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PERIOD FUNCTIONS AND THE SELBERG
ZETA FUNCTION FOR THE MODULAR GROUP

JOHN LEwWIS AND DON ZAGIER

The Selberg trace formula on a Riemann surface X connects the discrete spectrum of
the Laplacian with the length spectrum of the surface, that is, the set of lengths of the
closed geodesics of on X. The connection is most strikingly expressed in terms of the
Selberg zeta function, which is a meromorphic function of a complex variable s that is
defined for (s) > 1 in terms of the length spectrum and that has zeros at all s € C
for which s(1 — s) is an eigenvalue of the Laplacian in L2(X). We will be interested in
the case when X is the quotient of the upper half-plane H by either the modular group
I'; = SL(2,Z) or the extended modular group T' = GL(2,Z), where vy = (|, Z) € I' acts
on H by z+ (az+b)/(cz + d) if det(y) = +1 and 2 — (aZ + b)/(cZ + d) if det(y) = —1.
In this case the length spectrum of X is given in terms of class numbers and units of
orders in real quadratic fields, while the eigenfunctions of the Laplace operator are the

non-holomorphic modular functions usually called Maass wave forms. (Good expositions
of this subject can be found in [6] and [7]).

A striking fact, discovered by D. Mayer [4, 5] and for which a simplified proof will be
given in the first part of this paper, is that the Selberg zeta function Zr(s) of H/I" can
be represented as the (Fredholm) determinant of the action of a certain element of the
quotient field of the group ring Z[['] on an appropriate Banach space. Specifically, let V be
the space of functions holomorphic in D = {z € C | [z—1| < 2} and continuous in D. The

semigroup {7y € I' | 7(D) C D} acts on the right by m,(_, Z)f( ) =(cz+d)™2 f(2E). In

particular, for all n > 1 the element ((1) ,11), which can be written in terms of the generators

o= (1(1]) and p = ((1) 1) of T" as 6™~ 1p, acts on V. It turns out (cf. §2) that the formal

expression
oo
L= (1-0) z (1)

defines an operator L, = m,(L) of trace class on V (first for R®(s) > 3, and then by
analytic continuation to all s). This implies that the operator 1 — L, has a determinant
in the Fredholm sense; and the result then is:
Theorem 1. The Selberg zeta function of H/T is given by

Zr(s) =det(1 — L,). (2)
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(Actually, Mayer’s result is that the Selberg zeta function of H/T'; equals det(l - Lﬁ),
but everything works in much the same way for the two groups I' and I'; . We will discuss
both cases, but in our exposition have given precedence to the larger group I'.)

On the other hand, as we already mentioned, the function Zr(s) has a meromorphic
continuation with zeros corresponding to the eigenvalues of even Maass wave forms on
SL(2,7Z). Formally, equation (2) says that these zeros correspond to the fixed points of
Ly, ie., to the functions h € V such that h(z) = Y oo (z 4+ n)"2*h(1/(z + n)). Adding
z=2%h(1/z) to both sides we find that h(z) + 272°h(1/2) = h(z — 1), or equivalently, that
the shifted function 1(z) = h{z — 1) satisfies the three-term functional equation

P(2) =Pz +1) + 27 ¥ (1 +1/2). (3)
It is therefore natural to ask whether there is a direct connection between the spectrum of
the Laplace operator A on H/T" and the solutions of the three-term functional equation.
Such a connection was discovered (independently of Mayer’s work) in [2], whose main
result, in a slightly strengthened form, can be stated as follows:

Theorem 2. Let s be a complex number with 0 < R(s) < 1. Then there s a canonical
bijection between square integrable solutions of Au = s(1 — s)u in H/T and holomorphic
solutions of (3) in the cut plane C’' = C\ (—00, 0] satisfying the growth condition ¥ (z) =
O(1/z) as ¢ — 0.

The formula for the correspondence u — ¥ in [2] was completely explicit (eq. (12) below),
but its proof was indirect and did not make the reasons for its properties at all transparent.
Other proofs and several other formulas for 1 in terms of u were found in [3], where it was
also observed that this correspondence is exactly analogous to the relationship between
a holomorphic modular form and its period polynomial in the sense of Eichler, Shimura,
and Manin. We will call the function ¥(z) the period function of the wave form wu.

Taken together, these two theorems give another point of view on the Selberg trace for-
mula: Theorem 1 relates the “length spectrum” definition of the Selberg zeta function to
the fixed points of the operator L, and hence, by implication, to the solutions of the func-
tional equation (3), and Theorem 2 relates the solutions of (3) to the “discrete spectrum
of the Laplacian” definition of Zr . In this paper (which, except for the simplifications in
the proof of Theorem 1, is mostly expository) we will discuss both aspects. Part I uses
reduction theory to establish the connection between the Selberg zeta function and the
operator L, . In §1 we outline a proof of Theorem 1. The details (e.g. the proofs of vari-
ous assertions needed from reduction theory, verification of convergence, etc.) are filled in
in §2, while the following section gives various complements: the modifications when I’
is replaced by I';, a reformulation of some of the ideas of the proof in terms of group
algebras, and a brief description of Mayer’s original approach via the symbolic dynamics
of the continued fraction map. Part II describes the connection between the solutions
of the functional equation (3) and the eigenfunctions of the Laplacian in H/T". We will
give several formulas for the u <> ¥ correspondence, sketch some the ideas involved in the
proof, describe the analogy with the theory of periods of modular forms, and discuss somc
other properties of solutions of (3) on C’ or on R*. Here we will give fewer details than
in Part I and omit all proofs, referring the reader to 2] and [3] for more information.



