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Numerical investigations related to the L-series of certain elliptic curves

by D. Zagier and G'. Kramarz

According to the theorem of Mordeli, the set of rational solutions E(~)

of an elliptic curve E over the rational numbers is a finitely generated

abelian group. The rank of this group is called the rank of the elliptic curve

and is the basic invariant of E; it is positive if and only if the equation

defining E has infinitely many rational solutions.

The common opinion among specialists, based on both numerical experience

and heuristic considerations, seems to be that half of all elliptic curves have

rank 0 and half rank 1, with higher ranks occurring asymptotically for only

0% of. all curves (with respec t to any na tural ordering). More prec isely, the

Birch- Swinnerton-Dyer (BSD) conjecture says that the rank of an elliptic curve

should equal the order of vanishing of the associa ted L-series at s = 1 and hence

should be even or odd according to the sign of the functional equation of this

L-series; this sign is + or - with equal frequencies, and the expec tation 1S

that almost all curves have the smallest rank compatible with the predicted

parity.

The purpose of this note is to present numerical evidence suggesting that,

at least for oue family of elliptic curves, this expectation rnay be wrong. The

family 1n question is the famous one

(1) 3 3x + y m ( m E: :IN, m cubefree),

aud the numerical data suggests that of the values of m for which the functional

equation has a plus sign almost one-quarter (more precisely: about 23.3%) have

rank 2 or greater. In fact, it seems that odd ranks ;;:3 also occur with a

positive density (about 2.2% cf the curves with cdd rank), giving the distribution

shown in the "pie-chart" cf Figure 1.

To obtain this conclusion we computed the value of the L-series cf the

elliptic curve (1) for all m:;170000 (thus we are tacitly assuming the BSD
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Fig. 1: Empirical distribution of r, the
rank cf the elliptic curve X 3 +y 3 =m

conj ec ture, or at least i ts consequence L( 1) = 0 ~ rank> 0; the reverse

implication follows from a theorem of Goates aud Wiles). TIlis value is the

product of a known real number with a certain integer S which is conjecturally

always a square (namely 0 if the rank of E is positive and" the order of the

Tate-Shafarevich group of E if the rank is 0). TIlis was always true in

the range studied, and we will also give tables and graphs on the distribution

of Sand compare these with heuristic expectations.

§ 1. The eIl ipt ic curves x3 + y3 r;:;t m and their L-series

We first make some general remarks' about the curves (1). The problem of

representing a number as a surn of two rational cubes is a very classical one:

Dickson lists 50 papers on the subject before 1918 in his Hiseory of ehe Theory

of Numbers, and there has been a comparable amount of work since. We mention

in part.icular the work of Cassels [2] and Selrner [9,10] in which the method of

descent is pushed far enough to-prove the insolubility of (1) or exhibit a

solution (sometimes·very large) for al~ m<500, and the very recent paper of

Satge [8] showing that (1) is always soluble for m c 2p, p B 2 (mod 9)
2or m = 2p ,

p s5 (mod 9), p. prime. We have the following equivalent statements about a number m:

(i) m is a surn cf two cubes;

(ii) m is a product of three rational numbers with surn 0
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(iii) -432 m2 can be expressed as a square minus a cube;
\

(iv) 16m
2 can be so expressed.

(Here "squarell and llcube" mean square or cube of a rational number.) Indeed,

if 3 3m cx +y then m is the product of m
xy'

-x 2

andy'
_y2

which have surn 0;
x

if m is the prodlic t of three numbers a, b, c with surn 0 then the formula

for the discriminant of the cubic polynomial x3 + (ab+ac+bc)x - m with roots

a, b, c expresses 2-432m as a square minus a cube; if -432m2 equa1s 2 3y-x

then m is the surn of the cubes of (36m+y)/6x and (36m-y)/6x; and finally

(ii) and (iv) are equivalent because m=ab(-a-b) can be rewritten (-4m/a)3

= (4m(1+2b/a))2 - 16m2 • In a more mathematica1 1anguage, the equivalence of (i)

and (ii) says that the e1liptic curve E defined by (1) has a solu tion if any

of the curves

(2)

do, and comes from the fac t that E is the Jacob ian of each of the genus

curves (2); the equiva1ence of (ii) and (iii) says that the Weierstrass form

of E is

(3)

(or

232y = x - 432m

y2 = 4x 3
- 27m2

, according to taste); and the equivalence of (iii) and (iv)

comes from the fact that E is 3-isogenous to the curve

(4)
232

y = x + 16m .

