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Which priUleS are sums of two cubes?

FERNANDO RODRIGUEZ VILLEGAS AND DON ZAGIER

ABSTRACT. Let. Sp Le t.be "unkllown" part. or t.he L-Beriea of t.hc ellipt.ic
curve x 3 + Sl3 =P at. 6 = 1, 60 timt. conjecturally Sp =0 if p is a surn
or t.wo dist.inct. cuLes and equals t.he order of a Tat.e-Shararevich group
otherwillc. Thc quelltion or tbc title ia thcn to detel'llline whether Sp =O.
For p ~ 1 (mod D) the ßllswer depellds only on p (mod 9) aud is weil
known. We give three different criterin for the relnnining CMf:. Dur first
formula represents Sp as the trlLee of a certaiu algeLraic number (the value
of a specific modular functioll nt a CM point), the sccond representl!l Sp
as the square or the trace of a t1i1uilar llumLer, ami the third shows tllat
Sp valli!lh~ if an ollly if plh(p-l)/3(O). where {!n(t)}n2:0 ia a lICquence or
polynomials sntisfyinS a simple recursion relation.

1. Illtroduetioll nnd results

A classical problem of Diophantine analysis is to recoguize which numbers N
are the sum of two rational cubes. For instance, 1 is not so represented (Fermat,
Euler), whereas every prime af the form Uk -1 conjecturally is (Sylvester). If we
assurne the Birch-Swinnerton-Dyer conjecture, then the question is equivalent
to the vallishing at s = 1 of the L-series of the elliptic curve EN : X 3 +y3 = N.

\Ve consider only the case w lien N = P is pri me. 1f]J::;:: 2, 3 or 5 (mod 9), then
L(Ep , l) i:- 0, so p should not be a stirn of two cubes (except for 13 + 13 = 2).
This ia in fact t,rue and follows eit.lJer from a 3-desceut argument (given already
in the 19th century by Sylvester, L\lcas and Pepill) or from the Coates-\Viles
theorem. If p ::::: 4, 7 or 8 (mod 9) then t.he funetioll nl equation farces L (Ep , 1)
to vanish, so ]J should be a sum of two cubes , and for the first two of these three
cases a proof of this has been annoullced by Noam Elkies. From now on we
restriet to the remaining case p == 1 (mod 9). Here the L-series may or may not
vanish. The question is numerically decidable for allY given prime, since
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where Sp is known to be an int.eger (conjecturally equal to 0 if Ep(Q) i= {O} and
to the order of the Tnte-Shafarevich grollp of Ep otherwise), but a table of these
numbers, such as the aue for }J < 2000 given at the end of this section, suggests
no simple pattern. In t.his paper we will give three formulas for Sp and hence
three conjectural answers to the question of the title. Most of the proofs rely on
ideas similar to those in [5] alld [7] and have been omitted or only sketched, but,
to quote from Sylvester's paper on the same subject [9], uI trust my readers will
do me jnstice to believe that I am in possession of a strict demonstration of all
that has been advanced withont proof." \Ve do inc1ude a few short proofs which
use ideas different from those in the two papers cited.

First auswer: \Ve nssoeiate to the prime p = 9k + 1 an algebraic number Op of
degree 18k, defined as follows

{IP 8(pE)
0' - ---

P - 54 0(0) ,

where 8(z) = t Lm,nEZ e2;t1"j(rn:l+mn+n:l)~and J = -!(1 +1/3.;=3). (The value

of 8(J), by the way, is -3r(~)3/(21l')2.) Then

Sp =Tr(op),

where Tr denotes aLsolllte trace. A more detailed statement is given in Theo
rem 1 below.

