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Numerical investigations related to the L-series of certain elliptic curves

by D. Zagier and G. Kramarz

According to the theorem of Mordell, the set of rational solutions E(§)
of an elliptic curve E over the rational numbers is a finitely generated
abelian group. The rank of this group is called the rank of the eliiptic curve
and is the basic invariant of E; it is positive if and only if the equation
defining E has infinitely many rational solutions.

The common opinion among specialists, based on both numerical experience
and heuristic considerations, seems to be that half of all elliptic curves have
rank 0 and half rank 1, with higher ranks occurring asymptotically for only
0% of all curves (with respect to any natural ordering). More precisely, the
Birch - Swinnerton-Dyer (BSD) conjecture says that the rank of an elliptic curve
should equal the order of vanisbing of the associated L-series at s=1 and hence
should be even or odd according to the sign of the functional equation of this
L-series; this sign is + or - with equal frequencies, and the expectation is
that almost all curves have the smallest rank compatible with the predicted
parity.

The purpose of this note is to present numerical evidence suggesting that,
at least for one family of elliptic curves, this expectation may be wrong. The

family in question is the famous one
‘ 3 3
1 x> +y = m (m€ N, m cubefree ),

and the numerical data suggests that of the values of m for which the functional
equation has a plus sign almost one-quarter (more precisely: about 23.37%) have
rank 2 or greater. In fact, it seems that odd ranks 23 also occur with a
positive density (about 2.27% of the curves with odd rank), giving the distribution
shown in the "pie-chart'" of Figure 1.

To obtain this conclusion we computed the value of the L-series of the

elliptic curve (1) for all ms 70000 (thus we are tacitly assuming the BSD
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Fig. 1: Empirical distribution of r, the
rank of the elliptic curve x3+y?=m

conjecture, or at least its consequence L(1) =0 = rank >0 ; the reverse
implication follows from a theorem of Coates and Wiles). This value is the
product of a known real number with a certain integer S which is conjecturally
always a square (namely O if the rank of E 1is positive and the order of the
Tate—-Shafarevich group of' E if the rank 1s 0). This was always true in

the range studied, and we will also give tables and graphs on the distribution

of S and compare these with heuristic expectations.

§1. The elliptic curves x3 +y3 =m and their L-series

We first make some general remarks about the curves (1). The problem of
representing a number as a sum of two rational cubes is a very classical one:

Dickson lists 50 papers on the subject before 1918 in his History of the Theory

of Numbers, and there has been a comparable amount of work since. We mention

in particular the work of Cassels [2] and Selmer [9,10] in which the method of
descent is pushed far enough to-prove the insolubility of (1) or exhibit a
solution (sometimes very large) for all m<500, and the very recent paper of
Satgé [8] showing that (1) is always soluble for m=2p, p=2 (mod 9) or u1=2p2,
p=5 (mod 9), p. prime. We have the following equivalent statements about a number m:

(i) m 1is a sum of two cubes;

(i1) m 1is a product of three rational numbers with sum O ;



(1ii) -432|n2 can be expressed as a square minus a ?ube;
(iv) 16m2 can be so expressed.

(Here "square' and '"cube" meaﬁ square or cube of a rational number.) Indeed,
if m‘=x3+y3 then m is the product of i%, —§;, and _%; which have sum O ;
if m 1is the product of three numbers a, b, ¢ with sum O then the formula
for the discriminant of the cubic polynomial x> + (ab+ac+bc)x - m with roots
a, b, ¢ expresses —432m2 as a square minus a cube; if -432m2 equals y2~x3
then m is the sum of the cﬁbes of (36mt+y)/6x and (36m-y)/6x; and finally
(ii) and (iv) are equivalent because m=ab(-a-b) can be rewritten (—4m/a)3
= (4m(1+2b/a))2 -16m2. In a more mathematical language, the equivalence of (i)

and (ii) says that the elliptic curve E defined by (1) has a solution if any

of the curves
(2) rnx3+my3+mz3=0 (m,, my, my €N m,m. M, =m )
1 2 3 1> 72* 73 ’ 17273

do, and comes from the fact that E is the Jacobian of each of the genus 1

curves (2); the equivalence of (ii) and (iii) says that the Weierstrass form

of E 1is

(3) y2 = x3 - 432m°

(or y2 =4x3-27m2, according to taste); and the equivalence of (iii) and (iv)

comes from the fact that E 1is 3-isogenous to the curve

2 3

(4) y2 = x> + 16m° .

