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We discuss some linear acceleration methods for alternating se-

ries which are in theory and in practice much better than that of

Euler–Van Wijngaarden. One of the algorithms, for instance, al-

lows one to calculate
P

(�1)kak with an error of about 17.93�n

from the first n terms for a wide class of sequences fakg. Such

methods are useful for high precision calculations frequently ap-

pearing in number theory.The goal of this paper is to describe some lin-ear methods to accelerate the convergence of manyalternating sums. The main strength of these meth-ods is that they are very simple to implement andpermit rapid evaluation of the sums to the very highprecision (say several hundred digits) frequently oc-curring in number theory.
THE FIRST ACCELERATION ALGORITHMThe typical series we will be considering are alter-nating series S = P1k=0(�1)kak, where ak is a rea-sonably well-behaved function of k which goes slowlyto 0 as k !1. Assume we want to compute a goodapproximation to S using the �rst n values ak. Thenour �rst algorithm is:
Algorithm 1.

Initialize: d = (3 +p8)n; d = (d+ 1=d)=2;b = �1; c = �d; s = 0;
For k = 0 up to k = n� 1, repeat:c = b� c; s = s+ c � ak;b = (k + n)(k � n)b=((k + 12)(k + 1));
Output: s=d.This algorithm computes an approximation to S as aweighted sum of a0; : : : ; an�1 with universal rationalcoe�cients cn;k=dn (= c=d in the notation of thealgorithm; note that both c and d are integers). Forinstance, for n = 1, 2, 3, 4 the approximations given
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4 Experimental Mathematics, Vol. 9 (2000), No. 1by the algorithm are2a0=3;(16a0�8a1)=17;(98a0�80a1+32a2)=99;(576a0�544a1+384a2�128a3)=577;respectively. The denominator dn grows like 5:828nand the absolute values of the coe�cients cn;k de-crease smoothly from dn � 1 to 0. Proposition 1below proves that for a large class of sequences fakgthe algorithm gives an approximation with a relativeaccuracy of about 5:828�n, so that to get D decimaldigits it su�ces to take n equal to approximately1.31D. Notice that the number of terms and thetime needed to get a given accuracy are essentiallyindependent of the particular series being summed,if we assume that the ak's themselves are either easyto compute or have been precomputed; on a Sparc-station 5 using Pari, for instance, the computationof S to 100 or 1000 decimal digits requires about .1or 6 seconds, respectively. The algorithm uses O(1)storage and has a running time of O(1) per value ofak used.
Proposition 1. For integers n � k � 0 setdn = (3 +p8)n + (3�p8)n2 (1)andcn;k = (�1)k  dn � kXm=0 nn+m�n+m2m �22m!= (�1)k nXm=k+1 nn+m�n+m2m �22m : (2)Assume that the ak are the moments of a positivemeasure on [0; 1] and setS = 1Xk=0(�1)kak; Sn = n�1Xk=0 cn;kdn ak :Then jS � Snj � Sdn � 2S(3 +p8)n :
Proof. By assumption, ak = R 10 xk d�, where d� is apositive measure. ThenS = 1Xk=0(�1)kak = Z 10 11 + x d�;

the interchange of summations being justi�ed by thepositivity. Let fPn(x)g be a sequence of polynomialssuch that Pn has degree n and ~dn := Pn(�1) 6= 0.Set Pn(�1)� Pn(x)1 + x = n�1Xk=0 ~cn;k xk :De�ne ~Sn as Sn in the proposition but with ~dn and~cn;k instead of dn and cn;k. Then~Sn = 1Pn(�1) Z 10 Pn(�1)� Pn(x)1 + x d� = S �Rn ;say, with Rn = Z 10 Pn(x)Pn(�1)(1 + x) d� ; (3)and by virtue of the positivity of d� we can estimatethe \error term" Rn byjRnj � MnjPn(�1)j Z 10 11 + x d� = MnjPn(�1)j S ;where Mn is the supremum of jPn(x)j on [0; 1]. Itfollows that Mn=jPn(�1)j is an upper bound for therelative error made by approximating S by ~Sn.We now choose for Pn(X) the polynomials de�nedby Pn(sin2 t) = cos 2nt; (4)so that Pn(x) = Tn(1 � 2x) where Tn(x) is the or-dinary Chebyshev polynomial. Clearly Mn = 1 and~dn = Pn(�1) = dn with dn as in (1).The recursionPn+1(X) = 2(1� 2X)Pn(X)� Pn�1(X)implies by induction the explicit formulaPn(X) = nXm=0(�1)m nn+m�n+m2m �22mXm ; (5)so ~cn;k = cn;k with cn;k as in (2). This completes theproof of the proposition. �
Remarks. 1. The method implicit in Proposition 1 iswell known in numerical analysis under the head-ing of \Pad�e type approximation" [Brezinski 1980;Eiermann 1984; Gustafson 1978/79; Wimp 1981].As we mentioned above, we are concerned with cal-culations to a high degree of accuracy, where thenumber of digits gained per number of steps, and theamount of storage required, are crucial. Thus our