Secoud fillswcr: This has the same form, hut gives the square root of Sp as a
trace (tlms proving, in particular, that Sp is a squ are, as expected). Of course
Sp has two square roots whell nOllzero. It turns out that they are canonically
indexed by the two primes above p in J( =~. Let P be one of these
peimes. Choosing P is equivalent, via P = (p, -r 41 - ), to choosing an integer

r (mod 2p) with r 2 == -3 (mod 4p). Let Zo =(r + ~)/2 alld set

ß {!P ry(pzo)
p = .J±1271(Zo/P) ,

where ry(z) = c;tl"i~/l'2 [J~=l (1- e2;t1"in~) is Dedekind's eta funetiall, the aign ia +1

if p == 3 (mod 4) and -1 if p == 1 (mod 4), and the correct choice of the 6th root
of p will be explained Iater. Then ßp is algebraic of degree 6k over Q and we
have

Sp = [Tr(ßp )]2, and Tr(ßp) = -Tr(ßp).

A more detailed statement is given in Theorem 2 below.

Third Rllswer: Define polynomials In (t) by /o(t) =I, /I (t) =t2 and
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and let Ak = f3d 0). (It is trivial tImt In (0) =0 if 3 does not divide n.) Then

.e..=..!.!.!. ]) - 1 2
Sp == (-:~) 3 (-3-)! A 2(p-l)/9 (mod p).

This determiuet:l Sp since ISp I < p/2 ns we shall prove in §5. In particular, we
have

L(Ep, 1) = 0 <=> pjA:l(p-l)/9.

Thiru auswer (vru'iallt): In fact, the Ak 's of the third answer (which are
normalized central values of certain Hecke L-series) are always squares, and
we ean get their square roots as folIows. Define polynomials 9n (t) E Q[t] by

90(t) =1, 91 (t) = ~{l and

9n+dt) =(1 - t3
) 9~(t) - (271 + ~) t2 9n(t} - n(n - !} t 9n-di} (n 2: I),

and let Bk =93k(0). (Just a.s with In, 9n(0) =0 if 3 does not divide n.) Then

A:!k = BZ I for aU k 2: 0

and in particular

L(Ep 11) = 0 <==> pIB(p-l)/91

and
fC rq e=l.2. P - 1

V Sp == ±(v -3)~- -(~)! B(p-l)/'J (mod p).

\Ve conjecture tl1at this formula is always trne with the + sign if we interpret
VS; and J=3 (mod ]) as Tr(ß'P) and r (mod])), respectively (wi th r, P, ßp
aB in the second answer), and have checked this for p < 2000.

We give a short table of vailles of the f1ulllbers Bk.

k Bk
0 1

1 -2
2 -152
3 -6848
4 -8103296
5 22483912960
6 -8062284861440
7 196434444070666240
8 532650564250569441280
9 2039228675045199496806400
10 -5209573728611533514689740800

This also gives the first values of the llumbers A:Z k =Br The odd-index values
A2Ic+l, which ure not lIeeded for Ollr Uthird answer," are also the squares of
the constant terms of certain polynomials C3k+l (t) satisfying a recursion (cf.
Theorem 3 below, wllCre a short. t.able is given).
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The nllmbers Ak ami Bk have a different description in terms of generating
fllnctions:

( 1 t 1. ) ~ Ak r
F 3' 3; 'jjX = L.J (3k)!

h::O

and
00 ()k.J.r 1 1. 2. t _ Bk-T

(I-x) F(3,'j'3'x) - L (3k)! 2 '
h::O

where F =2Ft is Gallss'g hypergeomet.ric function and

:t :t. 4. 3

T F('j, 3' 3' x)
= X I l:t .Pb, 3; 3; x)3

That the coefficiellts in the first of these hypergeometrie expansions are the
squares of the eoeffieiellts in the seeolld is a surprising and beautiful identity,
quite apart from the cOlluection with L-serics.