The curve E has complex multiplication by the r~ng of integers of ~(/=3)

and hence is modular, i.e. its L-series is the L-function of a modular form of

weight 2 and in 'particular is entire and satisfies the functional equation

(5) = e: (21T)-2+s N2-s r(2-s) L(2-s)

for some integers N > 0 (conductor) and E: = ±1 (root number). We will give

formulas for N and e: be1ow.
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The BSD eonjeeture gives the criterion

(6)
?

Eq. (1) has a solution ~ L(1) cO •

The implication "~" is a consequence of the famous theorem of Coates and

Wiles [3]. The reverse implication is conjectural. Since our concerns are

heuristic anyway, we will simply assurne it in this paper. Actually, it would

not be hard to check this implication for m;$ 20000, using the numerical results

of this paper, since if the sign of the functional equation ~s -1 and L' (1)

(which we have com~uted in this range) does not vanish, the main theorem of

[6] implies that (1) has a non-trivial solution, and in all other cases the rank

of E (unless the BSD conjecture is wrang I) is at least 2 .and we would presumab ly

quickly find a small integral solution of one of the equations (2) by direct

search. (A similar method was used in [7] to check the validity of the analogue

of (6) for the problem of "congruent numbers.")

-The BSD conjecture gives more than (6), e.g., that the parity of r (the

rank of E) is given by (-0 r :::> E and tha t r = 1 if and only if E CI -1 and

L'(1) #'0. Moreover, for L(1) it gives the formula

(7) =

where c is a certain positive integer coming from the primes of bad reduction

of E, n is the bas ic real period , T is the square of the order of the torsion

subgroup of E(~) und S is an integer given by

(8) S = { o
[ilil

if r > 0,

if r = 0,

where lU denotes the Tate-Shafarevich group. All of these invariants exeept S

are computable. Specifically, the invariants N, E, C and 6 (the discriminant

of a minimal model for E over ~) are given by

N = TIN ,
P P

c = = TIö ,
p P

where the products are taken over all primes p and the faetors are given by .
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N
P

e:
p

c
P

6
P

type

p s ± 1 (mod 3) p l::: 3

p~m ' pllm p21m m EI ±1 m a ±2 m B ±4 311m 32]m
, 9 9 9

1 p2 3 3 32 3 3 3 5

1 ±1 1 -1 -1 1 -1

1 2 ± 1 3 2 1 1

1 '+ pB 3 9 )13 3 5
P

I IV IV* IV* 111* IV* 11* 11

Table 1. Multiplicative invariants of the elliptie curve E

Table 1 (all of whose entries, except the value of Ep ' are taken from Tate [11];

the "type 11 is'the Kodaira symbol of the loeal fiber as given in [11]), while n

and T are given by

1

I9 if m c 1 ,
1 S {m-l if 9{IDr·( -) const.(9) n c

2TT;7t· 3m-.1 = 1611
/ 12 T 4 if m=2

if glm
if m>2.

The formula (8) for' S ~s not cornputable. Instead, .we will de.6.we. S by

equatien (7). This is a rational number with bounded denominater by Damerell's

theorem [5]. One could doubtless prove that it is in fact always an integer

(indeed, this is probab1y in the literature), but since, again, eur aims are

anly heuristic, we da not do this. Numerically, the value we find always turns

out to be an integer, and indeed--as required if (8) is to ho1d--a perfect square.

