eN) (A.5)

Moy = {g - (a ") € My(Z) ‘ det(g) = n,c = OmodN} , (A.6)

where M2 (Z) denotes the set of integral 2 x 2 matrices. Note that this set is stabilized under
left and right multiplication by any v € I'g(V). For f € My(Io(N)) we then define

fleTn, = nF1 > fleM (A7)

MEFO(N)\Mn,N

where the weight & slash operator on the right is defined as in (A.1)) even though the matrices
M do not have determinant 1. The sum is over any set of representatives for the left action

of T'o(IN) on M, 5, a convenient choice being
M = {5 7) € Ma(2) ’ ad=n, 0<b<d} . (A.8)

Note that the cardinality of this set equals o1(n), the sum of divisors of n. In particular,
the sum in is finite and does not depend on the choice of representatives since f is
modular. It is easy to see that f[7}, is again modular since the set T'o(N)\ M, n is invariant
under right multiplication by any v € T'g(/N). We further see that T, maps cusp forms to
cusp forms. Since T € T'y(N) we have the Fourier expansion and if one chooses the
representatives as in one gets a formula for the action of T}, on the Fourier expansion

of f. For cusp forms this gives

(f‘kT Z Z A /12 qm . (Ag)

m=1 r|(m,n)
>0

42



Using the fact that the T, for different n commute which each other, and that they are
self-adjoint for a certain scalar product on Si(I'o(N)), one can choose a common basis of
eigenforms f of Si(I'o(NN)) such that

fleThn = Anf VneN, (n,N) = 1. (A.10)

From one then gets a,, = \paq for (n, N) = 1. In particular, for N = 1 any eigenform
is (up to a multiplicative constant) uniquely determined by its Hecke eigenvalues. For N > 1
this is not true in general but for so called newforms f € Si(I'o(N)), which are eigenforms
under all Hecke operators that are normalized by a; = 1 and that can not be written as
f(r) =3, filmyT) for integers m; and modular forms f; of lower level, this is again true.
We denote the algebra generated by the Hecke operators by T.

There is a further set of operators on My (T'g(NN)) that are relevant for us. For any exact
divisor @ of N, i.e. Q|N and (Q, N/Q) =1, any element in the set

Wo = \/1@ (% QZZ> NSL(2, R) (A.11)

normalizes I'o(N) and the product of any two elements of Wy is in I'g(/N). Hence, any
Wg € W induces an involution on I'o(N)\$ via the action of Wg on . These involutions
do not depend on the choice of Wg € Wg and are called the Atkin-Lehner involutions.
They generate a group isomorphic to (Z/27)¢, where ¢ is the number of prime factors of N.
The subgroup of SL(2,R) obtained by adjoining all Atkin-Lehner involutions to I'o(N) is
denoted by I'j(N), i.e.

TH(N) = | Wolo(N) . (A.12)

QIN
(@,N/Q)=1

It normalizes I'o(N) in SL(2,R) and permutes the cusps of I'g(/N). Each Atkin-Lehner
involution on T'o(N)\$ induces an involution (also called Atkin-Lehner involution) on
My(To(N)) by f+— f|lxWeq, which is again independent of the choice of Wg. These involu-
tions commute with each other as well as with the operators of T and define an eigenspace
decomposition My (I'o(N)) = @, Mg (Lo(N)), where the sum ranges over the characters of
(Z/27)¢. The fact that the Atkin-Lehner involutions commute with T implies that every

newform automatically belongs to one of these eigenspaces.

A.1.3 Eichler integrals and period polynomials

We consider the normalized derivative D = %dd—ﬂ where the factor ﬁ

that D sends periodic functions with rational Fourier coefficients to periodic functions with

is introduced so

rational Fourier coefficients. The operator D does not preserve modularity. Instead, we

have the following elementary but not obvious proposition.

Proposition 1. (Bol’s identity [9]) Let k € N be an integer, k > 2. Then for any mero-
morphic function f : $ — PY(C) we have

D" (fla-rg) = (D" 'Nlkg (Vg €SL2,R)). (A.13)
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If f is modular of weight k£ on some group I', then any holomorphic function f: H—-C
with the property that Dk_lf = f is called an FEichler integral of f. The Eichler inte-
gral exists, but is well-defined only up to a degree k — 2 polynomial p € Vj,_o(C), where
Vieo(K) = (1,..., 7% %)k for any field K. For instance, we can take fto be ﬁ-o, where

. (27Ti)k_1 T B
fro(T) = W - (T — Z)k 2f(2) dz (A.14)
for any 79 € b, or even 19 € b if f is a cusp form. In particular, if T € T, then we have
" o0 am ) [o¢]
foolr) = Y " i f(r) = > amq™ € Si(T). (A.15)
m=1 m=1

For later purposes we observe that ]?oo is related to ]770 for any 79 € b by

. . (27.‘.7:)/{}—1 T0—1
Fool) = Fu(r) = L [ By (7= 2) £(2) dz, (A.16)
(k: - ]‘) TO
where B, is the nth Bernoulli polynomial. Indeed, from B, (x + 1) = By, (z) + naz""! and
f(z—1) = f(z) we find that this equation does not depend on 7y and since it is true for
9 = oo it is true for all 7g.
For a fixed choice of Eichler integral f it follows from Bol’s identity (A.13)) that

rp(7) = flak(y = 1)(7) € Vha(C) ¥y eT (A.17)

i.e. r¢(y) is a polynomial of degree k — 2, which is called a period polynomial of f for
~v € T'. Here we extended the action of the slash operator to the group algebra C[SL(2,R)]
in the obvious way (viz., f|x>_g9i = > f|kgi, where we write > g; instead of the more
correct » [g;]). The period polynomials measure the failure of modularity of the Eichler
integral. An immediate consequence of the definition is that the period polynomials satisfy

the cocycle condition

ri(v) = (W)l (7)), (A.18)

where we define an action of SL(2,Z) on Vj_2(C) by extending the slash operator (A.1)) to
complex polynomials p € Vi_5(C) in the obvious way.

Since the Eichler integral f is unique only up to addition of polynomials p € Vj_5(C)
it follows that 7; is unique only up to addition of maps of the form v + plo—_i(y — 1) for
polynomials p € V;,_5(C). The dependence on p is described in terms of group cohomology.

Let K be any field so that I' C SL(2, K). We define the group of cocycles
ZHT, Via(K)) = {r:T = Vio(K) [ 1(3Y) = r(Mlo-sy +7(7) V7,7 €T} (A.19)
and the group of coboundaries by

BT, Vi—2(K)) = {T3 7 phi(y—1) [p € Via(K)} . (A.20)
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Then, the (first) group cohomology group is defined as the quotient

ZYH T, Vi_o(K))

H' (T, Vj—2(K)) = BYT,V,_3(K))

(A.21)

It follows from the definition (A.17)) that the freedom in the choice of the Eichler integral
fv results in a coboundary. Therefore we can associate to f a unique cohomology class
[rf] € HY(T', Vi—2(C)). Furthermore, we define the group of parabolic cocycles

par(F Viea(K)) = {r e ZY T, Vi_o(K)) | 7(7) € Vi—o(K)|a—x(y —1) V parabolic y € '} .

(A.22)

Trivially, one has B C Zéar C Z'. Hence, one can define the parabolic cohomology group
Zpar (T, Via(K))

le)ar(rv Vk*Q(K)) = = - H' (Pv Vk*Q(K)) ’ (A23)

BT, Vi—2(K))

where the codimension of the embedding is in general less or equal then the number of

non-equivalent cusps times the dimension of Vj_o(K). We have the following proposition.
Proposition 2. For any f € Sp(T') one has ry € Z}, (T, Vi_2(C)).

Proof. Recall that ry is defined by (A.17) for some fixed Eichler integral fof f. We have
to show that 7¢(y) belongs to Vi_o(C)|(y — 1) for any parabolic v € I'. We can write
v = +gTg~! €T for some g € SL(2,R). Then we have a Fourier expansion

f‘kg Zagmq (A.24)

where ag40 vanishes since f is a cusp form. The function

(; :ﬁﬁ qm> ) L9 (A.25)

is then annihilated by v — 1, and using Bol’s identity we find that it is an Eichler integral

of f and hence differs from ]?by an element of V;_o(C). This implies the claim. O

The importance of the parabolic cohomology group stems from a theorem due to Eichler.

We define the space of Si(T') of antiholomorphic cusp forms as the space of all functions f
for f € Sj(T), where we define f(7) = f(7).