PART I. REDUCTION THEORY AND THE SELBERG ZETA FUNCTION

§1. The formal calculation. The basic conjugacy invariants of an element v € T are the
numbers Tr(v), det(y), and A(y) = Tr(y)? — 4det(y) (trace, determinant, discriminant).
We will call v hyperbolic if A(y)is positive and (to distinguish between v and —+, which
act in the same way on H) also Tr(y) > 0. If v is hyperbolic, we set :

i\ 2 -8 —s8
N(v) = (Trm +20) ) , o Xs(v) = NOZE= N ) (s €C)

2 Ayt 1—=det(y) N(y)~1

and define k(v) as the largest integer k such that v = v§ for some vy € T (which is then
hyperbolic and primitive, i.e. k(7o) = 1). The Selberg zeta function Zr(s) for I is defined
by

o0
Ze(s)= [ [ -dettn)™Np)™™)  (R(s) >1),
{v}in I m=0
4 primitive
where the notation “ {v} in I'” means that the product is taken over all (primitive hyper-
bolic) elements of I" up to I'-conjugacy. That the function Zr(s) extends meromorphically
to all complex values of s is one of the standard consequences of the Selberg trace formula,

which expresses its logarithmic derivative as a sum over the eigenvalues of the (hyperbolic)
Laplacian in H/T.

For R(s) > 1 we have the simple computation

—log ZF(S) = Z Z Z % kmN( ) ~k(8+m)

{7} in I m=0 k=1

v primitive

= ¥ S iaiw
- k —k
e fo k1= det(nRN ()
v primitive
- 3 k—({y—)xsm, 4
{r}inT

~ hyperbolic

where the last step just expresses the fact that every hyperbolic element of I' can be
written uniquely as ¥* with 4 primitive and k > 1.

To get further we use a version of reduction theory. This theory is usually presented
for quadratic forms, but is translatable into the language of matrices by the standard
observation that there is a 1:1 correspondence between conjugacy classes of matrices of
trace t and determinant n and equivalence classes of quadratic forms of discriminant
t2 — 4n. We define the set of reduced elements of I' by

Red:{(i’ 3)el‘| 0< ac<bec Sd},
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l.e. matrices with non-negative entries which are non-decreasing downwards and to the
right. (We will explain in §3B where this definition comes from.) Then we have the
following facts, whose proofs will be indicated in §2:

. . . 0 .
(I) Every reduced matrix can be written uniquely as a product (cl) nll ) e (1 nll) with

ni,...,ne > 1 for a unique positive integer £ = £(v).
(II) Every conjugacy classes of hyperbolic matrices in T’ contains reduced representa-
tives ; they all have the same value of £(v) and there are £(7)/k(y) of them.
(III) If «y is reduced, then the operator m4(7y) is of trace class and Trm,(v) = xs(7)-

Combining these assertions with (4), we find

—log Zp(
og Zr( (u) E

veRed (7
= (egRjd e—(% n)
= Tr(gjﬁ(i n(e0)), o)

and this is equivalent to (2) by the definition of £ and the Fredholm determinant formula
log det(1 — L) = — 3252, Tr(LE)/¢.

§2. Details. In this section we verify the assertions (I)=(IIT) and establish the validity of
the formal calculations of §1 for #(s) > 1; (2) then holds for all s by analytic continuation.

A. Proof of (I). Suppose that v = (23) € Red. If a = 0 then v = ((1) ;) with d > 1
and we are already finished with £(v) = 1. If @ > 0, we set n = [d/b} — 1 (i.e. n is the
unique integer n < d/b < n + 1). One easily checks that this is the only n € Z for which
v = (? i)’y* with v* € Red. Moreover, the sum of the entries of v* is smaller than that of
v, 80 we can assume by induction that 4* has the form claimed, and then so does v with

by) =£(v") +1
B. Proof of (II). This is essentially equivalent to the theory of periodic continued

fractions: to each hyperbolic matrix v = (2 3) we associate the roots %ﬂ‘ﬁ@ of
vr = z, which are quadratic irrationalities; two +’s are conjugate if and only if the
corresponding roots are I'-equivalent; each quadratic irrationality has a continued fraction
expansion 1/(my 4+ 1/(mz + 1/--+)) which is eventually periodic; and if the fixed point

of v has a continued fraction expansion with period (nj,...,ng) then v is conjugate to
. 401 01 .
the reduced matrix (;, )---(y,,) with ny,... ,n¢ > 1. However, one can also do the

reduction procedure directly on the matrix level. We define a conjugacy class preserving
map F from the set of hyperbolic matrices to itself by v = (z g) — Fy) = (0 ! )_17( 01 )

1n 1n
where n is the unique integer for which the interval [n,n + 1] contains both d/b and c/a.

