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Introduction.

The theme of this paper is the correspondence between classical modular forms
and pseudodifferential operators (ΨDO’s) which have some kind of automorphic
behaviour. In the simplest case, this correspondence is as follows. Let Γ be a
discrete subgroup of PSL2(R) , acting on the complex upper half-plane H in the
usual way, and f(z) a modular form of even weight k on Γ. Then there is a
canonical lifting from f to a Γ-invariant ΨDO with leading term f(z) ∂−k/2 , where
∂ is the differential operator d

dz . This lifting and the fact that the product of two
invariant ΨDO’s is again an invariant ΨDO imply a non-commutative multiplicative
structure on the space of all modular forms whose components are scalar multiples
of the so-called Rankin-Cohen brackets (canonical bilinear maps on the space of
modular forms on Γ defined by certain bilinear combinations of derivatives; the
definition will be recalled later). This was already discussed briefly in the earlier
paper [Z], where it was given as one of several “raisons d’être” for the Rankin-Cohen
brackets.

The basic lifting from modular forms to invariant ΨDO’s can be interpreted and
developed in many ways. We shall discuss some of them in this paper. The two
main generalizations are as follows:

(I) Just as one generalizes the notion of a modular function to the notion of
a modular form, one can consider ΨDO’s which are not invariant with respect
to Γ but instead transform with some automorphy factor. Because of the non-
commutativity of ΨDO’s, however, we have new possibilities which do not occur in
the classical case: one can consider “conjugate-automorphic” ΨDO’s which under
the action of a fractional linear transformation

(

a b

c d

)

∈ Γ are multiplied by a

(cz + d)κ on the left and by (cz + d)−κ on the right for some κ , or “automorphic
ΨDO’s of mixed weight” which transform by different automorphy factors on the
left and right. The first way leads to a whole family of multiplications on the space
of modular forms on Γ, each of which can be expressed in terms of the Rankin-
Cohen brackets, but with coefficients which turn out to be intricate combinatorial
expressions having beautiful and surprising properties. The second way gives even
more structure on the space of modular forms and provides the clearest conceptual
framework for the Rankin-Cohen brackets.

(II) The whole theory has a supersymmetric analogue. This is a natural general-
ization for the following reason. One of the disadvantages of the usual theory is that

The first author (PBC) was supported by the Institute for Advanced Study, Princeton, New
Jersey, USA, NSF grant number DMS 9304580, by the Centre National de Recherche Scientifique,
Lille, France and by the School MPCE, Macquarie University, NSW, Australia.

1



the derivative of the fractional linear transformation z 7→ az+b
cz+d is (cz + d)−2 and

hence that there is no coupling between modular forms of even and odd weight: not
only is the derivative of a modular form not quite modular (which is why the theory
is so complicated), but its a weight is larger than the weight of the original form
by 2 rather than by 1. But in the supersymmetric context, one has available a su-
perdifferentiation operator D with square equal to d/dz and super-fractional linear
transformations whose automorphy factor reduces modulo nilpotents to (cz+ d)−1

and hence effectively raises the weight of (super)modular forms by 1. Specifically, in
the supercomplex plane C

1|1 one has one even coordinate z and one odd one ζ , with
zζ = ζz , ζ2 = 0, so a superanalytic function has the form F (z, ζ) = f(z) + g(z)ζ
with f and g holomorphic functions of z . The differential operator D = ∂

∂ζ + ζ
∂
∂z

sends F to g(z)+f ′(z)ζ , so that D2 = ∂ as claimed; and we get the desired theory
by working with ΨDO’s based on powers of D rather than of ∂ .

The structure of the paper is as follows. In §1 we define ΨDO’s and give the
basic result about lifting modular forms to invariant ΨDO’s. In §2 we describe
other proofs and interpretations of that result and a generalization to ΨDO’s with
non-integral powers of ∂ . The next few sections treat point (I) above: in §§3–5 we
define canonical liftings of modular forms to various kinds of automorphic ΨDO’s
and describe the induced multiplications on the space of modular forms explicitly
in terms of Rankin-Cohen brackets, and in §6 we give a conceptual proof (in terms
of the non-commutative residue map and the duality between modular forms of
weights k and 2−k ) of the surprising symmetries exhibited by the numerical coef-
ficients appearing in these formulas. Point (II), the supersymmetric generalization
of the theory, is treated in §7. We explain the superanalogues of modular forms
and of ΨDO’s and state and prove the superanalogue of the basic lifting property.

The last section contains some scattered remarks and questions. Whereas in the
main body of the paper we described our constructions in the context of classical
automorphic forms, here we try to put them in the framework of the theory of com-
pletely integrable Hamiltonian systems to which Irene Dorfman made a significant
contribution (see e. g. [GD]).

§1. Lifting modular forms to pseudodifferential operators.

Let z be a local coordinate for C . We have the associated differential operator
∂ = d

dz which transforms under a coordinate change z 7→ z̃ as ∂ = ∂(z̃) · ∂̃ . Let
R be a ring of functions on C on which ∂ acts, so that the pair (R, ∂) is a ring
with derivation. By a pseudodifferential operator (ΨDO) over R we will mean a
formal Laurent series in the formal inverse ∂−1 of ∂ with coefficients in R , i.e. an
element of the vector space

ΨDO(R) =

{

∑

n∈Z

hn∂
−n : hn ∈ R, hn = 0 if n≪ 0

}

. (1.1)

The subspace DO(R) of differential operators over R , consisting of sums as in (1.1)
but with n ≥ 0, is a ring under composition, and the formula for the multiplication
of differential operators implied by Leibniz’s rule, viz.,

(

∑

n

gn(z) ∂
n

)(

∑

m

hm(z) ∂m
)

=
∑

n,m

∑

r≥0

(

n

r

)

gn ∂
r(hm) ∂n+m−r , (1.2)

can be extended to the full space ΨDO(R) if we remember that for l ∈ Z≥0 the
binomial coefficient

(

w
l

)

= w(w−1) · · · (w− l+1)/l! is a polynomial in w and hence
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is defined for any integral (or even complex) value of w . We have an increasing
filtration of ΨDO(R) by the subspaces

ΨDO(R)w =

{ ∞
∑

n=0

fn∂
w−n, fn ∈ R

}

(1.3)

with w ∈ Z . It follows from formula (1.2) that this filtration is compatible with
the ring structure in the sense that

ΨDO(R)w1
· ΨDO(R)w2

⊆ ΨDO(R)w1+w2
∀w1, w2 . (1.4)

In particular, the subspace ΨDO(R)0 of pure ΨDO’s is a subring of ΨDO(R) , and
ΨDO(R) has an (additive) direct sum decomposition as ΨDO(R)−1⊕DO(R) . We
have a short exact sequence

0 → ΨDO(R)w−1 → ΨDO(R)w → R→ 0 (1.5)

for every w , where the final map sends
∑

m≥0 fm∂
w−m to f0 (symbol map).

We shall be interested in the behavior of ΨDO’s under (groups of) transforma-
tions of the coordinate z . Under a coordinate change z 7→ z̃ the differentiation
operator ∂ is transformed to ∂̃ = j−1 ∂ , where j = dz̃/dz is the Jacobian of the
transformation, and there is a corresponding action on ΨDO’s (cf. [KZ1])

∂̃w = j−w∂w −
(

w
2

)

j′j−w−1∂w−1 + [3
(

w+1
4

)

j′
2
+
(

w
3

)

jj′′]j−w−2∂w−2 + · · · (1.6)

(prove this by induction on w for w ∈ Z≥0 , and then extend to all w ). In particular,
the exact sequence (1.5) is equivariant with respect to coordinate transforms if we
define the action on the last term by f(z) 7→ j−wf(z̃) .

If the coordinate change is a fractional linear transformation z̃ = g(z) = az+b
cz+d

with g =
(

a b

c d

)

∈ SL(C) , then j = (cz + d)−2 , all the terms multiplying ∂w−n in

(1.6) become proportional, and the equation simplifies to

∂̃w = [(cz + d)2 ∂]w =
∞
∑

n=0

n!
(

w
n

)(

w−1
n

)

cn(cz + d)2w−n ∂w−n . (1.7)

(Again one proves this by induction for w ∈ Z≥0 and then extends to other values
of w .) The action on the symbol, and hence on the last term in the sequence
(1.5), is the classical action f 7→ f |−2wg , where f |k is defined for k ∈ Z by
(f |kg)(z) := (cz + d)−kf

(

az+b
cz+d

)

. If we have a group Γ ⊂ SL(2,C) , acting on R

via its fractional linear action on C , then we will denote by Mk(R,Γ) or simply
by Mk(Γ) the space of invariants of R under the action f 7→ f |k of Γ. If we take
for R the ring F of all holomorphic functions in the complex upper half-plane H
which are bounded by a power of (|z|2 + 1)/ℑ(z) , and Γ is a discrete subgroup of
SL(2,R) of finite covolume, then Mk(Γ) is the usual space of holomorphic modular
forms on Γ and is finite-dimensional for all k ∈ Z and zero for k < 0, but we can
also take larger rings of functions (like the ring of all holomorphic functions in H ,
or all those of at most exponential growth at the cusps) to allow modular forms of
negative weight. By taking Γ-invariants in (1.5) we get (with k = −w ) a sequence

0 → ΨDO(R)Γ−k−1 → ΨDO(R)Γ−k →M2k(Γ) → 0 (1.8)

which is exact except perhaps for the last arrow. The basic fact studied in this
paper is the following proposition, which says that (1.5) has a canonical equivariant
splitting and hence that the sequence (1.8) is exact and splits canonically.
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Proposition 1. For k ≥ 1 define an operator Lk : R→ ΨDO(R)−k by

Lk(f) =
∞
∑

n=0

(−1)n
(n+ k)! (n+ k − 1)!

n! (n+ 2k − 1)!
f (n)∂−k−n

and an operator L−k : R→ DO(R)k by

L−k(f) =
k−1
∑

n=0

(2k − n)!

n! (k − n)! (k − n− 1)!
f (n) ∂k−n ,

and set L0(f) = f . Then Lk(f |2kg) = Lk(f)◦g for all g ∈ PSL(2,C) and
all k ∈ Z . In particular, if f ∈ M2k(Γ) for some subgroup Γ ⊂ PSL(2,C) then
Lk(f) ∈ ΨDO(R)Γ−k .