Ta cornpute S exact1y (assuming it is integral), we need to compute the

va1ue ef L(l) sufficient1y accurately to determine S in (7) with an error

1ess than 1. We will also want to calculate the derivative L'(l). The relevant

formu1as are

(10)

and (if E I::l -1)

L (1) 2
co

L
n=l

a(n)
n

( 11 ) L t (1)
00

a(n) G(2nn/lN) ,
n

where a(n) are the coefficients of L(s) and G(x) the expenentia1 integral
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funetion (cf. [lJ). Thus we need about O(IN) eoeffieients a(n) to aehieve

a reasonab1e aeeuraey for L(l) or L'(l). Since, by Tab1e 1, N can be as

1arge as 27m2
, and our m will run up to 70000, we need ....... 10 5 terms for eaeh

of ~105 L-series. Hence it is imperative to have a fast algorithm to ca1cu1ate

the a(n). Luckily, the eomplex multip1ieation on E D E and the fact that all
m

the Em are (eubie) ll twists" of a fixed eurve E
1

gives such 8 method. Name1y,

we have (putting a subscript on L(s) and a(n) to indicate the dependence on m)

L (s)
m TI

p prime
p.r3m

where, for all m, a (p)
m

(if p == 1 (mod 3) and p~m otherwise a (p) =0) is
m

one of the three elements of the set

(12) A l;l {a I a 5: 2 (mo d 3), a 2 + 3b 2 = 4p f 0 r some b E 7l } ,
P

which one depending on1y on the cube root of unity

p-l
-3-

m (mod p). Specifieally,

( 13) p a 1 (mod 3), p~m (mod p) , la (p) I < 2/P ,
m

where a
1

(p) 1S the unique element aEAp satisfying a 2 +3b 2 =4p with 31b.

'Ibis determines 3 m(p). eompletely (unless p = 7, in which ease one must choose

3
m

(7) to 1 ie in A
7

= {-1, -4 ,5} ). Thus our algori thm proceeds in two stages:

in a pre1iminary computation we compute and store,for each" n~l (mod 6) up to Borne

limit,the smallest prime factor p of n if n is eornposite and the (unique)

solution a = 8, (p) of a 2 + 270 p 4p, 3 e 2 (mod 3), if n = p s l (mod 3) is prime; then

for each curve E we computc a(n) pa (n) by (13) if n:::l pa, (mod 3) and" by
m m

a(n) = a(p)a(n/p) +
otherwise.

if n is composite. In this way a(n) is caleulated in 0(1) steps if n is

not prime and O(log n) steps if n is prime, i.e. an average of 0(1) steps

for each n. (The value of m(p-l)/3 (mod p) can be determined in O(log p)

steps by the standard binary algorithm.

all p.)

If p == 2 (roo d 3), t hen a (p) =0
m

for
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§2. The numerieal data

We ealeulated the value üf' 8 = 8 , and henee of L(n , for all eubefree
m

rn ~ 70000 with sign of the fune tional equation Ern = 1, by the method explained

in §1. In the preliminary eomputation, the values of a
1

(p) were ealeulated and

stored for all p < 960000 then .L(l) was eomputed by summing the series in (10)

to various limits of the order of IN until three sueeessive sums led to a value

of 8 ~n (7) satisfying either 181 < 0.023 or 118 - si< 0.08 for some positive

integer s. The beginning of the table (up to' m = 1000) is reprodueed in Table 2;

here m has been tabulated a s m1 + mz wi th 251 m
1

and 1 ~ mz ~ 25, and the en try

for m is 11 K 11 if m has a eubie fae tor. >: 1 , 11'
11 if the sign of the funetional

equation of Ern ~s -1, and ~ otherwis~.

The full table is too long to be given here; instead, we give statistieal data

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 2J 24 25

o 1 1 1 1 1 - - K - 1 1 - K - 1 0 - - 1 K 1 13 1
25 - K - I 0 - K - 0 I I K 2 I I 1 K 24 3
50 - 1 - K 1 K 1 - 2 3 - - - K 0 3 - - K 1 1 - 3J 4
15 1 1 - - K K 1 1 - K 0 - 1 - 1 1 43 6

