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Which primes are sums of two cubes?

FERNANDO RODRIGUEZ VILLEGAS AND DON ZAGIER

ABSTRACT. Let §; bLe the “unknown” part of the L-series of the elliptic
curve 22 + y* = p at s = 1, so that conjecturally Sp =0if pis a sum
of two distinct cubes and equals the order of a Tate-Shafarevich group
otherwise, The question of the title is then to determiine whether 5, = 0.
For p 2 1 (mnod 9) the anawer depends only on p (mod 9) and is well
known. We give three diflerent criterin for the remaining case. Our first
formula represents Sp as the trace of a certain algebraic number (the value
of a specific modular function at a CM point), the second represents Sp
as the square of the trace of a sinmilar number, and the third shows that
Sp vanishes if an only if plfz(p—1}73{0), where {fn(8)}n0 in B sequence of
polynomials satisfying a simple recursion relation.

1. Introduction and results

A classical problem of Diophantine analysis is to recognize which numbers N
are the sum of two rational cubes. For instance, 1 is not so represented (Fermat,
Euler), whereas every prime of the form 9% — 1 conjecturally is (Sylvester). If we
assume the Birch-Swinnerton-Dyer conjecture, then the question is equivalent
to the vanishing at s = 1 of the L-series of the elliptic curve Ex : X3 +Y3 = N.

We consider only the case when N = p1is prime. If p = 2,3 or 5 (mod 9), then
L(E,,1) # 0, so p should not be a sum of two cubes {except for 1% + 13 = 2).
This is in fact true and follows either from a 3-descent argument (given already
in the 19th century by Sylvester, Lucas and Pepin) or from the Coates-Wiles
theorem. If p = 4, 7 or 8 (inod 9) then the functional equation forces L(Ep,1)
to vanish, so p should be a sum of two cubes, and for the first two of these three
cases a proof of this has been announced by Noam Elkies. From now on we
restrict to the remaining case p =1 {mod 9). Here the L-series may or may not
vanish. The question is numerically decidable for any given prime, since

L(Ep, 1) = ﬂr(%)sS
D)= =50 o
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where S, is known to be an integer (conjecturally equal to 0 if E,(Q) # {0} and
to the order of the Tate~Shafarevich group of £y otherwise), but a table of these
numbers, such as the one for p < 2000 given at the end of this section, suggests
no simple pattern. In this paper we will give three formulas for S, and hence
three conjectural answers to the question of the title. Most of the proofs rely on
ideas similar to those in [5] and [7] and have been omitted or only sketched, but,
to quote from Sylvester’s paper on the same subject {9], “I trust my readers will
do me justice to believe that I am in possession of a strict demonstration of all
that has been advanced without proof.” We do include a few short proofs which
use ideas different from those in the twe papers cited.

First answer: We associate to the prime p = 9%k + 1 an algebraic number a, of
degree 18k, defined as follows

0. = VP O(pd)
P7 54 0

where ©(2) = § T, ez gritm*+mndn®)s 4 § = —1(14+1/3/=3). (The value
of ©(6), by the way, is —3I'(3)3/(2m)?.} Then

Sp = Tr(ay),

where Tr denotes absolute trace. A more detailed statement is given in Theo-
rem 1 below.

Second answer: This has the same form, but gives the square root of S, as a
trace (thus proving, in particular, that S, is a square, as expected). Of course
Sp has two square roots when nonzero. It turns out that they are canonically
indexed by the two primes above p in X = Q(+/-3). Let P be one of these
primes. Choosing P is equivalent, via P = (p, =5%==), to choosing an integer
r (mod 2p) with r? = —3 (mod 4p). Let zg = (r + +/=3)/2 and set

Bp = vP  nlpzo)
VEIZ9(20/p)’

where 7(z) = e**/12 ]:[:‘;1(1 — e%*in2) is Dedekind’s eta function, the sign is +1
if p=3 (mod 4) and —1if p =1 (mod 4), and the correct choice of the 6** root
of p will be explained later. Then Bp is algebraic of degree 6k over Q and we
have

S, = [Tr(Bp)]*, and Tr(Bz) = —Tr(Bp).
A more detailed statement is given in Theorem 2 below.

