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Square roots of central values of Hecke L-series

by FERNANDO RODRIGUEZ VILLEGAS and DON ZAGIER

§1. Introduction

In [2] numerical examples were produced suggesting that the "algebraic" part of central
values of certain Hecke L-series are perfect squares. More precisely, let 1/J] be the grossen­
character of Q(A) defined by

if a = (Q'),

and consider the central value L(W;k-1 , k) of the L-series associated to an odd power of Wl'
This value vanishes for k even by virtue of the functional equation, but for k ocid one has

(1) L(,,1.2k-l k) = 2 (2rr/ y7)k n2k
-

1
A(k)

0/1' (k - 1)! '
n= r(t)r(~)r(*)

47r2 '

with A(l) = 1/4, A(3) = A(5) = 1, A(7) = 9, A(9) = 49, ... , A(33) = 447622863272552 ,

suggesting the conjecture

(2) L(,,1.2k-1 k) ? 2 (21T" / V7)k 02k-1 B(k)2
lf"), (k-1)! '

with B(l) = 1/2 and B(k) E Z for all k ~ 3.
In this paper we will prove this conjecture and analogous results for other grossencharacters.

The method will be a modification of the method of [8], where it was shown that the central
values of weight one Hecke L-series are essentially the squares of certain sums of values of
weight 1/2 theta series at CM points. The new ingTedient for higher weight is that we have
to use (non-holomorphic) derivative" of modular forms. For instance, the value of E(k) in
(2) will turn out to be essentially the value of a certain derivative of

(3) B1/2(Z) = L eTri n 'lz/4
n>l

n ödd

(z E 1i = upper half-plane)

at z = (1 + iv7)/2. Because the derivatives of modular forms can be computed recursively,
this leads to a simple recursive formula for the special values of Hecke L-series and their
square raats. In particular, for the example above the result is:



(5)

(4)

THEOREM. Defi.ne sequences oE polynomials a2n(x), bn(x) by tbe recursions

d 2n + 1 n2

an+l(x) = y'(1 + x)(l - 27x) (x dx - 3 ) an(x) - 9 (1 - 5x) an-lex)

d
21 bn+1 ( x) = ((32nx - 56n + 42) - (x - 7)(64x - 7) dx) bn(x)

- 2n(2n -l)(llx +7)bn - l (x)

with initial conditions ao(x) = 1, al(x) = -k J(l- x)(l + 27x), bo(x) = 1/2, bl(x) = 1.
Then the values A(2n + 1) = a2n( -1)/4 and B(2n +1) = bn(O) satisEy equations (1) and (2).

For numerical values ofthe first few a2n(x), bn(x), and B(k), see §7. Surprisingly, there seems
to be no simple direct proof of the identity a2n( -1) = 4 bn(O)2 !

We mention briefly several applications of the theorem. First, it gives us a specific choice of
the square root of the numbers A(k) occurring in (1). Now it is well-known that the existence
of a p-adic L-function imply that the squares A(k) satisfy congruences modulo certain prime
powers, and it has been conjectured [4] that there should be analogous p-adic interpolation
properties for appropriately chosen square roots. Testing this on the square roots produced
by the theorem, we do indeed find that these satisfy certain congruences of the desired type,
e.g.

(6) B(k) = -k (mod 4), B(k + 10) =7B(k) (mod 11), (k ~ 3)

(7)

This is the topic of a forthcoming thesis by A. Sofer. Notice, by the way, that either of the
congruences (6) implies the non-vanishing of L(1/J;k-l, k), which is not apriori obvious.

The second "application" is that one can compute the numbers A(k) and B(k) much more
easily than was previously possible. The method of computation in [4] was to compute

00 (k) k 1 21in . 00 (k)
L(1/J~k-l, k) as 2 L: an (L: -=-j (_)J) e-27fn / 7 , where L('ljJ~k-l ,s) = L: an n-~, but this

n=l j=O J. 7 n=l
becomes unmanageable for large k. The recurrences are easier to work with and can also
be used to compute the numbers in question modulo high powers of a prime p, without
computing the numbers themselves, which grow very rapidly. This is useful both for testing
the above-lnentioned conjectures of I(oblitz and in connection with a beautiful recent result
of Rubin [6] (proved by hirn modulo the Birch-Swinnerton-Dyer conjecture) which gives a
transcendental construction of points on certain elliptic curves via p-adic interpolation of
values of Hecke L-series.

