
The Birch-Swinnerton-Dyer conjecture

from a naive point of view

by

Don B. Zagier

Max-Planck-Institut fUr Mathematik:

Gottfried-Claren-Str.26

D-5300 Bonn 3, FRG

MPI/89-48

Department of Mathematics

University of Maryland

College Park, MD 20742, USA



The Birch-Swinnerton-Dyer conjecture from a naive point of view

DON ZAGIER

Max-Planck-Institut für Mathematik, Bonn
and

University of Maryland

Throughout this paper, E will denote an elliptic curve defined over Q wmch we
suppose given in p2 by an equation

l(x,y,z)=O (I E Z[x, y, z] homogeneous of degree 3) (1)

with I of minimal discriminant ~, H R is any ring with unit, then E(R) denotes the
set of solutions of I = 0 in p2(R) = {(x,y,z) E R 3

: xR + yR + zR = R}/Rx , (In
particular, E(Z) is the same as the Mordell-Weil group E(Q) and not, as sometimes in
the literature, the fini te set of integral points in the affine model f (x, y, 1) = 0 of E over
Z ,) The L-series of E is the Dirichlet series given by

L(E s) - TI 1 = ~ a(n)
, - . 1 - a(p)p-3 + e(p)pl-23 LJ nS

p pnme n=l

3
(Re(s) > 2)' (2)

where a(p) = p + 1 - IE(Z/pZ)1 (lAI denotes the cardinality of a set A) and e(p) = 1 or
odepending whether pf~ or pl~. The Birch-Swinnerton-Dyer conjecture consists

of the two statements

(A ) L(E, s) continues meromorphically to s = 1 and has a zero there of order exactly
r = rankZE(Q) (for r = 0 this means that L(E, s) is holomorphic and non-zero at

s = 1).

(B) Assuming this, define A by L(E, s) I'V .A (s - 1) r (s ~ 1). Then

(3)

where R is the determinant of the Neron-Tate height pairing with respect to a
basis of the free part of E(Q), n is the real period (= integral over E(R) of a Neron
differential of E/Z ), c = TI cp where Cp = [E(Zp) : EO(Zp)] (EO(Zp) is the set of

pl.o.
points whose reduction (mod p) belong to the non-singular part of E(Z/pZ)), and
III is the conjecturally finite Tate-Shafarevich group of E. (Each of these quantities
will be discussed in more detail later.)



(4)

The Birch-Swinnerton-Dyer conjecture is very famous and has been given vari­
ous formulations in more learned Ianguage, most strikingly one in terms of Tamagawa
numbers in a beautiful paper by Spencer Bloch (Invent. math. 58 (1980), 65-76). Dur
purpose in this note is to go the other way, replacing as many as possible of the invari­

ants entering into (3) by numbers that can be defined without any theoretical knowledge
(in particular, without knowing what the height pairing is, how the groups E(Zp) and
EO(lp) look, or even that there is a group structure on E(R)). More precisely, we will
try to define these invariants in a purely Diophantine way, merely by counting solutions

of (1) in Q and in l/nZ. The motivation for doing this, besides the pleasure in finding a
formulation of the Birch-Swinnerton-Dyer conjecture which can be explained easily to a
non-specialist, comes from the analogy with the situation of zeta-functions of quadratic
fields, where by defining everything in terms of counting solutios of equations one can

get an easy proof of the Dirichlet dass number fonnula. This analogy is described in
§1. In §2 we interpret the numbers r and RT-2 (and, very vaguely, RT-2Q) in tenns of
counting rational solutions of (1). In §3 we express the quantity c-1 ,\ (assuming (A») in
tenns of the number of solutions of (1) in l/nZ for all n. Finally, in §4 we make some

remarks about the interpretation of III in tenns of solutions of (1) and related equations
over various other rings.

1. TUE PROTOTYPE: ZETA FUNCTIONS OF QUADRATIC FIELDS

There is a well-known analogy between the Birch-Switmerton-Dyer conjecture and
Dirichlet's dass number formula for number fields in which VR corresponds to the reg­
ulator, T to the number of roots of unity, and III to the dass group of the field. Like
the Birch-Swinnerton-Dyer conjecture, DiricWet's formula can be stated in a much more
abstract language than the original fonnulation. However, it can also be stated-and,
at least for quadratic fields, proved-in an entirely elementary way purely in terms of
counting solutions of equations. In this section we describe how this goes, since it is the
model for what we would like to do for equation (3).

