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Square roots of central values of Hecke L-series

by FERNANDO RODRIGUEZ VILLEGAS and DON ZAGIER

§1. Introduction

In [2] numerical examples were produced suggesting that the “algebraic” part of central
values of certain Hecke L-series are perfect squares. More precisely, let 1¥; be the grossen-

character of Q(1/—7) defined by

p@)=(Da i a=(a) a=m+g\/__762[1+;/___7]

and consider the central value L(y2*~1 k) of the L-series associated to an odd power of %,.
This value vanishes for k even by virtue of the functional equation, but for k£ odd one has

2k—1 (2r/VT)* Q1 F(%)F(%)F(%)
S v Q =
with 4(1) = 1/4, A(3) = A(5) = 1, A(7) = 9, A(9) = 49, ..., A(33) = 44762286327255%,
suggesting the conjecture

(2,”/\/7)& Q2k—1
(k - 1)!

(2) L(p?*~Y k) = 2 B(k)?,

with B(1) =1/2 and B(k) € Z for all k > 3.

In this paper we will prove this conjecture and analogous results for other grossencharacters.
The method will be a modification of the method of {8], where it was shown that the central
values of weight one Hecke L-series are essentially the squares of certain sums of values of
weight 1/2 theta series at CM points. The new ingredient for higher weight is that we have
to use (non-holomorphic) derivatives of modular forms. For instance, the value of B(k) in
(2) will turn out to be essentially the value of a certain derivative of

(3) b1/2(2) = Z emin’z/4 (z € H = upper half-plane)

n>1
n odd

at z = (1 + i/7)/2. Because the derivatives of modular forms can be computed recursively,
this leads to a stmple recursive formula for the special values of Hecke L-series and their
square roots. In particular, for the example above the result is:



THEOREM. Define sequences of polynomials az,(z), b,(z) by the recursions

n n?
(4) ant1(z) = V(1 +2)(1 - 272) (= ﬁ -2 ;- 1) an(z) = 5 (1= 52) an—1(z)
21 b,y1(z) = ((32nz — 56n + 42) — (z — 7)(64z — 7) c—i%) bo(z)
(5) - 2n(2n —1)(11z + 7) by—y(x)

with initial conditions ag(z) = 1, a1(z) = —§ /(1 = z)(1 + 27z), bo(z) = 1/2, bi(z) = 1.
Then the values A(2n + 1) = az,(—1)/4 and B(2n + 1) = b,(0) satisfy equations (1) and (2).

For numerical values of the first few az,(z), bn(z), and B(k), see §7. Surprisingly, there seems
to be no simple direct proof of the identity agn(—1) = 45,(0)?!

We mention briefly several applications of the theorem. First, it gives us a specific choice of
the square root of the numbers A(k) occurring in (1). Now it is well-known that the existence
of a p-adic L-function imply that the squares A(k) satisfy congruences modulo certain prime
powers, and it has been conjectured [4] that there should be analogous p-adic interpolation
properties for appropriately chosen square roots. Testing this on the square roots produced
by the theorem, we do indeed find that these satisfy certain congruences of the desired type,

e.g.
(6) B(k)=—k (mod4), B(k+10)=7B(k) (mod1l), (k> 3)

This is the topic of a forthcoming thesis by A. Sofer. Notice, by the way, that either of the

congruences (6) implies the non-vanishing of L(¥2*~! k), which is not a priori obvious.
The second “application” is that one can compute the numbers A(k) and B(k) much more

easily than was previously possible. The method of computation in [4] was to compute

o9 k1,2 ; e
L(z/)fk_l,k) as 9 El agzk) (E = (ﬂl_)-?) e~2"/7 where L(¢fk_1,s) = 21 ag,k) n~?, but this
n= n=

=0J! T
becomes unmanageable fc;’r large k. The recurrences are easier to work with and can also
be used to compute the numbers in question modulo high powers of a prime p, without
computing the numbers themselves, which grow very rapidly. This is useful both for testing
the above-mentioned conjectures of Koblitz and in connection with a beautiful recent result
of Rubin [6] (proved by him modulo the Birch-Swinnerton-Dyer conjecture) which gives a
transcendental construction of points on certain elliptic curves via p-adic interpolation of
values of Hecke L-series.

The third application is that the central values of the L-series under consideration are
always non-negative, which in turn by a remark of Greenberg implies a result on their average
value (cf. Corollary in §5 and the following comments).