Proof. Write g =
(

a b

c d

)

. By induction on n we have the formula

dn

dzn
(

f |kg(z)
)

=

n
∑

r=0

n!

r!

(

k + n− 1

n− r

)

(−c)n−r

(cz + d)k+n+r
f (r)

(az + b

cz + d

)

(1.9)

for any k ∈ Z and any n ≥ 0, where f (r) denotes ∂rf as usual. From this and
(1.7) we find that for k > 0 both Lk(f |2kg)(z) and (Lk(f)◦g)(z) are equal to

∑

r,m≥0

(m+ r + k)! (m+ r + k − 1)!

m! r! (2k + r − 1)!

(−1)r cm

(cz + d)2k+m
f (r)

(az + b

cz + d

)

∂−k−m−r .

The proof for k < 0, is similar, and the proof for k = 0 is of course trivial. �

§2. Interpretations and extensions of the basic lifting.

In this section we discuss some further aspects of the proposition just proved. In
particular we describe the relationship between modular forms, invariant ΨDO’s,
and “Jacobi-like forms” (this was the point of view taken in [Z1]), give a different
and more conceptual proof of Proposition 1 in terms of the Casimir operator for
sl(2,C) , and describe an extension to generalized ΨDO’s where one allows non-
integral powers of ∂ .

Jacobi-like forms. One interpretation of the lifting from modular forms with
respect to Γ to Γ-invariant ΨDO’s is to identify both spaces with the space J (Γ)
of Jacobi-like forms, namely power series Φ(z,X) ∈ R[[X]] satisfying the transfor-
mation law

Φ
(az + b

cz + d
,

X

(cz + d)2
)

= ecX/(cz+d) Φ(z,X) ∀
(

a b

c d

)

∈ Γ . (2.1)

(Here Γ is a subgroup of PSL(2,R) and R a Γ-invariant ring of functions in H ,
e.g. the ring F defined in §1.) This space is filtered by the subspaces J (Γ)k =
J (Γ) ∩ XkR[[X]] . Clearly, if Φ(z,X) belongs to J (Γ)k and has leading term
f(z)Xk , then f |2kγ = f for all γ ∈ Γ, so we have a sequence

0 → J (Γ)k+1 → J (Γ)k →M2k(Γ) → 0 (2.2)

which is exact except possibly at the last place. The following proposition, which
is a sharpening of Prop. 1 for the case of positive weights, says that this sequence
splits and is canonically isomorphic to the split short exact sequence (1.8).
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Proposition 2. Let φk = φk(z) (k = 1, 2, . . . ) be elements of R . Then the
following are equivalent:

(1) Φ(z,X) :=
∞
∑

k=1

φk(z)X
k ∈ J (Γ);

(2) ψ(z) :=
∞
∑

k=1

(−1)k k! (k − 1)!φk(z) ∂
−k ∈ ΨDO(R)Γ;

(3) φk|2kγ(z) =
k−1
∑

n=0

1

n!

( c

cz + d

)n
φk−n(z) for all k ≥ 1 and all γ =

(

a b

c d

)

∈ Γ;

(4)
k−1
∑

r=0
(−1)r

(2k − 2− r)!

r!
φ
(r)
k−r(z) ∈ M2k(Γ) for all k ≥ 1;

(5) φn(z) =
n−1
∑

r=0

1

r! (2n− r − 1)!
f
(r)
n−r(z) where fk ∈M2k(Γ) (∀k ≥ 1) .

Proof. One checks that each of the properties in question is equivalent to the trans-
formation law (3). For (1) this is obvious from the definition (2.1), for (2) it follows
directly from (1.7), and for (5) it follows from (1.9). Property (4) can be checked
the same way or we can note that by a simple binomial coefficient identity it is
equivalent to (5) if we define fk to be 2k − 1 times the sum in (4). �

We can restate the result of Proposition 2 in the following way. Denote by
M(Γ)+ =

∏

n>0M2n(Γ) the space of sequences of modular forms of positive
weights, with the trivial filtration by the subspaces M(Γ)k =

∏

n≥kM2n(Γ), with

successive quotients M(Γ)k/M(Γ)k−1 = M2k(Γ). Proposition 2 says that M(Γ)1
is canonically isomorphic as a filtered vector space to both the space J (Γ)1 of
Jacobi-like forms with no constant term and the space ΨDO(R)Γ1 , the correspon-
dence sending the sequence (f1, f2, . . . ) (fk ∈M2k(Γ)) to the elements Φ ∈ J (Γ)1
and ψ ∈ ΨDO(R)Γ1 defined by (1) and (2), respectively. Note also that, by linear-
ity, the Jacobi-like property of Φ and the Γ-invariance of ψ need only be checked
in the case when there is only a single non-zero fk . In this case, writing f for fk ,
we find that the Φ is simply the Cohen-Kuznetsov lifting

f̃(z,X) =
∞
∑

n=0

f (n)(z)

n!(n+ 2k − 1)!
Xn+k (2.3)

of f whose Jacobi-like property was discovered in [Ku] and [Co], while ψ is precisely
the lifting Lk(f) of Proposition 1.

The reason for the name “Jacobi-like,” by the way, is that the space J (Γ)k can
be identified via Φ(z, 2πimu2) = u2kφ(z, u) with the set of all φ(z, u) ∈ R[[u2]]

satisfying φ(az+b
cz+d ,

u
cz+d ) = (cz+ d)2k e2πicmu2/(cz+d) φ(z,X) for all

(

a b

c d

)

∈ Γ, and
this is one of the two transformation laws characterizing Jacobi forms of weight k
and index m in the sense of [EZ].

The Casimir operator. The proof of Proposition 1 by direct computation
as given in §1 is very short, but not particularly enlightening. We now describe
another way to see the existence (and uniqueness) of the equivariant splitting map
Lk which was pointed out to us by Beilinson. Let SL(2,C) act by fractional
linear transformations as usual. The action of its Lie algebra sl(2,C) is then given
by the three vector fields Lj = zj+1∂ (j = −1, 0, 1), with Lie bracket given by
commutation. There is an induced operation of sl(2,C) on ΨDO’s by commutation
(adjoint representation). Explicitly, we have L−1(f∂

w) = [∂, f∂w] = f ′∂w and
5



similarly L0(f∂
w) = (zf ′−wf)∂w , L1(f∂

w) = (z2f ′−2wzf)∂w−w(w+1)zf∂w−1 ,
so a short computation shows that the Casimir operator

C = L2
0 −

1

2
(L1L−1 + L−1L1) ,

which acts trivially on functions, acts on ΨDO’s by

C(f∂w) = w(w + 1)f∂w + w(w − 1)f ′∂w−1 .

In particular, the induced action of C on the quotient ΨDO(R)w/ΨDO(R)w−1
∼= R

in (1.5) is multiplication by w(w+1), so if there is any equivariant splitting of this
sequence then the lift ψ of f ∈ R to ΨDO(R)w must be an eigenvector of C with
eigenvalue w(w + 1). Writing w = −k and ψ(z) =

∑∞
n=0 fn(z) ∂

−k−n , we find

[

C − k(k − 1)
]

ψ =
∞
∑

n=1

[

n(n+ 2k − 1) fn + (n+ k)(n+ k − 1) f ′n−1

]

∂−k−n ,

and equating all coefficients of this to 0 we find by induction that each fn is a
multiple of the nth derivative f (n) with coefficients as given in Proposition 1. (To

get exactly the lift Lk we must normalize by taking f0 = λkf with λk =
(

2k−1
k

)−1

if k ≥ 0 and λk = (2|k|)!
|k|!(|k|−1)! if k < 0.)

Generalized pseudodifferential operators. Since a ΨDO is defined as a
formal expression anyway, one can allow symbols ∂w with arbitrary complex pow-
ers w . Both the transformation property (1.6) of ΨDO’s under changes of variables
and the rule (1.2) for multiplying ΨDO’s involve together with each power ∂w all
lower powers ∂w−n with n a positive integer, so we again define ΨDO(R)w for any
w ∈ C by equation (1.3) and define a generalized ΨDO as an element of any such
space or a finite sum of such elements [KZ1]. Because formula (1.2) involves only
binomial coefficients whose lower index is a nonnegative integer, and hence makes
(formal) sense even for non-integral m and n , the space ΨDO(R)C of generalized
ΨDO’s is a ring just as before, formula (1.4) still holds, and there is a direct sum
decomposition

ΨDO(R)C =
⊕

w∈C/Z

ΨDO(R)w+Z , ΨDO(R)w+Z :=
⋃

k∈Z

ΨDO(R)w+k .

The summand ΨDO(R)Z is the ring ΨDO(R) previously considered and each other
summand ΨDO(R)w+Z is a module over this ring and is filtered by the subspaces
ΨDO(R)w+n (n ∈ Z), and we again have the exact sequence (1.5).