Let D be an integer and consider the set of all binary quadratic forms Q(u, v) =
au 2 + buv + cv2 with a, b, c E Z and discriminant b2 - 4ac = D. The group SL(2, I)

acts on such forms; we denote by [QJ and by Aut(Q) the orbit and isotropy group,

respectively, of Q under this action. H n is a natural number, then Aut(Q) acts on the
set of representations of n by Q (= pairs (u, v) E Z2 with Q(u, v) = n). We denote by
rQ ( n) the number of inequivalent representations under this action (this can be an integer

~ 0 or, apriori, 00) and by rQ(n) the number of inequivalent primitive representations
(representations with u and v coprime). Then the basic identity is

L rQ(n) = I{b (mod 2n) : b2 =D (mod 4n)}1
[Q]

(in particular , rQ(n) is finite, and in fact bounded by n).

We will prove (4) by a very simple counting argument which works in a unifonn
way for all D, positive, negative, or zero. First, however, we show how it implies the
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analogue of the Birch-Swinnerton-Dyer formula (3) in the case that D is the discriminant

of a quadratic field (i.e. D =f 1 is square-free and congruent to 1 modulo 4 or D /4 is

square-free and congruent to 2 or 3 modulo 4). The right-hand side of (4) is clearly a

multiplicative function of n. H (D) = 1 (or p = 2, D == 1 (mod 8)), it is 2 for all
p

n = pV > 1; if (D) = -1 (or p = 2, D == 5 (mod 8)), it is 0 for aU n = pV > 1; and
p

if plD it is 1 for n = p and 0 for n = pV, V > 1. Using this and the obvious identity

rQ(n) = L: r'Q(n/e2 ), we easily deduce from (4) the equivalent fonnula
e2 1n

LrQ(n) = LX~(d),
[Q] dln

(5)

where XD is defined as the totally multiplicative function on N with XD(P) = (D) for
p

P prime. By quadratic reciprocity one knows that XD is aperiodie function of average

0; it follows that the series L(1, XD) = L: XD(n) n- 1 converges. Taking the average
N

(= lim .2.- '"'(... )) of both sides of (5), we obtain
N-oo N L....J

n=l

L (rQ) = L(1, XD )·

[Q]

(6)

But it is easily seen by counting lattice points in a sector of an ellipse or hyperbola that

the average value (rQ) of TQ has a value !«D) independent of Q, given by 2~C: if

D > 0 (where e = ~ (t +u JD) for the smallest positive integer solution of Pell's equation

t2 - Du2 = ±4 if such a solution exists, !«D) = 00 otherwise) und by ~ if D < 0
w -D

(where w = 2, 4 or 6 is the number of integral solutions of t2
- Du2 = 4). Thus (6) says

that L (1, XD) = h(D) K ( D), where h(D) is the (possibly infini te) nmnber of equivalence
classes [Q] of discriminant D. Since L(l, X

D
) is apriori known to be finite (but might

be zero), while h(D) and K(D) are apriori known to be non-zero (but might be infinite),

this gives in one blow the finiteness of the dass nmnber h(D), the existence of a solution

of Pell's equation for non-square D > 0, the non-vanishing of L(1, X
D

), and the Dirichlet

dass number formula.

And now to the proof of (4), which is considerably shorter than the discussion of
what to do with it. We use the following general principle: if a group G acts on two sets

X and Y, and SeX x Y is a subset invariant under the diagonal action of G, then

L ISx/Gxl = L [Sy/Gyl,
xEX/G yEY/G

(7)

where Sx = {y E Y : (x, Y) E 5}, Gx = {g E G : gx = x} and similarly for Sy and
Gy. The proof of (7) is obvious: just count the nwnber of orbits of G in 5 in the two
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possible orders. We apply it to the case where G is SL(2, Z), X the set of quadratic

forms Q of discriminant D, Y the set of pairs of coprime integers (u, v), and S the set of
pairs (Q, (u, v)) E X x Y with Q(x, y) = n. Then the left-hand side of (7) is equal to the
left-hand side of (4) by definition. On the other hand, Y / G consists of a single element

which we can represent by the point y = (1,0). For this choice, Sy is the set of quadratic

forms nu2+ buv + b24~Dv2 with b2 =D (mod 4n) and Gy = {( ~ ;) : r E Z} acts on this
by b 1-+ b+ 2rn. The result follows.