(This definition must be modified slightly if @ = 0.) Notice that if «y is reduced then this
is the same n as was used in the proof of (I) and F(v) is simply 7*(? :;) in the notation
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above. The effect of F on a reduced matrix v = ((1) n11 ) ([1) nlt ) is thus simply to replace

it by the cyclically permuted product F(y) = (0 ! )---(0 ' )(0 ! ). It is clear that

1 no 1mn, 1ng
under this “internal conjugation” the exact period of v will be the number £(vy)/k(y).
(Proof. If v is the kth power of another matrix v’ with k > 1, then 7/ is also reduced and

hence also a product of matrices (? 71;), and the cycle (nq,...,ng) for v is just the k-fold

concatenation of the cycle for 4'; and conversely if the cycle of «y is a k-fold concatenation
then v is a kth power. Hence £(vy)/k(7) is the exact period of the sequence of integers
{ni}.) The assertion of (II) is thus proved if we show that (i) iterating F' often enough
eventually sends an arbitrary hyperbolic element of I' to an element of Red, and (ii) two
elements of Red are [-conjugate only if they are already “internally” conjugate, i.e., if and
only if one is mapped to the other by a power of F. Both steps are proved by a series
of elementary inequalities which show that each application of F' “improves things” (i.e.
either makes a non-reduced matrix more nearly reduced in the sense that some positive
integer measuring the failure of the inequalities defining Red gets smaller, or else reduces
the size of the entries of the matrix conjugating one reduced + into another). We omit
the details, which are exactly parallel to the proofs of the corresponding assertions in the
usual reduction theory of quadratic forms as carried out in standard books, e.g. in §13

of [8].

C. Proof of (III). If v is reduced, then ¥ maps the closed interval [—%, %] into the
half-open interval (0,2} and hence maps the closed disk D into the open disk . Standard
results from the theory of composition operators on spaces of holomorphic functions (cf. [5],
Thm. 7.9 and Lemma 7.10 and the papers cited there) then imply that the operator m,(g)
is of trace class and that its trace equals x;(g).

D. Verification of convergence. The operator L, = 74(L) sends h € V to
= 1 1

Ll = I .

( 51‘)(2) Z(Z+n)2s L(Z+n)

n=1

Since £ is holomorphic at 0, the sum converges absolutely for s in the half-plane R(s) > —é-
to a function which again belongs to V, and the absolute convergence also implies that
this operator is of trace class. We have to show that in the smaller half-plane R(s) > 1
all of the steps of the calculations in (4) and (5) are justified. But this follows from the
calculations themselves: The absolute convergence of the product defining Zpr(s) (and
hence of the sum defining its logarithm) for R(s) > 1 is well-known, and since in (4) and
(5) all terms are replaced by their absolute value when s is replaced by its real part, the
various interchanges in the order of summation are automatically justified. The validity
of the last line of the proof also follows, since the formula ¥ Tr(A%)/¢ = — logdet(1 — A)
is true for any trace class operator A for which Y |Tr(A?)/¢| converges. We can also run
the calculation backwards (and hence verify the convergence of the infinite product for
Zr(s) in the half-plane R(s) > 1) by showing directly that the sum M, := Z—yeRed Ixs ()]
is convergent for R(s) > 1. Indeed, we have

o=y (k+\/k"’_—2)1_m(s)+z & (k+\/m)1-m<s>
) k>3vk2_4 2 k>1Vk2+4 2 ,




with cf = # {7 € Red | Tr(y) = k, det(y) = %1}, and the required convergence follows
from the estimate cf < k**¢ (Ve > 0), which is obtained by straightforward estimates
using the divisor function.

§3. Complements. In this section we discuss some further aspects of the proof given in
the last two sections.

A. The Selberg zeta function for SL(2,Z). In this subsection we treat the case
when the group I' = GL(2,Z) is replaced by its subgroup I'y = SL(2,Z), the usual
modular group. We denote by Z(s) the Selberg zeta function for T'y, which is defined
for R(s) > 1 by the same product expansion as before but with the product running
over I'j-conjugacy classes of primitive hyperbolic elements of I'y. As mentioned in the
introduction, the statement of Theorem 1 for I'y is the identity

Z(s) = det(1 — L%). (6)
We indicate the changes that have to be made in the proof of §§1-2 in order to prove this.

The calculation (4) is unchanged except that now the summation is over I'1-conjugacy
classes and the number k() must be replaced by k,(7y), the largest integer n such that -
is the nth power of an element in I'y. For the first line of (5) we needed that

£(v)
' / _
vel = #{v GRedl'rrv}—k(v), (7)
which followed from Statement (II). This must now be replaced by
£(v)
' / _
vyelh = #{~» GRedlvrlv}— TR (8)

which we will prove in a moment. The first line in (5} then becomes

—log Z(s) = Z %Xs(’)’), (9)

~yel1NRed
and the restriction v € I'y implies that in the last line of (5) we sum only over even £.