Formula (1.6) defines the behavior of the generalized ΨDO’s under coordinate
changes (again the binomial coefficients make sense even for w non-integral), and
formula (1.7) their behavior under the action of SL(2,C) . Of course there is now
a problem because the quantity j−w or (cz + d)2w is not uniquely defined for
w non-integral. This can be overcome in several ways. In the case when R is
a space of functions on the upper half-plane H , we replace the group SL(2,R)

by its universal covering, consisting of matrices
(

a b

c d

)

∈ SL(2,R) together with a
choice of logarithm of cz + d in H , and take for Γ a subgroup of this covering
which maps isomorphically onto a discrete co-finite volume subgroup of SL(2,R) .
In this case the elements of M−2w(Γ) are essentially what are classically known as
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modular forms with multiplier systems. This does not work for SL(2,C) acting on
P
1 because then there is no global logarithm of cz + d . But actually, as we could

have pointed out even when looking at the case of integral weight, there is no reason
that we have to work with a ring R of functions defined globally on all of H or all
of P1 : all of the considerations in §1 were local, so in the formulas of that section we
could always have considered ΨDO’s ψ(z) =

∑

fn(z)∂
w−n defined for z in some

open subset of C , and coordinate changes z 7→ z̃ mapping this set to some possibly
different open subset. On a simply connected open set on which j or cz+d has no
zeros or poles, we can choose a branch of j−w or (cz+d)2w and make sense of all the
formulas we have been writing. The correct language to describe all of this would be
that of sheaves of D-modules over Riemann surfaces with a projective structure (i.e.
having an atlas such that the coordinate transformation maps between charts are
fractional linear), as will be discussed in §8. For now we will ignore this issue and
use the same terminology as before, with the understanding that the results have
to be interpreted in one of the ways just indicated. Proposition 1 then generalizes
to the following result.

Proposition 3. Let w ∈ C , 2w not a nonnegative integer. Then the map

Dw : R→ ΨDO(R)w , Dw(f) =

∞
∑

n=0

(

w
n

)(

w−1
n

)

(

2w
n

) f (n) ∂w−n (2.4)

satisfies Dw(f |−2wg) = Dw(f)◦g for all g ∈ SL(2,C) , so Dw gives an equivariant
splitting of the exact sequence (1.5). If w is a nonnegative integer, then the same
assertion remains true if the sum in the definition of Dw is replaced by a sum
from n = 0 to n = w . If w is a positive half-integer, then there is no equivariant
splitting of the sequence (1.5).

Proof. For w ∈ Z this is the same as the statement of Proposition 1, since one
easily checks that D−k = λkLk for k ∈ Z , with λk defined as at the end of the last
subsection. Both the proof by direct computation given in §1 and the proof given
above using the Casimir operator given above apply unchanged for general w (with
the change of notation that we again use w instead of k = −w , which was more
convenient before because classical modular forms have positive weight). The proof
using the Casimir operator showed the uniqueness of the lift and hence also its non-
existence in the case when w is a positive half-integer (corresponding to modular
forms of odd negative weight), since the recursive relation n(n − 2w − 1) fn =
−(n−w)(n−w− 1) f ′n−1 cannot be solved in general for n = 2w+1. In this case
there is a lifting if and only if f is a polynomial of weight ≤ 2w . �

§3. A non-commutative multiplication of modular forms.

Let Γ be a discrete subgroup of PSL(2,R) . As explained in the last section, one
interpretation of Proposition 1 is that ΨDO(R)Γ is canonically isomorphic to the
space M(Γ) =

∏

k≫−∞M2k(Γ) of semi-infinite sequences of modular forms on Γ
(i.e. sequences fk ∈ M2k(Γ) with fk = 0 for all but finitely many negative k ; in
the first subsection of §2 we looked only at the subspace M(Γ)+ of sequences of
forms of positive weight). On the other hand, the product of Γ-invariant ΨDO’s is
again Γ-invariant, so there is an induced non-commutative ring structure on M(Γ).
In this section we describe it explicitly in terms of the “Rankin-Cohen brackets.”
These are the bilinear maps

[ , ]n = [ , ](k,l)n :M2k ⊗M2l →M2k+2l+2n (k, l ∈ Z , n ∈ Z≥0 )
7



defined by the formula

[f, g](k,l)n (z) =
n
∑

m=0

(−1)m
(

2k+n−1
n−m

)(

2l+n−1
m

)

f (m)(z) g(n−m)(z) . (3.1)

(Here φ(m) = ∂mφ as usual, and we have dropped the Γ in the notation for spaces
of modular forms; we will also usually omit the superscripts “(k, l)” on the brackets
except when necessary for clarity, since we will always apply them with superscripts
equal to half the weights of the arguments.) They were introduced and shown to
be modular in 1974 by H. Cohen [Co], this result being a special case of a general
theorem of Rankin [Ra] describing all multilinear differential operators which send
modular forms to other modular forms. The easiest proof of the modularity of
[f, g]n is to use the Cohen-Kuznetsov lifting (2.3) from modular forms to Jacobi-like

forms: the transformation law (2.1) shows that the product f̃(z,−X) and g̃(z,X)
is invariant under (z,X) 7→

(

az+b
cz+d ,

X
(cz+d)2

)

, which means that the coefficient of

Xk+l+n in this product is modular of weight 2k + 2l + 2n , and this coefficient is
just a scalar multiple of [f, g]n . It is also easy to see that the combination (3.1)
is the only universal bilinear combination of derivatives of f and g which goes
fromM2k ⊗M2l to M2k+2l+2n .

Proposition 4. For integers n, k, l ≥ 0 define coefficients tn(k, l) by

tn(k, l) =
1

(

−2l
n

)

∑

r+s=n

(

−k
r

)(

−k−1
r

)

(

−2k
r

)

(

n+k+l
s

)(

n+k+l−1
s

)

(

2n+2k+2l−2
s

) . (3.2)

Then the multiplication µ on M(Γ) defined by

µ(f, g) =
∞
∑

n=0

tn(k, l) [f, g]
(k,l)
n

(

f ∈M2k(Γ), g ∈M2l(Γ)
)

is associative and the lifting map D =
∏

w Dw : M(Γ) → ΨDO(R)Γ is a ring
homomorphism with respect to this multiplication.

Proof. As already mentioned, the isomorphism between M(Γ) and ΨDO(R)Γ per-
mits us to transfer the non-commutative structure on the latter space to the former
one, i.e., to associate to f ∈ M2k and g ∈ M2l a unique sequence of elements
hn ∈ M2k+2l+2n (n = 0, 1, . . . ) such that D−k(f)D−l(g) =

∑∞
n=0 D−k−l−n(hn) .

The map (f, g) 7→ hn from M2k ⊗M2l to M2k+2l+2n is expressed by a universal
formula as a linear combination of products of the first n derivatives of f and
g , so by the uniqueness mentioned above it must be a multiple of the Rankin-
Cohen bracket, i.e. we have hn = tn [f, g]n for all n ≥ 0, where the coefficient tn
depends only on n and on the weights k and l . Substituting the definitions of
the Rankin-Cohen brackets and of D and multiplying everything out, we obtain
a rather complicated identity which overdetermines the coefficients tn : for each
m ≥ 0 the comparison of the coefficients of f (n)g(m)∂−k−l−n−m on the two sides
of the equation for n = 0, 1, 2, . . . gives an infinite sequence of equations which
inductively determine the coefficients tn . For m = 0 these equations are

(

n+k
n

)(

n+k−1
n

)

(

n+2k−1
n

) =
∑

r+s=n

(

2l+r−1
r

)(

n+k+l
s

)(

n+k+l−1
s

)

(

n+r+2k+2l−1
s

) tr ,
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and this can easily be inverted to yield the formula for tn = tn(k, l) given in the
proposition. �

Computing the first three coefficients tn from (3.2), we find

t0 = 1, t1 = −
1

4
, t2 =

1

16

(

1 +
3

(2k + 1)(2l + 1)(2k + 2l + 1)

)

, (3.3)

and computing a few more coefficients we are led to conjecture the formula

tn(k, l) =
(

−
1

4

)n ∑

j≥0

(

n

2j

)

(− 3
2

j

)(− 1
2

j

)( 1
2

j

)

(−k− 1
2

j

)(−l− 1
2

j

)(n+k+l− 3
2

j

)

. (3.4)

(Note that the sum on the right is finite since
(

n
2j

)

vanishes for j > n/2.) The

equivalence of (3.2) and (3.4) is a special case of the following result, whose fairly
complicated proof will be given in a separate paper [Z2].

IDENTITY. For an integer n ≥ 0 and variables X , Y , Z satisfying X+Y +Z =
n− 1 , we have

(−4)n
(

2X
n

)

∑

r+s=n

(

Y
r

)(

Y−1
r

)

(

2Y
r

)

(

Z
s

)(

Z+1
s

)

(

2Z
s

) =
∑

j≥0

(

n

2j

)

(− 3
2

j

)(− 1
2

j

)( 1
2

j

)

(X− 1
2

j

)(Y− 1
2

j

)(Z− 1
2

j

)

. (3.5)

A first corollary of the identity (3.4) is that the coefficient tn(k, l) is symmetric
in k and l , a property which is not immediately obvious from the definition (the
product of ΨDO’s is neither commutative nor anti-commutative) and is not at all
obvious from the closed formula (3.2). But in fact there is an even less obvious
three-fold symmetry which is seen best in the formulation (3.5): even though the
expression on the left apparently has a slightly different dependence on Y and
Z , and a totally different dependence on X , the identity shows that it is in fact
symmetric in all three variables. Going back to the special case (3.4), we see that
this is equivalent to the symmetries

tn(k, l) = tn(l, k) = tn(k, 1− n− k − l) ∀k, l ∈ Z, n ∈ Z≥0 . (3.6)

(This makes sense because the denominators in (3.4) do not vanish for any integral
values of k and l and the sum is finite, so that tn(k, l) is defined for all k, l ∈ Z .)
An explanation of this symmetry in terms of residues will be given in §6.