The curve E has complex mﬁltiplicatiou by the ring of integers of Q(v-3)
and hence is modular, 1.e. its L-series is the L-function of a modular form of

weight 2 and in particular is entire and satisfies the functional equation
(5) @M SN T(s) L(s) = e (2m) "2*S NS p(2-5) L(2-5)

for some integers N >0 (conductor) and € =#%1 (root number). We will give

formulas for N and € below.



The BSD conjecture gives the criterion

’ 7
(6) Eq. (1) has a solution &= L(1) =0 .

"='" is a consequence of the famous theorem of Coates and

The implication
Wiles [3]. Thé reverse implication is c0njectur§1. Since our concerns are
heuristic anyway, we will simply assuﬁe it in this paper. Actually, it would
not be hard to check this implication for m< 20000, using the numerical results
of this paper, since if the sign of the functional equation is =1 and L'(1)
(which we have computed in this range) does not vanish, the main theorem of
[6] implies that (1) has a non-trivial solution, and in all other cases the rank
of E (unless the BSD conjecture is wrong!) is at least 2 .and we would presumably
quickly find a small integral solution of one of the equations (2) by direct
search., (A similar method was used in [7] to check the validity of the analogue
of (6) for the problem of "congruent numbers.')

-The BSD conjecture gives more than (6), e.g., that the parity of r (the

rank of E) is given by (-1)F =¢ and that r=1 if and only if e =-1 and

L'(1) #0. Moreover, for L(1) it gives the formula

(7 L(1) = c-n-%

where ¢ 1s a certain positive integer coming from the primes of bad reduction
of E, @ 1s the basic real period, T 1is the square of the order of the torsion

subgroup of E(Q), and S 1is an integer given by

@) g { 0 if r>0,
B m if r=0,

where Jll denotes the Tate-Shafarevich group. All of these invariants except S

are computable. Specifically, the invariants N, e, ¢ and & (the discriminant

of a minimal model for E over 2Z ) are given by

p 3

N = JIn., € = Tle., ¢ = Tle., A = TJa
p P p © p°

P

where the products are taken over all primes p and the factors are given by



p=zx1 (mod 3) p=3
pim | plm | p?lm metl | ms:2 | mets | 3m | 3%m

N 1 p? 33 32 3° 3%

p

€ 1 *1 1 -1 -1 1 -1

p

c 1 2+ 1 3 2 1 1

P

&, 1 p" p® 3° 313 3%
type I v Iv* v* II1* v 1% 11

Table 1. Multiplicative invariants of the élliptic curve E

Table 1 (all of whose entries, except the value of €p, are taken from Tate [!1];

the "type" is ‘the Kodaira symbol of the local fiber as given in [11]), while £

and T are given by

1 1 =
L3 o3 if 9fm 9. if m=1,
9 a =.r_(_§l{ -3 - gomst. | T = L if m=2,
2/3  3m 2 if 9|m |a} ™22 - )
1 m> .

