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Abstract. This survey paper attempts to present in as elementary a way as possible a
wide panorama of results concerning the relations between differential equations on the
one hand and algebraic geometry, number theory and topology on the other. We use the
famous Apéry numbers as a running example to illustrate the connections with, among
other things, the theory of periods (Picard–Fuchs differential equations), the theory of
modular forms (and the special values of their L-series), the theory of motives (starting
with counting points on varieties over finite fields), and mirror symmetry (in particular,
the Gamma Conjecture relating the asymptotics of solutions of differential equations to
the multiplicative “Gamma class” of a variety). A number of relations to works by Friedrich
Hirzebruch, in whose honor the lecture was given, are also described.

My principal aim in this paper is to present, in as simple a way and to as wide a
readership as possible, some of the beautiful ways in which differential equations
are related to number theory, algebraic geometry, and topology. But – since this
is the first of the “Hirzebruch Lectures” that are now planned to be given at each
future European Mathematical Congress – a secondary goal was to present topics
that would have appealed to Friedrich Hirzebruch and that are related to some of
his major discoveries. Three such topics that will appear are: his resolution of the
cusp singularities of Hilbert modular surfaces, which serve to explain a puzzling in-
tegrality property of a differential equation connected with a certain non-arithmetic
modular curve (in Section 4); his theory of multiplicative characteristic classes and
genera, which are needed to define the Gamma Class and formulate the Gamma Con-
jecture in the theory of mirror symmetry (in Section 9); and, very briefly in Section 10,
the study of ramified coverings of the projective plane and surfaces with c2

1 = 3c2,
which are related via his proportionality principle to quotients of the complex 2-ball
but also to the monodromy groups of certain higher-dimensional hypergeometric
differential equations. The last topic was of particular interest to Hirzebruch in his
later years, and together with Paula Beazley Cohen (later Tretkoff) he wrote a long
review of the monograph of Deligne and Mostow on the subject [2] and also origi-
nally planned a joint book with her based on a course that he gave in Zürich in 1996,
though he eventually abandoned the project and asked her to complete it alone [68].

In accordance with this double aim, I have tried to explain at least the basic ideas
of each topic occurring in as elementary a way as possible, and to include even
definitions that will be familiar to many readers. In particular, in the second section,
which is concerned with the relations of differential equations to algebraic geometry,
I include a discussion of differential forms and of the fact that the periods associated
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to a family of algebraic varieties always satisfy a linear differential equation with
integral monodromy (Picard–Fuchs equation), and in the following section, which
treats the relation of differential equations to modular forms, I include a brief review
of the definitions and main features of modular forms. Also in the case of some of
the more advanced topics that are discussed later in the paper, such as the theory of
motives or mirror symmetry and quantum cohomology, I have tried to explain the
main concepts from scratch.

To whet the reader’s appetite, the paper begins with Apéry’s famous proof of the
irrationality of ζ(3) and a discussion, from six different points of view, of the rea-
sons for the “miraculous” integrality that makes it work. This example belongs to our
subject because the generating function of the Apéry numbers satisfies a differential
equation of Picard–Fuchs type, and in the main body of the paper, where the links
between differential equations and other fields of mathematics – algebraic geome-
try, modular forms, number theory, mirror symmetry, and topology – are treated,
each of these viewpoints reappears in a more general setting. Specifically, the fur-
ther sections of the paper are as follows. Section 2 discusses the notions of periods
and period functions and the proof that the latter always satisfy a linear differential
equation, with many examples. Section 4 contains a brief overview of the theory of
modular forms and a sketch of the proof that every modular form, when written
as a function of a modular function, also satisfies a linear differential equation (in
fact, of Picard–Fuchs type), again with many examples, including the non-arithmetic
one related to cusps on Hilbert modular surfaces that was mentioned in the opening
paragraph. In the next two sections we turn to number theory, with a discussion of
the zeta function of a variety defined over a number field and its conjectural rela-
tionship to periods and with a brief introduction to the concept of motives. Here
we illustrate the usefulness of the motivic point of view by discussing in some detail
three concrete predictions that it yields, each of which could be verified numerically
or theoretically or both. In the last two sections of the paper proper, the central
role is played by topology rather than number theory, although both appear. Here
we discuss mirror symmetry and the way that the quantum cohomology of a vari-
ety (defined in terms of its Gromov–Witten invariants, i.e., the counting functions of
holomorphic embeddings of curves into the variety) leads to a differential equation
that is conjecturally equivalent to the Picard–Fuchs equation of the “mirror” fam-
ily of varieties. We also explain the Gamma Conjecture, which makes a specific link
between differential equations (specifically, the asymptotics at infinity of the solu-
tions of the quantum differential equation of a variety) and topology (specifically,
the Hirzebruch characteristic class of the variety defined using the power series ex-
pansion of Γ(1 + x)). A final section treats a few miscellaneous topics, including a
very brief discussion of the connection between higher-dimensional hypergeometric
differential equations and the geometry of quotients of the complex 2-ball as men-
tioned above. With the exception of some results proved in Section 7, the paper is
entirely expository.

In preparing this paper I was helped by many people, and I would like to thank
Sasha Beilinson, Spencer Bloch, Philip Candelas, Alessio Corti, Boris Dubrovin, Javier
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Fresán, Sergei Galkin, Stavros Garoufalidis, Günter Harder, Albrecht Klemm, Maxim
Kontsevich, Anton Mellit, Martin Möller, Danylo Radchenko, Emanuel Scheidegger,
Fernando Rodriguez Villegas, Masha Vlasenko, Di Yang, Shing-Tung Yau, Noriko Yui,
Federico Zerbini, Wadim Zudilin and my wife Silke, as well as two very careful anony-
mous referees, for their many suggestions and comments. I am especially grateful
to Duco van Straten and Vasily Golyshev, both of whom were unstinting in sharing
their deep insight and knowledge of the field with me. Golyshev’s influence is visible
everywhere in the paper: several of the results (in particular those about the Gamma
Conjecture in Section 9) were obtained jointly with him, and all three of the “mo-
tivic predictions” discussed in Section 7 came from him. But above all I would like
to thank the late Friedrich Hirzebruch, my teacher and friend, who taught me and
a whole generation of mathematicians better ways to think about mathematics and
better ways to think about the world.

1 Prelude: The Apéry integrality miracle

In 1978, Roger Apéry created a sensation in the mathematical world by proving that
the number

ζ(3) =
∞∑
n=1

1
n3
= 1.2020569031595 · · ·

is irrational. He obtained this as a consequence of the following three remarkable
facts. Let

{An}n≥0 = {1, 5, 73, 1445, 33001, . . .}
and

{Bn}n≥0 =
{

0, 6,
351

4
,

62531
36

,
11424695

288
, . . .

}
be the solutions of the recursion

(n+ 1)3un+1 − (34n3 + 51n2 + 27n+ 5)un +n3un−1 = 0 (1.1)

with initial conditions (A0, A1) = (1,5) and (B0, B1) = (0,6). Then

(a) An ∈ Z for all n ≥ 0 ;
(b) d3

nBn ∈ Z for all n ≥ 0, where dn = l.c.m.{1,2, . . . , n} ;
(c) Bn/An → ζ(3) as n→∞ .

Together, these three facts quickly imply the irrationality of ζ(3): any solution
of (1.1) must behave asymptotically like a constant times n−3/2C±n as n → ∞,
where C = (1 +

√
2)4 = 33.97 · · · , so the difference between Bn/An and its lim-

iting value ζ(3) is O(C−2n) as n → ∞, and since the denominator of Bn/An is
O(e3nCn) = o(C2n) (because dn = en+o(n) and e3 < C) this degree of approximabil-
ity is not compatible with the rationality of ζ(3). As a numerical illustration of the
rapidity of Apéry’s approximations, we have

B4

A4
= 11424695

288× 33001
= 1.2020569031578 · · · .
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Thus (a)–(c) imply Apéry’s sensational discovery that ζ(3) is irrational. But why are
they true? In particular, where does the integrality statement (a) come from? In com-
puting An recursively from (1.1) we must divide by n3 at each stage and hence
should expect a priori that An has denominator n!3. So the integrality assertion (a)
(and to a somewhat lesser degree the denominator bound (b)) is very surprising, and
we will describe in a moment a numerical experiment showing that this phenomenon
is indeed exceedingly rare. In the rest of this section, which serves as motivation for
the rest of the paper, we will list some of the explanations for the integrality that
have been found, giving more details of each in later sections.

First, to justify the word “miracle” in the title of this section we should say some-
thing about the numerical evidence showing how special the integrality is. As well
as his proof of the irrationality of ζ(3), Apéry had found a completely similar proof
of that of ζ(2) (which was of course already known as a consequence of Euler’s
formula ζ(2) = π2/6) based on the 3-term recursion

(n+ 1)2un+1 − (11n2 + 11n+ 3)un −n2un−1 = 0 (1.2)

instead of (1.1), where the two solutions defined by the initial values (A0, A1) = (1,3)
and (B0, B1) = (0,5) satisfy the same properties as before, but now with d3

n replaced
by d2

n and ζ(3) by ζ(2). As part of his study of the congruence properties of such
recursions, about which we will say more later, Beukers [8] generalized (1.2) to the
3-parameter family of “Apéry-like” recursions

(n+ 1)2un+1 − (An2 +An+ B)un + Cn2un−1 = 0 (1.3)

with A, B, C ∈ Z. In [74], I looked at the first 100 million triples (A, B,C) and found
(up to scaling and assuming C(A2 − 4C) 6= 0 to avoid degenerate cases) that only
seven of them gave recursions with integral solutions: the initial one (11,3,−1)
found by Apéry and the six further cases

(0,0,−16), (7,2,−8), (9,3,27), (10,3,9), (12,4,32), (17,6,72) ! (1.4)

So the phenomenon we are talking about is indeed an extremely rare one.
We now return to equation (1.1) and describe five different methods that can be

used to prove the integrality of the Apéry numbers An (and also in each case the
further properties (b) and (c), though we will not describe this), and one further
interpretation of these numbers.

• Apéry’s own proofs of (a)–(c) were based on his explicit formula

An =
n∑
k=0

(
n
k

)2(
n+ k
k

)2

(1.5)

for An and a similar but more complicated expression for Bn. These two formulas
immediately implied all three of his assertions, but his explanation of where they
came from and why they were true was rather obscure and did not convince every-
body. (To quote from [4], “The proof was elementary but the complexity and the
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unexpected nature of Apéry’s formulas divided the audience into believers and
disbelievers.”) A more standard proof was quickly found, and was presented by
Henri Cohen at the International Mathematical Congress in 1978 only two months
after Apéry’s announcement (the full story, in which I was peripherally involved,
is told very amusingly in the article [57] by Alf van der Poorten), and will be repro-
duced and slightly generalized in Section 7. But it did little to dispel the mystery
and everybody felt that there had to be more enlightening explanations.

• The first such explanation was found by Frits Beukers, only three months after
the Helsinki congress. In [4], he showed that the difference Bn − Anζ(3) has the
integral representation

Bn −Anζ(3) =
ˆ 1

0

ˆ 1

0

ˆ 1

0

(
x(1− x)y(1−y)z(1− z)

1− z + xyz

)n dx dy dz
1− z + xyz (1.6)

and that all three properties (a)–(c) follow from this. Of course this formula also
has a somewhat “rabbit-out-of-a-hat” appearance (although it does fit better into
the framework of earlier known irrationality proofs than just the unmotivated
recursion (1.1) for the numbers (1.5)), but as we will see in the next-but-one bullet,
it does in fact have a clear algebraic-geometric meaning.

• A yet more beautiful explanation of what was “really” behind Apéry’s discovery
was found a few years later, again by Beukers, and relies on the theory of modu-
lar forms. We will recall the definition and main properties of modular forms in
Section 4, and here merely reproduce the relevant formulas from [5]. Set

T(q) = q
∞∏
n=1

(1− qn)12(1− q6n)12

(1− q2n)12(1− q3n)12
= q − 12q2 + 66q3 − 220q4 + · · · ,

F(q) =
∞∏
n=1

(1− q2n)7(1− q3n)7

(1− qn)5(1− q6n)5
= 1+ 5q + 13q2 + 23q3 + · · · .

Then, as will be explained in Section 4, the theory of modular forms implies that

F(q) = 1+ 5T(q)+ 73T(q)2 + 1445T(q)3 + · · · =
∞∑
n=0

An T(q)n , (1.7)

which gives the integrality of An since both F and T have integral coefficients.
• In 1984, Beukers and Chris Peters [11] returned to the integral representation (1.6)

and understood its underlying geometry in terms of periods in a family of alge-
braic varieties. The recursion (1.1) is equivalent to the statement that the generat-
ing function

A(t) =
∞∑
n=0

Antn = 1+ 5 t + 73 t2 + 1445 t3 + · · ·

is a solution of the differential equation L(A) = 0, where L is the differential
operator

L = D3 − t (34D3 + 51D2 + 27D + 5)+ t2 (D + 1)3
(
D = t d

dt
)
. (1.8)
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(It is of course this connection to differential equations that explains why we are
using the Apéry proof as entry point into the subject of this paper.) If we substi-
tute the integral representation (1.6) into this generating function, then we obtain
an integral expression for B(t) −A(t)ζ(3) (where B(t) =

∑∞
n=0 Bntn is the com-

panion generating series to A(t)) in which the integrand has singularities along
the surface

Vt : 1− t x(1− x)y(1−y)z(1− z)
1− z + xyz = 0 . (1.9)

Beukers and Peters showed that Vt for generic t is birationally equivalent to a
K3 surface with Picard number 19 and that LA = 0 is the Picard–Fuchs differen-
tial equation corresponding to this family. (We will recall this notion in the next
section.) This is the point of view that will be the most important for this paper.

• Next, and as a consequence of the above, there is a simple description of the
numbers An in terms of Laurent polynomials. If we make the substitution x →
(x + z− 1)/yz in the defining equation of Vt , then the new equation has the easy
form 1− tL(x,y, z) = 0, where L(x,y, z) is the Laurent polynomial

L(x,y, z) = (y − 1)(z − 1)(x + z − 1)(yz − x − z + 1)
xyz

(1.10)

(“Landau–Ginzburg model”). The formula for An then becomes simply

An = c.t.
(
Ln
)
, (1.11)

where “c.t.” denotes the constant term in a Laurent polynomial in several vari-
ables. This expression gives the integrality of An instantly since L has integral
coefficients, and we also see by a short calculation that it reproduces Apéry’s for-
mula (1.5).

• Finally, the numbers An have an interpretation in terms of Gromov–Witten theory.
This is considerably less elementary to explain than the other points of view, so
we give only a brief description in words here, referring the reader to Section 8
and the literature cited there for more definitions and explanations. To any Fano
variety F one can associate a sequence of rational numbers vn(F) that satisfy
a linear recursion with coefficients that are determined by the Gromov–Witten
invariants of F (= enumeration of holomorphic maps P1(C) → F ; the number
vn(F) is an appropriately defined volume of the moduli space of all such maps of
degree n). On the other hand, mirror symmetry predicts that F has an associated
“mirror manifold” (actually a family of algebraic manifolds) and that the numbers
n!vn(F) agree with the Taylor coefficients of a period of this mirror. If we take
for F a particular Fano 3-fold called V12, then the mirror exists and is precisely the
Beukers-Peters family of K3 surfaces discussed above, so the numbers n!vn(V12)
coincide with the Apéry numbers An. This gives a completely different explanation
of the meaning of the Apéry numbers, and also another reason to at least expect
them to be integral, since for geometric reasons the invariants vn(F) of any Fano
variety are believed (though not known) to have denominator at most n! .
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2 Differential equations and algebraic geometry

The connections of differential equations with both arithmetic and topology arise
through the periods of algebraic varieties. By definition, a period on an algebraic
variety X defined over Q (or any number field, but in this paper we stick to Q for
simplicity) is a number defined by integrating an algebraic differential form on X
over a submanifold (either closed or with a boundary defined over Q). The class of
these numbers forms a countable subring P ⊂ C that contains all algebraic num-
bers and many of the numbers of greatest interest in mathematics, such as π , log 2,
ζ(n) (or more generally multiple zeta values, which will occur in Section 9), periods
of modular forms, Mahler measures of polynomials with rational coefficients, and
many others. They are also related to special values of motivic zeta functions (see
Section 6). A survey of periods was given in [50].

Just as the notion of algebraic numbers (numbers satisfying a polynomial equa-
tion over Q) can be generalized to the notion of algebraic functions (functions that
satisfy a polynomial equation over Q(t) and whose values at algebraic arguments
are then automatically algebraic), the notion of periods can be extended to that of
period functions (functions of t that are defined by the integral over a submanifold
of a differential form depending algebraically on a parameter t, and which then au-
tomatically assume values in P at algebraic arguments). The key fact, whose proof
will be recalled below, is that any period function satisfies a linear differential equa-
tion with algebraic coefficients (Picard–Fuchs differential equation). It is this fact that
creates the link between the three subjects constituting the title of this paper.

In this section, after reviewing differential forms and the de Rham theorem, we
will discuss the definition and differential equation of period functions in a little
more detail and give a number of examples. These notions, and also these examples,
will then recur in the rest of the paper in connection with other more specific topics
like modular forms, zeta functions, and mirror symmetry. First, however, we present
a simple and prototypical example.

Example: The circumference of an ellipse

The historically earliest example of the differential equation satisfied by a period
function was given by Euler in 1733,1 who showed that the quarter-length E of an
ellipse of eccentricity t < 1,

1. See pp. 85 ff. of [39]. Both this book by Christian Houzel and the book [33] by Jeremy Gray
contain a wealth of information about the early history of elliptic and hypergeometric functions,
and of differential equations in general. See also the very nice expository paper [67] by Burt
Totaro.
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1

E

t

considered as a function of the parameter k =
√

1− t2, satisfies the differential
equation

k(k2 − 1) E′′(k)+ (k2 − 1) E′(k)− kE(k) = 0 . (2.1)

This is a consequence of the following calculation

E(k) =
ˆ π/2

0

√
cos2 θ + t2 sin2 θ dθ =

ˆ π/2

0

√
1− k2 sin2 θ dθ

=
ˆ 1

0

√
1− k2x2

1− x2
dx (x = sinθ)

= π
2

∞∑
n=0

(
1/2
n

)(
−1/2
n

)
k2n = π

2

(
1− k

2

4
− 3k4

64
− 5k6

256
− · · ·

)
,

in which the first equation comes directly from the definition of E, the second ex-
presses E as a period, and the third expresses it as a power series in k2, from which
the differential equation (2.1) follows immediately by term-by-term differentiation.
The power series for 2

π E(k) occurring here is the special case F(− 1
2 ,

1
2 ; 1;k2) of the

Euler–Gauss hypergeometric function

F(a, b; c; t) =
∞∑
n=0

(a)n(b)n
(c)nn!

tn ( (a)n := a(a+ 1) · · · (a+n− 1) ), (2.2)

a very important and beautiful class of special functions, which the reader can learn
more about from the wonderful book [72] by Masaaki Yoshida.

Review of differential forms and de Rham’s theorem

The fact that period functions satisfy a differential equation is closely related to the
de Rham theorem describing the cohomology of a manifold in terms of differential
forms, so we begin by giving a brief review of this. This material is standard and can
be skipped by any reader who is familiar with it.

Let X be a (compact, smooth, oriented) manifold of real dimension m. Then
for every integer r between 0 and m we have the r th homology group Hr (X;Z),
which is an abelian group of finite rank br (X) (called the r th Betti number of X)
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whose elements are represented by closed r -dimensional “chains" modulo bound-
aries of (r + 1)-dimensional chains. (For an intuitive picture, one can think of
r -dimensional oriented submanifolds of X modulo the relation that such a sub-
manifold is equated to 0 if it is the boundary of an oriented (r + 1)-dimensional
submanifold of X.) We also have the corresponding cohomology group Hr (X;Z),
which is an abelian group of the same rank that up to torsion can be identi-
fied with the dual of Hr (X;Z), as well as the br (X)-dimensional vector space
Hr (X;C) = Hr (X;Z) ⊗Z C = Hom(Hr (X;Z),C) (r th cohomology group with com-
plex coefficients).