Theorem 1 (Eichler-Shimura isomorphism). The map f — [r¢] and its complex conjugate

f— [77] := [T7] (obtained by complex conjugating the coefficients) induce an isomorphism

Hyor (T, Viea(C)) 2 Si(1) @ Si(T) (A.26)

Proof. For even k a first result of this type was given by Eichler in [31], who in particular
showed that the dimensions of both sides agree. For the complete proof for even and odd &

we refer to Shimura [89]. O
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We now assume that ¢ = (_(1] (1)) normalizes I'. We then get an involution r +— r|o_je

on ZY(T',Vj_o(K)), where we define the action of any normalizer W € GL(2, K) of T on
elements in Z1(T', V3 _o(K)) by

(Flo—kW) () = r(WAW ™2 W . (A.27)

Here we generalize that the slash operator acts on polynomials as defined in ((A.1)) even when

det W < 0. The eigenvalues of the involution are +1 and we get an induced decomposition

Héar(ra Vk*Q(K)) - H;ar(rv Vk*Q(K))—i_ @ H,

par

(T, Vk—o(K)) ™. (A.28)

It is straightforward to check that, with respect to the Eichler-Shimura isomorphism, the

involution € on H}, (T, Vi—2(C)) corresponds to the involution on S (I") & Sk (T) induced by
f = (=1)*1f* where f*(r) = f(—7). In particular, the restriction of period polynomials
to HL, (T, Vi_2(K))* gives the isomorphisms

Su(T) 2 H}, (T, Vea(C))*. (A.29)

We now fix I' = I'g(N). Since Si(I'o(N)) admits an action by the Hecke algebra T, the
Eichler-Shimura isomorphism induces an action of T on HJ, (T'o(N), Vi—2(C)). This action

can be described as follows. For a map r : I'o(N) — Vi_o(K) and for n € N with (n, N) =1
we define a map r|o_ T}, : To(IN) — Vi—2(K) by

o1(n)

(rlakTu) () = D r(v)l2a—kMe ) » (A.30)
i=1
where M;, i = 1,...,01(n) are chosen representatives of I'o(N)\M,, n and the v; € I'q(N)
are determined by the identity
Here, m,(i) denotes a permutation of the indices i = 1,...,01(n), whose dependence on 7
is uniquely determined by (A.31]). Using the cocycle property it is straightforward to show

that this map can be restricted to Z' and B!. Further, the map depends on the choice of
representatives of I'g(IV)\M,, v, but we have the following propositions.

Proposition 3. For any r € Z'(To(N), Vi_2(K)) the cohomology class [r|a_iT,] does not
depend on the chosen representatives of T'o(N)\Mp n.

Proof. Let r|a_; T}, be defined with respect to a second choice M/, i = 1,...,01(n) of rep-
resentatives of I'o(N)\M,, n. We order these so that M, = ~/M; for uniquely determined
v, € T'g(N). By using the cocycle property one finds that for all v € T'o(N)

o1(n)

(rlas s =) () = (D2 POk aon(y = 1) (A.32)

i=1

and thus [r|o_T)] = [r|o—1Th). O
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Proposition 4. For f € Si(I'g(N)) we have

Tft, = Tfl2-kTn, (A.33)

where the same set of representatives of I'o(IN)\M,, n has been chosen on both sides and

the Eichler integral on the left side has been chosen as f|iT,, = nkilﬂg,an.

Proof. Using Bol’s identity (A.13) we find that
DM ok Tn) = (DM )T = kT (A.34)

and thus our choice of Eichler integral is indeed valid. We then get

T F11Tn (7) =

L=

= n*! ,}?|2—an}2_]€ (v=1)

Q
=
2

= > Fla—k(Myy — M;)
i=1 (A.35)
o1(n) _
= Z flo—k(viMy iy — M;)
i=1
o1(n)
= (’Yz)bkoa (3)
i=1
O

We conclude that the action of T defined by induces a well defined action of Hecke
operators on H(Tg(N), Vi_o(K)) which does not depend on the chosen representatives
of I'o(N)\M,, ny and is compatible with the isomorphism for K = C. Completely
analogously we can define the action of Atkin-Lehner operators Wg on Z1(I'(N), Vi—2(K))
(for suitable K) by 7+ r|a_xWg. This gives a well-defined action on H(I'o(N), Vx_2(K))
which does not depend on the chosen element of WWg and is compatible with the isomorphism
for K =C.

We conclude this introduction to period polynomials with an important proposition

about the period polynomials associated with newforms.

Proposition 5. Let f € Si(I'o(N)) be a newform and let Q(f) be the number field generated

by its Hecke eigenvalues. Then the FEichler integral can be chosen such that

rp € W 2 To(N), Vs QU @ w7 Zhar (Do), Via(@(F))™ (A.36)
for some w}t € C. If Q(f) is totally real one has w? €R and wy €R.

Proof. First note that Hl, (To(N),Vir—2(C)) = H (To(N), Vk—2(Q)) ®g C and that we

par par

have a well-defined action of the Hecke algebra T and of the involution € on H!, (To(N), Vi_2(Q)).

par
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Since f is uniquely determined by its Hecke eigenvalues which lie in Q(f) we can define
two 1-dimensional eigenspaces V* C H,.(Do(N), Vea(K ))* with the same eigenvalues as
f+ (=1)F1f* Then the first statement directly follows. If Q(f) is totally real we have

f* = f and then the second statement also follows. O

We call the numbers w?, which are unique only up to multiplication by Q(f), the
periods of f. Proposition [5| was first proved (for I' = SL(2,Z)) by Manin [75] in a stronger
form, namely that the period polynomials 7; defined by choosing fv = foo as in
satisfies , and we will use this in the sequel.

A.1.4 Computation of Hrl,ar(I‘(’;(ZE')), V2(Q))

In the following we want to compute a basis for H}  (I'5(25), V2(Q)) and simultaneously
diagonalize the action of the involution € and the Hecke algebra T. We start by explaining
how one can obtain a set of generators of I';(25) and their relations.

To obtain generators of discrete cofinite subgroups I' C SL(2,R) we construct a funda-

mental domain F as F;, plus parts of its boundary, where
Fro = Do\ {r €9 | d(r,70) <d(yr,70)Vy €T} . (A.37)

Here 79 € § is arbitrary point, d is the hyperbolic distance function and I';, is the stabilizer
of 19. If § contains oo, choosing 79 = oo and the Ford circles |er 4+ d| = 1 as boundaries is
particularly convenient. Then (A.37)) evaluates to

Foo = Do\ {7 €9 | fer+d| > 1V (28) € T \I'} . (A.38)

For subgroups of SL(2,R) containing 7' = ({1) we define $)5 to be the strip of width 1 in
the upper half plane £, = {7’ €9H —% <Ret < %} For instance, for I' = T'g(N) one can

then express (A.38) as

F=Fu=9 JI 1II {IF+4<i}. (A.39)

c=1 —c<d<c
c=0mod N (¢ d)=1

while for I'§ (V) with N a prime power we instead take the product over all elements that are
in WNFOA(NE (or To(N)Wy), i.e. over elements of the form (‘Zg f’ég) with a,b,é,d € Z
and Nad — bé = 1, hence the divisibility condition becomes (¢, Nd) = 1. The union over ¢
leads to Ford circles with rapidly decreasing radii, which can be shown to not bound the
fundamental domain further for ¢ sufficiently large. Topologically F is a polygon bounded
by segments of the Ford circles as edges. If a Ford circle has a fixed point of order 2 we regard
it as two edges split by the fixed point. In this way the polygon has an even number of edges
which are identified in pairs. As generators of I' one can choose the elements identifying
the edges. The relations between these generators are obtained from considering the finite

orbits of the vertices of F under the action of I'. If the vertices in one orbit are cusps, one
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gets no relation, and if they are elliptic points of order n, one gets a product of elements
which is of order n (in I'/{£1}). As an example, consider the standard fundamental domain
of SL(2,Z) with the vertices Py = oo, P} = e2mi/3 Py = i, Py = ™/3. The edges PyP; and
P3Py are identified by T' = ({1) and the edges PP, and P»P; are identified by S = (? ’(1)).
The elliptic fixed point P, of order 2 gives the relation S? = —1 and the elliptic fixed point
Py of order 3 gives the relation (ST)® = —1. We now turn to the more complicated case
of T'5(25).

P

Figure 3: A fundamental domain F of I';(25) with three inequivalent parabolic ver-
tices Py, P», Py and three inequivalent elliptic vertices P;, Ps, P5 of order two.

For I'j(25) we find the fundamental domain F shown in Figure |3} From the Ford circles

bounding F one sees that one can choose the generators of I';(25) as

11 5 12 5 8 5 ¢ 0 -1
r <0 1>’A <10 5 >’B (15 5>’C (20 5>’W (5 0 )
(A.40)
The relations between these generators are again obtained from considering the finite orbits
of the vertices of F under the action of I'}(25). For example, A maps P to Py and T~}
maps Py back to to P;. From similar considerations one concludes that one has three elliptic
elements of order two (in I'§(25)/{£1})
T-'A, B~'C, W, fixing Pl= -4 Pp=—— 4+ pt (A.41)
) ) ) g 1 — 2 10’ 3 — 25 25’ 5 — 5’ .
respectively. Analogously, we find the three inequivalent parabolic elements

T, A~'B, ¢~'w, fixing  Py=o00, P, = —g, Py = —%, (A.42)

respectively.
Now, we set k = 4 and give an explicit description of H}, (I'5(25), V2(Q)). For a cocycle

par

r € ZL, (T§(25), V2(Q)) we write the five period polynomials corresponding to the generators

par
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v from (AA0) as

r(y) = ag2)7'2 + aﬁ,l)T + a(vo) (A.43)

so that in total we have 15 rational coefficients agk), ~ve{T,A B,C,W}, k=0,1,2. The
existence of the elliptic elements and the parabolic elements imposes six relations
among them. For example, the cocycle relation yields r(T~1A) = r(A) —r(T)| 2T~ 1A, but

since T~ 1A is of order two one gets
0 = r(TPA)| T A+ r(T71A), (A.44)

yielding one relation between the coefficients of r(A) and r(T'). For the representatives we
can furthermore choose e.g. r(71") = 0 — two nontrivial conditions — as well as r(W) = ag/Il,) T
— one nontrivial condition —, which leaves six independent parabolic cocycles, which we

choose as in Table [

T W A B C
r1] 0 0 2572 +257+6 0 0
| 0 0 15072 — 39 1257 + 35 0
r3 | 0 0 —10072 +26 12572 —10 0
r4 | 0 0 10072 — 26 —-10 1257 + 25
rs | 0 0 —507% +13 5 12572 -5
re | 0 257 5072 — 13 -5 -5

Table 5: Representatives for a basis of Hgar(Fa(QS), V2(Q)).