100 2 3 - K K .lOK 1 - - 2 - I - 0 K 55 B
125 0 0 K 2 - 2 0 - - K 2 3' 1 3 68 11
150 - K 0 1 1 - -:- 2 - K - K 0 - 3 - 1 K - 3 I 1B IJ
115 K - I 0 0 r. 2 I K 1 1 K - I - 1 1 K BB 15
200 0 - 0 .3 - - 2 K 0 0 - - - K 0 0 0 3 1 - - K 1 100 22
225 2 1 3 - K - 1. 2 - 1 - 1 K - 2 K -. I 0 - K - K 110 23
250 - 1 1 0 3 1 1 1 2 2 K - 1 - 1 - K 0 K 0 123 2b
215 3 - - - K 0 - - K - 3 I 1 1 - - K K 2 1 3 133 21
300 - 2 - K 1 - 0 - 2 K I - I 3 - K - - - K - 140 2B
325 2 I K I - - 2 - lOK - 1 - 3 - 0 K 0 - 2 0 - 1 153 32
350 K K 2 3 K 1 1 - 1 K 0 1 3 K 163 3J
315 K - K 0 - 2 - 2 K - 0 - K - 0 lOK 111 31
400 2 I KlO K - 3 - 1 1 K 2 - 1 0 - - 2 K - 182 3~

425 3 K 0 1 0 2 K 1 2 - - 0 - K 191 43
450 1 - 0 - 1 K - - K - 0 - - - - 0 0 3 1 K 3 - I 202 41
475 1 0 1 1 K - 1 K - 4 3 - - - K 0 0 - K 213 50
500 KlO 3 2 - - K K 2 1 - K - - 0 - - 222 52
525 - 1 K 2 - 1 - 1 3 - K - K 1 1 2 K 2 2 232 52
550 K - 0 - 2 - 1 0 3 - 2 3 - - K K 2 3 1 243 54
515 1 - 0 0 - - K 2 1 - - 0 - K - K 1 - 1 - 5 K 254 51
600 - - - 6 - K - - 1 0 0 K 2 1 K 1 1 K K 262 59
625 - 0 - - 0 K 1 - 0 3 - - 0 K 2 3 - - - K I - 212 63
650 1 1 - - K - 0 4 - K - 1 1 - - 0 K - - K 282 6b
iJ15 - 2 3 - K - 1 K 1 K 3 - - 2 1 I K - 293 66
700 - K I K 3 • - K 0 0 - - K 0 1 2 - 303 69
725 3 - K K 0 1 1 - K - - 2 - 1 - I K - - I - I K 312 70
750 - K K 1 1 3 K 1 1 - 4 1 K - 3 - I - 1 - 322 7CJ
715 K 1 - I 3 - - K KlO - K 0 0 6 1 K 332 13
800 3 1 1 - - - K - K 1 - 0 - 3 K 3 - K 0 342 15
825 0 3 K 2 1 K 1 2 K 2 2 - 2 - - - K 1 6 354 16
850 0 3 - - 0 4 3 - - KlO - 1 I - - K - 0 K 364 8v
tm 3 - K - 1 0" - 0 - 1 K. - - K - 1 3 - K - 37,1 82
900 0 3 0 0 1 2 1 1 K - 3 - 0 - K 0 K 3 - 1 0 1 3B6 8B
Y25 K 0 - - K 0 1 2 0 2 - - K K' 0 1 395 92
950 - K 2 - 0 - 1 K - - 3 - 1 0 - - - - K 0 2 - 403 95
Y15 K 2 1 - 1 4 K - 3 - 0 - "3 2 K - 0 3 K K 414 91

Table 2. Values of
1

8'2 for eubefree m. $1000 with
m

E =m
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X N+ NO Nl N4
:N

9 N16 N25 N36 N
49 N64 N81 Nl00 ~44 other',

50 24 3 20 1
100 43' 6 33 2 2
150 68 11 44 8 5
200 88 15 56' 10 7
250 110 23 63 14 10
300 133 27 75 17 14
350 153 32 83 22 16
400 171 37 90 26 18
450 191 43 97 31 20

, 500 213 50 107 32 23 1
600 254 57 123 43 29 1 1
700 293 66 142 48 33 2 1 1
800 332 73 163 51 39 3 1 2
900 371 8Z 178 56 47 4 1 3

1000 414 97 191 63 54 5 1 3
,1500 622 142 278 99 84 10 2 7
2000 835 193 354 137 119 19 2 10 1
2500 1044 243 429 181 144 23 3 18 1 2
3000 1251 289 503 216 175 30 8 25 2 3
3500 1453 ' 336 576 257 ' 200 33 10 33 3 1 4
4000 1668 389 650 292 238 37 14 39 3 1 5

