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1. Introduction. Denote by ∆ and Q the operators on arithmetic func-
tions defined by

∆f(n) := f(n+ 1)− f(n), Qf(n) := f(n+ 1)/f(n).

There are two objectives to the present note. The first is related to a result
of the first named author, published jointly with Tao Yuan-Sheng and Shao
Pin-Tsung [3]:

Theorem 1. If an additive function f : N → R/Z has the property
∆f(n)→ 0 as n→∞, then

f(n) = c logn+ Z with some constant c ∈ R.
We will show that the proof of this theorem as given there, although

already quite short, can still be shortened and made clearer by a certain
rearrangement of the main arguments.

Theorem 1 has an obvious translation to the multiplicative setting: If
a multiplicative function f : N → C with modulus 1 has the property
Qf(n) → 1, then it is of the form ns with s a purely imaginary complex
number. In fact this statement remains true even if we drop the condition
of unimodularity, except that now of course the exponent can be arbitrary:

Theorem 2. If f : N→ C is multiplicative and Qf(n)→ 1 as n→∞,
then f(n) = ns with some s ∈ C.

On the other hand, for f : N→C of modulus 1 the conditions “Qf(n)→1”
and “∆f(n)→ 0” are equivalent, so a different strengthening of Theorem 1
is given by the following result, which is our second main objective:

Theorem 3. If f : N→ C is multiplicative and ∆f(n)→ 0, then either
f(n) = ns with s ∈ C, 0 ≤ Re s < 1, or else f(n)→ 0 as n→∞.
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Theorem 3, which confirms an older conjecture of Kátai, was stated as a
consequence of Theorem 1 by the first named author in a letter to Kátai in
1984, and is quoted and applied as “a result of Wirsing from 1984” in a paper
of Kátai and Phong from 1996 [1]. Unfortunately it was never published. We
shall supply here a proof of Theorem 3 via Theorem 2.

The results of this paper extend—and use—a well known theorem of
Erdős on additive functions, of which we append a short proof for the
reader’s convenience.

2. Proof of Theorem 1. We denote by ‖ · ‖ the norm in R/Z, defined
by ‖κx‖ = |x − x′|, where κ is the canonical mapping from R to R/Z and
x′ the integer nearest to x.

I. There is a function F : N → R such that κ ◦ F = f and |∆F (n)| =
‖∆f(n)‖. Just choose each F (n+ 1) from (F (n)− 1/2, F (n) + 1/2]. Conse-
quently, ∆F (n)→ 0.

II. In terms of F the additivity of f is expressed by stating that

γ(a, b) := F (ab)− F (a)− F (b) is in Z if (a, b) = 1.

III. For given a and bounded gaps between n, n′ we have γ(a, n′) −
γ(a, n) = F (an′)− F (an)− F (n′) + F (n) = o(1). Thus the subsequence of
the (integral!) γ(a, n) with (a, n) = 1 stabilizes to some integer δ(a), and
the whole sequence converges, i.e.

lim
n∈N

γ(a, n) = δ(a) ∈ Z.

IV. Consider the easily checked identity:

γ(a, b) = γ(a, bc) + γ(b, c)− γ(ab, c).

If we send c to ∞, then in view of III we obtain

(1) γ(a, b) = δ(a) + δ(b)− δ(ab),
and here b→∞ yields δ(ab)− δ(b)→ 0, that is,

(2) δ(ab) = δ(b) for all b ≥ na, na suitable.

The first of these relations is best expressed if we introduce the new function

G(n) := F (n) + δ(n).

Then (1) states that G is completely additive.

V. Let us look at (2). In particular it implies that if b ≥ n2 then δ(b) =
δ(2b). Now also 2b ≥ n2 etc., hence δ(2b) = δ(4b) etc., δ(b) = δ(2kb) for
all k. Furthermore for all large k (as soon as 2k ≥ nb) another application
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of (2) gives δ(b) = δ(2k). Since this is independent of b we have:

The function δ is constant from some point (= n2) on.