It remains to prove (8). Write ¥ = 4§ where k > 0 and 7, is primitive in [, and set
2o = £(7yo). Then k() =k, £(y) = k£, and (7) expresses the fact that the I'-conjugates to
v in Red correspond to the £, possible “internal conjugates” of a reduced representative
of this conjugacy class. We now distinguish two cases. If det(yg) = +1, then ki (vy) = k
(because v € Ty and is clearly primitive there), but £; is even and the number of 4’ € Red
which are I'y-conjugate to v is £y/2, because half of the £y “internal” conjugations in our
cycle are conjugations by elements of determinant —1 and hence are no longer counted. If
on the other hand det(yg) = —1, then k is even and k() = k/2, because the element 42 is
now primitive in I';, but to make up for it the number of 4’ € Red which are I';-conjugate
to v is now the full number 44, because there is no longer any distinction between internal
conjugacies by elements of determinant +1 or —1. (Conjugating by the product of the

first 7 matrices (? i) of the cycle of vy is the same as conjugating by the product of the

last €9 — r of them, and r and €3 — r have opposite parities.) This establishes (8) in both
cascs.



B. Identities in the group ring. In this subsection we redo part of the calculation
in §1 in a slightly different way in which the elements of Red are built up out of powers of
a finite rather than an infinite sum; this also helps us to understand the structure of Red
and permits us to make sense of the formal expressions in (1).

Recall that ¢ = (1 (1)) and p = (? 1) These elements generate I", but of course not at

all freely: e.g. one has (071p)? = (672p?)® = 1. On the other hand, the subsemigroup
Q of I’ generated by p and o is the free semigroup generated by these two elements, i.e.
its elements are all words in ¢ and p and all such words distinct. In fact, the set Q is
contained in the larger sub-semigroup P of I' consisting of all matrices with non-negative
entries, which is easily seen to be the semigroup generated by the two elements & = ((1) (1,)
and o, subject to the unique relation 2 = 1. Since p = ok, every element of P is either
a word in p and o or else & times such a word, so P = QU kQ (disjoint union). This
says that Q \ {1} = oP, the subset of P consisting of words in x and ¢ which begin with
a o, or equivalently of matrices (ZZ) satisfying ¢ > a > 0, d > b > 0. In turn, the
subset of Q counsisting of words in ¢ and p which end in a p is the subset of those elements
satisfying the additional inequalities b > a > 0, d > ¢ > 0, i.e. precisely our set Red. This
shows again that the elements of Red are uniquely expressible as products of the matrices
o ip = (2 ,11) with n > 1. We define £(y) for any v € Q as the number of p’s in the
representation of v as a word in p and o; this agrees with our previous definition on the
subset Red = Qp.

Let Q. be the subset of Q consisting of words in p and ¢ of length n. The recursive
description Qo = {1} and Qui1 = QuoUQnp implies the identity 35 q [v] = ([o]+ (o))"
in the group ring Z[I']. More generally, if we introduce a variable v and define
01
11

Ko=lo)+vlp)=[11]) +v[},] € Z[TI),

then we have K, =37 . v¥" [y]. On the other hand, Q = [J°°, Q,, so to deal with
all of Q (or Red) we must work with infinite sums of elements of T'. In particular, let

o0
Lo=(1-wo)p =S w]}].
n=1

This reduces to our previous formal expression £ at w = 1, but now makes sense as an
element in the ring Z[I')[[w]] of formal power series in one variable over the group ring
Z[I'], or as an element of C[I'] if w € C, |w| < 1. Then we have the identities

K 7l = >0 "7 ) and £,f= ) wtO[y],

v€Red v€Red
n(y)=n tx)=t

where n(7y) for v € Q denotes the length of v as a word in ¢ and p. Combining, we get

(1- 'w)Cv)_l[p] = Ly (1 —vw Ew)_l = Z AT T
v€Red



Integrating with respect to v gives the identity

e ()
—log(l —vw Ly) = Z T )w 4],
~yERed v

and the content of §1 can now be summarized by saying that we computed — log Zp(s) as
the trace of #m, of this sum on V in the limit v = w = 1.

C. The Selberg zeta function and the dynamics of the Gauss map. The proof
of equation (6) given originally by Mayer is parallel in many ways to the one given above,
but was expressed in terms of ideas coming from symbolic dynamics. Specifically, he used
the connection between closed geodesics on H/I'; and periodic continued fractions to
relate the Selberg zeta function to the dynamics of the “continued fraction map” (Gauss
map) F : [0,1) — [0,1) which maps z to the fractional part of 1/z (and, say, to 0 if z = 0).
We give a very brief outline of the argument.