Third answer: Define polynomials f,(t) by fo(t) = 1, fi(¢) = #* and

Far() = (1= ) F4(0) + @0+ D folt) = 0 fasa(t) (2 1),



—

and let Ax = f3.(0). (It is trivial that f,,(0) = 0 if 3 does not divide n.) Then

-, p—=1, .
Sp = (—3)%1‘(’——3'—)'2142(},_1)/9 (l'l'lOd [))

This deterinines S, siuce |Sy| < p/2 as we shall prove in §5. In particular, we
have

L(E, 1) =0 <= plAzp_1)e-

Third answer (variant): In fact, the Ax’s of the third answer (which are
normalized central values of certain Hecke L-series) are always squares, and
we can get their square roots as follows. Define polynomials g,(t) € Qft] by
go{t) =1, g1(t) = 3¢* and
gnp1() = (1 =) gn(t) = 2n+ §) L ga(t) = n(n— §)tgaa(t) (n21),
and let By = gax(0). (Just as with f,,, g,(0} = 0 if 3 does not divide n.) Then
Ase = Bf, forall k>0
and in particular
L(E, 1)=0 <= plBp-1ys,
and .
\/S = :]:(V—3)L_r'(pT)! B(p-l)/'J (mod p).

We conjecture that this formula is always true with the + sign if we interpret

VS and /=3 (mod p) as Tr(Bp) and r (mod p), respectively (with r, P, Bp
as in the second answer), and have chiecked this for p < 2000.
We give a short table of values of the nuinbers By,

-2

—152

—0(848

—8103296

22483912960

~8062284861440
196434444070666240
532650564250569441280
2039228675045199496806400
—5209573728611533514689740800

Q[ =I|D]|NR]CIAS] =] D] &

&

—
<

This also gives the first values of the numbers Ay, = BZ. The odd-index values
Azk41, which are not needed for our “third answer,” are also the squares of
the constant terms of certain polynomials cax1(t) satisfying a recursion (cf.
Theorem 3 below, where a short table is given).
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The numbers A; and By have a different description in terms of generating

functions:
Z e

c...l--
ol
ulk

and
(=P bt = 2 (Y,

where F = 2 F) is Gauss’s hypergeometric l'unctlon and

L G
FE 5P
That the coefficients in the first of these hypergeometric expansions are the
squares of the coefficients in the second is a surprising and beautiful identity,
quite apart from the connection with L-series.
There are similar results for the number Sp3 corresponding to the elliptic curve

Epr : 2° + i = p?, namely

Sya = Tr(vp)? yp = CP§ 1}(pz0)
’ , V12 9(=%o/p)’

for a certain root of unity ¢, and

Sp2=0 ‘,U]A(p_])'lg A= p'BQ(p_l)fg.

However in the rest of this note we will stay with Sp.

Using any of the “answers” given in this section, we can easily calculate S,
numerically. We give a table for p = 1 (mod 9), p < 2000. In this range, the
value of S, is always 0, 1 or 4, as follows:

S, =0: 19,37,127,163,271,379,397,433, 523,631,829, 883,919,
937,1063, 1171, 1459, 1531, 1567, 1621, 1657, 1801

S, =1: 73,109,181,199,307,487,541,577,613,757,811,1009,
1117, 1153, 1279, 1297, 1423, 1549, 1693, 1783

S, =4: 739,991,1747,1873, 1999

A complete table of Sy for N < 1000 is given in [10].

2. The formulas for S

Let O = Z[w] C K = Q(w) = Q(v=3), where w? +w+1=0,v/=3 = w +1,
and embed K in C viaw —» e2%/3, The elliptic curve E : z°+3® = 1 has complex
multiplication by O. Its L-series is L(v, 5), where ¥ is the Hecke character of K
satisfying

Y({(a))=a, forallae O, a=1 (mod3).