VI. From this and I we obtain ∆G(n)→ 0 for the (completely) additive
function G. Then by Erdős’s Theorem (cf. §4) it follows that G(n) = c log n
for some constant c ∈ R and finally, since δ(n) ∈ Z and f = κ ◦ F = κ ◦G,

f(n) = c logn+ Z.

3. Proof of Theorems 2 and 3

Proof of Theorem 2. If we write f(n) = |f(n)| e2πig(n) then under the
given assumptions log |f | : N→ R and g = (2π)−1 arg f : N→ R/Z are addi-
tive and ∆ log |f(n)| = log |Qf(n)| → log 1 = 0, ∆g(n) = (2π)−1 argQf(n)
→ (2π)−1 arg 1 = 0, so log |f(n)| = σ logn and g(n) = τ(2π)−1 logn + Z
by Erdős’s Theorem and Theorem 1 respectively. Thus, as claimed, f(n) =
nσ+iτ .

Proof of Theorem 3. Note that ∆f(n)→ 0 implies Qf(n)→ 1, provided
|f(n)| is bounded below by some positive constant µ:

|Qf(n)− 1| =
∣∣∣∣
∆f(n)
f(n)

∣∣∣∣ ≤
|∆f(n)|

µ
.

So in this case Theorem 2 applies and gives f(n) = ns. Obviously Re s < 1,
since ∆f(n)→ 0 implies f(n) = o(n).

It remains to show f(n) → 0 if f is not bounded in this way. In fact a
weaker assumption suffices and Theorem 3 will follow immediately from

Lemma. If f : N → C is multiplicative, ∆f(n) → 0, and there is an
a ∈ N such that |f(a)| < 1, then f(n)→ 0 as n→∞.

Proof. Let a be a fixed number such that |f(a)| =: q < 1. By assumption,
we have |∆f(n)| ≤ ε/a2 for n ≥ n0(ε). To each n ∈ N we attach a sequence
n, n′, n′′, . . . , n(k) by the modified division algorithm n(i−1) = an(i) +ri that
allows 0 ≤ ri < a2 but requires that a and n(i) be coprime. We stop at the
first index k for which n(k) < n0(ε) + a2. Breaking the gaps up into ri steps
of length 1 we see |f(n(i−1))− f(a)f(n(i))| < ε for i = 1, . . . , k. Thus

|f(n(i−1))| < q|f(n(i))|+ ε.

The total result from these inequalities is

|f(n)| < ε+ q(ε+ q(ε+ . . .+ q(ε+ q|f(n(k))|) . . .))
< ε(1− q)−1 + qk|f(n(k))|.

Since ε is arbitrary, f(n(k)) stays bounded once ε is fixed, and k tends to
infinity as n does, we see that indeed f(n)→ 0.
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4. Appendix: Erdős’s Theorem

Theorem 4 (Erdős, 1946). If an additive function f : N → R has the
property ∆f(n)→ 0 as n→∞, then

f(n) = c log n with some constant c ∈ R.
The following proof is taken from [2]. For convenience, assume first that f

is completely additive, which is all that is needed for our application. Choose
an integer g ≥ 2 and attach to each n ∈ N a sequence n, n′, n′′, . . . , n(k) by
the g-adic division algorithm n(i−1) = gn(i) + ri where 0 ≤ ri < g, which
terminates when n(k) < g. Breaking the gaps up into steps of length 1 we see
|f(n(i−1))−f(n(i))−f(g)| < ε, for any ε, as long as n(i) is sufficiently large,
and bounded for the remaining i. The total result from these inequalities is

|f(n)− kf(g)| < kε+Oε(1),

in other words,
f(n) = kf(g) + o(k).

Since k ∼ logn/log g as n→∞ we have

f(n) =
logn
log g

f(g) + o(logn).

The very first impression is disappointment: An asymptotic relation rather
than the expected identity? But the asymptotic behavior is independent of
the choice of g. Therefore f(g)/log g is a constant! The same proof works
with restricted additivity if one uses the modified division algorithm as in
the lemma.
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