§4. Conjugate-automorphic ΨDO’s and new multiplications on M(Γ) .
In this section we will show how to generalise the above discussion to produce a

whole family of new associative multiplications. The starting point for this was an
observation by W. Eholzer, who discovered (and verified for the first few terms of
the expansion) that the anti-commutative bracket

[f, g]E :=
∑

n odd

[f, g]n (4.1)

satisfies the Jacobi identity and hence equips M(Γ) with the structure of a Lie
algebra. Since the nth Rankin-Cohen bracket is (−1)n -symmetric, the bracket
[f, g]E is just the odd part 1

2 (f ∗g − g∗f) of the Eholzer product

f ∗ g :=
∞
∑

n=0

[f, g]n . (4.2)

so Eholzer’s observation suggested the following result:
9



Proposition 5. The multiplication ∗ on M(Γ) defined by (4.2) is associative.

Comparing this statement with Proposition 4, we see that both have the same
form, except that the complicated coefficients tn = tn(k, l) defined by (3.2) or (3.4)
are replaced simply by 1. On the other hand, from the special cases in (3.3) we see
that the coefficients (−4)ntn (where the factor (−4)n of course does not affect the
associativity of the product

∑

tn[f, g]n ) are a kind of “small deformation” of 1.
This suggested that there might be a whole family of multiplications of M(Γ) of
which both Propositions 4 and 5 are specializations, and after a fair amount of
experimentation a formula which worked empirically was discovered:

Theorem 1. For κ ∈ C define coefficients tκn(k, l) (n = 0, 1, 2, . . . ) by

tκn(k, l) =
(

−
1

4

)n ∑

j≥0

(

n

2j

)

(− 1
2

j

)(κ− 3
2

j

)( 1
2
−κ
j

)

(−k− 1
2

j

)(−l− 1
2

j

)(n+k+l− 3
2

j

)

. (4.3)

Then the multiplication µκ on M(Γ) defined by

µκ(f, g) =
∞
∑

n=0

tκn(k, l) [f, g]
(k,l)
n

(

f ∈M2k(Γ), g ∈M2l(Γ)
)

(4.4)

is associative.

The first few coefficients tn = t
(s)
n (k, l) are

t0 = 1, t1 = −
1

4
, t2 =

1

16

(

1 +
(1− 2κ)(3− 2κ)

(2k + 1)(2l + 1)(2k + 2l + 1)

)

.

¿From these special cases or from the formula (4.3) we again see non-trivial sym-
metries, namely

tκn(k, l) = tκn(l, k) = tκn(k, 1− n− k − l) (4.5)

(generalizing (3.6)) and
tκn(k, l) = t2−κ

n (k, l) (4.6)

(which says that the multiplications µκ and µ2−κ coincide). We will discuss both
of these equations in §6 in terms of the residue map and the duality between auto-
morphic forms of weights κ and 2 − κ . We note that Proposition 4 is the special
case κ = 0 (or κ = 2) of Theorem 1 and Proposition 5 (up to a harmless rescaling
of tn by (−4)n ) is the special case κ = 1/2 or κ = 3/2. Another interesting special
case is given by taking κ = 1/ε , multiplying tn by a factor (−4ε)n (again, this
does not affect the statement about associativity), and letting ε tend to 0. The

resulting coefficient t
(∞)
n (k, l) is simpler than the general coefficient tκn , since in the

limit all terms in (4.3) except the one (if any) with 2j = n vanish and we have

t
(∞)
2j (k, l) =

(− 1
2

j

)

/j!2
(k+j− 1

2

j

)(l+j− 1
2

j

)(k+l+2j− 3
2

j

)

, t
(∞)
2j+1(k, l) = 0 .

The vanishing of t
(∞)
n (k, l) for n odd means that the corresponding multiplication

µ(∞) , unlike the multiplications µκ for κ finite, is commutative.

Problem. Find a natural interpretation for this ring structure µ(∞) on M(Γ).

We now turn to the proof of Theorem 1. One can prove it by direct combinatorial
manipulation of the sums of binomial coefficients involved. However, this proof is

10



not only very laborious, but also does not explain where the new multiplications
come from. Instead we give a proof using pseudodifferential operators with a new
invariance property. Namely, we can use the non-commutativity of the ring of
ΨDO’s to define a “twisted” action of SL(2,C) by

(

ψ|κg
)

(z) = (cz + d)−κ ψ
(az + b

cz + d

)

(cz + d)κ
(

κ ∈ C, g =
(

a b

c d

))

. (4.7)

Note that this makes sense even for non-integral κ since any two determinations of
the factor (cz + d)κ differ by a scalar factor and scalars commute with ΨDO’s. If
Γ ⊂ PSL(2,C) is a group acting on the ring R as usual, then we call an element of
ΨDO(R) which is Γ-invariant with respect to the action (4.7), i.e., which satisfies

ψ
(az + b

cz + d

)

= (cz + d)κψ(z)(cz + d)−κ for all
(

a b

c d

)

∈ Γ , (4.8)

a conjugate-automorphic pseudodifferential operator of weight κ with respect to Γ.
We denote the space of such elements by ΨDO(Γ)κ and write ΨDO(Γ)κw for its
intersection with ΨDO(R)w . (We omit R from the notation; usually we think of
the case when Γ is a discrete subgrop of PSL(2,R) and R = F .) Since conjugation
of a ΨDO by a function does not change the leading term (symbol), we see that the
exact sequence (1.5) is equivariant with respect to the action of Γ on the first two
terms by (4.7) and on the last term by |−2w , so taking invariants we get a sequence

0 → ΨDO(Γ)κw−1 → ΨDO(Γ)κw →M−2w(Γ) → 0 (4.9)

which is exact except possibly for the final term. We then have the following
generalization of Proposition 3:

Proposition 6. The map Dκ
w : R→ ΨDO(R)w defined by

Dκ
w(f) =

∞
∑

n=0

(

w
n

)(

w+κ−1
n

)

(

2w
n

) f (n) ∂w−n (4.10)

(where the sum must be replaced by
∑w

n=0 if w is a nonnegative integer and is not
defined if w is a positive half-integer) satisfies Dκ

w(f |−2wg) = Dκ
w(f)|κg for all

g ∈ SL(2,C) . In particular, the sequence (4.9) is exact and splits canonically.

Proof. The proof, either by direct calculation, via Jacobi-like forms, or using the
Casimir operator, is exactly the same as before. �

Now we proceed just as in §3. The lifting Dκ =
∏

k D
κ
w gives an isomorphism

from M(Γ) to ΨDO(R,Γ)κ , the inverse map being given explicitly by

∑

n≪∞

gn ∂
n 7→ {fk}k≫−∞ , fk =

∞
∑

r=0

(

k−1
r

)(

k−κ
r

)

(

2k−2
r

) g
(r)
r−k ∈M2k , (4.11)

generalizing (4) of Proposition 2, §2. On the other hand, it is clear that the product
of two conjugate-automorphic ΨDO’s of weight κ is again conjugate-automorphic
of the same weight, so by transporting the multiplication of ΨDO’s to M(Γ) by
Dκ we get a new ring structure µκ on M(Γ). Again the uniqueness of the Rankin-
Cohen brackets says that we must have Dκ(f)Dκ(g) =

∑

n tn[f, g]n for all f ∈
M2k , g ∈ M2l for some universal coefficients tn = tκn(k, l) , and by substituting

11



all definitions and multiplying out what this says we get an infinite sequence of
equations for the tn of which the simplest is

(

n+k−κ
n

)(

n+k−1
n

)

(

n+2k−1
n

) =
∑

r+s=n

(

2l+r−1
r

)(

n+k+l−κ
s

)(

n+k+l−1
s

)

(

n+r+2k+2l−1
s

) tr .

Inverting this as in the previous case we find the closed formula

tκn(k, l) =
1

(

−2l
n

)

∑

r+s=n

(

−k
r

)(

−k−1+κ
r

)

(

−2k
r

)

(

n+k+l−κ
s

)(

n+k+l−1
s

)

(

2n+2k+2l−2
s

) . (4.12)

That this is equivalent to (4.3) follows from the following generalization of the
identity given in §3, and whose proof again will be postponed to the paper [Z2]:

IDENTITY. For an integer n ≥ 0 and variables a , x , y , z satisfying x+y+z =
n− 1 , we have

(−4)n
(

2x
n

)

∑

r+s=n

(

y
r

)(

y−a
r

)

(

2y
r

)

(

z
s

)(

z+a
s

)

(

2z
s

) =
∑

j≥0

(

n

2j

)

(− 1
2

j

)(a− 1
2

j

)(−a− 1
2

j

)

(x− 1
2

j

)(y− 1
2

j

)(z− 1
2

j

)

. (4.13)

(In our case x = −l , y = −k , z = n + k + l − 1, and a = 1 − κ .) Again this
identity reveals surprising “hidden symmetries”: the left-hand side is symmetric
under interchanging y and z and simultaneously replacing a by −a and has no
other evident symmetries, but the identity shows that it is in fact symmetric in
all three variables x , y , z and at the same time an even function of a . In terms
of the coefficients tκn(k, l) , these symmetries become the equations (4.5) and (4.6)
mentioned above.

As a final remark, we observe that in the special case κ = 1/2 corresponding to
the Eholzer multiplication (4.2), not only the multiplication but also the formula
for the lifting map Dκ simplifies, since (4.10) becomes simply

D1/2
w (f) =

∞
∑

n=0

4n
(

2w−n
n

)

f (n) ∂w−n . (4.14)

§5. Automorphic ΨDO’s of mixed weight.