There are similar resltlts for the llumber SpJ correspollding to the elliptie eurve
EpJ : x3 + rr = p2, nnmely

(pt fl(PZo)
IP =~ 1](-zolp) ,

for a eertain root of unity (, and

However in the rest of this note we will stay with Sp.
Using auy of the "answers" given in this section, we ean easily ealculate Sp

numerically. \Ve give a f.able for ]J == 1 (mod 0), p < 2000. Iu this range, the
value of Sp is always 0, 1 or 4, as folIows:

Sp =0: 19,37,127,163,271,379,307,433,523,631,820,883,919,
937,1063,1171,1459,1531,1567,1621,1657,1801

Sp = 1: 73,109,181,199,307,487,541,577,613,757,811,1009,
1117,1153,1279,1297,1423,1549,1693,1783

Sp =4: 730,001,1747,1873,1000

A eomplete table of SN for N < 1000 is given in [10].

2. The fOl'Ullllns for Sp

Let 0 =Z[w] C J( = Q(w) = Q(J=3), where w2 +w + 1 = 0, v'=3 =~+ I,
and embed [( ill C viaw H e:t7fi/3. The elliptieeurve E : x 3 +!l = 1 has eomplex
multiplication by O. Hs L-series is L(l/J, s), where l/J is the Hecke eharacter of !(

satisfying
1,b((O')) =0', for all 0' E 0, 0' == 1 (mod 3).

Let p =: 1 (mod 3) be n prime. \Ve considcr the grollps

~ = (OlpO)*I(ZlpZ)* aud ~u =~/O*,



(k E Z/pZ,

5

whieh are cyclic of orders }) - 1 and (p - 1)/3 respeetively. \Ve let H3p (Hp)
be the ring cluss field modulo 3p (modulo p) of K and identify A (Ao) with
Gal(H3P / J() (Gal(Hp / K)) via t,he Artin map.

Let X : ß .-r (w) be the cubic charact.er defined by

(

_) (p-l)/3

X(u) == ~ (mod })) (u E 0, (u,p) = 1).

Then L (t/JX, s) and L (t/JX'l , s) are the L-series of the curves Ep and Ep'J, respec
tively. The sigll in their fUlletiollal equation is +1 if and ouly if p == 1 (mod 9)
or, equivalent.ly, if anel only if X fa.ctors tlJrough A o.

The formulas for Sp that we will obtaill involve linear eombinations of values
of certain modular forms Oll CM POillts in the tipper-half plane eorresponding
to A and A o. \Ve need to illtroduce the following notation in order to da this
explieitly.

1) Let «5 = (-1-1/3.;=3")/2 E Kn'J-l, where 1l denotes the eomplex upper-half
plane. As uSllalT] will denote Dedekilld '8 eta fUllct.iOIl. As a set of reprcsentatives
for A we take the numbers 1 aJl(I «5 - k, wit.h k E Z/pZ such timt «5 - k is prime
to p (henee excllldillg two vallIes and bringing the total to p - 1).

Let Pp : A .-r C be giveIl by

}16(p«5) 8( o-k)
Jlp{l) =~' Jlp{eS - k) = e(~) (k E Z/pZ, (eS - k,p) = 1),

with e(z) as in §1. The fl1uetioll I'p is weIl defined and its values are conjugate
algebraic integers in H3p / /{.

Note that pi E H3p and that pS E Hp if and ollly if p == 1 (mod 9). \Ve define
~p = p-i 1l p (l) = p i 0(pd)/0(J). It belOHgS to H3p and its conjugatea over K
are {p-iX(U)llp(U) : U E A}.

THEOREM 1. Let p == 1 (mac! U) be prime. I'Vit./, the uoove notatioH we Iwve

Trl/31'IK(n-p) =p-t L: X(U)/'p(U) = 27 Sp,
uE~

where Sp E Z is tIJe Bin:h-SwiulIertvu-Dyer wlmber defi"ecl in the introduclion.