Let p=1 (mmod 3) be a prime. We consider the groups
= (O/pO)Y/(Z/pZ)* and Ay = AJO*,
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which are cyclic of orders p — 1 and (p — 1)/3 respectively. We let Ha, (H})
be the ring class field modulo 3p (modulo p) of K and identify A (Ag) with
Gal(H3,/K) (Gal(Hp/K)) via the Artin map.

Let x : A — (w) be the cubic character defined by

u

(p-1)/3
x(u) = ( ) (mod p) (v €O, (u,p) = 1).
Then L(¥x, s) and L(ix?, s) are the L-series of the curves E, and Epa, respec-
tively. The sign in their functional equation is +1 if and ouly if p = 1 (mod 9)
or, equivalently, if and only if y factors through Ay.

The formulas for 5, that we will obtain involve linear combinations of values
of certain modular forms on CM points in the upper-half plane corresponding
to A and Ag. We need to introduce the following notation in order to do this
explicitly.

u

1) Let § = (—1—1/3/=3}/2 € KN'H, where K denotes the complex upper-half
plane. Asusual n will denote Dedekind’s eta function. As a set of representatives
for A we take the numbers 1 and § — k, with k € Z/pZ such that § — & is prime
to p (hence excluding two values and bringing the total to p — 1).

Let pp : & — C be given by

_ 1O(pé) L ekl B
np(l) = 20 pp(d — k) = ?(# (k€Z/pZ, (6 —k,p)=1),

with ©(z) as in §1. The function s, is well defined and its values are conjugate
algebraic integers in Hap /K.

Note that p¥ € Hay and that pie Hyifand onlyif p =1 (mod 9). We define
kp = p~ 44, (1) = ptO(Pd)/O(S). It Lelongs to Hsp and its conjugates over K
are {p~ 8% (u)pp(u) 1 u € A},

THEOREM 1. Let p =1 {mod 9} be prame. With the above notation we have

Try,, k (Kp) = p"§ Z X(u)pp (1) = 27 S,
uga
where S, € T is the Birch-Swinnerton-Dyer number defined in the introduction.

2} We choose w a primitive cube of unity modulo p; this corresponds, via P =
(w—w, p), to choosing a pritne P of ) above p. As a set of representatives for Ag
we take the numbers 1 and w—k, where & runs over Z/pZ\ {w, -1-w,0,-1})/ ~,
and where ~, defined by k ~ —1/(k+1) ~ —=1—1/k, corresponds to orbits under
multiplication by w. {The values of w — & for & = 0 or —1 represent the same
class as 1 in Ap).

Let Ap : Ay —+ C be given by

Ap(w-k)=(“’;") ff:n(“%")/n(w) (k€ Z/pZ, k#w,—1-w)
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I

Ap(l) = (5

) vt e,

where (w; k) = (w; k) is the quadratic symbol at P, (24 = €2"/24, /5 > 0,
and ¢, = 1,iif p=1,3 (mod 4). The function Ap is well defined and its values
are conjugate units in an abelian extension of K, which is quadratic over Hy.
Let r be a solution of »? = =3 (imod 4p) such that r = 2w+ 1 {mod p), and
let zo = (r + v/=3)/2. We define pp = (;7) G20 /) n(w). Tt is not
hard to check that p3 € O generates P. Finally, we let {&p = CP-*p;lA'P(l),

where ¢ € O* is such that ¢ p4 =1 (mod 2); it belongs to H, and its conjugates
over K are {Cp~3p3!x(u)Ap(u) 1 u € Ag).

THEOREM 2. Let p=1 (mod 9) be prime. With the above notation we have

Tru, i (€p) = p 403" D x(u) M (v) = V=3 Rp,

u€dy

with Rp € Z. The number Rp sulisfies
Sy = R% and Ry = —Rp,

where S, s the Birch-Swinnerton-Dyer number defined in the introduction.

Remarks. 1. Theorem 2 holds in more generality. For any character ¢ of A let

Rp(#) = 3 6(w) dp(u)

GEA

(a Lagrange resolvent). Then for ¢ of odd order, Rp(¢)? is essentially the alge-
braic part of L(p¢~2,1).