In a different direction, it was also found in [2] that the values of the twisted L-series
L (=), 8) =%, (%) al n-e (p =1 (mod 4) prime) at s = k were again essentially
perfect squIE)Lres:

3+(2) (VA/2mht (@) B!
5 k=)

(7 L (), F) < B(k,p)?;

The well-known theorem of Waldspurger, of course, tells us that the central values of the
twists of the L-series of a given modular (Hecke eigen) form f are essentially square multiples
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of one another, the square-roots being proportional to the Fourier coeflicients of the half-
integral weight form attached to f by the Shimura lifting, but it does not tell us the values
themselves. In §8 we propose a formula for the numbers B(k, p) which when combined with
Waldspurger’s theorem may eventually give an explicit formula for the coeflicients of the
Shimura lifting of a modular form attached to a grossencharacter.

The main result of this paper (like that of [8]) involves a “factorization formula” which
expresses the value (or derivative) of a weight one theta series at a CM point as a product
of values (or derivatives) of weight 1/2 theta series at other CM points. This formula will be
proved in §4, while §5 gives the application to grossencharacters and §§6-7 describe recurrence
relations like the ones in the sample theorem above.

§2. Derivatives of modular forms

The differential operator

2miz)

(g=e

maps holomorphic functions to holomorphic functions and functions with a Fourier expansion
3" a(n)q" to functions with a Fourier expansion ) na(n)q¢™ with Fourier coefficients in the
same field, but it destroys the property of being a modular form. As is well-known, this can
be corrected by introducing the modified differentiation operator

k
aL—-.D—m

which satisfies Or(flxy) = (O f)lk427v for all v € SLy(R), where as usual flk(a b)(z) =
az+b

(cz+d)™ f(-

the space of dlfferentxable modular forms of weight & on I', possibly with some character or
multiplier system v (i.e., of f satisfying fliy = v(¥)f for all ¥ € T"), then Oy f belongs to
M}, ,(T') and more generally 8} f to M} ,,(T), where

) In particular, if I' C SLy(R) is some modular group and M (T") denotes

h
E)k = 6,,.+2,,_2 o 6k+2,._4 0...0 ak+2 o] 3k .

In this situation we will often drop the subscript and write simply 9" f for 9} f, since f
determines its weight & uniquely.
An easy induction shows that

. Ak Dh4+k) (=1 \h-j s
® =3 ()48 )7

=0

In particular,
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where
e (h+a (—z)
(10) Lg(ﬂ:Z(h )-——-—r—- (h€ 0,0 €C)
j=o NV T/
denotes the h-th generalized Laguerre polynomial. In the special case k = 1/2 we have the
identity L, '/%(z) = (=1/4)" Hy4(y/Z)/R!, where
! . .
(11) HP(Z) = Z T‘-(——Ii—z,?(—l))(2z)p—2‘7 (p € 220)
o<icp2 VP T A

is the pth Hermite polynomsial. In particular, the non-holomorphic derivatives of the weight
1/2 theta series 6, , defined in (3) are given by

)h Z th /1ry )emn 2y/4 )

n odd

h
a 8]/2(2) (16 Ty

A similar calculation applies to the weight 3/2 theta series

(12) ba(z) =3 (2

n
n=1

)nem‘nzz/cl (2 € H)

and shows that the Fourier expansions of the functions 8,..1/2 (p € Z»0)defined by

(13) ooy | S ORO() ip=2h k20
p+1/2 Sh 83/293/2(2) ifp=2h+l, h 20
can be given by the uniform formula
(14) o) = i 5 (24l e
p+1/2 (27ry)p/2 = n p \/ Y .
n odd

We remark that the holomorphic theta series defined by (3) and (12) can be expressed in
terms of the Dedekind eta-function 7(z) = e™*/12 [[(1 — €2™*"*) as

2z)?
(15) 61/2(z) = ng(zg ) 63/2(z) = n(2)°.
Finally, from (8) and the binomial theorem we immediately get the identity
A 1 I‘(h+k) ~1 mz+n 1
(16) a'((mz+n)'° N (41ry mz+n) (mz 4 n)*

which will be used in the next section to express the values of Hecke L-series at critical points
as values of non-holomorphic derivatives of holomorphic Eisenstein series at CM points.
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§3. L-series and Eisenstein series

From now on we fix the following notation: K is an imaginary quadratic field of odd
discriminant —d, O its ring of integers, 0 = (v/—d) its different, and CI(K) its class group.
We suppose d # 3 so that O} = {£1}; later we will also suppose that d is prime to avoid

—d
complications due to genus characters. We denote by e(n) = (T) = (%) the Dirichlet

character associated to K. We can extend it via the isomorphism Z/d = Ox/? to a
quadratic character of K of conductor d. (Explicitly, we can write any 4 € Ok as u =
%(m + nv/—d) with m and n of the same parity, and then ¢(u) = ¢(2m).) Finally, we define
§=0o0r1by (d+1)/4 =6 (mod 2) or e(2) = (-1)°.