2) \Ve choose w a primit.ive eube of unit.y modulo p; this corresponds, via P =
(w - W, p), to choosillg a pri (Ite P of 0 above p. As a set of representatives for Ao
we take the numbers 1 ami w-k, where k runs over Z/pZ\ {w, -l-w, 0, -1})/ ,..",
and where ,..", dcfined by k ,.." -I/(k+1) ..... -1-1/k I corresponds to orbits under
muItipI icatioll by w. (The val lies of w - k for k = 0 or -1 represent the same
class as 1 in Ao).

Let Ap : Au --+ C oe givell by

(W-k) k w-k
Ap{W - k) = ---::p- (:lr 1}(-p-)/7}(W)
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(W-k) (W-k) .where -p = -p- is t.he quadratic symbol at P, (24 =e2,n/"l4, vp > 0,

and !p = 1, i if p == 1,3 (mod 4). The function >"1' is weil defined aod ita values
are conjugate units in an abelian extension of [(, which is quadratic over Hp.

Let r be a solutioll of ,.2 == -3 (mod 4})) such that r == 2w + 1 (mod p), and

let Zo = (r + ~)/2. \Ve defiue pp = (~) (:;t(r+I)/"l'l(Zo/P)/"I(w), It is not

hard to check that p~ E 0 generaLes P. Finally, we let fp = (p- i Pp 1,\1' (1),
where ( E 0* is such that ( p~ == 1 (mod 2); it belongs to Hp and its conj ugates
over I< are {(p-ippIX(u)'\p(u) : u E ßu}.

THEOREM 2. Let p == 1 (mod 9) !Je prime. Witll tlle above notation we have

TrI/pI K (~p) = p- i ppl L X( u) '\1'(u) = v!=3 R1' ,
uE6 u

with R 1' E Z. The number R1' ,mtüjies

where Sp is t.he Bin:Ii-SwiulIert.oll.Dyer "umher defiued in tlie introduclion.

Reularks. 1. Theorem 2 holcls in more generalit.y. For any character fjJ of ß let

R1'(fjJ) = L .p(u) ,\p(u)
uE6

(a Lagrauge rp..solvent). Thell for 4> of odd order, Rp (4)) 'J is essentially the alge
braic part of L(1/J4>-2, 1).

2. It is pos,i;jible to define, in a similar way, illtegers RA associated to any cube
free ideal A of 0 slich that. R~ = SN is the Birch-Swillnerton-Dyer number of
the elliptic curve x 3 + 11 = N, where N = N(A). Olle might hope timt these
numbers are t.he Fourier coelficiclIt.s of a modular form of seme sort.

Theorem 1 is proved by writ.illg the special value L(1/Jx, 1) as a linear combina.-
tion of values of an Eisenstein series as in [4) und using the Shimura reciprocity

law. One thell dedllces Theorelll 2 from a variallt of the fa.ctorization formula
of [7) and a careful chasing of 24th roets of unit.y. Theorems 1 and 2 are easily
seen to be eqllivalcnt t.o t.he analogons stat.ements given in the introduction.
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3. COllgrllenccs

Our third answer to t.he question when Sp vanishes was based on a congruence

between Sp (which ia, up to a factor, the value of a certaill L-function at s =1)
and another number Ak which, as we will discuss in amoment, ia (again up to

a factor) a special value of an L-fundion independent of p at 80me other value

of s. Congruences of this sort go back to Cauchy, Kummer, aod Hurwitz. For
example [1], the dass number h(-p) of the quadratic field Q(FPJ for a prime

p > 3, p == 3 (mod 4) satisfies h(-p) == -2B(p+l)/'J (mod p), where (here only!)
Rn denotes the u th Bernolllli number. Olle way to interpret this ia to say that

the two Dirichlet series

nnd

which are congruent term by term Illodulo p, also have congruent values at

8 =O. Turning this fact into a heuristic argument, we would expect that (suitable

algebraic versions of) the values at s = 0 of the Dirichlet series

1L: X(cr),.,...,,---
aEO\{O} 1/J(o)N(a)1

ami
0' ~ 1

L: ( Ci" ) 1/J(a)N(a)1 '
aEO\{O}

which are easily seen to equal L(VJ;'(, 1) ami L(t/J'.lk-l, k) respectively, with k-l =
2(p - 1) /3, ShOlild also be congruent mod 1110 p (see §2 for notations). This is
indeed the case, at least if]J =: 1 (mod 3), where it follows from the existence of
a p-adic L-fuuction iuterpolatilJg special values of Hecke L-series due to Manin
Vishik alld Katz. \Ve 1I0W lIlake this precise.