, 4500 1872 430 718 325 281 46 19 42 3 1 7
5000 2084 481 792 354 318 56 23 48 3 1 8
6000 2499 586 921 416 391 73 32 64 4 2 9 1
7000 2910 687 1043 485 473 91 38 70 5 2 13 3
8000 3324 786 1161 556 549 112 48 84 6 2 13 7
9000 3741 886 1283 647 608 130 52 97 7 4 19 8

10000 4161 1001 1401 714 678 147 58 114 11 5 23 1 8
15000 6243 1498 1999 1050 1049 233 114 195 24 12 47 3 17 2
20000 8319 1972 2564 1419 1407 329 162 286 33 25 79 7 29 7
30000 12478 2953 3661 2111 2126 539 262 491 65 47 130 11 57 25
40000 16620 38964730 2770 2852 746 371 729 101 74 201 17 85 48
50000 20793 4880 5698 3471 3596 952 478 996 144 112 264 25 110 67
60000 24935 5842 6684 4127 4302 1186 598 1253 195 143 336 37 136 96
70000 29105 6778 7657 4802 5027 1411 711 1523 240 180 414 52 175 135

x N121 N169 N196 N225 N256 N
289 ~324 N

361
N400 N

441

15000 2
20000 2 5
30000 4 3 2 12 4
40000 8- 5 3 20 2 9
50000 15 5 4 26 2 11 1 2
60000 19 6 6 34 2 24 1 3
70000 26 11 8 48 3 32 2 0 4

Table 3. Values of N+(x) and NS(x) for x ~ 70000

ln terms of the functions

11 { 1~m~x m cubefree, E: = +1 },
m

11 {1~~x I m cubefree, E: =+1 ,
m '

s = S}
m

(SE~).

The values of these functions for selected x ~ 70000 and all S are given in

Table 3. Obviously, N+ LNS ' where S apriori ranges over the integers but

actually (on BSD or in the range of o~r computations) onlyover perfect squares;

ln fact, S takes on only the values 0,1 2
, ••• ,10 2 ,12 2 for m~ 10000 and

20, 1 , ..• 19 2 21 2, , for m~ 70000 . Graphical representations of as a
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Number of
cases with

given 5

8000

7000

6000

5000

4000

3000

2000

1000

I ~:::~======::;::==========:~~. Total
~ number

o 5000 10000 15000 20000 25000 30000 of cases

'Figure 2. Number of curves' with S
m

2 620,1, ... , for m ~ 70000

Since their sum 1S 1,

function of N+(x) for x~ 70000 and 1S~6 are given 1n Figure 2. The most

interesting numbers for us are the quotients N
S

(x) /N+ (x) .

they can be conveniently represented on a single graph as in Figure 3,. The most

.4

.3

.2

.1

10000 20000 30000 40000

S .. 1

S .. e

50000 60000 70000
m

Figure 3. Frequencies of various values of S ", for m ~ 70000
m
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striking feature of Figures 2 and 3 is the near constancy of No(x)/N+(x) , which

can be seen numerically in the following mini-table:

x 500 1000 2000 5000 10000 20000 30000 50000 70000

0.235 0.234 0.231 0.231 0.241 0.237 0.237 0.235 0.233

This is the phenomenon which was mentioned in the introduction and which is the

ma~n empirical result of the paper.

Figure 2 also suggests at first glance that the other NS(x) are roughly

proportional to N+(x) , but from Figure 3 it is clear that, for instance,

N1(x) IN+(x) ~s dec reas ing as x grows. To dec ide whe ther N1(x) IN +(x) has a

positive limit or tends to zero as x ~ 00 is difficult on the basis of these

two graphs, since we have to visually extrapolate slowly falling curves out to

infinity. In Figure 4 we have graphed the func tion x ~ y = N1(x) IN+ (x) with' a

-1 13 2 .
change of coordinates x ~x , y ~y which pulls infinity to the origin and

exaggerates the variation of y. This picture seems to suggest that in fact

N1(x) IN+ (x), unlike NO (x) IN+ (x), tends to zero as x ~oo. (We discuss this

more in §3.)