We fix a positive integer k and consider Hecke characters ¢ of K satisfying

(17) ¥((@)) = e(e) o~

for o € O prime to 0. Clearly the number of such 9 equals h(—d), the class number of K,
and each one has conductor . Associated to ¢ is the Hecke L-series

p(a)

L(tlb’s) = N(a)a’

If we define for any ideal a prime to D a partial Hecke series by

1 ,5(/\) \2k-1 32k-1
Z(ZL_l’a’s)—Eé—]_MT”_ ’\ZGE |/\|23 ,
e(A)y=+1

where the prime indicates that 0 is excluded, then (a)N{(a)*~2*+1Z(2k — 1, a,s) depends
only on the class [a] of a in Cl(X) and a standard one-line calculation gives the decomposition

(18) L{p,s)= Y, &Z(%—l,a,s).

2k—1—31
weacx M@

The series L(3, s) and Z(2k — 1, a, 8) converge only for R(s) > k + %, but can be analytically
continued to the whole s-plane and satisfy a functional equation under s — 2k — 5, with
root number wi = (—1)¥+1*4. Their critical values correspond to s = k + r for integers
0 <r £ k—1 and their reflections s = k — r. In particular, their center value corresponds to
r =0, and L(y,k) =0if k = § (mod 2).

Any primitive ideal a (i.e., one not divisible by rational integers > 1) can be written as
Za + Zméﬂ where @ = N(a) and b is an integer, determined mod 2a, satisfying b* = —d
mod 4a. The number (b + v/—d)/2a in H is then well-defined modulo Z and its class in
H/SL,(Z) depends only the ideal class of a. However, we will be wanting to evaluate modular
forms of level d and for this we have to require additional congruences modulo d. We will

choose a prime to d and then choose b divisible by d (which we can do since 2a is prime to
d). We set .

V—d
zgd) = E-i— €

(19) 2ad

H, where a=

[a,#], (a,d)=1, b=0 (modd).
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Then 2{? is well-defined modulo Z and its image in H/To(d) depends only on the class [a].

Each A € a can be written as a(mdz( ) + n) for some integers m, n € Z, and by virtue of
our choice of b we have ¢(A) = ¢(n) (note that ¢(a) = 1 automatically). Hence

Ly~ () (mdit? 4 mt

Z(2k —1,0,8) = a?F7172.
»8:9) 24 imdz{® + ni2s

(R(s) > k+3).

For each integer r > 0 we define an Eisenstein series of weight 2r +1 and character € on T'y(d)

by

(20) G2r+1 E(Z Z (mdz + n 2r+1 (2’ € H)

(if » = 0 this does not converge absolutely and has to be summed by the usual Hecke trick),
with Fourier expansion given by

: )2r+ .
(21) G2r+1,€(z) = L(Zr + 1,5) ((21))122'2’”3_1/2 Z (Z 5(m) mz") qﬂ (q — 627”2).

n21l “min

As an immediate consequence of (16) we find

k—r-1 = 2k-1
k—re1 _1(k4+r—-1) /(-1 1 e(n)(mdzZ + n)
0 G2r+l,e(z) = -

1
27 (2r) |mdz + n|2k+2r

and hence finally

PROPOSITION. Let a and zﬁd) be as in (19) and 0 < r < k — 1. Then

(@) (2n/VDr
kt+r—1)1  N(a)+

(22)  Z(k-1l,ak+r)= T Gy o (257)

This formula is true also for r = 0, the case of primary interest to us, because the summation
via Hecke’s trick commutes with the differentiation operator 0.

§4. A factorization identity for theta series

Recall that H, and L§ denote the Hermite and Laguerre polynomials. For y,v € Q and
p € L>o we define

9(],)[ ](z) = i7P (2my) ~p/2 Z Hy(n+/2ry)e™™" *r+2mive (z =z +iy € H).
ncl+tp

For z = z + 1y € H we set Q,(m,n) = |mz — n|*/2y, the general positive definite binary
quadratic form of discriminant —1 with real coefficients.
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THEOREM (FACTORIZATION FORMULA). Fora €N, z € H, p,v € Q, and p,a € L3y,

_lpp! mi(my+n mz —n o 27 r(imn— m,n))/fa
((vrzz)l’ $ ezmitmutna) ( - ) Lp(jQz(m’"))c( Qs (m,m))/
(23) m,n€l

= \/Ea—y(ay)a 0(?)[(15](‘1_12) . 6(P+a)[_'l;w](_af) .