Differential forms constitute the language that is needed to formulate the classi-
cal theorems of many-variable calculus for general manifolds. Let X and m be as
above. By definition, a 0-form on X is a smooth function on X, represented in local
coordinates x = (x1, . . . , xm) on X by a C∞-function f(x) = f(x1, . . . , xm), a 1-form
is a formal linear combination

∑n
i=1 fi(x)dxi, where each fi is C∞ and “dxi” is a

formal symbol meant to suggest a small change of the coordinate xi with all of the
other coordinates being kept constant, and an r -form for arbitrary 0 ≤ r ≤ m is a
formal linear combination of r -fold products dxi1 · · ·dxir with C∞-functions of x
as coefficients, where the multiplication of the symbols dxi is required to satisfy the
anticommutativity property dxi dxj = −dxj dxi. (In particular, (dxi)2 = 0, so that
the iν have to be distinct and one can assume that 1 ≤ i1 < · · · < ir ≤m.) The basic
operation on differential forms is the “exterior derivative” d, which sends r -forms
to (r + 1)-forms. It is defined on 0-forms by the formula d(f) =

∑n
i=1

∂f
∂xi dxi (cor-

responding to the gradient in multi-variable calculus), on the special 1-forms dxi
by d(dxi) = 0, and then inductively on all forms by requiring d to be linear and
to satisfy the derivation property d(ω1ω2) = d(ω1)ω2 ±ω1d(ω2) for any two dif-
ferential forms ω1 and ω2 on X. A simple calculation then shows that d(dω) = 0
for any differential form ω. In particular, if we define an r -form ω to be closed if
dω = 0 and exact if ω = dη for some (r − 1)-form η, then all exact forms are
closed.

The key fact about differential forms is Stokes’s theorem
´
A dη =

´
∂A η, which

generalizes the fundamental theorem of calculus
´ b
a f

′(x)dx = f(x)
∣∣x=b
x=a as well as

many classical theorems of multivariate calculus like the divergence and curl theo-
rems. This shows immediately that the integral of a closed r -form ω over a closed
r -dimensional submanifold C of X depends only on the homology class [C] of C in
Hr (X;Z) (because if C = ∂B is homologous to 0 then

´
Cω =

´
∂Bω =

´
B dω = 0), and

that this integral vanishes if ω is exact (because
´
Cω =

´
C dη =

´
∂C η = 0). In other

words, every closed form on X represents a cohomology class with complex coeffi-
cients, and this cohomology class is unchanged if the form is changed by the addi-
tion of an exact form. De Rham’s theorem is the converse statement, that every class
in Hr (X;C) can be obtained by integrating a closed r -form on X which is uniquely
determined up to an exact form. In more formal language, de Rham’s theorem ex-
presses Hr (X;C) as the (finite-dimensional) quotient of the (infinite-dimensional)
space of closed complex-valued r -forms on X by its (infinite-dimensional) subspace
of exact r -forms.
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The Picard–Fuchs differential equation

We first give a rough and not quite correct explanation of this to give the main idea,
and then a more careful one. The situation we are now interested in is when the
manifold denoted X above is replaced by a family {Xt}t∈U of manifolds depending
smoothly on a parameter t in some “base space” U and we have a closed r -form
ωt on each Xt depending smoothly on t. We can then think of the Xt as the pre-
images π−1(t) of a smooth map π from some larger “ambient space” X to U and
take ωt to be the restriction ωt = ω|Xt of some (not necessarily closed!) r -form ω
on X to Xt . The statement we want to make is a local one, so we can assume that t
moves in a small open subset of U over which the mapping π is locally a product.
Then the fibres Xt are smooth and diffeomorphic to each other, so the homology
groups Hr (Xt ;Z) can be canonically identified with one another and we can speak
(locally) of a “constant” cycle Y , meaning a smoothly varying family of submanifolds
Yt ⊂ Xt with [Yt] ∈ Hr (Xt ;Z) constant. We denote by P(t) the integral of our chosen
r -formωt over the submanifold Yt . The argument producing a differential equation
satisfied by P(t) then runs as follows. Since our map is locally a product, we can take
t and a coordinate system x = (x1, . . . , xm) on Xt as local coordinates on X, and
then ∂/∂t commutes with the partial derivatives ∂/∂xi and hence with the exterior
derivative d on Xt as introduced above. It follows that if the r -form ωt(x) is closed,
then so is the r -form ∂iωt(x)/∂ti for i ≥ 0, so by de Rham’s theorem these forms
for i = 0,1, . . . , b, where b = br (Xt) = dimCHr (Xt ;C), have a linear combination
(with coefficients that are smooth functions of t) that is exact. The integral over Y of
this linear combination is then 0, and this is our desired differential equation:

b∑
i=0

ai(t)
∂iωt(x)
∂ti

= d(ηt) ⇒
b∑
i=0

ai(t)
diP(t)
dti

= 0 .

If ωt depends algebraically on t as well as on the coordinates in Xt , then the co-
efficients ai(t) are also algebraic functions and we get the desired Picard–Fuchs
differential equation. In our examples, the base space U will always be a complex
curve, but in practice it will usually be the complex line C or projective line P1(C),
in which case the coefficients of the differential equation will be rational functions
and hence, after multiplying by a common denominator, polynomials in t, implying
that the Taylor coefficients of any local (power series) solution of the differential
equation will satisfy a recursion of finite order with polynomial coefficients.

In fact the argument just given is not correct as it stands, for two reasons. First
of all, the classical de Rham theorem applies to real manifolds and C∞ forms,
while we want to work with algebraic manifolds over C and holomorphic (algebraic)
forms. If X is a smooth complex variety of complex dimension n, so real dimension
m = 2n, we can choose local complex coordinates z = (z1, . . . , zn) and take x to
be (x1, y1, . . . , xn, yn), where zj = xj + iyj . Then we can take dzj = dxj + idyj
and dz̄j = dxj − idyj rather than dxj and dyj as our basis of 1-forms over
the algebra of smooth functions on, and similarly dzj1 . . . dzjpdz̄k1 · · ·dz̄kq (with
p, q ≥ 0, p + q = r ) as our basis of r -forms. The cohomology classes represented
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by linear combinations of such forms with given p and q are said to be of Hodge
type (p, q), the complex subspace of Hr (X;C) consisting of such classes is de-
noted Hp,q(X), and a fundamental theorem of Hodge says that for a smooth pro-
jective variety X the full cohomology group Hr (X;C) is the direct sum of the spaces
Hp,q(X) with p + q = r . (If X is not smooth or not compact, then there is still a
Hodge theory but it has a more complicated structure, due to Deligne, that we will
not describe.) When we speak of an “algebraic” r -form on X, we mean a form of
type (r ,0) with algebraic (and in particular holomorphic) coefficients, but then we
are only getting part of the cohomology. For instance, if X is a compact Riemann
surface of genus g, then the first cohomology group H1(X;C) has dimension 2g,
while the part H1,0(X) representable by algebraic forms has dimension only g.

The second problem is that if our variety X belongs to a family {Xt} and we have
an algebraically vanishing family of closed r -formsωt on Xt , then when we differen-
tiate with respect to the parameter t we can create poles, as we will see explicitly in
Example 1 (Legendre elliptic curve) in the next section. This is in fact connected with
the first point, since if all derivatives diωt/dti were holomorphic then we would
find a differential equation of order dimHr ,0(X), rather than the correct dimHr (X),
for the periods. In the case of curves (which is the context of the classical Picard–
Fuchs differential equation) there is a simple solution. If X is a Riemann surface
(complex curve), then instead of using the de Rham theorem to represent H1(X) in
terms of holomorphic and antiholomorphic 1-forms we can represent it by mero-
morphic forms ω of the second kind modulo exact forms df , where “second kind”
means that the residue of ω at each of its poles vanishes. Such a form represents a
well-defined cohomology class on X because the value of its integral over a closed
real curve Y ⊂ X does not change as Y moves across a singularity of ω and hence
depends only on the homology class of Y , and the class of meromorphic 1-forms of
the second kind is also closed under differentiation with respect to a parameter in
an algebraically defined family, so that everything is okay. For higher-dimensional
varieties there is still a notion of differentials of the second kind (locally the sum of
a smooth form and an exact one; see pp. 454–6 of [34]), but it is no longer sufficient
to work with these, and one needs instead a general algebraic de Rham theory, in
which the non-algebraically defined space Hp,q(X) is replaced by qth cohomology
group of X with coefficients in the sheaf of holomorphic r -forms, which is defined
algebraically. (In general, one needs hypercohomology to define it correctly, but if
X is affine – i.e., a subvariety of some CN defined by polynomial equations – then
ordinary cohomology suffices.) The requisite algebraic de Rham theorem was proved
by Alexander Grothendieck [35], and a full algebraic treatment of Picard–Fuchs dif-
ferential equations in arbitrary dimensions and over arbitrary fields was given by
Nicholas Katz (cf. [42], whose introduction gives a very clear overview of the prob-
lems involved, and also [43], [46] and [44]).
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Properties of Picard–Fuchs differential equations

The derivation sketched above shows that the Picard–Fuchs differential equation of
the function t ,

´
[Y]ωt depends only on the form ωt and not on the homology

class [Y] over which it is integrated, and this is just as it should be: a linear differen-
tial equation of order b has a precisely b-dimensional space of solutions at a generic
point (Cauchy), and by varying [Y] over the b-dimensional space Hr (Xt ;Z) ⊗ C we
obtain all of these solutions. This has a very important consequence. For any linear
differential equation of order b, say defined with respect to a parameter t ranging
over C minus a finite set S of singular points, we can choose a basis of b solutions at
some non-singular point t0 and analytically continue them around any path in CØS.
If we choose a closed path, then the b analytically continued solutions again be-
long to the space of solutions at t0, so they are linear combinations of the original
solutions. This gives a b × b matrix depending only on the homotopy class of the
closed path and hence a homomorphism from π1(C Ø S, t0) to GL(b,C), called the
monodromy representation. In the case of the Picard–Fuchs differential equation of
a period function, the basis of solutions can be chosen by integrating over a Z-basis
of Hr (Xt0 ;Z), and it follows that the monodromy representation of the differential
equation that we have found is always integral, i.e., with respect to a suitable basis
of the space of solutions at a given point it takes values in the subgroup GL(b,Z) of
GL(b,C). However, we should warn the reader explicitly that the minimal differential
equation satisfied by a period function may not have integral monodromy, because
this equation may arise from a lower-dimensional subspace of the cohomology (we
will see examples below) and this piece may not be defined over Q. In such a case, the
monodromy matrices of the Picard–Fuchs differential equation (in a suitable basis)
may have entries with values in a number field rather than in Q.

As well as this integrality (or near-integrality) of the monodromy, Picard–Fuchs
differential equations have several other special properties among the class of all
linear differential equations with polynomial coefficients:

• They have only regular singular points. We recall the definition: if we write the
equation as y(n) + a1(x)y(n−1) + · · · + an(x)y = 0, where y(i) = diy/dxi and
a1(x), . . . , an(x) are rational functions, then a point x0 ∈ C is called a singular
point of the equation if some ai(x) has a pole at x0 and is regular if the pole of
every ai at x0 has order at most i. The same definitions apply also to x0 = ∞ ∈
P1(C) after making the change of variables x , 1/x in the differential equation.

• Their local monodromy around any singular point (i.e., the matrix representing the
analytically continued solutions in terms of the original ones when we analytically
continue a basis of solutions near the singular point around a small loop circling
it) is quasiunipotent (all its eigenvalues are roots of unity).

• The numerators and denominators of the Taylor coefficients of a solution of the
differential equation around a singular point have at most exponential growth,
i.e., they satisfy the same integrality or near-integrality as we saw for the Apéry
sequences {An} and {Bn} at the beginning of this paper.
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It is believed that these properties characterize Picard–Fuchs differential equations.
For a detailed discussion and more precise conjectures, see Simpson’s article [65].

3 Examples

In this section we give several examples of Picard–Fuchs differential equations.

Example 1: The Legendre elliptic curve

Consider the elliptic curve given by the Legendre equation

Et : y2 = x (x − 1) (x − t) , (3.1)

where t is a complex parameter. On this curve, like on any elliptic curve given by a
Weierstrass equation over C, there is a unique (up to a constant multiple) holomor-
phic 1-form, given by

ωt =
dx
y
= dx√

x(x − 1)(x − t)
.

This form is automatically closed because it is a holomorphic 1-form and our variety
has complex dimension 1. With a little bit of experimentation one finds an exact
form that is a combination of partial derivatives of ωt with respect to t, namely

−2d
(
x1/2 (x − 1)1/2

(x − t)3/2
)
= (x − t)

2 + 2(2t − 1)(x − t)+ 3t(t − 1)
x1/2 (x − 1)1/2 (x − t)5/2 dx

=
(
1+ 4(2t − 1)

∂
∂t
+ 4t(t − 1)

∂2

∂t2
)
ωt ,

(3.2)

and from this it follows that the integral P(t) =
´
γωt for any closed curve γ on Et 2

satisfies the Legendre differential equation

(
1+ 4(2t − 1)

d
dt
+ 4t(t − 1)

d2

dt2
)
P(t) = 0 .

The integral basis of the space of solutions that we discussed at the end of Section 2
can be seen clearly in this example. Suppose for concreteness that t is a real number
between 0 and 1. As a basis of the rank 2 group H1(Et ;Z) we take the classes [Ci]
of the two curves C1 and C0 on Et given by the double cover y = ±

√
x(x − 1)(x − t)

2. Note that both ∂ωt/∂t and ∂2ωt/∂t2 have poles at x = t, but are meromorphic 1-forms of the
second kind (vanishing residues), in accordance with the discussion in the previous section.
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of the real interval [1,∞) and the double cover y = ±i
√
|x|(|x| + 1)(|x| + t) of the

real interval (−∞,0], respectively. Then

ˆ
C1

ωt = 2

ˆ ∞

1

dx√
x(x − 1)(x − t)

= 2
∞∑
n=0

(
−1/2
n

)
(−t)n

ˆ ∞

1

dx
xn+1

√
x − 1

= 2π
∞∑
n=0

(
−1/2
n

)2

tn = 2π F( 1
2 ,

1
2 ; 1; t) (3.3)

by a term-by-term expansion-and-integration calculation exactly similar to the one
used for Euler’s equation (2.1), while a similar but messier computation gives

ˆ
C0

ωt =
2
i

∞∑
n=0

(
−1/2
n

)2 (
log

( t
16

)
+ 4

( 1
n+ 1

+ · · · + 1
2n

))
tn (3.4)

for the integral ofωt over the other basis element. These two functions of t are then
a Z-basis of the canonical Z-lattice of solutions of the differential equation whose
existence was explained in the last section, and the monodromy matrices obtained
by analytically extending them around a closed loop in CØ {0,1} lie in the subgroup
SL(2,Z) of GL(2,C). This statement is closely related to the modular interpretation
of the Legendre family that will be discussed in Section 5.

Example 2: The Dwork quintic pencil

Our next example, which we will see again several times later in this paper, is the
subvariety Qψ ⊂ P4(C) given by the homogeneous equation

Qψ : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = ψx1x2x3x4x5 , (3.5)

where ψ is a complex parameter. For ψ 6= 0, 5 this is a smooth quintic hypersurface
in P4 and as such a Calabi–Yau 3-fold. The family {Qψ}ψ is very famous because
it was the starting point of the whole field of “mirror symmetry” (to which we will
return in Section 8) in the famous 1991 paper [14] by Candelas, de la Ossa, Green and
Parkes, in which its Picard–Fuchs differential equation was related to the problem of
counting rational curves on generic quintic hypersurfaces in P4(C).

To say that Qψ is a Calabi–Yau 3-fold means that there is a nowhere vanishing
holomorphic 3-form Ω on it. Using non-homogeneous coordinates (w : x : y : z : 1)
rather than (x1 : · · · : x5) on P4(C), we can give this form explicitly by

Ω = dx dy dz
∂F/∂w

∣∣∣∣
F=0
= dx dy dz
xyz − 5ψ−1w4

∣∣∣∣
F=0
, (3.6)

where F = Fψ(w,x,y, z) = wxyz−ψ−1(w5+x5+y5+z5+1) . (A similar formula
would apply to any smooth hypersurface F = 0 of degree n in Pn−1(C), such a hy-
persurface always being a Calabi–Yau manifold.) To find the corresponding Picard–
Fuchs differential equation, we compute the integral of this form over a suitably
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chosen 3-cycle in Qψ and then, imitating Euler’s derivation of the differential equa-
tion (2.1), find the differential equation satisfied by this integral. The 3-cycle we
choose is the deformed 3-torus given (for |ψ| > 5) by

T : |x| = 1, |y| = 1, |z| = 1, w = w(x,y, z) (|ψ| large) ,

where w(x,y, z) denotes the “small” solution of the equation Fψ(w,x,y, z) = 0
(i.e., the one given asymptotically by w ≈ (1 + x5 + y5 + z5)/ψxyz, as opposed
to the four “large” solutions w ≈ iν 4

√
ψxyz with ν ∈ Z/4Z). From the Lagrange

inversion formula we obtain the two power series expansions

w =
∞∑
n=0

(
5n
n

)
4n+ 1

(1+ x5 +y5 + z5)4n+1

(ψxyz)5n+1
,

1
1− 5w4/ψxyz

=
∞∑
n=0

(
5n
n

)
(1+ x5 +y5 + z5)4n

(ψxyz)5n
,

and combining the second of these with the Cauchy integral formula we obtain

1
(2πi)3

ˆ
T
Ω = 1

(2πi)3

ˆ
T

1
1− 5w4/ψxyz

dx
x
dy
y
dz
z

=
∞∑
n=0

(
5n
n

)
c.t.
(
(1+ x5 +y5 + z5)4n

(ψxyz)5n

)
(“c.t.” as in (1.11))

=
∞∑
n=0

(
5n
n

)
(4n)!
n!4

ψ−5n =
∞∑
n=0

(5n)!
n!5

ψ−5n . (3.7)

This formula, in which the sum on the right satisfies a hypergeometric differential
equation (see the next subsection), is the celebrated result of Candelas et al.

We make two further comments in connection with this example. First of all, the
differential equation satisfied by the function (3.7) has order only 4, whereas the
third Betti number of Qψ is the much larger number 204. In fact, there is an obvious
abelian group of order 125 (given by multiplying the coordinates xi in (3.5) by 5th
roots of unity), and the invariant part of H3(Qψ) under the action of this group
has dimension 4. In other words, our differential equation corresponds to a “natural
piece” of the cohomology group rather than to the whole group, a phenomenon that
we already mentioned in the previous section. Such “natural pieces” are precisely
Grothendieck’s motives, to which we will come back in Section 6.

Secondly, there is the question of the integrality of the monodromy. Here the mon-
odromy group is in fact integral (even though the differential equation corresponds
to only part of the full cohomology group) and a complete description of it was
given in [14], which also gave the transition matrices between the “Frobenius bases”
of solutions of the hypergeometric equation at 0 and ∞ and the integral base. We
will discuss this in more detail in Example 2 of Section 7.
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Example 3: Hypergeometric functions

An extremely important class of differential equations are the ones satisfied by the
Euler–Gauss hypergeometric function (2.2) and its generalization

F(a1, . . . , ar ;b1, . . . , bs ; t) =
∞∑
n=0

(a1)n · · · (ar )n
(b1)n · · · (bs)nn!

tn , (3.8)

sometimes also denoted rFs
(a1, . . . , ar
b1, . . . , bs

∣∣∣ t). We will be most interested in the case

when s = r − 1 and all the a’s and b’s are rational numbers, a typical example being
the function appearing in (3.7), which can be written F( 1

5 ,
2
5 ,

3
5 ,

4
5 ; 1,1,1; (5/ψ)5). Un-

der these assumptions the hypergeometric differential equation is always a Picard–
Fuchs equation. (An explicit expression of the function (3.8) in this case as a period
integral is given by its classical expression as the integral over [0,1]d−1 of a mono-
mial in x1, . . . , xd−1,1 − x1, . . . ,1 − xd−1, and 1 − x1 · · ·xd−1t.) Here the condition
r = s − 1 is equivalent to the condition that the three singular points x = 0, 1, ∞ of
the differential equation are regular, and the rationality condition says that the local
monodromy matrices at these singularities are quasiunipotent.

If we write the expansion (3.8) as
∑
untn, then we see from the definition of the

“ascending Pochhammer symbol” (a)n as a(a + 1) · · · (a + n − 1) that the coeffi-
cients un satisfy the two-term recursion

b(n)un+1 = a(n)un

with polynomials a(x) =
∏r
i=1(x + ai) and b(x) =

∏s+1
i=1(x + bi) (bs+1 = 1). This

translates into the differential equation LF = 0 satisfied by (3.8), where L is the
hypergeometric differential operator L = a(D)t − b(D − 1), with D = t d/dt as
in (1.8). The fact that the recursion has only two terms corresponds to the fact that
the differential equation has only three singular points at 0, 1 and ∞ ; three-term
recursions like the ones (1.1) and (1.2) satisfied by the Apéry sequences correspond
to differential equations with four singularities (two of them again at 0 and ∞), and
more generally Picard–Fuchs differential equations with singularities at 0, ∞, and
` finite points typically correspond to recursions with ` + 1 terms (or “length `”).