To a “dynamical system” F : X — X and a weight function h : X — C one associates
for each integer n > 1 a partition function

Za(Fh)= > h(z) h(Fz) h(F3z) - h(F""x)
zeX, Fro=g
(sum over n-periodic points). In our case, X = [0,1), F is the continued fraction map, and
we take for A(z) the function he(z) = z?* where s € C with R(s) > 1 (to make the series

defining Z, converge). Using the technique of “transfer operators” and Grothendieck’s
theory of nuclear operators, Mayer shows that

Zn(Fyhs) = Tr(Lg) — (-1)" Tr(Lyy,)  (Ym20). (10)
On the other hand, the definition of the Selberg zeta function can be written Z(s) =
00
T ¢sr(s+k)~1, where {sr(s) (the letters “SR” stand for Smale-Ruelle) is defined as the
k=0

product over all closed primitive geodesics in /Ty of (1 — e~**), X being the length of
the geodesic. The connection between closed geodesics and periodic continued fractions

x 1
leads to the equation (sr(s) = exp( Y. =Zan(F,hs)). (Here only even indices occur
n=1"7

because the map z — z~! — m implicit in the definition of F' corresponds to a matrix

of determinant —1, so that only even iterates of F' correspond to the action of elements
© 1

of T';.) Together with (10) and the determinant formula exp(— Y. —Tr(A")) = det(1—A)
n

n=1

det(1 — L§+l)
det(1 — L2)
A similar proof, of course, works also for equation (2), but now using all the Z,,(F, hs).

This version of Mayer’s theorem was developed by Efrat [1]. To connect this to the
discussion in A above, we rewrite (9) slightly as

1 + det(y)
—log Z(s) = ———x:(7),
,YezRed £()

this gives {sr(s) = and hence finally Z(s) = det(1 — L?).
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or equivalently as the factorization Z(s) = Z,(s)-Z_(s) where Z,.(s) = Y Rag Xs(7)/£(7)
and Z_(s) = ) gegdet(v)xs(v)/€(y). The first factor is Zr(s) by the calculation in
Sections 1 and 2, so its zeros correspond to even Maass wave forms, while the zeros of the
second factor Z_(s) correspond to the odd wave forms. See §5B for more on this.

PART II. PERIOD FUNCTIONS OF MAASS WAVE FORMS

§4. Various descriptions of the period correspondence. We explained in the in-
troduction how the identity (2) should lead one to expect some sort of correspondence
between eigenfunctions of the Laplacian in H/I" and holomorphic solutions of the three-
term functional equation (3). In this section we give several descriptions of this “period
correspondence,” each of which puts into evidence certain of its properties. There does
not seem to be any single description which exhibits all aspects of the correspondence
simultaneously.

We first recall some basic facts about Maass wave forms and fix terminology. The Maass
wave forms for the modular group I'y = SL(2, Z) are the non-constant I';-invariant eigen-

functions of the hyperbolic Laplacian A = —y? (3%27 + ai;y) which are square-integrable

on the modular surface #/I';. The space of these forms breaks up under the action of the
involution ¢ : z — —Z into the spaces of even (invariant) and odd (anti-invariant) forms.
In particular, the even forms are the eigenfunctions of A on H/T", since I is generated by
I'y and «. We will always use the letter « to denote a Maass form and the letter s for its
spectral parameter, i.e. for the complex number s such that the eigenvalue of u under A is
s{(1 —s). (Note that the number 1 — s is an equally good spectral parameter for u, but to
describe the period correspondence u +> ¥ we must fix the choice of s since the functional
equation (3) depends on s. However, this dependence is very simple because it is known
that s always has real part % and hence 1 — s = §, so that the map ¢¥(z) — W maps the
space of solutions of (3) for one choice of s to the corresponding choice for the other.) The
invariance of u under the translation map 7" : z — z+1 and the conjugation map ¢ implies
that u(z + 1y) has a cosine expansion with respect to z, and the square-integrability of u
and differential equation Au = s(1 — s) u imply that this expansion has the form

u(z +1y) = Vy Z an K,_1(2mny) cos(2mnz), (11)

n=1
where K, is a modified Bessel function.

A. Description of the period correspondence via integral transforms. A
number of formulas for the period correspondence u <> ¥ were given in [2]. A particularly
direct one is the integral formula

W(z) = 2 fO ” ﬁﬁ i (R(z)>0). (12)

This was obtained after a number of intermediate steps. One of the most striking is that
there is an an entire function g(w) which is related to u by

g(£2min) = 1 (2mn)~**2q,  (n=1,2,3,...) (13)

9



(i.e., g is a “holomorphic interpolation” of the Fourier coeflicients of u) and to ¢ by

g™(0) = F(Tl—i-kj

(so that the Taylor coefficients of g at 0 and 9 at 1 determine each other). The function
¢ in turn is obtained from another intermediate function ¢ which is defined by

$(w) = w!™ /0 " Vit Jo_ s (wt) u(it) dt (15)

p*N1) (k=10,1,2,...) (14)

(Hankel transform) and defines 3 by

#e) = [ o) u e au (16)

(Laplace transform). Substituting (15) into (16) gives (12), while substituting the Fourier
expansion (11) into (15) and integrating term by term leads to the formula

o I —s4+1/2 n
Plw) = wz (wzni- (27rn)€: '

n=1

In particular, ¢(w) has simple poles of residue %(2#7&)_3*1/ 2a, at w = %£2min and no
other poles, so the function g{w) := (1 — e~¥)p(w) is entire and satisfies (13), while on
the other hand, once one has proved that ¥(z) satisfies the three-term functional equation
(3) one immediately gets

/000 glzw) w?* e ¥ dw = 2% [w(z“l) — 1,[:(2:"1 + 1)] =Y(z),

and (14) follows easily. No single one of these formulas permits one to deduce in a direct
way the properties of ¥(z) (i.e., the analytic continuability to C’ = C \ (—o0,0] and the
functional equation (3)) from the fact that u is a Maass form, and the proof of this in [2]
is quite complex. On the other hand, they do give explicit ways to get from u to ¢ and
back: the forward direction is given by (12), while (13) and (14) determine the Fourier
coefficients of u as special values of the power series g(w) = 3, ) (1)w* /K T'(2s + k) .