Cohen, Rodriguez Villegas, and Zagier: Convergence Acceleration of Alternating Series 5emphasis is di�erent from that in numerical analy-sis, where one usually works in �xed, and relativelylow, precision. The implementation of Algorithm 1is good in both respects.
2. The classical algorithms found in the literature(see [Press et al. 1988]) are Euler's method or Euler{Van Wijngaarden's method. These can be shown tocorrespond respectively to the polynomials Pn(X) =(1�X)n with convergence like 2�n and polynomialsPn(X) = Xa(1 �X)b with a+ b = n dependent onthe particular sequence, with convergence like 3�nfor a = n=3. Note that a direct implementation ofthe algorithm given in [Press et al. 1988] needs a lotof auxiliary storage if we want high accuracy, whileour method does not.
3. Algorithm 1 computes \on the y" the coe�-cients of the polynomial (Pn(�1)�Pn(X))=(1+X),where Pn(X) = Tn(1� 2X). Equivalently, we couldalso compute on the y only the coe�cients of thepolynomial Pn(X) itself and use the partial sumsof the alternating series instead of the individualterms, usingnXk=0 cn;kak = nXm=1 nn+m�n+m2m �22m m�1Xk=0 (�1)kak :This can be particularly useful when the sequence ofpartial sums is naturally given, and not the ak them-selves, as in the continued fraction example men-tioned at the end of this paper.
4. The hypothesis that the an's are moments of apositive measure on the interval [0,1] is a well knownone, and is equivalent by a famous theorem of Haus-dor� [1923] to the total monotonicity of the sequencefang, in the sense that for each �xed k, the sequencef�kang of the k-th forward di�erences of fang hasconstant sign (�1)k .
5. In addition to this, trivial modi�cations are pos-sible. For example, one can replace the step d =(d + 1=d)=2 by the simpler one d = d=2, since thismodi�es the �nal result by a negligible amount, butleaves d as a nonintegral value. We could also im-mediately divide by d (initializing b to �1=d and cto �1). In our implementation each of these modi-�cations led to slower programs.
6. We proved convergence of the algorithm (at arather fast geometric rate) under the above condi-tion. However, examples show that it can be applied