In summary, the identity (4), which can be written in the equivalent fonn

((28)-1 L L 1 = f: .;"",,;,,1{b (2_n ) _b_
2

_D....:....(4---.;.n)~}1

[Q} (u,v)EI2 JA ut(Q) Q(u, v).! n=l n.!
Q(u,v»O

(8)

has a simple combinatorial interpretation in terms of counting orbits under a certain

group action on the set of integral solutions of a certain Diophantine equation, and gives
the Dirichlet class number formula and other arithmetical information by looking at
the asymptotic behavior near s = 1. If we could interpret the Birch-Swinnerton-Dyer
conjecture in the same way, we would abtain a proof of it. This of course we cannot do,
but we will at least be able to write some of the invariants it involves in terms of the
asymptotics of two Dirichlet series analogous to those occurring in equation (8).

2. THE GLOBAL DIOPHANTINE INVARIANTS rAND RT-2 (AND f2)

Let I 1be any continuous norm on R3
, e.g. I(x, y, z)1 = (x 2 + y2 + Z2)lJ2 or

lxI + lyl + Izl or max{lxl, IYI, Izl}· We cau consider lIas defined on P2(Q) or E(Q) by
identifying these sets with P2(Z) = Z3/{±1} C R3/{±1} and E(Z), respectively. Now

let

N(B) = {P E E(Q) : jPI ::; B}

be the number of solutions of (1) in coprime integers (x, y, z) of norm::; B, two solutions
differing only in sign being counted as one. Then we have

PROPOSITION. Tbe asymptotic growtb of N(B) as B ~ 00 is given by

(B~oo). (9)

Here (r /2)! is to be interpreted as r(l + ~) if r is odd. Note that the assertion of (9) is

independent of the choice of norm because any two norms are bounded by multiples of
one another and (10gB + 0(1))r/2 ~ (10gB)r/2.

PROOF: We recall how the Neron-Tate height pairing is defined: one shows that there

exists a positive-definite quadratic form h on E(Q)/(torsion) such that

h(P) = log IPI + 0(1)

4
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the height pairing is the associated non-degenerate bilinear fonn. Thus we can consider
E(Q)/(torsion) ::::::: zr as a lattice A in the vector space E(Q) 0 R ::::::: nr with the metric
defined by h. The number of points in A with h ::; H for H large is asymptotically equal

1 (7rH)r/2
to V'R. (the volume of Rr / A) times (r/2)! (the volume of an r-dimensional sphere of

radius ..Jii), and the number of P E E(Q) with h(P) ::; H is T times this. The result

now foHows from equation (10).

Notice that (9) irnplies that the zeta function

1
Z(E,s) = L TPF

PEE(Q)

converges for all s with Re(09) > 0 and satisfies

Z(E,s) ~ ~ (s/1r)-r/2 (09 ~ 0) (11)

(to see this, write Z(E,s) as 09 fooo N(B) B-tJ-l dB and use the estimate on N(B».
Either (9) or (11) defines both r and R/T2 in an elementary way, without reference to
the group structure or the Neron-Tate height pairing on E(Q).

Finally, we make a stab at bringing n into the picture. The presenee of the factor
V'R. in (11), as weH as the fact that Z(E,s) has a pole of half-integral order at 0 if
r is odd, suggests looking at Z (E, 09 )2, whieh is the surn of IP 1-tJ IQ1-tJ over all pairs
(P, Q) E E(Q)2. We could look instead at the subsurn over pairs of points (P, Q) which
are elose in the real topoogy, say Iz(P-Q)/x(P-Q)[ < € in the standard Tate-Weierstrass
form y2 z + al xyz + a3yz2 = x 3 + a2x2 z + a4xz2 + a6z3. These points, at least if E(Q)
is infinite, will constitute asyrnptotical1y a proportion v of the set of aH pairs, where v

is the ratio of the length of {(x: y : z) E E(R) : Iz/xl < €} to that of all of E(R). The
first of these lengths is given by an incomplete elliptic integral which is asymptotic to

20 a.s € --+ 0, while the second, a complete elliptic integral, equals n. Thus the two-

point zeta funetion in question looks like 2f: Z (E, s ) 2 , and its leading terms at 0 like

2,jE ~~ ('Ir / sr. 0 bviously this is very vague, but at least it suggests that the natural

combination of T /V'R. and n is T2 /nR, the quantity occurring in the Birch-Swinnerton­
Dyer conjecture.