REMARK: For the simplest case a = 1, @ = 0 the right-hand side of the (23) becomes
(-1)*/2y |9(p)[5](z)|2, so the sum on the left is nonnegative, which is not clear a priori.

ProoOF: For uy, us € C we have the identity

(efru§/2ay z e_ﬂian3z+2ﬂ;n(u2_ay)) (ewau¥/2y Z e-;n't’z/a+2fril(u1+v))

neZ+pu LEL+ap
— eﬂ‘(a’uf+u§)/2ay Z em’m’z/a+2m‘m(u1+v) Z e—2ﬂanzy+‘2m'n(mz+au1+ug)
mel neZ+p
e—‘rrulu:/y

_ Z e2milmrtnp)+r(imn—Q,;(m,n))/a—n[(mz—n)ur+(mz—n)uz/al/y

v <ay m,ned

the first equality being obtained by the substitution £ = an + m and the second by applying
the formula

Z e-—wnzA-l-‘ZfrinB _ 1 Z e—w(n—B)z/A+21rin,u (A >0 Be C)
? 3
nel+tu \/Z neZ
which is a standard consequence of the Poisson summation formula, to the inner sum. Identity
(23) follows by comparing the Taylor coefficients of u? u51* on both sides. B

REMARKS: 1. This formula in the case a = 1 is essentially contained in Kronecker’s work
([5], Chapter III). It is also a special case of a general transformation formula for products of
Fourier series which is used in the field of radar signal design (cf. Chapter 8 of [7], especially
the Corollary to Theorem 8.18).

2. The proof can be expressed in an essentially equivalent but somewhat different way by
using the transformation formula of the genus 2 theta series

6(2)(.“, Z) _ Z e‘)ﬂ"nzne?Ni'nu (Z € H2, = C2)
nelr?

under the action of the matrix

M=

R OO
[l = I e R

0
0 -—
0

to relate the values of ©(2) at the two points

wa=((arimin) (07 2)
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(where it obviously splits into a product of genus one series) and

it [ujaz + uyz v i (|z)* -z
Z)={ — o ,
0= (5 (o) + (1) 2 (27

This is connected with an interesting interpretation of the factorization formula in terms
of the geometry of the Siegel modular variety of genus 2 which will be discussed in a later
publication.

We now apply the theorem to the case when z is an appropriately chosen CM point in
the upper half-plane, in which case the left-hand side of (23) becomes the value at a CM
point of a non-holomorphic derivative of a holomorphic theta series of weight o 4+ 1. We let
K = Q(+/=d) and ¢ have the same meanings as in §3 and define for each ideal a and odd
integer h > 1 a theta series

1 .
Of,h)(-%’) — E Z /\h—l qN(A)/N(a) (z EH, gq= e2mz)

A€En

which is a modular form in Mu(To(d),¢) and a cusp form if A > 1. Clearly @E\’;)(z) =
Ah_lé)gh)(z) (the 0% are the modular forms corresponding to the partial zeta functions for

unramified Hecke L-series of even weight h — 1). In particular, Oﬁl)(z) depends only on the
class [a] of a in Cl(I).

On the half-integral weight side we will be evaluating modular forms of level a power of 2
at our CM points, so we have to impose further congruence conditions on the bases of our
ideals modulo powers of 2, just as we did modulo d in §3. We set

b+ /—d b+ /—d
z£2)=+TEH’ %],

which is well defined modulo 8Z. (Any other fixed odd choice of b modulo 16 would be just
as good.)

(24) where a = [a, (a,2) =1, b=1 (mod 16).

THEOREM. Let a, a, be coprime ideals of K prime to 20 and to 2, respectively. Then for
k, h 2 1 satisfying k =1+ 6 (mod 2), h =1 (mod 2) we have
(25)
k—1g() (@Y _ (_qy6(_—4 \o AT N(a)ht (2) 2
0704 (2a7) = (-1) (N(ﬂ)) 22k+h—4  N(g,)k-1/2 Ok—1/2(2425,) * Ortn-3/2 (zg:))a

where 8,/ are the theta series defined by (3), (12) and (13) and 2D and {2 have the
meanings given in (19) and (24), respectively.