The formula (8) for § 1is not computable. Instead, we will define S by
equation (7). This is a rational number with bounded denominator by Damerell's
theorem [5]. One could doubtless prove that it is in fact always an integer
(indeed, this is probably in the literature), but since, again, our aims are
only heuristic, we do not do this., Numerically, the value we find always turns
out to be an integer, and indeed~-as required if (8) is to hold~-a perfect square.
To compute S exactly (assuming it is integral), we need to compute the
value of L(1) sufficiently accurately to determine S in (7) with an error

less than 1. We will also want to calculate the derivative L'(1). The relevant

formulas are

a(n) =2mn/YN
1 0 ©

(10) L(1)

n
[\
0 ~1.8

n

and (if eg=-1)

2§ 20 gampm

n=1

(11) L'(1)

where a(n) are the coefficients of L(s) and G(x) the exponential integral



function (cf. [1]}). Thus we need about. O(YN) coefficients af(n) to achieve

a reasonable accuracy for L(1) or L'<1). Since, by Tab;e 1, N can be as
1argé as 27m?, and our m willlrun up to 70000, we need ~10° terms for each

of ~10° L-series. Hence it is imperative to have a fast algorithm to calculate
the a(n). Luckily, the complex multiplication on E = Em and the fact that all
the E_ are (cubic) "twists" of a fixed curve E, gives such a method. Namely,

we have (putting a subscript on L(s) and a(n) to indicate the dependence on m)

1
Lp(® =TT S _i-1s
P pPrime 1 - am(p) P +p
pt3m

where, for all m, am(p) (if p=1(mod 3) and pim ; otherwise am(p)=0) is

one of the three elements of the set

(12) Ap = {a | a=2 (mod 3), a?+3b% = 4p for some bEZ },

p-1

which one depending only on the cube root of unity m 3 (mod p). Specifically,

p-1

(13) p=1 (mod 3), pim = am(p) =) mT a1(p) (med p), ]am(p)| <2vp ,

where a1(p) is the unique element a.EAp satisfying a’+3b%=4p with 3|b.

This determines am(p), completely (unless p=7, in which case one must choose

am(7) to lie in A7 = {-1,-4,5} ). Thus our algorithm proceeds in two stages:

in a preliminary computation we compute‘and store, for each- n=1 (mod 6) up to some
limit, the smallest prime factor p of n 1if n 1is composite and the (unique)
solution a=a1(p) of a?+270 =4p, a=2 (mod 3), if n=ps1 (mod 3) isprime; then
for each curve Em we compute a(n) =am(n) by (13) if n=p =1 (mod 3) and by

pa(n/p®) if p?|n, pi3m,
a(n) = a(pla(n/p) + {

0 otherwise.

if n 1is composite. In this way a(n) 1is calculated in O(1) steps if n 1is

not prime and O(log n) steps if n is prime, i.e. an average of O(1) steps

(p~1)/3

for each n. (The value of m (mod p) can be determined in O(log p)
steps by the standard binary algorithm. If p=2 (mod 3), then am(p) =0 for

all p.)



§2. The numerical data

We calculated the value of- S =Sm , and hence of L(1), for all cubefree

m < 70000 with sign of the functional equation €m=1, by the method explained

in §t. In the preliminary computation; the values of a1.(p) were calculated and
stored for all p <960000 ; then .L(1) was computed by summing the series in (10)
to ;rarious limits of the order of VN until three successive sums led to a value
of S  in (7) satisfying either |S|V<. 0023 or |/S-5]| <0.0k8 for some positive
integer s . The beginning of the table (up to m=1000) is reproduced in Tablev2;
here m has been tabulated as m; +m, with 25|m1 ‘and 1=m, =25, and the entry
for m is "K" if m has a cubic factor, >1, "-=" if the sign of the functional

equation of E is -1, and VS otherwise.