2. It is possible to define, in a similar way, integers R 4 associated to any cube-
free ideal A of O such that R% = Sy is the Birch-Swinnerton-Dyer number of
the elliptic curve z° 4 3 = N, where N = N{A). One might hope that these
numbers are the Fourier coelficients of a modular form of some sort.

Theorem 1 is proved by writing the special value L{¥x, 1) as a linear combina-
tion of values of an Eisenstein series as in [4] and using the Shimura reciprocity
law. One then deduces Theorem 2 from a variant of the factorization formula
of [7] and a careful chasing of 24! roots of unity. Theorems 1 and 2 are easily
seen to be equivalent to the analogous statements given in the introduction.



3. Congruences

Our third answer to the question when S, vanishes was based on a congruence
between S, (which is, up to a factor, the value of a certain L-function at s = 1)
and another number A which, as we will discuss in a moment, is (again up to
a factor) a special value of an L-function independent of p at some other value
of s. Congruences of this sort go back to Cauchy, Kummer, and Hurwitz. For
example [1], the class number 4#{—p) of the quadratic field Q(y/=p) for a prime
p> 3, p=3 (mod 4) satisfies h(—p) = —2B(,41)72 (mod p), where (here only!)
B, denotes the n** Bernoulli number. One way to interpret this is to say that
the two Dirichlet series

n =1
E (—-) n~* and z n T n,
n>1 P n>1
which are congruent term by term modulo p, also have congruent values at

8 = 0. Turning this fact into a heuristic argument, we would expect that (suitable
algebraic versions of) the values at 5 = 0 of the Diricllet series

1 oy dgtd 1
x{a) =—— and — -
aeg\:{ﬂ} $(a)N(a)? aeg\:{o} ( “ ) ¥(a)N(a)*

which are easily scen to equal L{tx, 1) and L(p**~1, k) respectively, with k—1 =
2(p — 1)/3, should also be congruent modulo p (see §2 for notations). This is
indeed the case, at least if p = 1 {mod 3), where it follows from the existence of
a p-adic L-function interpolating special values of Hecke L-series due to Manin-
Vishik and Katz. We now make this precise.

For k € N define the algebraic part of L(**~!, k) to be

k=10 1y
Ly =3v (1\3592) (k—Ql—) L(lf)zk"l.k).

where v = 2if k= 2 (inod 6) and v = 1 otherwise, and Q = I'(1/3)%/(2rV3) =
1.766638 - - - is the fundamental real period of the elliptic curve =3 + 3 = 1.
Then using the formulas of [2] we find that

- 111 p—l B
Sp = (—3)?—’—(7)!”3(2;-“)/3 (mod p).

This corresponds to the “third answer” of the introduction because L3,41 = An
for all n, as we will now discuss.

4. Recursions

By the methods of {7] one can obtain formulas for L{y?*~1 k), £ € N, in
terms of derivatives of modular forins and then deduce recursive formulas giving
the algebraic parts L, and similarly for their square roots. A typical formula
for the values is the identity Lz,41 = A, just mentioned, but since the results
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for the square roots are more interesting and give more precise information, we
shall state the full results ouly there (but see Remark 2 after Theorem 4 below).

The formulas for the square roots of Ly can be divided naturally into three
branches: (a) k¥ =1 (mod 6), (b) ¥ = 2 (mod 6), and (c) ¥ =4 (mod 6). (For
other values of k the functional equation forces L(?*~1, k) to be zero.) For each
branch there is a formula for /Ty, in terms of a higher non-holomorphic derivative
of a fixed half-integral weight modular form at a fixed CM point (e.g. for \/Lens1
it is the n*" non-holomorphic derivative of 7(z) at the point z = w), and this in
turn leads to the following description of the square roots as the constant terms
of a recursively defined sequence of polynomials.