We now work out the action of the Hecke operator T as defined in (A.30) in detail. We
choose 01(2) = 3 representatives for I'g(25)\ M3 25 as

P T (T nt5)

In order to apply (A.30|) we need to determine for v € I'((25) the permutations 7., as well
as the v; for i = 1,2, 3 as defined in (A.31]) and express the latter as a word in terms of the
chosen generators of I'}(25), see Table [6]

~ T A B C w
My | T?°M; | TWTM, TB~'Ms; AM, W My

Moy | M3 C M, WC— WMy | WB WM, W M,
Msvy | TMy T071M3 TBilTMl TBilABilMg TAilMg

Table 6: v; and 7, (i) for v € {T, A, B,C,W} as defined by M;y = v;M,_(;), where we
decomposed 7; as a word in terms of the chosen generators of I'§(25).
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Given this information we can compute the action of T on the basis of H_., (I'5(25), V2(Q))
defined in Table [5| by repeatedly using the cocycle property. By (A.33]), this action must
have the same eigenvalues as the Hecke operator T acting on S4(I';(25)) and by the Eichler-

Shimura isomorphism they must appear with multiplicity two. The calculation gives

6 9 4 8
-4 -5 -5 5 5 O
94 184 246 336 672 _19
5 5 5 5
[r1]]-2 T2 16 _106 _139 _204 _408 g [r1]
. 5 5 5 5 . (A 46)
‘ 104 366 539 s T8 g ‘ '
[roll-2 T ?78 262 ?92 299 [re]
42 -5 -5 -5 -5 A4
122 182 96 199
[ S S T S

and so the eigenvalues are {1,1,4,4, —4, —4}. Analogously, we compute the matrix associ-

ated with the involution e. For any generator v € {T, A, B, C, W} one has eye = v~ ! and
one then obtains
10 0o 0 0 O
ey [2rm ) o
: ] 8 12 18 9 20 0 (A.47)
[r6]|—2 € -4 -6 -9 —4 -9 0 (7]
4 6 9 8 16 -1

We can now choose an eigenbasis of H}, (I'§(NV), V2(Q)) with respect to the action of Tp
and €. A possible choice is given in Table 7l The lower index of rf indicates the eigenvalue
A of the associated cohomology class with respect to T> and the upper index denotes the

eigenvalue +1 of the associated cohomology class with respect to the involution ¢.

rf T W A B C

ri |0 0 4007% +4007 +96 52572 + 3507 + 56 100072 + 5007 + 60
rr |0 =87 12746 12572 + 827 + 14 2507 2 + 1327 + 18
10 0 2572 + 257 + 6 7572 + 507 + 8 1007 2 4+ 507 + 6
g |0 =57 0 5072 + 407 +8 17572 + 907 + 12
rT, |0 0 75724+ 7574+18 75724+ 507 +8 0

r .10 -1 47 +2 5072 + 347 + 6 7572 + 347 +4

Table 7: Representatives for an eigenbasis of Hl[l)ar(FE‘)(25), V2(Q)) w.r.t. T and e.

A.2 Meromorphic cusp forms and quasiperiods

In the previous section we have seen that there is an isomorphism

H}\ (T, Viea(C)) = Si(T) @ Si(T) . (A.48)
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For the case k = 2 this corresponds to the usual Hodge decomposition H' = H' @ HO!
for complex curves and the complex conjugation makes this decomposition non-algebraic.
In this case the algebraic version of H' can be realized by holomorphic differentials (differ-
entials of the first kind) and meromorphic differentials with vanishing residues (differentials
of the second kind). The integration of these forms gives a well defined pairing with the
homology and taking the quotient by derivatives of meromorphic forms one obtains a space
that is isomorphic to H' and defined algebraically. Instead of the Hodge decomposition we
then have a filtration into classes that can be represented by differentials of the first and sec-
ond kind, respectively. In this section we discuss the algebraic analogue of the isomorphism
by considering meromorphic modular forms. This will allow us to define quasiperiods
as the periods of certain meromorphic modular forms. The theory of meromorphic cusp
forms and their associated period polynomials was first introduced by Eichler [31] and later

independently rediscovered by Brown |17] and one of the authors in the context of [38].

A.2.1 Meromorphic cusp forms and their period polynomials

We want to extend the period map r : Si(T') — H!, (T, Vik_2(C)) to the space of meromor-

par

phic modular forms
M) = {F:$ — PY(C) | F meromorphic and F|;y = F Vy € T'}. (A.49)

However, to have an Eichler integral, we need to restrict to forms that are (k — 1)-st
derivatives. By simple connectivity it is enough to require that they are locally (k — 1)-st

derivatives and we thus define
SpeoT) = {F € Mp*°(T") | F is locally a (k — 1)-st derivative} . (A.50)

Concretely, this means that for each 79 € $) the coefficients of (7 — 79)™ in the Laurent
expansion around 7y vanish for m = —1,...,—(k — 1) and that for each cusp the constant
coefficient in the Fourier expansion vanishes. For any F' € S;**"°(I") one can then choose an
Eichler integral F , i.e. a meromorphic modular form such that DF-1F = F, and compute
the period polynomials rp(v) = F|a_(y — 1)(7) for v € T'. These are polynomials by Bol’s
identity and as in the case of holomorphic cusp forms one finds that they are parabolic
cocycles and induce a well defined class [rp] € H}, (T, Vi—2(C)) which does not depend on
the choice of Eichler integral. Bol’s identity also implies that DF~1MInero(T) C Smero(T')
and of course the classes in H'(T, V;_2(C)) associated with elements in D*~1MInro(T') are

trivial. This motivates introducing the quotient
SK(F) = Spere(D) /(DM Mz2e(T)). (A.51)

Note that the Riemann-Roch theorem implies that one can choose the representatives to
have poles only in an arbitrary non-zero subset of $ closed under the action of I, for instance
the set of all cusps (if there are cusps) or the set of cusps equivalent to oo (if oo is a cusp).

For suitable I we therefore have canonical isomorphisms

sPIr) 2 sj(r) = (D), (A.52)
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where the first two spaces are defined as in but restricting to forms with possible
poles only at [oco] or only at the cusps, respectively.

In the following we explain that the period map gives an isomorphism between Sy (T")
and H!, (T, Vi_2(C)). We start by defining a useful pairing.

par

Proposition 6 (Eichler pairing). There is a pairing { , } : Spee(I) x Spo(I') — C
defined by
{F.G} = 2mi)* )~ Res,(FGdr). (A.53)
TET\H

This pairing is (—1)* T —symmetric and descends to Sy(T) x Sg(I).

Proof. First note that the right-hand side of makes sense because the sum is finite
(only finitely many orbits have poles) and the individual residues do not depend on the
choice of 7 in the I'-orbit (the difference of the residues at 7 and 7 is 7r(y)G dr which
cannot have any residues since G is a (k — 1)-st derivative and rr(7y) is a polynomial of
degree at most k£ — 2). Similarly, the pairing does not depend on the choice of Eichler
integral since Fis unique up to a polynomial p of degree k£ — 2 and p G d7 again has no
residues. The (—1)*1-symmetry follows since FG — (—1)¥t1FG is a derivative. Because
of this symmetry it just remains to prove that {F, G} vanishes for any F' € DkilMén_e,gO(F).
This is clear since one can choose F to be in M3P<e(I') and then FGdr is a well defined
meromorphic differential on the compact curve F\E and hence the sum of its residues

vanishes. O

Theorem 2 (Eichler). The natural map Si(T') — Si(T') induced by inclusion and the map
F — {F, } give the short exact sequence

0 —s Sp(T) —s Sp(T) 24 s — 0, (A.54)

where Si(T')Y denotes the dual space of Sk(T).