The full table is too long to be given here; instead, we give statistical data

m, T2 234546789 1011 1293 141516 17 181920 21 2223 24 25 | Ny N,

0 L1y - - sl b - =P -K=-10-1-1K 13 1
25 -k-10-K=-=-=-1011K2-=-1111K--1u13
30 =l =K1Kl =23-=--K03--=-=-=-K11-]13 4
75 It =-=XX11-=-0-XK=-=-0-1=-1K=-=-11]4 s
100 23 -K-=-=-=-KtO0otK1l=-=-2=-11K12-=-0KX]|S355 8§
125 00K2-20--KK23----- K11 11 3] 681
150 ko0l lt-=-2-K-X0- -1 K- - -=-131] 7183
175 K-==-=-100K2--1XKt1K=-1-1-=--1K]|]H®88IS
200 0-03--2K00----- K00 03 1 - - K 1]100 22
225 21 - -3 -K-12-1-1K=-2K-10=-K=-FK/[10 2
250 -1 103Kl -1 1 22K-1-+-1=-K0KZO0--]123 2
275 J-=-=-K10----- K=-311t--XxK213j132
300 -2-K-+-1-0-2K--1=-13+-K=---K-[140 28
325 21 K1 --2-10K=1-3-0KKW0=-220-111i53
350 KX 23 =-=-=Xt1t1l-11--X10 = - 3 K[13 33
375 K -K0 - =2K--=-=-20-K----01t0KJ11l ¥
400 2 - -1 10K -3 -1<=-1K2-110-=--2K-/|18 3%
425 I o= - - - - Kol1Poo02--X-12=-=-0-=-K~H=--=-119143
450 b=0-1K=-==-K=-10-K=--=-00131TK3-=-1]|22024
475 o1t K-1<«=--K1K2-483-=--K00-K]23 5
500 ==Kt 0232--KK12--1-XK=-=-0--=-|22 52
525 -~ K21 - 13-K---XK112K2-<-2--]|032 9
550 1K =0-2-10K3-273--KK23-=-=~---1]24354
575 Kt =-=030--XK121--0-K=-K1-=-1-25F%K]254 5
800 | - - - - - 6 - K =-=-=-=100¢xK2--1 LK K262 59
625 l-0--0K1-03--0K23--+-- K1 - 1212 8
550 011 -=-KXK=-01=--4-X-=-11-1=-0K-?=--=-XkK]/202 8
YN 23 - K==~ 11K1K3I-=2121FK-=-1-=-=-/[29 8
1700 -k K3I -1 3 -=-=-K00-=-=-==-K0112-]30348
725 3 -KKO L - -1 <<K=-=2-1=-1K%+5-=-=1-=-1%K/{32T70
750 -Kk=-=-=-=XK 113Kl -=-1-41K-3-1-1-=-[|32217%
175 K1 -13-=-KK10-=-=-=--K002821--%K/[32T73
800 31 =-1-X-K1-0-3K----113-K20/{32T7
829 === 031K2--1K12K22-=-2=-=-=-K1H4b{35n
85 03 - -0KU43 == =-K 10 -11 - -K-=-0K]/|34 80
875 =3 -K-10- -l K-=-K-13-K----1311 8
200 03 0KO--1211K=-3=-0-KU0K3-101/]38 8
23 ~=-KkK1o----- Ko1202--XKK01 ~---/[35.9
930 K-=-2-0-1K--3-10-K-=--~K2O02 -]43 95
973 2 -=-1-14K-3-0-32K1-03--KCK]|H4 W

’ o

1

Table 2. Values of Srg for cubefree m <1000 with em=1




50 24 3 20 i
100 43" 6 33 2 2
150 68 1 44 8 5
200 88 15 56 10 7
250 110 23 63 14 10
300 133 27 75 17 14
350 153 32 83 22 16
400 171 37 90 26 18
450 191 43 97 31 20
- 500 213 50 107 32 23
600 254 57 123 43 29
700 293 66 142 48 33
800 332 73 163 - 51 39
900 371 82 178 56 47
1000 414 97 191 63 54 5
-1500 622 142 278 99 84 10
2000 835 193 354 137 119 19
2500 1044 243 429 181 144 23
3000 1251 289 503 216 175 30
3500 1453 " 336 576 257 .200 33 10 33
4000 1668 389 650 292 238 37 14 39
- 4500 1872 430 718 325 281 46 19 42
5000 | 2084 481 792 354 318 56 23 48
6000 | 2499 586 921 416 391 73 32 64
7000 | 2910 687 1043 485 473 91 38 70
8000 | 3324 786 1161 556 5493 112 48 84
9000 | 3741 886 1283 647 608 130 52 97
10000 | 4161 1001 1401 714 678 147 58 114 11
15000 | 6243. 1498 1999 1050 1049 233 114 195 24 12 47 3
20000 | 8319 1972 2564 1419 1407 329 162 286 33 25 79 7 29 7
30000 12478 2953 3661 2111 2126 539 262 491 65 47 130 11. 57 25
40000 | 16620 3896 4730 2770 2852 746 371 729 101 74 201 17 85 48
50000 {20793 4880 5698 3471 3596 952 478 996 144 112 264 25 110 67
60000 | 24935 5842 6684 4127 4302 1186 598 1253 195 143 336 37 136 96
70000 (29105 6778 7657 4802 5027 1411 711 1523 240 180 414 52 175 135