The third application is that the central values of the L-series under consideration are
always non-negative, which in turn by aremark of Greenberg implies a result on their average
value (cf. Corollary in §5 and the following comments).

In a different direction, it was also found in [2] that the values of thc twisted L-series

L( 'ljJik
-

l , ( - ), s) = L:~=l (~) a~k) n -~ (p _ 1 (mod 4) prime) at s = k were again essentially
p

perfect squares:

P
L(1/.2k- l (_) k) ? 3 +(7) (J7/21i )k-l (0./ ifP)2k-l B(k )2.

0/1 'p' 2 (k - 1)1 ,p ,

The weIl-known theorem of Waldspurger, of course, teIls us that the central va.lues of the
twists of the L-series of a given modular (Hecke eigen) form f are essentially square multiples
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of one another, the square-roots being proportional to the Fourier coefficients of the half­
integral weight form attached to f by the Shimura lifting, but it does not tell us the values
themselves. In §8 we propose a formula for the numbers B(k,p) which when combined with
Waldspurger's theorem may eventually give an explicit formula for the coefficients of the
Shilllura lifting of a modular form attached to a grossencharacter.

The main result of this paper (like that of [8]) involves a "factorization formula" which
expresses the value (or derivative) of a weight one theta series at a CM point as a product
of values (or derivatives) of weight 1/2 theta series at other CM points. This formula will be
proved in §4, while §5 gives the application to grossencharacters and §§6-7 describe recurrence
relations like the ones in the sampie theorem above.

§2. Derivatives of Inodular forlns

The differential operator

D = _1_~ = ~ !!.-
21ri dz q dq

maps holomorphic functions to holomorphic functions and functions with a Fourier expansion
L: a(n) qn to functions with a Fourier expansion L: na(n) qn with Fourier coefficients in the
same field, but it destroys the property of being a modular form. As is well-known, this can
be corrected by introducing the modified differentiation operator

which satisfies 8k(fley) = (8k f)!k+21 for all 1 E SL2(R), where as usual flk(; ;)(Z) =

(cz+d)-k f(az + ~). In particular, if r c SL2(R) is some modular group and M;(r) denotes
cz +

the space of differentiable modular forms of weight k on r, possibly with some character or
multipEer system v (i .e., of f satisfying f Ik 1 = v (,)f for all 1 Er), then ak f belongs to
Mk+2 (f) and more generally a: f to Mk+2h (f), where

In this situation we will often drop the subscript and write simply ah f for a~f, since f
determines its weight k uniquely.

An easy induction shows that

(8)

In particular,

(9)

h

8; = L (~) r(~ + k) ( -1 ) h - i n i .
. 1 r(l + k) 41rY

)=0

ah (~ ( ) 21rinz) = (_1)h h! ~ ( ) L k 1 ( ) 21'l'inzk L a n e ()h L a n h- 41rny e ,
n=O 41rY n=O
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where

(10)
h .

L O ( )=~(h+a)(-Z)J
h Z LJ h . ". - J J.}=o

(hEZ~o,aEC)

(p E Z~o)(11 )

denotes the h-th generalized Laguerre polynomial. In the special case k = 1/2 we have the

identity L~1/2(z) = (-1/4)h H2h (.Ji)/ h!, where

Hp(z) = L °l( ~ 2°)1 (_1)i(2zy-2i
0< .< /2 J. P J.-}_p

is the pth Hermite polynomial. In particular, the non-holomorphic derivatives of the weight
1/2 theta series f)1/2 defined in (3) are given by

A similar calculation applies to the weight 3/2 theta series

(12) (Z E 11-)

and shows that the Fourier expansions of the functions ()p+1/2 (p E Z~o )defined by

(13)

can be given by the uniform formula

(14) 1 L -4 p y';YJ2' 2 /f) (Z) (-7") ) Hp(n 7ry/2) e1t'ln z 4 .p+l/2 = (27ry)p/2 r.

n>l
n ödd

We remark that the holomorphic theta series defined by (3) and (12) can be expressed in
terms of the Dedekind eta-function 7J(z) = e1t'iz/12 ll(l - e 2'11'inz) as

(15)

Finally, from (8) and the binomial theorem we immediately get the identi ty

(16) a; ( 1 ) = r(h + k) -1 mz +n h 1
(mz + n)k r(k) (47rY mz + n) (mz + n)k

which will be used in the next section to express the values of Hecke L-series at critical points
as values of non-holomorphic derivatives of holomorphic Eisenstein series at CM points,
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§3. L-series and Eisenstein series