Proof. The first (non-trivial) map is injective since the period polynomial of a holomorphic
cusp form determines the form uniquely. The composite of the first two maps is trivial since
holomorphic functions don’t have poles. Eichler [31] shows that the kernel of the second

map is exactly the image of the first map and that the second map is surjective. O

This theorem implies that S(T") is (non-canonically) isomorphic to Sg(I") & Sk(T)V.
Hence the domain and the codomain of the period map r : Sp(I') — H! (T, V;4_2(C)) have

par
the same dimension and since the map is injective it gives an isomorphism

Sk(T) & Hyp(T, Via(C)) . (A.55)

We now restrict to I' = I'g(IN) to introduce Hecke operators for meromorphic modular
forms. For holomorphic modular forms we defined these in (A.7)) and we use the same
definition for meromorphic modular forms. By Bol’s identity it follows that they also

descend to Si(I'o(N)) and we have the following proposition.
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Proposition 7. The pairing { , } is equivariant with respect to the Hecke operators.

Proof. Without loss of generality we can restrict to meromorphic modular forms F' and G
that only have poles at cusps equivalent to co. In terms of the Fourier coefficients a,,, and

bm of F and G, respectively, we choose the Eichler integrals

~ a - b
F(r)= ) —5¢"  and  G(n)= ) —5q™. (A.56)
m#0 m#0
m>>—oo m>>—oo
This gives
N a_ B
{FvG‘an} = (271_1)19 ! Z Z #rk 1bmn/r2
—oton0<<oo rli'r;zbn)
b_,y
_ k—1 N k—1 1k—1 m
= (—1) (271'7,) Z Z r am/n/rl2m (A57)
m!#0 r’|(m/,n)
—cokm/<oo />0
= (-1 HG, FIsTn}
= {F|an7 G} )
where m’ = —mn/r? and r’ = n/r. O

Just as in the case of holomorphic cusp forms, the period map r : Sg(T') — I:TEW(F7 Vi—2(C))
is compatible with the action of the Hecke operators. The proposition above further shows
that the (non-canonical) isomorphism between Sy (T") and S (T") & Sy (T')V is also compatible
with the action of the Hecke operators.

The above considerations show that associated with any newform f € Si(I'o(NV))
we have a 2-dimensional subspace of Si(I'o(N)) with the same Hecke eigenvalues. Let
F e S (I'o(N)) be such that [f] and [F]| generate this subspace. We can choose F' to
have poles only at cusps equivalent to co and Fourier coefficients in Q(f), and then call F’

(or [F]) a meromorphic partner of f. In Proposition |5 we showed that
[r¢] = w;{[rﬂ +wy [r7] (A.58)

for r* € Zéar(Fo(N), Vi—2(Q(f))) and used this to define the periods w]jf, which are unique

up to multiplication by Q(f). Completely analogously we have
[re) = np[rt] +ngp(r] (A.59)

for the same 7+, which defines the quasiperiods 77}%. Note that these only depend on the
class of F'. We finish this section by giving a quadratic relation fulfilled by the periods and

quasiperiods.

Proposition 8 (“Legendre Relation”). Let f be a newform with meromorphic partner F.

Then the associated periods and quasiperiods satisfy
(wing —wingt) € (2m)*'Q(f). (A.60)
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Proof. First note that clearly {f, F} € (27i)*1Q(f). The idea now is to relate the pairing
{,-} to a pairing on Héar( 0(IN), Vik—2(C)). We give an explicit proof for level 1 which
goes along the lines of similar calculations in [43] and [69]. SL(2,Z) is generated by T" and
S = (Y7) satisfying S? = (ST)® = —1 and a standard (non-strict) fundamental domain
is given by F = {r € § | Re7| < 3} \{r € H | |7] < 3}. In the following we abuse the
notation and denote by F' also a representative of F' without poles on the boundary of F.
We then have

{f, F} —(27ri)k_1/ fFdr (A.61)
OF
k—1 ]
—mi) ! [ (e - D)Far (A.62)
2
i\/g—l
+ (2mi)F~ 1/ (flo_x(S —1))Fdr. (A.63)
For 79 = i\/gﬂ we have T~ l7y = S~ 17y and with the choice f fT this gives r¢.,(5) =
7f.7(T) and thus
{f,F} =(2mi)* ! / 7t (T)F dT . (A.64)

From S? = —1 we further get 7., (S)|2—rS = —7£.,(S) and so

(f,F} = 2772 / rpo(T)F dr (A.65)
= ( 2> T fr0(1)i7 Fro0 (S) k—2—i (A.66)

:0
_, _22)! <1 (T), ro(S) > - (A.67)

Here p; denotes the coefficient of 7¢ for p € Vi—2(C) and it is straightforward to show that
the defined pairing < -,- >: V;_2(C) x V;_o(C) — C is SL(2,Z) invariant. We now want to
replace 77 -, by 7. Using the T" invariance of foo, the SL(2,7Z) invariance of the pairing
< -,- > and the cocycle relations associated with the identities S? = (ST)% = —1 gives

<1 (1), 700 (S) >= < (fry = foo)lo—i(T = 1), 7700 (S) > (A.68)
= < fry = foor TFoo(S)|o—i(T7F = 1) > (A.69)

= — < fro = Foor TFo0(S) |-k (ST 4+ 1) > (A.70)

== < fry = foor TF0o(S) 2=k ((TS)* + 1) > (A.71)

( (A.72)

1 ~ ~
= — g < ng - fOOaTF,OO S)‘Q—k‘((T‘S)Q +1- 2TS) >

= 1<f70 Foos TFo0(S) o (TST = T)(S =T~ 1) > (A.73)

3
< (Fry = Fo)ok(T = 8), 7500 () |o—i (TST = T) > (A.74)

oo\»—k
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1

=3 < 7f.00(8), TF o0 (S) 2k (ST1S = T) > (A.75)
_ é < 1) 2 (T = T™Y), rc(S) > - (A.76)

We note that any coboundary which vanishes on T' comes from a constant polynomial and
hence this expression is invariant under shifting the parabolic cocycles by such coboundaries.
In particular, we can define a pairing < -,- > on Hg;ar(SL(Q, Z),Vi—2(K)) by

(k —2)!
6

< [7“1], [7“2] >= — < TI(S)‘Q_k;(T — T_l),T‘Q(S) >, (A77)

where 71,79 must be chosen such that r1(T) = ro(T) = 0. We see that this pairing is

invariant and we conclude that

{f,F} = (Winp —wrnp) <rt,r” > € 2m) Q(f) (A.78)
€Q(f)

which finishes the proof for SL(2,Z). The proof for higher levels can be done by using

Shapiro’s lemma [79] or in a way similar to the calculations in [101]. O

A.2.2 Computation of S4(I'9(25))

In this subsection we explain the explicit computation of a Hecke eigenbasis of S4(I'g(N)).
We do this in detail for the case of I'g(25), the general case being similar. To this end,
we first discuss the construction of weakly holomorphic modular forms with a given pole
order at oo, use these to construct a basis of S4(I'9(25)) and diagonalize the action of the
Hecke algebra. Since newforms are also eigenforms under Atkin—Lehner involutions and
since there are no old forms of level 25 and weight 4 this also allows us to write down a
Hecke eigenbasis of Sy(T'§(25)).

For any T, one can give X(I') = I'\$ the structure of a Riemann surface, and although
non-zero F' € M*°(T") with k£ # 0 are not well-defined on X(I'), one can still define a
vanishing order ord,(F) at any 7 € X(I'). E.g. if T € " and I''c =< T >, then the
vanishing order at the cusp oo is given by the lowest exponent in the Fourier expansion
around co. The Eichler—Selberg trace formula or the Riemann—Roch formula imply that the
total order of vanishing of any non-zero g € My (T') is given by rrk, where kp = 4= Vol(I'\$)
in terms of the hyperbolic volume. Since [SL(2,Z) : T'o(N)] = N ], (1 + %), we have
KDo(N) = 1% leN(l + %) and Kps(n) = Q%IQFO(N), where e is the number of prime factors of
N. Restricting to the case T' € I' we now set Mlgoo’M] T)={f¢e€ M,EOO} (') | ordes f > M},
where M ]£°O] (T") consists of meromorphic modular forms with poles only at cusps equivalent
to oo, and denote by S,[COO’M}(F) the subspace with vanishing residues. Let h € M,(T") have
the maximal order of vanishing A = kra at oo (which exists for a large enough). For ¢ large

enough we have the short exact sequence

0 — MPST () 2 gl A ) s(T) — 0. (A.79)
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The multiplication by A’ gives an isomorphism between MQ[O_O;JMH}(F) and a subspace of
Ms_g40a(T") (of codimension at most 1) and also an isomorphism between Sgof,’c_MH] ()
and a subspace of Ski¢a(T") (of codimension at most 1). Hence the construction of S (T")
can be reduced to linear algebra in these finite dimensional spaces. We now specialize to
the case I' = T'g(IN). As explained in [84], the form h necessarily can be realized as an eta
quotient,
hr) = [[ntmr)™,  rmelZ, (A.80)
m|N
and we have the following expressions for the weight k£ and for the vanishing order at oo,
respectively: . .
k = Q%Tm, orde(h) = M%J:erm . (A.81)
For cusps of the form a/c € P'(Q) with ged(a,¢) = 1, ¢/N and ¢ > 0, the order ord,.(h)

evaluates to )