O WN RN = o —s e e
~

NOUMPFWLWWLWWWN —

NEPDDNN = =

X N NT

121 Nr69 Nige N225 Nas6 Nago M324 N3e1 Na00 Nast

15000 ' 2

20000 2 5

30000 4 3 2 12 4

40000 8- 5 3 20 2 1 9

50000 | 15 5 4 26 2 1 1" 1 2
60000 | 19 © 6 6 34 2 1 24 1 3
70000 | 26 . 1t 8 48 3 1 32 2 0 4

Table 3. Values of N+(x) and Ns(x) for x $70000

in terms of the functions

N,(x) = #{1smsx | m cubefree, em=+1},'

No(x) = # {1smsx | m cubefree, € _=+1, S =S} (sez).
S m , m

The values of these functions for selected x<70000 and all S are given in
Table 3. Obviously, N, = ZNS , where S a prioii ranges over the integei‘s but
actually (on BSD or in the range of our computations) only over perfect squéres;
in fact, S takes on only the values O, 12, cee 102, 122 for ms 1‘0000 and

0, 1%, ...,19%21% for m< 70000 . Graphical representations of Ns(x) as a



Number of
cases with
given S
8000 }-
S = |
7000 |-
6000 |- » S =0
5000 |-
S =9
5 = 4
4000 ¢
3000
2000
S = 36
1000 | S = 16
5 = 25
=z © Total
e 1 L 1 L, number
(] 5000 10000 15000 20000 25000 . . 300100 of cases

Figure 2. Number of curves with S_=0, 1% ...,6% for ms70000

function of N+(x) for x<70000 and YSS6 are given in Figure 2. The most
interesting numbers for us are the quotients NS(X) /N,(x) . Since their sum is 1,

they can be conveniently represented on a single graph as in Figure 3. The most

o
T
n
|
EN

S =
A
v
2k
S =0
S
‘ 1 L L 1 1 L 1 — m

0 10000 20000 30000 40000 50000 60000 70000

Figure 3. Frequencies of various values of Sm for m £70000
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striking feature of Figures 2 and 3 is the near constancy of NO(x) /N+(x) , which

can be seen numerically in the following mini-table:

X | 500 1000 2000 5000 10000 20000 30000 50000 70000

No(x)/N+(x)| 0.235 0.234 0.231 0.231 0.241 0.237 0.237 0.235 0.233

This is the phenomenon which was mentioned in the introduction and which is the
main empirical result of the paper.

Figure 2 also suggests at first glance that the other Ns(x) are roughly
proportional to N+(x) , but from Figure 3 it is clear that, for instance,
N1(x)/N+(x) is decreasing as x grows. To decide whether N1tx)/N+(x) has a
positive limit or tends to zero as x = o is difficult on the basis of these
two graphs, since we have to vi(sually extrapolate slowly falling curves out to
infinity. 1In Figure 4 we have graphed the function x&y =N1(x) /N+(x) with a
change of coordinates x—»x_1/3, y—byz' which pulls infinity to the origin and
exaggerates the variation of y. This picture seems to suggest that in fact

N1(x)/N+(x), unlike No(x)/N+(x), tends to zero as x-o. (We discuss this

more in §3.)