THEOREM 3. Lel an(f),b,(1), cn(t) be the polynomiuls defined by the recur-
sions

an41(t) = ~(1-83)d, (1) = (16n+ 3)t? a,(t) —4n(2n — 1) taa_1(t),
bagr(t) = (1=83)0,(6) + (16n+9)t?b,(t) —du(2n + 1)t b,y (t),
cnp1(t) = (1=83)c () + (16n+9)t2cu(t) —4n(2n + 1) tcaq(t)

Jor n > 1, with initial conditions
ap(t) = 1, a1(t) = =33, bo(t) = 1, by (t) = 9%, co(t) = ¢, er(t) = L +¢°.
Then for alln € Zyy
Long1 = 630(0)%,  Longz = b3u(0)*, Lonsa = cans1(0)?,
while 4, (0) = b,,(0) = ¢;n41(0) = 0 for m £ 0 (mod 3).

We give a short table. Note that aa,(0) is the B, of the introduction.

T flg,,(U) fia,,(O) C;gn+1(0)
0 1 1 1
1 -2 6 -8
2 -152 —216 1240
3 —6848 | —119232 —621440
4 | —8103296 | 24105600 | —=5159G800

Remark. The constant terins of the polynomials #,{t) (* = ¢, b or c) satisfy the
congruences *,4(,-1)72(0) = (7 + T} #, (0) (inod p) foralln > land allp=1
(mod 3) prime, where 7 denotes a generator of a prime in X above p with =1
(mod 3). The correspouding congruence for the squares of the #,(0) (i.e., for the
numbers L) was known, and the possibility of choosing the signs in such a way
that this congruence descends to the square roots for all p simulianeously had
been conjectured by Koblitz [3]). In fact, Koblitz conjectured the existence of
a p-adic L-function interpolating suitable modifications of the presumed square
roots. This has been proved by Sofer [8] in other similar cases (see also [6]).
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There is another way of obtaining the numbers a,,(0), b, {0) and ¢, {0) directly
in terms of generating series.

THEOREM 4. (1) Let u(t) = F(3,%:%;7%) and v(r) = T F(3,3;4,73), where
F = oF} is Gauss’s hypergeomelric function. Lel

ha(r) = u(r) 2 (1 = 22 (1) = ha(7)?,  he(r) = 47 ho(7)
and define
Hﬂ(a") = hﬂ(r), Hb(:") = hb("'): Hc(’:) = hc(f);

wherez = v/2u = L(r+ 3 + FBr7 + 27104 . .). Then

Hq(z) = E(—l)"u,.(f))%r:, Hy(z) = Z bn([))%':, H.(z) = Ecn(o)’:‘_':.
n>0 ’ n>0 ! n>0 !

(2) The series H,(x) is the expansion of y(z) about w = (~1++/-3)/2 in the
following sense:

(-2 (422) = abie), (sl <)

where ¢; = n{w) = ezﬁi(3*9/21r)£’ and ¢y = —3v/3Q% /47 with Q as in §2.

Remarks. 1. As a corollary of the identity Hy(z) = Ha(z)® we obtain some-
what surprising polynomial relations between the square roots of the L-values
{Len+1} and {Lengz}. Analogous identities also hiold for other CM curves, link-
ing L-values of one curve to L-values of its twist by Q(v/=3)/Q; ultimately they
boil down to classical Jacobi identity 0/(0) = 277>,

2. We briefly state here the power series expansions involving the Ly them-
selves. With the notation of Theorem 4 let Go(x) = u(r) and G1(z) = Tu(r).
Then 2"‘6'5,")(0) equals ap/2(0) if n = 0 (mod 6), e(n_1)72(0) if n = 3 (med 6),
and 0 otherwise; 2"'G'(l")(0) equals b, _1)/2(0)* if n =1 (inod 6) and zero oth-
erwise. We may even separate the two brancles (a) aud (b) in Gp by considering
the series u(r)(1 £ (1 —73)¥). It is presumably possible to prove directly that the
series Hy, Hy, H., Gy and G, have their Taylor coefficients related as indicated,
but we have not done so.