N 1 cd(m, c)*r
ordasell) = e Yo BTG Tm ( - Jrm (A.82)
m|N

We now consider the case N = 25. Since we are interested in eigenforms, we will
consider both I'g(25) and its extension I'j(25) by W = (g 71(/)5
the latter was constructed in Section and to get a fundamental domain of I'y(25) we
can take the union of that domain and (any I'g(25) translation of) its image under W. One
finds that there are six inequivalent cusps at oo, 0, %, %, %, %,
fixed points of order 2 at Py = 5-(i+7) (fixed by (35 “2)). Since the genus of X((25) is zero,
we can construct the weakly holomorphic modular forms from a Hauptmodul ¢ of T'3(25),
i.e. a generator of the field of meromorphic modular functions M§*™(T'y(25)) = C(¢). We

take ¢ to be

). A fundamental domain for

and two inequivalent elliptic

o(r) = 777(72(;)_):;—1—q—|—q4+q6—q“+~-. (A.83)

The function ¢ has a single pole at co and vanishes at 0 to first order. We also need the

unique normalized form h € My(T'(25)) with the maximal vanishing order -[SL(2,Z) :
I'o(25)] = 10 at co. This is given by the eta product

n(257)10
n(57)

For the construction of the meromorphic modular forms we also introduce § € S4(I'0(25))
defined by

h(’T) = — q10—|—2q15 +5q20+ . (A84)

o(r) = 77(57')477(257')4 =¢° —4¢"° +2¢" +8¢%° —5¢° + - .-, (A.85)

and the Eisenstein series e € My(T'9(25)) defined by

_ n(257)° 5 1 ab _ 4, 6
e(r) = Vo) +26(m)+5=- > ag” =" +¢"+---.  (A86)
77(57—) 5 a,b>0
a+b£70mod5
azZ0mod 5
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By , 0 vanishes to order 5,1,1,1,1,1 at the six cusps and so does not have any other
zeros. e vanishes with order 4 at oo and with order 1/2 at the elliptic fixed points Py and
so does not have any other zeros. Hence MQ[OO}(I‘O(%)) = eC[¢] and moreover

M5 (To(25)) = +Clo] - (A.87)
It follows that non-zero elements in M[_og}(f‘o(%)) have vanishing order at most —6 at co
and since D does not change the order at oo, we can construct representatives of a basis
of SZEOO] (F0(25))/D3M[_°§} (T'p(25)) with vanishing order —5 < m < 5 and m # 0 at co. It
follows that possible representatives are given by forms F; = ¢ p;(¢), where p1,...,p1p are
linearly independent polynomials of degree at most 10 chosen such that the forms F; have
no constant coefficients.

Using to compute the action of the Hecke operator T5 on the constructed basis
one finds that T has the eigenvalue —4 with multiplicity 4 and the eigenvalues —1, 1 and 4
with multiplicity 2. To define a Hecke eigenbasis, we further split these by considering the
Atkin-Lehner involution W. To do this we construct representatives that are eigenforms

under this involution. To this end we note that W acts as

1
edW = —Seg?. (A.88)

1 1 5)
h|4W = ghgblog 5|4W = ?5¢47 ¢|0W = = 52

¢)
It is straightforward to construct basis elements with definite eigenvalue under the action

of W. In particular, the invariant combination

)
¢+:¢+$:q—1_1+4q+5q2+10q3+... (A.89)

is a Hauptmodul of I'j(25) and the unique normalized form hy € My(I'§(25)) with the

maximal vanishing order 5 at oo is given by
hy = h¢® = ¢® —5¢° +5¢" +10¢° —15¢° +--- . (A.90)

Similarly, the unique normalized form e, € M(I'§(25)) with vanishing order 1 at oo is
given by
— 3 _ 2 3 4 6
ey = e(¢p°—5¢)=q—3¢"—4¢° +7¢" +12¢° +--- . (A.91)

This is unique since any non-zero element of My(I';(25)) must vanish at least to or-
der 1/2 at the three inequivalent elliptic fixed points from Figure This shows that
My™H(15(25)) = e4Cle,] and

MENTG5) = 7EClo4] (A.92)

To complete the analysis we also introduce the form h_ € My(I'y(25)) defined by

he = h(¢®—5¢%) = ¢* —6¢° +4¢° + 30¢" — 40¢® — 38¢° +-- -, (A.93)
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which is anti-invariant under W and vanishes to order 4 at co. This is the unique normalized
form with these properties since any anti-invariant form from M4(T'9(25)) also has to vanish
at the fixed point i/5 of W. Using the forms d+ € S4(I'9(25)) defined by

0 = 5(152 = q3—2q4—q5+2q6+q7—2q8+...

A.94
6_ = 6(¢* —5¢) = ¢* —3¢° —5¢"* +10¢° +5¢° —4¢" + -+ (A.94)

we can now construct a basis of invariant forms Fy; = d4 p4 i(¢4), where py1,...,p+6
are linearly independent polynomials of degree at most 6 with the property that the forms
F, ; do not have constant coefficients. A basis of anti-invariant forms is given by F_; =
d_p_i(¢+), where p_1,...,p— 4 are linearly independent polynomials of degree at most 4
with the property that the forms F_ ; do not have constant coefficients. We diagonalize the
action of the Hecke operator T5 on this basis and conclude that representatives for a Hecke

eigenbasis of S4(I'0(25)) are given by
fra = 01 (65 —10) = q— 44" +2¢° +8¢" +20¢° — 8¢° +6¢" — 23¢° + - --

b}
Fy 4 = —2(27¢5 + 24095 + 3204% — 258003 — 938542 — 990064 — 1900)

27
8 10 1100 , 6586 . 31760 , 40475

_ -3 L -2 - —1 VY2 YOOV 3 4 5 .

LRt BT o7 4 T 97 4 o7 ¢ g 7T

fra = 64 (% +5¢4 +10) = q+¢*+7¢° —7¢" +7¢° + 60" — 15¢° + 22¢” + - --

2765 4 2204% + 19044 — 258043 — 79754% — 727564 — 1250)

4, 665, 54l g TS, 34375 o
274 A g ¢ g ¢

fra = 04 (6% +8b4 +10) = q+4¢° —2¢° +8¢* —8¢° —6¢" —23¢° +---

+
’ 27(
= q—,?, —|—

)
Fyy = —2(27¢5 +208¢5 + 10044 — 2652¢°3 — 714142 — 514864 + 340)

27
. 8 _, 2 _, 404 4274 2384 29375
SO g oy U T
foa = 6_¢y = q—4¢* +2¢° +8¢* —30¢° — 8¢° 4 6¢" — 23¢° + - --
5
F__4 = g(&zﬁ +57¢7% + 11093 + 1144 — 100)
1 73 331 9355
-2 —1 2 3 4 5
— Z — Tt = —34 —_ =
¢ +ga 14 14 347q g ¢t

for1 =0 (¢4 +3) = q—¢* = T7¢° —7q" +7¢° — 64" +15¢° + 22¢” + - --

F__4 = %(wi + 3093 + 6402 + 2264 — 29)
_ q72+%q71—%qz—%q?’—%(f—l%%g’—i—"‘ ’

(A.95)

where now f4  stands for the newform with W-eigenvalue 1 and Th-eigenvalue A and F%

stands for an associated meromorphic partner. The latter are chosen such that the leading

coefficient in the Fourier expansion is 1 and the coefficient of ¢ vanishes. The maximal

denominators in these expansions can be read off from the integer by which we divide 0.

Explicitly the action of the Hecke operator 75 on the meromorphic representatives is given
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Fiald(Tz=1) = D’ }% ( 2% L+ ;)

Fyald(Ty—4) = D? % (‘217 A+ i)
Proili@a) = 0 £ (- ot + L) (4.96)
F._4|4(Ty+1) = D3 Z—f (—;m + i)
F__4ls(Th+4) = D? Z% (—;m + i) :

A.3 Zeta functions and the motivic point of view

There are different cohomology groups one can associate with smooth projective varieties
defined over Q (or more generally any number field). These can be used to define periods
and zeta functions, the latter being related to the number of points over finite fields. In
the following we briefly discuss these objects and sketch the idea of motives, which capture
the cohomological structure of varieties. As the most important example for this paper, we

explain that there are motives attached to Hecke eigenforms.