to a much wider class of series, and also, as is usualin acceleration methods, to many divergent series.
7. The choice of the Chebyshev polynomial can beshown to be close to optimal if we estimate the re-mainder term Rn crudely as we did above. On theother hand, as we will see below, for a di�erent classof alternating series, we can estimate Rn more pre-cisely and �nd much better polynomials Pn. Thecorresponding algorithms and their analysis seem tobe new.
8. If the sequence ak already converges at a geomet-ric rate, better algorithms are possible which aretrivial modi�cations of the ones presented in thispaper. For example, if one knows in advance that� ln(ak) � k ln(z) for some z � 1, then in Algo-rithm 1 simply replace 3+p8 by 2z+1+2pz(z + 1)and multiply by z the right hand side of the recur-sion formula for b. The convergence is in (2z + 1 +2pz(z + 1))�n, and thus faster than the direct ap-plication of Algorithm 1. Similar modi�cations arevalid for the other algorithms of this paper. Thedetails are left to the reader.To illustrate Algorithm 1, we give a few examples.Each can also be treated individually using speci�cmethods.
Example 1. By taking logarithms we can compute theproductA := 1Yn=1 �(1 + 12n�1)�(1 + 12n ) = 1:0621509055 : : :rapidly to high accuracy. The product is slowly con-vergent and the gamma function is hard to compute,so our method is very useful here. In fact, as we willsee below, Algorithm 2B is even better in this case.
Example 2. Similar remarks apply to the sumB := 1Xn=2(�1)nLi2� 2n� = 1:1443442096 : : :where Li2(x) =P1k=1 xk=k2 is the dilogarithm func-tion. This sum arose in connection with the compu-tation of a certain de�nite integral related to Khin-chin's constant [Borwein and Crandall � 2000].
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Example 3. The Riemann zeta function can be calcu-lated for reasonable values of the argument by�1� 21�s� �(s) = 1Xn=0 (�1)n(n+ 1)s ;and we �nd values like �( 12) = �1:4603545088 : : : oreven�(�1 + i) = 0:0168761517 : : : � 0:1141564804 : : : ito high accuracy and very quickly (comparable toEuler{Maclaurin). Note that the latter exampleworks even though the coe�cients ak of our \al-ternating" series P(�1)kak are not alternating oreven real and do not tend to zero. The derivativesof �(s) can also be calculated similarly, e.g. we cancomputeC1 := 1Xn=1 (�1)n log npn = 0:1932888316 : : :by Algorithm 1, and then use the identity C1 =(1�p2) � 0( 12) +p2 ln 2 �( 12) to deduce the value of� 0( 12) = �3:9226461392 : : : . In a similar manner, wecan computeC2 = 1Xn=1 (�1)n log nn = 0:1598689037 : : :by Algorithm 1, and then use the identity C2 =log 2( � 1=2 log 2) to deduce the value of Euler'sconstant  = 0:5772156649 : : : .Moreover, as suggested to us by R. Sczech, wemay even use Algorithm 1 to sum the divergent se-ries C3 = 1Xn=1(�1)n log n = �0:2257913526 : : : ;recovering the known value � 12 log(�2 ) of the deriva-tive of (1� 21�s)�(s) at s = 0.Note that in the �rst two examples ak was in factthe restriction at points of the form 1=k of a functionanalytic in the neighborhood of 0, and so other tech-niques could be used such as expanding explicitly akin powers of 1=k. However, in the last examples, thiscannot be applied.Computing the constants Ci for i = 1; 2; 3 usingalgorithm 1 with n = 655 took about 20 seconds ina Gp-Pari implementation on a 300 MHz computerrunning Linux. The relative errors were: 5� 10�504for C1, 5�10�506 for C2 and 2�10�500 for C3, not far

from the bound 1=d655 � 7 � 10�502 of Proposition1. If we make di�erent assumptions on the sequencefakg, we can use better polynomials than the Cheby-shev polynomials. For example, we can reason asfollows. Assume that d� = w(x) dx for a smoothfunction w(x). Then taking Pn(X) and dn as in (4)and (1) respectively and setting x = sin2 t, we getfrom (3)dnRn = Z �=20 cos(2nt)w(sin2 t) sin 2t1 + sin2 t dt= Z �=20 cos(2nt)h(t) dtfor a smooth function h(t). If we integrate twice byparts, we getdnRn = 14n2 �(�1)nc1 + c2�� 14n2 Z �=20 cos(2nt)h00(t) dt; (6)for some constants c1 = h0(�=2) and c2 = �h0(0).If we multiply both sides of this equation by n2,then the �rst term 14((�1)nc1 + c2) has period 2.This suggests replacing the polynomial Pn(X) bythe polynomialP (1)n (X) = n2Pn(X)� (n� 2)2Pn�2(X) :It is then easily seen that for the new remainderR(1)n we have dnR(1)n = O(1=n5) instead of O(1=n2).Hence for our purposes P (1)n is a better polynomialthan Pn. Notice also thatP (1)n (sin2 t) = 12 d2dt2 �sin(2t) sin(2(n� 1)t)� :Continuing in this way, we de�ne a double family ofpolynomials P (m)n as the m-th di�erence (with step2) of the sequence nm+1Pn (where we set P�n = Pnfor n > 0 since cos(2nt) is an even function of n),and �nd that for m > 0P (m)n (sin2 t) = 12� ddt�m+1�sin(2t)m sin(2(n�m)t)�The corresponding remainder term R(m)n satis�esdnR(m)n = O(1=n2m+2)(and even O(1=n2m+3) if m is odd) as n ! 1 for�xed m, so we get better and better sequences ofpolynomials.