For k E N defille the algebraic part. of L(1/J'Jk - 1, k) to be

L =~\v ( 2rr )k-l (k - 1)1 L(.f,2k-l k)
k 3J3~V n 'f' "

where v =2 if k == 2 (mod 6) ami v =1 otherwise, alld n =f(l/3)3/(2tr/3) =
1.766638· .. is the fundamental real period of the ellipt.ic curve :r: 3 + 11 = 1.
Then using t!Je formllias of [2] we find that

.e=..!..!.!. p- 1 2
Sp == (-3) 3 (-3-)! L(2p+l)/3 (mod p).

This correspollds to t.he "third allswer" of the intradllction because L3n+1 =An
for aB u, as we will now discliss.

4. Rccllrsiolls

By the methods of [7] olle call obtaiu forrnttlas for L(1/J2k-l, k), k E N, in

terms of derivatives of modular fOrlns alld thell dedllce recursive forrnulas giving

the algebraic parts Lk, aud similarly for t.heir square raots. A typical formula

for the values is the idelltity L3n+1 = An just ment,ioned, but since the results
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for the square roots are more iuterestillg and give more precise information, we
sha11 state the fuIl results ollly there (buf. see Hemark 2 after Theorem 4 below).

The formulas far the square roals of Lk can be divided llaturally into three

branches: (a) k == 1 (mod 6), (b) k == 2 (mad 6), and (c) k == 4 (mod 6). (For
other values of k the fUIlct.ional equatioll forces L(t/J2k-l, k) to be zero.) For each

branch there is a formula for .;r; in terms of a higher non-holomorphic derivative
of a fixed half-integral weight modular form at a fixed CM point (e.g. for J L6n+1

it is the n t h non-holomorphic derivative of 7]( z) al the point z = w), and this in
turn leads to the following descript.ion of the square roots as the constant terms
of a recursively defined sequellce of polynomials.

THEOREM 3. Lel un(t), un(l), cn(l) !Je the poly"omiuls defined by lhe reCUT

slons

an+dt)

bn +1(t)

Cn +l (t)

= -(1 - 8t3
) u~.(t.) - (16n + 3) (1 un(t) - 4n(2u - 1) t On-dt),

(1 - 8t3 ) u~(t) + (I6n + 9) (J Un(t) - 411(2n + 1) t bn- 1(t),

= (1 - 8l3) c~(t) + (Hin + 9) tJ cu(t) - 4n(2n + 1) t Cn-l(t)

fOT n 2:: I, will, initial coIHJitiuHS

213Go(t) =1, udt) = -3l I uo(t) =I, udt) =9t I co(t) =t, cdt) =1 + t .

Then for ull n E Z~u

wllile Um (0) =Um (0) =Cm+l (0) =0 for fIl ~ 0 (mod 3).

\Ve give a short table. Note thaI, ll311 (0) is the Bn of the iutroduetion.