Example 4: Algebraic functions

Any algebraic function, i.e., any function y(x) satisfying a polynomial equation
P(x,y(x)) = 0 with complex coefficients, satisfies a linear differential equation
with polynomial coefficients. Indeed, all derivatives of y belong to the function field
K = C(x,y)/(P(x,y) = 0), as we see from the formula dy

dx = −
∂P/∂x
∂P/∂y and induction,

and since this field has dimension d over C(x), where d is the degree of P with
respect to y , we see that the derivatives y,y′, . . . , y(d) must be linearly dependent
over C[x]. This differential equation always has regular singularities and is in fact al-
ways a Picard–Fuchs differential equation, because evaluating an algebraic function
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at a point is just the special case r = 0 of integrating an algebraic r -form over an
r -dimensional manifold. The monodromy group is given by permutation matrices.

Sometimes hypergeometric functions are algebraic, and these cases are especially
interesting. The criterion for an Euler–Gauss hypergeometric function (2.2) to be al-
gebraic was found by Schwarz in the 19th century, and the corresponding criterion
for the general case (3.8) by Frits Beukers and Gert Heckman in 1989 [10]. A particu-
larly nice case is that of hypergeometric functions

F(t) = Fc,d(t) =
∞∑
n=0

(c1n)! · · · (cpn)!
(d1n)! · · · (dqn)!

tn (3.9)

involving only factorials, like (3.7). Here Villegas found that the Beukers-Heckman
criterion is equivalent to the three conditions q = p+1,

∑
i ci =

∑
j dj , and Fc,d(t) ∈

Z[[t]]. A simple example is the binomial coefficient series

BM,N(t) =
∞∑
n=0

(
Mn
Nn

)
tn =

∞∑
n=0

(Mn)!
(Nn)! ((M −N)n)! t

n (3.10)

(M ≥ N ≥ 0), which we will discuss in §7. Three more complicated examples are

∞∑
n=0

(6n)!n!
(3n)! (2n)!2

tn,
∞∑
n=0

(10n)!n!
(5n)! (4n)! (2n)!

tn,
∞∑
n=0

(30n)!n!
(15n)! (10n)! (6n)!

tn . (3.11)

The integrality of the coefficients of the last of these series (equivalent to the state-
ment that the periodic and integer-valued function [30x]+[x]−[15x]−[10x]−[6x]
is non-negative) is a famous discovery of Chebyshev, who used it to prove the weaker
version c x

logx < π(x) <
6c
5

x
logx (c = log(30−1/3021/231/351/5) = 0.921 · · · ) of the

prime number theorem almost half a century before the full theorem was proved
by Hadamard and de la Vallée Poussin. The first two of the functions (3.11) have
degree 6 and 30 over Q(t), respectively, whereas the expected degree of the last one,
according to Villegas, is a whopping 483840.

4 Differential equations and modular forms

Modular forms are a wonderful mathematical theory because they give an especially
clear link between complex analysis and arithmetic. (The same holds also for higher-
dimensional modular objects, a prime example being the Hilbert modular surfaces
and Hilbert modular forms studied by Hirzebruch.) Specifically, on the one side they
have an arithmetic nature associated with words like

Hecke theory, eigenvalues, L-functions, Galois representations, . . .

and on the other side an analytic nature associated with words like
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periods, special values, differential equations, . . .

They thus fit particularly well into the subject matter of this paper, and many of our
examples – including of course the Apéry numbers with which we started – have a
modular nature.

In this section we recall the definitions and main properties of modular forms,
with many examples, and say something about their arithmetic side (Hecke theory
and L-functions), but only briefly since we will return to this in the next section. Our
main goal will be to explain and sketch the proof of the following

Key Fact. A modular form of positive integral weight k, written as a function of
a modular function on the same group, satisfies a linear differential equation of
order k+ 1 with algebraic coefficients.

We refer to [13] for more details, examples, and applications of all of these topics.

Modular forms and modular functions

We denote by H the complex upper half-plane {τ ∈ C | =(τ) > 0}, on which the
group SL(2,R) acts in the usual way by Möbius transformations:

( a b
c d
)
τ = aτ+b

cτ+d . Let
Γ be a discrete subgroup of SL(2,R) (Fuchsian group) for which the quotient H/Γ
has finite area. We can visualize this quotient by choosing a fundamental domain
for this action, as illustrated in the figure (which shows the fundamental domains
for the standard modular group Γ1 = SL(2,Z), for a so-called triangle group, and for
the non-arithmetic group that will be discussed at the end of this section), but the
important object is the quotient H/Γ , not the fundamental domain. This quotient is
a Riemann surface that is either compact (as in the middle picture) or else can be
compactified by the addition of finitely many “cusps” (one in the first picture, three
in the third) and then becomes a projective curve XΓ = H/Γ . A modular function
on Γ is then a meromorphic function on XΓ , i.e., a Γ -invariant meromorphic function
in H together with appropriate growth properties at the cusps if H/Γ is non-compact,
whereas a modular form of (integral) weight k on Γ is a holomorphic function in H
satisfying the more general transformation equation f

(aτ+b
cτ+d

)
= (cτ + d)k f(τ) for

all τ ∈ H and
( a b
c d
)
∈ Γ , again together with a restriction on the growth of f(τ) at

the cusps if H/Γ is non-compact. This restriction is most easily stated in terms of
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the Fourier expansion of f . If Γ has cusps, then without loss of generality we can as-
sume that one of them is at infinity and that the stabilizer of ∞ in Γ is generated by
the matrix T =

( 1 1
0 1

)
(which pictorially means that the part of the fundamental do-

main above a certain height is a strip of width 1); then f(τ) has a Fourier expansion
f(τ) =

∑
n∈Z a(n)e2πinτ and the growth assumption is that the Fourier coefficients

a(n) = af (n) are bounded by a polynomial in n. This (non-obviously) implies that
a(n) vanishes for n < 0, so we can also think of this Fourier expansion as the Taylor
expansion

∑
a(n)qn of f with respect to the local parameter q = q2πiτ of XΓ at in-

finity. The modular functions that we consider will also always be holomorphic in H,
so they also have expansions

∑
a(n)qn, but now possibly with non-zero coefficients

a(n) for finitely many negative values of n and with the weaker growth property
a(n) = O(C

√
n) rather than a(n) = O(nC).

In the rest of this section we give examples of modular forms and modular func-
tions, concentrating mostly on the full modular group Γ1. Our first and very impor-
tant example is the Dedekind eta-function

η(τ) = q1/24
∞∏
n=1

(1− qn) = q1/24 (1− q − q2 + q5 + q7 − · · ·
)
. (4.1)

This is not quite a modular form as defined above, but instead a modular form of
weight 1/2 with non-trivial multiplier system on Γ1. We omit the exact definition of
these words, but here they mean that η(τ) satisfies the transformation properties
η(τ + 1) = eπi/12 η(τ) and η(−1/τ) =

√
τ/iη(τ) with respect to the generators

T =
( 1 1

0 1

)
and S =

( 0 −1
1 0

)
of Γ1. It follows that the 24th power

∆(τ) = q
∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − · · · − 6048q6 + · · · (4.2)

of η(τ), the so-called discriminant function, is a true modular form of weight 12. We
also have the weight k Eisenstein series Ek(τ) on Γ1 of any even weight k ≥ 4, the
first three of which are given by

E4(τ) = 1+ 240
∞∑
n=1

n3qn

1− qn = 1+ 240q + 2160q2 + 6720q3 + · · · , (4.3)

E6(τ) = 1− 504
∞∑
n=1

n5qn

1− qn = 1− 504q − 16632q2 − 122976q3 − · · · ,

E8(τ) = 1+ 480
∞∑
n=1

n7qn

1− qn = 1+ 480q + 61920q2 + 1050240q3 + · · · .

One shows fairly easily that the ring M∗(Γ1) of all modular forms on Γ1 is the free
algebra on two generators E4 and E6, and this immediately implies identities like
E8 = E2

4 or 1728∆ = E3
4−E2

6 that would be completely mysterious from an elementary
point of view, showing at a very simple level the power of modularity.
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We also mention the weight 2 Eisenstein series

E2(τ) =
∆′(τ)
∆(τ)

= 1− 24
∞∑
n=1

nqn

1− qn = 1− 24q − 72q2 − 96q3 − · · · .

(Here and from now on f ′(τ) for a holomorphic function f in H will denote the
derivative of f with respect to 2πiτ ; this is convenient as it preserves the ratio-
nality or integrality of the Fourier expansion of f .) It is not a modular form but a
so-called quasimodular form on Γ1, meaning that it satisfies the modified transfor-
mation property E2

(aτ+b
cτ+d

)
= (cτ +d)2E2(τ)− 6i

π c(cτ +d) for τ ∈ H and
( a b
c d
)
∈ Γ1.

The ring M̃∗(Γ1) of all quasimodular forms (we omit the definition) on Γ1 is generated
freely by E2, E4 and E6 and is closed under differentiation, with E′2 =

1
12 (E

2
2 − E4),

E′4 =
1
3(E2E4 − E6), E′6 =

1
2(E2E6 − E2

4) (Ramanujan’s formulas).
As the basic example of a modular function we have the modular j-invariant

j(τ) = E4(τ)3

∆(τ)
= q−1 + 744+ 196884q + 21493760q2 + · · · , (4.4)

which is invariant under Γ1 because both E3
4 and ∆ are modular forms of weight 12.

This function gives a holomorphic isomorphism between H/Γ1 and C and between
the compactification XΓ1 = H/Γ1 ∪ {∞} and P1(C). Such a modular function (on any
Fuchsian group of genus 0) is called a Hauptmodul.

One can also give explicit examples of modular functions and modular forms for
other Fuchsian groups Γ . The most important for arithmetic purposes are the so-
called “congruence subgroups” of Γ1 such as the group Γ0(N), which is defined for
any integer N ≥ 1 as the set of matrices

( a b
c d
)
∈ Γ1 with c divisible by N , or the

principal congruence subgroup Γ(N), defined as the set of matrices in Γ1 that are
congruent to the identity modulo N . For instance, on Γ0(2) we have the modular
form of weight 2

E2,2(τ) = 2E2(2τ)− E2(τ) = 1+ 24q + 24q2 + 96q3 + 24q4 + · · · , (4.5)

and on the principal congruence group Γ(2) (whose associated modular curve X(2) =
XΓ(2) again has genus 0) the Hauptmodul

λ(τ) = 16
η(τ/2)8η(2τ)16

η(τ)24
= 1− η(τ/2)

16η(2τ)8

η(τ)24
=
(
ϑ2(τ)
ϑ3(τ)

)4

. (4.6)

Here ϑ2, ϑ3 are the Jacobi theta functions

ϑ2(τ) =
∑
n∈Z

q(n+
1
2 )

2/2 , ϑ3(τ) =
∑
n∈Z

qn
2/2 (4.7)

which are modular forms of weight 1/2, again with a multiplier system that we omit,
for Γ(2). Further examples will be given in the next subsection when we discuss
Hecke eigenforms.



The arithmetic and topology of differential equations 737

Modular forms with multiplicative Fourier coefficients

The observant reader may have noticed, as Ramanujan did in 1916, that the coef-
ficient −6048 of q6 in (4.2) is the product of the coefficients −24 and +252 of q2

and q3, respectively. This is a special case of the more general property that the co-
efficients of ∆ are multiplicative, meaning that the coefficient of qmn is the product
of those of qm and qn wheneverm and n are coprime, as Ramanujan also observed
and as Mordell proved the following year. This was later generalized by Hecke to all k
by showing that the spaceMk(Γ1) is uniquely spanned by modular forms having this
same multiplicative property. These are called Hecke eigenforms (or simply Hecke
forms) because the multiplicativity is equivalent to the statement that the form is
a simultaneous eigenvector of an infinite collection of operators on Mk(Γ1) called
Hecke operators, whose definition we omit. The Eisenstein series 1

240E4, − 1
504E6 and

1
480E8 also have multiplicative Fourier coefficients and are also Hecke eigenforms,
but for reasons that we will see in the next section they are much less interesting
than ∆, which is a cusp form. (A cusp form of weight k is a modular form of weight k
that is bounded in the upper half-plane by =(τ)−k/2.) Hecke’s result shows that the
space Sk(Γ1) of weight k cusp forms on Γ1 has a unique basis consisting of Hecke
forms, the next example after ∆ being the form

∆16(τ) = E4(τ)∆(τ) = q + 216q2 − 3348q3 · · · − 723168q6 + · · · .

of weight 16. Here, as for k = 12, the coefficients of the eigenform belong to Z, but
we should warn the reader that for weight 24 and all weights k ≥ 28 the space of
cusp forms on Γ1 has dimension d > 1 and the Hecke cusp forms may (and conjec-
turally always do) have coefficients in a number field of degree d over Q rather than
in Q itself. For instance, the two Hecke cusp forms of weight 24 have coefficients in
Q(
√

144169), as Hecke himself showed.
A similar, though more complicated, statement (“theory of newforms”) is true also

for the congruence subgroups Γ0(N). In particular, if the space Sk(Γ0(N)) of cusp
forms of weight k on Γ0(N) happens to be 1-dimensional, then its unique generator
is (if properly normalized) automatically a Hecke form, which we will then denote by
fk,N . Three cases besides Ramanujan’s original example f12,1(τ) = ∆(τ) = η24(τ)
where this happens, and a fourth eigenform with integral coefficients, are the cusp
forms

f2,11(τ) = η(τ)2 η(11τ)2 = q − 2q2 − q3 + 2q4 + q5 + · · · , (4.8)

f4,9(τ) = η(3τ)8 = q − 8q4 + 20q7 − 70q13 + 64q16 + · · · , (4.9)

f4,8(τ) = η(2τ)4 η(4τ)4 = q − 4q3 − 2q5 + 24q7 − 11q9 − · · · , (4.10)

f4,25(τ) = η(5τ)4
4∑
i=0

ai η(τ)4−i η(25τ)i = q + q2 + 7q3 − 7q4 + · · · , (4.11)

where in the last line a = (1,5,20,25,25). Each of these will reappear later in this
paper. Note that each of these forms has been expressed in terms of the Dedekind
eta-function, but for most Hecke forms this is not possible.
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Hecke eigenforms (in particular, cuspidal Hecke eigenforms) are the most impor-
tant objects in the theory of modular forms from the arithmetic point of view, and
the whole modern theory of automorphic forms via the representation theory of
adelic groups (Jacquet-Langlands theory) can be seen as a vast generalization of the
theory of Hecke operators. We mention here two fundamental (and related) proper-
ties of Hecke eigenforms, both of which will play a role later. The first is that the
multiplicativity of the Fourier coefficients an = an(f ) of a Hecke form f translates
into the fact that the corresponding L-series L(f , s) =

∑
n≥1 an(f )n−s has an Euler

product, and in fact a strengthening of this multiplicativity property (also already
observed by Ramanujan for the coefficients of ∆ in 1916 and proved by Mordell
in 1917) says that this Euler product has only quadratic factors and more specifi-
cally is of the form

L(f , s) =
∏

p prime

1
1− af (p)p−s + χ(p)pk−1−2s (4.12)

for some Dirichlet character χ. The other is that a Hecke form has two associated
“periods”ω±(f ) such that the value of L(f , s) at any integral argument s between 0
and the weight k is an algebraic multiple of a power of π times either ω+(f ) or
ω−(f ). (This statement makes sense because the analytic properties of cusp forms
imply that the L-function L(f , s) of any cusp form f has an analytic continuation to
all s, as well as satisfying a functional equation, so that we can talk about its values
even for arguments outside of the domain of absolute convergence of its defining
series or Euler product representation.) These are typical properties of motivic L-
functions, as we will see in Section 6, but there they are only conjectural in general,
whereas in the case of modular forms they are theorems.

Modular forms satisfy differential equations

Modular forms and quasimodular forms always satisfy non-linear differential equa-
tions of order 3 with constant coefficients as functions of the variable τ in the upper
half-plane. The reason is simply that the ring of all quasimodular forms on any Fuch-
sian group Γ has transcendence degree 3 (for instance, for Γ1 it is the free algebra on
E2, E4 and E6) and is closed under differentiation, so if f belongs to this ring then
there must be a polynomial relation among f , f ′, f ′′ and f ′′′. (A nice example is the
Chazy equation E′′′2 −E2E′′2 +

3
2E
′
2

2 = 0 satisfied by E2(τ).) However, these non-linear
differential equations do not have many applications in arithmetic precisely because
they are non-linear.3 Much more useful – and surprisingly little known, even to spe-
cialists, although it was the starting point for the whole theory in its early years in

3. An exception is a theorem proved by Villegas and myself [71] which says that, modulo the
Birch–Swinnerton-Dyer conjecture, a prime p of the form 9m+ 1 is a sum of two rational cubes
if and only if p|A3m, where

∑
Anxn/n! is the Taylor expansion (in suitable coordinates) of

η(τ) at the point τ = e2πi/3 in H. The non-linear differential equation of the power series is
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the late 19th and early 20th centuries – is the “key fact” stated that at the beginning
of the section, which says that a modular form of positive integral weight satisfies a
linear differential equation (of order one greater than the weight) if it is expressed
in terms of a modular function of τ rather than in terms of τ itself.

So let t(τ) be a (meromorphic) modular function for some Γ and f(τ) a (mero-
morphic) modular form of positive integral weight k on the same group. We want to
show that if we express f(τ) as ϕ(t(τ)), then the function ϕ(t) satisfies a linear
differential equation of order k+ 1 with algebraic coefficients. But of course we can-
not express f this way globally, since t(τ) is invariant under substitutions τ , γ τ
with γ ∈ Γ while f(τ) is not. However, we can do so locally, say in a small neigh-
borhood of a cusp or of a point of H, and then the many-valuedness of ϕ when
we leave this neighborhood and then come back to it is precisely the monodromy
representation that we want from the solution of a linear differential equation. This
observation is in fact the key to the proof of our assertion, because the k+1 linearly
independent functions τif(τ) (i = 0, . . . , k) form a basis for the space of solutions
of the differential equation satisfied by ϕ.

More explicitly, let ~f : H → C be the (column) vector-valued function with entries
τif(τ) (in reverse order). From the equation f(γτ) = (cτ + d)kf(τ) we get

~f(γ τ) =


(aτ + b)kf(τ)

...
(cτ + d)kf(τ)

 =

ak · · · bk

. . .

ck · · · dk



τkf(τ)

...
f(τ)

 = Sk(γ) ~f(τ)
for all γ =

( a b
c d
)
∈ Γ , where Sk(γ) ∈ GL(k + 1, C) is the kth symmetric power of γ.

The point is that this matrix is independent of τ , so we can differentiate the equa-
tion ~f ◦ γ = Sk(γ) ~f without obtaining any extra terms, as we would have if we
simply differentiated (cτ +d)kf(τ). However, the derivative of γτ is (cτ +d)−2, so
the differentiated equation would have the form ~f ′ ◦ γ = (cτ + d)2 Sk(γ) ~f ′, which
again contains a multiplicative factor depending on τ . Since we want to go to higher
derivatives, we cannot iterate this procedure. But we actually want to differentiate
with respect to t = t(τ), and since dt := d/dt equals t′(τ)−1d/dτ and t′(τ) is
a (possibly meromorphic) modular form of weight 2 and therefore also acquires a
factor (cτ + d)2 when we replace τ by γτ , everything is all right after all: we have
(dt ~f)◦γ = Sk(γ)(dt ~f) and by induction (dit ~f)◦γ = Sk(γ)(dit ~f) for all i ≥ 0. Writing
down these equations for i = 0,1, . . . , k+1 and noting that k+2 vectors of length k+1
are linearly dependent, we get an identity of the form

∑k+1
i=0 mi dit ~f = 0 where each

mi =mi(τ) is the determinant of a (k+ 1)× (k+ 1) matrix that transforms under
τ , γτ by multiplication on the left by Sk(γ), so that its determinant mi is a mod-

then equivalent to a non-linear recursion for the coefficients An, but even here there is a more
convenient method of calculating these numbers based on a different parametrization using
the expansions of integral weight modular forms as hypergeometric series with respect to a
Hauptmodul.
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ular function of τ . Since every such function is an algebraic function of the chosen
modular function t(τ), we obtain our desired differential equation. (A more detailed
exposition of this proof, and two other elementary proofs of the “key fact”, are given
on pages 61–62 of [13].)

Note that this differential equation has algebraic coefficients of t in general, but if
H/Γ has genus 0 and t(τ) is a Hauptmodul, then every modular function on Γ is a
rational function of t and therefore the equation, after multiplying through by a com-
mon denominator, in fact has polynomial coefficients, implying that we have a lin-
ear recursion for the coefficients of any power series solution. We also see from the
proof that the monodromy group is the kth symmetric power Sk(Γ) ⊂ GL(k+1,C) of
the original Fuchsian group Γ and in particular is integral if Γ is a subgroup of the full
modular group Γ1. On the other hand, in the last section we saw that Picard–Fuchs
differential equations also have integral (or nearly integral) monodromy representa-
tions. This is not a coincidence, since the differential equations associated to sub-
groups of SL(2,Z) are the Picard–Fuchs equations associated to families of elliptic
curves. We will see explicitly how this works in Example 1 of the next section.