Cohen, Rodriguez Villegas, and Zagier: Convergence Acceleration of Alternating Series 7As polynomials in X, these polynomials can becomputed either from the formula giving the m-thdi�erence, i.e.,P (m)n (X) = X0�r�m(�1)r�mr �(n� 2r)m+1Pn�2r(X)(where we naturally set P�n(X) = Pn(X)) or by theformulasP (m)n (X) = 2m+r�1(�D)r �s��n�m�1Xk=0 (�1)k�2n�2m2k+1 �Xk+r(1�X)n�m�1�k+r�where m+ 1 = 2r + s with 0 � s � 1,D = ddX ; and � = 2X(1�X) ddX + 1� 2X:This suggests taking either the diagonal sequenceAn = P (n�1)n =(2n�1n!) (7)or the sequenceBn = P (m)n =�(n�m)(m+ 1)! 2m� (8)with m = bn=2c, where the (unimportant) normal-izing constants have been chosen so that An(0) =Bn(0) = 1 (other ratios between m and n couldbe considered and we will briey comment on thislater).The �rst few values areA0(X) = 1;A1(X) = 1� 2X;A2(X) = 1� 8X + 8X2;A3(X) = 1� 20X + 54X2 � 36X3;and Bn(X) = An(X) for n � 4.Note that the formulas giving the polynomials Anare particularly simple: we haveAn(sin2 t) = 12nn! dndtn �sinn 2t� ; (9)andAn(X) = 2r(2r)!�(1�2X) ddX +2(X�X2) d2dX2�r�Xr(1�X)r(1�2X)s�if n = 2r + s with 0 � s � 1.

TWO FLAVORS OF THE SECOND ALGORITHMAlgorithm 1 can be immediately generalized to anysequence Qn of polynomials, except that the coef-�cients of Qn cannot be computed on the y, thusgiving rise to the following family of algorithms.
Algorithm 2Q.

Let Qn(X) =Pnk=0 bkXk.
Set d = Qn(�1); c = �d; s = 0;
For k = 0 up to k = n� 1, repeat:c = bk � c; s = s+ c � ak;
Output: s=d.In particular, applying this to the families Qn =An and Qn = Bn (de�ned in (7) and (8) respec-tively), we obtain two algorithms 2A and 2B whichare of the same sort as Algorithm 1 in that they out-put an approximation Sn which is a universal ratio-nal linear combination of a0; : : : ; an�1. The valuesfor n = 1 and n = 2 are 2a0=3, (16a0 � 8a1)=17as before, while those for n = 3 and n = 4 are(110a0 � 90a1 + 36a2)=111 and (2288a0 � 2168a1 +1536a2 � 512a3)=2191, respectively (since An = Bnfor n � 4, the coe�cients are the same for bothalgorithms up to that point).We now analyze the speed of convergence of thesealgorithms. For Algorithm 2A we will �nd that it islike 7:89�n for a large class of sequences fakg andlike 17:93�n for a smaller class, both better than the5:83�n we had for Algorithm 1.For the same two classes of sequences, Algorithm2B will be like 9:56�n and 14:41�n. In other words,depending on the sequence Algorithm 2A or 2B maybe the better choice.On the other hand, unlike Algorithm 1, we donot have a quick way to compute the individual co-e�cients cn;k in time O(1) each but must compute(and store) the whole polynomial An(X) or Bn(X).As a result, these algorithms require storage O(n)and time O(n2) instead of O(1) and O(n) as before.Thus they are inferior to Algorithm 1 if the numbersak are easy to compute (like ak = 1=(k + 1)), butsuperior to it if the main part of the running time isdevoted to the computation of the ak (as in Exam-ples 1 or 2 above), or in the extreme case when weonly know a �xed number of values a0; a1; : : : ; an�1and want to make the best guess of the value ofP(�1)kak on the basis of this data.