We can generalize still further by considering the action of Γ defined by

(

ψ|κ1,κ2
γ
)

(z) = (cz + d)−κ1 ψ
(az + b

cz + d

)

(cz + d)κ2
(

γ =
(

a b

c d

)

∈ Γ
)

where κ1 and κ2 are complex constants. If κ1 and κ2 differ by an integer, then
this makes sense independently of the branch of log(cz+ d) chosen; if not, then we
either have to pick a lifting from Γ to the universal cover of SL(2,R) or else work
with locally defined functions, as discussed at the end of §2. We call the elements
of ΨDO(R) which are Γ-invariant with respect to this action, i.e., which satisfy
the transformation law

ψ
(az + b

cz + d

)

= (cz + d)κ1 ψ(z) (cz + d)−κ2 ∀
(

a b

c d

)

∈ Γ , (5.1)

automorphic pseudodifferential operators of mixed weight (κ1, κ2) with respect to Γ.
We denote the space of such operators by ΨDO(Γ)κ1,κ2 and its intersection with
ΨDO(R)w by ΨDO(Γ)κ1,κ2

w . If ψ(z) =
∑

n≥0 fn(z)∂
w−n belongs to this latter

space, then its leading coefficient f0 is Γ-invariant with respect to the action
|κ1−κ2−2w , so the sequence (4.9) generalizes to

0 → ΨDO(Γ)κ1,κ2

w−1 → ΨDO(Γ)κ1,κ2

w →Mκ1−κ2−2w(Γ) → 0 (5.2)

and the liftings described in the previous sections to the following proposition:
12



Proposition 7. The map Dκ1,κ2
w : R→ ΨDO(R)w defined by

Dκ1,κ2

w (f) =
∞
∑

n=0

(

w
n

)(

w+κ2−1
n

)

(

κ2−κ1+2w
n

) f (n) ∂w−n , (5.3)

where the upper index in the sum must be replaced by
∑w

n=0 if w is a non-negative
integer and values of w for which the denominator of any of the coefficients vanishes
must be excluded, satisfies

(Dκ1,κ2

w f)|κ1,κ2
g = Dκ1,κ2

w (f |κ1−κ2−2wg) ∀g ∈ SL(2,C) . (5.4)

In particular, the sequence (5.2) is exact and splits canonically.

Just as before, we could prove the proposition by direct computations as in §1 or
else by an argument using Jacobi-like forms or the Casimir operator as in §2. Now,
however, there is a new argument which is perhaps the simplest of all. In the special
case when w = n is a non-negative integer, the lifting Dκ1,κ2

w (f) of an element
f ∈Mκ1−κ2−2n is a differential rather than a pseudodifferential operator, and hence
acts on functions. Moreover, it is clear from the transformation law (5.1) that if
g ∈ Mκ2

(Γ) and ψ ∈ DO(Γ)κ1,κ2 , then the image ψ(z)g(z) belongs to Mκ1
(Γ).

Hence, changing notation from κ1 , κ2 to 2k = κ1 − κ2 − 2n , 2l = κ2 , we see that
the map f⊗g 7→ (D2k+2l+2n,2l

n f)(g) goes from M2k(Γ)⊗M2l(Γ) to M2k+2l+2n(Γ),
and comparing the definition (5.3) with the definition (3.1), we see that this map is
(up to a scalar) nothing else than the Rankin-Cohen bracket, as indeed it must be by
the uniqueness of the latter. Turning this around, the fact that the Rankin-Cohen
bracket is given in terms of derivatives means that, for a fixed f ∈ M2k(Γ), the

operator [f, ·]
(k,l)
n is a differential operator which sends M2l(Γ) to M2k+2l+2n(Γ)

and hence satisfies the transformation law (5.2) (with κ1 = 2k+2l+2n , κ2 = 2l ), so
that the modularity property of the bracket implies the equivariance property of the
lifting (5.3) in this case. Since this equivariance property is at each level equivalent
to a finite number of binomial coefficient identities, and since this argument shows
that these identities (which are polynomial in κ1 and κ2 ) are true for infinitely
many values κ1 , κ2 , this special case is enough to prove the proposition.

Now just as in the previous cases κ1 = κ2 = 0 and κ1 = κ2 = κ , this proposition
induces an isomorphism between M(Γ) and ΨDO(Γ)κ1,κ2 . However, the latter
space is no longer a ring, so this does not directly induce a single multiplication on
the space of modular forms. Instead, we clearly have

ΨDO(Γ)κ1,κ2

w1
ΨDO(Γ)κ2,κ3

w2
⊆ ΨDO(Γ)κ1,κ3

w1+w2
(5.5)

(if we restrict this to differential operators rather than ΨDO’s then DO(R)κ1,κ2 can
be thought of as giving homomorphisms from Mκ2

to Mκ1
as just explained, and

this is just the composition of homomorphisms) and combining this with the lifting
of Proposition 7 we get a corresponding collection of multiplication maps µκ1,κ2,κ3

on M(Γ) which satisfy the evident associativity property (groupoid structure).
These multiplications must again be expressible in terms of Rankin-Cohen brackets,
i.e., we must have

Dκ1,κ2

w1
(f)Dκ2,κ3

w2
(g) =

∞
∑

n=0

tκ1,κ2,κ3

n (k, l)Dκ1,κ3

w1+w2−n([f, g]n) (5.6)
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for some numerical coefficients tκ1,κ2,κ3
n (k, l) , where 2k and 2l are the weights of

f and g and w1 = 1
2 (κ1 − κ2)− k , w2 = 1

2 (κ2 − κ3)− l . These coefficients can be
evaluated as before to give the formula

tκ1,κ2,κ3

n (k, l) =
(

−
1

4

)n
Tn

(

1− κ1, 1− κ3, 1− κ2; −l,−k, k + l + n− 1) , (5.7)

where Tn(a, b, c;x, y, z) is defined for a non-negative integer n and variables a , b ,
c , x , y , z with x+ y + z = n− 1 by the formula

Tn(a, b, c;x, y, z) =
(−4)n
(

2x
n

)

∑

r+s=n

(

y− a+c

2

r

)(

y+ c−a

2

r

)

(

2y
r

)

(

z+ a−b

2

s

)(

z+ a+b

2

s

)

(

2z
s

) , (5.8)

which reduces to the left-hand side of (4.13) in case a = b = c .

In §6 we will use the interpretation (5.7) of the numbers Tn to prove the following
purely combinatorial result.

Theorem 2. The coefficient Tn(a, b, c;x, y, z) is symmetric in the three pairs of
variables (a, x) , (b, y) , and (c, z) and is an even function of a , b and c .

As examples of the theorem, we found (with effort!) the symmetric expressions

T0 = 1 ,

T1 = 1 +
1

4

(

a2

yz
+
b2

xz
+
c2

xy

)

(x+ y + z = 0),

T2 = 1 +
1

2

(

a2

yz
+
b2

xz
+
c2

xy

)

−
1

(2x− 1)(2y − 1)(2z − 1)

+
1

4

(

a2(a2 − 2)

yz(2y − 1)(2z − 1)
+

b2(b2 − 2)

xz(2x− 1)(2z − 1)
+

c2(c2 − 2)

xy(2x− 1)(2y − 1)

)

+
1

4xyz

(

b2c2

2x− 1
+

a2c2

2y − 1
+

a2b2

2z − 1

)

(x+ y + z = 1) .

The expression for T1 clearly simplifies to 1 if a = b = c , but already for n = 2
the verification that T2 reduces to 1 + (4a2 − 1)/(2x − 1)(2y − 1)(2z − 1) when
a = b = c (as it must by (4.13)) requires the non-obvious identities

1

zx
+

1

xy
+

1

yz
−

8

(2x− 1)(2y − 1)(2z − 1)
=

−1

xyz

(

1

2x− 1
+

1

2y − 1
+

1

2z − 1

)

=
1

zx(2z − 1)(2x− 1)
+

1

xy(2x− 1)(2y − 1)
+

1

yz(2y − 1)(2z − 1)

for variables x , y , z with x+ y + z = 1. It would be nice to find a direct combi-
natorial proof of Theorem 2 or, even better, a closed formula for Tn(a, b, c;x, y, z)
which

(a) makes the symmetries stated in Theorem 2 evident, and
(b) reduces to the right-hand side of (4.13) when a = b = c ,

but so far we could not find a formula having either one of these properties.
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§6. Residues, duality, and symmetry.

In the present section we found a striking symmetry among the three weights
k , l , and m := 1 − k − l − n in the formulas giving the coefficients of the nth
bracket [f, g]n (f ∈ M2k , g ∈ M2l ) in the various multiplications on M(Γ). To
explain it, we use the non-commutative residue map

Res∂ :
∑

m

hm(z)∂m 7→ h−1(z)dz ∈ H(R) := Ω1(R)/dΩ0(R) ,

where Ω1(R) = Rdz denotes the space of formal differentials f(z) dz (f ∈ R) and
dΩ0(R) = dR the subspace of exact differentials f ′(z)dz , f ∈ R . This residue map
was introduced in [Ma2] and shown to have the properties

Res∂(ψ ◦ g) = Res∂(ψ) ◦ g (6.1)

for any ψ and any holomorphic map z 7→ g(z) (invariance under holomorphic
change of coordinates) and

Res∂(ψ1(z)ψ2(z)) = Res∂(ψ2(z)ψ1(z)) (6.2)

for any two ΨDO’s ψ1 and ψ2(z) (trace property). The invariance under changes of
variables implies in particular that Res∂ maps ΨDO(R)Γ to H(R)Γ if Γ is a group
of fractional linear transformations acting on R , and the conjugacy-invariance prop-
erty (6.2) implies that the same is true for the space ΨDO(R,Γ)κ of conjugate-
automorphic ΨDO’s of arbitrary (complex) weight κ . The space H(R)Γ is isomor-
phic via f(z) dz 7→ f(z) to the space H(R,Γ) =M2(Γ)/∂(M0(Γ)), and by abuse of
notation we will simply identify these spaces and write Res∂ for the corresponding
map ΨDO(R,Γ)κ → H(R,Γ). We must choose R large enough that there are
plenty of modular forms of positive and negative weight, so that we can test an
identity in M2k(Γ) by checking whether its product with an arbitrary element of
M2−2k(R,Γ) is 0 in H(R,Γ). For instance, we could take R to be the set of all
functions which are meromorphic in the upper half-plane including the cusps, or
the subspace of those with poles at most at some specified non-empty Γ-invariant
set S .