We refer to [2] and [3] for a more detailed discussion of these ideas and of other related
approaches, including one based on a summation formula of Ferrar and another in terms
of the Helgason automorphic boundary form of u, which are also important aspects of the
story and provide useful perspectives.

B. Description in terms of Fourier expansions. The integral representation (12)
makes visible the analyticity of 1(z) in a neighborhood of the positive real axis, but does
not make it clear why ¢ satisfies the three-term functional equation. In [3] a different
description of 1 was given in which the functional equation becomes obvious and the key
point i1s the continuability of % across the positive real axis. The starting point is the
following simple algebraic fact.

Lemma. Ify: C\R — C is any function satisfying the three-term functional equation (3)
then the function f : H — C defined by

f(z) =(2) + e ™ P(=2) (17)
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is 1-periodic (i.e. T-invariant). Conversely, if f : H — C is any 1-periodic function, then
the function ¢ : C <~ R — C defined by

oo - { Fz) =22 f(=1/2) fS() >0
T/ - f(—2) #9(2) <0
satisfies the functional equation (3). Moreover, if s € Z then the correspondences (17) and

(18) between 1-periodic functions in H and solutions of (3) in C \ R are inverse maps to
each other up to a non-zero scalar factor 1 — e=2™2,

(18)

Then we have the following very elegant description of the period correspondence.

Theorem 3. Let u be an ecven Maass wave form with spectral parameter s and Fourier
expansion given by (11), and f : H — C the 1-periodic holomorphic function defined by

s8]

fz) = n'"3 a, e (z € H). (19)

n=1

Then the function ¢ defined by (18) extends holomorphically from C R to C' and s
bounded in the right half-plane. Conversely, if s is a complex number with R(s) > 0,
Y : C' = C a holomorphic solution of (3) which is bounded in the right half-plane,
f:H = C the I-periodic holomorphic function defined by (17), and {a,} the coefficients
defined by the Fourier ezpansion (19), then the function u: H — C defined by the Fourier
series (11) is an even Maass wave form with spectral parameter s.

The proof of this theorem, given in [3], relies essentially on the properties of L-series. It
is well-known that the L-series L(p) = 3 a,/n” of a Maass wave form has a holomorphic
extension to all complex values of p and satisfies a functional equation under p— 1 — p,
and conversely that these properties of the coefficients a, imply the I-invariance of the
function u defined by (11). The L-series can be represented as the Mellin transform of
the restrictions to the imaginary axis of either v or f (with different gamma-factors).
We can now use the inverse Mellin transform to write the function i defined by (18)
in the uppper and lower half-planes as integral transforms of L{p), and the functional
equation of L turns out to be just what is needed in order that these two formulas agree
and define a holomorphic function in all of C’. Conversely, if u is defined by (11) and f
by (19) for some coefficients a, (satisfying a growth condition), and if ¢ is the function
defined by (18), then the Mellin transforms of the restrictions of 4 to the positive and
the negative imaginary axes are both linear combinations of L{p) and L(1 — p). Now if 9
extends holomorphically across R, and satisfies the growth condition, we can rotate the
two paths of integration to R, and the equality of these two linear combinations then
gives the functional equation of the L-series.

This argument makes clear which properties of u correspond to which properties of ¢: if
{an} is any collection of coefficients (of not too rapid growth), then the function v defined
by (11) is a T-invariant eigenfunction of the Laplacian with eigenvalue s(1 — s), while the
function ¥ defined by (19) and (18) is a holomorphic solution of the functional equation
(3) in the upper and lower half-planes; this gives a bijection between translation-invariant
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even eigenfunctions of A and functions 9 on C\ R satisfying (3), and under this bijection
the eigenfunctions which are invariant under z — —1/z correspond to the functions ¢
which extend holomorphically across the positive real axis.

C. Unfolding from the positive real axis. In this subsection we state a result
from (3] to the effect that the restriction map from the space of holomorphic solutions of
(3) in €’ to the space of analytic solutions of (3) on Ry, which is obviously injective, is
in fact bijective under suitable growth conditions. This complements the results of the
two preceding subsections: in A we described how to get from u to ¥|Ry via an integral
transform and how to get the Fourier coefficients of u from the Taylor expansion of ¥ at
1 € Ry, and in B we explained how to get the values of 9 off the real axis from u and
vice versa.

Theorem 4. Let s be a complex number with R(s) > 0. Then any bounded real-analytic
solution of the functional equation (3) on the positive real axis extends to a holomorphic
solution of (3) in the whole cut plane which is bounded in the right half-plane.