3. THE LOCAL DIOPHANTINE INVARIANTS L(E, s) AND C

The L-ftu1ction of E defined by (2), while natural from several points of view

(in particular, the conjectured holomorphic continuation and ftu1ctional equation), has

several defects from a purely Diophantine point of view:
(i) The numbers a(p) are defined in terms of counting solutions, hut the coefficients

a(n) for n cornposite (say n = p2 or n = pq) can only be defined by using the recursion
given by the Euler product (2); we do not know how to compute a(n) directly in tenns
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of numbers of solutions of equations, or without knowing the prime faetorization of n.
(ii) The funetion L(E, s) ought to summarize all the loeal data about E which is

relevant for the Bireh-Swinnerton-Dyer eonjeeture, but falls to do so: at primes of bad
reduction the Euler factor of L(E, s) contains too li t tle information and we are 0 bliged
to include the number Cp as an extra (Ufudge") factor in (3).

(iii) L(E, s) conjecturally has a zero of order r at s = 1) hut a pole would be much
more convenient, since the presence of a pole in the analytic continuation of a Dirichlet

senes makes itself feIt in the asymptotics of ita coefficients, while a zero is not visible in
this way.

In this section we will attempt to remedy or partially remedy these defects by

introducing a new Dinchlet series which ia related to, hut not expressible in terms of,
L(E, s). Actually, we sh81l define three such DiricWet series, but we give only the most
natural one here, and mention the others as variants at the end of the section. We denote
by N(n) the cardinality of the finite set E(Z/nZ) and set

00

D(E,s) = L N(n)n-".
n=l

The series converges absolutely for Re(s) > 2. We will prove:

PROPOSITION. Tbe product D(E, s) L(E, s) extends meromorphica1ly to the half-plane

Re(s) > ~, is holomorphic for Re(s) 2: 1 except far a simple pole at s = 2, and has the

value -1 at s = 1.

COROLLARY. Part (A) of tbe Birch-Swinnerton-Dyer conjecture is equivaJent to

CA') D(E, s) continues meromorphically to s = 1 and has a pole there of order exactly

r (for r = 0 trus means that D(E, s) is holomorpruc and non-zero at s = 1.)

H this holds, then D(E,s) r.J -A-1C(S _l)-r as s ~ 1.

Thus D(E,s) remedies the problems (i) (N(n) is defined directly by cotu1ting so­
lutions of (1) modulo n, wi thou t reference to the prime factorization of n) and (ii) (the
leading term of D(E, s) at s = 1 involves the same combination of A and c as occurs in

the Birch-Swinnerton-Dyer conjecture, so D(E, s) encodes all the interesting local infor­
mation). It also partially solves (iii), since "rth order zero" has been replaced by "rth
order pole" in going from (A) to CA'). However, if E(Q) is finite, then there ia no pole,
and even if r > 0 the effect of the pole at s = 2 (to say nothing of possible other poles in
Re(s) > 1 if the Riemann hypothesis is false for L(E, s» will dominate the asyrnptotics
of the coefficients N(n) and tend to swamp the contribution of the pole at s = 1, making
it hard to "see" the numbes r and A-1C (the pole at s = 2 will contribute a term Ax2 to

2: N(n), while the pole at s = I-if r is positive-will give a smaller order contribution
n::;x

-A -lcx(log x)r-l /(r -1)1). Also on the negative side, of course, is that D(E, s) does not

even conjecturally have an analytic continuation to all s or satisfy a functional equation.
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To prove the proposition, we observe that N(n) is clearly multiplicative and heuce
that D(E, s) has an Euler product