The “key fact” is illustrated by a classical result of H.A. Schwarz (see[72], Chap-
ter III) that the monodromy group of the hypergeometric differential equation of the
function (2.2) for special values of the parameters a, b and c (with each of 1 − c,
c − a− b and a− b equal to 0 or to the reciprocal of an integer) is a triangle group
in SL(2,R), i.e., a Fuchsian group Γ whose fundamental domain is either a hyper-
bolic triangle as pictured at the beginning of this section or else a union of two such
triangles. In this case one can take the parameter t in (2.2) to be a modular function
t(τ) (in fact, a Hauptmodul) for Γ , the function f(τ) = F(a, b; c; t(τ)) to be a modu-
lar form of weight 1 on Γ , and the second solution of the differential equation to be
τf(τ), the (many-valued) map t , τ formed by the quotient of these two solutions
then being the classical Schwarz map. We will give many further examples, of a more
arithmetic nature, in the next section.

5 Examples

In this section we illustrate the theorem discussed above by describing a number
of triples “Fuchsian group – modular form – modular function” and the associated
differential equations.

Example 1: Jacobi theta series

Our first example is classical. We take as our Fuchsian group the principal congru-
ence subgroup Γ = Γ(2) of Γ1, as our modular form f the square of the Jacobi theta
function ϑ3 defined in (4.7), and as our modular function t the Hauptmodul λ de-
fined in (4.6). Here k = 1, so ϑ3(τ)2 should satisfy a differential equation of order 2
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with respect to λ(τ), and indeed

ϑ3(τ)2 =
∞∑
k=0

(
−1/2
k

)2

λ(τ)k (5.1)

for |λ(τ)| ≤ 1. This is the same hypergeometric function F
( 1

2 ,
1
2 ; 1; t) that we saw

in Section 3 when computing the Picard–Fuchs differential equation of the Legen-
dre elliptic curve (3.1), and indeed the Z-basis

(´
C0
ωt ,

´
C1
ωt
)

of solutions that we
computed in equations (3.4) and (3.3) is (up to a factor 2π ) the same as the Z-basis
(τf(τ), f (τ)) coming from the proof in the last section, as we can check numerically
by inverting the q-expansion of λ(τ) and taking logarithms:

t = λ(τ) = 16q1/2 (1− 8q1/2 + 44q − 192q3/2 + · · ·
)
,

q1/2 = t
16

(
1+ t

2
+ 21 t2

64
+ 31 t3

128
+ · · ·

)
,

πiτ = log
(
q1/2) = log

( t
16

)
+ t

2
+ 13 t2

64
+ 23 t3

192
+ · · ·

= log
( t

16

)
+

4
∑∞
n=1

(
−1/2
n

)2 ( 1
n+1 + · · · +

1
2n
)
tn∑∞

n=0

(
−1/2
n

)2
tn

= πi
´
C0
ωt´

C1
ωt

.

Example 2: The function E4

Another classical example, this time for the full modular group Γ1, is an identity
of Fricke and Klein expressing the Eisenstein series (4.3) in terms of the modular
invariant (4.4) as

E4(τ) = 1+ 60
j(τ)

+ 39780
j(τ)2

+ · · · = F
( 1

12
,

5
12

; 1;
1728
j(τ)

)4
,

where F(a, b; c;x) once again denotes the hypergeometric function. This is indeed
the solution of a differential equation of order five (one more than the weight of E4),
since the fourth symmetric power of a two-dimensional space is five-dimensional,
but in fact we see in this example that the 4th root 4

√
E4(τ) satisfies a second order

differential equation, even though it is not a modular form (or even a holomorphic
function in the upper half-plane) and therefore is not strictly covered by the state-
ment of the “key fact” as given in the previous section. Actually this behavior is
generic: if f(τ) is any modular form of integral weight k > 0, then its kth root,
expressed in terms of a modular function on the same group, always satisfies a dif-
ferential equation of order 2, and the equation of order k+ 1 satisfied by f itself is
the one derived from this by the kth symmetric power operation.

As a related example we mention the expansion

t(τ) = 1
864

(
1− E6(τ)

E4(τ)3/2
)
⇒ 4

√
E4(τ) =

∞∑
n=0

(6n)!
(3n)!(2n)!n!

t(τ)n , (5.2)



742 Don Zagier

in which the coefficients (6n)!
(3n)!(2n)!n! are a solution of the Apéry-like recursion (1.3)

with (A, B,C) = (432,60,0); this is another one of the “miraculous” cases when this
recursion has an integral solution, but is not contained in the list (1.4) because there
we excluded “degenerate” (= hypergeometric!) cases where C = 0.

Example 3: The Apéry numbers

Here we take

t(τ) = η(τ)12 η(6τ)12

η(2τ)12 η(3τ)12
, f (τ) = η(2τ)

7 η(3τ)7

η(τ)5 η(6τ)5
, (5.3)

which are a modular function and a modular form of weight 2, respectively, on the
congruence group Γ0(6). Then f(τ) = A(t(τ)), where A(t) = 1 + 5t + 73t2 + · · ·
is the generating function for the Apéry numbers for ζ(3) as discussed in Section 1.
This is just Beukers’s identity (1.7), but now written in standard modular notation.

Examples 4–18: Apéry-like numbers

The generating series of the Apéry numbers for ζ(2) defined by his recursion (1.2)
also has a modular parametrization, again due to Beukers: here we take for Γ the
group Γ1(5) of matrices congruent to

( 1 ∗
0 1

)
modulo 5, for t(τ) the 5th power of

Ramanujan’s modular function

r(τ) = q1/5
∞∏
n=1

(
1− qn

)(n
5

)
=

q1/5

1+
q

1+
q2

1+ · · ·

(in which the equality of the two expressions on the right, without the factor q1/5,
is sometimes called “the most beautiful formula in mathematics”), which is a Haupt-
modul for Γ1(5), and for f(τ) the function η(5τ)5/2/t(τ)1/2η(τ)1/2, which is a mod-
ular form (Eisenstein series) of weight 1 on the same group.

There are similar modular parametrizations for the other six cases listed in (1.4)
when the recursion (1.3) has integral solutions. All are given explicitly in [74]. (See
also [69].) Apart from these seven, there exist eight further “degenerate” triples
(A, B,C) (up to rescaling) for which the generating series of the solution of (1.3) has
a modular parametrization: four “hypergeometric” cases with C = 0 and (A, B) =
(16,4), (27,6), (64,12) or (432,60) and four “Legendrian” ones with C = A2/4 and
(A, B) = (32,12), (54,21), (128,52) or (864,372). The modular parametrization for
the case (A, B,C) = (432,60,0) was already given in (5.2). Another example, corre-
sponding to (A, B,C) = (27,6,0), is the differential equation satisfied by the gener-
ating series

∑ (3n)!
n!3 t

n : on the one hand this is the Picard–Fuchs differential equation
of the family of plane cubic curves x3

1 + x3
2 + x3

3 = ψx1x2x3 (with t = (3ψ)−3) by a
calculation identical to the one given in Example 2 of Section 3 but with “5” replaced
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by “3” everywhere, and on the other hand the series can be parametrized by the
modular function t and modular form f of weight 1 given by

t(τ) = η(3τ)12

η(τ)12 + 27η(3τ)12
, f (τ) =

∑
a,b∈Z

qa
2+ab+b2

.

Examples 19–34: Mirrors of Fano 3-folds

In connection with the predictions of mirror symmetry, Vasily Golyshev found a spe-
cific collection of 17 families of K3 surfaces, corresponding to the 17 smooth Fano
3-folds of Picard rank 1 (details will be given in Section 8), each of which has a period
with Taylor coefficients given by a formula of the form (1.11) for some Laurent poly-
nomial L and each of which admits a modular parametrization. One of these families
is the Beukers-Peters family (1.9) with the modular parametrization (5.3) (which is
why we numbered this subsection “Examples 19–34” rather than “Examples 19–35” !).
Another is the family of quartic surfaces x4

1 + x4
2 + x4

3 + x4
4 = ψx1x2x3x4, whose

period is given by the hypergeometric series
∑ (4n)!

n!4 t
n (with t = (4ψ)−4) by the same

calculation as the ones for the corresponding families with “4” replaced by “5” or “3”
and has a modular parametrization given by taking t(τ) = ∆(τ)∆(2τ)

(∆(τ)+64∆(2τ))2 and f(τ)
the Eisenstein series of weight 2 on Γ0(2) defined in (4.5).

Example 35: An integrality enigma

Our last example is of a somewhat different nature, and serves both as an illustration
of the arithmetic subtleties involved in the relation between modular forms and
differential equations and as our first specific application of the mathematics of
Friedrich Hirzebruch.

In connection with the theory of Teichmüller curves, Irene Bouw and Martin-
Möller [12] studied a Picard–Fuchs differential equation associated to a specific
family of genus 2 curves over the projective line defined over the real quadratic
field Q[

√
17] and showed that its power series solution, which begins

ϕ(t) = 1+ 81−15
√

17
16 t + 4845−1155

√
17

64 t2 + 3200225−775495
√

17
2048 t3 + · · · ,

has integral coefficients (apart from a power of 2 in the denominators that can be
removed by rescaling t), even though the recursion defining these coefficients (which
here has length 3 rather than 2 as in the Apéry cases) begins (n + 1)2un+1 = · · · ,
so that a priori the denominator of the nth coefficient could be as large as n!2. This
example, which was taken up again by Möller and myself in [55], has the myste-
rious property that it has a modular parametrization, for a specific cofinite Fuch-
sian group Γ17 (the one whose fundamental domain is depicted in the third of the
pictures at the beginning of Section 4), but that this parametrization, unlike the
parametrization (1.7) used by Beukers to explain the integrality of the Apéry num-
bers, does not imply the corresponding integrality here in any obvious way. (The
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proof of integrality given by Bouw and Möller was completely different and used
p-adic techniques.) The reason is that the group Γ17 is not an arithmetic one and
therefore, although the power series ϕ can be parametrized as ϕ(t(τ)) = f(τ)
for an explicitly computable Hauptmodul t and modular form f of weight 1, the
q-expansions of t and f do not have integral coefficients and hence the argument
that implied the integrality of the An as a consequence of the parametrization (5.3)
fails. In fact, the q-expansions of t and f do not even have algebraic coefficients,
but instead belong to the power series ring Q[

√
17][[Aq]] for some real constant

A = −7.483708229911735369 · · · that we eventually recognized (first numerically

and then theoretically) as −2 (3 +
√

17)
( 5−

√
17

2

)(√17−1)/4
, which is transcendental

by the Gelfond-Schneider theorem. What’s more, even the power series in Aq, al-
though its coefficients are now algebraic, has infinitely many primes in its denom-
inators. The solution of the mystery turned out to be that one had to embed the
base curve of the Bouw-Möller family (Teichmüller curve) into the Hilbert modular
surface for Q[

√
17], and thus also to embed the non-arithmetic group Γ17 into the

corresponding Hilbert modular group, which is arithmetic. The q-expansions of t
and f can then be understood using Hirzebruch’s description of the geometry of
Hilbert modular surfaces near their cusps [38], and the integrality follows.

6 Differential equations and arithmetic

One of the great developments in 20th century mathematics was the discovery by
Artin, Weil, Dwork, Grothendieck, Deligne and many other mathematicians of deep
links between number theory and topology. This connection starts with a relation
between counting solutions of algebraic equations in finite fields and the topology
of the corresponding algebraic variety over C, but then extends to many further
topics like global L-functions, variations of Hodge structures and periods, etc. that
give rise to the interconnections referred to in the title of this paper.

From point counting to cohomology

We begin by giving a very abbreviated account (omitting all technicalities and occa-
sionally oversimplified) of the passage from point-counting to topology. Let X be a
smooth projective variety defined over Q. Such a variety is given as a subspace of
some projective space by equations with rational coefficients. If we multiply by a
suitable integer, we can take the defining equations to have coefficients in Z and can
then reduce them modulo any prime p, leading to a variety Xp = X/Fp defined over
the finite field Fp that is again smooth for all but finitely many p. (The remaining
“bad” primes will be ignored in our simplified discussion here.) We then have as a
basic invariant the number #Xp(Fp) of solutions of the defining equations with the
variables taking their values in the field of p elements, or more generally the number
#Xp(Fpn) of solutions over the finite field Fpn for any integer n ≥ 1. These numbers
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for a given p can be put together in the form of the local zeta-function

Z(X/Fp, T ) = exp

( ∞∑
n=1

#Xp(Fpn)
Tn

n

)
. (6.1)

As the three simplest examples, for X equal to a point, the projective line, or an
elliptic curve one finds that

Z({pt.}/Fp, T ) =
1

1− T , Z(P1/Fp, T ) =
1

(1− T)(1− pT) ,

Z(E/Fp, T ) =
1− ap(E)T + pT 2

(1− T)(1− pT)
(
ap(E) ∈ Z

)
,

where in the last case ap(E) can be calculated in terms of Legendre symbols by

ap(E) = p + 1− #Ep(Fp) = −
∑

x∈Z/pZ

(
x3 +Ax + B

p

)
(6.2)

if p 6= 2 and E is given by the Weierstrass equation y2 = x3 +Ax + B with A, B ∈ Z,
as one sees by noting that the number of solutions of y2 ≡ N (mod p) equals 1+

(N
p
)

for any N ∈ Z. More generally, the right-hand side of (6.1), which a priori is just a
power series in T with coefficients in Q, is in fact a rational function and has inte-
gral coefficients, as was proved in Emil Artin’s thesis (1923) for some hyperelliptic
curves, by F.K. Schmidt in 1931 for arbitrary smooth curves, and by Dwork in the
50’s for varieties of arbitrary dimension. For instance, if X is a curve of genus g
then Z(X/Fp, T ) has the form P(T)

(1−T)(1−pT) where P(T) ∈ Z[T] is a polynomial of

degree 2g with all roots of absolute value p−1/2, as was proved by Deuring and
Hasse for elliptic curves and by André Weil in 1949 for curves of arbitrary genus. We
can write this expression in the form P1(T)

P0(T)P2(T) where Pi(T) ∈ Z[T] is a polynomial
of degree bi(X), the ith Betti number of X (equal to 1, 2g, 1 for i = 0, 1, 2) and
where the roots of Pi(T) have absolute value p−i/2, and this and other examples led
Weil to conjecture that in general the local zeta function of a d-dimensional smooth
projective variety should have the form

Z(X/Fp, T ) =
2d∏
i=0

Pi(X/Fp, T )(−1)i−1
(6.3)

where each Pi(X/Fp, T ) is a polynomial of degree bi(X) with integral coefficients
and with all roots of absolute value p−i/2 (“Riemann hypothesis”), and further that
it should be possible to prove this by finding an appropriate cohomology theory that
could apply to the variety Xp over the finite field Fp . These statements imply a very
deep link between arithmetic and topology, including in particular the statement
that the dimensions of all the homology and cohomology groups of the complex
manifold X(C) can be read off from the cardinalities of the finite sets X(Fpn) for
even a single (good) prime p.
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Weil’s proposal for a cohomology theory for varieties over Fp was realized through
the work of Alexander Grothendieck, Michael Artin and others, except that there was
not just one such cohomology theory, but infinitely many. More specifically, for a
smooth projective variety X defined over any field K and for any integer n prime to
the characteristic of K one can define finite “(geometric) étale cohomology groups”
Hiét(X;Z/nZ) via the étale coverings of X of degree n (étale coverings, the analogue
in the algebraic context of unramified coverings in topology, are maps between alge-
braic varieties that induce an isomorphism of tangent spaces at every point), where
X (usually denoted X ⊗K K) means X thought of as a variety over K together with
the natural action of Gal(K/K). The `-adic cohomology group Hi(X;Q`) is then de-
fined for any prime ` different from the characteristic of K as the inverse limit of
Hiét(X;Z/`kZ) as k → ∞, tensored with Q`, the field of `-adic numbers, and by con-
struction carries an action of the Galois group of K over K. In the case K = Fp this
Galois group contains (and is topologically generated by) the Frobenius element Frp ,
defined on Fp by the formula x , xp and on Xp(Fp) by applying the same formula
to every coordinate. The fixed points of the nth power of Frp on Xp(Fp) are precisely
the points of X over the finite field Fpn , and then by the analogue of the classical
Lefschetz trace formula, proved in this context by Grothendieck, one gets

#Xp(Fpn) = #Xp(Fp)Frnp =
2d∑
i=0

(−1)i tr
(
(Fr∗p)n, Hi(Xp ;Q`)

)
.

This formula translates after a short calculation into the formula (6.3), but with the
polynomial Pi(X/Fp, T ) replaced by the characteristic polynomial

Pi,`(X/Fp, T ) = det
(
1− Fr∗p T , Hi(Xp,Q`)

)
of the action of Frobenius on the `-adic cohomology. This is a priori a polynomial
with coefficients in Q` and depending on `, but in fact it belongs to Z[T] and is inde-
pendent of `, as follows (in this case, for smooth projective varieties – for general va-
rieties it is still only conjectural!) from Deligne’s proof of the “Riemann hypothesis”
part of Weil’s conjectures, because if the ith polynomial in the alternating product
in (6.3) has roots of absolute value p−i/2 then there can be no cancellation among
the factors and we can read off each Pi separately from the left-hand side, which
does not depend on `.

Global zeta functions

The above considerations were all local and would have applied to any smooth pro-
jective variety defined over Fp , not just to the reduction Xp = X/Fp of a “global” vari-
ety X defined overQ. In the global situation the `-adic cohomology groupsHi(X;Q`)
are isomorphic as Q`-vector spaces to Hi(X(C);Q) ⊗Q Q` for all ` (“comparison
theorem”) and also to Hi(Xp ;Q`) for all (good) primes p 6= ` (“base change”). For
such primes the element Frp corresponds to a well-defined conjugacy class (also de-
noted Frp) in the action of Gal(Q/Q) on Hi(X;Q`) whose characteristic polynomial
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is equal to Pi(X/Fp, T ). The facts that all of the local zeta functions Z(X/Fp, T ) come
from the same variety X/Q and that all of the polynomials P(X/Fp, T ) come from
a single cohomology group Hi(X;Q`) are reflected in the expected analytic proper-
ties of the global zeta and L-functions associated to X. Specifically, one defines the
Hasse-Weil zeta function of X by the formula

ζ(X/Q, s) =
∏
p
Z(X/Fp, p−s) (<(s)� 0),

which by virtue of (6.3) is the alternating product of the global L-functions

Li(X/Q, s) =
∏
p
Pi(X/Fp, p−s)−1 (<(s)� 0),

where in both cases the product is over all primes p but the description of the Euler
factors at “bad” or ramified primes (those where the reduction of X modulo p is
no longer a smooth variety over Fp) is different from the one for “good” or unram-
ified primes. (For instance, the degree of Pi(X/Fp, T ) in T for bad primes is strictly
less than the ith Betti number of X.) The basic conjecture, which can perhaps be
considered the single most outstanding open problem in arithmetic algebraic ge-
ometry, is that the L-function Li(X/Q, s), initially defined only for s in some right
half-plane, has a holomorphic (or sometimes just meromorphic, but with specified
and very simple pole behavior) continuation to all complex values of s and satis-
fies a functional equation with respect to the symmetry s , i + 1 − s in which
the necessary gamma-factor is given by an explicit recipe (due to Serre) involving
the Hodge decomposition of Hi(X(C);C). The function Li(X/Q, s) is also expected
to satisfy a Riemann hypothesis (all zeros on the line <(s) = i+1

2 ), but this is not
known even if X is a point and i = 0, when it reduces to the usual Riemann hy-
pothesis. Finally, there is a marvelous conjecture of Deligne [23] relating the spe-
cial values of Li(X/Q, s) at “critical” values of s (those integers for which neither s
nor i + 1 − s is a pole of the gamma-product occurring in the functional equation
of Li) to the periods of X obtained by comparing the Betti and de Rham rational
subspaces of Hi(X(C);C).