.4

.3

.2
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Finally, we also calculated L'(1) for all elliptic curves (1) with

m ~ 20000 and Ern =-1. Here tl:Iere is no closed formula like (7). However,

L'(1) is given not only by (11) but by the formula

( 14) L' (1)
00

2
n=1

a(n)
n

[ G( 2TIA/ IN) + G( 2TI / AIN) ]

for any A> 0, so to estimate the speed of convergence we computed L' (1)

using both (11) and (14) with A=2; the results agreed to about 5 digits

after the decimal, providing a check on the computation. The values obtained were

either quite far from iero (usually in the range from about 1 to 30) or else

equal ·to zero to 5 or 6 decimals, so that we could identify the curves

with L' (1) = 0 (and hence conjecturall'y r ~ 3) with confidence. Table 4 gives

the first few values of L' (1) and a few in the neighborhood of m = 657, the

m 6 L' (1) 2.376185 m = 647 L' (1) 11.840825
m 7 L' (1) 1.651771 m = 650 L' (1) 6.073495
m 9 L' (1) 1.290191 m = 654 L' (1) 7.193217
m = 12 L' (1) 2.314463 m = 655 L' (1) 13.692513
m = 13 L' (1) 2.953426 m = 657 L' (1) 0.000001
m = 15 L' (1) 3.160715 m = 660 L' (1) 10.313723
m = 17 L' (1) 3.972532 . m = 661 L' (1) 14.565052
m = 20 L' (1) 2.317275 m = 663 L' (1) 5.183534
m = 22 L' (1) 4.318084 m = 665 L' (1) 8.093288

Table 4. Some values of· L'(1)

first zero.

The first values of m with L'(1) =0 were m = 657,854,1020,1122,1241,

1267, 1330, 1339, 1426, 1482, 1554, 1798, 1853, 1892. (Selmer [9] already mentions

m = 657 as being the first case where E has rank 3.) Al together we found 179
m

curves with L'(1) =0 among the 8320 curves with odd·functional equation in the

range m ~ 20000. Figure 5 gives a graph of

N~(X) 11 { 1 ~ m ~ x I m cubefree, E =-1 L'(1) =o}
m ' m

as a function of N_(x) (defined like N+ but with E = -1) in this range,

suggesting that the ratio is in fact fairly constant' near



nurnber

150

100

50

o 5000

12

10000 15000 20000

Figure 5. Number of m~ x with ord s =1 Lm(s) odd and ~ 3

8~7io = 2. 15%, as already indiea ted l.n Figure 1.

§3. Diseussion

To eonelude this paper we diseuss some questions eoneerning the eurves (1)

whieh are suggested by our numerieal investigations.

1. Can one g~ve a cto~ed 6o~m 6o~ s ?m

This is eertainly the most interesting question one ean ask about the

eurves Ern; answerl.ng it would require a deep understanding of the L-series and

would give an at least eonjeetural answer to the question, whieh numbers are

sums of two eubes.

As already mentioned, the eurves E are all eubie twists of a fixed eurve
m

E1 (i.e., Ern beeomes isomorphie to E
1

over. lQ(~m) ). For the similar situation

of quadratie twists, Waldspurger I s theorem [13:1 gives an answer : it says that the
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numbers S defined by the analogue of (7) for a quadratic twist of a fixed
m

elliptic curve by ~(~) is the square of the mth coefficient of a certain

modular form of weight 3/2 (at least if the elliptic curve being twisted is a

modular one). For instance, for the classical problem of congruent numbers

232(y = x - m x, m squarefree) it gives the forrnula

(15) Srn
(m even) or ( L (-db- C )/4f (m odd) ,

o,b,c

where the sum ~s over 3(o,b,c)E:Z wi th 0
2 + b2 + c2 =m and c == 0 (mod 4) or

b ~ c (mod 4), respec tively (cf. [12]). One· may specula te tha t in our case, too;

S is the square of a Fourier coefficient of some type of modular form, perhapsrn

on a 3-fold coveringgroup of GL (2) .

2. How c.on.v-i,n.un.g -L6 :the ev-i,den.c.e :tha-t. S = 0 n0lt a. pO-6~ve pItOpoJt.:t-i,on.

00 the· C.WtvM (1) wUh eve.n. Oun.c.U.on.a.l equa.ilon.?