D(E, s) = TI Dp(p-"),
p

00

Dp(x) = 2: N(p&!)x&!.
v=o

We look at the Ewer factors separately, starting with the case of good reduction, p f 6..
By definition, N(p) = IE(I/pl)1 = p + 1 - a(p). Since the points of E(Z/pZ) are non­
singular (i.e., some partial derivative of f is non-zero mod p), Hensel's lemma implies
that they each lift to exactly p2(V-1) solutions of f = 0 in (Z/pvZ)3 for v 2: 1. But the

order of (l/pVI)X is pv-1 times that of (l/pZ)X, so this gives N(pV) = pv-1 N(p) for the

number of solutions in P2(I/pVI). Hence

2:
00 1 - (a(p) - 1) x

Dp(x)=1+ (p+1_a(p))pV-1 x V= .
1 - px

v=l

It follows that the Euler factor of D(E,s)/((s -1) at pis 1- (a(p) _1)p-.!l, which for

s = 1 takes on the value N(p) , the reciprocal of the value of the corresponding Euler
p

factor of L(E,s). Thus the Euler product of D(E,s)L(E,s)/((s -1) converges (indeed,
terminates) at s = 1. Nevertheless, this is not the right combination to look at, since it

diverges for 3 near 1 (its pth Eulerfactorfor Pi' t. equals 1+p-'(l +0(1)) for Re(3) > ~,
s i= 1). Instead, we set

(where Lp (p-") is the pth Ewer factor of L(E, s)) and find for p f 6.

(1- x)(1- (a(p) -1)x) x2(1- px)(a(p) -1 + px)
1f; (x) = = 1 + -~----,-....;.......;..----~

p (1 - px2) (1 - a(p)x + px2) (1 - px2) (1 - a(p)x + px2) .

This equals 1 at x = p-1 and 1 + O(p3/2 X 3) for x = 0(p-1/2) (since a(p) = O(p1/2)), so

the product TI 7f;p(p-") converges absolutely in Re(s) > -6
5

and equals 1 at s = 1.
pt.6.

We will show that tPp(x) for piß is a rational function having no poles in lxi ::; ~
p

and satisfying tPp (~) = cp. It follows that 'l/;(s) = n1f'p(p-S) extends to a non-zero
p p

holomorphic funetion in Re(3) > ~ with .p(1) = c. This will prove the proposition, since

D(E,3)L(E, 3) = (~312(3(~~)1) .p(3) and (~1;3(~~;) is a meromorphic funetion with a

simple pole at s = 2 and no other pole in Re( s) 2: 1, equal to -1 at s = 1. So let p be a
prime of bad reduction. H EO(Z/pVI) denotes the set mapping to the non-singular part of
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E(Z/pZ), then ]EO(l/pl)1 = IE(l/pl)]-l = p-a(p) and IEO(Z/p"Z)1 = p,,-IIE(Z/pZ)1
by Hensel's lemma as before. But IE(Z/p"Z)1 ~ cp IEO(l/pllZ) I for v --t 00 hy the
definition of cp , so N (p") = cp (p - a(p))pll-I +O(pll). This shows that D p ( x), whieb is a

rational function by general principles, has a simple pole of principal part cp 1 - a(p)/p
1- px

at x = .!. and no other poles in lxi ~ .!.. Since Lp(x) = . \) for plß,the assertions
p p l-apx

about 'l/Jp(x) follow. This completes the proof of the proposition.

Remark. The function D(E, s) cannot be expressed as a quotient offinite products

of functions ((ns - m) and L(E, ns - m) (n E N, m E l)), because the rational function
1 - (a - l)x cannot be factored into functions of the fonn 1 - pmxn and 1 - apmxn +
p2m+I x2n . On the other hand, we could contine the partial factorization further and

get the meromorphic continuat ion of D (E, s) (assuming that of L(E, s)) into a bigger

half-plane. For instance, the identity

(1 - x )( 1 - px) D ( )
(1 - px2)(1 - a(p)x +px2)(1 _ pa(p)x3+p3 x 6) p x

a(p)x2(1 - p4 X 7) _ x2(1 _ pSxS ) + (p2 _ pa(p)2)x4(1 _ px2)
= 1 + (1- px2)(1- a(p)x +px2)(1 _ pa(p)x3 +p3 x6) (pf~)

gives the meromorphic continuation of D(E, s) to the half-plane ~(s) > ~ (assuming that

L(E, s) is known to be meromorphic), because the expression on the right is 1+0(p-I-2€)
for x = 0(p-3/4-t). However, it seems unlikely that D(E,s) continues meromorphically
to the whole plane, and anyway we are mainly interested in the point s = 1.