8 Experimental Mathematics, Vol. 9 (2000), No. 1To state the result we need the constants de�nedby �A = cosh�A = 7:8898395 : : : ;�B = e�B = 9:55699 : : : ;A = �A r0 = 17:9340864 : : : ;B = �Bpr0 = 14:408763 : : : :Here �A = 2:754682 : : : and �B = 2:2572729 : : : arethe unique real roots of �A � tanh�A = 2L and�B � e��B sinh�B = 2L, respectively, where L =log(1 + p2), and r0 = p4t0= sin 4t0 = 2:27306 : : : ,where t0 = 0:652916 : : : is the unique root in [0; �=2]of t20 + L2 = 12 t0 tan 2t0.In addition, let CA be the union of the images inthe complex plane of the two mapst 7! sin2�t� (sin(2t)=2)(cos(2t)� i sin(2t))�;for 0 � t � �=2, and let CB be the union of theimages in the complex plane of the two mapst 7! sin2�t� (r0 sin(2t)=2)�r0 cos(2t)� ip1� r20 cos(2t)2 ��;for t0 � t � �=2� t0 (see Figure 1).
Proposition 2. Assume that the coe�cients ak aregiven as moments,ak = Z 10 w(x)xk dx:For Q = A or Q = B, let RQn = S � SQn be thedi�erence between the true value of S and the outputSQn of Algorithm 2Q.
1. If w(x) extends analytically to the interior of theregion bounded by the Curve CA, then for Q = Aor Q = B, jRQn j is bounded by (�Q + o(1))�n.
2. If w(x) extends analytically to the whole com-plex plane (or only to the interior of the regionbounded by the Curve CB), then for Q = A andQ = B, jRQn j is bounded by (Q + o(1))�n.In fact the proof will show that to get convergencelike �nQ we can allow singularities xm�1=2 (m � 0)at the origin (i.e., it is su�cient if xw(x2) ratherthan w(x) itself be analytic). If w is analytic in asmaller region than those described in Proposition2, then we still get exponential convergence of SQnto S, but with a worse constant.

Here are a few simple examples. We set � = �Qand  = Q with Q = A or Q = B, depending onwhether Algorithm 2A or 2B is used.
Example 4. Set ak = 1=(k + 1), S = log 2. Herew(x) = 1, so the proposition applies directly to givespeed of convergence �n. Hence in this case Algo-rithm 2A is better than Algorithm 2B ,
Example 5. Set ak = 1=(2k + 1), S = �=4. Herew(x) = 12x�1=2, so xw(x2) is analytic and we againget convergence �n. Once again Algorithm 2A isbetter.
Example 6. Set ak = 1=(3k+1), S = (log 2+�=p3)=3.Here w(x) = 13x�2=3 with a singularity at 0, so theconvergence is like ��n. Hence in this case Algo-rithm 2B is better than Algorithm 2A.
Example 7. Set ak = 1=(k + 1)2, S = �2=12. Herew(x) = log(1=x), again with a singularity at 0, sowe get ��n convergence. The same applies to ak =1=(k+1)s , where w(x) is proportional to logs�1(1=x)and the convergence is again like ��n. Again Algo-rithm 2B is better.
Example 8. Set ak = 1=(k2+1), S = 12+�=(e��e��).Here w(x) = sin(log(1=x))=x, again with conver-gence like ��n. Again Algorithm 2B is better.
Proof of Proposition 2. We �rst consider the case ofAlgorithm 2A. The �rst thing we need to know isthe asymptotic behavior of An(�1). According toLagrange's formula, if z = a+w'(z) with ' analyticaround a thendzda = 1Xn=0 dndan ('n(a)) wnn! (10)(di�erentiate [Hurwitz and Courant 1929, p. 138,eq. (8)] with respect to a taking f(z) = z, for exam-ple). Choosing '(z) = sin 2z; w = u=2 and a = t incombination with (9) yields the identity1Xn=0An(sin2 t)un = 11� u cos 2z ����z�u2 sin 2z=t (11)and in particular1Xn=0An(�1)un = 11� u cos 2z ����z�u2 sin 2z=iL ;
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FIGURE 1. The sets CA and CB.where L = log(p2+1) (or, more precisely, any value� log(p2 + 1) + in�). To �nd the limiting value ofjAn(�1)j1=n, we need to look at the values of u forwhich the expression on the right becomes singular.This clearly happens if u cos 2z = 1 for a value of zwith z � (u=2) sin 2z = iL:The smallest value of juj occurs for z = i�A=2 andequals 1=�A, with �A and �A as in the proposition.Hence lim supn!1 jAn(�1)j1=n = �A. A more care-ful analysis givesAn(�1) � 2�n+1=2A =p�n(�2A � 1)or even an asymptotic expansion, but we will notuse this.Now if we used the proof of Proposition 1 directlythe error term RAn would be estimated essentially byMn=An(�1), whereMn = max0�x�1 jAn(x)j:Using (11), one can show that this number growslike (1:5088 : : :)n (the maximum is attained at x = 12if n is even), leading to an error estimate of about5:23�n, which is worse than we had before. But ofcourse the motivation for introducting the polyno-mials P (m)n and the diagonal subsequence An was toimprove the error term by assuming that the func-tion w(x) or h(t) was smooth and use repeated in-tegration by parts; see (6). Making this assumption