For points, projective spaces, Grassmannians and a few other varieties (“Tate mo-
tives”), the Hasse–Weil zeta functions are multiplicative combinations of shifted Rie-
mann zeta functions and the meromorphic continuation and functional equation
are therefore known, but in almost all other cases they are conjectural. In 1955
Taniyama observed that the Euler factors of the L-functions L1(E/Q, s) of elliptic
curves E over Q and the L-functions (4.12) of Hecke cusp forms of weight 2 had ex-
actly the same form, and raised the question whether they sometimes coincided, and
in 1969 Weil showed that the expected analytic properties of Hasse–Weil zeta func-
tions would imply that the L-function of any elliptic curve over Q is in fact equal to
the L-function of a weight 2 cusp form. The conjecture that this aways holds became
particularly famous after it was shown by the work of Frey, Serre and Ribet that it
would imply Fermat’s Last Theorem, but it remained open until the spectacularly
difficult proof by Andrew Wiles in 1994 of the special cases needed for the Fermat
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theorem and its extension to the general case by Breuil, Conrad, Diamond and Taylor
during the next few years. The Taniyama–Weil conjecture is now a special case of the
“Langlands program,” which predicts that the L-functions coming from algebraic va-
rieties will always coincide with L-functions of appropriate automorphic forms, from
which the desired analytic properties would follow. But this is only known in isolated
cases, and the analytic continuation and functional equation of the L-functions asso-
ciated even to H1 of curves of genus bigger than 1, let alone to arbitrary cohomology
groups of varieties of higher dimension, remain conjectural even today. Surprisingly,
however, these properties can be verified numerically, because there is a method, ob-
served by several people and worked out in detail both theoretically and in the form
of a software package by Tim Dokchitser [24], to calculate a Dirichlet series with an
assumed functional equation to arbitrarily high precision even outside its domain of
convergence and at the same time to test the functional equation numerically. This
method is self-verifying in the sense that it involves a free parameter and that if the
final result of the calculation turns out to be independent of the choice of this pa-
rameter then one has convincing evidence both of the correctness of the presumed
functional equation and of the accuracy of the numerical evaluation, and in all of
the many cases that have been tested the predicted analytic properties and special
values were verified.

The idea of a motive

We have seen that one can associate to a (smooth, projective) algebraic variety
X/Q several different kinds of cohomology groups: the Betti cohomology H∗B (X) =
H∗(X(C),Q), the algebraic de Rham cohomology H∗dR(X) defined in terms of dif-
ferential forms, and the `-adic cohomology groups H∗(X;Q`) on which the Galois
group of Q over Q acts, and that these are interrelated in many ways: the com-
plexifications (tensor product over Q with C) of the Betti and de Rham cohomol-
ogy are canonically identified with one another and with the complex cohomology
group H∗(X(C);C), which in turn has a Hodge decomposition as the direct sum of
complex subspaces Hp,q(X), the `-adic cohomology groups are isomorphic as Q`-
vector spaces with the tensor product of H∗B (X) with Q` and are related among
each other by the fact that the characteristic polynomial of the Frobenius element
Frp for a (good) prime p 6= ` is independent of `. The coefficients of the transi-
tion matrix coming from the passage between the Q-bases of H∗(X(C);C) coming
from Betti and de Rham cohomology are the periods of X, which are arithmeti-
cally interesting numbers if X is fixed and give rise to the arithmetically interest-
ing Picard–Fuchs differential equation if X varies algebraically in a family, while the
`-adic Galois representations provide the deep arithmetic information that leads
from point counting over finite fields to the global L-functions with their mysteri-
ous and still mostly conjectural analytic properties. The word “motive” is used to
describe a purely linear-algebra structure that has all of these properties (Q-vector
spaces labelled by the names “Betti” and “de Rham” whose complexifications are
isomorphic and have a Hodge decomposition and families of `-adic Galois repre-
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sentations that satisfy the above-mentioned compatibilities) but is not explicitly re-
quired to come from the cohomology of any specific algebraic variety. The idea is
due to Grothendieck, who gave a concrete way to produce such objects as a piece
of a cohomology group cut out by algebraic correspondences. (More precisely, if X
is a variety defined over Q then any correspondence Z ⊂ X × X defined over Q in-
duces an endomorphism of each of the cohomology groups associated to X, and if
one has a Q-linear combination P of such induced maps that is a projector, i.e., that
satisfies P2 = P , then the image of P gives a collection of subspaces of the Betti,
de Rham, and `-adic cohomology groups that has all of the above-named proper-
ties.) More generally, the same is true of any “natural piece” of the cohomology of X,
meaning a collection of Q-subspaces of the Betti and de Rham cohomology whose
complexifications are equal and that are the direct sums of their intersections with
the Hodge spaces Hp,q(X), and of Q`-subspaces of the `-adic cohomology groups
that correspond to these under the comparison maps and are stable under the ac-
tion of Gal(Q/Q). If the Hodge and Tate conjectures are true, then these two classes
of motives coincide.

In the early years there was no clear way to establish the existence of a well-defined
category of motives having all the desired properties, and there were (and still are)
mathematicians who deprecated the whole subject as mere castles in the air lack-
ing both definitions and theorems. That situation has changed over the years and
there are now well-defined theories of motives and motivic cohomology due to the
work of Tate, Deligne, Bloch, Beilinson, Voevodsky, André, Nori and many others,
even though the full theory, in the sense of having a well-defined abelian category
of motives in full generality satisfying all the expected properties, is still not in its
final shape. The fact that there are rival and not necessarily equivalent candidates
for the “right” definition is not in itself a problem, just as there are many ways to
define cohomology groups (singular, de Rham, Čech, . . . ) that are all valid and use-
ful in various settings. But even if there were no general definitions or theorems at
all, there would still be plenty of perfectly well-defined examples, either as pieces
of actual cohomology groups (like the 4-dimensional piece of the 204-dimensional
H3(Qψ) defined as its invariant part under a group action) or else by various specific
constructions, like polylogarithmic motives or the motives discussed in Examples 1
and 2 below. There are two main points to be made here. The first is that, even
though conjecturally there are no other motives than the Grothendieck ones (pieces
of cohomology groups cut out by geometrically defined correspondences), the real-
ization of a given motive in this form is not unique or in any sense canonical and it
is extremely useful to think of it as an object “in its own right” that can be studied
and used independently of any such realization. The second is that, even if certain
expected properties are still conjectural and no proof is in sight, they can neverthe-
less often be used to make concrete predictions that can be tested numerically or
proved by classical methods but that might be hard to discover without the motivic
way of thinking. We will give illustrations of the first point in the two examples be-
low (modular and hypergeometric motives) and of the second in the three examples
treated in the next section.
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Example 1: Motives associated to modular forms

To any Hecke cusp form f (= cusp form with multiplicative Fourier coefficients, as
discussed in §4) of weight k there is an associated 2-dimensional motive Mf of
weight k−1 and Hodge type (dimensions of the pieces of the Hodge decomposition)
hk−1,0 = h0,k−1 = 1. For k = 2 this follows from the work of Eichler and Shimura, who
showed that L1 of the modular curve X0(N) (the algebraic curve over Q whose com-
plex version is the compactification of H/Γ0(N)) for any N ≥ 1 is the product of the
L-functions (4.12) of Hecke forms of weight 2 and level N , with each factor L(f , s)
being the L-series of a 2-dimensional subspace of H1(X0(N)/Q) defined as the in-
tersection of the kernels of Tp − ap(f ) for all (or sufficiently many) primes p ö N ,
where Tp denotes the pth Hecke operator (a correspondence of degree (p+1, p+1)
from X0(N) to itself) and ap(f ) the coefficient of qp in the Fourier development
of f . For k > 2 the motivic nature of f was proved by Deligne, who showed that for
each p ö N the coefficient ap(f ) coincides with the trace of the Frobenius Frp on a
particular 2-dimensional subspace (again cut out by the Tp −ap(f )) of the (k− 1)st
cohomology group of the associated (k− 1)-dimensional Kuga variety (a compactifi-
cation of the total space of the fibre bundle over H/Γ0(N) whose fibre over any point
is the (k− 2)nd symmetric power of the corresponding elliptic curve). Ramanujan’s
conjecture |ap(∆)| ≤ p11/2 (or more generally |ap(f )| ≤ 2p(k−1)/2 for any Hecke
cusp form of weight k) followed by combining this result with Deligne’s later proof
of the “Riemann hypothesis” part of the Weil conjectures, and has therefore some-
times been referred to by Serre as the “theorem of Deligne and Deligne.” An explicit
construction of Mf as a Grothendieck motive was given by Scholl [62].

The comparison of the Betti and de Rham Q-bases of the 2-dimensional complex
realization of Mf gives rise to periods ω±(f ) ∈ R that are related to the values of
the L-series L(f , s) at s = 1,2, . . . , k − 1, in accordance with Deligne’s general con-
jecture on special motivic L-values. For example, these two periods for the cusp
form ∆ ∈ S12(SL(2,Z)), in a suitable normalization, have the numerical values
ω+ = 0.046346 · · · , ω− = 0.045751 · · · and are related to the special values of
the completed L-function L̂(∆, s) := (2π)−sΓ(s)L(∆, s) = L̂(∆,12− s) by

s 6 6± 1 6± 2 6± 3 6± 4 6± 5

L̂(∆, s) ω+
30

ω−
28

ω+
24

ω−
18

2ω+
25

90ω−
691

As a concrete example, the motive Mf for the form f = f2,11 defined in (4.8) is
given by H1 of the elliptic curve E11/Q with Weierstrass equation y2 −y = x3 −x2,
meaning that the number of solutions of this equation in F2

p equals p − ap(f ) for
all p. But it is also equal toH1 of the modular curve X0(11)/Q by the Eichler-Shimura
theory, and the elliptic curves X0(11) and E11 are isogenous but not isomorphic. Al-
ready this simple example illustrates the point made above that a motive should be
thought of “in its own right” and not as a specific subspace of the cohomology of
some specific variety, since there are typically many realizations of the same mo-
tive and we do not necessarily know or need an explicit geometric correspondence
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between them. A more striking example is given by the Hecke form

f = f4,10 = q + 2q2 − 8q3 + 4q4 + 5q5 − 16q6 + · · ·

of weight 4 and level 10. An old paper of Ron Livné [51] showed that the L-function
of f is a factor of the Hasse-Weil zeta function of the smooth 7-dimensional variety
W10 defined as the set of points (x1 : · · · : x10) in P9(C) satisfying

∑
xi =

∑
x3
i = 0

(more specifically: the number of points of W10 over Fp for p ö 10 equals −p2ap(f )
plus a polynomial in p, so the Hasse-Weil zeta function is a multiplicative combina-
tion of shifts of ζ(s) and of L(f , s)), and a recent paper of Matthias Schütt [64] shows
that the same modular form f also occurs in the zeta-function of a certain Calabi–
Yau threefold Ŵ3. In both cases the result is established purely arithmetically (by
counting points modulo p for small p and using theorems of Faltings and Serre to
deduce that if the desired equality of Frobenius traces is true for sufficiently many p,
then it is always true), without exhibiting any explicit correspondence between the
algebraic varietyW10 or Ŵ3 and any variety having a modular parametrization. There
are many more examples in the literature, a particularly nice collection being given
by the modularity theorem [32] (previously the modularity conjecture) for “rigid”
Calabi–Yau threefolds (those with b3 = 2) defined over Q, of which Schütt’s example
is a special case. We refer to Noriko Yui’s survey article [73] and Christian Meyer’s
book [53] for more detailed discussions.

Example 2: Hypergeometric motives

The starting point here is an old observation of Deuring. Consider the Legendre
elliptic curve (3.1) for some rational value of t and reduce modulo a prime p not
dividing the numerator or denominator of t or 1 − t. Then from (6.2) we find that
the integer ap(Et) = p + 1− #Et(Fp) is given modulo p by

ap(Et) = −
∑

x (mod p)

(
x(x − 1)(x − t)

p

)
≡ −

∑
x (mod p)

(
x(x − 1)(x − t)

)(p−1)/2

≡ Coefficient of xp−1 in
(
x(x − 1)(x − t)

)(p−1)/2 (mod p)

because the sum of xm over x ∈ Z/pZ equals −1 for m = p − 1 and 0 for other
values of m between p−1

2 and 3(p−1)
2 . Calculating by the binomial theorem, we find

(−1)(p−1)/2 ap(Et) ≡
(p−1)/2∑
n=0

(
(p − 1)/2

n

)2

tn ≡
(p−1)/2∑
n=0

(
−1/2
n

)2

tn (mod p) ,

which (as was later observed by Igusa) is just a truncated version of the hypergeo-
metric series in (3.3) giving the period function for the Legendre family as t varies.
This observation led to a vast development, begun by Dwork, continued by Katz,
and now being systematically developed by Villegas and his collaborators [59]. To
any pair a = (a1, . . . , ar ), b = (b1, . . . , br ) of tuples of rational numbers of the same
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length r and to each rational number t one associates an r -dimensional motive
M(a,b; t) whose complex realization in the case br = 1 has periods coming from
the hypergeometric function (3.8) with r = s + 1 and whose L-function is defined
by an Euler product whose Euler factors are given by a beautiful explicit formula in
terms of Gauss and Jacobi sums at the “unramified” primes (those not dividing the
denominator of any ai or bi or of t, 1

t or of 1
1−t ) that can also be written in terms

of truncated p-adic hypergeometric series. (There is also a much more complicated
recipe, discussed in detail in [59], for the Euler factors at the ramified primes.) These
motives are well-defined objects and can be realized geometrically as part of the
cohomology of some variety, as was shown by Katz [45] (and more explicitly in [9],
where varieties are constructed whose number of points is given by the p-adic hy-
pergeometric function when we are in the situation (3.9), when M(a,b; t) is defined
over Q). But the real point is that these are intrinsically defined motives, whose com-
plex and `-adic parts can be written down directly in terms of the defining data
(a,b, t) without needing the geometric realizations (which are neither canonical nor
particularly natural).

The prototypical and motivating example of a hypergeometric motive is the one as-
sociated to a = ( 1

5 ,
2
5 ,

3
5 ,

4
5) and b = (1,1,1,1), which is the motive given by the same

4-dimensional piece of the 204-dimensional third cohomology group of the Dwork
quintic Qψ (with t = (5/ψ)5) that led to the Picard–Fuchs differential equation and

period function F(a; b; t) =
∑ (5n)!

55nn!5 t
n that we found in Example 2 of §3. A detailed

discussion of this case and of the way that one can obtain the L-function by first
counting points on Qψ and then subtracting the contributions from the unwanted
200-dimensional part of the cohomology, is given in the paper [15] by Candelas,
de la Ossa, and Villegas, where an explicit expression for the number of points in
terms of p-adic gamma functions is derived (penultimate formula on p. 46 of [15]).
To quote Candelas: “The fact that you can count the numbers of Fp-rational points
using periods is very interesting.” Here and in [59] the L-functions are calculated,
and their analytic continuation and functional equation (which are in general still
conjectural) verified numerically, for many rational values of t. These degree 4 L-
functions should have an automorphic meaning as the spinor L-functions of certain
Siegel modular forms of degree 2 and weight 3.

7 Examples

In this section we will describe in detail three examples, all of which I heard about
from Vasily Golyshev, where a motivic argument suggested a concrete mathematical
statement that could then be checked numerically and/or theoretically.

Example 1. Apéry numbers of fractional index

Our first example has to do with the interpolation to non-integral values of n of
the Apéry numbers An. Golyshev pointed out that Apéry’s hypergeometric closed
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formula (1.5), slightly rewritten, makes sense also for n 6∈ Z and, on the basis of
motivic considerations that will be indicated below, predicted that the real number
A−1/2 should be a simple multiple of a special value of the L-series of the modular
form f4,8 defined in equation (4.10). This turned out to be true (Proposition 2 be-
low), and in fact we learned subsequently from Wadim Zudilin that an equivalent
result (but as a purely hypergeometric formula for the L-value, not from the point of
view of interpolating the An) had also just been proven by Rogers, Wan and Zucker
(eq. (32) of [60], where many other examples of similar type are given). However, the
main point here is not the proof of the identity, which is a nice illustration of the
connection between modular forms and period integrals but is not particularly diffi-
cult, but rather the power of the way of thought that made it possible to predict that
such an identity had to hold in the first place.

We define a number Ax for any x ∈ C by the absolutely convergent series

Ax =
∞∑
k=0

(
x
k

)2(
x + k
k

)2

. (7.1)

For x = n ∈ Z≥0 this series terminates at k = n and agrees with Apéry’s formula (1.5)
for the Apéry numbers {An} = {1,5,73, . . .}, so (7.1) gives a natural interpolation of
these numbers to arbitrary complex arguments. A small surprise here was that this
interpolation does not satisfy the original recursion (1.1) of the Apéry numbers, but
only a modified version of it:

Proposition 7.1 The sum (7.1) defines a holomorphic function which for all x ∈ C
satisfies the symmetry property Ax = A−x−1 and the functional equation

(x + 1)3Ax+1 − (34x3 + 51x2 + 27x + 5)Ax + x3Ax−1 =
8
π2
(2x + 1) sin2πx .

This will be proved below. (I mention here that Golyshev and I have now found a
way different from (7.1) to interpolate {An} to complex values that satisfies the orig-
inal recursion (1.1), based on the method of Frobenius limits that will be discussed
in Section 9. This will be presented in a later paper.)

Now we consider A−1/2. The series (7.1) converges too slowly to be used directly,
but by convergence acceleration techniques one can calculate the value

A−1/2 = 1.11863638716418706834961925752564091679485755152936119148 · · ·

and verify numerically that it satisfies the statement of the next proposition.

Proposition 7.2 The value of the function An at its point of symmetry is given by

A−1/2 =
16
π2
L(f4,8,2) , (7.2)

where f4,8(τ) is the normalized Hecke eigenform in S4(Γ0(8)) defined in (4.10).



754 Don Zagier

This too will be proved below, but first we explain what lay behind Golyshev’s
prediction that an identity of this sort was to be expected. At first sight it looks
very strange, since the modular interpretation of the numbers An that we have seen
so far has to do with the modular form f of weight 2 on Γ0(6) occurring in (5.3),
while (7.2) involves the completely different modular form f4,8 of weight 4 on Γ0(8).
The connection between them occurs through the congruence

A(p−1)/2 ≡ γp (mod p) (p > 2 prime) (7.3)

proved by Beukers in [7], where γn denotes the coefficient of qn in f4,8(τ). In an
earlier paper [6] he had showed that the numbers Ampr−1 have a p-adic limit as
r → ∞ for any prime p and any positive integer m, and formal group methods
that Stienstra and he developed in [66] give a kind of fusion of these two results,
namely that the p-adic limit of A(mpr−1)/2/A(mpr−1−1)/2 exists for any odd prime p
and odd positive integer m and that its value up is independent of m and related
to γp by γp = up + p3/up . All of these results show that there is a deep connection
between the Apéry numbers An and the L-series of f4,8 as defined in (4.12) (here
with χ the trivial Dirichlet character modulo 2). Already in [7], in connection with
the congruence (7.3), Beukers had written “Although we do not know all the details
yet, this congruence must arise from the interplay between the numbers An and
the ζ-function of a certain algebraic threefold.” In fact the connection, as suggested
by the factor 1

2 in the index of An in (7.3), is with the double covering W of the
Beukers-Peters family of K3 surfaces given by w2 = L(x,y, z), where L(x,y, z) is
the Laurent polynomial (1.10) defining this family, as we can test numerically by
verifying the formula∑

x,y, z∈F×p

(
L(x,y, z)

p

)
= −p − γp (p > 2 prime) ,

in which the left-hand side (up to sign and an additive term (p − 1)3) gives the
number of points (x,y, z,w) ∈ F×p

3 × Fp lying on W . This point-counting identity
says that the L-function of the cusp form f4,8 is part of the Hasse-Weil zeta function
of W , so if one believes the motivic philosophy then that means that the Galois
representation, and thus the motive, of f4,8 is contained in that of W and hence
(according to the Tate conjecture) that there must be an algebraic correspondence
over Q between the Kuga variety over X0(8) in which the former motive lives and
the variety W . Of course the Tate conjecture is not known in this generality, but the
existence of the predicted correspondence can in principle always be verified by an
actual construction (and in the case under consideration is presumably given by a
birational map found by van Straten and mentioned on p. 170 of [53]), and even in
cases where this cannot be carried out we can still formulate and test the identity of
periods that it implies, which here is precisely (7.2)

We end the subsection by giving proofs of the two propositions.

Proof of Proposition 1. Denote the kth summand in (7.1) by αk(x). The asymptotic

formula
(
a
k

)
∼ (−1)k

Γ(−a)k
−a−1 (k → ∞) and the duplication formula of the gamma func-
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tion give αk(x) ∼ sin2(πx)/(πk)2 = O(k−2) as k → ∞, so the series (7.1) converges
absolutely and locally uniformly and hence defines a holomorphic function in the
entire complex plane. The symmetry under x , −x − 1 is obvious since each term
in (7.1) has this property. Finally, to prove the recursion, we observe that by induc-
tion on K we have

K∑
k=0

((
x + 1

)3αk(x + 1)−
(
34x3 + 51x2 + 27x + 5

)
αk(x)+ x3αk(x − 1)

)
= 4

(
K(2K + 1)(2x + 1)− (2x + 1)3

)
αK(x) ,

and the limiting value of this as K →∞ has the value claimed because of the asymp-
totic formula for αK(x). (This calculation is just a rewriting of the standard proof
by the method of telescoping series of Apéry’s original recursion formula.)

