Multiplicative functions with difference tending to zero

by

EDUARD WIRSING (Ulm) and DON ZAGIER (Bonn)

1. Introduction. Denote by Δ and Q the operators on arithmetic functions defined by

$$\Delta f(n) := f(n+1) - f(n), \quad Qf(n) := f(n+1)/f(n).$$

There are two objectives to the present note. The first is related to a result of the first named author, published jointly with Tao Yuan-Sheng and Shao Pin-Tsung [3]:

THEOREM 1. If an additive function $f : \mathbb{N} \to \mathbb{R}/\mathbb{Z}$ has the property $\Delta f(n) \to 0$ as $n \to \infty$, then

 $f(n) = c \log n + \mathbb{Z}$ with some constant $c \in \mathbb{R}$.

We will show that the proof of this theorem as given there, although already quite short, can still be shortened and made clearer by a certain rearrangement of the main arguments.

Theorem 1 has an obvious translation to the multiplicative setting: If a multiplicative function $f : \mathbb{N} \to \mathbb{C}$ with modulus 1 has the property $Qf(n) \to 1$, then it is of the form n^s with s a purely imaginary complex number. In fact this statement remains true even if we drop the condition of unimodularity, except that now of course the exponent can be arbitrary:

THEOREM 2. If $f : \mathbb{N} \to \mathbb{C}$ is multiplicative and $Qf(n) \to 1$ as $n \to \infty$, then $f(n) = n^s$ with some $s \in \mathbb{C}$.

On the other hand, for $f : \mathbb{N} \to \mathbb{C}$ of modulus 1 the conditions " $Qf(n) \to 1$ " and " $\Delta f(n) \to 0$ " are equivalent, so a different strengthening of Theorem 1 is given by the following result, which is our second main objective:

THEOREM 3. If $f : \mathbb{N} \to \mathbb{C}$ is multiplicative and $\Delta f(n) \to 0$, then either $f(n) = n^s$ with $s \in \mathbb{C}$, $0 \leq \text{Re } s < 1$, or else $f(n) \to 0$ as $n \to \infty$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11A25.

Theorem 3, which confirms an older conjecture of Kátai, was stated as a consequence of Theorem 1 by the first named author in a letter to Kátai in 1984, and is quoted and applied as "a result of Wirsing from 1984" in a paper of Kátai and Phong from 1996 [1]. Unfortunately it was never published. We shall supply here a proof of Theorem 3 via Theorem 2.

The results of this paper extend—and use—a well known theorem of Erdős on additive functions, of which we append a short proof for the reader's convenience.

2. Proof of Theorem 1. We denote by $\|\cdot\|$ the norm in \mathbb{R}/\mathbb{Z} , defined by $\|\kappa x\| = |x - x'|$, where κ is the canonical mapping from \mathbb{R} to \mathbb{R}/\mathbb{Z} and x' the integer nearest to x.

I. There is a function $F : \mathbb{N} \to \mathbb{R}$ such that $\kappa \circ F = f$ and $|\Delta F(n)| = ||\Delta f(n)||$. Just choose each F(n+1) from (F(n) - 1/2, F(n) + 1/2]. Consequently, $\Delta F(n) \to 0$.

II. In terms of F the additivity of f is expressed by stating that

$$\gamma(a,b) := F(ab) - F(a) - F(b) \quad \text{is in } \mathbb{Z} \text{ if } (a,b) = 1.$$

III. For given a and bounded gaps between n, n' we have $\gamma(a, n') - \gamma(a, n) = F(an') - F(an) - F(n') + F(n) = o(1)$. Thus the subsequence of the (integral!) $\gamma(a, n)$ with (a, n) = 1 stabilizes to some integer $\delta(a)$, and the whole sequence converges, i.e.

$$\lim_{n \in \mathbb{N}} \gamma(a, n) = \delta(a) \in \mathbb{Z}.$$

IV. Consider the easily checked identity:

 $\gamma(a,b) = \gamma(a,bc) + \gamma(b,c) - \gamma(ab,c).$

If we send c to ∞ , then in view of **III** we obtain

(1)
$$\gamma(a,b) = \delta(a) + \delta(b) - \delta(ab),$$

and here $b \to \infty$ yields $\delta(ab) - \delta(b) \to 0$, that is,

(2) $\delta(ab) = \delta(b)$ for all $b \ge n_a$, n_a suitable.

The first of these relations is best expressed if we introduce the new function

$$G(n) := F(n) + \delta(n).$$

Then (1) states that G is completely additive.

V. Let us look at (2). In particular it implies that if $b \ge n_2$ then $\delta(b) = \delta(2b)$. Now also $2b \ge n_2$ etc., hence $\delta(2b) = \delta(4b)$ etc., $\delta(b) = \delta(2^k b)$ for all k. Furthermore for all large k (as soon as $2^k \ge n_b$) another application

of (2) gives $\delta(b) = \delta(2^k)$. Since this is independent of b we have:

The function δ is constant from some point $(= n_2)$ on.