From now on we fix the following notation: [( is an imaginary quadratie field of odd
diserilninant -d, OK its ring of integers, tl = (J-d) its different, and Cl(!() its dass group.
'VotTe suppose d =f. 3 so that 0K = {±I}; later we will also suppose that d is prime to avoid

complications due to genus characters. We denote by e(n) = (~d) = (~) the Dirichlet

eharaeter associated to !(. We ean extend it via the isomorphism lid ~ Og/tl to a
quadratie character of [( of conductor tl. (Explicitly, we can write any fl E 0 K as P. =
t(m + nJ-d) with m and n of the same parity, and then e(p.) = e(2m).) Finally, we define
8 =°or 1 by (d+ 1)/4 =8 (mod 2) or e(2) = (_1)6.

vVe fix a positive integer k and eonsider Hecke eharacters ,p of [( satisfying

(17) 1fJ«o» = e(o) o2k-1

for 0' E 0 K prime to i'J. Clearly the number of such ,p equals h( -d), the dass number of !(,
and each one has conductor i'J. Assoeiated to 'ljJ is the Hecke L-series

" 1/;( a)
L(?jJ,s) = L..J N(a)'"

a

If we define for any ideal a prime to i'J a partial Hecke series by

1 , e('\) ~2k-l ~2k-1

Z(2k - 1, o,s) = 2 2: j,\12" = 2: W'
AEa AEa

l!('\)=+1

where the prime indicates that °is exduded, then 1fJ( 0 )N( 0 )',-2k+l Z(2k - 1, 0, s) depends
only on the dass [0] of 0 in Cl(!() and a standard one-line calculation gives the decomposition

(18) " 'lj;(o) ?L('ljJ,s)= L..J N(a)2k-l-"Z(...,k-l,o,s).
[ale Cl(K)

The series L(7/J, s) and Z (2k - 1, a, s) converge only for ~(s) > k + !' but can be analytically
continued to the whole s-plane and satisfy a functional equation under s ~ 2k - s, with
root number Wk = (_I)k+l+6. Their critical values correspond to s = k + r for integers
o~ r ~ k - 1 and their reflections 8 = k - r. In particular, their center value corresponds to
r = 0, and L( 'ljJ, k) = 0 if k =8 (mod 2).

Any primitive ideal a (i.e., one not divisible by rational integers > 1) can be written as

Za + Zb+p where a = N (0) and b is an integer, determined mod 2a, satisfying bZ := -d
mod 4a. The number (b + H)/2a in 'H is then well-defined modulo Z and its dass in
H/ SLz(l) depends only the ideal dass of a. However, we will be wanting to evaluate modular
forms of level d and for this we have to require additional eongruenees modulo d. Vve will
choose 0 prime ta i'J and then choose b divisible by d (which we can da since 2a is prime to
d). We set

(19) (d) - b+H H
Za - 2ad E , where 0 = [0, b+Fl '

5
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Then Z ~d) is well-defined modulo Z and its image in H / r 0 (d) depends only on the dass [a].
Each -X E a can be written as a(mdz~d) +n) for some integers m, n E Z, and by virtue of

our choice of b we have e(-X) = e(n) (note that e(a) = 1 automatically). Hence

1 ( ) ( d-(d) + )2k-1
Z(2k _ 1 a 8) = a2k - 1 - 2" . _ L' e n m zQ n

, , 2 lmdz(d) + nl26
m,n Q

For each integer r 2:: 0 we define an Eisenstein series of weight 2, +1 and character e on r 0 ( d)
by

(20) (Z EH)

(if r = 0 this does not converge absolutely and has to be summed by the usual Hecke trick),
with Fourier expansion given by

(21)

As an imm,ediate consequence of (16) we find

ak - r - 1c ( ) _ ~ (k + r - 1)1 ( -1 ) k-r-1 "'" c:(n) (mdz + n)2k-1

2r+1,~ Z - 2 (2r)1 41rY LJ Imdz + nl2k+ 2r
m,n

and hence finally

PROPOSITION. Let a and z~d) be as in (19) and 0 :::; r ::; k - 1. Then

(2r)! (-21r/Vd)k-r-l k-r-1 ( (d))
(22) Z(2k - 1,0, k + r) = (k + r _ 1)! N( a)k+r a G2r+l,~ ZQ •

This formula is true also for r = 0, the case of primary interest to us, because the summation
via Hecke's trick commutes with the differentiation operator a.