Proor: We will choosep=k -1, a=h—1, p=1/2, v = §/2 in (23), observing that
2 -s
9(,,)[;;2](2') =2(-1)P=*/2 bpt1/2(2) for r=1 (mod2), s=p (mod?2)
by (14) and the definition of §,| ﬁ ]. We further choose b = 1 (mod 16) such that (b++v/=d)/2

belongs to a%a; 0 (in particular, b is divisible by d and ¢ := (b% + d)/4aa; is divisible by a and
congruent to § modulo 2) and set z = (b+ v/—d)/2aa; in (23). Then

aa; = aa, (1, 2], 29 = ayz/d, zgz,)ul =a"lz, zﬁf) = az

8



and

@ 4 @] (mod 2miZ),

SI ]

(imn — Q,(m,n)) = 2ni[(m*c — bmn + aa;n?)z,

and substituting all this into (23) gives the assertion of the theorem. W

REMARK: Notice that the theorem relates values of modular forms of different levels. This
forces ratios of such values to be in smaller fields than one would suspect a priori. Also from
the transformation properties of 9° @E,h)(z) under homotheties of a and the action of T'y(d)
on z one immediately gets the following:

COROLLARY. Let a and a; be as in the theorem and i a Hecke character of K satisfying
(17). Then

—4 2
(1 (79) P@ " a2
depends only on a; and ¢ and on the ideal class of a.

This transformation property is quite non-obvious and was proved in [8] by a long calculation
(pp. 559-562) of quadratic symbols. The point is that the theta series 6x_, /2 has level 4 and

has nothing to do with d at all, so that the Kronecker symbol (d/-) implicit in the factor 3
(2)

has to come from the transformation behavior of the CM point 2z

and from the automorphy factor of 8;_, ;.

under change of ideals

§5. Final formula for the central value of L(%, k)

The proposition of §3 and the theorem just proved in general involve different modular
forms: non-holomorphic derivatives of Eisenstein series (of odd weight and character ¢) in
one case and non-holomorphic derivatives of theta series (again of odd weight and character
¢) in the other. There is one case where these overlap. Namely, for the Eisenstein series of

weight one we have
Vd h(—d) n
7 C1eld) = =5+ 2, (2 et

L

by (21), and since the coefficient of n is the number of integral ideals of I of norm n this is
simply 37/ 0 (z). Hence we can combine equations (18), (22) (with » = 0) and (25) (with
h =1) to get

L k) = (c1p EYDE S e gty

R
-1 [a],[a1]€ CI(K)
mh dk/2=3/4 7! —k+1/2 (2) (2)
(26) = I C 1) > %(a) N(a) Or—1/2(2g20,) Ok-1/2(zay) -
[a],[a1]€ CI(K)

If we assume that d is prime, so that the class number A(—d) is odd, then we can replace first
a; by a? and then a by na;! to obtain:



MAIN THEOREM. Let d > 3 be a prime = 3 mod 4, k a positive integer satisfying
k=641 (mod 2) and 1 a Hecke character of K = Q(v/—d) satisfying (17). Then

2

rkgk/2—3/4

(27) L(y,k) = TR 1)

> () T bemaa (D)

[a]€ CI{ K)

Notice that the terms of the sum are well-defined by virtue of the corollary in §4.
COROLLARY. Under the assumptions of the theorem, L(1, k) is non-negative.

REMARK: According to Greenberg ([1], p. 258), the corollary has the application that the
values of L(:)*~!, k) for a fixed Hecke character ¢, of weight one have a well-defined average
value, equal to L(1,¢), as k — oo. He points out that this implies the rather weak estimate
L(¥2*=! k) = o(k) and asks whether this can be improved. It might be of interest to see
whether this can be done using the above theorem.

§6. Recurrences

The results of the preceding sections imply that both the central values of odd weight Hecke
L-series and their square roots can be expressed in terms of non-holomorphic derivatives of
classical theta series evaluated at CM points. In particular, for the odd powers of the weight
one character 1, introduced at the beginning of the paper, for which d = 7 with class number
h{(—d) =1 and é§ = 0 (the only such case!), they give

pket 1y CT/VDE T \/ 78234 ok 1+ v=T7,|*
(28) L(d’l ak) = (k 1)| 7 1@( ) = m k— 1/2( )
for k > 1 odd, where 8, /; is the function (3) and

....l m2+mn+2n"'_.]_' S __7 qn
(29) 0@ =3 ) g ‘2+§1(n)1—q

m,n€l

Zﬂiz) .