11 (13,,(0) U311(0) c3n+dO)
0 1 1 1
1 -2 G -8
2 -152 -216 1240
3 -6848 -119232 -621440
4 -810:12U6 24105600 -51590800

RCluurk. The constant terms ofthe polynamials *n(t) (* =a, bor c) satisfy the

congruences *n+(p-1)tl(O) == (rr + 1f) *n (0) (mod 1)) for aB n > 1 and all p == 1
(mod 3) prime, where 1T denotes a generator of a prime in [( above p with 1T' == 1
(mod 3). The correspolld iHg cOllgrueuce for the squares of the *n (0) (i.e., for the
numbers Lk) was kllOWIl, and the possibility of'choosing the signs in such a way
that this congrnence desceuds to the square roots for aB p simultaneously had
been conjectured by I<oblitz [3]. 111 fact, I<oblitz conjectured the existence of
a ~adic L-function interpolat.iug suitable modifications of the presumed square
roots. This has been proved by Sofer [8] in otlter similar cascs (see also [6]).
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There is anot.her way of obt.aillillg the Ilumbers an (OL bo (0) aud Co (0) directly
in terms of gencratillg series.

THEOREM 4. (1) Let u(,) = F(~,~; 3; ,3) (md v(,) = , F(~,~; i; ,3), where
F = '1Fl is G(JUSS 's hypergeometric /ulletiou. Let

ha(~) -_ u(~)l/'J.(l _ ~3)1/24, I () I ()3 h () 1 h ( ), • , tb' = t a " c' = 2" b '

and define

Ha(x) = ha(,L Hb(x) = hb(,), Hc(x} = hc{,L

where x = v/2u = ~(, + t,4 + 112°0
3
0,7 + 31J~o,lO + ... ). Then

X n Xn X n

Ha(z) =L:{-ltun(O)" Hb(x) = L: bn{O)" Hc(x) =E cn(O),.
U. n. n.

n'2:0 n'2:0 n'2: 0

(2) The series Ha (x) i.'i lh e eJ.pansiou 0/ 1J (z) aiJout w = (-1 + yC3) /2 in the
/ollowiug sense:

! (w - wx)(1 - x) - rJ =Cl Ha (C2 X L
1 - x

where Cl =11(W) =eW (3 t 0/211") ~ uud C2 = -3-13 0 2 /411' with 0 as in §2.

Relnnrks. 1. As a corollary of the identity Hb(x) = Ha (x)3 we obtain sorne

what surprising polYllomial relat.ions Let.weell the square roots of the L-values
{L 60 +d ami {L 6n +:4}' Analogolls ident.i t.ies also hold for other CM cu rves, Iink
ing L-vailles of olle c\lrve to L-valuf'..8 of it.s twist by Q(vC'3)/Q; ultimately they
boil down to classical Jacobi identit,y 0'(0) =211'1l.

2. \Ve briefly stat.e here the power series expansions involving the Lk them
selves'. With t.he notat.ioll of Theorem 4 let Go(x) =U(T) and Gdx) = TU(T}.
Then 2-oG~0)(0)eqnals Cl o /2(O)'J. ifu == 0 (mod 6L C(n_l)/2(0)2 ifn == 3 (mod 6),

and 0 otherwise; 2-nG\0)(ü) eqllals b(n_l)/2{O)2 if H == 1 (mod 6) and zero oth
erwise. \Ve may even separate the two brauches (a) und (b) in Go by considering
the series U ( T) (1± (1- ;3) t ). It is presumably possible to prove cl irectly that the
series Ha, lh, He, Go and GI have their Taylor coefficiellts related aB indicated,
but we have not, done so.

Proof (sketch). Part 1) of the theorem follO\\'s from part 2) and the interpre

tation of t he constallt terms Cl n (0L bJl (0L Co (0) as I1on-holomorphic clerivatives
of holomorphic modular fonns, toget.her with the general fact that the expansion
of any modular form as apower series iu a modular function satisfies a linear

differential equation. (Classical examples of this latter assertion are the expan
sion of 11'1 or ~ as apower serics in 1/j or of 0'1 as apower series in AI aB
of which illvolve hypergeomet.ric fUllctiolls.) It can also be proved directly from
the recursive definitions of the polYllomials Cl n I bn and Cu withou t any apriori
knowledge tllat modular forms are involved.
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Part 2) is n consequellce of t.he following simple result abollt non-holomorphic
derivatives. \Ve recall their defillition. For allY k E R we let tJk be the differential
operator iz + irü acting on fuuctions / of z = x + iy E 1l. It has the property

where lk has the usual meallillg. In particular, if f is a modular form of weight

k on same grollp rC SI2(R), then {}k!' where {}k = t?k+2" 0··· 0 t?k+~ 0 t?kl is a
(non-holomorphic) modular fonn of weight k + 2n on the same group.