§4. A factorization identity ror theta series

Recall that Hp and Lh denote the Hermite and Laguerre polynomials. For p, v E Q and
p E Z~o we define

B(p)[~](Z) = i-P (21ry)-p/2 L Hp(nJ21ry)e1rin2z+2trilln
nEZ+1l

(z = x + iy E 1i).

For z = x + iy E 1i we set Qz(m,n) = Imz - nj2/2y, the general positive definite binary
quaclratic form of discriminant -1 with real coefficients.
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THEOREM (FACTORIZATION FORMULA). For a E N, z E 1i, fl, V E Q, and p, Cl' E Z?O,

(23)

(-1)P p!
(1rY)p

REMARK: For the simplestease a = 1, Q' = 0 the right-hand side of the (23) becomes

(-1)P J2Y IB(p)( jL] (z) 1
2

, so the surn on the Ieft is nonnegative, which is not clear apriori.
v

PROOF: For Ul, U2 E C we have the identity

(e ..U;/2a
y 2: e-..ian'f+2 ..in(U,-av)) (e ..auU2Y 2: e..it ',/a+2 ..il(Ul+V»)

nEZ+~ lEZ+ap

= e1f(a2u~+u~)f2ay 2: e 1fim2 zfa+2rrim(Ul+ V ) 2: e-21fan2y+21fin(mz+aul+u2)

mEZ nEZ+~

2: e21fi ( mv+np)+1f(imn-Qs (m,n»fa-1\'"[( mi-n)ul +( mz-n)u2fa]fy

m,nEZ

the first equality being obtained by the substitution e= an + m and the second by appIying
the formula

(A > 0, B E C),

which is a standard consequence of the Poisson summation formula, to the inner sumo Identity
(23) follows by comparing the Taylor coefficients of u~ u~+O' on both sides.•

REMARKs: 1. This formula in the case a = 1 is essentially contained in I(ronecker's work
([5], Chapter III). It is also a special case of a general transformation formula for products of
Fourier series which is used in the field of radar signal design (cf. Chapter 8 of [7], especially
the Corollary to Theorem 8.18).

2. The proof can be expressed in an essentially equivalent hut somewhat different way by
using the transformation formula of the genus 2 theta series

6(2) (u, Z) = 2: e 1fi t nZn e2rri t nu

nEZ 2

under the action of the matrix

o 0
o 0
o 1
1 0

to relate the values of 8(2) at the two points

( (
Ul + I"z + v )(u,Z)= ( _+) ,

U2 - a I"z v

7



(where it obviously splits into a product of genus one series) ancl

(u, Z) = (_i (tL1az + tL2Z) + (v) ,
2ay -aul - 1L2 J.L

_i (lzl
2

-1z )).
2ay -z

This is connected with an interesting interpretation of the factorization formula in terms
of the geometry of the Siegel modular variety of genus 2 which will be discussed in a later
publication.

We now apply the theorem to the case when z is an appropriately chosen CM point in
the upper half-plane, in which case the left-hand side of (23) becomes the value at a CM
point of a non-holomorphic derivative of a holomorphic theta series of weight 0' + 1. We let
!( = Q(J-d) and c have the same meanings as in §3 and define for each ideal a and odd
integer h ~ 1 a theta series

E>~h)(Z) = ~ L >.h-l qN().)/N(o)

..\Ea

which is a modular form in Mh(ro(d),e) and a cusp fonn if h > 1. Clearly G~hj(z) =

Ah-le~h)(z) (the e~h) are the modular forms corresponding to the partial zeta functions for

unramified Hecke L-series of even weight h - 1). In particular, e~l\z) depends only on the
dass [al of a in CI(!().

On the half-integral weight side we will be evaluating modular f~rms of level apower of 2
at our CM points, so we have to impose further congruence conditions on the bases of our
ideals modulo powers of 2, just as we did modulo d in §3. Vve set

b+R
where a = [a, 2 ] , (a,2) = 1, b - 1 (ruod 16) .

for r =1 (mod 2), s =p (mod 2)

which is weIl defined modulo 81. (Any other fixed odd choice of b modulo 16 would be just
as good.)