and doing the integration by parts, we obtainAn(�1)RAn = Z 10 An(x) w(x)1 + x dx= Z �=20 An(sin2 t)h(t) dt= 12nn! Z �=20 dndtn �sinn(2t)� h(t) dt= (�1)n2nn! Z �=20 sinn(2t) dnh(t)dtn dt;so by Taylor's theorem1Xn=0An(�1)RAn un = Z �=20 h�t� u2 sin 2t� dt:As t goes from 0 to �=2 for a �xed (complex) valueof u, the argument t � u2 sin 2t moves along a pathCu connecting the points 0 and �=2. If for somer > 0 the function h(t) is entire in the region D(r) =Sjuj�r Cu, then the above integral representation ofPAn(�1)RAn un shows that this sum is analytic inthe disc juj < r and hence thatlim supn!1 jAn(�1)RAn j1=n � 1=r:The best value of r we can hope for (unless w is veryspecial) is the number r0 = 2:27306 : : : , for whichthe point t = iL lies on the boundary of D(r), sinceat this point the denominator 1 + sin2 t of h(t) willvanish. (The value of r0 can be computed by simplecalculus: r0 is the minimum of 2pt2 + L2=jsin 2tj fort 2 [0; �=2] and is equal to p4t0= sin 4t0 with t0 as



10 Experimental Mathematics, Vol. 9 (2000), No. 1in the proposition.) This then leads to the estimatelim supn!1 jRAn j1=n � �1A with A = r0�A, and isvalid whenever h is analytic inD(r0) or equivalently,whenever w is analytic in the region fsin2 t j t 2D(r0)g, which is the region bounded by Curve CB inFigure 1. If w(x) has a singularity within this regionthen we get a worse estimate. In particular, if w(x)has a singularity at the origin, as in the examples3{6 above and many others, then the convergence ofSAn to S will be like ��nA if h(t) has no singularities inD(1), since r = 1 is the largest value of r for which0 is not in the interior of D(r). The boundary ofthe region fsin2 t j t 2 D(1)g is shown as Curve CAin Figure 1.The case of Algorithm 2B is very similar, butslightly more complicated. We sketch it briey. Tobe able to apply Lagrange's formula (10), we intro-duceCm(t) = 1m! 2m � ddt�m�(e2it sin 2t)m e�2itsin 2t�so thatB2m(sin2 t) = Cm+1(t) + Cm+1(�t)2im for m > 0 :Then a similar use of Lagrange's formula (10) showsthat lim supm!1 jCm(�iL)j1=m = �2B;so that lim sup jBn(�1)j1=n = �B when n ! 1through even values of n. A similar proof showsthat the same holds for odd values.The rest of the proof is essentially unchanged, stillusing the functions Cm(t). Since e2it is of modu-lus 1 when t is real, the domains of analycity re-quired for w(sin2 t) are still the same. We thus ob-tain lim supm!1 jB2m(�1)RB2mj1=m � 1=r0 and simi-larly for 2m+1, hence lim supn!1 jBn(�1)RBn j1=n �1=pr0 as claimed. �
Remarks. 1. More generally we can consider Algo-rithm 2Q with Qn proportional to P (m)n with m =n=(1 + �) + O(1) and � > 0, Algorithm 2A corre-sponding to � = 0 and Algorithm 2B to � = 1 (theexact choice of m has no e�ect on the speed of con-vergence of the algorithm). The same analysis asbefore shows that the analogue of Proposition 2 re-mains true (with the same curves CA and CB as