This is obviously a matter of personal opinion. Forrnulas (7) and (9) imply

(since L( 1) is presumably O(mE:) for any E: > 0) that ~ is roughly O(m1/6)
m

(rather than O(rn1/4) as would be the case for quadratic twists by lQ( Im) ), so

~ -1/6the naive expectation ~s that vS would be 0 with a probability of m
rn

giying a frequency NO (x) /N+ (x) which tends to 0 like·· x-1/6. But Figures 2,

3, and 4 do not seem to be compatible with a rate of decrease anything like as

fast as this, and once one has rejected the obvious rate of growth, there seems

little reason not to believe the evidence of the tables that NO(x)/N+(x) is in

fact roughly constant.

3. VOM a. -6hnil.aJt phen.omen.on. (-i,. e., po-6-i.;t,[ve deMUtj oß c.WtvU wUh !tan.k. ~ 2)

oc.c.Wt ßOIt o:theJt. ßa.m-LUu oß C.WtvM? 16n.o:t, wha-t. -6pec.~ pltOPe.JL-Uu do :the

c.WtvU x3 + tj3 = m have wfUc.h c.an. expf.a.ht :thebt high !tan./u?

The answer to the first question, at least for the family of quadratic

twists of a fixed elliptic curve, seems to be no: we calculated S for the
m

family of curves 232y = x-rn x associated to the congruent nurnber problem (using

(15)) f or all m:: 1 (mod 16) up to 500000 and ob tained the values
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5000 10000 20000 50000 100000 200000 500000

NO(x)/N+(x) 0.227 0.216 0.193 0.172 0.160 0.152 0.139 0.130 0.106

which &e clearly decreasing, ln contrast with the corresponding values for the

curves (1) ("mini-table" in §2). We have no data for other families..

As to the second question, we can offer two tentative suggestions.

(i) As mentioned in §1, E is the Jacobian of each of the curves (2).
m

If m

is highly. composite, then there are many such curves, and if any of them has a

rational point, then so does E ; this tends to make the rank of E large.
m m

In

a related vein, even if none of the curves (2) is known to have a rational point,

when there are many of them this will make the 3-Selmer group of E big and
m

hence (on BSD) force S to be divisible by a large power of 3; for small m
m

this will tend to make S (which is trying to be no larger than O(m1/3)) to
m

vanish. However, although this argument might explain the large frequency of

curves with S = 0, it does not at all explain why this ~requency is so nearly

constant.

(ii) A different argument, not too convincing, is the following nalve one. Let

h b f 1 0 f a3 + b3 -_ mc 3 0 ( 0t 0) 0us guess at t e num er 0 so utlons 0 ln say, POSl lve coprlme

integers a, b, c less than some very large number L for a "random integer" m

(whatever that means). For m fixed, the numb er of positive coprime pairs of

integers a, b with !L < max (a,b) < L and a3+b 3
== 0 (mod m) lS O(L2) , and

the probability for a given quotient
a3+b 3

to be a perfect cube O(L-2)lS ,
m

so we expect about O(log L) solutions in the range max(a,b)< L. On the other

hand, from height theory it follows that the number of solutions for a given m

l Ok (1 )r/2 0 h k f 'ho hgrows l e og L ,where r lS t e ran 0 E, so t lS suggests' t at
m

r ~ 2 may occur with a positive density. However, apart from the general vague-

ness of this argument, it suggests that r = 2 is the highest value occurrlng

with positive density, whereas our data seem to suggest that r ~ 3 occurs more

than 1% of the time.

4. Alte .:the Mympt.otic. ßltequenc.iu oß ot.helt va1.u.u oß S a.L60 po.oiUve, Olt
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do they ~end ~o z~o?

Here the same apriori argument as for . S = 0 predicts that N
S

(x) /N+ (x)

for a fixe<! vnlue of S shoul<..1 tell<! to zero roughly like x -1/6, an<! now

Figure 4 (for S = 1) is eminently compatible with this prediction. Since there

is no reason to suppose that S = 1 behaves differently from other positive

values of S , the same presumably holds for them, too. The fact that N
S

(x) /N+ (x)

for S=4 and S=9 is nearly constant in our range can be explained by observing

that the mean value of IS is of the order of
1/6

which growing verym , ~s
m

slowly, so that for m of the order of 50000 the values IS 2 or 3 are at

the height of their popularity, while for m around 5000, say, they are still

rare because S is usu.ally 0 or 1. Thus we have tendenc ies to increase and

to decrease which in this range roughly compensate; and indeed, for the larger

values IS = 4, 5,6 we actually see an increase of NS(x)/N+(x) in Figure. 3

which will surely eventually be reversed, so that these ratios, too, will be

roughly constant over some very long range later on.