The proof of this theorem is by a kind of “bootstrapping”: by repeated applications of
the functional equation (3) one successively extends v to larger and larger neighborhoods
of Ry C C’, while preserving the growth conditions. In fact, the growth conditions can
be relaxed, e.g. if %(s) = 3 then the assumption ¥(z) = o(1/z) as z — 0 already implies
that 1 continues to a holomorphic function in €’ and is bounded in R(2) > 0, which
together with Theorem 3 implies that s is the spectral parameter associated to a Maass
wave form. This is especially surprising because it turns out that any smooth solution
of the functional equation on Ry is O(1/z) as z — 0 and that these solutions form an
uncountable-dimensional vector space for any s, whereas the Maass forms exist only for
special values of s and then form a finite-dimensional space.

§5. Complements. In the final section of the paper we give various examples of solutions
of the functional equation (3), especially the polynomial solutions for negative integral
values of s which give the link to the classical theory of periods of modular forms, and
also indicate the changes that must be made when I' is replaced by its subgroup I';.

A. Examples and equivalent forms of the three-term functional equation. If
we relax the growth conditions on the function 4, then there are many more solutions of
the functional equation (3). For example, an infinite class of solutions for any s is given
by %(z) = f(z) + 272° f(1/2z) for any odd and 1-periodic entire function f. There are
also more interesting examples which ncarly satisfy the growth conditions of Theorem 3
and which correspond to the zeros of the Selberg zeta function other than the spectral
parameters coming from Maass wave forms. These zeros occur at s = 1 and at the zeros
of {(2s), where ( is the Riemann zeta function (cf. [7], pp. 48-49). The solution of (3) for
s =1 is given by ¥(z) = 1/z. The solutions corresponding to the trivial zeros of {(2s) at
s= -1, =2, ... will be discussed in the next section. The solutions corresponding to the
non-trivial zeros arise as follows. For R(s) > 1 define

() = (@) (1+27%) +2 D (mz+m)™>,

mmn>l
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a kind of “half-Eisenstein-series.” The series converges absolutely and it is easy to check
that it satisfies the functional equation (3). On the other hand, the shifted function
he(2) = ¥s(z + 1) is not a fixed point of the Mayer operator L,; instead, as one checks
in a straightforward way, one has (L;hg)(2) = hg(z) — ((2s). It follows that the (easily
obtained) analytic continuation of %, gives a fixed point of (the analytic continuation of)
L at the zeros of ((2s).

We also mention two equivalent forms of the period functional equation, as a sample
of the algebraic character of the theory. The first is the equation

9 = e+ ) [(20) + ()]

Written in the language of the group algebra Z['], this says that 7,(K)¥ = v, where
K is the element Ky = [o] + [p] of §3B and is related to the Mayer element £ by the
equation £(1 — £)~! = (1 — K)~![p]. The second says that v is fixed by the operator
Te (D pnsolp™a]). Written out, this is the infinitely-many-term functional equation

. 1 Fﬂ_22+Fn_1
¢(z)_;(Fnz+Fn+l)zs ( Foz+ Foa )

o0

where {F,,} are the Fibonacci numbers. Note that this series, unlike the one defining the
Mayer operator L,, is rapidly convergent if R(s) > 0 and R(z) > —(1 + v/5)/2.

B. Even and odd Maass wave forms. We now consider the modular group I'y
instead of . As mentioned at the beginning of §4, the Maass wave forms for I'; break up
into two kinds, the even ones (which are invariant under the map u(z) — u(—Z2) and hence
under all of I') and the odd ones (for which u(z) = —u(—2)). The spectral parameters
corresponding to both kinds of Maass forms are zeros of the Selberg zeta function Z(s) of
'y, with the ones corresponding to even forms being zeros of Zr(s). On the other hand,
as we saw in Part I, Zp(s) is the determinant of the operator 1 — L,, while Z(s) is the
determinant of 1—L2 = (1—L,)(1+L,). The odd Maass forms should therefore correspond
to the solutions in V of Lgh = —h and hence, after the same shift ¥(z) = h(z — 1) as in
the even case, to the solutions of the odd three-term functional equation

W) = P14 2) — 2 H(1+ ), (20)
instead of the even functional equation (3). This is in fact true and, as one would expect,
the description and properties of this “odd period correspondence” are very similar to
those in the even case. The Fourier cosine expansion (11) is naturally replaced by the
corresponding sine series. The integral transform (12), which must obviously be modified
since u(iy) is now identically zero, is replaced by

w(z)=/0°°mdt (R(z) > 0),

(22 + £2)3

0 . : .
where u; = é_u (z = x 4+ iy). The algebraic correspondence described in the Lemma in
z