THEOREM. Let 0, 01 be coprime ideals of K prime to 2ll and to 2, respectively. Then for
k, h ~ 1 satisfying k =1 + 6 (mod 2), h == 1 (mod 2) we have
(25)

k-} _ (h) ( (d») _ {) ( -4 ){j dk+h/2-S/4 N( a)h-l ( (2) ) ( (2»)
a G aat za - (-1) N( a) 22k+h - 4 N( 01 )k-l/2 Bk - 1 / 2 Za2al • Bk+h - 3 / 2 Zal ,

where (}"+1/2 are the theta series denned by (3), (12) and (13) and z~d) and z~2) have tbe
meanings given in (19) and (24), respectively.

PROOF: \Ve will choose p = k - 1, 0' = h - 1, J.L = 1/2, v = 8/2 in (23), observing that

B(p)cj;](z) = 2 (-1)(p-.l/2 Bp+1/ 2 (z)

by (14) and the definition of B(p)[ J.L]. We further choose b=1 (mod 16) such that (b+R)/2
v

belongs to 0
2 all'! (in particular, b is divisible by d and c :== (b2 +d)/4aal is divisible by a and

congruent to 8 modulo 2) and set z = (b +V-d)/2aal in (23). Then

8



and

and substituting all this into (23) gives the assertion of the theorem. •

RE1IARK: Notice that the theorem relates values of modular forms of different levels. This
forces ratios of such values to be in smaller :fields than one would suspect apriori. Also from
the transformation properties of 8Pe~h) ( z) under homotheties of a and the action of r 0 ( d)
on zone immediately gets the following:

COROLLARY. Let a and al be as in the theorem and 'ljJ a Hecke character of [( satisfying
(17). Tben

depends only on al and'ljJ and on the ideal dass of a.

This transformation property is quite non-obvious and was proved in [8] by a long calculation
(pp. 559-562) of quadratic symbols. The point is that the theta series f}k-l/2 has level 4 and
has nothing to do with d at all, so that the I(ronecker symbol (d/·) implicit in the factor 'ljJ

has to come from the transformation behavior of the CM point z~~)al under change of ideals
and from the automorphy factor of (h-l/2'

§5. Final fürmula für the central value of L( 'ljJ, k)

The proposition of §3 and the theorem just proved in general involve different modular
forms: non-holomorphic derivatives of Eisenstein series (of odd weight and character c) in
one case and non-holomorphic derivatives of theta series (again of odd weight and character
c) in the other. There is one case where these overlap. Namely, for the Eisenstein series of
weight one we have

v'd h( -d) 00

2n G1 ,t:(z) = 2 +:L (:Lc(m») qn
n=1 mln

by (21), and since the coefficient of n is the number of integral ideals of [( of norm n this is

simply L:[aj e~I)(z). Hence we can combine equations (18), (22) (with r = 0) and (25) (with
h = 1) to get

L('ljJ k) = (_1)0 (Zn/ Vd)k
, (k-l)!

L 'ljJ(a)-1 ak-le~~)(z~d»

[llj,[al]E Cl(K)

(26)

If we assume that dis prime, so that the dass number h(-d) is odd, then we can replace :first
al by a~ and then a by aa11 to obtain:

9



MAIN THEOREM. Let d > 3 be a prime =3 mod 4, k a positive integer satisfying
k =8 + 1 (mod 2) and"p a Hecke character of ]( = Q(V-d) satisfying (17). Then

rr k
dk/2-3/4 I 6 -4 6-- -1 (2) 1

2

(27) L("p,k) = 2k-l(k -1)1 2: (-1) (N(o)) t/;(o) (h-l/2(Za2 )

[aJE Cl(K)

Notice that the terms of the sum are well-defined by virtue of the corollary in §4.

COROLLARY. Under the assumptions of tbe theorem, L(t/;, k) is non-negative.

REMARK: According to Greenberg ([1], p. 258), the corollary has the application that the
values of L("p~k-l, k) for a fixed Hecke character "pI of weight one have a well-defined average
value, equal to L(I, c), as k -7 00. He points out that this implies the rather weak estimate
L(7/Jik

-
1

, k) = o( k) and asks whether this can be improved. It might be of interest to see
whether this can be done using the above theorem.