A.3.1 Hodge theory and periods

Let X be a smooth projective variety of dimension d defined over Q. Viewing X as a complex
manifold, we have for each integer r between 0 and 2d the rth homology group H, (X (C),Z)
whose elements are represented by closed r-dimensional chains modulo boundaries of (r+1)-
dimensional chains. The dimension of this space is the rth Betti number b,(X'). Considering
the cochain complex we also get the associated cohomology groups H"(X(C),Z). By de
Rham’s theorem, we can represent elements of H"(X(C),Z) by elements of the de Rham
cohomology group Hji (X (C),C) whose elements are represented by closed r-forms modulo
exact r-forms. More concretely, by Stokes’s theorem, the integration of differential forms

over chains gives a well defined pairing
/ . H.(X(C),Z) @3 Hlg(X(C),C) — C (A.97)
and by de Rham’s theorem this pairing is non-degenerate. This induces an isomorphism
H}z(X(C),C) = H"(X(C),Z)®;C. (A.98)

The complex structure of X (C) further allows us, by a theorem of Hodge, to decompose
H}r (X (C),C) into subspaces whose elements can be represented by forms of Hodge type
(p,q) with p+ ¢ = r. This gives the Hodge decomposition

Hijr(X(C),C) = > HPYX(C)). (A.99)
ptq=r
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Up to now nothing required X to be defined over Q. This changes now as we want to to
use the pairing of homology and cohomology to define periods. To do this, we replace the
complex vector spaces H] (X (C),C) by the algebraic de Rham cohomology groups Hjp (X)
which are vector spaces over Q. These were defined by Grothendieck [41] as the hypercoho-
mology groups of a certain algebraic de Rham complex. In particular, Grothendieck proves

that there is a natural isomorphism

called the comparison isomorphism. For the algebraic de Rham cohomology groups, we do

not have a Hodge decomposition but only a Hodge filtration
F'Hip(X) € F' ' Hig(X) C --- € FUHgR(X) = Hip(X) (A.101)

which, with respect to the comparison isomorphism, is compatible with the Hodge filtration
of Hjr(X(C),C) induced by the Hodge decomposition, i.e.

FFHijR(X) @ C = @ HP"P(X(C)). (A.102)

p>k

For example, if X is an elliptic curve defined over Q, a basis of H}z(X) is given by a
differential w of the first kind and a differential 1 of the second kind, both defined over Q.
While w has Hodge type (1,0), n will be a mix of the Hodge types (1,0) and (0,1) and is
canonically defined only up to multiplication by a non-zero rational number and addition
of a rational multiple of w.

Using the comparison isomorphism, we can now define the non-degenerate pairing
/ . H.(X(C),Z) @z Hig(X) — C. (A.103)

By choosing a basis for H,.(X(C),Z) and Hp(X) this gives rise to a complex b,.(X) x b.(X)
matrix called the period matriz. The period matrix is unique up to multiplication by a
unimodular integer matrix from the left and multiplication by an invertible rational matrix
from the right. The Hodge filtration of the algebraic de Rham cohomology groups further
induces a filtration of the periods which allows to restrict possible matrices multiplied from

the right to lower triangular matrices.

A.3.2 Reduction modulo primes and zeta functions

Let X as before be a smooth projective variety of dimension d defined over Q. Since X is
given as a subspace of some projective space by equations with rational coefficients, we can
reduce these defining equations (after multiplication by an integer to clear the denominators)
modulo any prime p, leading to a variety X, := X/, defined over F,. We restrict to the
case that this variety is smooth, which happens for all but finitely many p, called the good

primes. The remaining primes are called bad primes. For any n > 1 we consider the number
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#X,(Fpn) of solutions of the defining equations with the variables taking their values in the

field Fyn». The local zeta function of X, is a generating function of these numbers

o0

TTL

Z(X,,T) = exp (Z #Xp(Fpn)n> . (A.104)
n=1

A deep theorem says that Z(X,,T) is not just a power series but a rational function in T

with integral coefficients. Moreover, Weil conjectured that this rational function has the

form
2d

Z(X,,T) = [[ (X, 1)V (A.105)
r=0
where P,.(X,,T) is a polynomial of degree b,(X) with integral coefficients and with all roots

of absolute value p~"/2 (“local Riemann hypothesis”) and satisfies the functional equation
Pog_r(Xp,1/pT) = +£P.(X,,T)/(p¥*T)" ). (A.106)

He further conjectured that it should be possible to prove this by finding an appropriate
cohomology theory for the variety X,, defined over FF,,. This was later realized through the
work of Grothendieck, Artin and others by introducing, in general for any smooth projective
variety V defined over any field K, the f-adic cohomology group H"(V,Qy) for any prime
¢ # char K. Here, V stands for the variety V regarded as a variety over the algebraic
closure K. In particular, the Galois group Gal(K/K) naturally acts on V and this action
induces an action on H"(V,Qy). In the case V = X, and K = F,, the Galois group is
topologically generated by the Frobenius automorphism Fr, : x — 2P and the fixed points
of the nth power of Fr, on X,(F,) are precisely the points defined over Fy». This can be
used to relate #X,(Fp») to the traces of the Frobenius automorphism, since, as proven by
Grothendieck, the Lefschetz trace formula can be applied also to the ¢-adic cohomology
groups, and one obtains

2d

HXp(Fpn) = > (=) tr((Frp)" | H' (X, Qe)) - (A.107)
r=0

A direct consequence is that the local zeta function has the form

2d
2(X,.T) = [[det(1 —TFe | H (X,.@0)) (A.108)

r=0
In particular, the product on the right is independent of the chosen prime ¢. Because of
the local Riemann hypothesis, which was proven by Deligne, the same holds for each factor,

giving the desired polynomial P,.(X,,T) € Z[T].

The considerations above apply to any smooth projective variety defined over F, and
not only to the reduction X, of a variety X defined over Q. However, using that we have a
global variety X defined over Q allows us to define the ¢-adic cohomology group H" (X, Q)

for all primes [. An important fact is that there is a natural comparison isomorphism

H'(X,Q) = H'(X(C),Z) ®z Q. (A.109)
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In particular, this implies that P,.(X,,T) is a polynomial of degree b,(X). Another impor-

tant theorem is that for all good primes p # [ there is a natural isomorphism
H'(X,Q) & H'(X,,Q). (A.110)

The Frobenius automorphism Fr,, then corresponds to a well-defined conjugacy class in the
action of Gal(Q/Q) on H"(X,Q), which we also denote by Fr,, and we have

P (X,,T) = det(1—TFr;| H"(X,, Q) = det(1—TFr)| H'(X,Qy)). (A.111)

If p is a bad prime one can still associate a conjugacy class to Fr, but this is only well

defined up to elements in an inertia subgroup I,,. For these primes one defines
Pr(Xp,T) = det(1—TFr}| H'(X,Qp)"), (A.112)

whose degree in T is at most b, (X).
The fact that all local zeta functions come from the same variety X allows us to define

the Hasse-Weil zeta function

((X/Q,5) = [[2(X/Fpp*)  (Res>0) (A.113)

which may also be written as an alternating product of the L-functions

L(X/Q,s) = [[P(X/Fpp*)""  (Res>>0). (A.114)
p

One of the most important conjectures in modern arithmetic algebraic geometry is that
each L, has remarkable analytic properties. For example, it is expected that L, can be ana-
lytically continued to a meromorphic function on the complex plane which has a functional
equation with respect to the symmetry s — r + 1 — s. For a few varieties, these properties
can be proven but in almost all cases they are conjectural. For a more detailed treatment,
we refer to [53].

We finish with some remarks regarding the computation of the local zeta function. We
have seen that the local zeta function can be obtained by either counting the number of
points over finite fields or studying ¢-adic cohomology groups. In practice these methods
quickly become infeasible for complicated varieties and large primes p. However, there are
also p-adic cohomology theories which allow a more efficient computation. A good review
explaining how these can be used to compute the local zeta function is [61]. Given a family of
varieties one may further use the periods to compute the local zeta function very efficiently.
This was first considered by Dwork and for one-parameter Calabi-Yau threefolds this is

explained for example in [23].

A.3.3 The motivic point of view

The idea of motives was proposed by Grothendieck to capture the cohomological structure

of varieties. We want to briefly explain this idea without going much into detail. For more
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details we refer to [4]. We start by explaining geometric motives. Let X be a smooth
projective variety of some dimension n. For simplicity, we assume that X is defined over Q
(more generally one could consider any number field). In we recalled that for every

integer 0 < r < 2n we can associated different cohomology groups with X:

- by considering the complex points on X we obtain a topological space X (C) which

gives rise to the Betti cohomology group H" (X (C),Z),

- using the structure of X as a variety defined over Q we obtain the algebraic de Rham

cohomology group Hjp (X) with the usual Hodge filtration,

- letting X be the variety X regarded as a variety over Q one obtains for any prime ¢
the /-adic cohomology group H" (X, Q) upon which Gal(Q/Q) acts.

We also saw that these are not unrelated, e.g. there are comparison isomorphisms between
H"(X(C),Z) ®z C and Hz(X) ®g C and between H" (X (C), Q) ®g Q; and H" (X, Qy).

The simplest example of a geometric motive is the vector space V = H"(X(C),Q) to-
gether with the Hodge decomposition on V ®gC and the action of Gal(Q/Q) on V ®@¢ Qy for
primes /. More generally, consider an algebraic cycle v € Z™(X x X) defined over Q (an ex-
ample of a correspondence). This induces an element in H?"(X x X) and using the Kiinneth
isomorphism and Poincaré duality this gives elements o, € End(H" (X (C),Q), H"(X(C),Q))
for any 0 < r < 2n. The same can be done for the algebraic de Rham cohomology groups
and the f-adic cohomology groups. If some o, is a projector we now say that the kernel
(and hence also the image) of o, is a geometric motive. This subspace is automatically
compatible with the Hodge decomposition and the action of Gal(Q/Q). The weight of such
a motive is defined to be r and can be read off from the motive itself by the fact that the
eigenvalues of Fr) have absolute value p'/2.