Proof of Proposition 2. Define a function B(t) for |t| ≤ 1 by B(t) =
∑∞
k=0

(
−1/2
k

)2
tk,

the hypergeometric series occurring in the period integral (3.3). Then we have

A−1/2 =
∞∑
k=0

(
−1/2
k

)4

= 1
2πi

˛
|t|=1

B(t) B(1/t)
dt
t
.

If we set t = λ(τ) with τ ∈ H, then from the modular parametrization (5.1) we
obtain B(t) = ϑ3(τ)2. Using the modular transformation properties

1
λ(τ)

= λ
( τ

1− τ
)
, ϑ3

( τ
1− τ

)2
= (1− τ)ϑ2(τ)2

and the modular form identity

1
2πi

ϑ3(τ)2 ϑ2(τ)2
λ′(τ)
λ(τ)

= 2f(τ/4) ,

with f = f4,8, we then find the integral representation

A−1/2 = 2

ˆ 2

0
(1− τ)f(τ/4)dτ ,

where the integral is taken along the hyperbolic geodesic from 0 to 2 (= Euclidean
semicircle with center 1 and radius 1), which is mapped by λ isomorphically to
the unit circle. Since f is a cusp form, we can replace this path of integration by
the difference of the two vertical lines from 0 to i∞ and from 2 to i∞, and since
f(τ + 1

2) = −f(τ) (because f has a q-expansion containing only odd powers of q),
this gives finally

A−1/2 = 2
(ˆ ∞

0
−
ˆ ∞

2

)
(1− τ)f(τ/4)dτ = −4

ˆ ∞

0
τ f(τ/4)dτ ,

which is equivalent to (7.2) by the standard integral representation of L(f , s).
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Example 2. Periods of the mirror quintic family

Our next example, again involving the periods of a cusp form of weight 4, is con-
nected with the Dwork quintic Qψ studied in Example 2 of Section 3. There we gave
the first calculation (3.7) of an explicit period on Qψ, following [14], finding that the
integral of the algebraic differential form (3.6) over an appropriate 3-cycle equals
(2π)3Φ(ψ−5), where Φ(t) denotes the hypergeometric function

∑∞
n=0

(5n)!
n!5 t

n . This
means that (2πi)3Φ(t) is part of the Z-lattice in the 4-dimensional solution space of
the corresponding hypergeometric differential equation obtained by integrating Ω
over a basis of H3(Qψ;Z), as discussed in Section 2. A natural question, here or for
any other differential equation with regular singular points, is to give the complete
transition matrices between the basis of the solution space obtained by local expan-
sions at each singular point and an integral basis of this lattice. In the case at hand
there are three singular points t = 0 (“point of maximum unipotent monodromy”),
t = ∞ (“orbifold point”), and t = 5−5 (“conifold point”). At t = 0 we have the “Frobe-
nius basis” {Φi(t)}0≤i≤3 (cf. (9.4) below), where each Φi(t) is a polynomial of degree i
in log t with coefficients inQ[[t]] and with leading term Φ(t)(log t)i/i!, and at t = ∞
we have the basis given by choosing any four of the five functions

∑
5ön

Γ(n)5
Γ(5n) ζ

nt−n/5

(ζ5 = 1), which sum to 0. Candelas et al. gave explicit formulas for the 4×4 transition
matrices between each of these and the integral basis, and a generalization applying
to all hypergeometric differential equations was given by Golyshev and Mellit in [30].
But for the conifold point only seven of the entries of the corresponding transition
matrix (namely, those of its last row and column in appropriate bases) are known in
closed form, and the remaining nine only numerically to high precision (calculations
by Albrecht Klemm, Emanuel Scheidegger, and myself). Golyshev told us that among
the remaining entries of this matrix one should find both periods of the cuspidal
eigenform f4,25 of weight 4 and level 25 given in (4.11). We checked this prediction,
and also our own further prediction that the “quasiperiods" as well as the periods of
f4,25 should appear in the transition matrix that we had already calculated numeri-
cally, and indeed simple rational multiples or rational linear combinations of all four
numbers appeared, at least numerically to very high precision [49].

Where did these predictions come from? In the final example of the last section
we discussed how point counting on the Dwork quintic Qψ for generic ψ leads to
a polynomial P(T) = P(M( 1

5 ,
2
5 ,

3
5 ,

4
5 ; 1,1,1,1; (5/ψ)5)/Fp, T ) of degree 4 for every

good prime p. At the singular point ψ = 5, the degree of this polynomial drops by 1
and it factors as

(
1−

(p
5

)
pT

)(
1−cpT+p3T 2

)
, where cp is the coefficient of qp in the

cusp form f4,25, as was shown 30 years ago by Chad Schoen [62] by computing the
values in question for sufficiently many primes and then invoking the results of Falt-
ings and Serre to deduce their equality in general. This says that the 2-dimensional
motive associated to f4,25 is contained in the third cohomology group of Q5 (more
precisely, that the corresponding `-adic Galois representation occurs in H3(Q5;Q`)).
Hence, if one believes the Tate conjecture, there should be an actual correspondence,
defined over Q, between the associated geometric objects, and this in turn implies
that the two periods of f4,25 must show up in the period matrix of the Dwork pencil
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at the point ψ = 5 as claimed. A similar degeneration at the singular fiber of the
generic fourth degree point-counting polynomial into a linear factor and a quadratic
factor associated to a modular form of weight 4 has been found by Villegas [70] for
all 14 hypergeometric families of Calabi–Yau threefold, e.g., the L-series of the cusp
form (4.9) occurs in the L-series of the motive M(( 1

4 ,
1
3 ,

2
3 ,

3
4); (1,1,1,1); 1). One can

then predict that the periods and quasiperiods of these cusp forms will appear in
the transition matrices between the relevant bases of the spaces of solutions of the
corresponding hypergeometric differential equations.

Example 3. Hypergeometric algebraic units

The last example is of a somewhat different nature. In Example 4 of Section 3 we
discussed hypergeometric functions F(t) of the form (3.9) that are algebraic, giving
Villegas’s criterion for this and also the examples (3.10) and (3.11). Here Golyshev
predicted, based on an argument about extensions of motives that I will not repro-
duce, that the power series Q(t) = exp

(´ F(t)
t dt

)
= t exp

(∑
n>0 an

tn
n

)
, where an

denotes the coefficient of tn in F(t), must always be an algebraic function in the
field Q(t, F(t)), and in fact always an algebraic unit over Z[1/t]. (This implies in
particular that the value of Q(t) if one substitutes for t the reciprocal of any inte-
ger bigger than the inverse of the radius of convergence is an algebraic unit in Q.)
Specifically, he asked me whether I could prove this for the special case of the bino-
mial series (3.10), and this turned out not to be too hard, as shown in Proposition 3
and its proof below.4 (Strangely enough, precisely this question had appeared quite
recently in various contexts in physics, e.g., in [19] and [25], as I was informed by
Yan Soibelman.) I also checked Golyshev’s prediction for the first two power series
in (3.11) (Proposition 4 below), but in view of the huge degree I was not able to do the
same for the third example. Spencer Bloch sketched to me a proof of the algebraicity
of Q(t) whenever the curve defined by the algebraic hypergeometric function F(t)
is rational (as happens for BM,2(t) for all M and also for F(6,1),(3,2,2)(t); see below),
but as far as I know there is no proof yet for the general case.

Proposition 7.3 The function defined for |t| < 1 by the power series expansion

QM,N(t) = t exp
( ∞∑
n=1

(
Mn
Nn

)
tn

n

)
∈ Q[[t]]

is algebraic for all M > N > 0, and is a unit over Z[1/t].

Proof. For t small, the polynomial Pt(u) = t(1 + u)M − uN of degree M has N
“small” roots u1(t), . . . , uN(t) near the circle |u| = |t|1/N and K := M − N “large”

4. A much more general result was given by Maxim Kontsevich in his article ‘Noncommutative
identities’ (arXiv:1109.2469) written on the occasion of my 3 · 4 · 5 birthday.

http://arxiv.org/abs/1109.2469
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roots uN+1(t), . . . , uM(t) near the circle |u| = |t|−1/K . The function (3.10) is then
given explicitly as an algebraic function of t by

BM,N(t) =
N∑
i=1

1+ui(t)
N −Kui(t)

, (7.4)

as one can see by using the Cauchy residue theorem twice to write

BM,N(t) =
∞∑
n=0

(
1

2πi

ˆ
|u|=1

(1+u)Mn du
uNn+1

)
tn

= − 1
2πi

ˆ
|u|=1

uN−1 du
Pt(u)

= −
N∑
i=1

ui(t)N−1

P ′t (ui(t))
.

Differentiating the equation Pt(ui(t)) = 0 with respect to t, we find that the ith
summand in (7.4) equals tu′i(t)/ui(t), and then dividing by t, integrating and expo-
nentiating we get the formula

QM,N(t) = (−1)N−1
N∏
i=1

ui(t) (7.5)

for QM,N(t) in terms of the roots ui(t). This proves the proposition since the poly-
nomial t−1Pt(u) is monic of degree M over Z[1/t] and therefore each ui(t) is an
algebraic unit over this ring.

As an example of the proposition, the function Q5,2(t) is a root of the equation

(Q + 1)10t2 − Q(Q + 1)5(Q2 − 5Q + 1)t + Q7 = 0, which has degree 10 =
(

5
2

)
in Q. In general the degree of the algebraic function BM,N(t) (or QM,N(t)) over Q(t)
equals

(
M
N

)
for M and N coprime, because its conjugates are given by replacing

u1, . . . , uN in (7.4) (or (7.5)) by any subset of {u1, . . . , uM} of cardinality N , while if

(M,N) = d > 1 the degree equals
(
M/d
N/d

)d
. Another remark is that the algebraic curve

defined by the algebraic functions BM,N(t) orQM,N(t) has a rational parametrization,
and hence has genus 0, if N = 1 or N = 2. Indeed, for N = 1 equation (7.4) simplifies
to BM,1(t) = 1+u(t)

1−Ku(t) , where u(t) is the solution of u = t(1+u)M in t+t2Q[[t]] (this
formula also follows from the Lagrange inversion formula) and equation (7.5) be-
comes simply QM,1(t) = u, so that we have the rational parametrization t = u

(1+u)M ,

BM,1(t) = 1+u
1−Ku , QM,1(t) = u. If N = 2 we denote by u = u1(t) and v = u2(t) the

solutions of t = u2

(1+u)M =
v2

(1+v)M with u ∼
√
t, v ∼ −

√
t and set 1+u

1+v = x2. Then
u
v = −xM and we can solve to get

u = x
M − xM−2

1+ xM−2
, v = 1− x2

x2 + xM , t = x
2M−4(1− x2)2(1+ xM−2)M−2

(1+ xM)M ,

BM,2(t) =
1+ xM

2(1+ xM)+MxM−2(1− x2)
+ 1+ xM

2(1+ xM)−M(1− x2)
.
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When we divide this by t, integrate, and exponentiate, there is a huge cancellation
and the formula for QM,2(t) is much simpler, with two surprising factorizations:

QM,2(t) =
xM−4(1− x2)2

(1+ xM−2)2
, 1+QM,2(t) =

(1+ xM−4)(1+ xM)
(1+ xM−2)2

.

Finally, we verify Golyshev’s prediction for the first two series in (3.11).

Proposition 7.4 Each of the two power series

t exp
( ∞∑
n=1

(6n)!n!
(3n)! (2n)!2

tn

n

)
, t exp

( ∞∑
n=1

(10n)!n!
(5n)! (4n)! (2n)!

tn

n

)
(7.6)

is algebraic, and is a unit over the ring Z[1/t].

Proof. The proof is purely computational, using the first terms of each power series
to guess the algebraic equation and then verifying that it satisfies the correct differ-
ential equation, so we content ourselves with describing the structure of the equa-
tions of the hypergeometric series F(t) = Fc,d(t) and the corresponding unit Q(t)
in each case. The degrees of F(t) and Q(t) over Q(t) are 6 and 30, as already men-
tioned in §3, but in each case one of the conjugates of F is −F and the functions
F(t)2 and Q(t) + Q(t)−1 therefore have degree only 3 and 15, respectively. For
instance, in the first case the equation satisfied by G = (1 − 108t)F(6,1),(3,2,2)(t)2

over Q(t) is G(4G − 3)2 = (1 − 216t)2 and that of H = Q(t) + 2 + Q(t)−1 is
H3t2 − (H2 − 27H + 108)t + 1 = 0. In this case the curve has genus 0 and can

be given parametrically by Q
(u(1−u)2(3−u)2(4−u)

432

)
= u(1−u)

(3−u)(4−u) . In the second case

the equation satisfied by H = Q + 2+Q−1 over Q(t) has the form t6H15 − t5H14 +
432t5H13−(14500t−184)t4H12+· · ·+65t(3125t−9)2 = 0, where the intermediate
coefficients are complicated and have been omitted.

8 Differential equations and mirror symmetry

The usual description of mirror symmetry involves two Calabi–Yau varieties (or more
properly families of Calabi–Yau varieties) and relates the Gromov–Witten invariants
(“A-side”) of one of them to the Picard–Fuchs equation (“B-side”) of the other. A par-
ticularly clean class of examples, which is the only one we will talk about in this
paper, starts with the family of Calabi–Yau varieties arising as anticanonical divi-
sors of a Fano manifold of arbitrary dimension. In this section we will discuss how
this works, starting with the definition and examples of Fano manifolds and then
explaining the conjectured “mirror” correspondence and describing a large number
of examples for which it is known. In a few words, Gromov–Witten theory associates
to any complex symplectic manifold a collection of invariants defined by counting
holomorphic maps of curves into the variety with prescribed homological data (like
the genus and number of marked points on the curves, the homology class in the
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target variety to which it maps, and constraints on the images of the marked points).
The genus 0 Gromov–Witten invariants are used to construct a “quantum cohomol-
ogy ring” that is a deformation of the usual cohomology ring of the variety, and
from this structure in turn one constructs an explicit linear differential equation
of finite order called the quantum differential equation. The mirror correspondence
is then characterized by the statement that the quantum differential equation of
the Fano variety is the Laplace transform of the Picard–Fuchs differential equation
of its mirror variety, meaning in particular that the unique power series solution
of the quantum differential equation (the so-called “quantum period”) is given by∑
Anzn/n!, where

∑
Antn is the power series solution of the Picard–Fuchs equation

on the mirror side. We will describe this correspondence in detail for the case of the
17 rank one Fano 3-folds, for one of which the numbers An are precisely the Apéry
numbers with which we began this article.

We will give only brief descriptions of Gromov–Witten theory, mirror symmetry,
quantum cohomology and quantum differential equations, referring the reader to
the expositions in [20], [36], [28], [47], [52] and [56] (in roughly increasing order of
difficulty).

Fano manifolds and their mirrors

We recall that a Fano n-fold is by definition a smooth n-dimensional complex man-
ifold F whose anticanonical class −K is ample. (For a topologist this would be ex-
pressed as the positivity of the first Chern class c1 = c1(F), since K = −c1.) Examples
in all dimensions are given by complex projective spaces (or more generally Grass-
mannians and flag varieties) and their products. The only Fano curve is the projec-
tive line P1(C). There are precisely ten Fano surfaces, otherwise known as del Pezzo
surfaces, namely P1 × P1 and dPn (the blow-up of the projective plane P2 in 9 − n
points in general position) for 1 ≤ n ≤ 9. Notice that these are actually families of
surfaces, since dPn for n ≤ 4 has a positive-dimensional moduli space correspond-
ing to the positions of the points in the plane that are blown up. In dimension 3
there are exactly 105 Fano manifolds up to deformation, as was proved in the early
1980’s by Mori and Mukai by a very subtle analysis (and as an extremely impressive
illustration of the power of Mori’s theory of extremal rays). The Fano 3-folds F with
Picard rank ρ (which here is equal to the second Betti number dimH2(F,Q)) equal
to 1 had been classified a few years earlier by Iskovskikh, who showed that there
were precisely 17 of them (all but one of which had already been known to Fano).
This will be reviewed below. In dimension 4 thousands of examples are known but
there is no complete classification.

If F is a Fano n-fold, then the adjunction formula implies that its anticanonical
divisors (divisors whose homology class is the Poincaré dual of −K) are Calabi–Yau
manifolds. According to the mirror symmetry philosophy – the experts assure me
that it would be premature to call it a well-defined theory – there should be a mirror
dual family X = {Xt}t∈S of Calabi–Yau (n− 1)-folds whose associated Picard–Fuchs
differential equation is the Laplace transform of the quantum differential equation
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of F , which we will describe in a moment. In the case n = 3 in which we will be most
interested, this will be a family of K3 surfaces of Picard number 20 − ρ, where ρ is
the Picard number of F , which can range from 1 to 6. The dimension of the moduli
space of anticanonical divisors in F is also 20 − ρ, while the dimension of the base
space S of the mirror family is equal to ρ. For instance, the moduli space of quartic
hypersurfaces in P3 has dimension

(
7
3

)
− 42 = 19, and the mirror dual is the quartic

analogue in P3 of the quintic pencil (3.5) in P4 studied in Section 3. In the ρ = 1
cases that we will be especially interested in, the base space S of the mirror family
is always P1(C) (or more correctly, since the periods here always have a modular
parametrization, a moduli curve of genus 0 that has been identified with P1(C) by
choosing a Hauptmodul).

We next have to describe the mirror of F , which should be a family of (n − 1)-
dimensional Calabi–Yau manifolds. In our case this family will always be given by a
Landau–Ginzburg model, i.e., there is a Laurent polynomial L in n variables and the
Calabi–Yau manifolds are the fibres of the map L : C∗n → C. The relation between F
and its mirror family can be described at many levels, e.g., as an isomorphism be-
tween the derived category of coherent sheaves on F and an appropriate Fukaya
category on the Landau–Ginzburg side. We will use a more elementary description
in terms of the differential equations associated to both objects. On the Fano side
this is the quantum differential equation, which we now recall, and on the mirror side
it is the Picard–Fuchs equation that we have been studying throughout the paper.

The quantum differential equation associated to F is defined in terms of its
(“small”) quantum cohomology ring. We will not give the complete definitions, since
they play no role for us; a short description in the rank 1 case is given in Section 4
of [31] and more detailed expositions can be found in [16] and in the references
listed at the beginning of the section. Very briefly and very roughly, the quantum co-
homology ring is the vector space H∗(F ;Q)⊗Q[z] (at least in the cases with ρ = 1;
if ρ > 1 then one has to take z to be a multi-variable of length ρ) equipped with
an associative multiplication ? extending the usual cup product (the specialization
to z = 0) that is defined in terms of the genus 0 Gromov–Witten invariants of F
(the counting functions of rational curves in F intersecting divisors with given ho-
mology classes and having a given image in H2(F ;Z)). This data can be encoded
in the form of a first-order vector-valued differential equation on H∗(F ;Q)[z] or
in terms of an ordinary differential equation with respect to z. The quantum pe-
riod GF(z), which is the unique solution in Q[[z]] of this differential equation, is
then given by

∑∞
n=0 anzn, where an can be thought of as some kind of “volume”

of the moduli space M = M0,1,n(F) of morphisms f of anticanonical degree n
from a genus 0 curve with one marked point x0 to F . (Somewhat more precisely,
an =

´
Mψ

n−2ev∗([pt]), where ψ is the first Chern class of the line bundle on M
whose fibre at [f ] is given by the cotangent bundle of the curve at f(x0) and
ev : M → F is the evaluation map f , f(x0).) The duality between the Fano va-
riety F and its mirror L : C∗n → C is then summarized in the equality an = An/n!,
where An is the constant term of Ln. Since the generating series

∑
Antn, as we have

seen, is then a period of the family {Xt = L−1(t)}t and is a solution of the associ-
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ated Picard–Fuchs differential equation, the relationship between the two sides can
also be expressed by saying that the quantum differential equation is the Laplace
transform of the Picard–Fuchs differential equation.

In [29] Golyshev made a precise conjecture giving the mirror duals for the 17 Fano
3-folds of the Iskovskikh classification, and all cases of this were proved in that
paper and in the subsequent article [58] by Przyjalkowski. We will describe these
results in the next subsection. The corresponding results for the remaining 88 Fano
3-folds of the Mori-Mukai classification were conjectured by Tom Coates, Alessio
Corti, Sergey Galkin and Alexander Kasprzyk together with Golyshev and proved in
all cases in their (physically and mathematically) huge article [16], which gives new
explicit descriptions of the Fano varieties as well as a Laurent polynomial defining
the mirror family in every case. For example, opening [16] at random on page 220,
one finds that the Fano variety F = MM3–19 (= the 19th of the Fano 3-folds with Picard
number ρ = 3 in the Mori-Mukai classification) has quantum period given by

GF(z) = e−2z
∑

m≥`≥0

(
2m
m

)
zm+2`

`!3(m− `)! .