§6. Recurrences

The results of the preceding sections imply that both the central values of odd weight Hecke
L-series and their square roots can be expressed in terms of non-holomorphic derivatives of
classical theta series evaluated at CM points. In particular, for the odd powers of the weight
one character"pl introduced at the beginning of the paper, for which d = 7 with class number
h( -d) = 1 and 8 = 0 (the only such case!), they give

(28) L(,,/.2k-l k) = (27r / .J7)k ak-1 e (7 + H)
'f"1' (k - 1)1 14

for k ~ 1 odd, where 81/ 2 is the function (3) and

(29) G() 1 2: m 2 +mn+2n2 1 2:00

(-7) qn-z=- q =-+-
2 2 n 1- qn

m,nEZ n=1

In this section we show how to obtain the values {an f(zo)}n>O of the non-holomorphic deriva­
tives of a modular form f at a CM point Zo as (essentially)the constant terms of a sequence
of polynomials satisfying a recurrence relation. We will illustrate with the case of the full
modular group, treating other groups, and the functions occurring in (28), in the next section.

As weIl as the differential operator D and ak = D - k/47rY of §2, we will use the operator

k 1 d k
{)k = D - - E 2 = - - - - E2 (z),

12 2rri dz 12

00

where E 2 (z) = 1 - 24 L: 0"1 (n) qn is the Eisenstein series of weight 2 on SL2 (Z). As is
n=1

well-known, this Eisenstein series is not quite modular, hut transforms instead by

az + b 6
E2 ( d) = (cz + d)2 E 2(z) + -. c (cz + d)

cz + rrz

10



Equivalently, the function Ei(z) = E2(z) - 3lrry (y = ~(z», though not holomorphic,
transfonns under the action of SL2 (Z) like a holomorphic modular fonn of weight two.
It follows that {)kJ = akf.- kEil/12 transforms like a modular form of weight k + 2 if
I E Af;(r) for any subgroup r of SL2 (Z). On the other hand, t9 k l is clearly holomorphic
if I is, so t9 k maps Mk(r) to Mk+2(r). The operator D, which does not preserve the ring
A1*(SL2 (Z» = C[E4 , E 6 ], does preserve the larger ring C[E2 , E 4 , E 6 ]. We have

(30)

(31)

and hence--since D clearly acts as a derivation-

If f is a holomorphic modular form on SL2(Z), thought of as a weighted homogeneous poly­
nomial of degree k in E 4 and E 6 (where Eh has weight h), then from al/8E2 = 0 and the
Euler equation 4E4 af /aE4 + 6EG 8f / 8Ea = k f we get

t9f = _ E6 8f _ El 8f
3 BE4 2 BEG

Each of the three differentiation operators D, Bk and {)k has advantages over the others: the
first preserves holomorphicity and acts in a simple way on Fourier expansions, but destroys
modularitYi the second preserves modularity and acts in a simple way on Fourier expansions,
hut destroys holomorphicitYi and the third preserves both the properties of holomorphicity
and modularity but has a complicated action on Fourier expansions. The nicest way to
understand the action of these operators and their iterates is to put them together into three
generating series. The first is the KuznetJov- Cohen series

ID(Z,X) = ~ nnf(z) X
n

~ k(k+1)···(k+n-1) n!

and the other two are

(z E 'H, X E C, f E Mk(r»

(32) f ( X) - -X/4rrv f ( X) _ ~ an fez) x n

8 Z, -e D z, - ~ k(k+1) ... (k+n-1) n!

(the second equality is arestatement of equation (8» and

(33)

The I(uznetsov-Cohen series satisfies the transformation equation

f (az + b X ) = (cz + d)k ecX/2rri(cz+d) I (z X)
D cz + d' (cz + d)2 D ,

and the transformation properties of y-l and E 2(z) under r imply that Ja and f.a satisfya
similar equation hut without the exponential factor, which simply says that the nth Taylor
coefficient in each of these series transforms like a holomorphic modular form of weight k +2n.
These Taylor coefficients of Ja are the an J, hy (32). For f{} they are given by:
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PROPOSITION. Let I E Mk(r) for some r c SL2 (Z). Then

(34) 1t?(z,X) = ~ Fn(z) xn
~ k(k + 1)··· (k + n - 1) n!

where the modular fonns Fn E M k +2n(r) are defined recursively by

(35) Fo =1,
n(n+k-1)

Fn+1 = iJFn - 144 E4 Fn - 1 (n ~ 1)

.. .;;.... n! (n + k - 1) ( E2 ) n -l l
PROOF: From (33) and the definItIons we have Fn = LJ ~ _ IJ --2 D I, and

l=O .(,. n.(, 1
the result follows using (30) and (31).•

vVe now illustrate how to get the recursions for the numbers {an I( zo)} in the simplest
case r = SL2 (Z), I = E4 , Zo = i. By the transformation property of Ei under rand the
fact that i is fixed under z 1--+ -1/z, we deduce that Ei(i) = 0 and hence by (33) that
la(i,~Y) = 1{}(i, X) for any I E Mk (SL2 (Z)), so an E4 (i) = Fn(i) where the polynomials