It is amusing to note that we can make the statement about L (1) (or,

equivalently, m- 1/ 3 S ) being of the order of
m

on the average much more

precise. Using the exact formulas for a (n) given in § 1, we find that for
m

fixed n the Fourier coefficient a (n) has a well-defined average value
m

a (n) as m runs over cube-free integers prime to n; these average values
av

are multiplicative and are the coefficients of a Dirichlet series L (s)
av

\' -s= La (n) n whose p-Euler fac tor is
av

P== 2 (mod 3), and equal to

for p = 3 ,

f 0 r p == 1 ( mo d 3).( A
.p

1 L
"3 aE A

p

as in (12))

_ ap-s + p 1-2s =
3-6s

1 - p
1-2s1 - p

The number

c (p) = TI a
aEA

p

c(p) is the pth Fourier

coefficient of the unique normalized cusp form f of weight 4 on. ro(9) , and

we find

L (s)
av

L(2s-1 ,X) L(f 3s)
L(6s-3,X) ,

where X = (3-) ~s the non-trivial Dirichlet character of conductor 3. In



partieular, L (s)
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is regular at s = 1 with

L (1) = L(1 ,X) L(f 3)
av L(3,X) ,

00

rr /313 • 2 \' ~nl -2rrn/3
- 4rr3/8113 L n 3 e -

n=1
O. 16840248 ;

this presumably gives the average value of L (1), taken over all m having
m

no srnall prime faetors.

5. Wha..t c.an one. ~ay about .t.he. Itei.-a..t.ive. 6lte.qu.e.nc.y 06 oc.c.u.JtJte.nc.M 06

8 = 1, 8 =4, 8 =9, e..t.c..?

80 far, nothing. The only line of attaek whieh seemed promising was to

imitate the Cohen-Lenstra heuristies [4] on the behavior of (the odd parts of)

elass numbers or elass groups of irnaginary quadratie fields(this is a natural

analogy beeause imaginary quadratie fields have unit rank 0, eorresponding

to r = 0 here) , but this led to an answer in eomplete disagreement with the

empirieal results. Reeall that the idea in [4] was to observe that the

non-2-part of the elass group of an imaginary quadratie field belongs to the

elass G of finite abelian groups of odd order, and to postulate that its

probability of being equal to a given group G EG is proportional to lAut GI-
1
..

This led to the eorreet predietion that. any given group oeeurs with density zero

Csinee
. -1
LGEGIAut GI . diverges) and gave speeifie, and experimentally eonfirmed,

predietions for the frequeneies of various properties of G (e.g., being eyelie,

having order divisible by 3, ete.). In our case the analogue of the elass

group is the Tate-8hafarevieh group ill and it belongs to the elass $ of finite

abelian groups together with a skew symmetrie pairing .lll x 1J1 ~ ~/7L.. The

problem is that such objeets are rare and have many automorphisms (for instanee,

there is only one isomorphism elass of order p2, and its automorphism group

3 . 1
has order p-p), so that the sum L1ll.E$IAut.llL 1- c.onve.JtgM, and indeed

eonverges to a number e not mueh b igger than 1. (More pree isely,

e = ~(3)~(5)~(7) ... = 1.2602057106 .)

heuristies would suggest:

Thus the analop,ue of the Cohen-Lenstra

i) that eaeh order 8 = Illli oeeurs with a positive frequeney;

ii) that this frequeney for S = 1 1S 1/e, or about 79%; and
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iii) that the ratios of the frequencies of S = 1', S = 4, and' S = 9 are

1 : 1/6 : 1/24 .

The first prediction, though it disagrees with the arguments given ~n connection

with Question 4, is conceivable, but the second two do not agree at all with'

the data on S = 1, 4, and 9 in Figures 2 and 3, so that, at least in its original

form, the Cohen-Leristra recipe seems not to work its magie in our situatipn.
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