(g=e

In this section we show how to obtain the values {9™ f(z0)}n>0 of the non-holomorphic deriva-
tives of a modular form f at a CM point z; as (essentia.lly)_the constant terms of a sequence
of polynomials satisfying a recurrence relation. We will illustrate with the case of the full
modular group, treating other groups, and the functions occurring in (28), in the next section.

As well as the differential operator D and Jr = D — k/4wy of §2, we will use the operator

where Ez(z) = 1 — 24 3 o01(n)q" is the Eisenstein series of weight 2 on SLy(Z). As is

well-known, this Eisenstein series is not quite modular, but transforms instead by

(az+b)

(EE) = (et P B + ezt d) (2 ]) €5L,@).
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Equivalently, the function Ej(z) = E,(z) — 3/7y (y = $(z)), though not holomorphic,
transforms under the action of SLy(Z) like a holomorphic modular form of weight two.
It follows that Jxf = Opf — kE3 f/12 transforms like a modular form of weight k + 2 if
f € M(T) for any subgroup I' of SL3(Z). On the other hand, 9, f is clearly holomorphic
if f is, so 9 maps Mi(I') to Mi4+2(T'). The operator D, which does not preserve the ring
M.(SL3(Z)) = C[E4, Eg], does preserve the larger ring C[E2, E4, Eg]. We have

(30)  D(E;) = 115(33 —Ey), D(E4)= %(Ezﬂt —Eg), DEg(z)= %(EzEs - Ej)

and hence—since D clearly acts as a derivation—

E2—-E, 9 +E2E4—E6 g +E2E3—E42 0
12 0F; 3 OE4 2 O0Fq

D= . C[Ez,E.;,Es]—bC[Ez,E,;,Eg].
If f is a holomorphic modular form on SLy(Z), thought of as a weighted homogeneous poly-
nomial of degree k in E; and Eg (where E;, has weight h), then from df/8E; = 0 and the
Euler equation 4E4 0f/0F4 + 6E¢ 0f /0Eg = k f we get

(31) Vf =—F 70— - (€ Mu(SLy(2)) = C[E4, Ee]).

Each of the three differentiation operators D, J; and 9 has advantages over the others: the
first preserves holomorphicity and acts in a simple way on Fourier expansions, but destroys
modularity; the second preserves modularity and acts in a simple way on Fourier expansions,
but destroys holomorphicity; and the third preserves both the properties of holomorphicity
and modularity but has a complicated action on Fourier expansions. The nicest way to
understand the action of these operators and their iterates is to put them together into three
generating series. The first is the Kuznetsov-Cohen series

N 0o D"f(z) xn
fD(zaA)_’; k(k+1)---(k+n—1) n!

(zeH, X €C, fe M)

and the other two are

o" f(z) X"
Y- (k+n—-1) n!

(32) fa(Z,X)=6_X/4"ny(Z,X)=Z k(k+1
n=0

(the second equality is a restatement of equation (8)) and
(33) f,,(z,X) = e-—E’z(z).\'/lZ fD(z,X) — e—E;(z)lez fa(z,X).
The Kuznetsov-Cohen series satisfies the transformation equation

az+b X

fD(cz-f—d’ (cz +a’)2) -

(Cz +d)k ec)('/21'r£(c.'.-i-d) fD(Z,X) v (Z 3) €T,

and the transformation properties of y~! and E,(z) under I imply that f5 and fs satisfy a
similar equation but without the exponential factor, which simply says that the nth Taylor
coefficient in each of these series transforms like a holomorphic modular form of weight k+2n.
These Taylor coefficients of fy are the 9" f, by (32). For fy they are given by:

11



ProrosiTiON. Let f € My(T') for some ' C SL2(Z). Then

Fo.(z Xn
(34) folz, X>—E T T

where the modular forms F,, € Mg42,(I") are defined recursively by

n(n+k—

@)  F=f F=0f Fu=0h-"0 Vg sy

n ! — _
PROOF: From (33) and the definitions we have F},, = % (n : k ¢ 1) (- '1E22 " D‘f, and
=0 * -
the result follows using (30) and (31). W

We now illustrate how to get the recursions for the numbers {9" f(z9)} in the simplest
case I' = SLy(Z), f = E4, zp = 1. By the transformation property of E; under I' and the
fact that ¢ is fixed under z — —1/z, we deduce that Ej(:) = 0 and hence by (33) that
fo(t,X) = fo(i, X) for any f € My(SLy(Z)), so 3" E4(i) = F,(i) where the polynomials