F -~ 2 ~ 2
4 - 288 E4 + 216 E6 ,

can be computed by (35) and (31). By homogeneity we have Fn = E:/2+1 In(Ea/ E:/2
) where

the In E Z[l] [tl are polynomials in one variable (even if n is even and odd if n is odd, and of
degree ::; (n + 2)/3) given inductively by

(36) 10 = 1, (
t 2

- 1 d n + 2 ) n(n + 3)
In+1 = 2 dt - -6- t In - 144 fn-l.

Since E 6 ( i) vanishes, we obtain finally

EXAMPLE. For n ~ 0 we have anE4 (i) = In(0)w n/2+1 (= 0 jf n js odd), where w = E4(i)
(= 3r( i)8 /(27r)6 ) and {fn(t)} are tbe polynomials defined by (36).

§7. Exalnples

To calculate the non-holomorphic derivatives for modular fonns on other groups r than
SL2 (Z) and for other CM points Zo, we choose a function 4>(z) satisfying

i) q;(z) is holomorphic;
ii) 4>*(z) = q;(z) - 1/41rY transforms like a holomorphic modular form of weight 2 on r;
iii) 4>(zo) = O.

Condition ii) is equivalent to

ii') </>(az + ~) = (cz + d)2 </>(z) + c(c~ ~ d) for 811 (a db) E r,
cz + 1rZ C

and a short calculation then shows that
iv) the function cI> = D4> - q;2 belongs to M 4(r), and
v) if f E Mk(f), then 1J,pf := Df - k4>f belongs to A1k+2(r).

(In §6, we had q; = 112E2 , <I> = ~~ E4 , {} q, = 19.) The analogue of the proposi tion in §6 is then
that the series e-iP(z)Xf D(Z, X) has an expansion as in (35) with Fo = f, F1 = {)iP f, and
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Fn + 1 = {}rf>Fn + n(n + k - 1) <P Fn - 1 far n ?: 1. If we chaose an explicit set of generators for
the ring A1.(r) and then express the differential operator {)rf> in terms of these generators, as
was done in (31) for the case of SL2(Z), we obtain an explicit recursion for the polynomials
Fn. The fact that 4J vanishes at Zo then shows that an J( zo) = F n (zo), so we get the numbers
an J( zo) as special values of a sequence of polynomials satisfying a recursion.

We give the details of this for the functions 8(z) and B1/2(Z) occurring in equation (28),
which are modular forms (with multiplier system) on r o(7) and r o(2), respectively. vVe give
the details B1/2, since this is the one needed to prove (3) and also because the structure of
the corresponding ring of modular forms is simpler.

We abbreviate B = B1/ 2 . Ey (3), BB is a modular form without character on r o(2). (In
fact it is the Eisenstein series L:n>l n3qn /(1 - q2n).) The ring of modular forms on r o(2) is
generated by the functions -

nqn
A = A(z) = -E2 (z) +2E2 (2z) = 1 + 24 ""'L..t 1 _ qn

n>l
n ödd

and BB, of weight 2 and 4, respectively. For instance, we have

lU . d' h' 1 + J -7ne are Intereste In t e pOInt Zo = 2 . By standard complex multiplication theory,

(37) B 1 4B(zo) =-- n
28 7 '

with n as in equation (1). We therefore choose

so that <jJ·(z) = 4J(z) + 1/47rY transforms like a form ofweight 2 on r o(2) and vanishes at zoo
The {}4»-derivatives of B and A are found to be

2
{)iPB = - BA,

21

SO (since {) is a derivation) the action of {) on either M.(ro(2)) = C[BB, A] or its 8th degree
extension C[B, A] is given by

(38) 2 a ( B 52 a{)fj)=-BA-+ 32B --A)-
21 aB 42 aA .