Finally, we define the two variants of D(E, s) mentioned at the beginning of the
section. The definition of N(n) can be written

N(n) = I{(x, y, z) E (Z/nZ)~ : fex, y, z) =0 (mod n)}/(Z/nZ)X I

where (l/nZ)g denotes the set of tripies (x, y, z) E (l/nZ)3 with gcd(x, y, z, n) = 1. The
new Dirichlet series are Dj(E,s) = ENj(n)n-~ (j = 1,2), where

NI(n) = I{(x,y,z) E (Z/nl)~ : f(x,y,z) - 0 (mod n)}I,

N2(n) = I{(x,y,z) E (Z/nl)3 : f(x,y,z) - 0 (mod n)}I,

i.e., we count all coprime, or all, solutions modulo n, rather than only non-proportional
ones. Since (l/nl) x acts freely on (Z/nl)g, NI (n) = N(n)cp( n), where cp(n) = l(l/nZ) xI
is Euler's function. Hence for pf ~ we have

00 00

DI,p(x) der L N I(pll)X ll = 1+ L(p+l-a(p))(p-1)p2l1-2 x ll
,,=0 lI=1
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with
a(p)(l - p4 X2) - (1 - p6 X3)

tP1 (x)=l+x ,
,p (1 - p3 x 2) (1 - a(p)px + p3 x 2)

which is equal to 1 at x = p-2 and to 1 + O(p9/2 x3) for x = o(p-3/2). An argument

like the Olle before shows that "p1,p(X) = (1 - p2 x )Lp(px)D 1,p(x)/(1 - p3 x 2) for piß is a
rational function which is holomorphic in Ix I ::; p-2 and equal to cp at x = p-2. Thus

«(s-2) II -6

D1(s) = ((2s-3)L(E,s-1) P ,pl,p(p )

has a meromorphic continuation to Re(s) > 1
6
1 with a simple pole at s = 3 and a leading

term -,\-1 C (s - 2)1-r at s = 2. This is even worse than for D( s) because now we get an

actual pole only if the rank r is at least 2. For D 2 ( 8) the calculations are messier since

(Z/nZ)X does not act freely on (Z/nZ)3 and we have to take into account the various

isotropy groups. We find for pt ß

N 2(pll) = 1 + :L: p3(v-p-1)(p3 - 1) + :L: p3V-2(p - l)(p + 1 - a(p))

i~p<v o~p<i

(to get this, count the number of solutions with gcd(x, y, z, pli) = pP, 0 ::; 11. ::; v),

and hence (treating the primes piß as before) finally

«(s - 2)((3s - 6)
D2(s) = ((38 _ 2)L(E, s _ 1) 1/;2(S)

with "p2 (8) holomorphic and noo-zero in Re(s) > 15 and 7f;2 (2) = c. Thus D 2(8) has a
8 .

meromorphic continuation to Re(s) > I; with a simple pole at s = 3 and leading term

3c
4'\ (s_2)1-r at 8=2.

4. THE TATE-SHAFAREVICH GROUP

Since the conjecturally finite order of the Tate-Shafarevich group III of E /Q enters

into the Birch-Swinnerton-Dyer formula, we would like to relate it to Diophantine prop­

erties of E, i.e., to find a connection between the groups E(Q) and llI. The standard

descent sequence

o~ E(Q)/mE(Q)~ SeIm ~ lII(m] ~ 0

9
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relates the m-torsion in II1 to the cokernel of E(Q) ~ E(Q) for each natural number m,

and it is reasonable to ask whether this sequence "lifts" to an exact sequence independent

of m. One could try to construct a sequence 0 ~ E(Q) ~ SeI ~ II1 ~ 0 for same group

"SeI", but a little thought show that this cannot be done ina natural way and anyway

would not induce a sequence as in (12). Instead, we should look for a Jour-term sequence

o---+ E (Q) ---+ E ---+ S ---+ II1 --+ O.

This is motivated by two considerations:

1. An exact sequence of abelian groups

O--+A~B~C~D---+O

induces a short exact sequence

o--+ A/mA ---+ Sm ---+ D[m] --+ 0

for every natural nmnber m, where

S _ {(b, c) E B x C I f( b) = mc}
m - {(mb, f(b)) IbEB}

(13)

(14)

and the maps A/mA ~ Sm and Sm ~ D[m] are induced by a ~ (i(a),O) and (b, c) ~
p(c) + mD, respectively. (The proof is an easy diagram chase.)