before), but with the numbers � and  occurringthere replaced by�� = �e�� (cosh�+ � sinh�)�1=(�+1) ;� = r1=(�+1)0 �� ;where � = �� is a root of �� 1=(coth�+ �) = 2Land r0 = 2:2736 : : : is the same number as before.It can be shown that � = 0, i.e. Algorithm 2A,gives the largest value of � , and that � = 1, i.e. Al-gorithm 2B, gives the largest value of �� , whence thechoice of these two algorithms. (Note: the largestvalue of � is in fact obtained for � = �0:123559 : : : ,but we must restrict to non-negative values of �since otherwise more than n terms of the sequencefakg are used.)
2. We do not claim that the sequences of polyno-mials that we have given give the best results, onlythat they are natural choices. Other sequences ofpolynomials Pn can be used for linear accelerationof alternating sequences which for certain classes ofsequences fakg will give even better convergence.These sequences of polynomials are related to poly-nomials which are used in Diophantine approxima-tion to get good irrationality measures for numberssuch as log 2, � or �(3), following the works of Ap�ery,Beukers, Rhin et al.
3. For sequences fakg for which w(x) is analyticin an even larger region than the one bounded byCurve CB, we can improve the 17:93�n bound forAlgorithm 2A by taking a linear combination of akand some standard sequence likea0k = 1k + 1to force w(x) to vanish at �1. ThenSn = S + w(�1)(S0n � S0) + "n;where the error term "n tends to 0 faster than before(and even more than exponentially if w(x) is entire,since the modi�ed seriesXQn(�1)Rnun = Z �=20 (entire in t, u) dthas in�nite radius of convergence), and using thiswith two di�erent values of n to eliminate the w(�1)term we get improved approximations to S.
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APPLICABILITYSince we have given three algorithms, some adviceis necessary to be able to choose between the three.If the sequence fakg is very easy to compute andnot too many decimal digits are required (say atmost 1000), we suggest using Algorithm 1, whichhas the advantage of being by far the simplest toimplement and which does not require any storage.This is the default choice made in the Pari systemfor example.If the sequence fakg already converges to 0 at ageometric rate, then w(x) cannot be analytic andhence Algorithm 1 should again be chosen, takinginto account Remark 8 on page 5.If the sequence fakg is di�cult to compute or if alarge number of decimal digits are desired, it shouldbe better to use Algorithms 2A or 2B. Since a priorione does not know the analytic behavior of w(x),in view of the examples which have been presented,w(x) has frequently a singularity at x = 0, hence wesuggest using Algorithm 2B . Of course, if we knowthat w(x) is much better behaved, then Algorithm2A becomes useful also.
EXTENSION TO CERTAIN NONALTERNATING SERIESThe algorithms given can also be used in cases wherealternating series occur only indirectly.A �rst example is the summation of series withpositive terms. Using a trick due to Van Wijngaar-den and described in [Press et al. 1988], such a seriescan be converted to an alternating series as follows:1Xk=1 ak = 1Xm=1(�1)mbm with bm = 1Xk=0 2ka2km :In this case the coe�cients bm of the alternatingsum are themselves in�nite sums, hence are hard tocompute, and so it is usually useful to use Algorithm2B instead of Algorithm 1.A second example is the computation of continuedfractions S = b1=(c1 + b2=(c2 + � � �)) with bk and ckpositive. The standard theory of continued fractions

shows that one can rewrite S as an \alternating"sum S = b1q0q1 � b1b2q1q2 + b1b2b3q2q3 � � � � ;where the qi are de�ned by q�1 = 0, q0 = 1 andqn = cnqn�1 + bnqn�2, and we can then apply one ofthe given algorithms to the sequenceak = Q1�j�k+1 bjqkqk+1 :Note that frequently continued fractions convergegeometrically (this is true for example in the caseof simple continued fractions, i.e. bk = 1 for all kand ak positive integers) hence Remark 8 on page 5must be taken into account, and Algorithm 1 shouldusually be preferred.
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