t N, (x) )2
3F
2+
At
70000 N, (x) 2
G~ A e —4\_,_/—‘\‘_——-‘ (_TN+(X >
i ‘ i ! 1 L i L > x—1/3

0 .025 .05 .075 A .125 .15 .175

ﬁigure 4. Rescaled graph of the frequencies of S=0 and S=1
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Finally, we also calculated L'(1) for all elliptic curves (1) with
m < 20000 and € =-1. Here there is no closed formula like (7). However,
L'(1) 1is given not only by (11) but by the formula

_a_(;nl [G(2mA/VN) + G(2n/AYN)]

(14) L'(1)
: 1

he~8

n
for any A>0, so to estimaté the speed of convergence we computed L'(1)

using both (11) and (14) with A=2; the results agreed to about 5 digits

after the decimal, providing a check on the computation. The values obtained were
either quite far f.rom zero (usually in thé range from about 1 to 30) or else
équal ‘to zero to 5 or 6 decimals, so that we could identify the curves

with L'(1)v=0 (and hence conjecturally r23) with confidence. Table 4 gives

the first few values of L'(1) and a few in the neighborhood of m=657, the

m=6 L'(1) =2.376185 m =647 L'(1) = 11.840825
m=7 L'(1) = 1.651771 m =650 L'(1) = 6.073495
m=9 L'(1) = 1.290191 m =654 L'(1) = 7.193217
m=12 L'(1) = 2.314463 m =655 L'(1) = 13.692513
m =13 L'(1) = 2.953426 m =657 L'(1) = 0.000001
m =15 L'(1) = 3.160715 m =660 L'(1) = 10.313723
m=17 L'(1) = 3.972532 . m =661 L'(1) = 14.565052
m =20 L'(1) = 2.317275 m =663 L'(1) = 5.183534
m =22 L'(1) = 4.318084 m =665 L'(1) = 8.093288

Table 4. Some values of L'(1)

first zero.

The first values of m with L'(1>=O were m = 657, 854, 1020, 1122, 1241,
1267, 1330, 1339, 1426, 1482, 1554, 1798, 1853, 1892. (Selmer [9] already mentions
m=657 as being the first case where Em has rank 3.) Altogether we found 179

curves with L'(1) =0 among the 8320 curves with odd functional equation in the

range msS20000. Figure 5 gives a graph of
N?(x) = #{1smsx | m cubefree, e =1, L[;1(1)=0}

as a function of N_(x) (defined like N, but with €=-1) in this range,

suggesting that the ratio N?(x) /N_(x) 1is in fact fairly constant near



number

150 -

100 |-

50

12

y

L L I L L L : | s " I . |

5000 10000 : 15000 20000

w
w

Figure 5. Number of msx with ord 1Lm(s) odd and

3%%%-= 2.157%, as already indicated in Figure 1.
§3. Discussion

To conclude this paper we discuss some questions concerning the curves (1)

which are suggested by our numerical investigations.

1. Can one give a closed form for Sm?
This is certainly the most interesting question one can ask about the
curves Em; answering it would require a deep understanding of the L-series and

would give an at least conjectural answer to the question, which numbers are

sums of two cubes.

As already mentioned, the curves Em are all cubic twists of a fixed curve
E, (i.e., E becomes isomorphic to E1 over .Q(Wﬂ)). For the similar situation

of quadratic twists, Waldspurger's theorem [13] gives an answer: it says that the
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" numbers Sm defined by the analogue of (7) for a quadratic twist of a fixed
elliptic curve by Q(m) is the square"‘of the mth coefficient of a certain
modular form of weight 3/2 (at least if the elliptic éurve being twisted is a
modular one). For instance, for the cléssical problem of congruent numbers

(y2=x3—m2x, m squarefree ) it gives the formula

2 2
(15) Sm = ( z (-1)C/4) (m even) or < pX (—1)(0—6)/4> (m odd),

a,b,c a,b,c

where the sum is over '(a,b,C)€Z3 with 02

+b2+cz=m and ¢ =0(mod 4) or
b=c (mod 4), respectively (cf. [12]). One may speculate that in our case, too,

S, is the square of a Fourier coefficient of some type of modular form, perhaps

on a 3-fold covering group of GL(2).