2. The analogy between the Birch-Swinnerton-Dyer conjecture for elliptic curves

and the Dirichlet dass oumber formula for number fields !( makes E(Q) correspond to

the unit group UK and II1 to the dass group CK; these are related by a four-term exact

sequence

o --+ UK --+ K X ~ I K --+ CK --+ 0,

where I K is the group of fractional ideals of !( aod f the map associating to each number
in K the ideal it generates.

To look for an exact sequence as in (13) we must first choose a good definition

of III. The cohomological definition of II1 can be translated in a well-known way into

adefinition closer to the Diophantine properties of E /Q: III is the set of isomorphism

dasses of curves C of genus 1, defined over Q, having a point over Qv for every place v

of Q, and equipped with an action of E making them into principal homogeneous spaces

over E (or equivalently, with an isomorphism defined over Q between the Jacobian of C
and E). The isomorphisms defining the classes are required to be defined over Q and

compatible with the E-actions (or with the isomorphisms Jac(C)"::+' E), but not with

the choices of Qv-rational points. The neutral element is the dass of E and the SUffi of

classes [C'] and [C"] i8 the dass of the curve C = (C' x C")/E, where E acts on C' x C"
by (c', e") + e = (c' + e, e" - e) and on C by [c', e"] + e = [c' + e,c"].

Now let [, = E(Q), the set of Q-rational points on E, and S be the set of equivalence

classes of pairs (C, P) with C as above and P a point of C(Q), the equivalence being

10



given by [C, P] = [C', P'] if there is an E-equivariant isomorphism C ---+ C' defined
OVer Q and mapping P to P'. Both sets have natural group laws and there are obvious

homomorprnsms E(Q) ~ E, S ....... III and S -? S, the last sending P E E(Q) to the class
of (E, P). It is not hard to see that with these definitions the sequenee (13) is exaet.

This gives us one way to realize (13), hut it is not eompletely satisfaetory beeause

the introduetion of Q, suggested by the original definition of III in tenns of Galois

cohomology, takes us further away from the Diophantine properties of E. However, we

eould have taken instead of Q any ring R satisfying

(i) R has a unit element 1 and the map Z -? Z . IR C R is injeetive, and
(ii) every eurve C as in the definition of III has an R-rational point.

Then taking E = E(R) and S to be the set of isomorphism classes of (C, P) with P E

C(R), we get a four-term exact sequnee (13) as beforej moreover, the group Sm defined

by (14) (with B = E, C = S) is independent up to canonieal isomorphism of the ehoiee
of R and is isomorphie to SeIm. Possible ehoices for R (besides Q) would be

-the real numbers R,
-the eomplex numbers C,

-the p-adie integers lp (or equivalently, the p-adie numbers Qp) for any prime p,

-the group Z= lim(l/nl) = nlp (or equivalently, the finite adeles AI = Z!&l Q),
+-- p

-any produet of these, e.g. the full adele ring A = AI x R.
Choosing R to be Zor A seems to be the best ehoice for our purpose of relating III to

the loeal and global Diophantine properties of E.

5. SUMMARY

We ean summarize the eontents of the paper as folows: Let

(s -+ 0).

1
Z(E s) - ",- L.J (x 2 + y2 + z2)&/2

(r,y,z)EZ 3 /{±1)
gcd(x,y,z)=l
!(r,y,z)=o

D(E,s) = f( L 1) ~.
n=l (r,y,z)E(Z InZ)3 I(Z InZ) x

gcd(r,y,z,n)=l
!(r,y,z)=.o (mod n)

and define numbers K E R>o and r E Z?:.o by

n-1Z(E,s)2 f"'.J K(tr/S)r

(Re(s) > 0),

(Re(s) > 2),

Then the Bireh-Swinnerton-Dyer eonjecture is equivalent to the statement that D(E, s)
continues meromorphieally to s = 1 and satisfies

(s -t 1),

and the number lllIl occurring in this fonnula has an interpretation in tenns of points
on E and on principal homogeneous spaces over E over the ring lim(Z/nZ).

+--
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