VI. From this and **I** we obtain $\Delta G(n) \to 0$ for the (completely) additive function G. Then by Erdős's Theorem (cf. §4) it follows that $G(n) = c \log n$ for some constant $c \in \mathbb{R}$ and finally, since $\delta(n) \in \mathbb{Z}$ and $f = \kappa \circ F = \kappa \circ G$,

$$f(n) = c \log n + \mathbb{Z}. \blacksquare$$

3. Proof of Theorems 2 and 3

Proof of Theorem 2. If we write $f(n) = |f(n)| e^{2\pi i g(n)}$ then under the given assumptions $\log |f| : \mathbb{N} \to \mathbb{R}$ and $g = (2\pi)^{-1} \arg f : \mathbb{N} \to \mathbb{R}/\mathbb{Z}$ are additive and $\Delta \log |f(n)| = \log |Qf(n)| \to \log 1 = 0$, $\Delta g(n) = (2\pi)^{-1} \arg Qf(n) \to (2\pi)^{-1} \arg 1 = 0$, so $\log |f(n)| = \sigma \log n$ and $g(n) = \tau (2\pi)^{-1} \log n + \mathbb{Z}$ by Erdős's Theorem and Theorem 1 respectively. Thus, as claimed, $f(n) = n^{\sigma+i\tau}$.

Proof of Theorem 3. Note that $\Delta f(n) \to 0$ implies $Qf(n) \to 1$, provided |f(n)| is bounded below by some positive constant μ :

$$|Qf(n) - 1| = \left|\frac{\Delta f(n)}{f(n)}\right| \le \frac{|\Delta f(n)|}{\mu}$$

So in this case Theorem 2 applies and gives $f(n) = n^s$. Obviously $\operatorname{Re} s < 1$, since $\Delta f(n) \to 0$ implies f(n) = o(n).

It remains to show $f(n) \to 0$ if f is not bounded in this way. In fact a weaker assumption suffices and Theorem 3 will follow immediately from

LEMMA. If $f : \mathbb{N} \to \mathbb{C}$ is multiplicative, $\Delta f(n) \to 0$, and there is an $a \in \mathbb{N}$ such that |f(a)| < 1, then $f(n) \to 0$ as $n \to \infty$.

Proof. Let a be a fixed number such that |f(a)| =: q < 1. By assumption, we have $|\Delta f(n)| \leq \varepsilon/a^2$ for $n \geq n_0(\varepsilon)$. To each $n \in \mathbb{N}$ we attach a sequence $n, n', n'', \ldots, n^{(k)}$ by the modified division algorithm $n^{(i-1)} = an^{(i)} + r_i$ that allows $0 \leq r_i < a^2$ but requires that a and $n^{(i)}$ be coprime. We stop at the first index k for which $n^{(k)} < n_0(\varepsilon) + a^2$. Breaking the gaps up into r_i steps of length 1 we see $|f(n^{(i-1)}) - f(a)f(n^{(i)})| < \varepsilon$ for $i = 1, \ldots, k$. Thus

$$|f(n^{(i-1)})| < q|f(n^{(i)})| + \varepsilon.$$

The total result from these inequalities is

$$|f(n)| < \varepsilon + q(\varepsilon + q(\varepsilon + \ldots + q(\varepsilon + q|f(n^{(k)})|)\ldots))$$

$$< \varepsilon(1-q)^{-1} + q^k |f(n^{(k)})|.$$

Since ε is arbitrary, $f(n^{(k)})$ stays bounded once ε is fixed, and k tends to infinity as n does, we see that indeed $f(n) \to 0$.

4. Appendix: Erdős's Theorem

THEOREM 4 (Erdős, 1946). If an additive function $f : \mathbb{N} \to \mathbb{R}$ has the property $\Delta f(n) \to 0$ as $n \to \infty$, then

 $f(n) = c \log n$ with some constant $c \in \mathbb{R}$.

The following proof is taken from [2]. For convenience, assume first that f is completely additive, which is all that is needed for our application. Choose an integer $g \geq 2$ and attach to each $n \in \mathbb{N}$ a sequence $n, n', n'', \ldots, n^{(k)}$ by the g-adic division algorithm $n^{(i-1)} = gn^{(i)} + r_i$ where $0 \leq r_i < g$, which terminates when $n^{(k)} < g$. Breaking the gaps up into steps of length 1 we see $|f(n^{(i-1)}) - f(n^{(i)}) - f(g)| < \varepsilon$, for any ε , as long as $n^{(i)}$ is sufficiently large, and bounded for the remaining i. The total result from these inequalities is

$$|f(n) - kf(g)| < k\varepsilon + O_{\varepsilon}(1),$$

in other words,

$$f(n) = kf(g) + o(k).$$

Since $k \sim \log n / \log g$ as $n \to \infty$ we have

$$f(n) = \frac{\log n}{\log g} f(g) + o(\log n).$$

The very first impression is disappointment: An asymptotic relation rather than the expected identity? But the asymptotic behavior is independent of the choice of g. Therefore $f(g)/\log g$ is a constant! The same proof works with restricted additivity if one uses the modified division algorithm as in the lemma.

References

- I. Kátai and B. M. Phong, On some pairs of multiplicative functions correlated by an equation, in: New Trends in Probability and Statistics, Vol. 4 (Palanga, 1996), VSP, Utrecht, 1997, 191–203.
- E. Wirsing, Additive and completely additive functions with restricted growth, in: H. Halberstam and C. Hooley (eds.), Recent Progress in Analytic Number Theory, II (Durham, 1979), Academic Press, 1981, 231–280.
- E. Wirsing, Y. S. Tao and P. T. Shao, On a conjecture of Kátai for additive functions, J. Number Theory 56 (1996), 391–395.

Max-Planck-Institut für Mathematik
Vivatsgasse 7
D-53111 Bonn, Germany
E-mail: zagier@mpim-bonn.mpg.de

Received on 29.5.2000

(3827)