If we write this as
∑
Anzn/n!, where (A0, A1, . . . ) = (1,0,2,12,54,240,1280, . . . ),

then An is the integer defined by the constant-term formula (1.11) with

L = L(x,y, z) = xz + x +y + z + 1
x
+ 1
yz
+ 1
xyz

,

and the mirror family of F is given by the Landau–Ginzburg model t L(x,y, z) = 1.
Similar results are given for 738 Fano 4-folds in [17].

The 17 rank one Fano 3-folds and their mirrors

As already said above, there are exactly 17 families of Fano 3-folds with Picard num-
ber ρ = 1, as classified by Iskovskikh in 1977–78. The families are labeled by two nu-
merical invariants, the index d = [H2(F ;Z) : Z c1], where c1 = c1(F) ∈ H2(F ;Z) is the
first Chern class of the tangent bundle of F , and the level N , defined as 〈c3

1 , [F]〉/2d2,
which is always a positive integer. The 17 possible pairs (d,N) are given by the table

d 1 2 3 4

N 1, . . . , 9, 11 1, . . . , 5 3 2

Each of the corresponding Fano varieties has a name and an algebraic description.
For instance, the projective space P3 corresponds to the last entry (d,N) = (4,2)
of the table, while the Fano 3-fold corresponding to (d,N) = (1,6), which is the
one related to the Apéry numbers, is called V12 and is defined by starting from
the Fano 10-fold G(10,5) (orthogonal Grassmannian of 5-dimensional isotropic sub-
spaces in C10) and then taking generic hyperplane sections 7 times in a row to reduce
the dimension to 3.
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We now give the description of the mirrors of these varieties as found by Golyshev,
though in a somewhat modified form taken from [31]. This description is completely
modular. For every integer N ≥ 1 we have the congruence group Γ0(N) and corre-
sponding modular curve X0(N) = XΓ0(N), as described in Section 4. This curve has
an interpretation as the moduli space of ordered pairs (E, E′) of elliptic curves to-
gether with a cyclic isogeny of degree N from E to E′. (In terms of τ ∈ H these are
given by E = C/(Zτ + Z) and E′ = C/(NZτ + Z), with the obvious map.) There is an
involution WN on X0(N) corresponding to interchanging E and E′, given in terms of
the parameter τ by τ , −1/Nτ (Fricke involution), so we can consider the quotient
X∗0 (N) = X0(N)/WN , which is the moduli space of unordered pairs of cyclically N-
isogenous elliptic curves. To the point of X∗0 (N) corresponding to such a pair {E, E′}
we can associate the Kummer surface obtained by dividing the abelian surface E×E′
by the involution (u,u′) , (−u,−u′) and blowing up the 16 resulting singulari-
ties. These Kummer surfaces generically have Picard number 19 as desired, because
there are 3 linearly independent algebraic cycles in E × E′ given by the classes of E
and E′ and the graph of the isogeny between them, and 16 further linearly indepen-
dent cycles on the Kummer surface coming from the blow-ups of the singularities
(exceptional curves).

Next we must single out special values of N , as well as of an auxiliary inte-
ger d corresponding to a covering of X∗0 (N). For every N > 1, there is a modular
form FN(τ) defined as the unique Eisenstein series of weight 2 that equals 1 at ∞
(i.e., has a q-expansion beginning 1 + O(q)), is anti-invariant under WN (meaning
that FN(−1/Nτ) = −Nτ2FN(τ)), and vanishes at all of the cusps of X0(N) other
than 0 and ∞. For N = 1 this definition makes no sense, since all modular forms
of level 1 are invariant under W1. In this case we set F1 =

√
E4 (which is not quite a

modular form, or even a well-defined function in H, but works well anyway; cf. Ex-
ample 2 of Section 5). We then consider the cases when X∗0 (N) has genus 0 and a
Hauptmodul tN for Γ∗0 (N) is given by the formula

tN(τ) =
(
η(τ)2 η(Nτ)2

FN(τ)

) 12
N+1

,

the strange-looking exponent 12
N+1 being forced by the requirement that tN(τ) has

an expansion at ∞ beginning q + O(q2). It turns out that there are precisely ten
values of N for which this happens, namely N = 1, . . . ,9 and 11, and precisely 17
pairs (d,N) for which also the Hauptmodul tN(τ) has a dth root, these being ex-
actly the 17 pairs of the Iskovskikh classification. The result conjectured by Goly-
shev and proved by him and Przyjalkowski is that the corresponding families of
K3 surfaces, with periods ΦN,d(t) ∈ Q[[t]] defined by the modular parametrization
FN(τ) = ΦN,d(tN(τ)1/d), are the mirror duals in the sense explained above of the
Fano 3-folds of the Iskovskikh classification. Each of the 17 power series ΦN,d(t) has
Taylor coefficientsAn given by the formula (1.11) for a suitable Laurent polynomial L,
and the differential equations that they satisfy are the ones that were discussed in
Examples 3 and 19–34 of Section 5.
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9 Differential equations and topology

In this final main section of the paper we describe a conjecture due to Galkin, Goly-
shev and Iritani relating the asymptotic behavior at infinity of the solutions of the
quantum differential equation of a Fano manifold with the so-called Gamma class of
this manifold. Its subject matter is thus a direct continuation of that of Section 8,
but we have put it into a section of its own because there is no direct relation to mir-
ror symmetry (both sides of the conjecture involve the Fano variety, not its mirror
manifold) and also because it makes a more direct connection with the word “topol-
ogy” in the title of the paper. Specifically, the Gamma class is a universally defined
multiplicative characteristic class in the sense of Hirzebruch, so that this section
also provides another link between our topic and his work.

The Gamma class

We begin by recalling Hirzebruch’s definition of multiplicative characteristic classes
[37], one of his most beautiful and fruitful discoveries. Let f(x) be a power se-
ries with constant term 1 and coefficients in a ring K (say Q or R). Then for
any complex vector bundle E over a base space X we define a characteristic class
χf (E) ∈ H∗(X;K) by the formula

χf (E) =
∏
j
f(αj) , (9.1)

where the αj are formal degree 2 cohomology classes such that the total Chern class
c(E) ∈ H∗(K) factors as

∏
(1+αj). The αj can be interpreted topologically to some

extent by finding a pullback of E under some map X′ → X that splits as a sum
of line bundles and thinking of the pull-backs of the αj as the first Chern classes
of these, but this is not necessary: if we simply multiply out the power series on
the right-hand side of (9.1), then the degree 2d part of the expansion obtained is a
symmetric homogeneous polynomial of degree d in the α’s and hence a weighted
homogeneous polynomial in their elementary symmetric polynomials ci(E), with
coefficients in K, and therefore belongs to H2d(X;K). If X is a smooth complex
manifold and we take for E its tangent bundle, we write simply χf (X) instead of
χf (T(X)). Hirzebruch showed that one can obtain important topological invariants
of X by evaluating χf (X) on the fundamental class of X for suitable power series f
(genera) or by multiplying it by the Chern character of some bundle over X and then
evaluating on [X] (as in the Hirzebruch–Riemann–Roch theorem). The most impor-
tant examples here were those associated to the three power series f(x) = x

tanhx ,
giving the Hirzebruch L-class and the signature theorem, f(x) = x

1−e−x , giving the

Todd genus, and f(x) = x/2
sinh(x/2) , giving the Â-genus. Note that the last two of these

power series differ only by a factor ex/2, so that the corresponding characteristic
classes differ only by a factor ec1(E)/2.

If one now looks at the last of the above power series and remembers Euler’s
formula πx

sinπx = Γ(1 + x)Γ(1 − x), then it is natural to introduce the Gamma class
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Γ̂X ∈ H∗(X;R) associated to the power series f(x) = Γ(1+ x). Euler’s formula then
implies that the Â-class of X (or its Todd class, up to a factor ec1(X)/2) factors as the
product of Γ̂X(−1) and its complex conjugate, where the “jth Tate twist” ξ(j) of a
cohomology class ξ ∈ Hev(X) is defined by multiplying its degree d part by (2πi)jd

for all d. Thus we can think of the gamma class of X as some sort of a square-root
of its Todd class, and the authors of the paper [26] in which the Gamma Conjecture
is formulated describe the conjecture as a kind of square-root of the index theorem.

Since Γ(1+ x) has an expansion beginning

Γ(1+ x) = exp
(
−γx +

∑
n≥2

(−1)nζ(n)
n

xn
)

= 1− γx + γ
2 + ζ(2)

2
x2 − γ

3 + 3γζ(2)+ 2ζ(3)
6

x3 + · · · ,

we have

Γ̂X = 1 − γ c1 +
(
−ζ(2) c2 +

ζ(2)+ γ2

2
c2

1

)
+
(
−ζ(3) c3 +

(
ζ(3)+ γ ζ(2)

)
c1c2 −

2ζ(3)+ 3γ ζ(2)+ γ3

6
c3

1

)
+ · · · ,

where ci = ci(X) ∈ H2i(X) are the Chern classes of X. This formula simplifies a lot
if we introduce the modified gamma class Γ̂0

X , defined by

Γ̂X = Γ(1+ c1) Γ̂0
X , (9.2)

in which case it reduces to

Γ̂0
X = 1− ζ(2) c2 + ζ(3) (c1c2 − c3)+ · · · . (9.3)

Note that Γ̂X = Γ̂0
X if X is a Calabi–Yau manifold, since then c1(X) = 0. In any case,

there is a characteristic appearance of the number ζ(3) in any formula involving
threefolds and the Gamma class. Such formulas have played a role in string theory
in recent years, the process not having been entirely painless since certain formulas
that were thought to have been established turned out to be wrong until they were
corrected by incorporating the Gamma class.

The Gamma Conjecture for Fano varieties

We can now formulate the Gamma Conjecture for Fano varieties (actually one of
two “Gamma Conjectures” stated in [26], but we will not discuss the other). We con-
centrate mainly on the case of Fano 3-folds F of Picard rank one, for which the
cohomology ring H∗(F ;Q) is simply Q[c1]/(c4

1 = 0). The relationship between the
quantum cohomology of F and its quantum differential equation is such that the
4-dimensional space of solutions of the latter can be canonically identified with the
dual space H∗(F ;C) of the cohomology ring of F , so any linear functional κ assign-
ing to each element Ψ of the solution space a complex number κ(Ψ) can be thought
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of as an element of H∗(F ;C). In particular, since all solutions of the quantum dif-
ferential equation grow at infinity like the sum of a multiple of the holomorphic
solution GF(z) and a term of exponentially lower order, we can take κ to be the
asymptotic limit functional κ(Ψ) = lim

z→∞
Ψ(z)
GF (z) . The Gamma Conjecture then says that

the cohomology class of F corresponding to this functional is the Gamma class of F .
This statement can be made more explicit in the cases where H∗(F) is generated

by c1 by using the Frobenius basis of solutions.5 These are the four functions Ψi(z)
(0 ≤ i ≤ 3), where Ψi(z) ∈ Q[[z]][logz] is defined for all i ≥ 0 by the expansion

∞∑
n=0

an(ε) zn+ε =
∞∑
i=0

Ψi(z) εi , (9.4)

with an(ε) ∈ Q(ε) defined by the same recursion as that satisfied by the coeffi-
cients an of the quantum period GF(z) =

∑
anzn itself, but with n replaced by n+ε

and with initial conditions a0(ε) = 1, an(ε) = 0 for n < 0. For instance, in the Apéry
case F = V12 one has

Ψ0(z) = GF(z) = 1+ 5z + 73z2

2
+ 1445z3

6
+ · · · ,

Ψ1(z) = GF(z) logz + 7z + 201z2

4
+ 10733z3

36
+ · · · ,

and in general Ψi(z) = GF(z)(logz)i/i!+(lower order terms) for all i ≥ 0. The ith
Frobenius limit κi is then defined as the limit of Ψi(z)/GF(z) as z → ∞. (Thus κ0 is
always 1, since Ψ0 = GF .) In terms of these numbers, the Gamma Conjecture says sim-
ply that the Gamma class of F equals

∑3
i=0 κic

i
1. The Gamma class is easily computed

by purely topological considerations, so this gives an explicit prediction for the val-

ues of the Frobenius limits, e.g. κ1 = −γ, κ2 = γ2−3ζ(2)
2 and κ3 = −γ3+9γζ(2)+15ζ(3)

6

in the Apéry case. These formulas simplify to κ0
1 = 0, κ0

2 = −2ζ(2) and κ0
3 =

17
6 ζ(3)

if we replace the Frobenius limits by the corresponding limits for the Laplace-
transformed differential equation satisfied by the generating function of the original
Apéry numbers, in which case the Gamma Conjecture becomes Γ̂0

F =
∑3
i=0 κ

0
i c
i
1.

The Gamma Conjecture was proved by its authors for projective spaces, toric man-
ifolds, and certain toric complete intersections and Grassmannians, and in [31] for
all of the Fano 3-folds with ρ = 1 (some cases of which were already known previ-
ously by work of Dubrovin and others). Actually, two methods of proof were given
in [31]. The first is combinatorial and proceeds by giving explicit formulas for the co-
efficients of the power-series parts of the Frobenius solution Ψi(z), involving the har-
monic numbers 1+ 1

2 +· · ·+
1
n and the nth partial sums of ζ(k) for 2 ≤ k ≤ i, while

5. The insight that the Gamma class gives the discrepancy between the Frobenius and the integral
basis of the solution space of a Picard–Fuchs differential equation, already mentioned in §7 in
the hypergeometric case, is due to Katzarkov–Kontsevich–Pantev [48] and Iritani [41].
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the second is based on the modular parametrizations of the power series involved,
and more specifically on the properties of Eichler integrals of weight 4 Eisenstein se-
ries. The first method works cleanly in all hypergeometric cases (which includes 10
of the 17 Iskovskikh cases), but is messy in general and was only worked out in de-
tail in [31] for the case F = V12 corresponding to the Apéry numbers. However, it has
the advantage of working in the two cases (d,N) = (1,1) or (2,1) of the Iskovskikh
classification for which the modular proof fails because F1(τ) is not a modular form,
and also of being potentially applicable in higher-dimensional situations, where mod-
ularity is almost never available. The modular proof is much smoother and works in
a completely uniform way in all 15 cases to which it applies.

These calculations contained one nice surprise. The Frobenius functions Ψi(z)
exist even for i > 3, even though they are then no longer solutions of the differential
equation satisfied by the quantum period, and the Frobenius limits κi and κ0

i are
therefore well-defined real numbers also for these i. In the course of the calculations
with Golyshev, I calculated them numerically to high precision for i ≤ 11 and looked
whether they could also be written, like the numbers κ0

2 and κ0
3 , as polynomials in

Riemann zeta-values with rational coefficients. This turned out to be true for i up
to 10, but false for κ0

11, which was instead a rational linear combination of products
of zeta values and of the multiple zeta value

ζ(3,5,3) =
∑

0<`<m<n

1
`3m5n3

= 0.002630072587647 · · · .

Multiple zeta values are old friends of mine and I was very pleased to see one show
up here, but I could not understand why the first appearance was only in weight 11,
rather than in weight 8 (the first case where not all multiple zeta values are express-
ible in terms of Riemann zeta values). I showed Golyshev my numerical discovery
and proffered the conjecture that this must be an extremely deep fact and that it
would probably take many decades until anybody could explain why things changed
only at the value 11. This turned out to be one of the least accurate conjectures I had
ever made, since he gave the answer within seconds rather than decades: it had to
be related to the fact that the corresponding Fano variety V12 can be “unsectioned”
seven times (cf. the geometric description of this variety as given in the previous
section) to give a Fano 10-fold, but cannot be unsectioned an eighth time without in-
troducing singularities. Since the Gamma conjecture is supposed to be true for Fano
varieties of any dimension and only involves Riemann zeta-values, this explained
the phenomenon that I had found numerically, and indeed in the subsequent weeks
Golyshev was able to compute the Gamma classes of G(10,5) and its successive sec-
tions and to verify that the numbers obtained were the same as the ones that I had
found on my computer. This also provides a numerical verification of the Gamma
conjecture for a number of Fano varieties of dimension going up to 10 (though not
a proof since the higher Frobenius limits have only been evaluated numerically and
not proved). In any case, the nature of the numbers κ0

i for i ≤ 10 can now be con-
sidered to be understood, but the appearance of ζ(3,5,3) in κ0

11 remains a mystery
requiring new insights.
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10 Miscellaneous examples, open questions, and remarks

In this section we describe a few miscellaneous topics that belong to our subject but
did not fit naturally into any of the main subjects treated so far, and also mention a
couple of open questions suggested by the results discussed here.

Two further connections with mirror symmetry

We start by describing two specific results that relate between mirror symmetry
or Gromov–Witten theory to differential equations and therefore could in principle
have been included in Section 8, but that are of an entirely different nature from the
material there.

The first is a rather odd statement that was needed by Aleksey Zinger for his
proof of the Bershadsky–Cecotti–Ooguri–Vafa mirror symmetry predictions for the
genus 1 Gromov–Witten invariants of a quintic 3-fold in P4 (or more generally of a
hypersurface of degree d in Pd−1 for any d > 0), and that we proved in our joint
paper [77]. Let P be the group of power series in t with coefficients in Q(ε) that
have constant term 1 and no pole at ε = 0. Then the hypergeometric deformation of
the power series

∑ (5n)!
n!5 t

n given by

∞∑
n=0

∏5n
r=1(r + 5ε)∏n

r=1

(
(r + ε)5 − ε5

) tn
is a fixed point of the 5th power of the non-linear map

F(t, ε) ,
(

1+ t
ε
∂
∂t

)
F(t, ε)
F(t,0)

from P to itself, and similarly with “5” replaced by any positive integer d.
The second example comes from the paper [3] by Marco Bertola, Boris Dubrovin,

and Di Yang in which the authors find power series satisfying linear differential
equations whose coefficients are defined by integrals over suitable moduli spaces,
but now with the summation being over genera rather than over the degrees of
maps from a genus 0 curve to a target space as in the case of the quantum period
that we discussed in Section 8. One of their series begins

∞∑
n=0

cn tn = 1− 161
21035

t + 26605753
22331252

t2 + · · · ,

where cn is defined by an integral over a moduli space (more precisely, up to a simple
factor it is the integral over the moduli space M5n,1 of stable 1-pointed curves of
genus 5n of the product of ψ12n−2 with a so-called Witten 5-spin class) and satisfies
the four-term recursion relation

80352000n(5n− 1)(5n− 2)(5n− 4)cn

+ 25(2592000n4 − 16588800n3 + 39118320n2 − 39189168n+ 14092603) cn−1

+ 20 (4500n2 − 18900n+ 19739) cn−2 + cn−3 = 0 .
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When I saw these numbers, which decay roughly like 1/n!2, I naturally asked whether
they might share with the coefficients of the quantum periods discussed in Sec-
tion 8 the property that when they are multiplied by n!2, or possibly by the prod-
uct of two Pochhammer symbols, they become integers (which would then poten-
tially be the coefficients of the power series solution to some Picard–Fuchs dif-
ferential equation). This indeed turned out to be the case, but somewhat surpris-
ingly in two different ways: Yang and I found a formula showing that the num-
bers an := (2103554)n

( 3
5

)
n
( 4

5

)
ncn are integers of exponential growth (and hence

can be expected to have a generating series that is a period, although we have
not succeeded in finding it), and Dubrovin and Yang found that the numbers
bn := (2123554)n

( 2
5

)
n
(
− 1

10

)
ncn are also integral and that in this case the generat-

ing function
∑
bntn is not only of Picard–Fuchs type, but is actually algebraic! So

this is a very mysterious example from both the mirror symmetry point of view and
from the point of view of the elementary number-theoretical (divisibility) properties
of numbers defined by recursions with polynomial coefficients.

Some open questions

We next list a few questions, some well known and some less so, that are suggested
by the results and observations discussed in the main body of the paper.

1. How can one recognize whether a given differential equation is geometric in ori-
gin, i.e., whether it can arise as the Picard–Fuchs equation of the periods in some
algebraic family? In particular, if {An} is a sequence of integers of at most expo-
nential growth satisfying a linear recursion of finite length with polynomial coef-
ficients, is it always of Picard–Fuchs type? This question was already mentioned
in Section 2, but is so basic to our theme that it seems worth emphasizing.