5

1 5 5
= ——E;, Fp=—E? = ——E,Es, Fy=
Fy=Ey, B 6, F2 36E“’ Fy 72E4 6, Fa= E} + 516

E2
3 288 &
can be computed by (35) and (31). By homogeneity we have F,, = E:/ZH f,,(Eg/Egn) where
the f. € Z[}][t] are polynomials in one variable (even if n is even and odd if n is odd, and of
degree < (n + 2)/3) given inductively by

2 nin
@) h=t fi=-gh fer= (g - T2 f- 20 EY

D) E fn—]

Since Eg(z) vanishes, we obtain finally

EXAMPLE. For n > 0 we have 8"E4(i) = fa(0)w"/?*! (= 0 if n is odd), where w = E,4(3)
(= 3T($)8/(27)® ) and {fa(t)} are the polynomials defined by (36).

§7. Examples

To calculate the non-holomorphic derivatives for modular forms on other groups I' than
SLy(Z) and for other CM points z¢, we choose a function ¢(z) satisfying

1) ¢(z) is holomorphic;

1) ¢*(z) = ¢(z) — 1/4ry transforms like a holomorphic modular form of weight 2 on I

ii1) ¢(29) = 0.

Condition ii) is equivalent to
¢(ez + d)

i) 9(ZE0) = (ez + d)? o) + L2
and a short ca.lculation then shows that
iv) the function ® = D¢ — ¢ belongs to M,(T), and
v) if f € Mi(T), then dyf := Df k¢ f belongs to Mi42(T).
(In §6, we had ¢ = -l-l—ng, ® = L E4, ¥4 = 9¥.) The analogue of the proposition in §6 is then
that the series e~?()X f5(z, X) has an expansion as in (35) with Fy = f, F} = 94 f, and

for all (z g

) €T,
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Foy1 =94F, +n(n+k—1)® F,_, for n > 1. If we choose an explicit set of generators for
the ring M, (T") and then express the differential operator ¥4 in terms of these generators, as
was done in (31) for the case of SLy(Z), we obtain an explicit recursion for the polynomials
F,. The fact that ¢ vanishes at zy then shows that 0™ f(zy) = F,,(20), so we get the numbers
0" f(20) as special values of a sequence of polynomials satisfying a recursion.

We give the details of this for the functions ©(z) and 6, /3(z) occurring in equation (28),
which are modular forms (with multiplier system) on I'o(7) and I'¢(2), respectively. We give
the details 6, /5, since this is the one needed to prove (3) and also because the structure of
the corresponding ring of modular forms is simpler.

We abbreviate § = 6,/,. By (3), 6° is a modular form without character on I'q(2). (In
fact it is the Eisenstein series ), 5, n%¢"/(1 — ¢*").) The ring of modular forms on I'y(2) is
generated by the functions -

A= A(z) = —Es(2) +2B5(22) = 14+ 24 Y 1"qq
n>1
n odd

and 68, of weight 2 and 4, respectively. For instance, we have

Ei(z) = A2 +1926°,  E,(22) = A? —4868.
We are interested in the point zy = ¥ By standard complex multiplication theory,
(37) E3(z0) = S A(z0) = R 8(z0)° = — = O
2 7 0/ 9 0 287 ’

with @ as in equation (1). We therefore choose

¢(z) = (Ez(z) -z A(Z)) =5z E2( )— 51 JE2(22’)

so that ¢*(z) = ¢(z) + 1/4xy transforms like a form of weight 2 on I'y(2) and vanishes at z.
The J4-derivatives of § and A are found to be

) 5
0,0 = —9A4 DA =326 — 2 42
LTI 3 TR

so (since ¥ is a derivation) the action of 9 on either M, (T'z(2)) = C[6®, 4] or its 8th degree
extension C[4, 4] is given by

2 d 5 0

9, = — 9 — 8 _ 4%y =

(38) 6= o704 55 +(326° — 4% .
Also, ® = D¢—¢? equals —(—)2 Az—ﬁ 8. The above discussion then shows that 8"8(zy) =

F,(z0), where F,, is a welghted homogeneous polynomial in 8 and A of weight 2n + % given
inductively by

=20, R = %AG, Fojr =94F, +n(n - %)@Fn_l (n>1)

13



with 94 as in (38). By homogeneity we have F, = *"*+1f,(A4/6*) where f, is a polynomial
of the same parity as n, and in terms of these the recurrence becomes

1 8n + 2 44
fnaa1(t) = (32~ §f2)f:;(t) + tfalt) — - -)(§4—2t2 ﬁ) fama(t),
the first few values being
~ _ 19 43 56
fo=1, fi= 21" ft)=-pogt t2 SO =—ggggt T3t

and (28) and (37) tell us that the numbers

B(2n+1)= V=i fa(24V/=7) ==, 1, =1, =3, 7, —315, —609, ..