Also, q, = D</> - </>2 equals - ( :4 )2 A2
- ~ (JB. The above discussion then shows that an(J( zo) =

Fn(zo), where Fn is a weighted homogeneous polynomial in Band A of weight 2n + ! given
inductively by

Fo = B,
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with {}r/> as in (38). By homogeneity we have Fn = &4 n+1In(A/94) where In is a polynomial
of the same parity as n, and in terms of these the recurrence becomes

( 1 2) I () 8n + 2 ( ) ( 1 ) (52 2 44) ( )In+1(t) = 32 - 2t In t + 21 tin t - n n - '2 842 t + 21 In-1 t ,

the first few values being

10 = 1,
2

11 = 21 t,

and (28) and (37) tell us that the numbers

(-H)n r-;; 1
B(2n + 1) = 23n+1 fn(24v -7) = 2' 1, -1, -3, 7, -315, -609, ...

satisfy equation (2). A slightly more convenient choice of normalization turns out to be
Pn = 2 (A/21)n 9 bn(44198 / A2 + 7/64) rather than Fn= 94n+1In (A/f}4 ), so that

1
bo = 2' b1 = 1, b2 = X - 1, b3 = 9x - 3, b4 = -2x2 + 133x + 7,

With this choice the B(2n + 1) are simply the constant terms bn(O) and the bn(x) satisfy (5).
For the other assertion of the theorem in §1, giving the numbers A(k) of (1) in terms of the

recursion (4), we must use the formula A(k) = ak
-

1 0(Zl)/2S12k-t, where Z1 = (7 +H)/14
(this is just arestatement of (1) and (28». The calculations here are more complicated be­
cause the ring of modular forms with chaxacter M. (ro(7), (-.7) *) is not free, but is generated
by the function e defined in (29) tagether with the two weight 3 fonns

L (r2 _ 782 ) q r2~7.2 ,

r,lIEZ
r::lI (mod 2)

subject to the relation E2 = (03 + 0(3»(03 - 270(3». When we write the non-holomorphic
derivatives an 0(Zl) as the values of a sequence of polynomials, then these are polynomials in
three algebraically dependent variables. We can use the homogeneity to write them as simple
factors times polynomials in x = 0(3) /03 and J(l + x )(1 - 27x) = E /03, and after same
computation we obtain (4). We leave the details to the reader.

REM ARK S : 1. According to the recursion (4), the polynomials a2 n have coefficients in Z[t],
and this is actually true: the first values are 1, (2-34x)/9, and (8-218x+314x 2 +432x3 )/27.
It is not clear on an elementary level why their values at x = 1 are integers (let alone squares).
Silnilarly, the recursion (5) involves dividing by 21 at each stage, but in fact the polynomials
bn(x) apparently belong to Z[x].

2. It is now clear that we cannot expect any simple relations between the polynomials
a2n(X - 1) and bn(x), even though the constant tenns of one are the squares of the constant
terms of the other: the variables "x" have completely different meanings in the two polyn0­
mials, being a modular function on .Yo(7) in the one case and a modular function on X o(2)
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in the other. The identity of the constant terms has to do with the way these two modular
curves intersect in the Siegel 3-fold H 2 / SP4 (Z).

Finally, we mention that in the 5 cases d = 11, 19, 43, 67 and 163 with h( -d) = 1 and
8 = 1 the calculation is even easier than the case treated here with 8 = 0, since now the
function whose non-holomorphic derivatives must be computed at CM points is 83 / 2 , which
is a modular form (with multiplier system) for the full modular group (cf. equation (15)).
Here the recursions obtained are essentially the classical recursions for the Taylor coefficients
of the Weierstrass o-function, as given for instance, in [3], Chapter VII, p. 237.

§8. Twists

We finish by mentioning a result on the central values of quadratic twists of Hecke L-series.
For simplicity we consider only the case of equation (7), i.e. twists of the L-series for the
grossencharacters of conductor (A) of Q(A) by Legendre symbols attached to primes
p - 1 (mod 4). Then one of us (F.V.) has found a formula giving integers B(k,p) such that
(7) holds. In the simplest case k = 1 this formula is

with 81/2(Z) as in (3); here the SUfi is over n (mod 16p)) satisfying n - 1 (mod 16), x(n)
is one of the two quartic characters modulo p, G(X) = L: x(n) e21rin/p the associated

n (mod p)

Gaussian SUffi, and SeX) = 2, 1 - i, 2i or 1 + i according as X(7) = 1, i, -1 or -i (so that

X(7)S(X)2 = 3 + (~)). For p < 200 this gives the values
p

p

B(l,p)
5 13 17 29 37 41 53 61 73 89 97 101 109 113 137 149 157 173 181 193 197
1 -1 -1 -1 1 1 0 1 3 3 -1 -1 -1 2 1 0 -3 1 1 0 0

This will be discussed in a later publication. We have not succeeded in matching these
numbers with the coefficients of a modular form weight 3/2.
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