Conjecturally, any linear subspace V' C H" (X (C), Q) that is compatible with the Hodge
decomposition and the action of Gal(Q/Q) defines a geometric motive, i.e. is cut out by some
correspondence. Even stronger, Hodge-like conjectures and Tate-like conjectures would im-
ply that a linear subspace V' C H" (X (C), Q) is already a geometric motive if it is compatible
with the Hodge decomposition or with the Galois action. This can be summarized in the

following diagram:

V is cut out by
a correspondence

Hodge-like Tate-like
conjectures conjectures
V' is compatible with V' is compatible with

the Hodge decomposition the Galois action
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More generally, a motive can be thought of as a suitable collection of vector spaces
(equipped with a Hodge decomposition and an action of Gal(Q/Q) with additional compat-
ibilities). It should always be representable as a geometric motive contained in a cohomology
group of some variety, but the choice of the geometric realization is not part of the definition
of the motive. Examples of motives that do not refer to specific varieties are hypergeometric
motives, for which we refer to the survey article by Roberts and Villegas [81], and motives

associated with modular forms, which we now describe.

A.3.4 The motives attached to Hecke eigenforms

In this final subsection we explain that there are motives attached to arbitrary newforms,
the weight of the motive being one less than that of the modular form. The point we want
to stress is that the motive V; attached to a newform f is an intrinsically defined object,
independent of any specific geometric realization: it always has a geometric realization, as
a consequence of the Eichler-Shimura theory if £ = 2 and of the work of Deligne if k£ > 2,
as explained below, but in general it can have others. The situation of relevance to this
paper is that of the motives attached to newforms of weight 4 and 2 occurring in the 3rd
cohomology group of some Calabi-Yau threefolds (fibers over conifold points and attractor
points of hypergeometric families), but there are many other examples in the literature. For
instance, it was shown by Ron Livné in the 1980s that the Ly-factor of the Hasse-Weil zeta
function of the 7-dimensional variety {(z1 :---:210) € P? | >, 2; = Y, 23 = 0} splits as a
product of a number of Riemann zeta functions and the L-function of the unique newform
of level 10 and weight 4. For more discussion and other examples we refer to [104] (pp.
150-151), [100], and [77].

Geometric realization of Vy for all newforms The simplest situation arises for mod-
ular forms of weight 2 and some level N. In this case one can consider the modular curve
Xo(N) =To(N)\$H and there is a canonical isomorphism

S2(To(N)) = Hig(Xo(N),C)

(A.115)
[F] — [2miFdT].

In fact, Xo(INV) can be given the structure of a smooth projective variety defined over Q and if
one restricts to classes that can be represented by forms in Sgoo] (T'o(N)) with rational Fourier
coefficients this gives an isomorphism with H} (Xo(N)). Hence we have a natural motive
V = HY(Xo(N),Q) we can consider. For any divisor N’ of N there are [[o(N') : To(N)]
correspondences on Xo(N) x Xo(N) which give a splitting V' = V"V @ Vo4 corresponding
to the splitting into old forms and new forms. There are Hecke correspondences which
further split V"¢V so that attached to any newform f with rational Hecke eigenvalues (the
case of more general coefficients is similar) we obtain a 2-dimensional geometric motive V.

From the work of Eichler and Shimura it follows that for all primes pt N and ¢ # p
det(1 — FryT|Vy ®q Q) = 1 — apT + pT*
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where a,, is the eigenvalue of f under T,,. We conclude that attached to f there is a geometric
motive V}; so that the periods of Vy are the periods of qusiperiods and f and the traces of
the Frobenius operators are just the eigenvalues of the Hecke operators.

For newforms f € Si(I'o(N)) of weight k& > 2, Deligne [27] showed that the Hecke eigen-
values coincide with the eigenvalues of the Frobenius operators in the (k — 1)-st cohomology
group of an appropriate Kuga-Sato variety, defined as a suitable compactification of a fiber
bundle over I'g(N)\$ whose fiber over a point 7 is the (k — 2)-nd Cartesian product of the
level N elliptic curve E;. Scholl [87] used this construction to associate a motive with V;
with f. If f has rational Hecke eigenvalues the attached motive V} is again 2-dimensional
and the periods of V; are given by the periods and quasiperiods of f.

We remark that newforms of weight 1 (defined either for suitable subgroups of I'g(N)
or with a character in the slash operator) are also motivic. Geometrically these motives
are not very interesting since the relevant varieties are 0-dimensional. As an example we
consider the newform of level 23 defined by f(7) = n(7)n(237). This is associated with the
variety defined by 23 — 2 — 1 and this manifests in the number of roots of this polynomial
over the finite field ), for primes p # 23 being a, + 1 where a,, is the eigenvalue of the Hecke
operator T),. This example was given by Blij in [94].

Correspondences between different geometric realizations Conjecturally, two dif-
ferenet geometric realizations of motives must be related by a correspondence. We give one
example in Section 4] where we construct a correspondence between a conifold fiber of a
hypergeometric family of Calabi-Yau threefolds and a Kuga-Sato variety associated with
the unique newform f € S4(I'9(8)). The Tate conjecture would imply that there must be
a correspondence already if two Galois representations coincide. While the construction
of correspondences can be difficult, theorems of Faltings and Serre allow to establish the
equality of two Galois representations by comparing finitely many Frobenius traces. E.g.
for the conifold fiber of the quintic this was used by Schoen [86] to prove the equality of the

associated Galois representation with that of the relevant newform of level 25 and weight 4.

B Appendix: Computational Results

In the main part of this paper we considered 16 newforms of weight 4 (associated with
14 conifold points and 2 attractor points) and 2 newforms of weight 2 (associated with
2 attractor points). The Atkin-Lehner eigenvalues and beginning of the g-expansions of
these forms can be found in Table|§| (for the modular forms associated with conifold points)
and Table [9] (for the modular forms associated with attractor points). In the following we
explain how we computed the periods and quasiperiods associated with these forms.

For each newform f of level N and weight k we choose the Eichler integral J?: foo as
defined in and then compute the period polynomials () for a set of generators of
I['o(N) by using with 79 chosen so that the imaginary parts of 7y and vy~ 17y are as
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N Wa- W Ws- beginning of g-expansion

8 1 q—4¢° —2¢° +24¢" — 11¢° — 444 + - -
9 1 q — 8¢* 4+ 20¢" — 70¢'3 + 64¢'® + 56¢*° + - --
16 1 g+4¢°® —2¢° — 24¢" — 11¢° + 44¢** + - -
25 1 g+ +7¢ -7 + 7  +6¢" + -

27 -1 q—3¢*+q* —15¢° — 25¢" +21¢° + - --
32 | -1 q—8¢® —10¢° — 16¢" + 37¢° + 40¢"* + - --
36 | —1 -1 g+ 18¢° +8¢" — 36¢*" — 10¢"* — 18¢'7" + - -
72 1 -1 q—14¢° — 24q¢" + 28¢* — 74" — 82¢*7 + .-
108 | —1 1 q—9¢° — q" — 63¢*t — 28¢'3 — 72417 + -
128 | —1 q—2¢° +6¢° —20¢" — 23¢° — 14¢™ + - -+
144 1 1 q+16¢° + 12¢7 — 64¢** + 58¢"3 +32¢*7 + - -+
200 1 -1 g+ q® —6¢7 —26¢° —19¢*t +12¢13 + - .-
216 1 -1 g+ q° —9¢" — 17¢" — 44¢" +56¢'7 + - -
864 | —1 -1 q —19¢° — 13¢" — 65¢** — 56¢*% — 108¢*" + - - -

Table 8: Atkin-Lehner eigenvalues and the g-expansions of newforms of weight 4 associated

with conifolds.

N k| W, Ws- W beginning of g-expansion

36 2 | —1 1 q—4q 1 2¢% 1 8¢° — 5¢® — 4> 1 .-
54 20 1 —1 04— +q" +3¢° —q" ¢+

54 41 -1 -1 q+2q* +4q" +3¢° +29¢7 +8¢° + - --
180 4| —1 1 =1 | g+5¢°+2¢" +30¢" —4¢" +90¢"" + - --

Table 9: Atkin-Lehner eigenvalues and the g-expansions of newforms associated with at-
tractors.

large as possible. These period polynomials can then be written as

+

ri(v) = wiFf(v) +wi () (B.1)

with f]i{ € Z1(To(N), Vi_2(Q))* and we choose the periods wjjf so that all f? have integral
coefficients and do not have any non-trivial common divisor. This makes the periods unique
up to a sign which we fix by requiring w;f,lm Wy
periods and fjjf(v) for a chosen v € T'y(IN) in Table |12/ and Table

To compute the quasiperiods associated to a normalized Hecke eigenform f of level
N and weight k£ we first find a meromorphic form F' such that [F] has the same Hecke

> 0. We list numerical values for the

eigenvalues as f. We make the ansatz

r=9 (B.2)

h
where g € Si4, (I'0(/V)) has the same Atkin-Lehner eigenvalues as f and h € My, (I'j(N))
is chosen such that kj, is as small as possible and A has the maximal vanishing order at oc.
Such a form necessarily has to be an eta quotient and the forms are explicitly given in Table
We then determine g so that [F] has the same Hecke eigenvalues as f and normalize F'

so that the quasiperiods fulfill
w;n; - w;n;; = (2mi)F L. (B.3)

This makes [F] unique up to the addition of rational multiples of [f]. For the modular

forms associated with the conifold points we fix this by requiring that the ratios nf /et
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are rational and for modular forms of weight 2 (or 4) associated with the attractor points
we fix this by requiring that the projection of II”(2,) (or I1"(z,)) on the Hodge structure
(1,2) (or (0,3)) are given by rational linear combinations of the quasiperiods (or rational
linear combinations multiplied by 27i). The beginning of the g-expansions of our choice of
meromorphic forms can be found in Table [10]and Table The resulting numerical values
for the quasiperiods are given in Table [I2] and Table We provide a supplementary Pari

file containing more detailed data at [14].