PROPOSITION 1. Let f : 1l~ C be Oll OIwlyt.ic funtion and Zo = :ro + iyo a
point in 1l. Then the Jollowing e:t1)(wsioH holds

(Iwl < 1).

Proof. Tt is easy to check by illduction that

-!.. ?"/( ) = """ (i + I + k - 1) (_1_)' /(i)(zo)
,1k Zn L., I 2' '1'n.. lYo J.

J+'=n

""" {}"f( ) (2iY(lw)n """ fj)(zu) (2' )J """ (i + 1+ k - 1) I
L., k Zu I = L., '1 Jyow L., I W ,n. J.
n~O J?U '?O

and our claim follows from Taylor's ami the binomial theorems.

RellU\l'k. Notice that. the subst.itution 4>(t) =(zu-zot)/(1-t) is au isomorphism
from 11. to the ullit disk sellding Zu ta 0, with inverse ,p-l(z) = (z - zo)/(z - zo).
The proposi t.ion then says t.h at. the nOIl-holomorphie derivatives t?k f (zo) are
essentially the Taylor coefficients of flkcP at. t =o.

5. Estiluntes of Sp

The last two criteria for the vanishing of Sp described in the intraduction are
given in terms of the vanishing of Sp (Illod }J). Timt these two statements are in
fact equivalent is a cOlIseqtlence of the following general estimate.

PROPOSITION 2. Let E/Q be a modular elliptic curve 0/ conduetor N. Then

IL(E,I)1 < {4N)I/4 (lOg: + ,,) + Cu,

where "'t =0.577 ... i.'t Etlle1"S COll.'itrmt am] Co = (( ~)2 = 2.13263 ....
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P roof. BecaHse of the Hiliversal estimate tUn I :$ V7i 0"0 (u) for the coefficienta of
L(E, s) we have

where w = ± 1 ia tbe sigll in t.he fuuctional eq \l atioll and F (x) = f: 0"0~) e-nz
n;1 v n

Using the fact that the Mellin trausform of F(x) is r(s)((s + !rJ
, we find the

asymptotic expansion

l 1 00

F(x) = ~ (log - + ,) + L cnxn
x 4x

n=(I

(x ~ 0)

with Co = (( ~)2 ami cl = -«( - ~) < O. Same numerical work shows that
Ln> 1 CnX n < 0 for all X > O. (For l.he proposi t ion, we need this onIy for

x :5-21T/v'IT.)
Applying this to the curve Ep , whose conductor is 27p'J, we find after a simple

calculation the following estimate.

COROLLARY. For l' == 1 (mod U) we Iwve

18p t < O.61]JEi/6Iogp.

In parficulur, Sp is del.enrü"ed by its vulue modulo ]J ulId

Sp == 0 (mod p) Sp =O.

RClunrk. 'Ve caH also estilllate Sp lISillg Theorems 1 or 2. For instance, from
Theorem 2 aud the estünate 7J(w;k) = 0(1'1/4), we obtain Rp = 0(p2/3), so

that Rp , and hence Sp, is def,cnnillcd by its value modulo p. The corresponding
estimnte using Theorem 1 is more difficult, because e is not a cusp form, but
seems to lead to the esl.imate Sp = O(JJ Ei

/
G+'), essentially the same as in the

Corollary above. Note that Lo determine Sp from its value modulo p we need
ooly the weaker estimaf,e SI' < 1'2/4, since we know that Sp is a square.
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