Proof (sketch). Part 1) of the theorem follows from part 2) and the interpre-
tation of the constant terms «,(0), b, (0), ¢, (0} as non-holomorphic derivatives
of holomorphic modular forms, together with the general fact that the expansion
of any modular form as a power series in a modular function satisfies a linear
differential equation. (Classical examples of this latter assertion are the expan-
sion of 5% or YE; as a power serics in 1/j or of 87 as a power series in A, all
of which involve hypergeometric functions.) It can also be proved directly from
the recursive definitions of the polynomials a,,, b, and ¢, without any a priori
knowledge that modular forms are involved.
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Part 2) is a consequence of the following simple result about non-holomorphic
derivatives We reca.ll their definition. For any &£ € R we let J, be the differential

operator 3— + - zm acting on functions f of z = # + iy € H. It has the property

(Ur42)y = (flx7)s (v € Si3(R)),

where | has the usual meaning. In particular, if f is a modular form of weight
k on some group T C Si3(R), then U f, where 0} = Jg42p0---0dkig0U;,i18a
(non-holomorphic) modular form of weight & + 2n on the same group.

PropPoSITION 1. Let f:H — C be an andalytic funtion and zp = o + iyo a
point in H. Then the following expansion holds

3 97 f(z0) z'“’“‘“) -(1—wr*f(ﬂ) (lwl < 1).

n>o0

Proof. It is easy to check by induction that

1, iHi+k-1 1Y f9(z0)
= 2 () () S

JH=n
Hence,
211; w)" fm - jHi+Ek-1
SRSz U)( —— =3 i ?me)J ) ! ',
n>0 iz >0

and our claim follows from Taylor’s and the binomial theorems.

Remark. Notice that the substitution ¢(t) = (zo—7%ot)/{1—1) is an isomorphism
from H to the unit disk sending zo to 0, with inverse ¢~ (z) = (z — 20)/(z — Zo)-
The proposition then says that the non-lholomorphic derivatives 9% f(zo) are
essentially the Taylor coeflicients of f|.¢ at ¢t = 0.

5. Estimates of 5,

The last two criteria for the vanishing of S, described in the introduction are
given in terins of the vanishing of S, (mod p). That these two statements are in
fact equivalent is a consequence of the following general estimate.

ProprosITION 2. Let E/Q be a modular elliptic curve of conductor N. Then

N
|L(E,1)] < (AN)'/4 (]og8£ﬂ_ +9) + co,

where v = 0.577 ... is Euler’s constant and ¢y = C(%) = 2.13263.
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Proof. Because of the universal estimate [a,] < /1 og(n) for the coefficients of
L(E, s) we have

oQ
a 4 27
B = [+ 3o e | < 2p( 2,
n=l n \/N
. N . . & ag(n) _
where w = =1 is the sign in the functional equation and F(z) = Y 7_—- e~
n=1 n
Using the fact that the Mellin transform of F(z) is I'(s)((s + 1)?, we find the
asymptotic expansion

F(z) = \/éaogﬁm +3_ez®  (zN\0)

n=0

with co = ¢(3)? and ¢; = —={(~1) < 0. Some numerical work shows that
YonsiCnz™ < 0 for all z > 0. (For the proposition, we need this only for
z < 2m/VIL.)

Applying this to the curve E,, whose conductor is 27p*, we find after a simple
calculation the following estimate.

CoRroOLLARY. Forp =1 (mod 9) we have
1Sp] < 0.61p%Clogp .
In particulur, Sy is determined by its value modulo p and
S =0 (modp) <= S5,=0

Remark. We can also estimmate S, using Theorems 1 or 2. For instance, from
Theorem 2 and the estimate 1)("’—;5) = O(p'/4), we obtain Rp = O(p¥3), so
that Rp, and hence S, is determined by its value modulo p. The corresponding
estimate using Theorem 1 is more difficult, because © is not a cusp form, but
seems to lead to the estimate S, = O(p"/“"“), essentially the same as in the
Corollary above. Note that to determine S; from its value modulo p we need
only the weaker estimate S, < p?/4, since we know that S, is a square.
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