We also define a projection map P from M∗(Γ) = ⊕kM2k(Γ) to H(R,Γ) by
sending f ∈M2k(Γ) to 0 if k 6= 1 and to its natural image in H(R,Γ) if k = 1.

Proposition 8. (i) The map P annihilates all higher Rankin-Cohen brackets, i.e.
P([f, g]n) = 0 for all f, g ∈M∗(Γ) and all n > 0 .

(ii) The “triple bracket” {f, g, h}n := P([f, g]nh) (f, g, h ∈ M∗(Γ) , n ≥ 0) is
invariant under cyclical permutation of its three arguments.

Proof. Suppose f ∈ M2k(Γ) and g ∈ M2l(Γ). If k + l + n 6= 1, then P([f, g]n)
vanishes by definition. If k + l + n = 1 then a one-line computation shows that

n[f, g]n = (k − l) ∂
(

[f, g]n−1

)

and hence that [f, g]n vanishes in H(R,Γ) if n 6= 0. This proves (i). To prove (ii),
let h ∈M2m(Γ) be a third modular form, and suppose that k+ l+m+n = 1 (oth-
erwise {f, g, h}n and {g, h, f}n are zero by definition). Let ≡ denote congruence
modulo dR . From f ′g ≡ −fg′ we get (−1)pf (p)g ≡ g(p)f by induction and hence

(−1)p f (p) g(q) h ≡ (g(q)h)(p) f ≡
∑

r+s=p

(

p
s

)

g(q+r) h(s) f
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by Leibniz’s rule, so

[f, g]nh =
∑

p+q=n

(−1)p
(

2k+n−1
q

)(

2l+n−1
p

)

f (p) g(q) h

≡
∑

q+r+s=n

(

2k+n−1
q

)(

2l+n−1
r+s

)(

r+s
s

)

g(q+r) h(s) f

=
n
∑

s=0

(

2l+n−1
s

){

∑

q+r=n−s

(

2k+n−1
q

)(

2l+n−s−1
r

)}

g(n−s) h(s) f .

But the term in braces is given by
{

· · ·
}

=
(

2k+2l+2n−s−2
n−s

)

=
(

−2m−s−2
n−s

)

= (−1)n−s
(

n+2m−1
n−s

)

,

so this last expression equals [g, h]nf , proving the claim. We also note that (i) is
a special case of (ii), since P([f, g]n) = {f, g, 1}n = {g, 1, f}n = 0 if n > 0. �

We can now give the promised explanation of the cyclic symmetry property
(3.6) of the coefficients tn(k, l) . Let k , l , m , n be integers with n ≥ 0 and
k+ l+m+n = 1 and let f , g , and h be modular forms of weight 2k , 2l , and 2m ,
respectively. (For the application to (3.6) we imagine that k and l are positive
and hence that m is negative, but the signs play no role.) Write D for the lifting
map from M(Γ) to ΨDO(R)Γ (so D(F ) = D−K(F ) for F modular of weight
K ) and µ for the multiplication on M(Γ) defined in §3, Proposition 4, so that
D(F )D(G) = D(µ(F,G)) for any F and G in M(Γ). Also Res∂(D(F )) = P(F )
for any modular form F , because the coefficient of ∂−1 in D(F ) is F if F has
weight 2 and is either 0 or else a higher derivative of F if F has any other weight.
Hence for any two modular forms F and G we have

Res∂
(

D(F )D(G)
)

= Res∂
(

D
(

µ(F,G)
))

= P
(

µ(F,G)
)

= P(FG) ,

where the last line follows from part (i) of Proposition 8 and the fact that µ(F,G)
is the sum of FG plus a linear combination of higher Rankin-Cohen brackets.
Applying this with F = µ(f, g) and G = h we find

Res∂
(

D(f)D(g)D(h)
)

= Res∂
(

D(µ(f, g))D(h)
)

= P
(

µ(f, g)h) = tn(k, l) {f, g, h}n .

The expression on the left is invariant under cyclic permutation of f , g and h by
the trace property (6.1), and the triple bracket {f, g, h}n is invariant under cyclic
permutations by part (ii) of Proposition 8, so the coefficient tn(k, l) must have the
same symmetry, i.e., tn(k, l) = tn(l,m) = tn(l, 1− n− k − l) .

The same argument works unchanged if we replace ΨDO(R)Γ by the group
ΨDO(R,Γ)κ of conjugate-invariant ΨDO’s of weight κ and D by the lifting map
M(Γ) → ΨDO(R,Γ)κ constructed in §4, so we also get an explanation of the
analogous cyclic symmetry property of the more general coefficients tκn(k, l) .

Everything also goes through in the case of mixed weights introduced in the last
section. Choose three complex numbers κ1 , κ2 , and κ3 , and consider equation
(5.6). Multiplying this equation on the right by Dκ3,κ1

w3
(h) , where h is a modular

form of weight 2m with k+ l+m = 1−n for some integer n ≥ 0 and w3 is defined
as 1

2 (κ3 − κ1)−m , we find by a second application of the same equation that

Dκ1,κ2

w1
(f)Dκ2,κ3

w2
(g)Dκ3,κ1

w3
(h)

=
∑

r, s≥0

tκ1,κ2,κ3

r (k, l) tκ1,κ3,κ1

s (k + l + r,m)Dκ1

w1+w2+w3−r−s([[f, g]r, h]s) .
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Now applying Res∂ to both sides and arguing as before we find

Res∂
(

Dκ1,κ2

w1
(f)Dκ2,κ3

w2
(g)Dκ3,κ1

w3
(h)

)

= tκ1,κ2,κ3

n (k, l) · {f, g, h}n . (6.3)

This implies just as before the invariance of tκ1,κ2,κ3
n (k, l) with respect to simulta-

neous cyclic permutation of (κ1, κ2, κ3) and of (k, l,−k − l − n+ 1).

Proof of Theorem 2. Formula (5.7) together with the cyclic symmetry just proved
implies that Tn(a, b, c;x, y, z) is invariant with respect to cyclic permutations of
the three pairs of variables (a, x) , (b, y) , and (c, z) . On the other hand, it is clear
from the defining formula (5.8) that Tn(a, b, c;x, y, z) is an even function of b and
of c . From the cyclic invariance it follows that the three variables a , b , and c play
equal roles, so it is also an even function of a . On the other hand, by interchanging
the roles of r and s in (5.8) we see that Tn is unchanged if we interchange (b, y)
and (c, z) and simultaneously replace a by −a , so we obtain also the invariance of
Tn under odd permutations of (a, x) , (b, y) , and (c, z) . �

In terms of the coefficients tn of the multiplications of ΨDO’s of mixed weights,
Theorem 2 says that these coefficients are invariant not only under cyclic permuta-
tions of the indices, but also under interchange of k and l (and simultaneously of
κ1 and κ3 ), as well as under each of the three involutions κi 7→ 2 − κi . We have
given an intrinsic explanation of the first symmetry in terms of the residue map, but
this is only a subgroup of order 3 out of a total symmetry group S3 ⋉ (Z/2Z)3 of
order 48. We now explain where the other symmetries come from. For this we will
use both a duality and an isomorphism between the (abstract) spaces of modular
forms of weight κ and weight 2− κ .

We first give an argument which shows that

tκ1,κ2,κ3

n (k, l) = t2−κ3,2−κ2,2−κ1

n (l, k) (6.4)

and hence that the coefficients tn are invariant if we subject (k, l,m = 1−n−k− l)
to any odd permutation, apply the corresponding permutation to the κi ’s, and
simultaneously replace each κi by 2− κi .

There is a canonical involution A 7→ A∗ on the ring DO(R) of differential
operators over R defined by the property that A(f) g ≡ f A∗(g) (mod dR) for all
f, g ∈ R . This involution is the identity on functions, sends ∂ to −∂ (formula for
integration by parts!), and satisfies (AB)∗ = B∗A∗ , so it must be given by

(

∑

n

fn ∂
n
)∗

=
∑

n

(−1)n ∂n fn . (6.5)

We can now use this formula to extend ∗ to all of ΨDO(R) , and all its formal
properties (like being a ring anti-automorphism) must remain true, since all such
properties are equivalent to binomial coefficient identities which hold identically if
they hold for positive integers. We also find the further property

Res∂
(

ψ∗
)

= −Res∂
(

ψ
)

∀ψ ∈ ΨDO(R) . (6.6)

Indeed, any ψ can be decomposed as ψ1 + ψ2 with ψ1 ∈ DO(R) and ψ2 =
∑∞

n=1 hn∂
−n ; then ψ1 and ψ∗

1 are differential operators and hence map to 0 under
Res∂ while ψ2 = h1 ∂

−1+O(∂−2) and ψ2 = −∂−1 h1+O(∂−2) = −h1 ∂
−1+O(∂−2)
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have opposite images under Res∂ . Finally, one can check either from the defining
property of ∗ or by direct computation that

(

ψ ◦ γ
)∗
(z) = (cz + d)−2 ψ∗(γz)(cz + d)2 ∀γ =

(

a b

c d

)

In particular, if ψ belongs to ΨDO(Γ)κ1,κ2 then ψ∗ lies in ΨDO(Γ)2−κ2,2−κ1 . We
also have:

Dκ1,κ2

w (f) = (−1)w D2−κ2,2−κ1

w (f)∗ if f ∈Mκ1−κ2−2w(Γ) . (6.7)

Indeed, the map f 7→ D2−κ2,2−κ1
w (f)∗ is an equivariant splitting of (5.2) and hence

by uniqueness is a multiple of Dκ1,κ2
w (f) , and the multiple is (−1)w because of

(6.5) and the fact that the leading term of D∗
w(f) is f ∂w .