§4B is true with appropriate sign changes (change the sign of the second term in (17) and
of both terms in the second line of (18)), and Theorem 3 then holds mutatis mutandum.
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Examples of non-Maass solutions of the odd functional equation are the function 1—2~2
(or more generally f(z)—272%f(1/z) with f even and 1-periodic) for all s and v(z) = log 2
for s = 0. The example 9,(2) discussed in Subsection A has no odd analogue. (The
analogous fact about Selberg zeta functions is that all the zeros of Z_(s) = Z(s)/Zr(s)
correspond to the odd spectral parameters, whereas the zeros of Zr(s) correspond both to
even Maass forms and to zeros of the Riemann zeta function.) The two alternate forms of
the even functional equation given at the end of A have the obvious odd analogues (replace

’Cs,l by K:a,--l and ano 1/)|P“0 by ano(_l)ndjlp“a))-

Finally, one can give a uniform description of the period functions associated to Maass
forms, without separating into the even and odd cases. These functions should correspond
to the fixed points of L2 on V, and this leads (after the usuval shift 1(z) = h(z — 1)) to
the “master functional equation”

P(2) = P(z+1) + (2 + 1) p(——) . (21)
z+1

We will call a solution of (21) a period function. Since the involution 9(z) — 272%(1/2)
preserves this equation, every period function decomposes uniquely into an even (in-
variant) and odd (anti-invariant) part, and one checks casily that the even and odd
period functions are precisely the solutions of (3) or (20), respectively. The descrip-
tion of the period correspondence given in §4B is now modified as follows. Any 1-
periodic eigenfunction of A with eigenvalue s(1 — s) has a Fourier expansion of the form
Wz + 1Y) = /Y L p0 on Kooy (27|n]y)e® ™ *. We then define a 1-periodic holomorphic
function f on € \ R by two different Fourier series, using the a,, with n > 0 in the upper
half-plane and the a,, with n < 0 in the lower half-plane. In each half-plane there is a
1:1 correspondence between the space of 1-periodic functions and the space of solutions
of (21) given by the (up to a scalar factor, inverse) transformations

F@) = (z) = f(2) =272 f(=1/2),  ¥(2) = f(2) = (2) + 272 9(-1/2).

Then, just as before, the invariance of u under z — —1/z is equivalent (under suitable
growth conditions) to the analytic continuability of 9(z) across the positive real axis.

C. Integral values of s and classical period theory. Let s be a negative integer,
which we write in the form 1 — k with & > 2. The factor z72° in the master functional
equation (21) (or in its even or odd versions (3) or (20)) now becomes a monomial and
we can look for polynomial solutions 1, which we will then call period polynomials. The
degree of such a polynomial must be < 2k —2, so the problem of finding all solutions for a
given k is just a matter of finite linear algebra. For k = 2, 3, 4 and 5 we find that the only
polynomial solution is 22572 —1 (which is an odd polynomial but an even period function),
but for k£ = 6 there are three linearly independent solutions z!® — 1, 28 — 32% 4 32% — 22,
and 42°% — 2527 +422°% — 2522 + 4z. This has to do with the fact that for k¥ = 6 the space
Sak of cusp forms of weight 2k on the modular group has a non-trivial element for the
first time, namely the discriminant function

A(Z) — e21nz H (1 _ e21nnz) — Z T(TL) e2'Jr1.'n.z ]
n=1 n=1
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Associated to this cusp form is its Eichler integral A(z) = 3, n~117(n)e?™"* which is not

quite modular (of weight 2 — 2k = —10) but instead satisfies (cz+ d)*0A(22H8) = A(z) +

P,(z) for any v = (2 Z) € I'1 with P, a polynomial of degree < 10, and the 3-dimensional
space of period polynomials is generated by the odd and even parts of the polynomial P,
for v = (? _01 ), together with the polynomial 2'® — 1. In general, if one associates to any
cusp form f(z) = 3 Ane¥™"* € Sy its Eichler integral f(z) = 3" n~2%+14,e2""2, then
the difference f(z) — 2**=2f(-1/z) is a polynomial P = P; of degree < 2k — 2 which
satisfies the period conditions
-1

P(2) + 27 P(—) = P(2) + 2" 72P(1 - %) + (z = 1)*=2p(

1
l1-2z

) =0,

and the period theory of Eichler, Shimura and Manin tells us that this space has dimension
2dim Szx_2 + 1 and is spanned by 2%*~2 — 1 and by the even and odd parts of the
polynomials P;. But an elementary calculation shows that polynomials satisfying the
period conditions are precisely the polynomial solutions of (21) with s = 1~k (and further
that this space breaks up into the direct sum of its subspaces of odd and even polynomials
and that these are precisely the polynomial solutions of (3) and of (20) respectively). This
fits in very well with our picture since it is known that s = 1 — k is a zero of Zp(s) of
multiplicity &g := dim Sk and a zero of Z(s) of multiplicity 26; + 1. What’s more, one
can get directly from cusp forms of weight 2k to nearly I';-invariant eigenfunctions of the
Laplace operator with eigenvalue k(1 — k). For instance, the eigenfunction defined by (11)
with s = —5 and a, = 7(n)/n'/? is not only invariant under the translation T' and the
reflection ¢, but is nearly invariant under z — —1/z, the difference u(—1/z) — u(z) being a
polynomial in z, y and 1/y with coefficients which are closely related to those of the odd
period polynomial 42° — 2527 + 422% — 2523 + 4z above.
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