N beginning of g-expansion

8 —q~ ' —52q — 25697 — 1842¢° — 10240¢™ — 40792¢° — 1382404° + - --

9 —3q7" — 108q — 246¢° — 2615¢® — 7884¢" — 32853¢° — 104976¢° + - - -

16 8¢ 2 —4q™ " — 96q + 4164 + 3000¢> + 18432¢* + 75968¢° + 2604964¢° + - - -

25 —21647% _ 32472 _ 280g — 1344q¢” — 29228¢® — 40640¢" — 165000¢° — 543360¢° + - - -
27 96¢~2 — 408¢ — 5832¢> — 24288¢* — 69984¢° — 209952¢° — 505536¢" — 11897284 + - - -
32 864¢ 3 +512¢72 + 128¢ 1 — 2112¢ — 12288¢% — 66816¢> — 327680¢* — 1094816¢° + - - -
36 96g™ % +27¢7% — 8¢ 2 — 12¢ ! — 115¢ + 1128¢> + 7992¢> + 38048¢™ + - - -

72 12348¢~7 + 194405 4 29250¢ > + 3225644 + 28674¢ > + 167042 + 3852¢ L + - --
108 41472¢7 12 + 127776¢ 1 + 216000¢ 10 + 384912¢° 4 602112¢ % + 839664¢~ 7 + - - -
128 | 219488¢ 1Y 4 373248¢7 1% + 628864¢ 7 — 2052000¢ " *° — 6849024¢** — 164511362 + - - -
144 | 139968¢~ ' 4+ 202500¢ 1% + 329280¢ 4 + 685464¢ 2 + 1140480¢'? 4+ 1661088¢ ' + - - -
200 —8230800¢ % + 3930400¢~ 17 4 6553600¢ ¢ + 310500004~ *° + 50489600¢ 4 + - - -
216 1752048¢~ % + 12266496922 + 36006768¢ 2! + 80640000¢~2° + 175809888 ° 4 - - -
864 —2176782336¢ 0% — 4233748608¢ 1°7 — 8503971840¢ 194 + 20782697472¢ 192 4. ..

Table 10: The g-expansions of meromorphic partners of weight 4 associated with conifolds.

N k beginning of g-expansion

36 2| L T+ Tg+247+ B¢ +12¢" +19¢° +36¢° — Zq7 + 88¢° + 117¢° + 180¢™ + - --
54 2 —2¢7% +2¢7 4 36¢ — 44¢® — 10¢* + 58¢° — 162¢° — 192¢" — 450¢° + - - -

54 4 | 1125¢7° —384¢~* 4+ 486¢~ 2 — 264¢~ 2 — 18¢~ ! + 10374q + 24744¢> + 19197¢> + - - -
180 4 165888¢ 12 — 31944~ — 24000¢™ % + 52488¢ 7 + 49152¢° + 65856 " + - - -

Table 11: The g-expansions of meromorphic partners associated with attractors.
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N N () w} ny
7 (v) wy Nr
g 5 —2 872+ 67 — 1 6.997563016 —261.3739159
8 -3 47?4 4r—1 8.671187331i —359.3354423i
0 7 —4 —3r+2 2.756850738 —251.8644616
9 -5 —672 + 7T —2 14.32501690i —1398.702062i
16 5 -1 —1677 + 87— 1 4.335593665 —473.0985414
16 -3 3272 — 127 + 1 6.997563016i —820.7842673i
o 6 -1 —5077 + 207 — 2 3.208713029 —689.385618
25 —4 9072 — 287 + 2 6.146700439; —1397.911578i
o7 20 -3 9972 — 307 + 2 2.446835111 —805.6020738
27 —4 18972 + 541 — 4 3.688508720i —1315.789720i
2 19 -3 —80077 + 2567 — 21 1.294170585 —1663.153920
32 -5 —9672 + 327 — 3 2.5094652914 —3416.610839i
26 7 -1 18072 — 487 + 3 3.389773856 —563.4426618
36 -5 25272 — 727 +5 4.669340978i —849.30625014
- 1 —4 626477 + 12241 — 61 0.814623455 —2926.645309
7 -7 93672 + 1807 — 9 1.761169120i —6631.737112i
108 77 -5 —594072 + 7687 — 27 0.430875512 —5475.977852
108 -7 —1112472 + 14407 — 47 0.973682307i —12950.17424i
198 =5 3520072 + 49607 — 177 0.420682347 —6281.481738
128 -9 —345672 + 4801 — 17 1.199538394i —18113.21495¢
L -1 5875277 — 89287 + 336 0.234935370 —10002.22789
144 ~11 2073672 — 31687 + 120 0.572179387i —25416.00625¢
900 109 -6 62600072 + 690007 — 1916 0.067278112 —43624.24958
200 —11 —4520072 + 50007 — 140 0.233028535i —154786.5233i
916 185 —6 20916077 — 194407 + 305 0.092748402 —25980.21583
216 —7 —14061672 + 90721 — 147 0.266377323i —177290.71700i
261 559 —11 —1572566472 + 6179047 — 6099 0.028461772 —121085.3301
864 —17 —648777672 + 2553121 — 2511 0.113238985i —490469.4664i

Table 12: Period polynomials and approximate values of periods and quasiperiods for new-
forms of weight 4 associated with conifolds and for chosen vy € T'g(V).

N K ~ 7y (1) wy i
T () Wy Ui
36 92 ( 61 —13 ) -1 2.103273157 35.27180728
108 —23 -1 1.214325323i 23.351524234
54 9 ( 43 —4 ) 1 1.052362237 32.63160582
54 —5 -1 0.8924581004 33.643858541
k4 4 ( 23 -3 ) —28877 4+ 7517 — 5 6.323218461 64915.70757
54 —7 75672 — 2077 + 13 0.761033398; T773.7265634
180 4 ( 77 -3 ) —5220072 + 40687 — 81 0.549166142 429900.2582
180 -7 5580072 — 43327 + 83 0.2616650004 204385.8725¢

Table 13: Period polynomials and approximate values of periods and quasiperiods for new-

forms associated with attractors and for chosen v € I'g (V).
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Nk h beginning of ¢g-expansion

8 4 o ¢* — 8¢° + 24q* — 32¢° + 28¢5 + - --

9 4 2y ¢® — 643 +9¢* +14¢° — 54¢5 + - --

16 4 L1 q* — 8¢5 + 24¢° — 327 + 24¢° + - --

o5 4 1552255 ¢ —5¢° +5¢7 +10¢% — 15¢° + - - -

27 4 e ¢® — 6¢7 +9¢% + 12¢° — 42¢'0 + - -

32 4 152 ¢ — 8¢° + 24¢"° — 32¢'! + 24¢"% + - .-
36 4 1266%646142%;6138666 qa —6 q7 +15 qs _99 q9 +921 q10 4.
54 4 133125129713155413 q9 N 3q10 . 3q11 + 15q12 _ 3q13 4.
79 4 21363i24836f);3122:422§3 q12 _ 6q13 + 12q14 _ 4q15 _ 15q16 4.
108 4 12664362692211822223766215%:23(? q18 _ 6q19 +1 5q20 _9 4q21 + 33q22 4.
128 4 L ¢*2 — 8¢ + 24¢°* — 32¢% + 24¢%° + - -
144 4 126363249863116;32448241742%6 q24 —6 q25 +12 q26 _ 4q27 _ 18q28 4.
180 4 | RS a0 5 2+ 1002+
200 8 | USTIP2P0020010 460 10461 4 40652 — 805 + 95¢5 + - -
216 4 12636;28:31922121482152473673262112018%6 q36 —6 q37 +12 q38 —6 q39 _ 3q40 4.
364 4 12636312198211267365342369468212184842148362436 q144 —6 q145 +12 q146 _ 6q147 _ 6q148 4

Table 14: For each given level N the unique normalized form h € My, (I'§(IN)) such that &y,
is as small as possible and h has maximal vanishing order at co. The notation is such that

1888 n(r)°n(87)°
e.g. 51,7 corresponds to 2@ AR
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