Combining (6.3), (6.6) and (6.7) and noting that w1 +w2 +w3 = n− 1, we find

tκ1,κ2,κ3

n (k, l) {f, g, h}n = −Res∂
((

Dκ1,κ2

w1
(f)Dκ2,κ3

w2
(g)Dκ3,κ1

w3
(h)

)∗)

= −Res∂
(

Dκ3,κ1

w3
(h)∗ Dκ2,κ3

w2
(g)∗ Dκ1,κ2

w1
(f)∗

)

= (−1)n Res∂
(

D2−κ1,2−κ3

w3
(h)D2−κ3,2−κ2

w2
(g)D2−κ2,2−κ1

w1
(f)

)

= (−1)n t2−κ3,2−κ2,2−κ1

n (m, l) {h, g, f}n .

But (−1)n{h, g, f}n = {f, g, h}n by Proposition 8 and the (−1)n -symmetry of the
nth Rankin-Cohen bracket, so this equation (after one more cyclic permutation of
its arguments) implies (6.4).

Finally, we have to see why each κi can be replaced by 2− κ ; this will give the
rest of our symmetry group (so far we have explained only 6 out of a total of 48
symmetries) and in particular show why the original coefficients tn(k, l) of §3 are
symmetric in k and l . Consider the case when the w of Dκ1,κ2

w is a positive integer,
so that Dκ1,κ2

w (f) is a differential rather than a pseudo-differential operator. Then,
as discussed in §5, it maps the space of modular forms of weight κ2 on Γ to the
space of modular forms of weight κ1 . Suppose that κ1 = 2 − h for some positive
even integer h . (As usual, these restrictions on w and κ1 are not important since
in proving formal identities it is enough to prove them for infinitely many special
cases.) It is a classical and basic fact of the theory of modular forms that one has

dh−1

dzh−1

(

f |2−hg
)

=
dh−1

dzh−1

(

f
)

|hg ∀g ∈ SL(2,C), h ∈ N .

(This identity, sometimes known as Van der Pol’s formula, is the basis of Eichler co-
homology and the theory of periods of modular forms.) Hence ∂h−1 maps M2−h(Γ)
to Mh(Γ), so if ψ ∈ DO(R,Γ)2−h,κ2 and f ∈Mκ2

(Γ) then ∂h−1(ψ(f)) ∈Mh . This
says that the product in ΨDO(R) of ∂h−1 and ψ belongs to ΨDO(R,Γ)h,κ2 . Re-
placing κ1 = 2 − h by an arbitrary value of κ1 , we see that we have proved that
ΨDO(R,Γ)κ1,κ2 is canonically isomorphic to ΨDO(R,Γ)2−κ1,κ2 by left multiplica-
tion with ∂1−κ1 . The same argument shows that it is also canonically isomorphic to
ΨDO(R,Γ)κ1,2−κ2 by right multiplication with ∂κ2−1 . It follows that the equations

∂1−κ1 ◦ Dκ1,κ2

w (f) = D2−κ1,κ2

w+1−κ1
(f) , Dκ1,κ2

w (f) ◦ ∂κ2−1 = Dκ1,2−κ2

w+κ2−1(f) (6.8)

must be true up to scalar factors, and by looking at the leading term one sees that
these factors equal 1. (As a check, note that the second of these equations implies
that the coefficient of f (n)∂−n in (5.3) must be invariant under (κ1, κ2, w) 7→
(κ1, 2− κ2, w+ κ2 − 1), and this is indeed true.) These identities let one replace κ
by 2− κ wherever they occur as superscripts, which was the observed symmetry.

18



§7. Supermodular forms and superpseudodifferential operators.

We work on the supercomplex plane C
1|1 with local coordinate (z, ζ) where

ζ2 = 0 and canonical supersymmetric (SUSY) structure given by the maximal
non-integrable structure distribution of rank 0|1 generated by the vector field D =
∂
∂ζ + ζ ∂

∂z satisfying D2 = ∂
∂z . This is (up to isomorphism) the unique such SUSY

structure extendible to P
1|1 . (For an exposition of those aspects of the theory of

supersymmetry needed for the present paper see [Ma2].) If (z̃, ζ̃) is another local

coordinate defining the same SUSY structure, then D = J · D̃ where J = D(ζ̃)
is the superanalogue of the usual Jacobian. We let R be a Z/2-graded ring of
functions on C

1|1 on which D acts; these will have the form F (z, ζ) = f(z)+ζg(z)
where the functions f(z) and g(z) can themselves have coefficients in a superring
(or Z/2-graded ring) of constants Λ. By convention, even coordinates or constants
will always be denoted by Latin letters a, b, c, d . . . and odd coordinates or constants
by Greek letters α, β, γ, δ . . . . Even constants and variables commute with even
and odd constants and variables, while odd constants and variables anti-commute
with odd constants and variables (and in particular have square zero).

The superanalogue of the group PSL(2,C) is the group PC(2,C1|1) whose ele-
ments are matrices

A =





a b γ
c d δ
α β e



 (7.1)

satisfying

ad− bc− αβ = 1, e2 + 2γδ = 1, αe = aδ − cγ, βe = bδ − dγ

together with the condition that e reduces to 1 modulo nilpotent elements. (The
last condition prevents both A and −A from belonging to the group.) The matrix
(7.1) acts on C

1|1 by the “fractional linear SUSY-compatible transformation”

(

z, ζ
)

7→ (z̃, ζ̃) =
(az + b+ γζ

cz + d+ δζ
,
αz + β + eζ

cz + d+ δζ

)

(7.2)

and on R by sending F (z, ζ) = f(z) + ζg(z) to FA(z, ζ) = f(z̃) + ζ̃g(z̃) . A cal-

culation shows that the superjacobian J(A) = D(ζ̃) of the transformation (7.2)
is equal to (cz + d + δζ)−1 . We will use this as the automorphy factor to define
supermodular forms (notice that it becomes the square root of the classical auto-
morphy factor dz̃/dz when δ = 0). For an integer k and a (discrete) subgroup
Γ ⊂ PC(2,C1|1)), we denote by SMk(Γ, R) the space of supermodular forms of
weight k , i.e., elements of R satisfying, for A ∈ Γ as in (7.1),

F (
az + b+ γζ

cz + d+ δζ
,
αz + β + eζ

cz + d+ δζ
) = (cz + d+ δζ)kF (z, ζ) .

By direct calculation we find that this is equivalent to the two equations

(1− kαβ) f(z)− (cz + d)−kf(
az + b

cz + d
) = e (αz + β) g(z)

e g(z)− (cz + d)−k−1 g(
az + b

cz + d
) = (αz + β) f ′(z) + k

c(αz + β) + δe

cz + d
f(z) .
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Notice that when α = β = γ = δ = 0 and e = 1 the element A corresponds to
an element of PSL(2,C) and these two equations give the separate transformation
laws

f(
az + b

cz + d
) = (cz + d)kf(z)

g(
az + b

cz + d
) = (cz + d)k+1g(z)

corresponding to the transformation law for Mk and Mk+1 respectively, so the new
theory automatically combines the cases of modular forms of even and odd weight.

We next turn to the definition of superpseudodifferential operators, see also [MR].
We first need the analogue of the Leibniz formula. The usual Leibniz formula
∂(fg) = ∂(f)g + f∂g is replaced in the supercase by

D(FG) = D(F )G+ σ(F )D(G), F, G ∈ R

where the involution σ is the grading automorphism of R , equal to 1 on the even
part and to −1 on the odd part of R (in other words, D is a superderivation).
This formula generalises by induction on m to the graded Leibniz formula

Dm(FG) =
∞
∑

k=0

(

m

r

)

s

Dr(σm−r(F ))Dm−r(G) (7.3)

for all integers m ≥ 0, where the supersymmetric binomial coefficients
(

m
r

)

s
are

defined by
(

m

r

)

s

=







(

[m/2]

[r/2]

)

if r is even or m is odd,

0 if r is odd and m is even,

with [x] as usual denoting the integral part of a real number x , so we can define a
multiplication on the space SΨDO(R) of super-ΨDO’s (Laurent series in D−1 ) by

FDm ·GDn =
∑

r≥0

(

m

r

)

s

FDr(σm−rG)Dm+n−r (m, n ∈ Z) ,

and with respect to multiplication the subspace SDO(R) = R[D] ⊂ SΨDO(R) of
superdifferential operators is a subring. As before, we have a filtration of SΨDO(R)
by the subspaces

SΨDO(R)w =

{ ∞
∑

m=0

FmD
w−m, Fm ∈ R

}

and this filtration is compatible with the ring structure.
In the supercase, the group Γ acts on SΨDO(R) via its action on R and on

D . The element A of Γ as in (7.1) transforms D into (cz + d + δζ)D . The ring
SΨDO(R)Γ denotes the Γ-invariant elements of SΨDO(R) . We have the filtration
SΨDO(R)Γk , k ∈ Z , inherited from the filtration of SΨDO(R) . The analogue of
(1.8) for the supercase is the sequence, which is split short exact by Theorem 3
below, involving supermodular forms of weight k (for all parities of k )

0 → SΨDO(R)Γ−k−1 → SΨDO(R)Γ−k → SMk(Γ) → 0 . (7.4)

The analogue of Proposition 1 for supermodular forms is as follows.
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Theorem 3. For k > 0 define an operator SLk : R→ SΨDO(R)−k by

SLk(F ) =
∞
∑

n=0

(−1)[n/2]
[n+k

2 ]! [n+k−1
2 ]!