23n+1

satisfy equation (2). A slightly more convenient choice of normalization turns out to be
F, =2(A/21)" 6b,(441 6% /A% 4 7/64) rather than F, = 6*"*! f,(A/6*), so that

bo= ’ b1=1, bz=$—1, b3=9$—3, b4=—2$2+133$+7,

[N

With this choice the B(2n + 1) are simply the constant terms b,(0) and the b,,(z) satisfy (5).

For the other assertion of the theorem in §1, giving the numbers A(k) of (1) in terms of the
recursion (4), we must use the formula A(k) = 8¥710(2,)/2Q%* 1, where z; = (T+V/=7)/14
(this is just a restatement of (1) and (28)). The calculations here are more complicated be-
cause the ring of modular forms with character M., (T'o(7), (_—7)*) is not free, but is generated
by the function © defined in (29) together with the two weight 3 forms

r,acl n=1 “d|n
r=s (mod 2)

subject to the relation E? = (0° + 0®))(©° — 270(), When we write the non-holomorphic
derivatives 9"O(z;) as the values of a sequence of polynomials, then these are polynomials in
three algebraically dependent variables. We can use the homogeneity to write them as simple
factors times polynomials in z = ©®)/@% and /(1 + z)(1 — 27z) = E/©?, and after some
computation we obtain (4). We leave the details to the reader.

REMARKS: 1. According to the recursion (4), the polynomials az, have coefficients in Z[3],
and this is actually true: the first values are 1, (2—34z)/9, and (8 — 218z + 31422 +43223)/27.
It is not clear on an elementary level why their values at « = 1 are integers (let alone squares).
Similarly, the recursion (5) involves dividing by 21 at each stage, but in fact the polynomials
b,(z) apparently belong to Z{z].

2. It is now clear that we cannot expect any simple relations between the polynomials
azn(z — 1) and b,(z), even though the constant terms of one are the squares of the constant
terms of the other: the variables “z” have completely different meanings in the two polyno-
mials, being a modular function on Xo(7) in the one case and a modular function on X;(2)
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in the other. The identity of the constant terms has to do with the way these two modular
curves intersect in the Siegel 3-fold Hsy /Spsa(2).

Finally, we mention that in the 5 cases d = 11, 19, 43, 67 and 163 with h(—d) = 1 and
6 = 1 the calculation is even easier than the case treated here with § = 0, since now the
function whose non-holomorphic derivatives must be computed at CM points is 83, which
is a modular form (with multiplier system) for the full modular group (cf. equation (15)).
Here the recursions obtained are essentially the classical recursions for the Taylor coefficients
of the Weierstrass o-function, as given for instance, in (3], Chapter VII, p. 237.

§8. Twists

We finish by mentioning a result on the central values of quadratic twists of Hecke L-series.
For simplicity we consider only the case of equation (7), i.e. twists of the L-series for the
grossencharacters of conductor (y/=7) of Q(v/=7) by Legendre symbols attached to primes
p =1 (mod 4). Then one of us (F.V.) has found a formula giving integers B(k, p) such that
(7) holds. In the simplest case k = 1 this formula is

2x(n2+7>91,2(”+‘;_) prpvT

+ VP p(—5—)

B(1,p) = ;
1+ \/
S(x) G(x) 61 /2(———)
with 8, /,(2) as in (3); here the sum is over n (mod 16p)) satisfying n = 1 (mod 16), x(n)
is one of the two quartic characters modulo p, G(x) = 5.  x(n)e?*™"/? the associated
n (mod p)

Gaussian sum, and S(x) =2, 1 —14, 2¢ or 1 + ¢ according as x(7) = 1, i, —1 or —z (s0 that
7
x(MS(x)P* =3+ (;)) For p < 200 this gives the values

p | 513 17 29 37 41 53 61 73 89 97 101 109 113 137 149 157 173 181 193 197
B(l,p)f1-1-1-1110133-1-1-12 1 0 -31 1 0 0

This will be discussed in a later publication. We have not succeeded in matching these
numbers with the coefficients of a modular form weight 3/2.
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