2. In a related direction, given a sequence {An} of integers as above, how can we
recognize whether they can be defined as the constant terms of the powers of
a Laurent polynomial, as was the case for the Apéry numbers and for all of the
Picard–Fuchs equations discussed in connection with mirror symmetry? In some
cases one can in fact exclude the existence of such a representation, because an
equation like (1.11) implies certain obvious congruences like Ap ≡ A1 (mod p)
(by Fermat’s little theorem) as well as much less obvious ones such as the Lucas-
like congruences given in [61] and [54], and if these fail for a given sequence {An}
then there can be no representation of this type. As an example, the integrality
of the solutions of the Bouw-Möller recursion discussed in the final example of
Section 5, where non-elementary proofs using p-adic analysis or the theory of
Hilbert modular forms were described, cannot be proved in an elementary way
by a formula like (1.11), because already the Fermat-like congruence for primes
splitting in Q(

√
17) fails. But in many cases one knows that there is a formula for

the sequence of coefficients as constant terms of powers of some polynomial L,
and the problem of finding this polynomial algorithmically remains. Note, by the
way, that the problem is only to find the polynomial L, not to prove that it works,



770 Don Zagier

since once one has a candidate it is an elementary procedure to find the recursion
for the constant terms of its powers, and if this recursion and its initial values
agree with those for the An, then the required identity is true.

As well as asking about the existence of a Laurent polynomial producing a given
sequence of constant terms, one can ask about its uniqueness. It is known that dif-
ferent polynomials can give the same sequence of numbers, if they are obtained
from one another by a sequence of so-called mutations, and several authors (e.g.,
Galkin and Usnich [27]) have studied the question whether the converse of this
statement is also true. This is not known and seems very hard, but in any case
the question of having a criterion for the existence of a Laurent polynomial, or
equivalently of a Landau–Ginzburg model, seems even more fundamental than
the question of its uniqueness.

3. Again in a related direction, given a sequence of rational numbers defined by a re-
cursion with polynomial coefficients, is there any criterion to determine whether
this sequence can be multiplied by a quotient of products of Pochhammer sym-
bols to obtain a new sequence that is integral (perhaps up to a factorMn for some
fixed M ∈ N) and has exponential growth? In this case, and if the answer to the
first question is positive, one would have a relation to periods and to algebraic ge-
ometry. Also interesting is the extent to which this modified sequence is unique.
The Bertola-Dubrovin-Yang example described above shows that the answer to
this latter question is not completely trivial.

4. The Picard–Fuchs equations associated to families of elliptic curves or families of
K3 surfaces are always modular (at least in practice; I do not know whether there
is any theorem to this effect), but for families of higher-dimensional Calabi–Yau
varieties, like the mirror quintic family with period

∑ (5n)!
n!5 t

n, this is known not to
be true. (The proof is easy: the differential equation satisfied by a modular form
of weight k with respect to a modular function as independent variable is always
the kth symmetric power of a second order equation, as mentioned in Example 2
in Section 5, but the differential equation satisfied by

∑ (5n)!
n!5 t

n is not a symmetric
cube.) Is there nevertheless some non-trivial relation between the periods in this
case and any kind of automorphic functions or forms? The Bouw-Möller equation
discussed at the end of Section 5 is an example of a differential equation that
cannot be parametrized directly by modular forms on an arithmetic group (of
finite index of SL(2,Z)), but which nevertheless, as we saw, embeds into a higher-
dimensional modular variety (in this case, a Hilbert modular surface) in which
such a parametrization exists. So one can at least wonder whether there can be
any kind of correspondence between the Calabi–Yau varieties and some automor-
phic varieties that relates the periods of the former to automorphic quantities.

5. The final question concerns the integrality of Gromov–Witten invariants. If the
mirror story is to be true, then the quantum period

∑
anzn of a Fano variety

as discussed in Section 8 must have coefficients an with denominator at most n!,
since they are supposed to be given by an = An/n! with An defined as in (1.11) for
some Laurent polynomial L. Can one prove this integrality directly from Gromov–
Witten theory? That the denominator is at least n! is to be expected, since an
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is defined as the evaluation of a certain cohomology class on the fundamental
class of the moduli space X0,1,n and this moduli space is a stack some of whose
points can have a stabilizer of order as large as n! (namely, the points given
by composing a degree 1 map from P1 to F with a degree n map from P1 to
itself, where the Galois group of the latter can be the full symmetric group on n
letters). Apparently no geometric argument is known showing that n!an is always
integral, but there seems to be a possibility of showing at least that it cannot have
more than exponential growth, e.g., (in the Fano 3-fold case) that it is a divisor
of l.c.m.{13, . . . , n3} rather than merely of n!3, which is all that one gets directly
from the recursive formula.

Higher dimensions

Throughout this paper we have concentrated on ordinary differential equations,
whose solutions are functions of a single complex variable, so that in the geometric
situation we were studying families defined over a curve (and indeed almost always
over P1(C), since then the associated differential equations have polynomial rather
than algebraic coefficients and the coefficients satisfy a recursion with polynomial co-
efficients). One exception was in Section 8, where the quantum differential equations
associated to Fano 3-folds with Picard rank ρ > 1 involve ρ arguments, and similarly
for the Picard–Fuchs differential equations on the mirror sides since ρ is the dimen-
sion of the corresponding family, but even here we used this higher-dimensional
system of differential equations to construct a power series in a single variable, the
quantum period, whose coefficients still satisfied a recursion with polynomial coef-
ficients. Of course higher-dimensional situations are also extremely interesting, but
much harder to study. I would like to end the paper by saying a few words about
them, especially because, as mentioned in the opening paragraph of the paper, this
was a subject that was of great interest to Hirzebruch and that he studied actively
in the last decades of his life. For reasons of both space and competence I will say
only a few words about it here.

A particularly beautiful result of Hirzebruch’s is his proportionality principle,
which says that the Chern numbers of the compact quotient of a bounded symmetric
domain X by a properly discontinuous and fixed-point-free group action are propor-
tional to the Chern classes of the compact dual X′ (a compact algebraic manifold
into which X is naturally embedded). If X is the complex 2-ball, then X′ = P2(C),
which has Chern numbers c2

1 = 9, c2 = 3, so any compact quotient B2/Γ , where
Γ is a group acting freely, has Chern numbers satisfying c2

1 = 3c2. Conversely it
was proved by Miyaoka and Yau that one has c2

1 ≤ 3c2 for any compact complex
surface of general type, with equality only for quotients of the 2-ball. One is particu-
larly interested in examples of non-arithmetic groups acting freely and with compact
quotients. There are three main sources of these: certain groups generated by com-
plex reflections, surfaces obtained as coverings of P2(C) ramified along lines, and
finally monodromy groups of generalized (Appell-Lauricella) hypergeometric func-
tions. Hirzebruch made an intensive study of the second class [1], deriving in par-
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ticular from the Miyaoka-Yau inequality an inequality concerning the combinatorics
of line arrangements in the plane that was stronger than anything that had been ob-
tained by elementary methods and was later applied to prove the so-called “bounded
negativity conjecture” about such line configurations. There are many links between
the three classes, as one can read in detail in [2], in the book [22] of which it is a
review, and in the book [68] that, as mentioned in the introduction, was originally
an outgrowth of a course that Hirzebruch gave on the subject in 1996. Of particular
interest in connection with the present article are the discussions of the classical
hypergeometric differential equations in Chapter 2 and of the Appell hypergeomet-
ric functions and their associated monodromy groups in Chapter 7 of [68]. I say no
more here except that the whole field is still very active, a very recent example being
a new construction by Martin Deraux [23] of non-arithmetic lattices via coverings of
line arrangements.

References

[1] Gottfried Barthel, Friedrich Hirzebruch and Thomas Höfer, Geradenkonfiguratio-
nen und algebraische Flächen. Aspects of Mathematics D4, Vieweg, Braunschweig
(1987).

[2] Paula Beazley Cohen and Friedrich Hirzebruch, Book review: Commensurabilities
among lattices in PU(1, n), by Pierre Deligne and G. Daniel Mostow. Bull. AMS 32
(1995), 88–105.

[3] Marco Bertola, Boris Dubrovin and Di Yang, Simple Lie algebras and topological
ODEs. To appear in IMRN, 36 pages. arXiv:1508.03750 (2015).

[4] Frits Beukers, A note on the irrationality proof of ζ(2) and ζ(3). Bull. London Math.
Soc. 11 (1979), 268–272.

[5] Frits Beukers, Irrationality proofs using modular forms. In Journées arithmétiques
de Besançon (Besançon, 1985), Astérisque 147–148 (1987), 271–283, 345.

[6] Frits Beukers, Some Congruences for the Apéry Numbers. J. Number Theory 21
(1985), 141–155.

[7] Frits Beukers, Another congruence for the Apéry Numbers. J. Number Theory 25
(1987), 201–210.

[8] Frits Beukers, On B. Dwork’s accessory parameter problem. Math. Z. 241 (2002),
425–444.

[9] Frits Beukers, Henri Cohen and Anton Mellit, Finite hypergeometric functions. Pure
Appl. Math. Q. 11 (2015), 559–589.

[10] Frits Beukers and Gert Heckman, Monodromy for the hypergeometric function

nFn−1. Invent. Math. 95 (1989), 325–354.

[11] Frits Beukers and Chris Peters, A family of K3 surfaces and ζ(3). J. Reine Angew.
Math. 351 (1984) 42–54.

[12] Irene Bouw and Martin Möller, Differential equations associated with non-
arithmetic Fuchsian groups. J. London Math. Soc. 81 (2010), 65–90.

http://arxiv.org/abs/1508.03750


The arithmetic and topology of differential equations 773

[13] Jan Bruinier, Günter Harder, Gerard van der Geer and Don Zagier, The 1–2–3
of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway, (ed. K.
Ranestad), Universitext, Springer-Verlag, Berlin–Heidelberg–New York 2008.

[14] Philip Candelas, Xenia de la Ossa, Paul Green and Linda Parkes, A pair of Calabi–
Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B 359
(1991), 21–74.

[15] Philip Candelas, Xenia de la Ossa and Fernando Rodriguez Villegas, Calabi–Yau
manifolds over finite fields, I. Preprint arXiv:hep-th/0012233 (2000), 76 pages; II.
in Calabi-Yau varieties and mirror symmetry, Fields Inst. Commun. 38 (2003), 121–
157.

[16] Tom Coates, Alessio Corti, Sergey Galkin and Alexander Kasprzyk, Quantum peri-
ods for 3-dimensional Fano manifolds. Geometry & Topology 20 (2016) 103–256.

[17] Tom Coates, Alexander Kasprzyk and Tom Prince, Four-dimensional Fano toric
complete intersections. Proc. R. Soc. A 471 (2015), id. 20140704.

[18] Paula Cohen and Jürgen Wolfart, Modular emeddings for some nonarithmetic Fuch-
sian groups. Acta Arith. 56 (1990) 93–110.

[19] Clay Córdova and Shu-Heng Shao, Asymptotics of ground state degeneracies in
quiver quantum mechanics. Comm. in Number Theory and Physics 10 (2016) 339–
371.

[20] David Cox and Sheldon Katz, Mirror Symmetry and Algebraic Geometry. Mathe-
matical Surveys and Monographs 68, AMS, Providence 1999.

[21] Pierre Deligne, Valeurs de fonctions L et périodes d’intégrales. In Automorphic
forms, Representations, and L-functions, Proc. Symp. Pure Math. 33, AMS (1979),
313–346.

[22] Pierre Deligne and G. Daniel Mostow, Commensurabilities among lattices in PU(1,n).
Annals of Mathematics Studies 132, Princeton University Press (1993), viii+183 pp.

[23] Martin Deraux, Non-arithmetic lattices and the Klein quartic. J. reine angew. Math.
(2017), 24 pages.

[24] Tim Dokchitser, Computing special values of motivic L-functions. Exper. Math. 13
(2004), 137–149.

[25] Dmitry Galakhov, Pietro Longhi, Tom Mainiero, Gregory Moore and Andrew
Neitzke, Wild wall crossing and BPS giants. JHEP 1311 (2013), 46–152.

[26] Sergey Galkin, Vasily Golyshev and Hiroshi Iritani, Gamma classes and quantum
cohomology of Fano manifolds: Gamma Conjectures. Duke Math. J. 165 (2016),
2005–2077.

[27] Sergey Galkin and Alexandr Usnich, Mutation of polynomials. Preprint (2010),
7 pages. IPMU 10-0100.

[28] Alexander Givental, A tutorial on quantum cohomology. In: Symplectic geometry
and topology (Park City, UT, 1997), IAS/Park City Math. Ser. 7 (1999) 231–264.

[29] Vasily Golyshev, Classification problems and mirror duality. London Math. Soc. Lec-
ture Note Ser. 338 (2007), 88–121.

[30] Vasily Golyshev and Anton Mellit, Gamma structures and Gauss’s contiguity.
J. Geom. Phys. 78 (2014), 12–18.

[31] Vasily Golyshev and Don Zagier, Proof of the Gamma Conjecture for Fano 3-folds
of Picard rank one. Izvest. Russ. Acad. Sci., Math. Series 80 (2016).

[32] Fernando Gouvea and Noriko Yui, Rigid Calabi–Yau threefolds over Q are modular.
Expo. Math. 29 (2011), 142–149.



774 Don Zagier

[33] Jeremy Gray, Linear Differential Equations and Group Theory from Riemann to
Poincaré. Birkhäuser, Boston–Basel–Stuttgart 1986.

[34] Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry. John Wiley &
Sons, New York–Chichester–Brisbane–Toronto 1978.

[35] Alexander Grothendieck, On the de Rham cohomology of algebraic varieties. Pub.
math. de l’I.H.É.S. 29 (1966), 95–103.

[36] Martin Guest, From Quantum Cohomology to Integrable Systems (Oxford Graduate
Texts in Mathematics; vol. 15). Oxford University Press, Oxford 2008.

[37] Friedrich Hirzebruch. Neue topologische Methoden in der algebraischen Geometrie.
Springer-Verlag, Berlin 1956.

[38] Friedrich Hirzebruch, Hilbert modular surfaces. L’Enseignement mathématique 19
(1973), 183–281.

[39] Christian Houzel, La Géométrie algébrique : Recherches historiques. Aspects of
Mathematics 18, Vieweg, Braunschweig (1992).

[40] Wilfred Hulsbergen, Conjectures in Arithmetic Algebraic Geometry. Blanchard,
Paris 2003.

[41] Hiroshi Iritani, An integral structure in quantum cohomology and mirror symme-
try for toric orbifolds. Advances in Mathematics 222 (2009), 1016–1079.

[42] Nicholas Katz, On the differential equations satisfied by period matrices.
Pub. math de l’I.H.É.S. 35 (1968), 71–106.

[43] Nicholas Katz, On the intersection matrix of a hypersurface. Ann. scient. Éc. Norm.
Sup. 2 (1969), 583–598.

[44] Nicholas Katz, The regularity theorem in algebraic geometry. Actes, Congrès Intern.
math. 1 (1070), 437–443.

[45] Nicholas Katz, Exponential Sums and Differential Equations. 1990.
[46] Nicholas Katz and Tadao Oda, On the differentiation of De Rham cohomology

classes with respect to parameters. J. Math. Kyoto Univ. 8 (1968) 199–213.
[47] Sheldon Katz, Enumerative Geometry and String Theory. Student Mathematical Li-

brary, IAS/Park City Mathematical Subseries 32, AMS, Providence 2006.
[48] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev, Hodge theoretic aspects

of mirror symmetry. Proc. Sympos. Pure Math. 78 (2008), 87–174.
[49] Albrecht Klemm, Emanuel Scheidegger and Don Zagier, Periods and quasiperiods

of modular forms and D-brane masses for the mirror quintic. In preparation.
[50] Maxim Kontsevich and Don Zagier, Periods. In Mathematics Unlimited – 2001 and

Beyond (B. Engquist and W. Schmid, eds.), Springer, Berlin-Heidelberg-New York
2001, 771–808.

[51] Ron Livné, Cubic exponential sums and Galois representations. In Current Trends
in Arithmetical Algebraic Geometry, Contemp. Math. 67 (1987), 247–261.

[52] Yuri Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. AMS
Colloquium Publications 47, AMS, Providence 1999.

[53] Christian Meyer, Modular Calabi–Yau Threefolds. Fields Institute Monographs, 22,
AMS, Providence, 2005.

[54] Anton Mellit and Masha Vlasenko, Dwork’s congruences for the constant terms of
powers of a Laurent polynomial. Int. J. Number Theory 12 (2016), 313–321.

[55] Martin Möller and Don Zagier, Modular embeddings of Teichmüller curves. Comp.
Math. 152 (2016) 2269–2349.

[56] Rahul Pandharipande, Rational curves on hypersurfaces (after A. Givental). In Sémi-
naire Bourbaki 1997–1998, exposé 848, Astérisque 252 (1998), 307–340.



The arithmetic and topology of differential equations 775

[57] Alf van der Poorten, A proof that Euler missed . . . Apéry’s proof of the irrationality
of ζ(3). An informal report. Mathematical Intelligencer 1 (1979), 195–203.

[58] V. V. Przyjalkowski, Quantum cohomology of smooth complete intersections in
weighted projective spaces and in singular toric varieties. Rossiïskaya Akademiya
Nauk. Matematicheskiï Sbornik 198 (2007), 107–122.

[59] David Roberts, Fernando Rodriguez Villegas, Mark Watkins, Hypergeometric Mo-
tives. In preparation.

[60] Matt Rogers, J. Wan, I. J. Zucker, Moments of elliptic integrals and critical L-values.
Ramanujan J. 37 (2015) 113–130.

[61] Kira Samol and Duco van Straten, Dwork congruences and reflexive polytopes. Ann.
Math. Qué. 39 (2015), 185–203.

[62] Chad Schoen, On the geometry of a special determinantal hypersurface associated
to the Mumford-Horrocks vector bundle. J. Reine Angew. Math. 364 (1986) 85–111.

[63] Anthony Scholl, Motives for modular forms. Invent. Math. 100 (1990) 419–430.
[64] Matthias Schütt, New examples of modular rigid Calabi–Yau threefolds. Collect.

Math. 55 (2004), 219–228.
[65] Carlos Simpson, Transcendental aspects of the Riemann-Hilbert correspondence.

Illinois J. of Math. 34 (1990), 368–391.
[66] Jan Stienstra and Frits Beukers, On the Picard–Fuchs equation and the formal

Brauer group of certain elliptic K3-surfaces. Math. Annalen 271 (1985), 269–304.
[67] Burt Totaro, Euler and algebraic geometry. Bull. AMS 44 (2007) 541–559.
[68] Paula Tretkoff, Complex Ball Quotients and Line Arrangements in the Projective

Plane. Princeton University Press, Princeton and Oxford 2016.
[69] Helena Verrill, Picard–Fuchs equations of some families of elliptic curves. In Pro-

ceedings on Moonshine and Related Topics (Montreal, 1999), CRM Proc. Lecture
Notes 30, AMS (2001), 253–268.

[70] Fernando Rodriguez Villegas, Hypergeometric families of Calabi–Yau manifolds. In
Calabi–Yau varieties and mirror symmetry (Toronto, ON, 2001), Fields Inst. Com-
mun. 38, Amer. Math. Soc., Providence, RI, 2003, 223–231.

[71] Fernando Rodriguez Villegas and Don Zagier, Which primes are sums of two cubes?
In Number Theory (Proceedings of the Third Conference of the Canadian Number
Theory Association), ed. K. Dilcher, CMS Conference Proceedings 15 (1995), 295–
306,

[72] Masaaki Yoshida, Hypergeometric Functions, My Love. Aspects of Mathematics 32,
Vieweg, Braunschweig 1997.

[73] Noriko Yui, Modularity of Calabi–Yau varieties: 2011 and beyond. In Arithmetic
and geometry of K3 surfaces and Calabi–Yau threefolds, Fields Inst. Commun. 67
(2013), 101–139.

[74] Don Zagier, Integral solutions of Apéry-like recurrence equations. In Groups and
Symmetries: From the Neolithic Scots to John McKay. CRM Proceedings and Lecture
Notes 47 (2009), Amer. Math. Society, 349–366.

[75] Don Zagier. Lines on the Dwork quintic pencil and its higher degree analogues. J.
Differential Geometry 97 (2014), 177–189.

[76] Don Zagier, Life and work of Friedrich Hirzebruch. Jahresbericht der Deutschen
Mathematiker-Vereinigung 117 (2015), 93–132.

[77] Don Zagier and Alexei Zinger, Some properties of hypergeometric series associ-
ated with mirror symmetry. In Modular Forms and String Duality, Fields Institute
Communications Vol. 54 (2008), 163–177.



776 Don Zagier

[78] Wadim Zudilin, Arithmetic hypergeometric series. Russian Math. Surveys 66 (2011)
369–420.

[79] Wadim Zudilin, A hypergeometric version of the modularity of rigid Calabi–Yau
manifolds. In preparation.

Don Zagier
Max-Planck-Institut für Mathematik,
Vivatsgasse 7, 53111 Bonn, Germany
dbz@mpim-bonn.mpg.de

mailto:dbz@mpim-bonn.mpg.de