2. How convincing 45 the evdidence that S=0 for a positive proportion
of the cuwes (1) with even functional equation?
This is obviously a matter of personal opinion. Formulas (7) and (9) imply

1/6

(since L(1) 1is presumably om®) for any €>0) that ﬁ is roughly O(m '7) .

(rather than O(m1/4) as would be the case for quadratic twists by Q(vm)), so

the naive expectation is that ﬁ would be 0 with a probability of m_1/6 R

~1/6 . But Figures 2,

giving a frequency No(x) /N+(x) which tends to 0 1like x
3, and 4 do not seem to be compatible with a rate of decrease anything like as
fast as this, and once one has rejected the obvious rate of growth, there seems

little reason not to believe the evidence of the tables that No(x) /N+(x) is in

fact roughly constant.

3. Does a similar phenomenon (L.e., positive density of curves with hank 22)
occur fon other families of cwwes? 1§ not, what specdal properties do the
cunves %2+ ys =m have which can explain their high ranks?

The answer to the first question, at least for the family of quadratic
twists of a fixed elliptic curve, seems to be no: we calculated Sm for the
family of curves y2 =x3 —m2x associated to the congruent number problem (using

(15)) for all m=1 (mod 16) up to 500000 and obtained the values
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X t 1000 2000 5000 10000 20000 50000 100000 200000 500000

No(x)/N+(x) ’ 0.227 0.216 0.193 0.172 0.160 0.152 0.139 0.130 0.106

wﬁicﬁ.ae clearly decreasing, in contrast with the corresponding values for the
curves (1) ("mini-table" in §2). We have no data for other families.

As to the second question, we can offer two tentative suggestions.
(i) As mentioned in §1, Em is the Jacobian of each of the curQes (2). If m
is highly composite, tﬁen there are many such curves, and if any of them has a
rational point, then so does Em; this tends to make the rank of Em large. In
a related vein, even if none of the curves (2) is known to have a rational point,
when there are many of them this.will make the 3-Selmer group of Em big and
hence (on BSD) force Sm to be divisible by a large power of 3; for small m
this will tend to make S (which is trying to be no larger than O(m1/3)) to
vanish. However, although this argument might explain the large frequency of
curves with S=0, it does not at all explain why this frequency is so nearly
constant.
(ii) A different argument, not too convincing, is the following naive one. Let
us guess at the number of soiutions of a3 +b3 =mc3 in (say, positive) coprime
integers a, B, c less.than some very large number L for a |-'r.andom integer" m
(whatever that means). For m fixed, the number of positive coprime pairs of

integers a, b with 3L <max(a,b) <L and a3+b3 =0 (mod m) 1is O(Lz), and

3,3

the probability for a given quotient to be a perfect cube is O(L_z),
so we expect about O(log L) solutions in the range max(a,b)< L. On the other
hand, from height theory it follows that the number of solutions for a g{ven m

grows like (log L)r/2

, where r 1is the rank of E_» so this suggests that
r 22 may occur with a positive density. However, apart from the general vague-
ness of this argument, it suggests that r=2 is the highest value occurring

with positive density, whereas our data seem to suggest that r 23 occurs more

than 17 of the time.

4. Are the asymptotic gfrequencies of othern values of S also bOAi,téve, on
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do they tend to zero?

Here the same a priori argument as for S=0 predicts that NS(X) /N, (x)
for a fixed value of S should' tend to zero roughly like x—1/6, and now
Figure 4 (for S=1) is eminently compatible with this prediction. Since there
is no reason to suppose that S=1 behaves differently from other pos’itive
values of S, the same presumably holds for them, too. The fact that NS(x) /N, (x)
for S=4 and S=9 is nearly constant in our range can be explained by observing

that the mean value of /5; is of the order of m1/6

, which is growing very
slowly, so that for m of the 6rder of 50000 the values VS = 2 or 3 are at
the height of their popularity, while for m around 5000, say, they are still
rare because S is usually O or 1. Thus we have tendencies to incfease and
to decrease which in this range roughly compensate; and indeed, for the larger
values VS = 4, 5,6 we actually see an increase of NS(X) /N+(x) in Figure 3
which will surely eventually be reversed, so that these ratios, too, will be

roughly constant over some very long range later on.