[n2 ]! [
n+2k−1

2 ]!
Dn(F )D−k−n

and an operator SL−k : R→ SDO(R)k by

SL−k(F ) =
k−1
∑

n=0

[ 2k−n
2 ]!

[n2 ]! [
k−n
2 ]! [k−n−1

2 ]!
Dn(F )Dk−n ,

and set SL0(F ) = F . Then SLk(F
AJ(A)k) = SLk(F )◦A for any A ∈ PC(2,C1|1)

and any k ∈ Z . In particular, if F ∈ SMk(Γ) for any k ∈ Z then SLk(F ) is a
Γ-invariant superpseudodifferential operator .

Remark. Just as in §2, if we denote by SDw : R → SΨDO(R)w the lifting map
renormalized to have leading coefficient FDw then we can write the formulas for
positive and negative w uniformly using binomial coefficients as

SDw(F ) =
∑

n≥0

(

[w2 ]

[n+1
2 ]

)(

[w−1
2 ]

[n2 ]

)

(

w

[n+1
2 ]

) Dn(F )Dw−n (w ∈ Z) , (7.5)

where the sum goes only up to n = w if w ≥ 0.

Proof of Theorem 3. We imitate the proof of Proposition 1 in §1. The analogues
of (1.7) and (1.9), both proved by induction, are

[

(cz + d+ δζ) ◦D
]w

= (cz + d+ δζ)w
∞
∑

r=0

αr(w) Φr(A)D
w−r (7.6)

and

Dn
(

FA (cz + d+ δζ)w
)

=
n
∑

r=0

βr(w, n) (D
n−rF )A Φr(A) (cz + d+ δζ)w−n+r

where Φr(A) is defined for A as in (7.1) by

Φr(A) =

(

c

cz + d+ δζ

)[ r
2
] (

cζ − δ

cz + d+ δζ

)[ r+1

2
]−[ r

2
]

and the numerical coefficients αr(w) and βr(w, n) are given by

αr(w) =
[w2 ]! [

w−1
2 ]!

[ r2 ]! [
w−r
2 ]! [w−r−1

2 ]!
, βr(n,w) =

[n2 ]! [w − n−r
2 ]!

[ r2 ]! [
n−r
2 ]! [w − n

2 ]!
.

(The last two formulas are written for w > 0; there are similar formula for w =
−k < 0 and again a uniform formula using binomial coefficients). Now letting
γn(w) denote the coefficient of Dn(F )Dw−n in the definition of L−w(F ) (or of
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SDw(F )), we find that the desired equality is equivalent to the trivially verified
identity γs(w)αr(w − s) = γn(w)βr(w, n) . �

One can also give proof of Theorem 3 along the lines of the one in §2 using
the superanalogue of the Casimir operator. The other results of this paper can
also all be generalized to the SUSY case, but we will not do this here. We say
a few words about the super-version of the generalized ΨDO’s mentioned in §2.
The obvious idea of taking complex powers of D does not work. Instead, we must
take linear combinations over R of formal symbols ∂u and ∂uD with u ∈ C , the
multiplication being defined by D2 = ∂ and by Leibniz’s rule and its superextension
(7.3). The transformation behavior under changes of coordinates (7.2) is given by
the same formula (7.6) except that when one replaces Dw by ∂uDp with u ∈ C

and p ∈ {0, 1} one must reinterpret the formula

αr(w) =
[

r+1
2

]

!

(

[w2 ]

[ r+1
2 ]

)(

[w−1
2 ]

[ r2 ]

)

which was valid for w ∈ Z by replacing
[

w
2

]

and
[

w−1
2

]

by u and u + p − 1,
respectively, i.e., by the unique expression which is correct when u ∈ Z and w =
2u + p , and similarly for the lifting formula (7.5). The considerations of §§3–
6 about the multiplications of modular forms induced by the multiplications of
various kinds of automorphic ΨDO’s can be generalized in the more or less obvious
way (thus an automorphic super-ΨDO of mixed weight is just a super-ΨDO which
is multiplied on the left and on the right by some powers of J(A) under the action
of A ∈ Γ), and the arguments given in the last section can also be generalized using
the superversion of the non-commutative residue map given in [MR]. Some of these
things may be carried out in more detail in a later paper.

§8. Concluding remarks.

The study of formal ΨDO’s in the last two decades was primarily motivated by
the needs of the theory of completely integrable systems of non-linear differential
equations like the Korteweg-de Vries equation and the Kadomtsev-Petviashvili hi-
erarchy: see e.g. [KZ2] for some recent developments and extensive references. A
few remarks added here may help the interested reader to put our constructions in
this framework.

A sheaf-theoretic version. Let X be a complex Riemannian surface, not
necessarily compact. For any open subset U ⊂ X let OX(U) be the ring of holo-
morphic functions in U. If U admits a local coordinate z , put ∂z = ∂/∂z and form
the ring EX,z(U) = {

∑

m hm∂
−m
z |hm ∈ OX(U)} . A change of local coordinate

induces a canonical isomorphism of the respective rings compatible with restriction
to smaller sets, so that we get a sheaf of rings EX . It is naturally filtered by the

subsheaves E
(−m)
X , and the associated sheaf of graded algebras is ⊕mω

⊗m
X where

ωX is the sheaf of holomorphic differentials. Assume now that X is additionally
endowed with a projective structure p i. e. with a maximal atlas (Uα, zα) whose
transition functions zα = fα,β(zβ) are fractional linear. Define the local lifting

maps Λm,zα : ω⊗m
X,zα

→ E
(−m)
X by the same formulas as in §1. They will be au-

tomatically compatible on the intersections and therefore define a sheafified lifting

map Λm(p) : ω⊗m
X → E

(−m)
X depending only on the flat structure p . This must

be evident from the Beilinson construction of the lifting using Casimir operators
discussed in §2. In fact, p determines a sheaf of sl(2)-algebras on X consisting
of projectively flat tangent fields, and the local Casimirs in the relevant sheaf of
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universal enveloping algebras glue to form a global section C(p) . Then Λm(p) is a
differential operator (of infinite order for m ≥ 1) identifying ω⊗m

X with a subsheaf

of E
(−m)
X of operators with the same top symbol consisting of the eigenvectors of

C(p) with eigenvalue m(m− 1).

In the context of automorphic forms we considered essentially a modular curve
XΓ = H/Γ with a fixed projective structure coming from H . Now we can vary p
and ask how Λ(p) = ⊕Λm(p) varies with p . Formally, C(p) varies isospectrally so
that for any pair of flat structures p , p′ we have

C(p′) = T (p′, p)C(p)T (p′, p)−1, Λ(p′) = T (p′, p)Λ(p)

for some T (p′, p) (acting e.g. upon Γ(X, E
(−1)
X ) for compact X of genus ≥ 2).

Now, all p ’s on X form an affine space associated with the vector space of
quadratic holomorphic differentials on X : locally we have p′ − p = Sz′

z (dz)2 where

p (resp. p′ ) corresponds to a local flat coordinate z (resp. z′ ), and Sz′

z is the
Schwarz derivative (see e. g. A. Tyurin’s report [Ty]).

Question. Is it true that T (p′, p) depends only on p′ − p ?

For example, a direct calculation (essentially made in the main text) shows that
Λm(p) = Λm(p′) for m = 1, 0,−1,−2, whereas

(Λm(p)− Λm(p′))(f(dz)−3) =
1

5
f

(

3
(∂zj)

2

j2
− 2

∂2zj

j

)

∂z

where j = ∂z′/∂z . This means that Λm(p) − Λm(p′) is essentially multiplication
by p′ − p (if one writes (dz)−1 instead of ∂z at the last place of the right hand
side).

Question. Can T (p′, p) be described in terms of derivations and multiplication
in Γ(X, EX)?

All of this has a straightforward supersymmetric version.

Complex powers and D -modules. The complex powers of ∂ were treated
in [KZ1] in the Hamiltonian context. If one attempts to sheafify them, then one
has to make some sense of complex powers of holomorphic functions because they
appear already on the level of coordinate change for principal symbols. A well
known way to interpret fw for complex w is to treat it as a section of a DX -
module. This of course incorporates the formal rule of derivation which we used
to define ΨDOw . This problem deserves further investigation. Let us mention in
addition that the complex eigenvalues of the Casimir operator were recently used to
define so-called “matrices of complex size” which are infinite-dimensional algebras
U(sl2)/(C − w(w − 1)) where C is the Casimir (cf. [KM].)

ΨDO as a Lie algebra and its central extension. In the context of the
automorphic forms, we related via liftings the multiplication in ΨDO with Cohen-
Kuznetsov brackets. We could have looked at the Lie bracket in ΨDO instead.
The point is that this Lie algebra admits a nontrivial central extension which can
be suggestively described by introducing the formal expression log ∂ and the com-
mutator

[log ∂,
∑

hm∂
−m] :=

∑

m

∑

k≥1

(−1)k+1

k
∂khm∂

−m−k

which is then used to define a cocycle c(A,B) = tr ([log ∂,A]◦B) for an appropriate
trace functional tr . This construction is important for clarifying the Poisson-Lie
structure of ΨDO. Does it admit a sensible descent to modular forms?
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