It is amusing to note that we can make the statement about L(1) (or,

equivalently, m_1/38m) being of the order of 1 on the average much more

precise. Using the exact formulas for am(n) given in §1, we find that for
fixed n the Fourier coefficient am(n) has a well-defined average value

aav(n) as m runs over cube-free integers prime to n; these average values

are multiplicative and are the coefficients of a Dirichlet series Lav(s)

= Eaav(n) n ° whose p-Euler factor is 1 for p=3, (1+ for

p=2 (mod 3), and equal to

1 , 1 1 _p3—6s

a€A 1-ap”®
P

1 .
= —ry— * - — c(p) = a
w128 T -pT 25 | Co(pyp3S+p3 b’ all

( Ap as in (12)) for p=1(mod 3). The number c(p) is the pth Fourier
coefficient of the unique normalized cusp form f of weight 4 on I‘O(9) , and
we find

L (s) L(2s-1,%)

av(®) = Tigemaoyy L(E.38),

where x= (é) is the non-trivial Dirichlet character of conductor 3. 1In



particular, Lav(s) is regular at s=1 with

_ LU1,x) _ _m/3/3 v c(n) —2nn/3 = .
L, (1 -V—L—(-—WL(f,B) = 7378173 zn£1 —- e 0.16840248;

this presumably gives the average value of Lm(1), taken over all m having

no small prime factors.

5. What can one say about the relative frequency of occcurrences of
S=1, S=4, S=9, ete.?
So far, nothing. The only line of attack which seemed promising was to

imitate the Cohen-Lenstra heuristics [4] on the behavior of (the odd barﬁs of)
~class numbers or class groups of imaginary quadratic fields (this is a natural
analogy because imaginéry quadratic fields have uﬁit rank 0, corresponding

to r=0 here), but thié led to an answer in coﬁplete disagreement with the
empirical results. Recall that the idea in [4] was to observe that the
non-2-part of the class group of an imaginary quadratic field belongs to the
class & of finite abelian groups of odd order, and to poétulate thét its
proﬁability of being equal to a given group GE€& is proportional to |Aut G|-1;
This led to the correct prediction thét_any given group occurs with densiﬁy zero
(since ZG€®|Aut G|_1' diverges) and gave specific, and experimentally confirmed,
predictions for the frequencies of various properties of G (e.g., being cyclic,
having order divisible by 3, etc.). In our case the analogue of the class
group 1is the Tate—Shafafevich group [l and it belongs to the class $ of fini;e
abelian groups together with a skew symmetric pairing [l xll - @/Z . The
problem is that such objects are rare and have many automorphisms (for instance,
there is only one isomorphism class of order pz, and its automorphism group

has order ps-p ), so that the sum XﬂlEﬁiAUtu1|_1 conue&geé; and indeed
converges to a number c¢ not much bigger than 1. (More precisely,

c =¢(3)z(5)c(7)... = 1.2602057106 .) Thus the analogue of the Cohen-Lenstra
heuristics would suggest:

i) that each order S =|lll| occurs witﬁ a positive frequeﬁcy;

ii) that this frequency for S=1 1is 1/c, or about 79% ; and
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iii) that the ratios of the frequencies of S=1, S=4, and S=9 are

1:1/6 :1/24,

The first prediction, though it disagrees with the arguments given in connection

with Question 4, is conceivable, but the second two do not agree at all with’

the data on S= 1,4, and 9 in Figures 2 and 3, so that, at least in its original

form, thé Cohen-Lenstra recipe seems not to work its magic in our situation.
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